
Perturbation-Resilient Atomic Commit Protocols for
Mobile Environments

Vom Fachbereich Informatik der Technischen Universität Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doktor-Ingenieur (Dr.-Ing.)
vorgelegt von

Dipl.-Inform. Brahim Ayari

aus Tunis, Tunesien

Referenten:
Prof. Neeraj Suri, Ph.D.

Prof. Philip Koopman, Ph.D.

Datum der Einreichung: 16. Juni 2010
Datum der mündlichen Prüfung: 01. September 2010

Darmstadt 2010
D17

ii

Abstract
The support of distributed atomic transactions is a key requirement for many

current mobile applications. Atomicity is a fundamental property ensuring that all
nodes reach a consistent outcome. For this, distributed mobile transactions fun-
damentally require perturbation-resilient atomic commit protocols. This is chal-
lenging as mobile environments are typically characterized by frequent network
and node perturbations. The environmental constraints on mobile transaction
participants and wireless links may increase the resource blocking time of fixed
participants. Moreover, frequent node and link failures complicate the design of
atomic commit protocols by increasing both the transaction abort rate and re-
source blocking time. Hence, the deployment of classical commit protocols is not
necessarily applicable to distributed mobile environments. Existing protocols en-
suring strict atomicity in mobile environments are either bound to very narrow and
specific application scenarios or have poor commit rates, high message overhead
or a blocking behavior.

In order to cope with different application scenarios, we first identify three
classes of mobile environments: infrastructure-based, ad-hoc and generic. Fur-
thermore, we consider and comprehensively classify the perturbations of the wire-
less mobile environment into classes according to their impact on the outcome of
commit protocols and on their blocking behavior. To tolerate these perturbation
classes, perturbation-tolerant mechanisms are provided. Based on these mecha-
nisms, we develop a family of perturbation-tolerant atomic commit protocols with
minimal resource blocking time and optimized transaction commit rates.

For the infrastructure-based mobile environment, we propose an approach that
decouples the commit of mobile participants from that of fixed participants –
beyond using the strengths of existing approaches. Consequently, the commit set
is reduced to a set of entities in the fixed network. Thus, the commit can easily
be supported by any traditional atomic commit protocol. For the ad-hoc mobile
environment, we present a commit approach that supports a significantly wider
range of mobility patterns and partitioning scenarios than existing protocols. Our
approach is based on a novel coordination strategy using a flexible preselection of
multiple coordinators among the participating nodes. Thus, the failure of a single
coordinator is tolerated in the presence of network partitioning. For the generic
mobile environment, we develop an approach that takes advantage of accessing
the wired infrastructure if available, by choosing reliable infrastructure nodes for
coordinating transactions. If the access to the wired infrastructure is unavailable,
our approach adapts itself to the resulting ad-hoc environment.

We evaluated our framework and the algorithms presented in this thesis via
extensive simulations and experiments. They validated the efficiency and scala-
bility of the developed solutions and additionally emphasized their resilience to
the considered environmental, network and node perturbations by minimizing re-
source blocking times and optimizing transaction commit rates. Furthermore, they
confirmed the suitability of our solutions to a wide range of mobile applications.

iii

iv

Kurzfassung

Die Unterstützung verteilter atomarer Transaktionen ist eine entscheidende
Voraussetzung für viele aktuelle mobile Applikationen. Atomizität ist eine grundle-
gende Eigenschaft, die gewährleistet, dass alle Knoten ein konsistentes Ergebnis
erreichen. Um die Atomizität verteilter mobiler Transaktionen gewährleisten zu
können, bedarf es störungsresistenter Commit-Protokolle, da mobile Umgebun-
gen typischerweise durch häufige Netzwerk- und Knotenstörungen gekennzeich-
net sind. Die umgebungsbedingten Beschränkungen bei mobilen Transaktionsteil-
nehmern und drahtlosen Verbindungen können die Ressourcen-Blockierungszeit
von drahtgebundenen stationären Teilnehmern erhöhen. Darüber hinaus er-
schweren häufige Knoten- und Verbindungsfehler die Anwendung konventioneller
atomarer Commit-Protokollen durch die Erhöhung sowohl der Transaktionsab-
bruchrate als auch der Ressourcen-Blockierungszeit der Transaktion. Daher ist der
Einsatz klassischer Commit-Protokolle für verteilte mobile Umgebungen als nicht
empfehlenswert zu erachten. Bestehende Protokolle, die eine strikte Atomizität in
mobilen Umgebungen gewährleisten, sind entweder an sehr begrenzte und spezi-
fische Anwendungsszenarien gebunden oder gehen mit niedrigen Commit-Raten,
hohem Nachrichten-Overhead oder Blockierungsverhalten einher.

Um die Anwendbarkeit in unterschiedliche Szenarien sicherzustellen, identi-
fizieren wir zunächst drei Klassen von mobilen Umgebungen: Infrastruktur-basiert,
ad-hoc und generisch. Des Weiteren klassifizieren wir mögliche Störungen der
drahtlosen mobilen Umgebung entsprechend ihrer Auswirkung auf das Ergeb-
nis der Commit-Protokolle und auf deren Blockierungsverhalten. Um diese
Störungsklassen zu tolerieren, sind störungstolerante Mechanismen vorgesehen.
Basierend auf diesen Mechanismen und unter Berücksichtigung der identifizierten
Anwendungsszenarien entwickeln wir eine Familie von störungstoleranten atom-
aren Commit-Protokollen mit minimaler Ressourcen-Blockierungszeit und opti-
mierten Transaktions-Commit-Raten.

Für die Infrastruktur-basierte mobile Umgebung schlagen wir einen Ansatz
vor, der die Transaktionsausführung mobiler Teilnehmer von der stationärer Teil-
nehmer entkoppelt und der zwar die Stärken bestehender Ansätze subsumiert,
dabei aber über die einfache Verwendung dieser Ansätze hinausgeht. Dabei re-
duziert sich das Commit-Set zu einem Set von Einheiten im Festnetz und es können
traditionelle atomare Commit-Protokolle leicht eingesetzt werden. Für die Ad-
hoc-Umgebung präsentieren wir einen Ansatz, der eine wesentlich breitere Reihe
von Mobilitätsmustern und Partitionierungsszenarien als die bestehenden Pro-
tokolle unterstützt. Unser Ansatz basiert auf einer neuen Koordinierungsstrategie
mit einer flexiblen Vorauswahl von mehreren Koordinatoren unter den beteiligten
Knoten. So kann der Ausfall eines einzigen Koordinators, z.B. bei einer Netzwerk-
Partitionierung, toleriert werden. Für die generische Umgebung entwickeln wir
einen Ansatz, der den Zugriff auf die drahtgebundene Infrastruktur, falls vorhan-
den, nutzt, indem zuverlässige Infrastruktur-Knoten für die Koordinierung der
Transaktionen ausgesucht werden. Wenn der Zugriff auf die drahtgebundene In-

v

frastruktur nicht verfügbar ist, passt sich unser Ansatz an die daraus resultierende
Ad-hoc-Umgebung an.

Unser entwickeltes Framework und die in dieser Arbeit vorgestellten Algorith-
men wurden durch umfangreiche Simulationen und Experimente evaluiert. Die
Evaluationsergebnisse demonstrieren die Effizienz und Skalierbarkeit der entwi-
ckelten Lösungen und bestätigen ihre Widerstandsfähigkeit gegenüber Netzwerk-
und Knoten-Störungen durch Minimierung der Ressourcen-Blockierungszeiten und
Optimierung der Transaktions-Commit-Raten. Darüber hinaus zeigen die Ergeb-
nisse die Eignung unserer Lösungen für eine breite Reihe von mobilen Anwen-
dungsszenarien.

vi

Acknowledgements

It is a pleasure to thank all the people who have helped, guided and
supported me in the successful completion of this thesis. Without their
contributions, this research would not have been possible.

My greatest gratitude goes to my supervisor, Prof. Dr. Neeraj Suri,
whose encouragement, guidance and support from the initial to the final
level enabled me to develop an understanding of the subject. Besides this,
he was always patient and helpful whenever his encouragement, supervision
and advice were needed. I would like to thank Dr. Abdelmajid Khelil for his
valuable advice and inspiring discussions on my research work. A great many
thanks also to Prof. Philip Koopman for accepting to be my co-advisor.

Then, I would like to thank all past and present DEEDS group’s mem-
bers. Hoping not to forget anyone of the former and current colleges, many
thanks to Faisal, Azad, Hamza, Ripon, Andréas, Dinu, Adina, Robert, Dan,
Marco, Peter, Matthias, Piotr, Vinay, Stefan, Daniel, Thorsten and Mo-
hammadreza. Also, special thanks go to Birgit, Ute and Sabine for helping
me with various paperwork and all other circumstances related to living in
Germany.

I would also like to thank all my teachers, advisors and friends, who
supported me during my education in Tunisia and Germany. They always
wished me success and believed in me.

My sincere and heartfelt thanks go to my deceased father, Abdelwaheb
Ayari, and my mother, Manana Kharrat VV Ayari. My mother was always
there when I needed her. Her constant moral support has been very encour-
aging all these years. I also thank my brother, Saifeddine, and sisters, Hager
and Kaouther, for their endless love.

I saved the best for the last. I would like to thank my beloved wife, Emna,
and our beloved daughter, Eya, for all the understanding, love, support and
happiness that they always brought to me. They were a continuous source
of encouragement and strength for me all these years.

vii

viii

Contents

Abstract iii

Kurzfassung (german) v

Acknowledgements vii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1 Introduction and Problem Context 1
1.1 Problem Statement . 4
1.2 Thesis Contributions . 6
1.3 Publications Resulting from the Thesis 9
1.4 Thesis Structure . 10

2 State of the Art and Practice 13
2.1 Classical Transaction Commit Protocols 14

2.1.1 Two Phase Commit . 14
2.1.2 Three Phase Commit 15
2.1.3 Paxos Commit . 17

2.2 Commit Protocols for Mobile Infrastructure-Based Environ-
ments . 17
2.2.1 Unilateral Commit for Mobile 18
2.2.2 Transaction Commit On Timeout 19
2.2.3 Combination of Optimistic Approach and 2PC 21
2.2.4 Mobile Two-Phase Commit 22

2.3 Commit Protocols for Mobile Ad-Hoc Environments 23
2.3.1 Cross Layer Commit 24
2.3.2 Integrated Commit . 25

ix

2.3.3 Group Based Transaction Commit 26
2.4 Chapter Summary . 28

3 Mobile Environment Models 29
3.1 System Model . 30
3.2 Transaction Model . 33
3.3 Perturbation Model . 33

3.3.1 Classification of Perturbations 33
3.3.2 Operational/Environmental Constraints 35
3.3.3 Failure Modes . 36

3.4 Chapter Summary . 37

4 Perturbation-Resilient Atomic Commit Framework 39
4.1 Application Scenarios . 40
4.2 Design Requirements and Issues 42
4.3 Methodology . 44
4.4 Coping with the Environmental Constraints 44
4.5 Tolerating Network Disconnections 47
4.6 Tolerating Message Losses . 52
4.7 Tolerating Node Failures . 52
4.8 Tolerating Network Partitioning 54
4.9 Chapter Summary . 57

5 Atomic Commit for Infrastructure-based Environments 59
5.1 Overview of our Approach: The FT-PPTC Commit 60
5.2 Base Protocol: PPTC . 61

5.2.1 Activities of the initiator mobile node 62
5.2.2 Activities of the coordinator 63
5.2.3 Activities of a participant mobile node 65
5.2.4 Activities of a participant fixed node 65

5.3 Fault-Tolerant Coverage Protocol: FT-PPTC 66
5.3.1 Activities of a mobile node agent 67

5.4 Fault-Tolerant and Recovery Protocol: FT-PPTC-Rec 68
5.5 Correctness Basis . 70
5.6 Performance Evaluation . 72
5.7 Chapter Summary . 82

6 Atomic Commit for Ad-Hoc Environments 85
6.1 Overview of our Approach: The ParTAC Commit 86
6.2 Protocol Operations . 87

6.2.1 Activities of Participant Mobile Nodes 87

x

6.2.2 Activities of Preselected Coordinators 88
6.3 Correctness Basis . 92
6.4 Performance Evaluation . 94
6.5 Chapter Summary . 105

7 Atomic Commit for Generic Environments 107
7.1 Overview of our Approach: The PeRTAC Commit 108
7.2 Protocol Operations . 113

7.2.1 Activities of Participant Mobile Nodes 113
7.2.2 Activities of Coordinators 113
7.2.3 Activities of Mobile Node Agents 118
7.2.4 Activities of Participant Fixed Nodes 118

7.3 Correctness Basis . 118
7.4 Performance Evaluation . 121
7.5 Chapter Summary . 129

8 Conclusions and Future Research 131
8.1 Overall Thesis Contributions 132

8.1.1 Investigation of Perturbations in the Mobile Environ-
ment . 132

8.1.2 A Modular Framework of Perturbation-Resilient
Transaction Atomic Commit Protocols 132

8.2 Application Scenario Implementation 134
8.3 Open Ends - Basis for Future Work 137

Bibliography 139

Index 149

xi

xii

List of Figures

1.1 Mobile internet devices, computers sold in 2009 2
1.2 Thesis structure . 11

2.1 The 2 phase commit protocol 15
2.2 The 3 phase commit protocol 16

3.1 Components of the mobile environment 31
3.2 Generic vs. infrastructure-based and ad-hoc mobile environ-

ments . 32
3.3 Classification of perturbations 34

4.1 Coordination across autonomous vehicles (livelock scenario) . 41
4.2 Timeout selection in a heterogeneous scenario 46
4.3 Tolerating network disconnection – Agent concept 49
4.4 Tolerating network disconnection – Decoupling concept 49
4.5 Tolerating predictable network disconnection 50
4.6 Factors for estimating MT lifetime in ad-hoc scenarios 55

5.1 Scenario execution of the MT Ti using the PPTC protocol . . 62
5.2 Failure-prone execution of the MT Ti using the FT-PPTC pro-

tocol (for simplicity only transient disconnections are illustrated) 66
5.3 Throughput . 77
5.4 Resource blocking time at FNs 78
5.5 Optimal timeout selection . 78
5.6 Impact of connectivity on commit rate 80
5.7 Wireless messages overhead 80
5.8 Impact of lifetime on the commit rate 81
5.9 Impact of connectivity on blocking time of P-FNs 81
5.10 MT execution time . 82

6.1 Partition-tolerant commit in mobile ad-hoc environments . . . 89
6.2 Impact of partitioning degree and lifetime on commit rate . . 96
6.3 Impact of lifetime on decision time 96

xiii

6.4 Impact of lifetime on message complexity 97
6.5 Impact of speed of MNs on commit rate 98
6.6 Impact of speed of MNs on decision time 99
6.7 Impact of speed of MNs on message complexity 99
6.8 Impact of mobility model on commit rate 100
6.9 Impact of mobility model on decision time 101
6.10 Impact of mobility model on message complexity 101
6.11 Impact of number of COs on commit rate 102
6.12 Impact of number of COs on decision time 102
6.13 Impact of number of COs on message complexity 103
6.14 Impact of number of P-MNs on commit rate 104
6.15 Impact of number of P-MNs on decision time 104
6.16 Impact of number of P-MNs on message complexity 105

7.1 Objectives of the proposed approach 109
7.2 FT-PPTC flow diagram . 109
7.3 ParTAC flow diagram . 110
7.4 PeRTAC flow diagram . 112
7.5 Impact of BSs’ coverage on commit rate 124
7.6 Impact of BSs’ coverage on decision time 124
7.7 Impact of BSs’ coverage on message complexity 125
7.8 Impact of lifetime on commit rate 126
7.9 Impact of lifetime on decision time 126
7.10 Impact of lifetime on message complexity 127
7.11 Impact of number of COs on commit rate 127
7.12 Impact of number of COs on decision time 128
7.13 Impact of number of COs on message complexity 128

8.1 LEGO Mindstorms equipped with HTC PDA 135
8.2 Intersection scenario . 136

xiv

List of Tables

2.1 Commit protocols for mobile ad-hoc environments 28

5.1 Perturbation-resilience of protocol family 60
5.2 Coverage of perturbations (++: Comprehensive, +: Basic, -:

No coverage) . 73
5.3 Message complexity . 73
5.4 Simulation parameters and settings 75

6.1 ParTAC vs. existing commit protocols for mobile ad-hoc en-
vironments . 86

6.2 Simulation settings . 95

7.1 Requirements on the new PeRTAC approach 111
7.2 Simulation settings . 122
7.3 Base station coverage in the simulated area 123

xv

xvi

List of Algorithms

1 I-MN’s Algorithm (PPTC) . 63
2 CO’s Algorithm (PPTC) . 64
3 P-MN’s Algorithm (PPTC) . 65
4 MN-Ag’s Algorithm (FT-PPTC) 67
5 CO’s Algorithm (FT-PPTC-Rec) 69
6 MN-Ag’s Algorithm (FT-PPTC-Rec) 70

7 P-MN’s Activities in ParTAC 88
8 CO’s Activities in ParTAC . 90
9 CheckList Procedure . 91

10 P-MN’s Activities in PeRTAC 114
11 CO’s Activities in PeRTAC . 115
12 CheckList Procedure . 116
13 MN-Ag’s Activities in PeRTAC 119

xvii

xviii

Chapter 1

Introduction and Problem
Context

The pervasiveness and functionality of interacting mobile computing devices
is increasing given the progress in wireless technologies. Moreover, com-
putation and storage capabilities of mobile devices, such as laptops, PDAs
(Personal Digital Assistants) and mobile phones, are increasing. The mobile
wireless systems built using such interacting mobile devices are increasingly
playing a major role in our daily life. This statement is validated by statistics
on the growth of the mobile device market. It was found that mobile devices
equipped with wireless technologies able to connect to the Internet outsell
computers (Figure 1.1). In 2009, 450 million such mobile devices were sold,
according to Information Week [Information Week, 2009]. Conversely, in
2009, 306 million computers were sold according to Gartner [Gartner]. Since
mobile devices already outsell computers, consumers will migrate to handling
a significant amount of their daily activities – where computers where earlier
involved such as purchasing online products – from mobile devices.

The communication between the interacting mobile computing devices
can be either infrastructure-based or ad-hoc and many existing wireless tech-
nologies such as WLAN and Bluetooth provide these two types of communi-
cation modes:

1. The infrastructure-based communication mode allows mobile devices to
access wired networks through base stations to communicate with other
either mobile or fixed entities.

2. The ad hoc communication mode allows mobile devices to communicate
directly with each other and in a spontaneous manner when they are
in communication range.

1

2 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

Mobile Internet

Devices
Computers

100

200

300

400

500

M
ill

io
n

s
 o

f
U

n
it
s

Figure 1.1: Mobile internet devices, computers sold in 2009

Mobile computing devices and base stations are components of the mobile
environment. When the communication between mobile computing devices
is only infrastructure-based, the environment is called mobile infrastructure-
based environment. In mobile ad-hoc environments, mobile computing de-
vices can communicate with each other only in ad-hoc mode. If both com-
munication modes are supported by mobile devices, we are dealing with a
mobile generic environment.

One of the major purposes of developing wireless systems in mobile envi-
ronments, especially regarding management of data, is to allow users of such
systems to access data everywhere and at any time and from any type of mo-
bile computing device. Generally, data is stored and managed by databases
installed on mobile and fixed devices and accessed through mobile wireless
systems. Increasingly, mobile environments are supporting applications that
require data consistency. As examples, we provide the following scenarios:

• A user of a mobile device that is able to connect to the Internet can
browse online catalogs and buy goods from online shops involving bank
and online shop servers in fixed wired networks.

• Mobile game players should be able to see the same state of the game
stage at the same time, especially if exchange of virtual or real items
is performed during the game.

• A doctor needs to access and update old people’s data – living in an am-

3

bient intelligent [Aarts et al., 2001] environment – independently from
his location whether he is in the hospital or outside, visiting another
patient.

These mobile environments are characterized by frequent and varied per-
turbations in the mobile devices and the networks linking them. These are
directly apparent as resource constraints and operational failures over the de-
livery of mobile services as compared to the services delivered by fixed wired
networks. Mobile environments are constrained by the processing, storage
and energy capacity of mobile devices, and also the continuously varying
properties of wireless channels. Most of the failures which occur in such
environments manifest at the mobile devices or as communication failures.
These failures can last for seconds, minutes or even hours (e.g. network
disconnections).

Data in the mobile environment is stored and managed by databases.
For a significant range of applications in the mobile environment, such as
the ones cited above, data consistency is a key requirement. Preserving
data consistency, in distributed database systems in general and in mobile
environments in particular, despite the presence of failures relies on the well
established transaction concept.

A transaction represents a powerful abstraction which encapsulates a set
of data operations that should be treated as a single operation. Thus, the
transaction has to be executed atomically, i.e., either all the operations are
successfully executed and consequently the transaction is committed, or none
of the operations should affect the data and the transaction is aborted. In
case the transaction is committed, the effects of the transaction operations
become permanent. An aborted transaction has no effects on the data. This
“all or nothing” property of transactions is called atomicity property. Atom-
icity is one of the four properties of transactions known as the ACID prop-
erties [Härder and Reuter, 1983], i.e.,

- Atomicity: Transaction modifications must follow the “all or nothing”
rule. If one transaction operation fails, the entire transaction fails. It
is always critical to maintain the atomic nature of transactions in spite
of any failures occurring during the transaction execution.

- Consistency: A successful transaction takes the database from one
consistent state to another consistent state. If the transaction is not
successful, the consistent state of the database before the unsuccessful
transaction is restored.

- Isolation: If multiple transactions are occurring at the same time, they
do not impact each other’s execution. The isolation property ensures

4 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

that the effects of parallel transactions are equivalent to a sequential
execution of these transactions (i.e., without overlapping in time). The
isolation property does not guarantee any order of execution of the
transactions. It just ensures that they will not interfere with each
other.

- Durability: If a transaction is committed, the changes performed by
this transaction will not be lost. Durability is ensured through the use
of database backups and transaction logs that facilitate the restora-
tion of committed transactions in spite of any subsequent software or
hardware failures.

In mobile environments, if the data manipulated by a transaction is dis-
tributed on different mobile or fixed entities, the transaction is called dis-
tributed [Breitbart et al., 1992], as opposed to a local transaction which is
only executed on either one mobile or fixed entity. In case of local (i.e.,
non-distributed) transactions, the database itself has to fulfill the atomic-
ity property. However, guaranteeing atomicity in a distributed transaction
requires communication among the different entities participating in the ex-
ecution of the distributed transaction. Atomic commit protocols define how
these different transaction participant entities should interact with each other
in order to reach an atomic decision.

The remainder of this chapter is organized as follows. First, we highlight
the problem being addressed by this thesis. Next, the main ideas driving the
research in this thesis are presented in the form of research contributions.
Finally, we present the structure of the thesis.

1.1 Problem Statement

Transaction atomic commit protocols for wired and fixed networks were de-
vised in the early 1970s and represent a well established and mature research
area. However, the frequent and varied perturbations characterizing mo-
bile environments make commit protocols that are designed for fixed wired
networks, such as

- the traditional Two-Phase Commit (2PC) protocol [Gray, 1978],
- the Three-Phase Commit (3PC) protocol [Skeen and Stonebraker,

1983], and
- the Paxos Commit protocol [Gray and Lamport, 2006],

unsuitable for mobile environments.
While 2PC is widely applicable in fixed wired networks because the cases

in which the protocol blocks are rare, its applicability in mobile environments

1.1. PROBLEM STATEMENT 5

is limited as blocking must actually be expected as normal behavior of the
system due to frequent failures. 3PC and Paxos Commit solve the blocking
problem of 2PC though by adding a considerable message overhead which is
often not viable in mobile environments due to considerably higher costs in
terms of bandwidth, power consumption, and costs of using wireless links.

Application scenarios where strict atomicity is needed in mobile environ-
ments can be divided into three categories:

1. Mobile infrastructure-based environment scenarios such as
bank/stock transactions. This type of application scenarios includes
mobile commerce (m-commerce) applications where users can buy or
sell goods using their mobile devices and involving bank and merchant
servers in fixed wired networks to accomplish their transactions.

2. Mobile ad-hoc environment scenarios such as coordination across
autonomous vehicles, mobile gaming and disaster management. Mobile
transactions are needed in such type of application scenarios for the
purpose of coordination for safe navigation of unmanned autonomous
networked vehicles, to guarantee the consistency of game data or to
coordinate rescue actions of fire fighters [Obermeier et al., 2009].

3. Mobile generic environment scenarios such as health-care ambient
intelligence [Aarts et al., 2001] systems. Mobile transaction can help in
such type of scenarios to keep data about monitored old people living
alone consistent among family members and other institutions such as
hospital and insurance e.g. Furthermore, mobile infrastructure-based
and ad-hoc environment scenarios can be extended to mobile generic
scenarios whenever possible.

Targeting data consistency across all databases involved in such scenar-
ios despite frequent and varied perturbations, the use of atomic mobile dis-
tributed transactions is crucial and challenging [Forman and Zahorjan, 1994;
Imielinski and Badrinath, 1994; Pitoura and Bhargava, 1994]. Based on the
identified application scenarios, the atomic commit problem should not only
be tackled in mobile environments in general, but it should be investigated
in every identified mobile environment separately. This is due to the fact
that these environments show different characteristics and severity of differ-
ent perturbations which makes the study of everyone of these environments
focus on different perturbation aspects than the other one.

In Chapter 2, we show that existing atomic transaction protocols in
mobile infrastructure-based environments either guarantee semantic atomic-
ity [Kumar et al., 2002; Serrano-Alvarado et al., 2003] or are based on strict

6 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

and hard assumptions not always viable in mobile environments [Bobineau
et al., 2000] or does not allow arbitrary disconnections of mobile participant
nodes [Nouali et al., 2005]. A comprehensive and systematic perturbation
investigation along with its influence on the atomic commit approaches de-
veloped for mobile infrastructure-based environments is lacking, and this
considerably decreases the attractiveness of these approaches for real world
scenario implementations.

In Chapter 2, we also show that existing atomic transaction protocols in
mobile ad-hoc environments are either based on consensus [Obermeier et al.,
2008], which introduces a considerable message overhead. [Bose et al., 2005;
Böttcher et al., 2007] show limited partition-tolerance, because they assume
a very specific mobility pattern of mobile nodes which limits the applicability
of these solutions. [Xie, 2005] requires global view assumptions such as par-
tition group membership which decreases the applicability of this approach
since group membership is hard to realize in typical dynamic mobile ad-hoc
environments. Atomic commit approaches developed for mobile ad-hoc en-
vironments use distributed system primitives such as consensus and group
membership to offer perturbation-resilience. These primitives introduce a
significant communication overhead which is not always tolerable in mobile
ad-hoc environments.

To the best of our knowledge the problem of transaction atomic commit
in mobile generic environments was not investigated in the literature until
now.

Each evolving mobile environment (infrastructure-based, ad-hoc and
generic mobile environment) requires new commit constraints. Since current
approaches are geared towards dedicated scenarios, they do not often provide
comprehensive, generalized, efficient and perturbation-resilient commit capa-
bilities. Thus, our research was driven by the need to develop perturbation-
resilient and scenario independent commit. One of the major drivers of our
research besides perturbation-resilience was efficiency in terms of transac-
tion costs (message complexity, latency, usage of expensive wireless links
etc.) and the study of the trade-off between increasing the perturbation-
resilience of atomic commit approaches and minimizing the transaction costs
(i.e., increasing the efficiency of these approaches).

1.2 Thesis Contributions

The research presented in this thesis makes several important contributions
for the mobile transaction research community. Listed below are the main
thesis contributions.

1.2. THESIS CONTRIBUTIONS 7

(C1) – Perturbation-Resilient Atomic Commit Frame-
work

The major contribution of this thesis is the development of a comprehen-
sive framework of a family of protocols for providing perturbation-resilient
transaction commit in emerging mobile environments.

A comprehensive perturbation classification is intended to simplify the
design of perturbation-resilient transaction commit protocols in mobile envi-
ronments by supporting a modular and hierarchical approach. This classifica-
tion also allows to systematically tackle the problem of atomic commit and
present appropriate design techniques to provide resilience to each of the
identified perturbation classes without sacrificing performance. The main
drivers of defining these new design techniques are (1) the minimization of
transaction aborts in presence of perturbations and (2) the minimization of
blocking time of resources especially in the fixed network as fixed partici-
pants (e.g. bank servers) are involved in several transactions making them
resource critical.

(C2) – Modularity of the Proposed Framework

As mobile systems usually show varied and changing perturbation classes,
we stress the modularity of our framework, which simplifies its adaptation
at the design stage to different mobile systems by selecting a set of required
building blocks implementing the main identified fault-tolerance and recovery
techniques. The main building blocks of our work are provided in Chapter 4.

Overall, we combine the developed building blocks into a family of
atomic transaction commit protocols for common mobile system classes, i.e.,
infrastructure-based, ad-hoc and generic mobile systems. The developed pro-
tocols are evaluated to highlight the performance/functionality tradeoffs of
the different identified building blocks.

(C3) – The FT-PPTC Commit Approach

In mobile infrastructure-based environment, we propose the Fault-Tolerant
Pre-Phase Transaction Commit (FT-PPTC) approach. The FT-PPTC ap-
proach is described in detail in Chapter 5.

The key idea of this approach is to decouple the commit of mobile nodes
from that of fixed nodes. Consequently, the execution of the transaction
is split into two phases: (1) the mobile data gathering phase called pre-
commit phase collecting “sufficient” information from the mobile nodes to
provide progress, and (2) the core 2PC phase, which involves only fixed nodes

8 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

for commit action. We also develop a comprehensive perturbation-tolerance
strategy for the mobile infrastructure-based environment and demonstrate
the resilience of the proposed FT-PPTC approach. During the first phase no
resources are blocked on fixed nodes because only mobile nodes are involved.
Only if the first phase ends successfully, does the second phase start involving
fixed nodes. It is important to mention that the FT-PPTC approach does
not consider network disconnections as exceptional, but rather as part of the
normal operation of the considered system. Our performance studies show
that the developed FT-PPTC approach outperforms the existing solutions
with respect perturbation-tolerance without sacrificing efficiency. This is
achieved by adding a tolerable overhead in terms of message complexity and
transaction execution times.

(C4) – The ParTAC Commit Approach

For mobile ad-hoc environments, we propose the Partition-Tolerant Atomic
Commit (ParTAC) approach, the first partition-tolerant atomic commit ap-
proach for mobile ad-hoc environments which unlike existing approaches, (a)
does not rely on consensus, (b) is independent of the mobility patterns of
mobile nodes, (c) does not require partition membership knowledge and (d)
delivers best-effort transactional service availability. The ParTAC approach
is explained in detail in Chapter 6.

ParTAC exploits the transaction lifetime concept for mobile transactions
in order to reduce transaction decision times. A key idea of this approach is to
use multiple coordinators and thus to replicate the coordinator role in order
to tolerate unavailability of any subset of coordinators and communication
failures. Therefore, ParTAC does not block when some of the coordinators
are unavailable for a longer period of time than the lifetime. Furthermore,
ParTAC leverages the mobility patterns characteristic for mobile ad-hoc en-
vironments by having coordinators collect votes from other participants while
moving. These votes are shared and merged once multiple coordinators meet
by electing a single coordinator. Our analysis shows that ParTAC reduces
the “Commit”/“Abort” decision time of initiated transactions and helps in
trading-off the desired level of the availability, latency and efficiency of the
transactional service by adapting protocol parameters such as the transaction
lifetime and the number of coordinators.

(C5) – The PeRTAC Commit Approach

In mobile generic environments, we propose the Perturbation-Resilient Trans-
action Atomic Commit (PeRTAC) approach, the first perturbation-resilient

1.3. PUBLICATIONS RESULTING FROM THE THESIS 9

atomic commit protocol for generic mobile environments which combines the
advantages of infrastructure-based and infrastructure-less (ad-hoc) solutions.
The PeRTAC approach is detailed in Chapter 7.

First, PeRTAC takes advantage of infrastructure-based approaches, if an
infrastructure is available, by choosing the more reliable and available fixed
nodes to coordinate mobile transactions and to replicate commit data needed
to tolerate network and mobile node perturbations. Next, PeRTAC delivers
best-effort transactional service availability in case no infrastructure is acces-
sible. Our performance evaluation shows that the PeRTAC approach takes
advantage of the access to the infrastructure whenever possible to achieve
better performance especially with respect to the transactional service avail-
ability by increasing the commit rate of initiated mobile transactions and
with respect to commit latency by reducing the commit decision time of
these transactions.

1.3 Publications Resulting from the Thesis

The work reported in this thesis is supported by several publications in in-
ternational conference proceedings and journals:

• Brahim Ayari, Abdelmajid Khelil and Neeraj Suri, On the Design of
Perturbation-Resilient Atomic Commit Protocols for Mobile Transac-
tions, submitted to ACM Transactions on Computer Systems (under
revision), 2010

• Brahim Ayari, Abdelmajid Khelil and Neeraj Suri, ParTAC: A
Partition-Tolerant Atomic Commit Protocol for MANETs, in Proceed-
ings of the 11th International Conference on Mobile Data Management
(MDM), Kansas City, pp. 135 – 144, 2010

• Brahim Ayari, Abdelmajid Khelil, Kamel Saffar and Neeraj Suri,
Demo: Data-based Agreement for Inter-Vehicle Coordination, in Pro-
ceedings of the 11th International Conference on Mobile Data Manage-
ment (MDM), Kansas City, pp. 279 – 280, 2010

• Brahim Ayari, Abdelmajid Khelil and Neeraj Suri, Exploring Delay-
Aware Transactions in Heterogenous Mobile Environments, in Journal
of Software - Special Issue: Selected Papers of The 6th IFIP Work-
shop on Software Technologies for Future Embedded and Ubiquitous
Systems, vol. 4, no. 7, Academy Publisher, Finland, pp. 634 – 643,
2009

10 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

• Brahim Ayari, Abdelmajid Khelil and Neeraj Suri, Delay-Aware Mo-
bile Transactions, in Proceedings of the 6th IFIP Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems (SEUS),
Capri Island, Italy, pp. 280 – 291, 2008

• Brahim Ayari, Abdelmajid Khelil, Neeraj Suri and Eugen Bleim, Im-
plementation and Evaluation of Delay-Aware and Fault-Tolerant Mo-
bile Transactions, in Proceedings of the 2nd International Conference
on E-Medical Systems (E-MediSys), Sfax, Tunisia, 2008

• Brahim Ayari, Abdelmajid Khelil and Neeraj Suri, FT-PPTC: An
Efficient and Fault-Tolerant Commit Protocol for Mobile Environ-
ments, in Proceedings of the 25th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), Leeds, UK, pp. 96 – 105, 2006

Besides the work presented in this thesis, the author has been involved
in publications related to static and mobile wireless sensor networks [Khelil
et al., 2008, 2009, 2010; Shaikh et al., 2010].

1.4 Thesis Structure

The structure of the following chapters is illustrated in Figure 1.2. It follows
the structure of the thesis contributions described earlier:

Chapter 1 presents the background of the problems driving this research,
introduces the research problems and the contributions of this thesis.

Chapter 2 surveys the state of the art and practice in the field of atomic
commit protocols especially in mobile environments.

Chapter 3 presents and discusses the system model used throughout
in this thesis. Subsequently, the transaction and perturbation models are
presented.

Chapter 4 introduces our perturbation-resilient atomic commit frame-
work. First, we investigate the design requirements of resilient atomic commit
protocols in mobile environments. Next, we present perturbation-resilient
design techniques relevant to each perturbation class identified in Chapter 3
and driven by our design requirements.

Chapter 5 introduces our solutions towards perturbation-resilient atomic
commit in mobile infrastructure-based environments. The correctness of the
presented solutions is proven and a simulation-based evaluation is provided.

1.4. THESIS STRUCTURE 11

Chapter 1

Introduction and

Problem Context

Chapter 2

State of the Art and

Practice

Chapter 3

System Models and

Perturbations

Chapter 4

Perturbation-

Resilient Atomic

Commit Framework

Chapter 5

Atomic Commit for

Infrastructure-based

Environments

Chapter 6

Atomic Commit for

Ad-Hoc

Environments

Chapter 7

Atomic Commit for

Generic

Environments

Chapter 8

Conclusions and

Future Research

Introduction,

state of the art

and system

models

Contributions:

Atomic commit

framework,

investigation of

different types

of mobile

environments

and conclusions

Figure 1.2: Thesis structure

Chapter 6 presents our partition-tolerant atomic commit solution for
mobile ad-hoc environments. In this chapter, we provide also a correctness
proof of the presented solution and a simulation-based evaluation taking into
account all important parameters of the investigated ad-hoc environment.

Chapter 7 describes the perturbation-tolerant atomic commit protocol
for mobile generic environments. Similar to chapters 5 and 6, we prove the
correctness of our approach and use simulations to evaluate its performance
by varying all relevant parameters of the mobile generic environment.

12 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

Chapter 8 finally concludes the thesis, re-evaluating the value of the
conceptual contributions. A discussion on the applicability of the thesis
results to mobile environment scenarios is provided alongside with an outline
of the future research directions opened by the novel approaches presented
by this thesis.

Chapter 2

State of the Art and Practice

As an important basis for the context of the research presented in the thesis,
this chapter starts by discussing the different existing transaction commit
protocols. First classical transaction commit protocols designed for wired
networks are described. Next, atomic commit protocols developed for mo-
bile infrastructure-based environments are listed. Each protocol is described
in detail along with its strengths and weaknesses. Finally, existing atomic
commit solutions for mobile ad-hoc environments are presented along with a
discussion of their advantages and disadvantages in the mobile environment
they are designed to work in.

This chapter forms the background and the context for the research ques-
tions posed and puts the contributions presented into perspective. The chap-
ter concludes with a discussion on the need for perturbation-resilient atomic
commit in mobile environments.

13

14 CHAPTER 2. STATE OF THE ART AND PRACTICE

2.1 Classical Transaction Commit Protocols

We describe in this section the two classical atomic commit protocols: Two-
Phase Commit (2PC) and Three-Phase Commit (3PC). 2PC and 3PC are
mainly used within fixed environments where the communication is reliable
as compared to mobile environments. Furthermore, we briefly present the
Paxos Commit Protocol that solves the atomic commit problem based on the
Paxos Consensus algorithm.

2.1.1 Two Phase Commit

The Two-Phase Commit Protocol (2PC) [Gray, 1978] represents the first
atomic commit for distributed transactions. 2PC is a two phases atomic
commit protocol as its name implies. Figure 2.1 illustrates these two phases of
the protocol. The first phase is a votes collection phase where the coordinator
collects votes from each transaction participant. Each participant can vote
either to commit the transaction (“Yes” vote) or to abort it (“No” vote).
After collecting all votes, the coordinator starts the second phase. The second
phase is a decision phase in which the coordinator either decides to commit
the transaction if all collected votes are “Yes” or to abort it otherwise.

Any participant that voted “Yes”, i.e. to commit the transaction, has to
wait until it receives the decision from the coordinator and then it can, based
on the received decision, either commit or abort the transaction. When a
participant votes “No”, i.e. to abort the transaction, it can immediately
abort the transaction without waiting for the decision of the coordinator. In
this case all the changes caused by the aborted transaction must be rolled
back. In case a participant voted “Yes” and the decision sent by the coordi-
nator is “Commit” the changes of the transaction become permanent. Only
at this point in time the transaction’s changes can be made visible to other
transactions. Furthermore, locks held by the completed transaction can be
released after the completion of all write operations performed by this trans-
action. After receiving the coordinator’s decision, each participant sends an
acknowledgement to the coordinator.

In order to deal with communication and system failures, 2PC uses a
logging schema where every message is written to the stable storage before
being sent to its recipient. Note that the message is only sent when the
logging process ends, i.e., when the writing of the message to the stable
storage finishes. For n participants, the classical 2PC protocol exchanges 4n
messages. There exists also further optimizations of the 2PC protocol such
as the Presumed Commit and the Presumed Abort protocols [Mohan and
Lindsay, 1985].

2.1. CLASSICAL TRANSACTION COMMIT PROTOCOLS 15

Begin

Coordinator

Prepare (vote request)V
o

te
 c

o
lle

c
tio

n

p
a

h
s
e Vote

Decision

Ack

Participant

D
e

c
is

io
n

 p
h

a
s
e

End

Figure 2.1: The 2 phase commit protocol

2.1.2 Three Phase Commit

The major problem of 2PC and its optimizations is that 2PC involves a wait-
ing state. Participants enter the waiting state after they have sent their votes
to the transaction coordinator and remain in this state until they receive the
decision from the coordinator. In 2PC, both commit and abort states can be
reached directly from the waiting state. A coordinator failure combined with
a participant failure (the coordinator is in general the transaction initiator
and therefore a transaction participant) can lead to a blocking situation in
which the remaining participants cannot decide for abort or commit, since
the failed participant might have reached either the abort or the commit
state. Even a new elected coordinator is not able to terminate the transac-
tion when the state of at least one participant is unknown. This blocking
behavior of 2PC makes it unsuitable for mobile environments where mobile
node failures are relatively frequent as compared to fixed node failures.

The Three-Phase Commit Protocol (3PC) [Skeen and Stonebraker, 1983]
was developed to overcome this blocking problem of 2PC in environments
where site failures (not network partitioning) can occur. 3PC introduces an
additional dissemination phase to 2PC before the decision phase. Figure 2.2
illustrates a successful execution of the 3PC protocol. During the first phase
of 3PC, the coordinator collects the votes of the participants. If and only if
all received votes were “Yes”, the coordinator sends a “PrepareToCommit”
message to each participant. A participant that has received the “Prepare-

16 CHAPTER 2. STATE OF THE ART AND PRACTICE

Begin

Coordinator

Vote requestV
o

te
 c

o
lle

c
tio

n

p
a

h
s
e „Yes“ Vote

Commit decision

Ack

Participant

D
e

c
is

io
n

 p
h

a
s
e

End

PrepareToCommit

Prepared

D
is

s
e

m
in

a
tio

n

p
h

a
s
e

Figure 2.2: The 3 phase commit protocol

ToCommit” message acknowledges by sending “Prepared”. The coordinator
needs to receive the “Prepared” messages of all participants to decide to
commit the transaction.

Note that a participant that has sent a “Yes” vote is not allowed to
change its vote and abort the transaction on its own. At first, the “Pre-
pareToCommit” and “Prepared” messages seem to be superfluous, but by
adding this new phase, 3PC guarantees that for any two participants which
may differ in at most one state, the set of reachable states does not con-
tain an abort and commit states simultaneously. If the coordinator fails,
the participants can elect a new coordinator that terminates the transaction.
This new coordinator collects from all available participants their last state
within the protocol execution. If at least one participant has received a “Pre-
pareToCommit” message, the new coordinator can safely decides to commit
the transaction. In this case, the new coordinator knows that all participants
have voted “Yes”, and no participant may have voted “No”. If no participant
received a “PrepareToCommit” message, no participant can have committed
the transaction. Thus, the new coordinator will decide to abort it.

It is worthy to mention at this stage that the termination phase of 3PC

2.2. MOBILE INFRASTRUCTURE-BASED ENVIRONMENTS 17

is correct only when network partitioning cannot occur. In case of network
partitioning, two new coordinators might be elected in two different net-
work partitions and may take different decisions about the outcome of the
transaction. Because mobile networks are susceptible to network partition-
ing in general, the termination mechanism of 3PC can lead to inconsistent
transaction outcomes.

2.1.3 Paxos Commit

The Paxos Commit Protocol [Gray and Lamport, 2006] is based on the Paxos
Consensus approach introduced in [Lamport, 1998; Lamport and Massa,
2004]. The Paxos approach was originally designed to solve the consen-
sus problem, i.e., to let participants agree on a single decision among several
possible outcomes. Paxos Commit uses multiple coordinators and assigns to
them different roles. One of them is called the leader, the other coordinators
are called acceptors. Each participant sends its vote to all Paxos acceptors.
Each acceptor collects the received votes and then forwards them to the
leader. The leader decides about the outcome of the transaction. If some
acceptors have not received some of the votes, the leader decides whether
some acceptors must be additionally notified. When the leader has made a
proposal, it is sent to the acceptors and to the participants.

To guarantee that the protocol makes progress even if the leader fails, each
acceptor has the ability to decide for itself if and when it becomes a leader. To
resolve conflicts in case more than one leader is present, Paxos uses increasing
version numbers to identify the highest leader and the corresponding leader’s
proposal. An acceptor accepts a new proposal only if the new proposal has
a higher version number than the old proposal. A new leader must build
a proposal by adopting the previous proposal having the highest version
number. In contrast to the termination phase of 3PC, Paxos Consensus works
correctly even when network partitioning occurs. The major disadvantage of
Paxos Commit in mobile environments is its high message overhead which is
often not viable in mobile environments due to considerably higher costs in
terms of bandwidth, power consumption, and charges of using wireless links.

2.2 Commit Protocols for Mobile

Infrastructure-Based Environments

Given the need for correct data management in infrastructure-based mo-
bile environments, mobile transactions have increasingly become the focus of

18 CHAPTER 2. STATE OF THE ART AND PRACTICE

extensive ongoing research. A variety of transaction models have been pro-
posed such as [Alonso and Korth, 1993; Chrysanthis, 1993; Dunham et al.,
1997; Gray et al., 1998; Ku and Kim, 2000; Madria and Bhargava, 2001;
Pitoura and Bhargava, 1995, 1999; Walborn and Chrysanthis, 1995, 1999;
Yeo and Zaslavsky, 1994] with an excellent survey appearing in [Serrano-
Alvarado et al., 2004a]. Some transaction models such as [Karlsen, 2003;
Nouali-Taboudjemat and Drias, 2008; Serrano-Alvarado et al., 2005] propose
adaptability to different mobile environments, constraints and applications
by relaxing the traditional ACID properties (Atomicity, Consistency, Isola-
tion and Durability) which leads to temporary inconsistent states. Some
commit protocols have recently started addressing the problem of atomic
commit in mobile infrastructure-based environments [Bobineau et al., 2000;
Kumar et al., 2002; Nouali et al., 2005; Serrano-Alvarado, 2004]. The per-
formance of these protocols and additionally 2PC are evaluated in [Bobineau
et al., 2004; Nouali-Taboudjemat et al., 2007]. In this section, we describe
atomic commit protocols developed for mobile infrastructure-based environ-
ments.

2.2.1 Unilateral Commit for Mobile

The work on Unilateral Commit for Mobile (UCM) [Bobineau et al., 2000]
provides support for disconnections and off-line executions on mobile devices.
UCM is a one-phase protocol where the voting phase of the 2PC is eliminated
by enforcing some properties on the participant’s behavior during the trans-
action execution. UCM reduces the atomic commit protocol to a single phase
that consists in broadcasting the coordinator’s decision to all participants.
In other words, the coordinator acts as a “dictator” imposing its decision on
all participants. The coordinator is also chosen in UCM to be a fixed node.
If a participant is not able to conform to this decision due to a crash, the
coordinator simply forward-recovers the corresponding transaction branch.

UCM is a 1 phase commit (1PC) protocol which introduces the following
assumptions on the way participants manage transactions [Bobineau et al.,
2000]:

• 1PC protocols assume that all the transaction operations have been
acknowledged (i.e., have been successfully executed till completion) be-
fore the protocol is launched. This means that the Atomicity of all the
local transaction branches is already ensured at commit time.

• 1PC protocols assume that integrity constraints are checked immedi-
ately after each update operation and before acknowledging the opera-

2.2. MOBILE INFRASTRUCTURE-BASED ENVIRONMENTS 19

tion. Thus, Consistency is ensured for all the local transaction branches
at commit time (no deferred integrity constraints).

• 1PC protocols assume that all participants serialize their transactions
using a pessimistic concurrency control protocol that avoids cascading
aborts (i.e., strict two-phase locking [Bernstein et al., 1987]). This
actually means that serializability (Isolation) of all the local transaction
branches is already ensured at commit time.

• 1PC protocols assume that, at commit time, the effects of all the local
transaction branches are logged on stable storage, and hence the Dura-
bility property is ensured. This means that the log on the coordinator
contains all the transaction updates and that this log is forced on disk
before the 1PC is launched. The content of this log and the way it is
exploited at recovery time differ strongly among the protocols.

UCM has been specifically designed for mobile environments. To guar-
antee atomicity, transaction operations and their acknowledgments are con-
tinuously logged. If a problem arises the global transaction is immediately
aborted. Therefore, if a global transaction reaches the validation phase the
global decision is commit. There is no risk of inaccurate global abort. A
global commit is performed in a single phase, the decision phase. It is ini-
tiated by transferring the transaction’s operation log from the application
which initiated the transaction to the coordinator. Transaction participants
are represented by proxies to interact with the UCM coordinator. This choice
improves the participant’s autonomy and insures proper recovery in case of
participant failure.

UCM guarantees strict atomicity and reduces the wireless message com-
plexity. However, UCM is based on strict and hard assumptions such as local
pessimistic concurrency control (strict two-phase locking) which is required
for all participants, as well as immediate integrity control and homogeneity
of participating database systems (we refer to the 1PC assumptions above).
These assumptions restrict also the applicability of UCM to only a subset of
the possible applications in mobile infrastructure-based environments. Sim-
ilar to 2PC, an UCM coordinator blocks in the waiting state if at least one
acknowledgement message is missing.

2.2.2 Transaction Commit On Timeout

Transaction Commit On Timeout (TCOT) [Kumar et al., 2002] uses timeouts
to provide a non-blocking protocol that limits the amount of communication

20 CHAPTER 2. STATE OF THE ART AND PRACTICE

between the participants in the execution of the protocol. Instead of exchang-
ing messages to reach a Commit or Abort decision, the coordinator waits for
timeouts to expire. In TCOT, if the coordinator node does not receive a
failure message from a participant within a predefined timeout period, then
it commits the transaction. TCOT defines two types of timeout: Execution
Timeout and Update Shipping Timeout.

• Execution Timeout (Et) defines an upper bound timeout value within
which a transaction participant completes the execution (not commit)
of its transaction operations. The value of Et is in general node spe-
cific. It might depend on the number and complexity of transaction
operations and computing capabilities of the transaction participant.
Additionally to the time needed to execute the transaction operations
on the database itself, Et accounts for the characteristics of mobile
devices such as poor resources, disconnected state, availability of wire-
less channel, etc. It is possible that a mobile device while executing
TCOT may take more or less time than its Et to execute its transaction
operations. In TCOT, Et typically should be just long enough to al-
low the transaction operations to be successfully executed in a normal
environment (i.e., no failure of any kind, no message delay, etc.)

• Shipping timeout (St) defines the upper bound of the data shipping
time from the participant to the coordinator. Thus, at the end of Et,
the coordinator expects the updates to be shipped to it and logged
there within St. St is computed as Time to compose updates + Time
for the updates to reach the coordinator.

While processing its transaction operations, if a participant finds out
that its operations will execute longer than Et, then it extends its value and
sends it to the coordinator. If a participant decides to abort for any reason,
then it sends a “No” vote to the coordinator before the expiration of Et.
If the participant successfully executes its transaction operations, it sends
a log of the updates it made to its local database copy to the coordinator.
The updates must reach to coordinator before the expiration of St. It is
possible that updates reach the coordinator much earlier, in which case it will
decide to commit before the expiration of its timeouts. Once the updates are
shipped to the coordinator, the participant commits the transaction locally.
In case the participant mobile node fails to send its updates to the coordinator
within St and it did not extend Et, then the coordinator decides to abort the
transaction.

In TCOT the coordinator is implemented on the base stations. The
base station to which the initiator of the transaction is connected plays the

2.2. MOBILE INFRASTRUCTURE-BASED ENVIRONMENTS 21

coordinator role. If the transaction initiator moves to an area covered by
another base station, the information stored by the coordinator about the
execution state of the transaction moves also to the new base station during
the hand-off process.

Overall, TCOT provides only semantic atomicity as defined in [Garcia-
Molina, 1983]. Semantic atomicity requires the existence of a compensating
transaction for every initiated mobile transaction which is not possible for ev-
ery transaction. Compensating transactions undo semantically the transac-
tion effects. This type of atomicity is weaker than the strict atomicity [Härder
and Reuter, 1994] needed for transactions in general, which limits the appli-
cability of TCOT to a limited class of applications.

2.2.3 Combination of Optimistic Approach and 2PC

The CO2PC protocol [Serrano-Alvarado, 2004; Serrano-Alvarado et al., 2003]
combines an optimistic approach with 2PC. Like TCOT, the objective of the
CO2PC protocol is to provide semantic atomicity for execution alternatives
by allowing participants to perform either optimistic local commit (locally
committed results are shared) or non-optimistic commit. Semantic atomicity
limits the applicability of the protocol only for a restricted set of applications.
The authors relax strict atomicity in this work (by guaranteeing only seman-
tic atomicity) to increase the flexibility of participants (particularly mobile
nodes). Hence, they distinguish between compensable transactions that are
committed locally in an optimistic manner and non-compensable ones that
have to wait for the global decision.

The CO2PC protocol works as follows: all participants send a vote
(“Yes”/“‘No”) to the coordinator which takes the global decision and sends
it to all participants. A unanimous “Yes” vote leads to a commit decision,
otherwise the decision is abort. The CO2PC coordinator is chosen to be
participating fixed node in the transaction execution. If there is no fixed
node participant then the base station will play this role. Mobile nodes are
not chosen to play the coordinator role because they are subject to frequent
disconnections and have restrained resources for logging and communication.

A participant making optimistic commit (called optimistic participant)
executes its transaction operations and commits/aborts the transaction uni-
laterally. Then, it sends its vote to the coordinator. If the global deci-
sion is commit, optimistic participants are done; if it is abort they have to
launch compensating transactions. Once compensating transactions are initi-
ated they should complete successfully. A participant making non-optimistic
commit (called non-optimistic participant) executes the 2PC protocol locally.
The 2PC part of the protocol is made on the same node and does not require

22 CHAPTER 2. STATE OF THE ART AND PRACTICE

messages through the wireless network.
2PC is used by CO2PC because – for non-compensable transactions –

resources must be retained until a global commit/abort. 2PC provides this
state. Moreover, it ensures atomicity, produces recoverable systems, avoids
cascading aborts (when it is combined with two-phase locking) and its inter-
face is widely implemented. 2PC is not used for the global coordination of
transaction atomicity.

To provide recovery, CO2PC records its progressing steps in the coordina-
tor and participant logs. Since failures and disconnections can occur at any
moment, logging information should be forced to be written (i.e. flushed into
a stable storage) before sending messages. For mobile nodes, CO2PC infor-
mation will be logged in base stations. The authors do not consider physical
storage of mobile nodes to be stable because mobile nodes are subject to loss,
damage and undefined disconnections.

2.2.4 Mobile Two-Phase Commit

The objective of the Mobile Two-Phase Commit (M-2PC) protocol [Nouali
et al., 2005] is to globally commit a distributed transaction in a mobile en-
vironment. M-2PC assumes that a transaction is issued at a mobile node.
While a mobile node moves from a cell (geographical area covered by a base
station) to another cell; it connects to a new base station. The M-2PC pro-
tocol can either terminate in the same cell where it is initiated or in a new
cell covered by a new base station. Similarly to the 2PC protocol, there are
three important roles a node can play in M-2PC: the transaction initiator
role played by the mobile node launching the transaction, the participant
role played by the processing entities of the transaction operations and the
coordinator role played by the entity coordinating the consistent termination
of the transaction.

The strategy chosen in M-2PC is to split the duties of M-2PC protocol
into two tasks: The first one maintains the same schema on the fixed part
of the network as in traditional 2PC; the second one adjusts the schema to
manage the mobile wireless part. The coordination of the fixed nodes decision
is conducted in M-2PC as it is in the classical 2PC protocol. In M-2PC, the
coordinator is chosen to a fixed node in order to be directly reachable by the
participant fixed nodes. The coordinator should also be reachable by mobile
nodes. Therefore, the coordinator resides in M-2PC on the base station of
the transaction initiator mobile node. This implies that the coordinator in
M-2PC is likely to be located as close as possible to the initiator mobile node.
The coordinator executes on the same base station even if the mobile node
moves to another cell during the execution of the commit protocol.

2.3. MOBILE AD-HOC ENVIRONMENTS 23

In order to deal with disconnections, M-2PC lets the mobile node delegate
its commit duties to the coordinator which is assumed to be always available
during the protocol execution. The mobile node sends the request for commit
to the coordinator along with its logs. The mobile node can then disconnect.
The coordinator sends vote request messages to all participants and decides
on whether to commit or abort according to the classical 2PC semantics.
Once the coordinator receives the acknowledgements of all participants, it
informs the initiator about the result. The coordinator waits for the client
acknowledgement before forgetting about the transaction (by releasing all
resources acquired by the transaction).

M-2PC is also one of the first atomic commit protocols to consider sce-
narios where at least one server or participant (other than the transaction
initiator) is mobile, i.e., the transaction accesses, for example, data located
on a mobile node. In [Nouali et al., 2005], the following situation is given as
an example scenario: a researcher meets other researchers at a conference and
needs to agree on a rendezvous with these researchers. In this application,
the researchers’ respective agendas have to be synchronized and therefore all
the participants are mobile. To mange such scenarios, the M-2PC protocol
proposes to have in the mobile participant side a scheme similar to that of
the initiator side. A representation agent will work on behalf of the mobile
server which is free to disconnect starting from the moment it delegates its
commitment duties to its representation agent. This agent is responsible of
transmitting the result to the participant at reconnection time and also of
keeping logs and eventually recovering in the case of failure. By adopting this
schema M-2PC shifts the workload to the fixed part of the network in order
to preserve valuable processing power and communication resources and also
to minimize the cost of using wireless links.

To summarize, in M2PC, a mobile participant delegates its commit duties
to its agent on a fixed node, which is the base station the mobile participant
is connected to. Unfortunately, M-2PC assumes that all mobile participants
are connected at transaction initiation and that network disconnections are
allowed only after the mobile node delegates its commitment duties.

2.3 Commit Protocols for Mobile Ad-Hoc

Environments

We outline in this section existing atomic commit protocols developed for
mobile ad-hoc environments along with their advantages and limitations in
mobile ad-hoc environments.

24 CHAPTER 2. STATE OF THE ART AND PRACTICE

2.3.1 Cross Layer Commit

In [Obermeier et al., 2008], a cross layer commit protocol for mobile ad-
hoc networks (CLCP) is presented. CLCP is based on the Paxos Commit
approach. According to [Obermeier et al., 2008], Paxos Commit is one of
the best protocols regarding failure tolerance. Paxos Commit uses multiple
coordinators and allows even half of them to fail during protocol execution.
This failure tolerance is optimal as described in [Skeen and Stonebraker,
1983]. However, the authors in [Obermeier et al., 2008] Paxos Consensus
identified the following problems when it is used in mobile ad-hoc networks:

• Although it uses multiple coordinators, Paxos Commit is a centralized
protocol, i.e., a special leader is still necessary. Each participant may
decide for itself during protocol execution if and when it becomes a
leader. Even though [Gray and Lamport, 2006] proposed an additional
decentralized variant for a faster commit, this variant does not allow
the protocol to terminate in a decentralized way if a database’s vote
message is lost or delayed.

• The number of messages increases with the number of leaders, since
each message is routed to the special leader.

• As the experiments performed by the authors in [Obermeier et al., 2008]
have shown, the performance of Paxos Commit is highly dependent on
the use of acknowledgement messages. Without acknowledgements, the
performance degrades significantly.

• It is an application layer protocol: When acknowledgements are used,
the protocol is not designed to make any use of these acknowledge-
ments, i.e., it does not use them for gaining global knowledge.

CLCP assumes that each participant of a global transaction knows all
participants in the atomic commit protocol. CLCP consists of two phases.
The first phase is called the decentralized commit phase. During this phase,
the participants vote and concurrently try to come to a decentralized commit
decision. Each participant sends its vote for the transaction to all of its
neighbors within a single transmission, forwards received votes to all of its
neighbors, and determines by CLCP if and when the transaction must be
committed or aborted. If a participant does not send any vote at all, CLCP
can also abort the transaction within the decentralized commit phase without
requiring a centralized leader.

In [Obermeier et al., 2008], the authors claim that the case where the pro-
tocol cannot progress due to network partitioning is seldom. In this case, a

2.3. MOBILE AD-HOC ENVIRONMENTS 25

termination phase follows the decentralized commit phase. During the termi-
nation phase, one participant becomes a special participant called leader that
organizes the commit decision and ensures that a majority of participants,
i.e., more than 50% of all transaction participants, accept this decision. If
the leader fails or the commit decision cannot be made after a timeout, a dif-
ferent participant becomes a new leader having an increased version number
that identifies it as the new leader. According to the experimental evaluation
made in [Obermeier et al., 2008], the transaction decision is made within the
decentralized commit phase in most cases. The termination phase uses an
extension of the Paxos Commit algorithm [Gray and Lamport, 2006] to iden-
tify a participant as a leader that is allowed to form a proposal. However, in
contrast to [Gray and Lamport, 2006], a distributed termination algorithm
that contains only one centralized step is used in CLCP. This step is the
determination of a new proposal.

To summarize, the CLCP protocol employs all participants as coordina-
tors and uses a consensus-like approach to ensure failure tolerance. CLCP is
directly instantiated from the application layer, but operates on both network
and application layers. Consensus introduces a considerable message over-
head to mobile ad-hoc environments which makes it undesirable in mobile
ad-hoc networks.

2.3.2 Integrated Commit

In [Bose et al., 2005; Böttcher et al., 2007], the authors propose the use of
a cluster of coordinators preferably in single-hop distance from each other
to avoid blocking of participating mobile nodes in case one coordinator fails.
While communication with the participants is done using the classical 2PC
protocol, the cluster of coordinators uses the 3PC protocol to eliminate the
blocking behavior of 2PC in case of coordinator failure. The cluster of coor-
dinators elects a single main coordinator and uses the 3PC protocol to agree
on a consistent decision either to commit or abort the transaction. The ma-
jor assumption of this protocol lies in the fact that the cluster of coordinators
is located in an environment with fast message transfer, for example, if this
cluster of coordinators is situated in single-hop distance for each other. Ad-
ditionally, if integrated commit assumes that network partitioning cannot
split the cluster of coordinators, the protocol can proceed without blocking
the coordinators even if some of them fail.

In the failure-free case, the protocol works as follows: The transaction
execution is initiated by an initiator which could be a separate node or a
database itself. A transaction in integrated commit is divided by the initia-
tor into subtransactions and these subtransactions are sent to the appropriate

26 CHAPTER 2. STATE OF THE ART AND PRACTICE

participants. Each participant executes its corresponding subtransaction un-
til it can decide whether to send a “Yes” or “No” vote. Then this vote is sent
to its associated coordinator. Each associated coordinator starts a timer and
accepts votes from other participants for a certain period of time. When the
specified timeout has passed, the coordinator will no longer accept any vote.
The coordinators then bundle their collected “Yes”/“No” votes and forward
them to the main coordinator. After a specified period of time, the main co-
ordinator decides on a global Commit/Abort and informs the coordinators.
The main coordinator’s decision is to commit the transaction if all votes were
“Yes” and is to abort otherwise.

The coordinators wait for a “prepare-to-forward-commit message” from
the main coordinator, and upon receiving this message, they send an ac-
knowledgment message to the main coordinator. After having received all
acknowledgment messages, the main coordinator sends a “commit valid” mes-
sage to the coordinators. Each coordinator forwards the decision to its as-
sociated participant. In the integrated commit protocol the whole cluster of
coordinators acts as a commit coordinator. The main coordinator acts as the
commit coordinator and the individual coordinators act as the participants
in the 3PC protocol. The transaction participants act as the participants in
the 2PC protocol.

If the cluster of coordinators is partitioned or the main coordinator fails
the authors use a termination protocol based on the Paxos consensus pro-
tocol [Lamport, 1998] to elect a new main coordinator. The assumption
in [Bose et al., 2005; Böttcher et al., 2007] that the coordinators are moving
together in a group (forming a one hop cluster e.g.) is not valid in most
of ad-hoc scenarios. Targeting a more generic solution, this assumption on
the mobility pattern of a subset of the mobile nodes in the mobile ad-hoc
environment needs to be relaxed to consider a generalized arbitrary mobility
model.

2.3.3 Group Based Transaction Commit

In [Xie, 2005] a commit solution is presented which assumes that every mobile
node in a partition knows all the members of the partition it belongs to. The
group based commit protocol is based on the following assumptions:

• Partitions can be detected.

• An asynchronous path exists between any two members. An asyn-
chronous path exists if two nodes are not in the same partition at the
same time, however, they are able to communicate through other nodes
passing the information between them at different times.

2.3. MOBILE AD-HOC ENVIRONMENTS 27

• Each site maintains a log.

• A central coordinator is not always available.

• Participants of a transaction are decided at the beginning of the trans-
action and will not be changed.

Because a central coordinator is not assumed, group based transaction
commit needs to find a group coordinator for each partition. A group co-
ordinator can be elected randomly from the set of participants present in a
partition or by applying a utility function and find the optimal participant
to play the group coordinator role. For example, the utility function could
be the cost of communicating with other participants in the partition. Net-
work partitioning divides the transaction participants into different groups
(participants present in one partition). In the group based commit protocol,
the transaction can still make the decision even if all participants are not
connected into a single partition again. The basic idea of the protocol is to
utilize the frequent membership change within different partitions. When
a participant changes the membership from one group to another group, it
could carry the transaction states in the old group into the new group. So
the participants in the new group will know the decisions made in the old
group and will be able to make the proper decision.

Given the partition membership information, every partition in the group
based transaction commit elects a leader and uses the 2PC protocol inside
the partition to decide whether the transaction should be tentatively commit-
ted or aborted. This temporary decision is communicated to all participant
mobile nodes within the partition. When a participant mobile node joins
a new partition, the tentative decision (obtained in its original partition) is
communicated to the new partition.

As described in [Xie, 2005], the correctness of the proposed solution is
assured by the partition membership assumption, i.e., the fact that partitions
can be detected. The assumption that every mobile node in a partition
knows all the members of its partition is crucial for a generalized mobile
ad-hoc environment. Some works [Briesemeister and Hommel, 2002; Roman
et al., 2001] addressed the problem of group membership in mobile ad-hoc
environments. However, a generic solution remains a challenge. Furthermore,
the blocking time of participant mobile nodes is often not considered and in
worst case all participant mobile nodes may be blocked forever if one of the
participant mobile nodes disconnects. As shown in [Skeen, 1981], there exists
no non-blocking atomic commit protocol if network partitioning may occur
for an unpredictable duration. But at least this blocking behavior should

28 CHAPTER 2. STATE OF THE ART AND PRACTICE

be studied and solutions should be proposed which minimizes the blocking
times of transaction participants.

The approach briefly described in [Xie, 2005] and based on partition mem-
bership information does not use consensus and is independent from the mo-
bility of nodes in contrast to [Bose et al., 2005; Böttcher et al., 2007; Ober-
meier et al., 2008]. However, it is based on the assumption that partition
membership is available to all its members. Partitions in mobile ad-hoc en-
vironments are usually very dynamic as nodes may leave and join partitions
arbitrarily. Therefore, acquiring the global partition membership information
becomes very inefficient.

Table 2.1 summarizes the main advantages and disadvantages of existing
atomic commit protocols in ad-hoc mobile environments.

Table 2.1: Commit protocols for mobile ad-hoc environments

Protocol Uses Uses partition/ Requires specific
consensus group membership mobility pattern

[Obermeier et al., 2008] Yes No No

[Bose et al., 2005]
[Böttcher et al., 2007] Yes No Yes

[Xie, 2005] No Yes No

2.4 Chapter Summary

As each evolving mobile environment (infrastructure-based, ad-hoc and
generic mobile environment) necessitates new commit constraints, the cur-
rent approaches geared towards dedicated scenarios, often do not provide
comprehensive, generalized, and perturbation-resilient commit capabilities.
Thus the need to develop perturbation-resilient and scenario independent
commit drives our research.

Our goal is to investigate how to comprehensively introduce perturbation-
resilience and scenario independency to all the identified types of mobile
environments, i.e., the mobile infrastructure-based environment, the mobile
ad-hoc environment and the mobile generic environment. This investigation
will take place in Chapters 5, 6 and 7 respectively.

It is important to mention in this chapter that, to the best of our knowl-
edge, no work before this work investigated atomic commit protocols in
generic mobile environments.

Chapter 3

Mobile Environment Models

The perturbation-resilient atomic commit framework developed in this thesis
is based on the mobile environment models presented in this chapter. The
mobile environment models mainly consist of the system model, the transac-
tion model and the perturbation model. The system model describes the dif-
ferent components of the considered mobile environment. The system model
also provides a classification of the mobile environment into sub-environments
based on the different application scenarios available and possible in the con-
sidered mobile environment. The transaction model establishes the formal
definition of a mobile transaction and the terminology related to it and used
throughout this work. Finally, the perturbation model is presented. The
perturbation model covers the various environmental constraints and failure
modes that can be encountered in the stated system model. All these mod-
els and especially the perturbation model are comprehensively taken into
consideration in the design issues presented in the next chapters.

29

30 CHAPTER 3. MOBILE ENVIRONMENT MODELS

3.1 System Model

In order to consider and support a broad class of mobile applications, we
consider a generalized mobile distributed environment consisting of sets of
battery-powered mobile nodes (MNs) and fixed nodes (FNs). We refer to the
set of MNs and FNs as M = {MN1, . . . ,MNm} and S = {FN1, . . . , FNs} re-
spectively, where m and s are the number of MNs and FNs respectively. The
different components of the mobile environment are illustrated in Figure 3.1.
To keep our mobile environment general, we consider also the existence of
mobile sinks (MSs) which collect data from a set of sensor nodes (SNs) about
the environment being monitored. Note that SNs are only mentioned in our
system model in order to support a wide range of applications and not as ac-
tive participants in transactions. Wireless sensor networks are interpreted in
our work as a database which can be queried to retrieve information about
monitored area or goods. We assume that every node except SNs have a
unique ID in the considered generalized environment.

Some MNs are equipped with appropriate wireless interfaces and can
intermittently connect to the wired network through base stations (BSs) via
wireless channels. These MNs can communicate with each other or with FNs
using the services provided by BSs. A subset of the MNs can communicate
directly or multihop with each other in an ad-hoc manner for instance using
Bluetooth, the ad-hoc mode of WLAN etc. Every MN has at least one
wireless interface and is able either to communicate only with BSs or only
ad-hoc with other MNs or with both. The coverage of BSs is much higher as
compared to the transmission range of ad-hoc communication technologies
(e.g. if we compare GSM to Bluetooth).

Based on the possible application scenarios, the mobile environment il-
lustrated in Figure 3.1 can be classified into 3 sub-environments:

1. The mobile infrastructure-based environment contains only FNs,
BSs and a subset of MNs. This subset of MNs can only communicate
with each other or with FNs using the services of BSs. Furthermore,
the MNs are not able to communicate with each other in an ad-hoc
fashion. Figure 3.2 a) shows an illustration of this environment.

2. The mobile ad-hoc environment involves only a subset of MNs
and mobile sinks of WSNs. These MNs can communicate with each
other or with mobile sinks only in an ad-hoc manner, i.e. they cannot
communicate with BSs or other FNs. In this environment, mobile sinks
construct a gateway for communication with WSNs but only mobile
sinks (not SNs) can participate in transactions. Figure 3.2 b) illustrates
this environment.

3.1. SYSTEM MODEL 31

Wireless Sensor Network

(WSN)

BS

Wireless LAN Cell

11-600 Mbps

Wireless Radio Cell

9 Kbps – 2 Mbps

High Speed

Wired Network

Fixed Node

Base Station

Mobile Node

Database

Management

System

Wireless

Communication

Wired

Communication

FN
FN FN

FN

BS BS
BS

MN

MN

MN

MN

MN

MN

MN

BS

MN

MN

Ad-Hoc

Communication

Sensor NodeSN

SN

SN

SN

MS

Mobile SinkMS

MN

MN
MN

Figure 3.1: Components of the mobile environment

3. The mobile generic environment is a combination of both the
infrastructure-based and the ad-hoc environments representing a
generic mobile distributed model. In this environment, MNs can ad-hoc
communicate with each other and also with BSs to reach other MNs or
FNs (if infrastructure is available). Figure 3.2 c) shows an illustration
of the mobile generic environment.

The nodes usually entail varied hardware and software. In particular,
MNs can range from cell phones with restricted storage and processing capa-
bilities to laptops with considerably higher capabilities. For FNs, we do not
place any restriction on the computation and storage capabilities. Further-
more, MNs may use different wireless interfaces for communication ranging
from low bandwidth and costly links (e.g., GPRS) to high bandwidth and free
links (e.g. WLAN). Summarizing, we are dealing with highly heterogeneous

32 CHAPTER 3. MOBILE ENVIRONMENT MODELS

Infrastructure

a) Infrastructure-based

mobile environment

b) Ad-hoc mobile

environment

c) Generic mobile

environment

MN can only communicate

with BSs

MN can only communicate

ad-hoc with other MNs

MN can communicate ad-hoc with

other MNs and also with BSs

BSFN Wireless communication Wired communication

Infrastructure Infrastructure

W
ir

el
es

s
P

ar
t

W
ir

ed
 P

ar
t

Figure 3.2: Generic vs. infrastructure-based and ad-hoc mobile environments

nodes and links.

We assume that each MN has a Mobile Database Server (MDBS) installed
on it, and that a Database Server (DBS) is attached to each FN. Database
servers are needed on both fixed and mobile nodes to support basic trans-
action operations such as Read, Write, Commit and Abort. The nodes are
typically equipped with varied database management systems (DBMS). For
instance mobile phones employ embedded DBMS such as [Oracle Database
Lite], [IBM DB2 Everyplace] while laptops utilize standard DBMS such
as [Oracle Database Standard Edition], [IBM DB2].

We consider all distributed database system components (in M ∪S) to be
autonomous, i.e., every component must take the decision to either commit or
abort the transaction independently from other components in the network.
Components are also able to decide which information to share with the
global system and how to manage their local data. The data of the MN may
be replicated on a backup database server in the fixed wired network. The
synchronization of the data between the MN and its corresponding backup
server is done periodically by the user.

In this work, we do not assume any bounds on message transmission times
between communicating nodes and also on data processing times on a node.

3.2. TRANSACTION MODEL 33

3.2 Transaction Model

We consider applications, which run on either MNs or FNs and access data
located on mobile and/or fixed nodes. Subsequently, a transaction can origi-
nate from any node in M∪S, and the participants in its execution can be any
set P ⊆ M ∪ S. We focus on distributed transactions issued by either MNs
or FNs and involving other MNs and/or FNs as participants. A distributed
transaction where at least one MN participates in its execution is a Mobile
Transaction (MT). Commonly, a MT Ti is defined as a set F = {ei1, . . . , ein}
of n “execution fragments” distributed among a set of locations (also sites)
in M ∪ S [Kumar, 2000; Kumar and Dunham, 1998]. The MN, where Ti

is initiated, is termed as Initiator MN (I-MN). The commit set consists of
all FNs and MNs participating in execution and commit of Ti including the
I-MN. FNs and MNs in the commit set are called participant FNs (P-FNs)
and participant MNs (P-MNs) respectively.

Transaction commit protocols are generally based on the existence of at
least one coordinator (CO), which is responsible for coordinating the execu-
tion of the corresponding transaction. For different transaction and mobile
system models, different nodes may play the CO role which requires spe-
cial capabilities such as stable storage. The CO is responsible for storing
information concerning the state of the transaction execution. Based on the
information collected from the participants of the transaction, the CO takes
the decision to commit or abort the transaction and informs all participants
about its decision.

3.3 Perturbation Model

Designing perturbation-resilient transaction commit protocols essen-
tially requires the identification of relevant perturbations, i.e., opera-
tional/environmental constraints and failure modes that can occur in the
considered environment and disturb commit functionality. The following
sections classify and enumerate these aspects.

3.3.1 Classification of Perturbations

We recognize the following two main classes of perturbations: environmen-
tal/operational constraints and failures (Figure 3.3). We classify the environ-
mental constraints relevant to commit protocols into heterogeneity (of nodes
and links), unstable storage and energy constraints. Failures of the mobile
environment are classified into communication and node failures. Communi-

34 CHAPTER 3. MOBILE ENVIRONMENT MODELS

C
om

m
it pe

rturb
ations

F
ailure

s
E

nvironm
e
ntal/ope

rational constraints

C
om

m
unication

N
od

e
H

e
te

roge
ne

ity
U

nstab
le

 storage
E

ne
rgy

N
e
tw

ork d
isconne

ction
M

e
ssage

 loss
M

N
F

N
N

od
e

L
ink

Pre
d
ictab

le
U

npre
d
ictab

le

E
x
e
cution

tim
e

D
e
lay,

ch
arge

s
Pe

rm
ane

nt
T

ransie
nt

Pe
rm

ane
nt

T
ransie

nt

Put-off, out of
e
ne

rgy
C

ove
rage

 loss

L
oss, th

e
ft

S
W

, H
W

faults

Ph
ysical

d
am

age

N
e
tw

ork partitioning

F
igu

re
3.3:

C
lassifi

cation
of

p
ertu

rb
ation

s

3.3. PERTURBATION MODEL 35

cation failures are due to message loss, network disconnection and network
partitioning. We divide network disconnection into transient predictable,
transient unpredictable and permanent. Examples of transient predictable
network disconnection include the class of planned disconnections (such as
put-off or reboot) and situations in which the network coverage degradation
is predictable such as when the wireless signal is continuously getting weaker.
Another situation in which the MN can predict its disconnection is when the
battery charge is low (disconnection due to node failure). Network parti-
tioning occurs in general only in mobile ad-hoc or generic environments and
splits the network into partitions that are not able to communicate between
each other. Node failures are either MN or FN failures. MN failures are in
turn either transient or permanent.

The comprehensive classification of perturbations in mobile environments
helps simplify the identification of the main building blocks to guarantee
perturbation-resilience for common mobile system classes. These common
mobile system classes with their corresponding building blocks build the basis
for the protocol family that we will present in Chapters 5, 6 and 7.

3.3.2 Operational/Environmental Constraints

The considered mobile environment is constrained mainly by the character-
istics of MNs and wireless links. MNs (ranging from laptops, personal digi-
tal assistants (PDAs), to cell phones) intuitively possess less computational
resources than FNs, for instance processor speed and storage capacity. Espe-
cially, some MNs possess limited memory space which restricts the amount
of data storable on them. These resource constraints increase the time MNs
need to execute transaction fragments or may even lead to execution fail-
ures. Furthermore, MNs have no stable storage since they are carried by
users, incur operational wear and tear and can also be easily lost or stolen.
Additionally, data replication strategies typically used in mobile environ-
ments have limited capabilities. Most replication strategies proposed in the
literature such as [Pradhan et al., 1996] rely on BSs to replicate data of the
MNs. BSs are not always available (mobile ad-hoc environment) and belong
to a third party service provider and it is not clear whether these providers
want to contribute to achieve such goals or not. Another issue is the cost of
storing the data on these BSs. Due to these issues the memory storage on a
MN cannot be considered as stable.

MNs rely on finite amount of energy provided e.g. by batteries, which
implies that they can run out of energy anytime thus losing information
about the status of execution stored on their volatile storages. Two of the
most important sources of power consumption are transmissions and memory

36 CHAPTER 3. MOBILE ENVIRONMENT MODELS

accesses. We note that, for a MN, transmitting data consumes around three
times as much energy as receiving the same amount of data [Forman and
Zahorjan, 1994].

Wireless network characteristics also change more frequently than those
of wired links. For example, the effective available bandwidth is highly dy-
namic. This depends on the wireless technology (GSM, UMTS, WLAN,
satellite, . . .), access coverage, and number of MNs that have to share the
wireless medium. Other key characteristics of the wireless links are latency
and communication costs. These characteristics lead to considerably varied
reliability/availability and connectivity of MNs.

The limitations and characteristics listed above outline the variety of
operational/environmental constraints for the mobile environment being dif-
ferent from those in fixed wired networks. These operational/environmental
constraints also complicate the design of efficient commit protocols.

3.3.3 Failure Modes

We now outline the considered failure modes classified into the primary
classes of communication and node failures.

Communication Failures

These constitute the majority of failures in the mobile environment. We
distinguish between two types of communication failures:

Message Loss: Message exchange between the MN and the BS or between
the MNs (in ad-hoc mode) is highly vulnerable to loss due to the high bit error
rate of wireless links, and also because of network congestion and collisions.
Message loss is much more probable to occur in mobile environments than
fixed ones and needs to be explicitly taken into consideration in the design
of mobile systems.

Network Disconnection (or Link Disruption): Given its mobile na-
ture, a MN can enter a geographical area out of coverage of any BS so that it
loses its connection to the network. The MN is said to be disconnected from
the rest of the network. While disconnected from the network, the MN is
not able to send or receive messages. As network disconnection [Kistler and
Satyanarayanan, 1992] is a common occurrence in mobile scenarios, it needs
to be explicitly considered in the system design. Network disconnections can
be either transient or permanent.

3.4. CHAPTER SUMMARY 37

Network Partitioning: Network partitioning occurs only in mobile ad-
hoc or generic environments. Due to the inherent node mobility and au-
tonomicity, the mobile ad-hoc environment can easily get partitioned and
reconnected. As shown in [Hähner et al., 2004, 2007], network partitioning is
frequent and unpredictable in mobile ad-hoc networks. As network partition-
ing is the norm rather than the exception in a mobile ad-hoc environment, it
needs to be explicitly considered in the design of atomic commit protocols.

Node Failures

We distinguish between MN and FN failures. For MNs, we identify two main
failure classes, i.e., transient and permanent failures. We do not consider
malicious failures such as Byzantine faults or intrusions, but in future work
we want to extend the fault model incorporating malicious faults.

Transient MN Failures: These occur mainly due to either software or
hardware faults and usually disappear if the MN reboots. A further cause
of transient failures is the lack of battery power to sustain operation of the
mobile device. Transient failures are the most probable failures of MNs in
the mobile environment. Opposite to network disconnection or partitioning,
in the case of a transient MN failure the content of the volatile storage of the
MN and consequently the state of its recent computations is lost.

Permanent MN Failures: These are irreparable failures such as loss,
theft or physical damage of the MN itself or its non-volatile storage where
the data and logs are stored (media failure). Consequently, all the data stored
in the MN is lost. Despite the fact that permanent MN failures are rather
rare in mobile environments when compared to transient MN failures, this
failure mode of MNs does occur because of the mobility and size of MNs.

FN Failures: We assume that if a FN crashes, then it stops receiving,
sending and processing messages until it recovers after a finite but unbounded
amount of time. This is known as the crash-recovery model.

3.4 Chapter Summary

We presented in this chapter the different models our work is based on. We
proceed now by describing the perturbation-resilient atomic commit frame-
work in the next chapter where all the techniques will be described to cope

38 CHAPTER 3. MOBILE ENVIRONMENT MODELS

with the environmental constraints and failure modes identified and detailed
in this chapter.

Chapter 4

Perturbation-Resilient Atomic
Commit Framework

To cope with different mobile environments, we present in this chapter our
perturbation-resilient atomic commit framework which builds the basis for
the modular framework of transaction atomic commit protocols described
in the next Chapters 5, 6 and 7. First, we introduce a set of application
scenarios that show the need to investigate the atomic commit problem for
the different types of mobile environments (defined in Section 3.1), i.e., the
mobile infrastructure-based environment, the mobile ad-hoc environment and
the mobile generic environment. Next, we provide the design requirements
for developing atomic commit protocols in mobile environments in general
along with our identified performance requirements. Finally, we present the
perturbation-tolerance design techniques and mechanisms relevant to each
perturbation class identified in Section 3.3. The choice and investigation of
these perturbation-tolerance design techniques and mechanisms are driven
by the performance and design requirements defined in this chapter.

39

40 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

4.1 Application Scenarios

Due to the growth of mobile devices in computational power and storage
capacity, new applications are emerging where strict data consistency and
consequently strict transaction atomicity is required. In the following some
application scenario classes are presented to highlight the strict atomicity
requirements by applications.

4.1.1 Bank/Stock Transactions

This type of application scenario includes mobile commerce (m-commerce)
applications where users can buy or sell goods using their mobile devices while
involving bank servers in fixed networks to accomplish their transactions.
These applications usually run in mobile infrastructure-based environments
and increasingly in mobile generic environments involving WSNs for checking
the availability of goods. The role of WSNs in this scenario is to keep track
on availability of certain type of goods and their corresponding quantity.
In this case, transactions can be processed automatically without human
intervention but using an on-demand availability check. A sell transaction in
this case can involve different people located in different places in the mobile
market and using mobile devices equipped with different wireless interfaces.
Strict atomicity guarantees in this scenario that the buyer gets the items and
services he paid for and that the seller is not reserving his goods for potential
buyers for long periods of time waiting for the buyer to pay for these goods.
This might happen if strict atomicity is not supported and the buyer declares
his interest in buying some items and never appears to complete the initiated
transaction.

4.1.2 Coordination across Autonomous Vehicle Sys-
tems

Mobile transactions are needed in such type of application scenarios for the
purpose of coordination for safe navigation of unmanned autonomous net-
worked vehicles. These vehicles are also equipped with different wireless
interfaces and can communicate directly in an ad-hoc manner or using the
wired infrastructure if available and accessible. Such type of application
can run in mobile ad-hoc or mobile generic environments. Transactions are
needed for coordination between unmanned vehicles at traffic intersections
in order to consistently update the databases of these vehicles (and possi-
bly authority databases) with the passage order of the present vehicles at
the intersection (Figure 4.1). These vehicles need to agree on an order how

4.1. APPLICATION SCENARIOS 41

they will pass the crossing. Prior to their actual passing, this order informa-
tion needs to be agreed upon and recorded atomically to their corresponding
databases. This stored data might be needed by insurance companies or the
police department in case an accident occurs. Intelligent transportation sys-
tems and platooning systems [Swaroop, 1994; Swaroop and Hedrick, 1996]
are further possible scenarios where mobile transactions might be needed.

Communication

range
Unmanned

vehicles

Direction of

motion

Database

management

systems

Figure 4.1: Coordination across autonomous vehicles (livelock scenario)

Other scenarios for mobile ad-hoc environments might include addition-
ally to coordination payment and mobile commerce services. A detailed de-
scription of a commercial mobile ad-hoc application which represents a radio
dispatch system between taxis can be found in [Huang et al., 2005]. The ra-
dio dispatch system is described as a novel and plausibly realistic application
scenario for mobile ad-hoc environments. The proposed system is then eval-
uated in [Huang et al., 2005] from both financial and technical perspectives
to provide a complete picture of its feasibility.

4.1.3 Mobile Gaming

This is a potentially interesting and promising application of mobile trans-
actions in mobile ad-hoc (and possibly generic) environments. We consider
mobile role-based games where players can either exchange or buy/sell vir-
tual characters with virtual items or real money. Game information is stored
on local databases (and if accessible on central databases). If a player’s ac-
tion affects one or more other databases, mobile transactions are required to
guarantee the consistency of the game data.

42 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

4.1.4 Disaster Management

Mobile devices can be used in case of forest fires to supply fire fighters with
their current position data, burning densities and to coordinate their actions,
e.g. rescue actions [Obermeier et al., 2009]. Atomic decisions are required in
this type of scenarios to safely coordinate the next action of the participating
fire fighters where the agreement of the involved fire fighters is crucial for their
security in such type of missions. Such type of application scenarios run in
general in mobile ad-hoc environments because of the lack of infrastructure
in disaster scenarios in general.

4.1.5 Health-Care Ambient Intelligence

Health-care ambient intelligence [Aarts et al., 2001] scenarios provide an
example of mobile generic environment scenarios as defined in our system
model in Section 3.1. Mobile transactions can help in such type of scenarios
to keep data about monitored old people living alone consistent among family
members and other institutions such as hospital and insurance for example.

4.2 Design Requirements and Issues

We now present the design requirements of resilient atomic commit protocols
for mobile transactions. A basic question is the need for new design require-
ments for atomic commit protocols in mobile environments. The difference
between mobile and fixed environments is that perturbations in mobile envi-
ronments are not the exception but often the normal case. Thus, we need to
define the boundaries of our framework in terms of design requirements. We
identify the following main requirements and design issues to be handled by
the framework.

4.2.1 Perturbation-tolerance and recovery

To build resilient atomic commit protocols, it is essential to define a compre-
hensive categorization of perturbations and a set of techniques to cope with
environmental constraints and recover from failures. The categorization of
perturbations assists the protocol designer in identifying the main concerns
and developing appropriate solutions. The overall objective for perturbation-
tolerance is to maximize the commit rate. A naive approach to provide for
fault-tolerance is to abort the MT each time a failure occurs and to restart
it (e.g., after a back-off time or after the failure disappears). This simplis-
tic approach introduces a large overhead for the successful participants (due

4.2. DESIGN REQUIREMENTS AND ISSUES 43

to frequent re-execution of the fragments) and requires some external in-
telligence (either from the user or from the ability of the system to detect
failures). Therefore, we introduce the delay-tolerance design requirement for
MT.

4.2.2 Delay-tolerance/-awareness

Masking latent faults such as long disconnections imposes that the MT ex-
ecution time can be delayed till local “Commit”/“Abort” decisions can be
collected. This implies that a MT can last for minutes or even hours. Thus,
the interest is on developing delay-tolerant or delay-aware transactions where
users can sacrifice latency for atomicity. For example, international bank
transactions can last days due to heterogeneous processing and regulatory
issues across the countries. We can easily expect that the application/user
is able to specify an appropriate (tolerable) lifetime for each initiated MT.

4.2.3 Efficiency

The efficiency of commit protocols is measured in terms of exchanged mes-
sages and resource blocking time. The classical approach to improve the
efficiency of such protocols is to reduce the communication overhead (num-
ber and size of messages) and to minimize the resource blocking time. The
rationale behind minimizing resource blocking time is that transactions, es-
pecially those executing on FNs, often lock expensive resources. Transactions
are isolated from each other by locking all relevant data needed by them. As
long as the locks are held, no other transaction can access the data, i.e., data
or resources are blocked. The more transactions per time unit an application
can process, the better the system’s scalability and throughput. If resources
are blocked, transactions using them are delayed waiting for the resources to
be unlocked resulting in reduced throughput. For this reason the blocking
time, especially of FN resources as they are frequently much more loaded
than MNs, should be minimized.

4.2.4 Scalability

Commit protocols are considered to be scalable if they can support a growing
number of participants without sacrificing efficiency. Resource blocking time
as well as capabilities of the CO to handle more transactions per time unit
are the main factors that determine the scalability of commit protocols.

The efficiency and scalability design requirements are orthogonal to the
delay-tolerance requirement and imply a key challenge for the generalized

44 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

commit framework that we target.

4.3 Methodology

Our primarily goal in this chapter is to offer perturbation-resilience opti-
mizing the performance of commit protocols in mobile environments. This
chapter focuses on transparent perturbation-tolerance techniques which do
not require any intervention from the user and mask the perturbations cited
in our perturbation model (Section 3.3). We also discuss different techniques
to mask the environmental constraints in order to optimize the overall system
performance and resilience.

The perturbations were classified in Section 3.3 into a set of discrete
classes to help simplify the description of the solutions by supporting a mod-
ular and hierarchical approach. In this chapter, we present perturbation-
tolerance design techniques relevant to each class driven by performance op-
timization requirements defined in Section 4.2. As several contemporary
efforts for commit protocols in mobile environments exist, we review the ex-
isting strategies and maximize their reuse. Especially, we aim at reusing the
results of the mature work existing for fixed networks.

We proceed progressively by tackling every identified perturbation in
Section 3.3 and propose for every identified perturbation class a set of
perturbation-tolerance mechanisms and techniques that will be used in the
next Chapters 5, 6 and 7 to build a modular framework of transaction atomic
commit protocols for mobile infrastructure-based, ad-hoc and generic envi-
ronments, respectively. We start by investigating mechanisms and techniques
used to mask environmental constraints.

We proceed then by investigating perturbation-tolerance techniques for
network disconnections, message losses, node failures, and finally
network partitioning.

4.4 Coping with the Environmental Con-

straints

We now discuss the main techniques to provide resilience to the identified
environmental constraints, i.e., node/link heterogeneity, unstable storage and
energy.

4.4. COPING WITH THE ENVIRONMENTAL CONSTRAINTS 45

4.4.1 Heterogeneity of Nodes and Links

We start from a scenario where only homogeneous fixed nodes communicate
through high speed networks of homogeneous links using standard commit
protocols such as 2PC or 3PC. Finding a timeout (TO) value after which the
CO can abort the transaction if it does not receive the votes of all participants
is straightforward since the costs involved with restarting the transaction
are not high. This timeout value should only mask the slightly oscillating
execution times and communication delays due to varying node and network
loads. These timeout values do not usually exceed the range of some seconds.

Next we consider the same scenario but with heterogeneous nodes, i.e., the
participants can have different capabilities for CPU processing, memory, etc.
Finding an appropriate timeout value now becomes challenging since the time
needed to execute different fragments of a transaction can vary considerably
from one participating node to another. As restarting the transaction with
a higher timeout value is not costly in the fixed environment, this would be
a suitable decision. The real challenge is when some of the heterogeneous
devices participating in the transaction become mobile and use not only
high speed networks but also, like in our system model, various wireless
communication links. So setting an appropriate timeout value by the CO
in this new scenario can reduce the costs of restarting the transaction. Also
modifying the commit protocol to use less messages can further reduce these
costs and save the limited bandwidth.

In [Kumar et al., 2002] the authors presented a timeout based approach
to deal with node and link heterogeneity. Each P-MN computes an execution
timeout (Et) - an estimated upper bound for the time to complete the execu-
tion of its transaction fragment - and a shipping timeout (St) - an estimated
upper bound for the time to compose updates and to send them to the CO.
The P-MN sends both timeouts to the CO. Both timeouts have to account
for the environmental constraints related to the P-MN and the wireless link
it uses. These timeouts can be extended if needed. The CO of the MT sets
its timeout according to the time needed by the participants to execute their
fragments and to send their votes to either commit or abort the transaction.
Details on how this timeout is set are not provided in [Kumar et al., 2002].
However, this approach will always abort the MT if one of the participants
is considerably slower than the initiator as illustrated in Figure 4.2. This
figure shows that in case one of the participants is considerably slower than
the initiator, the timeouts of the slow participant are received after the ex-
piration of the CO timeout defined in this case by the initiator, i.e., after
the abortion of the MT. Therefore, we extend this approach to an advanced
timeout handling as follows.

46 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

I-MN CO A slow P-MN

Transaction

Execution

fragment

Yes vote Abort

Abort

Timeout

(TOCO)

Yes vote

Figure 4.2: Timeout selection in a heterogeneous scenario

We let the I-MN inform the CO about the estimated/desired lifetime
of the MT. The lifetime of a transaction provides the maximal timeout
the CO should wait to take the decision about the outcome of the MT.
It takes into consideration the environmental constraints including hetero-
geneity of MNs and wireless links. The lifetime can either be set by the
application or estimated by the initiator or CO based on previous experi-
ences and observations. The CO requests from all P-MNs their estimated
timeouts TOP -MNi

. If the CO receives a lifetime from the I-MN, it sets its
own timeout TOCO = lifetime. If the lifetime is undefined for any reason,
the CO updates its own timeout every time it receives a timeout estima-
tion from one P-MN by setting it to the maximum of all received TOP -MNi

(TOCO = max{TOP -MNi
}). If TOCO expires before receiving a timeout from

one P-MN, the CO aborts the MT. In this case the CO additionally needs
to identify the slowest P-MN and to estimate the time needed to receive its
timeouts (Figure 4.2). We present a detailed discussion of the scenario where
the lifetime is undefined in Section 4.5 below.

As described above, for heterogeneity of nodes and links, an enhanced
timeout handling is proposed. The two remaining environmental constraints,
i.e. unstable storage and energy impact mainly the selection of the CO.
Therefore, unstable storage and energy will be used in the following to justify
the choice of the CO as a FN in case such a node is available in the studied
scenario, otherwise other strategies such as multiple MNs playing the CO
role should be considered.

4.4.2 Unstable Storage

We consider the environmental constraint of unstable storage of MNs and
derive its impact on the design of commit protocols. As mentioned before in
Section 3.3, the storage of MNs is usually not stable making them even less

4.5. TOLERATING NETWORK DISCONNECTIONS 47

suitable for a CO role since it is a key element of atomic commit protocols.
Due to unstable storage, if a single MN plays the role of a CO, it can lose all
the information related to a transaction and therefore it will not be able to
take an Abort or Commit decision. This is similar to a permanent crash of
the CO. Furthermore, if the CO runs out of memory and is not able to store
required information about the state of the transaction, it has to abort the
transaction even after receiving “Yes” votes from all participants.

4.4.3 Energy

The CO sends and receives relatively high number of messages (compared
to other participants) in order to take a decision on the outcome of the
transaction and also to ensure that every participant is informed about this
outcome. Sending and receiving this relatively high number of messages
consumes a lot of energy on energy-limited mobile devices making them less
suitable for CO role.

The unstable storage and energy constraints make a single MN unsuitable
for playing the CO role. The CO role requires a powerful node in terms of
computation and memory capabilities having a stable storage and not relying
on a finite energy source. This substantiates the selection of a FN to play
the CO role whenever possible. If a FN is not available in the investigated
environment, multiple MNs should be considered to play the CO role as will
be discussed in Section 4.8.

Due to the focus on failure resilient commit, we now consider failures
in detail in the following sections covering (1) network disconnection, (2)
message loss, (3) node failures and (4) network partitioning.

4.5 Tolerating Network Disconnections

Traditional commit protocols trigger Abort if at initiation one or more par-
ticipants are not connected. These protocols tolerate network disconnection
durations of some seconds (using timeouts) and trigger Abort if no connec-
tion is observed during this short timeout. These solutions are typically
not suitable for mobile environments since the probability that all (mobile)
participants are connected at initiation time is usually low. This can be
explained by the fact that disconnection time of MNs can range from some
minutes to hours or days, or even permanently due to physical damage, theft
or loss. In the following, we provide design principles for tolerating three
specific classes of network disconnection, i.e., transient predictable, transient
unpredictable and permanent (Figure 3.3).

48 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

A possible solution to mitigate network disconnection has been proposed
by Unilateral Commit for Mobile (UCM) [Bobineau et al., 2000]. UCM does
not comprehensively address disconnections and proposes a one-phase proto-
col where the voting phase of 2PC is eliminated. The CO acts as a dictator
imposing its decision on all participants. Thus, UCM assumes strong assump-
tions on the execution of fragments, integrity constraint check, serialization
and logging on the P-MNs and P-FNs. These assumptions restrict and vi-
olate the autonomy of the entities participating in transaction execution.
Also these assumptions are usually hard to fulfill in mobile environments be-
cause they require a fully connected network, which is not common in mobile
networks.

As a generic solution for these classes, we suggest creating representa-
tives/proxies of MNs in the fixed part of the network. Introducing represen-
tatives is inspired by the M-2PC protocol [Nouali et al., 2005] and the work
presented in [Serrano-Alvarado et al., 2003]. In M-2PC the representatives
take part in the transaction execution when P-MNs delegate their commit-
ment duties to them. We extend the role of these representatives which can
act on behalf of MNs from the beginning and mask their disconnections. This
is similar to a lightweight replication of commit data and commit state of
the MN in the fixed part of the network, i.e, these representatives will store
required information concerning the state of execution of the MT and also
the message traffic from and to the corresponding P-MN to be able to act on
its behalf in case perturbations occur. These representatives are henceforth
termed as mobile node agents (MN-Ag). MN-Ags are implemented on FNs
and are provided as a service to the user by its service provider (the ser-
vice provider provides infrastructure-based communication facilities to the
P-MNs). We consider a MN-Ag per MN and per all the transactions involv-
ing the MN. The MN-Ag can play the CO role if the corresponding P-MN
is the initiator (I-MN) of the transaction. Figure 4.3 shows a scenario where
the MN-Ags act on behalf of their corresponding P-MNs in case of network
disconnection. In this scenario the MN-Ags buffer the messages received from
the CO and forward them to the corresponding P-MNs when they reconnect.

Besides disturbing the Commit/Abort decision process, network discon-
nection substantially impacts the blocking time of FN resources. Using a
classical transaction commit protocol such as 2PC, disconnections of P-MNs
can block the valuable resources of FNs for an intolerable long time period.
Thus, it is crucial to minimize this blocking period. We suggest decoupling
the commit of P-MNs from that of P-FNs. The transaction execution is
consequently split into two phases (Figure 4.4). We call the first phase pre-
commit phase where “sufficient” information is collected from P-MNs after
finishing the execution of their corresponding fragments. The second phase

4.5. TOLERATING NETWORK DISCONNECTIONS 49

I-MN

CO

P-MN_1

P-MN_2

MN-Ag_1

MN-Ag_2

Connected Disconnected

MT
Execution

fragments

Execution

fragment

Execution

fragment

Figure 4.3: Tolerating network disconnection – Agent concept

called core phase involves only P-FNs. Therefore any classical transaction
commit protocol established in fixed networks such as 2PC or 3PC can be
used. If the first phase fails, i.e., in case the CO receives at least one “No”
vote or TOCO expires before the CO receives all votes, then it is useless to
progress with the second phase and consequently the blocking of P-FNs’ re-
sources is avoided. Otherwise, the blocking time of resources on P-FNs is
determined by the blocking time of the core phase protocol.

Therefore, the decoupling allows preventing network disconnection,
mainly caused by P-MNs, from affecting P-FNs. For the different network
disconnection types different precautions to design the pre-commit phase are
discussed in the following.

I-MN

CO

P-MN

P-FN

MT

Execution

fragment

Yes

vote

Execution

fragment

Yes

vote

Active in MT

execution

Decision
Yes

vote

Not active in MT

execution

Pre-commit phase Core phase

Blocking time of P-FN

resources

Figure 4.4: Tolerating network disconnection – Decoupling concept

50 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

4.5.1 Transient Predictable Network Disconnections

For the considered classes of network disconnection, we assume that only
the initiator is connected at the time when the transaction is issued. Other
P-MNs are not required to be connected. A transient predictable network
disconnection allows the node to exchange some messages with other entities
participating in the execution or coordination of the transaction just before
it becomes disconnected. Thus, the node can likely inform other nodes about
its predicted disconnection (Figure 4.5). One solution to this problem could
be to wait (the CO) for a predefined amount of time (TOCO) and abort the
transaction. This solution increases the number of transaction Aborts in this
environment and also the costs associated with the re-initiation of aborted
transactions in term of messages and energy. The aborted transaction should
be also delayed to be executed in the near future which can affect other
dependent/related transactions.

I-MN

CO

P-MN_1

P-MN_2

MN-Ag_1

MN-Ag_2

MT

Upcoming

disconnection

Upcoming

disconnection

Execution

fragments
Timeout

estimation

Timeout

estimation

Execution

fragment

Execution

fragment

Connected Disconnected

Figure 4.5: Tolerating predictable network disconnection

For transient predictable network disconnection the P-MN knows approx-
imately when it will disconnect. If it additionally knows how long it will
disconnect, then a timeout extension (TOext(P -MN)) is easy to determine
for the P-MN. TOext(P -MN) is an update of TOP -MN which should be sent
to the CO to update its timeout TOCO. If the P-MN lacks this information,
a table of possible scenarios for network disconnection and the correspond-
ing estimated disconnection times can be used. As a representant of the
P-MN, the MN-Ag can take decisions about TOext(P -MN) on the P-MN’s
behalf when the P-MN is disconnected (Figure 4.5). This decision should
be taken in case of transient predictable network disconnection based on the

4.5. TOLERATING NETWORK DISCONNECTIONS 51

information sent by the corresponding P-MN before disconnecting.

For delay-tolerant transactions TOext(P -MN) can be evaluated based on
the P-MN’s behavior in the past. A history of previous disconnections can
assist in estimating an appropriate value for the TOext(P -MN) for future
disconnections.

4.5.2 Transient Unpredictable Network Disconnec-
tions

This type of network disconnection refers to the case when the P-MN dis-
connects; however no other entity participating in the execution of the trans-
action is updated on the state of the P-MN disconnection. This occurs as
the P-MN was not able to communicate with its MN-Ag or with any other
participant to inform about its actual status before disconnection. When a
transient unpredictable network disconnection occurs, a timeout extension
can only be triggered by either the CO or the MN-Ag, where the timeout
selection may be less suitable. For this we suggest that each P-MN specifies
for its MN-Ag a default timeout extension value for the case the network dis-
connection is unpredictable. The MN-Ag should also have the possibility to
extend the timeout of its corresponding P-MN when needed. We suggest here
that the MN-Ag develops an experience log for transient unpredictable net-
work disconnection tailored to its corresponding P-MN. For example, to first
estimate the disconnection cases of short duration (tunnel (GSM), handover
(GSM-UMTS-WLAN), software (SW) transient failures) and subsequently of
medium length (hardware transient failures) and for long-duration reasons
(e.g., discharged battery) and in worst case long-duration network discon-
nection may become permanent network disconnection due to damage or
loss.

4.5.3 Permanent Network Disconnections

When the P-MN is lost, stolen or damaged, we consider that permanent
network disconnection has occurred. In this case the transaction should be
aborted. If the P-MN has voted with “Yes” before crashing permanently
the transaction could be committed if the changes done by the P-MN on his
local database are available to its MN-Ag or to the CO. These changes can
be propagated to the main copy of the data located e.g., on a backup server
on the wired network or to the user. In this case, the MN-Ag can be used
to store this information and will be responsible for its propagation to the
backup server or to the user whenever needed.

52 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

4.6 Tolerating Message Losses

Message loss is a common occurrence over wireless links. A message loss can
be tolerated by using acknowledgments (Acks) and timers with appropriate
timeout values. Acks constitute an overhead in term of messages for the
considered mobile environment. Therefore, the number of Acks exchanged
during the execution of atomic commit protocols should be kept minimal.
Timers can also be used to detect loss of messages by setting an appropriate
timeout value after which the message is assumed to be lost. Trade-off can
be obtained when to use Acks or timers or a combination of both.

4.7 Tolerating Node Failures

As mentioned before, we classify node failures into MN and FN failures.
We note that a node failure implies network disconnection besides data loss,
which we investigate in the following subsections. MN failures can either
be transient or permanent. To cope with transient failures, local recovery is
used. Permanent failures can be tolerated using replication.

4.7.1 Transient Mobile Node Failures

Local recovery is the set of operations that must be performed locally by a
node after a transient failure to recover to a correct, consistent and failure-
free state. For this purpose, a set of precautions has to be conducted during
the failure-free operations. To identify these precautions, it is needed to
categorize the situations where recovery is needed. For example, if failures
occur they should not result in loss of commit data or commit state on a
node or a subset of nodes. We classify these situations into isolated node
failures and combined node failures.

Isolated node failures consist of scenarios where only one P-MN is af-
fected by a transient failure (e.g. battery depletion) during the execution
of a MT. All these failures result in the loss or corruption of the content of
volatile storage. One solution is logging of all needed operations related to
the execution of the transaction commit protocol on a stable storage. When
a failure occurs the recovery is performed based on the logged information.
But which data should we log? How frequent should logging be performed?
And where to log this data if the MNs are not assumed to have a stable
storage? Answering these questions requires a detailed knowledge about the
transaction commit protocol and the interaction of the participants. We
will detail this issue while discussing transaction atomic commit solutions in

4.7. TOLERATING NODE FAILURES 53

mobile infrastructure-based environments in Chapter 5.

Combined node failures include scenarios when more than one node at
a time observe a transient failure and these failures can be either similar or
different in nature. In these situations recovery may need global information
about the state of execution of the transaction depending on the transaction
commit protocol that defines which information needs to be exchanged be-
tween the different nodes either participating in the transaction or responsible
for its coordination. Usually, this global information is stored and managed
by the CO.

4.7.2 Permanent Mobile Node Failures

This type of failure can be tolerated if the data or the logs related to the
execution of MTs on MNs are replicated (e.g., on MN-Ags) before committing
the transaction. Logs should not be replicated if the transaction is aborted
since the MT should not have any effect on the data stored on the MN in
this case. If the final decision is Abort, the logs are only needed locally.

4.7.3 Fixed Node Failures

Decoupling, as discussed in Section 4.5, allows for easy reuse of existing
techniques to handle FN failures. For the sake of completeness, we provide
a short overview of the basic fault-tolerance recovery mechanisms. For a
detailed survey we refer the reader to [Elnozahy et al., 2002]. An important
fault-tolerance mechanism useful to tolerate FN failures is checkpointing. A
checkpoint is a record of a consistent state that existed on a node at some
time in the past. Checkpointing is usually used along with logging. A log
represents a durable record or history of the significant events such as Write,
Commit and Abort that have occurred at this site either since the start or
since the last checkpoint. If a failure occurs the node needs to rollback to
a consistent state. Recovery strategies can be divided into roll-backward
recovery, roll-forward recovery or a combination of both. Roll-backward re-
covery brings the system back to a previous correct and consistent state.
Checkpoints are made periodically during normal operations by recording
(on stable storage) the current state. This represents a big performance
overhead for on-going transactions. After a failure the state can be restored
from the checkpoint info. Roll-forward recovery brings the system to a new
correct state after a crash. This may involve asking another site what the
current state is if data is replicated. The combination of both (often used in
databases) uses both checkpoint and recovery logs and proceed as follows:

54 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

(a) Take a checkpoint and delete old log and start new log, (b) log all signif-
icant messages, transactions, etc, up to the next checkpoint, and (c) when
recovering from failure, restore checkpoint state then replay log and re-do
these operations.

If the CO is a FN, we adopt the fault-tolerance and recovery strategies
discussed above for FN failures. In addition we investigate which informa-
tion related to the execution and coordination of the MT should be stored
on a stable storage to allow the CO to recover from node failures. Beyond
storing the information related to the MT such as the commit set, the cor-
responding execution fragments and the identity of the CO, the CO needs
to maintain information about the status of execution of every execution
fragment. We distinguish between the following states: (a) Idle, (b) active,
(c) pre-committed (only for MNs and if decoupling is used), (d) committed
and (e) aborted. Idle means that the participant has not started executing
its fragment yet. After starting the execution the state becomes “active”. If
decoupling is implemented and its first phase succeeds, the state of P-MN
is updated to “pre-committed”, otherwise the state is “aborted”. The state
“committed” is reached when the whole MT is committed, otherwise the
final state is set to “aborted”.

4.8 Tolerating Network Partitioning

Mobile ad-hoc environments are characterized by the lack of infrastructure
and also by the self-organization of the network. Ad-hoc scenarios show
frequent and unpredictable network partitioning as mentioned in Section 3.3.
MNs in such scenarios are the only participants in the execution of MTs. As
MNs do not connect to any infrastructure, the CO of the MT is required to
be a MN. A MN is not assumed to have stable storage and is therefore not
able to play the CO role alone unless specific assumptions on the capabilities
of such a MN can be made (however, same capabilities as a FN are in general
not realistic). Failures of the single mobile CO usually lead to the blocking
of all participants. Two extreme cases are possible: Only one CO is defined
by introducing a more powerful MN (with additional assumptions on it such
as stable storage) or every single participant in the MT is CO. We believe
that only a subset of the participants should play the CO role as justified
later in this section.

The lifetime concept for infrastructure-based scenarios introduced in Sec-
tion 4.4 can also be used in ad-hoc scenarios. Estimating the appropriate
lifetime value depends on multiple factors. A key issue is the network con-
nectivity, which primarily depends on mobility parameters such as speed of

4.8. TOLERATING NETWORK PARTITIONING 55

A

Z

B

C

S

M

M

X

Y
Z

X Y

Node position at time t1

Node position at time t2>t1

Speed

(m/s)

Com.

range

Obstacle

Figure 4.6: Factors for estimating MT lifetime in ad-hoc scenarios

MNs, and their communication parameters as depicted in Figure 4.6. These
variables make estimating lifetime in ad-hoc scenarios a challenge. Appli-
cations initiating delay-aware mobile transactions should be at least able to
compute how long they will be able to wait before receiving the results of the
initiated MT. This time can be used as the lifetime of the initiated mobile
transaction or can be adapted to the current state of the underlined mobile
ad-hoc network. In this work, we do not assume synchronized clocks across
the mobile entities. Thus the lifetime can elapse on different times for dif-
ferent participant MNs. This issue should be considered while designing an
appropriate MT solution.

Given frequent network partitioning, it is challenging for ad-hoc scenar-
ios to disseminate the fragments of the MT to their corresponding MNs. For
this, partition-aware dissemination protocols can be used such as Hypergos-
siping [Khelil et al., 2007].

As described in Chapter 2, [Bose et al., 2005; Böttcher et al., 2007] pro-
pose the use of a cluster of coordinators preferably in single-hop distance
from each other to avoid blocking of mobile participants in case one CO
fails. The cluster of COs elects a single main coordinator and uses the 3PC
protocol [Skeen and Stonebraker, 1983] to agree on a consistent decision ei-
ther to commit or abort the MT. If the cluster of COs is partitioned or the
main CO fails the authors use a termination protocol based on the Paxos
Consensus protocol [Lamport, 1998] to elect a new main coordinator. The
termination protocol succeeds only if a majority of the COs in the cluster
of coordinators does not fail and also belongs to the same partition. The
assumption on the mobility of the cluster of COs made here is not valid in
most of ad-hoc scenarios. Targeting a more general solution, we relax this

56 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

assumption and consider a generalized arbitrary mobility model.
Similar to [Xie, 2005], we assume now that every MN in a partition knows

all the members of the partition it belongs to. Later we will relax this
assumption in order to keep our framework generic. Given the partition
membership information, the participants in every partition elect a CO and
send their votes to the elected CO which takes a pre-decision on the outcome
of the MT. The pre-decision can be different from the final decision. This
temporary decision is communicated to all participants within the partition.
If the pre-decision is Abort, then every P-MN that receives this pre-decision
can safely abort the MT. If the pre-decision is Commit, every participant in
the partition should wait until all pre-decisions are collected. Alternatively,
when two partitions merge, then the pre-decisions are exchanged and if all
pre-decisions are collected the outcome of the MT can be safely decided since
these include the votes of all participants in MT. Now all the P-MN must be
informed about this outcome which can be achieved through partition-aware
communication protocols similar to fragment dissemination. The correctness
of the basic solution described above is assured by the partition membership
assumption. If this assumption is not valid a participant can be a member of
a partition but the CO of that partition is not aware about the membership of
this participant and subsequently the vote of this participant can be lost, i.e.,
not included in any pre-decision and consequently not in the final decision.

The assumption that every MN in a partition knows all the members of
its partition is crucial for the partition membership aware solution. Some
works [Briesemeister and Hommel, 2002; Roman et al., 2001] addressed the
problem of group membership in mobile ad-hoc environments, however a
general solution for mobile environments remains a challenge. Furthermore,
the blocking time of participants is often not considered and in worst case
all participants may be blocked forever if one of the participants disappears
forever. As shown in [Davidson et al., 1985; Skeen, 1981], there exists no
non-blocking atomic commit protocol if network partitioning may occur for
an unpredictable duration. Fortunately, the number of blocked participants
can be minimized as we will discuss in Chapter 6. This approach based on
partition membership information is independent from the mobility of nodes
in contrast to [Bose et al., 2005; Böttcher et al., 2007]. However, it is based
on the assumption that partition membership is available to all its members.
Partitions in mobile ad-hoc scenarios are usually very dynamic as nodes may
leave and join partitions arbitrarily. Therefore, acquiring the global partition
membership information becomes very inefficient.

Targeting a generic approach, we propose to use a subset of the P-MNs
as transaction COs to replicate the transaction coordination task on more
than one MN. Furthermore, we suggest using the lifetime concept in order

4.9. CHAPTER SUMMARY 57

to put an upper bound on the blocking time of P-MNs. These two concepts
should be used without restricting the mobility of P-MNs and also without
using expensive distributed systems primitives such as consensus or group
membership in mobile ad-hoc environments.

4.9 Chapter Summary

In this chapter, we presented a perturbation-resilient framework to provide
strict atomicity for transactions in mobile environments and investigated all
the perturbations identified in Section 3.3. We presented the mechanisms and
techniques used to tolerate the identified perturbations. In the next Chap-
ters 5, 6 and 7, we progressively build a modular framework of transaction
atomic commit protocols for mobile infrastructure-based, mobile ad-hoc and
mobile generic environments respectively. The modular framework builds
upon the mechanisms and techniques identified and presented in this chap-
ter to construct the different atomic commit protocols.

58 CHAPTER 4. PERTURBATION-RESILIENT ATOMIC COMMIT

Chapter 5

Atomic Commit for
Infrastructure-based
Environments

In the perturbation-resilient transaction commit framework described in
Chapter 4, we (a) investigated and classified the perturbations in the consid-
ered mobile environment, and (b) presented appropriate design techniques to
provide resilience to each identified class under consideration of the design
requirements and issues listed in the same Chapter 4.

In this chapter, we combine the presented design techniques into a mod-
ular framework of transaction atomic commit protocols for infrastructure-
based mobile environments. Since different application scenarios in mobile
infrastructure-based environments show different perturbation classes, we in-
tegrate only the necessary building blocks for the most common mobile sys-
tems classes, implementing the main identified fault-tolerance and recovery
techniques. For example, in a mobile system where failures are not frequent,
using a protocol with sophisticated perturbation-tolerance techniques only
adds unnecessary overhead to the system, thus decreasing its efficiency.

59

60 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

5.1 Overview of our Approach: The FT-

PPTC Commit

We construct a family of atomic commit protocols for three common classes
of mobile infrastructure-based environments: (1) a failure-free environment
with the environmental constraints on nodes and links described in Sec-
tion 4.4, (2) an environment where additional to arbitrary environmental
constraints frequent network disconnections and message losses occur (net-
work disconnections and message losses are investigated in Section 4.5 and
Section 4.6 respectively), and (3) an environment where arbitrary node fail-
ures (explored in Section 4.7) are considered in addition to (2). We emphasize
here the modularity of our framework as further combinations of the building
blocks to construct alternate protocols or protocol adaptations are possible.
Each proposed protocol is suitable for a specific mobile system’s class. Ac-
cordingly, we distinguish across the set of proposed protocols (Table 5.1):

(1) Pre-Phase Transaction Commit (PPTC), a basic protocol based on
the fault-tolerant pre-phase transaction commit. This version includes a
minimal set of the main design techniques a transaction commit protocol
should include to cope with environmental constraints. PPTC implements
mainly the concepts and techniques presented in Section 4.4.

Table 5.1: Perturbation-resilience of protocol family

Protocol

Building Block PPTC FT-PPTC FT-PPTC-Rec

Tolerating environmental + + +
constraints (Section 4.4)

Decoupling + + +
(Section 4.5)

Tolerating message loss - + +
(Section 4.6)

Agent or proxy (MN-Ag) - + +
(Section 4.5)

Tolerating nodes failures - - +
(Section 4.7)

(2) Fault-Tolerant PPTC (FT-PPTC), a protocol which implements
fault-tolerance in addition to resilience to environmental constraints. There-
fore, FT-PPTC implements in addition to PPTC the concepts and techniques
presented in Sections 4.5 and 4.6.

5.2. BASE PROTOCOL: PPTC 61

(3) Fault-Tolerant and Recovery PPTC (FT-PPTC-Rec), a protocol
which enriches FT-PPTC with the necessary mechanisms for recovery in
case of node failures, i.e., FT-PPTC-Rec implements additionally the con-
cepts and techniques presented in Section 4.7.

Table 5.1 summarizes the building blocks of each protocol. These proto-
cols are then compared in Section 5.6 to emphasize the impact of the various
building blocks.

5.2 Base Protocol: PPTC

The PPTC protocol is our basic step towards perturbation-resilient atomic
commit protocols for the mobile environment. It implements the necessary
techniques to cope with the main environmental constraints described in
Section 4.4. We will refer to the used techniques and covered environmental
constraints while describing the protocol.

As mobile participants may need an arbitrary long time to execute their
fragments, and as very few assumptions can be made regarding the perfor-
mance of their wireless links, resources of fixed participants may potentially
be blocked for an undefined period of time. Therefore, PPTC uses our decou-
pling strategy (introduced in 4.5) to decouple the commit of mobile partici-
pants from that of fixed participants. In the pre-commit phase (Figure 5.1),
PPTC collects the votes of mobile participants to be able to reduce the com-
mit set to a set of entities in the fixed network. The core phase involves
only FNs and can be completed by any atomic commit protocol for wired
networks, such as the traditional 2PC protocol. Consequently, we term this
as the core 2PC PPTC phase as we select the established 2PC protocol to
implement it. 2PC was arbitrarily chosen for this phase of PPTC especially
because it is widely used in wired networks. This is not a restriction since
any other established commit protocols in fixed networks can be used in this
phase.

The pre-commit phase involves only P-MNs. As discussed in Section 4.4, a
timeout-based concept is exploited to reach a provisional “Commit” decision
at the end of the pre-commit phase (Figure 5.1). The only difference to the
timeout-based concept used in this protocol is that St represents an estimated
upper bound for the time needed to send a vote to the CO. The CO waits for
the expiration of TOCO and finalizes the pre-commit phase by a provisional
“Commit” or an “Abort” decision. The CO proceeds to the second phase of
PPTC, only if it receives “Yes” votes from all P-MNs within the specified
time-limit (TOCO). The transaction is aborted as soon as one P-MN aborts
the transaction or TOCO expires at the CO before receiving all the votes of

62 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

P-MH1

P-FH1

Initiator (I-MN) P-MN1

Begin

Coordinator

Ti – ei(I-MN), Et(I-MN),

St(I-MN), lifetime

“Yes” Vote

Prepare

“Yes” Vote

Decision
Decision

Release

resources

Vote : Yes/No

Decision : Commit/Abort

P
re

-c
o

m
m

it

p
h

a
s
e

Release

resources

Vote

Decision

Ack

P-FN1

Et(P-MN1), St(P-MN1)

Ack

C
o

re
 p

h
a

s
e

ei(P-FN1)

ei(P-MN1)

Release

resources

End

: Mobile entity

: Fixed entity

: Message sent over

a wireless link

: Message sent over

a wired link

2PC

Figure 5.1: Scenario execution of the MT Ti using the PPTC protocol

P-MNs.

As a result of the pre-commit phase, the P-MNs delegate the CO to ex-
ecute the 2PC protocol on their behalf. The second phase of the protocol
begins, when the CO sends the execution fragments of P-FNs to their corre-
sponding FNs and the 2PC protocol is executed to collect their votes. If all
P-FNs vote for committing the MT, the CO decides to commit, otherwise it
decides to abort the mobile transaction.

Figure 5.1 illustrates the execution of the PPTC protocol. The activities
of each participant are outlined below. Specifically, we detail the activities
of I-MN, CO and P-MN later in this chapter in Algorithm 1, Algorithm 2
and Algorithm 3 respectively.

5.2.1 Activities of the initiator mobile node

The I-MN initiates the mobile transaction Ti, extracts its execution fragment
ei(I-MN), computes its Et, St and lifetime of the initiated transaction and
sends them along with the rest of the MT Ti−ei(I-MN) to the CO (Algorithm
1). The I-MN begins the processing of ei(I-MN). Whenever the I-MN needs

5.2. BASE PROTOCOL: PPTC 63

Algorithm 1: I-MN’s Algorithm (PPTC)

1 Initialize Ti;
2 Extract execution fragment ei(I-MN);
3 Compute Et(I-MN), St(I-MN) and lifetime;
4 send Ti − ei(I-MN), Et(I-MN), St(I-MN) and lifetime to CO;

5 while processing ei(I-MN) do
6 if Et(I-MN) and/or St(I-MN) need to be extended then
7 compute new timeout value(s);
8 send new value(s) to CO;

9 end

10 end

11 if I-MN decides to abort Ti then
12 abort Ti;
13 send No vote to CO;
14 return;

15 else /* I-MN decides to commit Ti */

16 send Yes vote to CO;
17 wait for decision from CO
18 if decision is Commit then
19 commit Ti;
20 return;

21 else /* decision is Abort */

22 abort Ti;
23 return;

24 end

25 end

to extend its Et and/or St, it sends a message to the CO with the new timeout
value(s). The I-MN sends a “No” vote to the CO whenever it decides to abort
the MT. If the I-MN successfully completes the execution of its fragment, it
sends a “Yes” vote to the CO. After receiving the final decision the I-MN
(like the other P-MNs) is not supposed to send an ”Ack” message to the CO
since the PPTC protocol is not designed to tolerate message losses. P-FNs
acknowledge the CO upon receiving the final decision as part of the 2PC
protocol which is adopted for the core phase in PPTC.

5.2.2 Activities of the coordinator

In PPTC, the CO is the MN-Ag of the I-MN. Upon receiving Ti − ei(I-MN)
from the I-MN, the CO extracts the execution fragments of the P-MNs and
sends each fragment to its corresponding P-MN. The CO computes also the

64 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

Algorithm 2: CO’s Algorithm (PPTC)

1 wait for Ti − ei(I-MN), Et(I-MN), St(I-MN) and lifetime;
2 extract and send execution fragments to the P-MNs;
3 initialize all the timeouts of the P-MNs to 0;

4 let Pm = {P-MN1, . . . ,P-MNm} the set of all the P-MNs;
5 if lifetime is undefined then
6 TOCOi ←

max(Et(P-MN1) + St(P-MN1), . . . , Et(P-MNm) + St(P-MNm));

7 else
8 TOCOi ← lifetime;
9 end

10 while waiting for TOCOi to expire do
11 if lifetime is undefined AND value of Et and/or St (initial or

extended values) of one of the MNs in Pm is received then
12 recompute TOCOi ;
13 end
14 if Abort message is received from one of the MNs in Pm then
15 send Abort to all members of Pm;
16 return;

17 end

18 end

19 if Yes Vote is received from each P-MN then
20 start a 2PC protocol to collect the votes from all P-FNs;
21 if all votes were Yes then
22 send Commit message to all members of the commit set;
23 return;

24 else /* at least one of the votes is No */

25 send Abort to all members of the commit set;
26 return;

27 end

28 else /* at least one Vote not received */

29 send Abort to all members of the commit set;
30 return;

31 end

timeout of the MT (Algorithm 2, lines 5-9). If the lifetime received from the
I-MN is not undefined, the timeout of the MT is set to lifetime. Otherwise,
if the CO receives Et and/or St from any P-MN, it updates its timeout
(lines 11-13). The CO waits for the expiration of TOCOi

. If it receives a
“Yes” vote from each P-MN within this time, it distributes the execution
fragments of the P-FNs along with the vote request (“Prepare” message).

5.2. BASE PROTOCOL: PPTC 65

If the CO receives an “Abort” message from any of the P-MNs before the
expiration of TOCOi

or if it doesn’t receive the vote of at least one P-MN
within this timeout, it sends an “Abort” message to the rest of the P-MNs
and the whole transaction is aborted. After sending the execution fragments
of the P-FNs, the CO starts a 2PC protocol session to collect the votes from
them. If the CO receives a “Yes” vote from all the P-FNs, it decides to
commit the transaction and sends “Commit” decision to all the participants.
If it receives at least one “No” vote (or no reply) it decides to abort the
transaction and sends “Abort” decision to all participants.

5.2.3 Activities of a participant mobile node

Upon receiving its execution fragment, the P-MN computes Et and St, and
sends them to the CO (Algorithm 3). The P-MN behaves then exactly like
the I-MN.

Algorithm 3: P-MN’s Algorithm (PPTC)

1 wait for receiving the corresponding execution fragment;
2 Compute Et(Par-MN) and St(Par-MN);
3 send Et(Par-MN) and St(Par-MN) to CO;

/* continue with step 10 to step 25 of Algorithm 1 substituting

I-MN with P-MN */

5.2.4 Activities of a participant fixed node

P-FNs behave according to the established 2PC protocol, i.e., a P-FN exe-
cutes its fragment, waits for the “Prepare” message, sends its vote and waits
for the decision. Upon receiving the decision, the P-FN acknowledges the
CO. Note that 2PC is not a restriction here and any further established
protocol such as 3PC or Paxos Commit can be used.

The PPTC protocol copes with a wide range of environmental constraints
and suits well for closed mobile systems with high coverage (using e.g. GSM
or UMTS technologies), where failures can be controlled and are less probable
than other systems.

66 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

MH-agent

P-FH1

P-MH2Initiator (I-MN) P-MN1

Begin

Coordinator

“Yes” Vote

Prepare

“Yes” Vote

Decision

Ack

Decision

Ack

Release

resources

P
re

-c
o

m
m

it

p
h

a
s
e

MN-Ag

Vote

Decision

Ack

P-FN1

Et(P-MN1),

St(P-MN1)

Ack

C
o

re
 2

P
C

 p
h

a
s
e

Ack

Decision

“Yes” Vote

Release

resources

Release

resources

End

Vote : Yes/No

Decision : Commit/Abort

: Mobile entity

: Fixed entity

: Message sent over

a wireless link

: Message sent over

a wired link

Ti – ei(I-MN), Et(I-MN),

St(I-MN), lifetime ei(P-MN1)
ei(P-MN1)

Et(P-MN1), St(P-MN1)

ei(P-FN1)

Transient

Disconnection

Extend timeoutsForward extended

timeouts
~~

Resource

blocking time

~~
~~

Figure 5.2: Failure-prone execution of the MT Ti using the FT-PPTC pro-
tocol (for simplicity only transient disconnections are illustrated)

5.3 Fault-Tolerant Coverage Protocol: FT-

PPTC

FT-PPTC extends the PPTC protocol by adding fundamental fault-tolerance
techniques presented in our framework in Sections 4.5 and 4.6 (Table 5.1).
FT-PPTC tolerates in addition to environmental constraints network discon-
nections and message losses.

To support and improve the decoupling strategy in FT-PPTC, a MN-
Ag is assigned to each P-MN as discussed in Section 4.5 (Figure 5.2). The
MN-Ag in FT-PPTC is also responsible for executing the 2PC protocol on
behalf of its corresponding P-MN. The MN-Ag can also take the CO role if
the corresponding P-MN is the initiator of the transaction, i.e., the I-MN.
As described in Section 4.5, introducing the MN-Ags simplifies the handling
of the different types of communication failures (network disconnection and
message loss).

5.3. FAULT-TOLERANT COVERAGE PROTOCOL: FT-PPTC 67

5.3.1 Activities of a mobile node agent

Upon receiving the execution fragment of its corresponding P-MN from the
CO, the MN-Ag forwards it to the corresponding P-MN (Algorithm 4, line 3).
After receiving Et and St from the P-MN, the MN-Ag forwards this infor-
mation to the CO. After receiving a “Yes” or “No” vote from the P-MN, the
MN-Ag forwards the vote to the CO. Upon receiving the decision from the
CO, the MN-Ag forwards it to the P-MN as soon as it is available (connected
to the network). After receiving the ”Ack” for decision reception from the
P-MN, the MN-Ag acknowledges the CO. It is key to mention that the MN-
Ag is not an active participant in the execution of the MT, since it does not
have to know any information about the application and does not need to
process any part or fragment of the MT.

Algorithm 4: MN-Ag’s Algorithm (FT-PPTC)

1 wait for receiving execution fragment ei(P-MN) of the corresponding
P-MN from CO;

2 send an estimation of the timeouts of corresponding P-MN to the CO;
3 forward ei(P-MN) to corresponding P-MN as soon as it is available;
4 for any received message do
5 if message contains possible disconnection of the corresponding P-MN

and its reasons then
6 recompute the timeouts based on disconnection reasons;
7 update the token with this information;
8 send extended timeouts to the CO;

9 else if message is sent by the CO then
10 forward message to the corresponding P-MN as soon as it is

available;

11 else if message is sent by P-MN then
12 forward message to CO;
13 end

14 end

The MN-Ag can take some decisions on behalf of his corresponding P-
MN which are discussed next. These decisions include the extension of the
timeouts of the P-MN in case of a transient (predictable or unpredictable)
disconnection. The MN-Ag is also given the responsibility to send an esti-
mation of the timeouts of the corresponding P-MN direct after receiving the
execution fragment of this P-MN (line 4). This estimation can be corrected
after receiving new timeout values (Et and St) from the P-MN.

The extension of FT-PPTC with respect to PPTC affects the I-MN and
the P-MN only by requiring them to send an “Ack” message to their cor-

68 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

responding MN-Ags when they receive the final decision (Figure 5.2). This
allows FT-PPTC to tolerate additional message losses compared to PPTC.
Moreover, the CO communicates in FT-PPTC with the P-MNs through their
corresponding MN-Ags.

Compared to PPTC, FT-PPTC is more suitable for systems using wire-
less technologies with lesser coverage (such as WLAN) and where failures
cannot be controlled due to the openness of the system and the number of
participants joining and leaving the system. FT-PPTC allows also P-MNs
to disconnect during the execution of their fragments to save energy which
is a major requirement in mobile environments in general. The disconnec-
tion time can also be adapted to the user needs and communicated to the
corresponding MN-Ag that informs the MT CO accordingly. In order to
tolerate network disconnections and message losses, FT-PPTC adds an ad-
ditional overhead in terms of message complexity as compared to PPTC.
This message overhead is investigated in Section 5.6.1.

5.4 Fault-Tolerant and Recovery Protocol:

FT-PPTC-Rec

FT-PPTC-Rec extends FT-PPTC to tolerate node failures. The CO and
MN-Ags use a combination of logging and checkpointing scheme (Section 4.7)
to recover if a failure occurs during the execution of the mobile transaction.

Upon receiving Ti − ei(I-MN) from the I-MN, the CO creates a Token
for Ti, which includes one entry for each ei(P-MN) and contains the identity
of the CO and the commit set (Algorithm 5, lines 1-3). Each entry includes
the state of processing of ei(P-MN) as discussed in Section 4.7 (idle, active,
pre-committed, committed and aborted states). The state of ei(I-MN) is
set to “active” and the state of the rest of the execution fragments is set to
“idle”. The entries for the execution fragments of the P-MNs additionally
include their corresponding Et and St. After receiving Et and St from one
P-MN, the CO sets the state of its corresponding fragment to “active” and
updates its timeout values (Et and St). If a new Et and/or St (extended
values) is received either from I-MN or from a P-MN, then the CO updates
the Token also. If it receives the updates from the I-MN and a “Yes” vote
from every MN-Ag involved in the MT within its computed timeout TOCOi

(Algorithm 5, line 23), it stores them in the corresponding Token and sets the
state of the MT to “pre-committed”. Similar to the CO, MN-Ags implement
a logging and checkpointing scheme to recover from failures (Algorithm 6).

Similar to FT-PPTC, FT-PPTC-Rec is well suited to environments hav-

5.4. FAULT-TOLERANT AND RECOVERY PROTOCOL 69

Algorithm 5: CO’s Algorithm (FT-PPTC-Rec)

1 wait for Ti − ei(I-MN), Et(I-MN), St(I-MN) and lifetime;
2 create a Token for Ti;
3 set the state of the MT to “active” in Ti’s Token;
4 extract and send execution fragments of P-MNs to their corresponding

MN-Agents;
5 initialize all the timeouts of the P-MNs with 0;

6 let Pm = {P-MN1, . . . ,P-MNm} the set of all the P-MNs;
7 if lifetime is undefined then
8 TOCOi

← max(Et(P-MN1) + St(P-MN1), . . . , Et(P-MNm) + St(P-MNm));
9 else

10 TOCOi
← lifetime;

11 end
12 while waiting for TOCOi to expire do
13 if lifetime is undefined AND value of Et and/or St (initial or extended

values) of one of the MNs in Pm is received then
14 recompute TOCOi

;
15 update the Token of Ti with the received value(s);

16 end
17 if Abort message is received from one of the MNs in Pm then
18 set the state of the MT to “aborted” in Ti’s Token;
19 send Abort to all members of Pm;
20 return;

21 end

22 end

23 if updates are received from I-MN and a Yes vote from each MN-Ag then
24 write received updates to the corresponding Token;
25 set the state of the MT to “pre-committed” in Ti’s Token;
26 start a 2PC protocol to collect the votes from all P-FNs;
27 if all votes were Yes then
28 set the state of the MT to “committed” in Ti’s Token;
29 send Commit message to all members of the commit set;
30 return;

31 else /* at least one of the votes is No */

32 set the state of the MT to “aborted” in Ti’s Token;
33 send Abort to all members of the commit set;
34 return;

35 end

36 else /* either the updates of the I-MN or at least one vote from

the MN-Ag of a P-MN in Pm − I-MN are not received */

37 set the state of the MT to “aborted” in Ti’s Token;
38 send Abort to all members of the commit set;
39 return;

40 end

70 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

Algorithm 6: MN-Ag’s Algorithm (FT-PPTC-Rec)

1 wait for receiving execution fragment ei(P-MN) of the corresponding
P-MN from CO;

2 create a Token for ei(P-MN);
3 set the state of ei(P-MN) to “idle” in Ti’s Token;
4 send an estimation of the timeouts of corresponding P-MN to the CO;
5 for any received message do
6 if message contains the timeouts of the P-MN then
7 update Ti’s Token with the received timeouts;
8 set the state of the ei(P-MN) to “active” in Ti’s Token;
9 forward the timeouts to the CO;

10 else if message contains the updates of the corresponding P-MN then
11 update the Token with the received updates;
12 send Yes vote to CO;

13 else if message contains possible disconnection of the corresponding
P-MN and its reasons then

14 recompute the timeouts based on disconnection reasons;
15 update the token with this information;
16 send extended timeouts to the CO;

17 else if message is sent by the CO then
18 update the Token with the received message;
19 send the received message to the corresponding P-MN as soon as

it is available;

20 else if message is sent by P-MN then
21 update the Token with the received message;
22 send the received message to CO;

23 end

24 end

ing a high rate of message loss and permanent perturbations on MNs. From
the message complexity point of view, FT-PPTC-Rec does not add any mes-
sage overhead as compared to FT-PPTC.

5.5 Correctness Basis

According to [Bernstein et al., 1987], an atomic commit protocol has to
satisfy the following five atomicity properties or conditions :

- Stability: A process cannot reverse its decision after it has reached one.

- Consistency: All processes that reach a decision reach the same one.

5.5. CORRECTNESS BASIS 71

- Validity: The “Commit” decision can only be reached if all processes
voted “Yes”.

- Non-triviality: If no failure occurs and all processes voted “Yes”, then
the final decision should be commit.

- Termination: At any point in execution, if all existing failures are
repaired and no new failures occur for sufficiently long time, then all
processes will eventually reach a decision.

To show the correctness of the proposed family of solutions, we need to
prove that each protocol satisfies the five properties listed above. It is im-
portant to notice that FT-PPTC-Rec protocol (as an extension of FT-PPTC
and PPTC protocols) does not add additional functionality to FT-PPTC or
PPTC but represents an improvement of some extra-functional properties
of these protocols. Therefore, we only need to prove that FT-PPTC-Rec
fulfills the atomicity properties. It follows directly from the specification of
the FT-PPTC-Rec protocol in Section 5.4 that it satisfies the stability and
the non-triviality properties. The consistency property is satisfied due to
the fact that only the CO decides about the outcome of the transaction and
distributes the same final decision to each participant in the commit set.
Therefore, we need to prove that FT-PPTC-Rec satisfies the validity and
termination properties.

Validity: We assume that the CO decides to commit the transaction
when at least one of the participants has not decided yet. If this participant
is a MN then the CO sends the rest of the transaction to the FNs before
receiving a “Yes” vote from its corresponding MN-Ag or before receiving the
updates if this MN is the I-MN. Obviously, this is in contradiction with the
protocol specification. If this participant is a FN, then the 2PC protocol
decides to commit the transaction before receiving all the votes from the P-
FNs, which again contradicts the specification of the 2PC protocol (the same
applies for any other commit protocol that can be used instead of 2PC in
the wired network). In the case that at least one of the participants decides
to abort the transaction, the CO cannot decide to commit the whole trans-
action because this decision will violate the protocol specification. Hence,
the “Commit” decision can only be reached if all processes voted “Yes”, i.e.,
decided to commit the transaction.

Termination: We consider any execution containing the failures listed
in the perturbation model detailed in Section 3.3. For this proof we need to
consider two aspects. The first aspect is whether the protocol can block at
any time making all the participants waiting for an undefined amount of time
for the final decision. Since our protocol is based on timeout for coordinating

72 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

the execution of the fragments of P-MNs, the CO cannot block waiting for
messages from these participants. The participants also cannot block waiting
for a message from the CO (which is the decision) since they are required to
acknowledge this message and thus the CO is able to detect a message loss
and re-send the message. The second aspect considers whether the partici-
pants are able to reach any decision after recovery or not. The P-MNs can
reach a decision after recovery by asking either the CO or the corresponding
MN-Ag (where the necessary state of execution of the transaction is stored)
about the outcome of the transaction. For the P-FNs this is guaranteed
by the recovery protocols applied there. We note that keeping the state of
the execution of the MT on a stable storage allows the continuation of the
execution after recovery and eventually reaching a decision.

5.6 Performance Evaluation

To evaluate the efficiency of the family of protocols developed in this work,
we first qualitatively compare FT-PPTC-Rec and FT-PPTC to the existing
commit protocols M-2PC [Nouali et al., 2005], CO2PC [Serrano-Alvarado,
2004; Serrano-Alvarado et al., 2004b], TCOT [Kumar et al., 2002] and
UCM [Bobineau et al., 2000], regarding their perturbation resilience and
message complexity. Next, we use both simulations and real experiments
to investigate the performance of the PPTC protocol with respect to the
throughput and resource blocking time. The perturbation resilience of FT-
PPTC is also investigated using our simulation model.

5.6.1 Comparison to other Existing Approaches

We now compare the FT-PPTC-Rec protocol - which provides for maximal
perturbation resilience among all other members of the protocol family in-
troduced in Section 5.1 - to the M-2PC, CO2PC, TCOT and UCM protocols
regarding the environmental constraints and failures considered in each pro-
tocol. Next, the message complexity, i.e., the number of messages exchanged
during execution of these protocols, is investigated.

Perturbations Discussed in Different Protocols

In Table 5.2, we compare these protocols spanning the perturbations classi-
fied in our framework. In this table, (++) indicates a comprehensive cover-
age, (+) a basic coverage and (-) no coverage of the identified perturbations.
FT-PPTC-Rec is the only protocol designed to handle CO failures. The com-

5.6. PERFORMANCE EVALUATION 73

T
ab

le
5.

2:
C

ov
er

ag
e

of
p

er
tu

rb
at

io
n
s

(+
+

:
C

om
p
re

h
en

si
ve

,
+

:
B

as
ic

,
-:

N
o

co
ve

ra
ge

)

P
ro

to
co

l
H

e
te

ro
g
e
n
e
it

y
T

ra
n
si

e
n
t

P
e
rm

a
n
e
n
t

F
N

a
n
d

C
O

M
e
ss

a
g
e

N
e
tw

o
rk

M
N

F
a
il

u
re

M
N

F
a
il

u
re

F
a
il

u
re

L
o
ss

D
is

co
n
n

e
ct

io
n

F
T

-P
P

T
C

-R
ec

+
+

+
+

+
+

+
+

+
+

+
+

F
T

-P
P

T
C

+
+

+
+

+
+

+
+

+
M

-2
P

C
+

+
-

-
+

+
+

C
O

2P
C

+
+

-
-

-
+

T
C

O
T

+
+

+
+

+
-

-
-

U
C

M
-

+
-

-
+

+
+

T
ab

le
5.

3:
M

es
sa

ge
co

m
p
le

x
it

y

P
ro

to
co

l
A

to
m

ic
it

y
P

h
a
se

s
W

ir
e
le

ss
m

e
ss

a
g
e

O
v
e
ra

ll
m

e
ss

a
g
e

co
m

p
le

x
it

y
co

m
p
le

x
it

y
P

P
T

C
S

tr
ic

t
2

(2
+

1
)
∗

m
p
−

1
+

e
{3

m
p
−

1
+

e
}

+
{4

f p
}

F
T

-P
P

T
C

S
tr

ic
t

2
(3

+
1

)
∗

m
p
−

1
+

e
{4

m
p
−

1
+

e
}

+
{4

(m
p
−

1
)

+
e

+
4f

p
+

n
ex
t
}

M
-2

P
C

S
tr

ic
t

2
(2

+
2)
∗
m

p
−

1
{4
m

p
−

1}
+
{4
f p
}

C
O

2P
C

S
em

an
ti

c
2

(2
+

1)
∗
m

p
−

1
{3
m

p
−

1}
+
{4
f p

+
c a
}

T
C

O
T

S
em

an
ti

c
1

2
∗
m

p
−

1
+
e

{2
m

p
−

1}
+
{2
f p

+
e a

ll
+
c a
}

U
C

M
S
tr

ic
t

1
(1

+
1)
∗
m

p
{2
m

p
}

+
{2
f p
}

2P
C

S
tr

ic
t

2
4
∗
m

p
{4
m

p
}

+
{4
f p
}

74 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

prehensive handling of heterogeneity, communication and node failures dis-
tinguishes FT-PPTC-Rec and demonstrates its superiority for perturbation-
resilience.

Message Complexity

We denote by e the number of timeout extensions of P-MNs and by eall the
number of all timeout extensions (including those of P-FNs in case of TCOT).
We denote by ca the additional costs in terms of messages for the execution
of compensating transactions in case such transactions are initiated. mp rep-
resents the number of P-MNs and fp the number of P-FNs. We denote by
next the number of messages sent by the MN-Ag to extend the timeout of its
corresponding P-MN in case of predictable and unpredictable network dis-
connection as discussed in Section 4.5. We adopt the message complexity of
M-2PC, TCOT and UCM from the message complexity analysis published
in [Bobineau et al., 2000; Nouali et al., 2005]. We refer to Figure 5.1 and
Figure 5.2 to compute the message complexity of PPTC and FT-PPTC re-
spectively. It follows that each P-MN sends two messages to the CO and
receives one message from it starting from the point in time, where the votes
are sent (only the I-MN sends one message and receives one). Whenever a
P-MN needs to extend its timeouts (Et and St) it sends an extra message to
the CO. Table 5.3 does not include the message complexity of FT-PPTC-Rec
since it is equal to that of FT-PPTC.

Table 5.3 details the efficiency of PPTC compared to other protocols while
providing strict atomicity. We emphasize that PPTC’s efficiency is compara-
ble to classical protocols, even though it allows for fully mobile participants.
Because of its importance in mobile environments we will investigate the
wireless message complexity of PPTC and FT-PPTC using simulations in
the next section. This investigation aims at showing the impact of the num-
ber of timeout extensions e on the overall message complexity of the evaluated
protocols.

5.6.2 Simulation Methodology and Results

We present our simulation results for the common mobile system classes
identified in Section 5.1. We further provide experimental results for some
failure-free scenarios as implemented using a setup of multiple PDA’s con-
nected to a base laptop. Real experiments in failure-prone scenarios are
planned for future work. We compare the performance of the PPTC proto-
col to that of M-2PC and the conventional 2PC. A comparison to CO2PC,
TCOT and UCM is omitted as TCOT and CO2PC do not guarantee strict

5.6. PERFORMANCE EVALUATION 75

atomicity and due to the lack of implementation details of UCM. Addition-
ally, we highlight the perturbation-tolerance improvements provided by our
various building blocks implementing the developed perturbation-tolerance
techniques.

Simulation Settings

For simulation studies, we have used SimJava [SimJava], a discrete event-
based simulator. We conducted our simulations using confidence intervals of
95%. For the evaluation of our protocols, we consider a wide range of param-
eter values to highlight the generality of our results. Table 5.4 summarizes
our simulation parameters. A disconnection rate of 100% in Table 5.4 corre-
sponds to a permanent disconnection, i.e., permanent network disconnection
or permanent node failure. Disconnection rate is the ratio of time where the
P-MN is disconnected from the network to the total simulation time. In some
of our simulations the CO does not receive an estimation of the lifetime of
the MT from the initiator. In this case we say lifetime is undefined (we
denote it by “Lifetime=UNDEF” in the Figures). For execution times and
transmission delays we used uniform distributions.

Table 5.4: Simulation parameters and settings

Parameter Value(s)

#P-MNs [1,10]
#P-FNs [1,4]
Heterogeneity of P-MNs Laptop, PDA, Cell phone
Fragment execution time (P-MN) [0.3,0.4], [0.5,0.6], [0.6,0.7] s
Fragment execution time (P-FN) [0.1,0.3] s
#Fragments per MT n ∈ [3,15]
Heterogeneity of links WLAN, UMTS, GSM
Transmission delay (wireless link) [0.2,0.4], [0.4,0.7], [0.6,1.0] s
Transmission delay (wired link) [0.01,0.03] s
Disconnection rate 0%-100%

We generate transactions as follows. We assume all transactions are of
different lengths and are composed of n fragments. We distribute n uni-
formly across all MTs. We let some MNs initiate one transaction each at the
beginning of the simulation. The number and nature of P-MNs and P-FNs
are randomly selected modeling arbitrary heterogeneity. Additionally, we

76 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

implemented all the timeout strategies we developed in our framework not
only for the proposed family of protocols but also for all the protocols we
compared our protocols with. Our goal was to enhance the competitiveness
of these protocols compared to the new ones developed in this work.

Simulation and Experimental Results in Failure-free Scenarios

For the performance analysis of transactional systems, throughput and re-
source blocking time are the commonly used performance metrics. We define
throughput as the number of successfully committed MTs per time unit, and
the resource blocking time as the time interval, where the resources at the
fixed participants remain locked. Resource blocking time starts when the
participant sends its vote to the CO and ends when the participant receives
the final decision about the outcome of the MT.

Throughput: We first compare the throughput of PPTC, M-2PC, and
2PC. Figure 5.3 shows the throughput over the number of initiated trans-
actions. We observe that throughput of PPTC is comparable to 2PC and
M-2PC despite the fact that PPTC decouples the execution of fragments of
P-MNs and P-FNs, whereas these fragments are executed in parallel in 2PC
and M-2PC. This observation can be explained by the fact that the execution
time of transaction fragments and communication delays in wired networks
are considerably smaller than those in wireless networks. The time needed
to execute 2PC in wireless networks can be almost neglected as compared to
the time needed to collect votes from P-MNs. This applies almost for any
other transaction commit protocol used instead of 2PC in the wired network.

We implemented the PPTC protocol on a testbed consisting of multi-
ple PDAs and one laptop, which use WLAN to communicate with BSs.
The throughput is comparable to results obtained from simulations. Overall
PPTC displays a stable performance behavior that is similar to the behav-
ior of the traditional 2PC protocol. This is significant given that the effect
of mobile nodes is shown to be minimal for the commit operations. It also
validates the effectiveness of our split two-phase approach, where the impact
of the decoupling in PPTC on the performance is minimal. The matching
traces of Figure 5.3 highlights that the throughput of PPTC (both in simula-
tions and experiments) and of M2PC is competitive to 2PC. This is intuitive
as our simulations here were for the failure-free scenario which is similar in
some extent to a wired scenario where 2PC is actually best suited for. This
also illustrates the negligible overheads of PPTC and M2PC (as compared
to 2PC) for comparable failure-free cases.

5.6. PERFORMANCE EVALUATION 77

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 10 20 30 40 50 60 70 80 90 100

Th
ro

u
g

h
p

u
t

[T
/s

]

#Transactions [T]

PPTC Experiment
PPTC Simulation

2PC Simulation
M2PC Simulation

Figure 5.3: Throughput

Resource Blocking Time: Figure 5.4 depicts the blocking time over the
number of initiated transactions. PPTC shows a significantly lower blocking
time of the resources at P-FNs due to the decoupling of the commit of P-
MNs from that of P-FNs. This decoupling makes the resource blocking time
in PPTC dependent only on the time needed by P-FNs to execute their
corresponding fragments, which is considerably shorter than the time needed
by P-MNs. The results of our simulation model are also validated by the real
experiments.

Heterogeneity

To evaluate the impact of heterogeneity of nodes and links on PPTC, the
impact of the choice of timeouts on the commit rate is investigated. We
measure the commit rate as the ratio of number of successfully committed
MTs to total number of initiated MTs.

Impact of P-MNs Timeouts on Commit Rate: We conducted simula-
tions and experiments with PPTC varying heterogeneity of links to observe
how the choice of the timeout impacts the commit rate in scenarios where
lifetime is undefined. Figure 5.5 depicts the results of the real experiments
we conducted to select an optimal timeout and those of simulations. These
results show the existence of such a value for a certain given scenario.

In the case of a homogeneous network (see the curves for GSM, UMTS
and WLAN networks in Figure 5.5), there is a threshold after which the

78 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

B
lo

ck
in

g
 T

im
e

[m
s]

#Transactions [T]

PPTC Experiments
PPTC Simulation

2PC Simulation
M2PC Simulation

Figure 5.4: Resource blocking time at FNs

 0

 20

 40

 60

 80

 100

 0 0.4 0.8 1.2 1.6 2 2.4

C
o

m
m

it
 R

at
e

[%
]

Timeout [s]

10 MTs initiated, Lifetime=UNDEF

WLAN
GSM

UMTS
GSM,UMTS,WLAN

WLAN (Experiments)

Figure 5.5: Optimal timeout selection

commit rate is 100%. This shows a deterministic behavior. In the case of
a heterogeneous network (Figure 5.5) we observe an oscillation before sta-
bilizing. This oscillation is due to the difference of delays in the different
networks and also to the difference of computing capabilities of the hetero-
geneous P-MNs which is modeled by different fragment execution times in
this simulated scenarios (Table 5.4). If the fastest P-MN initiates the trans-
action and the rest of the P-MNs are considerably slower, the timeout sent

5.6. PERFORMANCE EVALUATION 79

to the CO by the initiator will be short in comparison to the time needed
by the timeouts of the rest of the participants to reach the CO. The timeout
set by the CO therefore expires before receiving any timeout from the rest
of the participants and the CO aborts the transaction only due to lack of
timeout estimation (Figure 4.2). Simulation results show that if an appro-
priate lifetime is defined no oscillations result. The choice of the lifetime is
discussed further for the failure-prone scenario when the impact of lifetime
on commit rate is investigated.

Failure-Prone Scenarios

We analyze failure-prone scenarios using FT-PPTC and concentrate on four
aspects: (1) the impact of P-MNs connectivity on commit rate, (2) impact
of lifetime on commit rate, (3) the impact of P-MNs connectivity on P-FNs
resource blocking times, and (4) the impact of P-MNs connectivity on MT
execution time.

Impact of P-MNs Connectivity on Commit Rate: Figure 5.6 shows
that a disconnection rate of 20% leads to the abort of almost 65% of the
initiated transactions if we use PPTC (or M-2PC) which is intolerable in the
considered type of environments. To improve the resilience of the protocol to
such failures, FT-PPTC deploys MN-Ags which are able to take some deci-
sions on behalf of their corresponding P-MNs such as extending the timeouts
if the P-MN gets disconnected. This shows a considerable improvement in
the commit rate where the commit rate goes below 90% only if the disconnec-
tion rate is more than 80%. This considerable improvement comes with only
a small cost of additional wireless message overhead as shown in Figure 5.7.

Impact of Lifetime on Commit Rate: Figure 5.8 illustrates the impact
of increasing the lifetime of the MT on the commit rate. When the lifetime
value is small and is in the range of the timeouts of P-MNs, FT-PPTC shows
a similar behavior to PPTC. When the lifetime increases the commit rate
increases also since the P-MNs are now more likely to be connected within
the lifetime and therefore able to successfully execute their fragments and
inform the MN-Ags.

Impact of P-MNs Connectivity on P-FNs Blocking Time: Fig-
ure 5.9 shows that the blocking time of P-FNs in FT-PPTC is not affected by
the disconnection rate of P-MNs. However, in M-2PC the disconnection rate
influences the blocking time of P-FNs since P-FNs have to wait for P-MNs as

80 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
o

m
m

it
 R

at
e

[%
]

Disconnection Rate [%]

Lifetime=UNDEF

PPTC
FT-PPTC

M-2PC

Figure 5.6: Impact of connectivity on commit rate

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

#W
ir

el
es

s
M

es
sa

g
es

Disconnection Rate [%]

FT-PPTC
PPTC

M-2PC

Figure 5.7: Wireless messages overhead

all participants execute their fragments in parallel. This demonstrates that
FT-PPTC is highly resilient to disconnections of P-MNs as resource blocking
times of P-FNs remain constant. We emphasize that resource blocking time
of FT-PPTC is independent from the number of mobile participants. This
highlights the scalability of our approach.

Impact of P-MNs Connectivity on MT Execution Time: We also
investigated in our simulations the MT execution time, which is the time in-

5.6. PERFORMANCE EVALUATION 81

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
o

m
m

it
 R

at
e

[%
]

Disconnection Rate [%]

PPTC Lifetime=UNDEF
FT-PPTC Lifetime=5s

FT-PPTC Lifetime=10s
FT-PPTC Lifetime=15s
FT-PPTC Lifetime=30s
FT-PPTC Lifetime=50s

FT-PPTC Lifetime=500s

Figure 5.8: Impact of lifetime on the commit rate

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

B
lo

ck
in

g
 T

im
e

[m
s]

Disconnection Rate [%]

Lifetime=UNDEF

M-2PC
FT-PPTC

Figure 5.9: Impact of connectivity on blocking time of P-FNs

terval between the initiation of the MT and the time when the final decision
is received by the last participant. Figure 5.10 shows that the decoupling
does not affect the execution time considerably because the time needed to
execute MT fragments on MNs and to exchange wireless messages is consid-
erably longer than the time needed to execute MT fragments on FNs and to
exchange wired messages. We conclude that the overhead in terms of MT
execution time, because of decoupling is minor in comparison to the gains
obtained by using this strategy in terms of perturbation resilience and re-

82 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

duction of resource blocking time of P-FNs. We observe in Figure 5.10 that
the MT execution time of M-2PC is affected by the disconnection of P-MNs
similarly to FT-PPTC. This is due to the fact that we implemented all the
timeout strategies for both FT-PPTC and M-2PC.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

Ex
ec

u
ti

o
n

 T
im

e
[s

]

Disconnection Rate [%]

Lifetime=UNDEF

M-2PC
FT-PPTC

Figure 5.10: MT execution time

Discussion

We showed in our studies the utility of the different building blocks we devel-
oped in our framework. We demonstrated how these blocks can be combined
during design time to adapt the atomic commit protocol to the characteristics
and perturbations of the considered mobile environment. Our studies high-
lighted also the modularity of our approach which can be extended to satisfy
the requirements of other mobile environments by identifying new buildings
blocks and integrating them to the framework. The family of protocols devel-
oped in this work outperforms the existing solutions with respect to efficiency
and fault-tolerance. This is achieved by adding a tolerable overhead in terms
of message complexity and transaction execution times.

5.7 Chapter Summary

In this chapter, we have presented a modular framework for perturbation-
resilient atomic commit protocols for mobile transactions in infrastructure-
based mobile environments. We provided a family of progressive mobile

5.7. CHAPTER SUMMARY 83

transaction commit protocols (PPTC, FT-PPTC, FT-PPTC-Rec) for three
common classes of mobile infrastructure-based systems. This family of so-
lutions is extendable and adaptable in its nature allowing the designer to
customize protocol resilience to a subset of all possible perturbations based
on the overall costs involved such as message complexity and charges for
bandwidth utilization. We have also demonstrated, using simulations and
real experiments, the efficiency, scalability and level of perturbation-resilience
added by using our proposed perturbation-tolerance techniques.

In the next chapter we present our solution towards a perturbation-
resilient atomic commit protocol for pure ad-hoc environments in order to
extend the framework of transaction commit protocols developed throughout
this thesis.

84 CHAPTER 5. INFRASTRUCTURE-BASED ENVIRONMENTS

Chapter 6

Atomic Commit for Ad-Hoc
Environments

In this chapter, we extend the modular framework of transaction atomic com-
mit protocols presented in Chapter 5. So far, the atomic commit protocols
framework contains only solutions for the atomic commit problem in mobile
infrastructure-based environments. The extension of this framework in this
chapter additionally considers perturbations that are specific to the mobile
ad-hoc environment, i.e., network partitioning.

In mobile ad-hoc environments, network partitioning is the dominant op-
erational case to consider. We propose a new approach that controls the
decision time of MTs despite network partitioning and tolerates communi-
cation failures of P-MNs. Our approach provides for efficiency and strict
atomicity in presence of network partitioning. It limits the decision time of
MTs by defining a lifetime for each initiated MT. To tolerate CO unavail-
ability and failures, a set of COs from the P-MNs of the MT is preselected
allowing for the replication of the coordinator role on more than one P-MN.

85

86 CHAPTER 6. AD-HOC ENVIRONMENTS

6.1 Overview of our Approach: The ParTAC

Commit

We propose in this chapter ParTAC, the first Partition-Tolerant Atomic Com-
mit protocol for mobile ad-hoc environments which unlike existing protocols,
(a) does not rely on consensus, (b) does not require partition membership
knowledge, (c) is independent of the mobility patterns of mobile nodes, and
(d) delivers best-effort transactional service availability. Table 6.1 summa-
rizes the main advantages and contributions of ParTAC compared to the
existing approaches which are detailed in Section 2.3.

Table 6.1: ParTAC vs. existing commit protocols for mobile ad-hoc environ-
ments

Protocol Uses Uses partition/ Requires specific
consensus group membership mobility pattern

ParTAC No No No

[Obermeier et al., 2008] Yes No No

[Bose et al., 2005]
[Böttcher et al., 2007] Yes No Yes

[Xie, 2005] No Yes No

ParTAC adapts the lifetime concept for mobile transactions introduced
in Chapter 4 to mobile ad-hoc environments in order to reduce transaction
decision times. A further key idea is to use multiple coordinators and thus to
replicate the coordinator role in order to tolerate both the unavailability of
any subset of coordinators and communication failures. Therefore, ParTAC
does not block when some of the coordinators are unavailable for a longer
period of time than the transaction lifetime. Furthermore, ParTAC leverages
the mobility patterns characteristic for mobile ad-hoc environments by having
coordinators collect votes from other participants while moving. These votes
are shared and merged by electing a single coordinator when multiple coor-
dinators meet. Our analysis in Section 6.4 shows that ParTAC reduces the
Commit/Abort decision time of initiated transactions and helps in trading-
off desired levels of availability, latency, and efficiency of the transactional
service by adapting protocol parameters such as the transaction lifetime and
the number of coordinators.

We briefly describe the main building blocks (these building blocks are
introduced in Chapter 4) of the ParTAC protocol comprising:

6.2. PROTOCOL OPERATIONS 87

1. The lifetime of the MT is defined upon its initialization. The selected
transaction lifetime value information along with a complete list of P-
MNs and a list of preselected coordinators is communicated to every
P-MN (the preselection of COs out of the P-MNs can be random or
based on node properties such as IDs, mobility, connectivity, storage
capabilities, etc.). However, the transaction lifetime information can
only be used by the preselected COs as will be shown in the description
of the protocol operations in Section 6.2. Each CO can safely abort
the MT if its lifetime expires.

2. The preselected COs are required to collect votes from MT P-MNs.
3. When two COs encounter each other, they exchange their collected

votes and elect a single active CO among themselves. The other CO
immediately stops playing an active CO role and behaves like other
normal P-MNs.

4. As a result, if all COs transitively encounter each other before the
expiration of the MT lifetime, only one active CO remains which will
take the final decision for the MT.

6.2 Protocol Operations

The ParTAC protocol operations of participating mobile nodes and coordi-
nators are detailed respectively in Algorithm 7 and Algorithm 8. Since COs
in ParTAC are also P-MNs, we distinguish in the following between normal
P-MNs and COs. The term “P-MNs” will be used in the following to refer
to P-MNs which do not play any CO role. The term “all P-MNs” includes
COs as they are also P-MNs in the MT execution.

6.2.1 Activities of Participant Mobile Nodes

The activities of P-MNs are detailed in Algorithm 7. As we do not assume
the existence of partition membership information, we require that P-MNs
send their votes to each CO they encounter as long as there is no final decision
(Algorithm 7, line 11 and lines 13-15). P-MNs know that they are encoun-
tering a CO when they receive a beacon from that CO as described in the
next section (Section 6.2.2). Hence even if one CO was not aware about the
P-MN’s vote, e.g., due to message loss, then the vote information is not lost,
but communicated to the next encountered CO. We use an acknowledgement
schema in order to reduce the number of vote messages sent by one P-MN
to the same CO. Therefore, if the P-MN receives an “Ack” message from a
CO, it stops reacting on beacons sent by that CO (Algorithm 7, lines 16-18).

88 CHAPTER 6. AD-HOC ENVIRONMENTS

It is important to mention here that a P-MN is not allowed to change its
vote once it is sent to at least one CO. So all the votes sent to the COs are
the same.

Algorithm 7: P-MN’s Activities in ParTAC

1 wait for receiving a mobile transaction Ti;
2 extract the corresponding execution fragment, the set of P-MNs and preselected

COs;

3 let Pn = {P-MN1, . . . ,P-MNn} the set of all P-MNs;
4 let Cm = {CO1, . . . ,COm} the set of all preselected COs;

5 start executing the received execution fragment;
6 if P-MN decides to abort Ti then
7 abort Ti;
8 send No vote to all CO in Cm;
9 exit;

10 else /* P-MN decides to commit Ti */

11 send Yes vote to all CO in Cm;
12 while waiting for the final decision about the outcome of Ti do
13 if beacon is received from a CO then
14 send Yes vote to the CO from which the beacon was received;
15 end
16 if Ack is received from a CO then
17 stop reacting on beacons received from COs;
18 end

19 end
20 if final decision is Commit then
21 commit Ti;
22 exit;

23 else /* decision is Abort */

24 abort Ti;
25 exit;

26 end

27 end

6.2.2 Activities of Preselected Coordinators

Algorithm 8 details the activities of preselected COs. Each CO (as it is also a
P-MN in the MT) starts executing its execution fragment upon receiving the
MT Ti. The preselected CO starts a timer to detect/watch the expiration
of the lifetime of the MT (Algorithm 8, line 7). If it decides to vote for
aborting the MT, it sends an “Abort” decision to all P-MNs of the MT. The
COs periodically send presence beacons to allow other P-MNs and COs in
their partition to discover their presence (Algorithm 8, line 8). These beacons

6.2. PROTOCOL OPERATIONS 89

are those already being sent by the underlying routing protocol so as not to
add additional messages.

(a) Pre-decisions (b) Final decision

4

2
5 6 7

1

3

Partition COs

{2,4,5,6} {1,3,7}

Commit

Commit

Commit

Commit

Commit

{2,4,5,6}

{1,2,3,4,5,6,7}

1. Exchange lists and elect
a CO for the new partition

2. Send commit
decision

4

2
5 6 7

1

3

P-MN

Non-participant MN
(relay node)

Figure 6.1: Partition-tolerant commit in mobile ad-hoc environments

Every preselected CO maintains a commit-list L of all P-MNs from which
it has received a “Yes” vote. Upon receiving a “Yes” vote from a P-MN, the
CO sends an “Ack” message to that P-MN to stop sending its vote to it
(Algorithm 8, line 20). As an example let’s consider the scenario depicted
in Figure 6.1. In this scenario the COs are preselected based on their IDs
(highest ID). For example, in Figure 6.1 (a), Nodes 6 and 7 are preselected
as COs in the given scenario because they have the highest IDs among the
P-MNs involved in the MT. Node 6 maintains in this example the commit-
list L = {2, 4, 5, 6}. If the CO decides to vote for committing the MT, it
adds also its ID to its own commit-list as it is also a P-MN in the MT
(Algorithm 8, line 15). As soon as a CO receives a “No” vote it decides to
abort the MT and sends an “Abort” decision to all P-MNs. If the lifetime
of the MT expires on a CO before receiving a final decision, the CO decides
also to abort the MT (Algorithm 8, lines 52-54).

If two COs encounter each other, e.g. if the corresponding network parti-
tions join, these two COs exchange their commit-lists (Algorithm 8, lines 24-
34 and 37-46) and elect one CO among themselves (in the example scenario
of Figure 6.1, the CO with the highest ID, i.e., Node 7 (Figure 6.1 (b)) is
elected). The other CO becomes a normal P-MN (Algorithm 8, line 35) and
behaves from this point in time and onwards according to Algorithm 7. In
Algorithm 8, we use a schema based on the highest ID to elect the remaining
active CO, however, existing election algorithms for mobile ad-hoc environ-
ments such as [Malpani et al., 2000; Masum et al., 2006; Vasudevan et al.,
2004] can also be used. COs are allowed to give their lists of votes only to
other COs and only after they have completed the election process. The
non-elected CO (e.g. Node 6 in Figure 6.1 (b)) sends its commit-list to the
elected one (e.g. Node 7 in Figure 6.1 (b)), which merges it with its own list.

90 CHAPTER 6. AD-HOC ENVIRONMENTS

Algorithm 8: CO’s Activities in ParTAC
1 wait for receiving a mobile transaction Ti;
2 extract the corresponding execution fragment, the lifetime of the MT, the set of P-MNs and

preselected COs;
3 let Pn = {P-MN1, . . . ,P-MNn} the set of all P-MNs;
4 let Cm = {CO1, . . . ,COm} the set of all preselected COs;
5 let L = ∅ the ID list of all P-MNs which sent Yes vote to the CO;
6 start executing the received execution fragment;
7 while waiting for lifetime to expire do
8 broadcast periodically beacons containing own ID;
9 if CO decides to abort Ti or receives No vote then

10 abort Ti;
11 send Abort decision to all P-MNs in Pn;
12 exit;

13 end
14 if CO decides to commit Ti then
15 add own ID to L;
16 checkList(L);

17 end
18 switch message M is received do
19 case M is a Yes vote from a P-MN
20 send Ack to P-MN;
21 add ID of sending P-MN to L;
22 checkList(L);

23 endsw
24 case M is a beacon from another CO
25 compare the received ID with the own ID;
26 if Own ID > received ID then
27 send request to CO asking for list L (include own list L in the request);
28 else
29 send own list L;
30 change role to normal P-MN;

31 end

32 endsw
33 case M is a request to send list L
34 send own list L;
35 change role to normal P-MN;

36 endsw
37 case M contains a list L from another CO
38 send own list L if not already done;
39 add all IDs of received L to own list;
40 checkList(L);

41 endsw
42 case M is a Commit decision
43 commit Ti;
44 exit;

45 endsw
46 case M is an Abort decision
47 abort Ti;
48 exit;

49 endsw

50 endsw

51 end
52 abort Ti; /* Ti is aborted if lifetime expires before reaching a decision */

53 send Abort decision to all P-MNs in Pn;
54 exit;

6.2. PROTOCOL OPERATIONS 91

Algorithm 9: CheckList Procedure

1 procedure checkList(L)
2 if L contains the IDs of all P-MNs then
3 commit Ti;
4 send Commit decision to all P-MNs in Pn;
5 exit;

6 end
7 return;

Thus, the lists are merged only if the election succeeds. If the list does not
arrive at the elected CO, e.g. because of a message loss, this information is
lost. The protocol can still commit the MT because the non-elected CO will
send its vote to every CO it encounters after changing its role to a P-MN.
The rest of the votes in the lost commit-list might have been collected by
another CO since each P-MN sends its vote to every encountered CO and
not to a single one of them.

The election process as described above guarantees the uniqueness of the
taken decision. From the description of our approach we observe that the
votes of COs can only be given to other COs after the election process. Using
this schema for the election of a new and single CO guarantees that no two
or more COs have the complete knowledge about which P-MNs voted to
commit the MT. In the latter case these COs could take different decisions
about the outcome of the MT which violates the correctness of the proposed
solution.

Every time a CO election is performed, the new elected CO checks
whether its new list contains all P-MNs of the MT ((Algorithm 8, line 40).
If this is the case it decides to commit the MT and sends a final “Commit”
decision to all P-MNs. If all P-MNs voted for committing the MT and only
one CO remains for the MT, then this unique remaining CO might have a
list that does not contain the IDs of all P-MNs because some votes were lost
or the corresponding P-MN did not send any vote due to a transient MN fail-
ure or communication failure. In this case the expiration of the transaction
lifetime will lead to a MT “Abort” decision. P-MNs share the final decisions
on encounter. The final decision is inherently replicated onto the CO that
turned to a P-MN since the lists of the COs are exchanged (Algorithm 8,
lines 35 and 46) before electing a new CO among them. This replication is
needed to recover from a failure of the last remaining CO. If the last CO
fails, the rest of the P-MNs start an election algorithm to elect a new CO
and if one of the P-MNs has the list of all committed P-MNs it received from
the failing CO, it is elected as a new CO and the transaction is terminated.

92 CHAPTER 6. AD-HOC ENVIRONMENTS

For the dissemination of the decision and for the communication between
the P-MNs inside a single partition, either flooding or a routing protocol
for mobile ad-hoc environments, such as AODV [Perkins and Royer, 1999]
or DSDV [Perkins and Bhagwat, 1994], are used depending on the ratio
of P-MNs to non-participant MNs. The efficiency and availability of Par-
TAC can be enhanced by using partition-aware dissemination and routing
mechanisms, such as Epidemic Routing [Vahdat and Becker, 2000] or Hyper-
gossiping [Khelil et al., 2007].

Our proposed approach reduces the transaction decision time. Conse-
quently the resource blocking time of P-MNs is reduced as the COs do not
wait arbitrarily long to connect to decide the outcome of the MT but have
bounded waiting time given by the transaction lifetime. If the transaction
lifetime expires at one CO before reaching a final decision, the MT is aborted.

6.3 Correctness Basis

To show the correctness of the proposed ParTAC protocol composed of Al-
gorithm 7 and 8, we demonstrate that it satisfies the required five atomicity
properties [Bernstein et al., 1987]:

- Stability: A participant cannot reverse its decision after it has reached
one.

- Consistency: All participants that reach a decision reach the same one.

- Validity: The “Commit” decision can only be reached if all participants
voted “Yes”.

- Non-Triviality: If no failure occurs and all participants voted “Yes”,
then the final decision should be “Commit”.

- Termination: At any point in execution, if all existing failures are
repaired and no new failures occur for sufficiently long time, then all
participants will eventually reach a decision.

It follows directly from the specification of the ParTAC protocol in Sec-
tion 6.2 that it satisfies the stability and the non-triviality properties. From
the specification of the ParTAC protocol, a P-MN cannot send to two dif-
ferent encountered COs two different votes. Furthermore, it follows from
the description of the ParTAC protocol that in the failure-free case and if
all participants voted “Yes”, then the final decision should be “Commit”.

6.3. CORRECTNESS BASIS 93

We now show that it also satisfies the consistency, validity and termination
properties.

Consistency: The consistency property is satisfied due to the fact that
only the last active CO decides about the outcome of the transaction in case
the final decision is “Commit” and distributes the same final decision to every
P-MN. In this case the last remaining CO is the single one which can have the
final eventually complete list since at least its vote was not communicated to
any other CO or P-MN according to the specification of the ParTAC protocol.
If more than one CO are still remaining in the system, they can only take
an “Abort” decision and no “Commit”. Thus the consistency property is
guaranteed by our protocol.

Validity: We assume that one of the preselected COs decides to commit
the transaction when at least one of the P-MNs has not decided yet. Since
this P-MN has not voted yet, its ID cannot appear in any list L (Algorithm 8,
line 7) of the preselected COs according to the specification of the ParTAC
protocol. Obviously, no preselected CO can then take the decision to commit
the MT since this contradicts with the protocol specification (Algorithm 9,
lines 1-7). In the case that at least one of the P-MNs decides to abort the
transaction, the preselected COs cannot decide to commit the whole transac-
tion because this decision will violate the protocol specification (Algorithm 8,
lines 9-13). Hence, the commit decision can only be reached if all P-MNs
voted “Yes”, i.e., decided to commit the transaction.

Termination: We consider any execution containing the failures listed
in the perturbation model detailed in Section 3.3. From the ParTAC protocol
specification, we can observe that because we are using a timeout concept the
protocol cannot block forever (the blocking of the protocol forever leads to
a non-termination of the protocol). If at any point in execution all existing
failures are repaired and no new failures occur for sufficiently long time, then
all P-MNs will eventually reach a decision. Especially in this situation, all
P-MNs (including COs) can meet each other eventually and progressively the
lists of COs are filled. Therefore, the number of COs is reduced until only one
CO remains having a list L containing the IDs of all P-MNs. This complete
list allows this CO to take a commit decision (Algorithm 9, lines 1-7) and
the protocol terminates. If the lifetime expires at any CO before reaching
the final decision, the MT is aborted (Algorithm 8, lines 52-54) leading also
to the termination of the protocol.

94 CHAPTER 6. AD-HOC ENVIRONMENTS

6.4 Performance Evaluation

We use simulations to validate our approach. We now present the evaluated
performance metrics, the simulation model and our results that ascertain the
high commit rate, the bounded decision time and the efficiency of ParTAC.

6.4.1 Methodology and Simulation Settings

For the evaluation of the ParTAC protocol, we focus on three major per-
formance metrics: (a) Commit rate as it determines the service availability,
(b) commit latency or transaction decision time as it determines the service
response time, and (c) message complexity as it determines the scalability
and efficiency of our approach. We measure the commit rate as the ratio
of number of successfully committed MTs to total number of initiated MTs.
The transaction decision time is the time needed to take a decision about
the outcome of the initiated MT, i.e., the time between the initiation of the
MT and the time where the final decision is reached at the CO. The blocking
time of P-MNs is determined by the transaction decision time and the time
needed for the final decision to reach the P-MNs. This time is dependent on
the implementation of the dissemination protocol of the final decision and
therefore will not be further investigated in our performance evaluation. The
message complexity of ParTAC is defined as the number of messages sent
and received in average by each P-MN during the execution of the MT.

The performance of our approach is evaluated based on the service deliv-
ery level assured by the protocol and defined basically by the commit rate
and the decision time. The costs of the assurance of the service delivery level
are measured in terms of message complexity. We focus in our performance
evaluation on the impact of network partitioning on the performance metrics.

For our simulation studies we have used J-Sim [J-Sim; J-Sim Wireless], a
component-based, compositional simulation environment that is entirely de-
veloped in Java and increasingly used in the mobile ad-hoc community [Tyan
et al., 2009]. For the performance evaluation of the ParTAC protocol,
we consider a representative range of parameter values to assess the de-
scribed approach. We select the commonly used Random Waypoint mobility
model [Broch et al., 1998] and the Reference Point Group Mobility (RPGM)
model [Hong et al., 1999]. We fix the mobility area and the communication
range, and vary the number of nodes to consider scenarios where the network
is heavily partitioned and others where the number of partitions is low over
time. We also vary the node speed to investigate its impact on the perfor-
mance of ParTAC. We generate the mobility scenarios using the BonnMotion
mobility simulator [BonnMotion]. Given its importance, for all our simula-

6.4. PERFORMANCE EVALUATION 95

Table 6.2: Simulation settings

Parameter Value(s)

Geographical area 2km x 2km
Communication range 250m
Mobility models Random Waypoint (RWP), RPGM
Node speed LOW uniform in [0.5, 1.5] m/s

MEDIUM uniform in [3, 10] m/s
HIGH uniform in [10, 25] m/s

#Nodes ∈ [20,400]
#COs ∈ {2,3,5,7,10}
#P-MNs ∈ {5,10,20}
lifetime ∈ {5s,60s,120s,300s,900s,1day}

tion studies we vary the partitioning degree through varying the number of
nodes (note that for RPGM we need to use more nodes to reach the same
partitioning degree). The partitioning degree or degree of separation is pro-
vided by BonnMotion and reflects how likely it is that two randomly chosen
nodes are not within the same partition at a randomly chosen point in time.

We generate transactions of similar length and with execution fragments
of P-MNs of similar length also. We initiate one transaction at the beginning
of each simulation. We vary the number of P-MNs, the number of preselected
COs and the lifetime to study the impact of these parameters on the per-
formance of ParTAC. Each simulation is repeated 200 times for statistical
significance of the results. Table 6.2 summarizes our simulation settings.

6.4.2 Simulation Results

We now present the results of our simulation studies for the defined perfor-
mance metrics. As mentioned before, we simulate ParTAC under different
network conditions and vary all protocol parameters to study the behavior
of our protocol in a wide range of possible deployment scenarios. Overall, we
split the results for “Abort” and “Commit” cases to have better insights to
ParTAC.

Impact of Transaction Lifetime

We fix in this scenario (a) the number of P-MNs to 10, (b) the number of
preselected COs to 3, (c) the mobility model to Random Waypoint, (d) the

96 CHAPTER 6. AD-HOC ENVIRONMENTS

speed to LOW and (e) vary the transaction lifetime value from 5 s to 1 day.
We choose the number of COs to be 3 to keep the number of exchanged
messages low as will be shown when the impact of the number of preselected
COs will be investigated later in this section.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
lifetime=5s

lifetime=60s
lifetime=120s
lifetime=300s
lifetime=900s
lifetime=1day

Figure 6.2: Impact of partitioning degree and lifetime on commit rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, lifetime=60s

aborted, lifetime=60s
committed, lifetime=120s

aborted, lifetime=120s
committed, lifetime=300s

aborted, lifetime=300s
committed, lifetime=900s

aborted, lifetime=900s

Figure 6.3: Impact of lifetime on decision time

Figure 6.2 shows how the commit rate behaves when the number of nodes
or the partitioning degree varies. We observe that the commit rate is inversely

6.4. PERFORMANCE EVALUATION 97

proportional to the partitioning degree. If the partitioning degree decreases
the number of partitions decreases and the number of committed transactions
increases. Figure 6.2 illustrates also that an increasing transaction lifetime
value results in a higher commit rate. Therefore, an appropriate selection of
the lifetime value is important to reach a higher commit service availability.
However, reaching a higher commit service availability comes at the cost of a
higher commit service latency as shown in Figure 6.3. This figure illustrates
the existence of a trade-off between the commit service availability and la-
tency. Especially in the case when the MTs are aborted, the COs need to
wait for the expiration of the lifetime to abort the MT which increases the
commit latency considerably.

Even in the “Abort” case the efficiency of ParTAC does not decrease as
shown in Figure 6.4. The number of exchanged messages is comparable to the
“Commit” case since we are using an acknowledgment schema as described in
Section 6.2.1: when a P-MN receives an “Ack” message from the CO it stops
sending its vote to this CO. The number of messages exchanged per P-MN
during the execution of the ParTAC protocol varies between 5 and 12, which
demonstrates the efficiency of our approach even in highly partitioned ad-hoc
networks. We observe also in Figure 6.4 that the message complexity slightly
increases if the transaction lifetime is increased because more transactions
reach the “Commit” decision when we increase the transaction lifetime.

 0

 5

 10

 15

 20

 25

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, lifetime=60s

aborted, lifetime=60s
committed, lifetime=120s

aborted, lifetime=120s
committed, lifetime=300s

aborted, lifetime=300s
committed, lifetime=900s

aborted, lifetime=900s

Figure 6.4: Impact of lifetime on message complexity

Our simulations show the existence of a transaction lifetime which trades
off the commit rate and the transaction decision time with a moderate mes-

98 CHAPTER 6. AD-HOC ENVIRONMENTS

sage complexity. The value of the transaction lifetime is dependent on dif-
ferent network parameters and especially the expected partitioning level of
the mobile ad-hoc environment over time.

Impact of Mobility

In this scenario, we arbitrarily fix the number of P-MNs to 10, the number
of preselected COs to 3 and the transaction lifetime value to 900 s. To assess
the influence of mobility on the ParTAC protocol, we vary the speed of the
MNs and their mobility models. The chosen parameters are not a restriction
and they are chosen to avoid combining the effect of two parameters on the
studied approach in the performance evaluation scenario. This is also valid
for the rest of our evaluation scenarios.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

part. deg., LOW
part. deg., MEDIUM

part. deg., HIGH
LOW speed

MEDIUM speed
HIGH speed

Figure 6.5: Impact of speed of MNs on commit rate

Figure 6.5 shows that the partitioning degree slightly increases if we in-
crease the speed of MNs because of more partition split and join dynamics
inside the network [Hähner et al., 2007]. This explains why the commit rate
decreases if we increase the speed of MNs. Based on this observation, we
conclude that the commit rate of ParTAC does not depend directly on the
speed of the MNs but only on the partitioning level of the network, which
can be affected by the speed of the MNs, especially, if insufficient numbers of
MNs are deployed in the mobile ad-hoc scenario. Figure 6.6 illustrates that
a MEDIUM speed is the best for low decision time of ParTAC because it
represents the ideal case for partition splits and joins with less message loss
than for the case where the speed is HIGH. Figure 6.7 shows that if the speed

6.4. PERFORMANCE EVALUATION 99

of MNs increases the efficiency of the protocol decreases in the “Abort” case
as compared to the “Commit” case. This can be explained by the frequent
partition splits and joins if the speed increases which leads to more message
loss that is compensated by the ParTAC protocol by sending more messages
as described in Section 6.2.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

avg. partioning degree
committed, LOW speed

aborted, LOW speed
committed, MEDIUM speed

aborted, MEDIUM speed
committed, HIGH speed

aborted, HIGH speed

Figure 6.6: Impact of speed of MNs on decision time

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

avg. partioning degree
committed, LOW speed

aborted, LOW speed
committed, MEDIUM speed

aborted, MEDIUM speed
committed, HIGH speed

aborted, HIGH speed

Figure 6.7: Impact of speed of MNs on message complexity

Figure 6.8 shows that the commit rate is not directly dependent on the

100 CHAPTER 6. AD-HOC ENVIRONMENTS

mobility model of the MNs. Furthermore, the number of MNs in the simu-
lated area does not directly affect the commit rate. However, the combined
effect of these two parameters is seen in the partitioning level or degree of the
network and the commit rate depends on this partitioning degree as illus-
trated in Figure 6.8. The overhead in terms of transaction decision time (Fig-
ure 6.9) and messages exchanged between the P-MNs (Figure 6.10) is higher
for RPGM than Random Waypoint. For RPGM more nodes are deployed in
the same simulation area to reach similar levels of partitioning degree. This
increase in the number of MNs leads to a higher message losses and higher
network congestion, which explain the higher transaction decision time and
higher number of exchanged messages in the case of committed transactions.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200 240 280 320 360 400
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

part. deg., RWP
part. deg., RPGM

RWP
RPGM

Figure 6.8: Impact of mobility model on commit rate

Based on these overall results described above, we highlight that our
approach allows to efficiently reach maximal commit rates independent from
the mobility pattern of the MNs (mobility model and speed). We highlight
also the scalability of our approach since the increase of the numbers of nodes
in the simulated area does not result in an over-proportional increase of the
MT costs in term of decision time and message complexity. We emphasize
here especially the efficiency of our protocol where the number of exchanged
messages per P-MN remains almost constant even if the number of deployed
nodes in the same area increases as illustrated in Figure 6.10.

6.4. PERFORMANCE EVALUATION 101

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 40 80 120 160 200 240 280 320 360 400
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

part. deg., RWP
part. deg., RPGM
committed, RWP

aborted, RWP
committed, RPGM

aborted, RPGM

Figure 6.9: Impact of mobility model on decision time

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160 200 240 280 320 360 400
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

part. deg., RWP
part. deg., RPGM
committed, RWP

aborted, RWP
committed, RPGM

aborted, RPGM

Figure 6.10: Impact of mobility model on message complexity

Impact of Number of Preselected COs

We arbitrarily fix in this scenario the number of P-MNs to 10, the transaction
lifetime value to 900 s, the mobility model to RWP and the speed to LOW
and vary the number of preselected COs.

The number of preselected COs does not impact the commit rate of Par-
TAC as illustrated in Figure 6.11. This is due to the fact that as soon as
two COs encounter each other only one of them remains active and the other

102 CHAPTER 6. AD-HOC ENVIRONMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
2 COs
3 COs
5 COs
7 COs

10 COs

Figure 6.11: Impact of number of COs on commit rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, 2 COs

aborted, 2 COs
committed, 3 COs

aborted, 3 COs
committed, 5 COs

aborted, 5 COs
committed, 7 COs

aborted, 7 COs
committed, 10 COs

aborted, 10 COs

Figure 6.12: Impact of number of COs on decision time

one becomes a normal P-MN. After a certain point in time only a few (2 to
3) COs remain and all the simulated scenarios behave from this instant on-
wards similarly. This point in time is closer to the initiation time of the MT
in the “Commit” case, as from all the COs present in one partition only one
remains active as soon as they receive beacons from each other. Figure 6.12
shows that the number of preselected COs does not have an impact on the
decision time also because of the same reasons given above.

6.4. PERFORMANCE EVALUATION 103

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, 2 COs

aborted, 2 COs
committed, 3 COs

aborted, 3 COs
committed, 5 COs

aborted, 5 COs
committed, 7 COs

aborted, 7 COs
committed, 10 COs

aborted, 10 COs

Figure 6.13: Impact of number of COs on message complexity

However, the number of preselected COs has a minor impact on the effi-
ciency of the ParTAC protocol as shown in Figure 6.13. The slight increase
of the number of messages exchanged per node is due to the fact that every
P-MN needs to send its vote to more COs as the number of COs increases. It
is noteworthy to mention that the main motivation for selecting higher num-
bers of COs is primarily to tolerate CO failures during the MT execution.
Our simulations show that a higher CO failure-tolerance does only slightly
impact the message efficiency.

Impact of Number of P-MNs

We arbitrarily fix in this scenario the number of preselected COs to 3, the
transaction lifetime value to 900 s, the mobility model to RWP and the speed
to LOW and vary the number of P-MNs.

Figure 6.14 shows, as expected, that the number of P-MNs in ParTAC
influences the commit rate of the protocol. If the number of P-MNs increases,
the commit rate of ParTAC decreases since more nodes need to agree on the
outcome of the transaction in this case. The same applies to the decision
time and message complexity as shown in Figures 6.15 and 6.16.

6.4.3 Discussion

Transactional services represent a key part of service oriented architectures
and increasingly for mobile ad-hoc environments, vehicular ad-hoc networks

104 CHAPTER 6. AD-HOC ENVIRONMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partitioning degree
5 P-MNs

10 P-MNs
20 P-MNs

Figure 6.14: Impact of number of P-MNs on commit rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, 5 P-MNs

aborted, 5 P-MNs
committed, 10 P-MNs

aborted, 10 P-MNs
committed, 20 P-MNs

aborted, 20 P-MNs

Figure 6.15: Impact of number of P-MNs on decision time

etc. Users and applications may require performing a certain number of
atomic transactions with a maximized commit rate and within a certain tol-
erable response time. Data consistency and high transactional service avail-
ability should be provided despite the high likelihood of perturbations dur-
ing the service operational conditions in mobile ad-hoc environments. Our
ParTAC commit protocol considers the application requirements by defin-
ing a transaction lifetime for each initiated MT. Within the MT lifetime,

6.5. CHAPTER SUMMARY 105

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

avg. partioning degree
committed, 5 P-MNs

aborted, 5 P-MNs
committed, 10 P-MNs

aborted, 10 P-MNs
committed, 20 P-MNs

aborted, 20 P-MNs

Figure 6.16: Impact of number of P-MNs on message complexity

our approach guarantees data consistency and maximizes the commit rate.
This is achieved for mobile ad-hoc environments under the assumption of
an arbitrary degree of perturbations with respect to network partitioning.
Therefore, our commit solution provides for best effort transactional service
availability for the challenging mobile ad-hoc environment. Furthermore, the
ParTAC approach helps to reduce the transaction decision time resulting in
a better transactional throughput and consequently in a better scalability.
This allows maximizing the number of users that can for instance use the
database resources on resource-limited mobile nodes.

6.5 Chapter Summary

In this chapter, we have shown how delay-awareness can help in reducing
the costs of mobile transactions and in decreasing the number of aborted
transactions in mobile ad-hoc environments. Delay-awareness can also help
in providing perturbation-resilience in generalized mobile ad-hoc environ-
ments. We presented ParTAC, a novel atomic transaction commit protocol
that provides strict atomicity in spite of frequent mobile ad-hoc environment
perturbations and especially network partitioning. Our protocol is generic
and especially independent from the considered mobile ad-hoc environment,
as it is not based on hard assumptions such as consensus and group member-
ship. Efficiently maximizing the commit rate while maintaining atomicity,
ParTAC guarantees data consistency while allowing for high transactional

106 CHAPTER 6. AD-HOC ENVIRONMENTS

service availability and scalability.
In the next chapter, we combine our solutions for infrastructure-based mo-

bile environments from Chapter 5 with the solution presented in this chapter
to further extend our framework of transaction commit protocols developed
throughout this thesis. Our objective in the next chapter is to provide an
integrated commit solution for the mobile generic environment where some
of the mobile devices might have access to the infrastructure.

Chapter 7

Atomic Commit for Generic
Environments

In this chapter, we extend the modular framework of transaction atomic com-
mit protocols presented in Chapters 5 and 6. Until now, the atomic commit
protocol framework provides only solutions for the atomic commit problem
in mobile infrastructure-based and mobile ad-hoc environments. The exten-
sion of the framework in the chapter at hand considers the mobile generic
environment defined in Chapter 3. Therefore, we investigate (in this chapter)
the suitability of existing commit approaches to the mobile generic environ-
ment and how we can integrate them in order to provide an atomic commit
solution for this environment which:

(i) takes advantage of accessing infrastructures, by choosing reliable in-
frastructure nodes for coordination of transactions and by using this
infrastructure to replicate commit data of mobile participants in order
to tolerate network perturbations, and

(ii) tolerates network partitioning and delivers best-effort results – in terms
of commit rate, message efficiency and “Commit”/“Abort” decision
time – if the access to wired infrastructure is unavailable.

We introduce in this chapter the Perturbation-Resilient Transaction
Atomic Commit (PeRTAC) approach, our solution for generic mobile en-
vironments. PeRTAC is an efficient integration of the FT-PPTC and Par-
TAC approaches described in Chapters 5 and 6 respectively. PeRTAC can
be illustrated as a generalization of the FT-PPTC approach in the case that
P-MNs are additionally able to communicate with each other in ad-hoc mode
(beyond their ability to communicate with BSs) and a generalization of Par-
TAC on the involvement of P-FNs and in case P-MNs are additionally able
to communicate with BSs (beyond their ability to communicate in ad-hoc
mode).

107

108 CHAPTER 7. GENERIC ENVIRONMENTS

7.1 Overview of our Approach: The PeRTAC

Commit

Our primary goal is to offer efficient perturbation-resilience to atomic commit
protocols in generic mobile environments. We start with analyzing existing
approaches to identify their limitation in providing a perturbation-resilient
commit solution in generic mobile environments. As proven in Chapter 5,
FT-PPTC is the most suitable transaction atomic protocol for infrastructure-
based mobile environments which (a) satisfies our efficiency requirements
with respect to reduction of blocking time of FN resources (presented in
Chapter 4), (b) copes with a wide range of perturbations encountered in mo-
bile environments, (c) is delay-aware, and (d) implements traditional atomic
commit protocols such as 2PC/3PC in pure wired environments. As shown
in Chapter 6, ParTAC is a generic atomic commit solution for mobile ad-hoc
environments which is designed to tolerate network partitioning in an efficient
manner compared to other existing solutions. Accordingly, it is natural to
integrate these two approaches to build a perturbation-resilient, delay-aware
and efficient solution for generic mobile environments. Figure 7.1 (with the
same legend as Figure 3.2 in Chapter 3) summarizes our objective and shows
that the integration of these two protocols is not trivial. From this figure, we
can observe that our main objective is to provide a solution which transforms
to FT-PPTC if deployed in mobile infrastructure-based environments and to
ParTAC if deployed in mobile ad-hoc environments. The shaded area in Fig-
ure 7.1 c) which is not covered by any protocol represents the gap/challenge
for integrating FT-PPTC and ParTAC. The nodes in this shaded area are
able to communicate with BSs and ad-hoc with other MNs, so the major
task in this chapter is to define how these nodes should behave in order to
fulfill our atomic commit requirements and how the behavior of these nodes
influences the other participating nodes.

We start by briefly describing the strength of FT-PPTC and ParTAC in
infrastructure-based and infrastructure-less environments respectively, along
with their limitations in generalized network settings. Next, we describe the
PeRTAC commit approach.

As illustrated in Figure 7.2, FT-PPTC decouples the commit of P-MNs
from that of P-FNs. The execution of the transaction is therefore split in
two phases. In the first phase, called the pre-commit phase, “sufficient” infor-
mation from mobile participants is collected in order to reduce the commit
set to a set of fixed nodes. In the second phase the commit involves only
FNs and thus can be simply completed by any atomic commit protocol from
wired networks, such as the established 2PC protocol. We refer to the sec-

7.1. OVERVIEW OF OUR APPROACH: THE PERTAC COMMIT 109

Infrastructure Infrastructure Infrastructure

a) Infrastructure-based

mobile environment

b) Ad-hoc mobile

environment

c) Generic mobile

environment

FT-PPTC

ParTAC ParTAC

F
T

-P
P

T
C

W
ir

el
es

s
P

ar
t

W
ir

ed
 P

ar
t

MN can only communicate

with BSs

MN can only communicate

ad-hoc with other MNs

MN can communicate ad-hoc with

other MNs and also with BSs

BSFN Wireless communication Wired communication

Figure 7.1: Objectives of the proposed approach

W
ir

el
es

s
P

ar
t

W
ir

ed
 P

ar
t

P-MN_1

(Initiator)

P-MN_2

P-MN_3

MN-Ag_1

(CO)
MN-Ag_2

MN-Ag_3

P-FN_1

P-FN_2

Pre-Commit Phase Core Phase

Figure 7.2: FT-PPTC flow diagram

ond phase as the core phase. To allow for this decoupling, a mobile node
agent is assigned to each P-MN. An MN-Ag is a logical entity representing
the P-MN in the wired network as described in Section 4.5. The MN-Ag is
responsible for storing all the information related to the state of MTs involv-
ing the MN and is also responsible for executing the 2PC protocol on behalf
of its corresponding P-MN. As shown in Chapter 5, decoupling reduces the

110 CHAPTER 7. GENERIC ENVIRONMENTS

blocking time of the resources at the FNs. It also simplifies the handling of
the different kinds of failures that rise from the mobility of MNs.

W
ir

el
es

s
P

ar
t

Wired Part

P-MN_2

(CO role)

P-MN_3

P-MN_4

(CO role)

P-MN_5

P-MN_1

(Initiator)

(P-MN role only)

Figure 7.3: ParTAC flow diagram

Figure 7.3 shows the main building blocks of the ParTAC protocol. As
described in Chapter 6 a set of coordinators in ParTAC is pre-selected among
the P-MNs (the pre-selection of COs out of the P-MNs can be random or
based on node properties such as IDs, mobility, connectivity, storage capa-
bilities). Every preselected CO can safely abort the MT upon expiration
of the MT lifetime if no decision is reached by then. The preselected COs
collect votes from MT P-MNs. When two COs encounter each other, they
exchange their collected votes and elect a single active CO among themselves.
The other CO immediately stops playing an active CO role and behaves like
other normal P-MNs. As a result, if all COs transitively encounter each other
before the expiration of the MT lifetime, only one active CO remains which
will take the final decision for the MT.

Table 7.1 summarizes why FT-PPTC and ParTAC fail in delivering a
solution for generic environments and briefly highlights our requirements on
the new PeRTAC approach. Transaction commit protocols developed for
infrastructure-based mobile environments in general and FT-PPTC, as a
representative, consider only the choice of mobile transaction COs as FNs
because of the availability and perturbation-resilience of these nodes com-
pared to MNs. These works [Bobineau et al., 2000; Kumar et al., 2002;
Nouali et al., 2005; Serrano-Alvarado, 2004] do not consider at all the choice
of MNs as transaction COs because of the nature of the mobile environment.
To apply these approaches in mobile ad-hoc environments as a special case

7.1. OVERVIEW OF OUR APPROACH: THE PERTAC COMMIT 111

Table 7.1: Requirements on the new PeRTAC approach

Protocol Infrastructure- Ad-hoc Generic
based mobile mobile mobile
environment environment environment

FT-PPTC Perturbation- Fails due Works only if the
(Chapter 5) resilient, to lack of MT initiator can

efficient infrastructure connect to an
solution infrastructure

ParTAC Not efficient due Perturbation- Not efficient
(Chapter 6) to extra overhead resilient, especially in case the

and long blocking efficient access to infrastructure
time of FNs solution is available

PeRTAC Perturbation- Perturbation- Perturbation-
resilient, resilient, resilient,

efficient solution efficient solution efficient solution

of generic environments, the choice of the CO becomes a challenge as de-
scribed in Chapter 4. Not only MNs are not having stable storages to rely on
them for the complete time of transaction execution but also their availability
and reachability is not guaranteed even for small periods of time as opposed
to FNs. Subsequently, these developed solutions simply fail in ad-hoc en-
vironments mainly because of the lack of infrastructure. In generic mobile
environments these approaches might work only in a limited number of cases
where the initiator of the MT can communicate with BSs and is able to con-
nect to the infrastructure to select a FN to play the CO role. Unfortunately,
this solution is in many scenarios inefficient since all the traffic between the
CO and P-MNs will flow in this case through the mobile initiator.

If we consider now transaction commit protocols developed for ad-hoc
mobile environments in general and ParTAC as a novel representative, we
observe that COs can only be chosen among MNs as no FN is available. These
approaches rely mainly on choosing more than one MN to play the CO role.
In these works, the vulnerabilities of the MNs are masked by replicating the
CO role. Though these commit protocols can be deployed in infrastructure-
based environments as a special case of generic ones, they are inefficient
due to an unnecessary additional overhead caused by the replication of the
CO role and also long blocking time of FNs participating in MT execution
(these approaches does not consider blocking times of FNs since they are
designed for pure ad-hoc environments). In generic mobile environments
these protocols are not efficient especially when some transaction participants
are FNs or in case all participants are MNs but the access to the infrastructure

112 CHAPTER 7. GENERIC ENVIRONMENTS

is available.

Targeting an atomic transaction solution which covers all three types of
environments as illustrated in Table 7.1, we propose the PeRTAC protocol as
a solution for generic mobile environments. This solution delivers the same
performance and perturbation-tolerance of ParTAC and FT-PPTC in ad-hoc
and infrastructure-based mobile environments respectively. Figure 7.4 shows
that the PeRTAC protocol inherits from the FT-PPTC (Figure 7.2) its two
phases, i.e., the pre-commit phase and the core phase. In the pre-commit
phase, PeRTAC follows the multiple CO strategy of ParTAC (Figure 7.3)
with one main difference: the multiple CO strategy in PeRTAC favors P-MNs
which can connect to the infrastructure while electing a new CO on encounter
as described in Chapter 6. If two COs, that are only able to communicate in
ad-hoc mode, encounter each other then the election is done as described in
ParTAC in Chapter 6, i.e., the one having the highest ID is elected. But if
one CO that is able to access the infrastructure encounters a CO that is only
able to communicate in ad-hoc mode, the former is elected and its MN-Ag
becomes the CO of the MT in the wired part of the environment. In case
two MN-Ags are selected in the above described way to be COs, then any
election algorithm for wired networks, such as [Chang and Roberts, 1979;
Garcia-Molina, 1982], might be used.

W
ir

el
es

s
P

ar
t

W
ir

ed
 P

ar
t

P-MN_1

(Initiator)

P-MN_3

MN-Ag_1

P-FN_1

P-FN_2

P-MN_5

P-MN_2

(CO role)

P-MN_4

(CO role)

(CO role)

(P-MN role

only)

(P-MN role only)

Pre-Commit Phase Core Phase

MN-Ag_2

MN-Ag_3

Figure 7.4: PeRTAC flow diagram

7.2. PROTOCOL OPERATIONS 113

7.2 Protocol Operations

We detail in the following the protocol operations of PeRTAC that describe
the activities of P-MNs, COs and MN-Ags respectively in Algorithm 10,
Algorithm 11 and Algorithm 13. P-FNs activities are described in Subsec-
tion 7.2.4.

7.2.1 Activities of Participant Mobile Nodes

The activities of P-MNs are detailed in Algorithm 10. Upon receiving its
execution fragment, the P-MN computes Et and St (defined in Chapter 4) if
it can communicate with a BS, and sends them to the corresponding MN-Ag
(Algorithm 10). Et and St are estimations of execution and shipping times
respectively. Execution time is the time needed to execute the fragment on
the P-MN and shipping time is the time needed to prepare and send the vote
message to the MN-Ag. The P-MN begins the processing of its execution
fragment ei(P-MN). Whenever the P-MN needs to extend its Et or St and it
has access to the infrastructure, it sends a message to its MN-Ag with the new
timeout value(s) (Algorithm 10, lines 5-8). If the P-MN can communicate
with a BS, it sends a “No” vote to its MN-Ag whenever it decides to abort the
MT and its updates if it successfully completes the execution of its fragment.
In case the P-MN is not able to access the infrastructure, it sends its vote to
each CO it encounters as long as no ACK is received from that CO and there
is no final decision (Algorithm 10, line 29 and lines 31-36). P-MNs know
that they are encountering a CO when they receive a beacon from that CO
as described in Section 7.2.2. Hence even if one CO was not aware about
the P-MN’s vote, e.g., due to message loss, then the vote information is not
lost, but communicated to the next encountered CO. It is noteworthy that a
P-MN is not allowed to change its vote once it has been sent to a CO.

7.2.2 Activities of Coordinators

Algorithm 11 details the activities of PeRTAC COs. Upon receiving a MT
Ti, a CO creates a Token for the received MT, which includes all informa-
tion about the participants and COs of the MT and the state of execution.
The possible execution states are: Idle, active, pre-committed, committed or
aborted. The state of Ti is set to “active”. If a CO is a P-MN in the MT,
it starts executing its execution fragment upon receiving the MT Ti. Every
CO starts a timer to detect/watch the expiration of the lifetime of the MT
(Algorithm 11, line 9). If a CO receives initial or updated Et or St from one
P-MN, the lifetime of the MT is updated if mandatory, i.e., if the lifetime

114 CHAPTER 7. GENERIC ENVIRONMENTS

Algorithm 10: P-MN’s Activities in PeRTAC

1 wait for receiving a mobile transaction Ti;
2 extract the corresponding execution fragment ei(P-MN), the set of P-MNs and

preselected COs;
3 let Pn = {P-MN1, . . . ,P-MNn} the set of all P-MNs;
4 let Cm = {CO1, . . . ,COm} the set of all preselected COs;

5 if P-MN has MN-Ag then
6 Compute Et(P-MN), St(P-MN);
7 send Et(P-MN), St(P-MN) to the corresponding MN-Ag;

8 end
9 start executing the received execution fragment;

10 while processing ei(P-MN) do
11 if (P-MN has MN-Ag) and (Et(P-MN) or St(P-MN) need to be extended)

then
12 compute new timeout value(s);
13 send new value(s) to the corresponding MN-Ag;

14 end

15 end

16 if P-MN decides to abort Ti then
17 abort Ti;
18 if P-MN has MN-Ag then
19 send No vote to corresponding MN-Ag
20 else
21 send No vote to all COs in Cm;
22 exit;

23 end

24 else /* P-MN decides to commit Ti */

25 write updates to the local log;
26 if P-MN has MN-Ag then
27 send updates to the corresponding MN-Ag;
28 else
29 send Yes vote to all COs in Cm;
30 while waiting for the final decision about the outcome of Ti do
31 if beacon is received from a CO then
32 send Yes vote to the CO from which the beacon was received;
33 end
34 if Ack is received from a CO then
35 stop reacting on beacons received from that CO;
36 end

37 end

38 end
39 if final decision is Commit then
40 commit Ti;
41 exit;

42 else /* decision is Abort */

43 abort Ti;
44 exit;

45 end

46 end

7.2. PROTOCOL OPERATIONS 115

Algorithm 11: CO’s Activities in PeRTAC
1 wait for receiving a mobile transaction Ti;
2 extract the corresponding execution fragment if the CO is a P-MN or the fragment of its

corresponding P-MN if it is a MN-Ag, the lifetime of the MT, the set of P-MNs and COs;
3 create a Token for Ti ;
4 set the state of the MT to “active” in Ti’s Token;
5 let Pn = {P-MN1, . . . ,P-MNn} the set of all P-MNs;
6 let Cm = {CO1, . . . ,COm} the set of all preselected COs;
7 let L = ∅ the ID list of all P-MNs which sent Yes vote to the CO;
8 start executing the received execution fragment if CO is a P-MN;
9 while waiting for lifetime to expire do

10 if CO is a P-MN then
11 broadcast periodically own ID;
12 else /* The CO is a MN-Ag */

13 if value of Et or St (initial or extended values) of one of the P-MNs is received then
14 update lifetime value only if it needs to be increased;
15 update the Token of Ti with the received value(s);

16 end

17 end
18 if CO decides to abort Ti or receives No vote then
19 abort Ti;
20 send Abort decision to all P-MNs in Pn; exit;

21 end
22 if CO decides to commit Ti or receives updates from corresponding P-MN then
23 add own ID to L if CO is a P-MN or add ID of corresponding P-MN if CO is a

MN-Ag;
24 checkList(L);

25 end
26 switch message M is received do
27 case M is a Yes vote from a P-MN
28 send Ack to P-MN;
29 add ID of sending P-MN to L;
30 checkList(L);

31 endsw
32 case M is a beacon from another CO
33 compare the received ID with the own ID;
34 if (both COs are either P-MNs or MN-Ags and Own ID > received ID) or (CO

is MN-Ag and other CO – from which the beacon is received – is a P-MN) then
35 send request to CO asking for list L (include own list L in the request);
36 else
37 send own list L;
38 change role to normal P-MN or MN-Ag;

39 end

40 endsw
41 case M is a request to send list L
42 send own list L;
43 change role to normal P-MN;

44 endsw
45 case M contains a list L from another CO
46 send own list L if not already done;
47 add all IDs of received L to own list;
48 checkList(L);

49 endsw
50 case M is a Commit decision
51 commit Ti; exit;
52 endsw
53 case M is an Abort decision
54 abort Ti; exit;
55 endsw

56 endsw

57 end
58 abort Ti; /* Ti is aborted if lifetime expires before reaching a decision */

59 send Abort decision to all P-MNs in Pn;

116 CHAPTER 7. GENERIC ENVIRONMENTS

Algorithm 12: CheckList Procedure

1 procedure checkList(L)
2 if (L contains the IDs of all P-MNs) and (commit set contains P-FNs) then
3 set the state of the MT to “pre-committed” in Ti’s Token;

/* Starting of the Core Phase */

4 start a 2PC protocol to collect the votes from all P-FNs;
5 if all votes were Yes then
6 commit Ti;
7 set the state of the MT to “committed” in Ti’s Token;
8 send Commit message to all members of the commit set;
9 return;

10 else /* at least one of the votes is No */

11 abort Ti;
12 set the state of the MT to “aborted” in Ti’s Token;
13 send Abort to all members of the commit set;
14 return;

15 end

16 else if (L contains the IDs of all P-MNs) then
17 commit Ti;
18 send Commit decision to all P-MNs in Pn;
19 exit;

20 end
21 return;

needs to be increased as described in Chapter 5. The updated information
is stored in the Token of the CO which received that information. If a CO
decides to vote for aborting the MT and it is a P-MN or receives a “No” vote,
it sends an “Abort” decision to all P-MNs of the MT. The COs periodically
send presence beacons to allow other P-MNs and COs in their partition to
discover their presence (Algorithm 11, line 11). These beacons are those
already being sent by the underlying ad-hoc routing protocol to avoid addi-
tional wireless messages. Every preselected CO maintains a commit-list L of
all P-MNs from which it has received a “Yes” vote. If the CO is a P-MN and
decides to vote for committing the MT or if it is a MN-Ag and receives the
updates of its corresponding P-MN, it adds also its ID to its own commit-list
(Algorithm 11, line 23). As soon as a CO receives a “No” vote it decides to
abort the MT and sends an “Abort” decision to all P-MNs. If the lifetime
of the MT expires on a CO before receiving a final decision, the CO decides
also to abort the MT (Algorithm 11, lines 58-59).

If two COs encounter each other (e.g., if the corresponding network parti-
tions join) these two COs exchange their commit-lists (Algorithm 11, lines 32-
42 and 45-46) and elect one CO among themselves, e.g., based on highest ID
(Algorithm 11). The other CO becomes either a normal P-MN or a MN-Ag

7.2. PROTOCOL OPERATIONS 117

(Algorithm 11, line 43) and behaves from this point in time and onwards
according to Algorithm 10 or Algorithm 13 respectively. If one of the COs is
a MN-Ag, it is elected automatically and if both are MN-Ags the highest ID
schema or another election algorithm can be used. COs are allowed to give
their list of votes only to other COs and only after they complete the election
process. The non-elected CO sends its commit-list to the elected one that
merges it with its own list. Thus, the lists are merged only if the election
succeeds. If the list does not arrive at the elected CO, e.g., due to message
loss, PeRTAC can still commit the MT since the non-elected CO will send
its commit-list L to every CO it encounters after changing its role to a P-MN
or it will send the commit-list to the elected FN CO if it is a MN-Ag.

The election process as described above guarantees the uniqueness of the
taken decision. From the description of our approach we observe that the
votes of COs can only be given to other COs after the election process. Using
this schema for the election of a new and single CO guarantees that no two
or more COs have the complete knowledge about which P-MNs voted to
commit the MT. In the latter case these COs could take different decisions
about the outcome of the MT which violates the correctness of the proposed
solution.

Each time a CO election is performed, the new elected CO checks whether
its list contains all P-MNs of the MT (Algorithm 12). If this is the case, it sets
the state of the MT to “pre-committed” and starts a 2PC session to collect
the votes from P-FNs if any. If the CO receives a “Yes” vote from all the
P-FNs, it decides to commit the transaction and sends “Commit” decision
to all the participants. If it receives at least one “No” vote (or no reply) it
aborts the transaction and sends “Abort” decision to all participants. Recall
here that our CO selection and election strategies result in that the remaining
final CO has access to the infrastructure (if at least one P-MN has access
to the infrastructure which is a condition to initiate a meaningful generic
transaction). If all P-MNs voted for committing the MT and only one CO
remains for the MT, then this unique remaining CO might have a list that
does not contain the IDs of all P-MNs because some votes were lost or the
corresponding P-MN did not send any vote due to a transient MN failure
or communication failure. In this case the expiration of the transaction
lifetime will lead to a MT “Abort” decision. P-MNs share the final decisions
on encounter. The final decision is inherently replicated onto the CO that
turned to either a P-MN or MN-Ag since the lists of the COs are exchanged
(Algorithm 11, lines 35 and 46) before electing a new CO among them. This
replication is needed to recover from a failure of the last remaining CO.

Our proposed approach reduces the transaction decision time. Conse-
quently, the resource blocking time of participants is reduced as the COs

118 CHAPTER 7. GENERIC ENVIRONMENTS

have bounded waiting time given by the transaction lifetime for the MT out-
come. If the transaction lifetime expires at one CO before reaching a final
decision, the MT is aborted. This is not viable in any existing solution as
P-MNs have to meet asynchronously to be able to reach a final decision or
proceed with the core phase if P-FNs exist.

7.2.3 Activities of Mobile Node Agents

Upon receiving the execution fragment of its corresponding P-MN from a
CO, the MN-Ag forwards it to the corresponding P-MN. After receiving Et

and St from the P-MN, the MN-Ag forwards this information to the CO.
After receiving a “Yes” or “No” vote from the P-MN, the MN-Ag forwards
the vote to the CO. Upon receiving the decision from the CO, the MN-Ag
forwards it to the P-MN as soon as it is available (connected to the network).
After receiving the “Ack” for decision reception from the P-MN, the MN-Ag
acknowledges the CO. It is key to mention that the MN-Ag is not an active
participant in the execution of the MT, since it does not have to know any
information about the application and does not need to process any part or
fragment of the MT.

The MN-Ag can take some decisions on behalf of its corresponding P-MN.
These decisions include the extension of the timeouts of the P-MN in case
of a transient disconnection. The MN-Ag is also given the responsibility to
send an estimation of the timeouts of the corresponding P-MN direct after
receiving the execution fragment of this P-MN (line 4). This estimation can
be corrected after receiving new timeout values (Et and St) from the P-MN.

7.2.4 Activities of Participant Fixed Nodes

P-FNs behave as in the established 2PC protocol, i.e., a P-FN executes its
fragment, waits for the Prepare message, sends its vote and waits for the
decision. Upon receiving the decision, the P-FN acknowledges the CO. Note
that any existing protocol such as 3PC or Paxos Commit can be used here.

7.3 Correctness Basis

To show the correctness of the proposed PeRTAC protocol composed of Al-
gorithm 10 , 11 , 12 and 13, we demonstrate that it satisfies the required five
atomicity properties [Bernstein et al., 1987]:

- Stability: A participant cannot reverse its decision after it has reached
one.

7.3. CORRECTNESS BASIS 119

Algorithm 13: MN-Ag’s Activities in PeRTAC

1 wait for receiving execution fragment ei(P-MN) of the corresponding P-MN
from CO;

2 create a Token for ei(P-MN);
3 set the state of ei(P-MN) to “idle” in Ti’s Token;
4 send an estimation of the timeouts of corresponding P-MN to the CO;
5 for any received message do
6 if message contains the timeouts of the P-MN then
7 update Ti’s Token with the received timeouts;
8 set the state of the ei(P-MN) to “active” in Ti’s Token;
9 forward the timeouts to the CO;

10 else if message contains the updates of the corresponding P-MN then
11 update the Token with the received updates;
12 send Yes vote to CO;

13 else if message contains possible disconnection of the corresponding P-MN
and its reasons then

14 recompute the timeouts based on disconnection reasons;
15 update the token with this information;
16 send extended timeouts to the CO;

17 else if message is sent by the CO then
18 update the Token with the received message;
19 send the received message to the corresponding P-MN as soon as it is

available;

20 else if message is sent by P-MN then
21 update the Token with the received message;
22 send the received message to CO;

23

24 end

- Consistency: All participants that reach a decision reach the same one.

- Validity: The “Commit” decision can only be reached if all participants
voted “Yes”.

- Non-Triviality: If no failure occurs and all participants voted “Yes”,
then the final decision should be “Commit”.

- Termination: At any point in execution, if all existing failures are
repaired and no new failures occur for sufficiently long time, then all
participants will eventually reach a decision.

It follows directly from the description of the PeRTAC protocol in Sec-
tion 7.2 that it satisfies the stability and the non-triviality properties. We
now show that it also satisfies the consistency, validity and termination prop-
erties.

120 CHAPTER 7. GENERIC ENVIRONMENTS

Consistency: This is satisfied as only the last active CO decides the
outcome of the transaction in case the final decision is “Commit” and dis-
tributes the final decision to every participant. Hence, the last remaining CO
is the single one which can have the final eventual complete list of P-MNs
since at least its vote was not communicated to any other CO or P-MN ac-
cording to the specification of the PeRTAC protocol. This CO is the single
one able to start the core phase. If more than one CO are still remaining in
the system, they can only take an “Abort” decision and no “Commit”. Thus
the consistency property is guaranteed by our protocol.

Validity: We assume that one of the preselected COs decides to com-
mit the transaction when at least one participant has not decided yet. If
this participant is a P-MN then its ID cannot appear in any list L (Algo-
rithm 11, line 7) of the preselected COs according to the specification of the
PeRTAC protocol. Obviously, no preselected CO can then take the decision
to pre-commit the MT since this contradicts with the protocol specification
(Algorithm 12, lines 1-21). In the case that at least one of the P-MNs decides
to abort the transaction, the preselected COs cannot decide to pre-commit
the transaction because this decision will violate the protocol specification
(Algorithm 11, lines 18-21). If this participant is a P-FN, then the 2PC pro-
tocol decides to commit the transaction before receiving all the votes from
the P-FNs, which again contradicts the specification of the 2PC protocol.
In the case that at least one of the P-FNs decides to abort the transaction,
the CO cannot decide to commit the whole transaction because this decision
will also violate the 2PC protocol specification. Hence, the commit decision
can only be reached if all P-MNs voted “Yes”, i.e., decided to commit the
transaction.

Termination: We consider any execution containing the failures listed
in the perturbation model detailed in Section 3.3. From the PeRTAC protocol
specification, we can observe that because we are using a timeout concept the
protocol cannot block forever (the blocking of the protocol forever leads to
a non-termination of the protocol). If at any point in execution all existing
failures are repaired and no new failures occur for sufficiently long time, then
all participants will eventually reach a decision. Especially in this situation
all P-MNs (including COs) can meet each other eventually and progressively
the lists of COs are filled and the number of COs is reduced until only one
CO remains having a list L containing the IDs of all P-MNs. This complete
list allows this CO to take a pre-commit decision (Algorithm 12, lines 1-21)
and to start the core phase which is executed only on the wired part of the
environment. The protocol terminates as soon as 2PC reaches a final decision
(2PC also implements a timeout strategy to avoid blocking). If the lifetime
expires at any CO before reaching the final decision, the MT is aborted

7.4. PERFORMANCE EVALUATION 121

(Algorithm 11, lines 58-59) leading also to the termination of the protocol.

7.4 Performance Evaluation

We use simulations to validate our approach. We present the used perfor-
mance metrics, the simulation model and our results on the high commit
rate, the bounded decision time and the efficiency of PeRTAC. Our simula-
tion studies show the feasibility of our approach and concentrate on investi-
gating the benefit of accessing the infrastructure in MT where only MNs are
participating in their execution.

7.4.1 Methodology and Simulation Settings

For the evaluation of the PeRTAC protocol, we focus on three major per-
formance metrics: (a) Commit rate as it determines the service availability,
(b) commit latency or transaction decision time as it determines the service
response time, and (c) message complexity as it determines the scalability
and efficiency of our approach. We measure the commit rate as the ratio
of number of successfully committed MTs to total number of initiated MTs.
The transaction decision time is the time needed to take a decision about the
outcome of the initiated MT, i.e., the time between the initiation of the MT
and the time where the final decision is reached at the CO. The blocking time
of P-MNs is majorally determined by the transaction decision time. How-
ever, the time needed for the final decision to reach the P-MNs plays a role
especially in mobile ad-hoc and mobile generic environments (blocking time
= decision time + time needed to disseminate the final decision). This time
is dependent on the implementation of the message dissemination protocols
used to disseminate the final decision and therefore will not be further inves-
tigated in our performance evaluation. The message complexity of PeRTAC
is defined as the number of wireless messages sent and received in average by
each P-MN during the execution of the MT.

The performance of the PeRTAC approach is evaluated in this chapter
based on the service delivery level assured by the protocol and defined ba-
sically by the commit rate and the decision time as described in Chapter 6.
The costs of assuring a certain service delivery level are measured in terms
of message complexity. We focus in our performance evaluation on the im-
pact of BS coverage and network partitioning degree of MNs that can only
communicate in ad-hoc manner on the identified performance metrics.

For our simulation studies we have used J-Sim [J-Sim], a component-
based, compositional simulation environment that is entirely developed in

122 CHAPTER 7. GENERIC ENVIRONMENTS

Java (see [Tyan et al., 2009] for further details of the simulation environ-
ment). For the performance evaluation of the PeRTAC protocol, we consider
a representative range of parameter values to assess the described approach.
Table 7.2 summarizes our simulation settings. We selected the commonly
used Random Waypoint mobility model [Broch et al., 1998] (node speed
uniform in [0.5, 1.5] m/s). We fix the mobility area (2km x 2km) and the
communication range (250m). We generate the mobility scenarios using the
BonnMotion mobility simulator [BonnMotion]. Given its importance, for all
our simulation studies we vary the partitioning degree through varying the
number of nodes. The partitioning degree or degree of separation is provided
by BonnMotion and reflects how likely it is that two randomly chosen nodes
are not within the same partition at a randomly chosen point in time.

Table 7.2: Simulation settings

Parameter Value(s)

Geographical area 2km x 2km
Communication range 250m
Mobility models Random Waypoint (RWP)
Node speed uniform in [0.5, 1.5] m/s
#Nodes ∈ [20,200]
#COs ∈ {3,5,7,10}
#P-MNs 10
lifetime ∈ {60s,120s,300s}

BSs have in our simulations the same communication range as the MNs.
We place the BSs uniformly in the simulated area and vary the number of
deployed BSs in order to vary the coverage area of these BSs. Table 7.3
gives for every number of deployed BSs the percentage of the simulated area
covered by these BSs. We consider that all deployed MNs in the simulation
area can communicate with the BSs and also with other MNs (in ad-hoc
mode).

We generate transactions of similar length and with execution fragments
of similar length also. We initiate one transaction at the beginning of each
simulation. We fix the number of P-MNs to 10 and vary the number of
preselected COs, the lifetime and the number of BSs to study the impact of
these parameters on the performance of PeRTAC. Each simulation is repeated
200 times for statistical significance of the results.

7.4. PERFORMANCE EVALUATION 123

Table 7.3: Base station coverage in the simulated area

Number of base stations Coverage in %

4 19.63
9 44.17
16 78,53
25 98,2
36 100

7.4.2 Simulation Results

Now, we present the results of our conducted simulation studies for the de-
fined performance metrics. As mentioned before, we simulate PeRTAC under
different network conditions and vary the important protocol parameters to
study the behavior of our protocol in a wide range of possible deployment
scenarios. Overall, we split the results for “Abort” and “Commit” cases to
have better insights to PeRTAC.

Impact of BSs’ Coverage

We arbitrarily fix in this scenario the number of preselected COs to 3 and
the transaction lifetime value to 300 s. To assess the influence of the BSs’
coverage area on the PeRTAC protocol, we vary the number of the BSs
deployed in the simulation area (i.e., we vary the percentage of the simulated
area covered by these BSs).

Figure 7.5 shows that PeRTAC benefits from accessing BSs to increase the
number of committed transactions compared to ParTAC (where the number
of BSs is 0). Accessing the infrastructure enables some partitions to commu-
nicate with other partitions through the infrastructure despite the fact that
the MNs in these partitions are not able to communicate with each other in
ad-hoc multihop manner.

In Figure 7.6 we observe also that accessing the infrastructure reduces
the decision time if the number of mobile nodes in the area is relatively small
(less than 100 MNs in our simulations). The reduction of the decision time
can be explained by the fact that partitions which are connected through the
infrastructure do not need to wait until they merge to make a progress like it
is the case in ParTAC. If the number of MNs deployed in the simulation area
increases (greater than 100), the decision time increases as the BSs become
a bottleneck in this case because the number of the MNs in their coverage

124 CHAPTER 7. GENERIC ENVIRONMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partitioning degree
0 BSs
4 BSs
9 BSs

16 BSs
25 BSs
36 BSs

Figure 7.5: Impact of BSs’ coverage on commit rate

 0

 50

 100

 150

 200

 250

 300

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, 0 BSs

aborted, 0 BSs
committed, 4 BSs

aborted, 4 BSs
committed, 9 BSs

aborted, 9 BSs
committed, 16 BSs

aborted, 16 BSs
committed, 25 BSs

aborted, 25 BSs
committed, 36 BSs

Figure 7.6: Impact of BSs’ coverage on decision time

area also increases (recall that we have chosen a relatively low communication
range for the BSs in our simulations). Therefore the throughput of these BSs
decreases and more time is needed to execute the PeRTAC protocol. Apart
from some “Abort” cases where the partitioning degree is very high and
consequently more message are exchanged, Figure 7.7 shows that the costs
of the MTs in term of exchanged wireless messages remain almost constant
in our simulations.

7.4. PERFORMANCE EVALUATION 125

 0

 5

 10

 15

 20

 25

 30

 35

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, 0 BSs

aborted, 0 BSs
committed, 4 BSs

aborted, 4 BSs
committed, 9 BSs

aborted, 9 BSs
committed, 16 BSs

aborted, 16 BSs
committed, 25 BSs

aborted, 25 BSs
committed, 36 BSs

Figure 7.7: Impact of BSs’ coverage on message complexity

Impact of Transaction Lifetime

We arbitrarily fix in this scenario the number of preselected COs to 3 and
number of deployed BSs to 16 (i.e., 78.53% of the simulated area is covered
by the BSs). To assess the influence of the lifetime on the PeRTAC protocol,
we select the following lifetime values: 60 s, 120 s and 300 s.

Figure 7.8 shows that also in the case of PeRTAC, the transaction commit
rate depends on the lifetime of the initiated MT. If we increase the transaction
lifetime, the commit rate increases. If the number of deployed MNs in the
simulated area is greater than 100, the commit rate starts even to decrease
because the decision time starts to increase as illustrated in Figure 7.9 and
as explained above when the impact of the BSs’ coverage is investigated.

In Figure 7.10, we observe that the number of exchanged messages in the
“Abort” case increases if the lifetime increases since an increase in the lifetime
implies an increase in the number of exchanged messages (more votes and
lists can be sent to encountered COs if lifetime increases). For the “Commit”
case the message complexity does not change if the lifetime is changed.

Figures 7.9 and 7.10 show for the “Aborted” case where the lifetime is
120 s an irregular behavior when the number of nodes is 100. This is due to
the fact that in the point the commit rate as shown in Figure 7.8 is 100%
and therefore the number of aborted transaction is 0, which translates in 0
s decision time and 0 exchanged messages per P-MN.

126 CHAPTER 7. GENERIC ENVIRONMENTS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partitioning degree
lifetime=60s

lifetime=120s
lifetime=300s

Figure 7.8: Impact of lifetime on commit rate

 0

 50

 100

 150

 200

 250

 300

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, lifetime=60s

aborted, lifetime=60s
committed, lifetime=120s

aborted, lifetime=120s
committed, lifetime=300s

aborted, lifetime=300s

Figure 7.9: Impact of lifetime on decision time

Impact of Number of Preselected COs

We arbitrarily fix in this scenario the lifetime to 300 s and the number of
deployed BSs to 9 (i.e., 44.17% of the simulated area is covered by the BSs)
and vary the number of preselected COs.

The number of preselected COs does not impact the commit rate of PeR-
TAC as illustrated in Figure 7.11. This is due to the fact that as soon as two
COs encounter each other only one of them remains active and the other one

7.4. PERFORMANCE EVALUATION 127

 0

 5

 10

 15

 20

 25

 30

 35

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, lifetime=60s

aborted, lifetime=60s
committed, lifetime=120s

aborted, lifetime=120s
committed, lifetime=300s

aborted, lifetime=300s

Figure 7.10: Impact of lifetime on message complexity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

C
o

m
m

it
 R

at
e

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partitioning degree
3 COs
5 COs
7 COs

10 COs

Figure 7.11: Impact of number of COs on commit rate

becomes a normal P-MN. After a certain point in time only a few (2 to 3)
COs remain and all the simulated scenarios behave from this instant onwards
similarly. This point in time is closer to the initiation time of the MT in the
“Commit” case as from all the COs present in one partition only one remains
active as soon as they receive beacons from each other. Figure 7.12 shows
that the number of preselected COs does have only a slight impact on the
decision time also because of the same reasons given above.

However, the number of preselected COs has a minor impact on the effi-

128 CHAPTER 7. GENERIC ENVIRONMENTS

 0

 50

 100

 150

 200

 250

 300

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

D
ec

is
io

n
 T

im
e

[s
]

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, 3 COs

aborted, 3 COs
committed, 5 COs

aborted, 5 COs
committed, 7 COs

aborted, 7 COs
committed, 10 COs

aborted, 10 COs

Figure 7.12: Impact of number of COs on decision time

ciency of the PeRTAC protocol as shown in Figure 7.13. The slight increase
of the number of messages exchanged per node is due to the fact that every
P-MN needs to send its vote to more COs as the number of COs increases.
It is noteworthy to mention that selecting higher number COs is primarily to
tolerate CO failures during the MT execution. Our simulations show that a
higher CO failure-tolerance does only slightly impact the message efficiency.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 40 80 120 160 200
 0

 0.2

 0.4

 0.6

 0.8

 1

M
es

sa
g

es
 E

xc
h

an
g

ed
 P

er
 P

-M
N

Pa
rt

it
io

n
in

g
 D

eg
re

e

#Nodes

partioning degree
committed, 3 COs

aborted, 3 COs
committed, 5 COs

aborted, 5 COs
committed, 7 COs

aborted, 7 COs
committed, 10 COs

aborted, 10 COs

Figure 7.13: Impact of number of COs on message complexity

7.5. CHAPTER SUMMARY 129

7.4.3 Discussion

Our simulation studies in this chapter show that the PeRTAC approach takes
advantage of the access to the infrastructure whenever possible to achieve
better performance especially with respect to the transactional service avail-
ability by increasing the commit rate of initiated mobile transactions and
with respect to commit latency by reducing the commit decision time of these
transactions. Similar to FT-PPTC and ParTAC, the PeRTAC commit proto-
col takes also into consideration application requirements by defining an ap-
propriate transaction lifetime for each initiated mobile transaction. We have
shown through our evaluation studies the existence of a trade-off between
the chosen lifetime and the performance of the PeRTAC protocol in terms
of commit rate, decision time and message complexity (the same trade-off
was observed in the evaluation of the FT-PPTC and ParTAC approaches in
Chapter 5 and Chapter 6 respectively). By defining an appropriate lifetime,
the application also limits and controls the cost of the initiated transactions.

7.5 Chapter Summary

As each evolving mobile environment necessitates new commit constraints,
the current approaches geared towards dedicated scenarios, often do not pro-
vide comprehensive and generic commit capabilities. Thus we developed
in this chapter a generic and evolvable atomic commit solution that benefits
from the presence of an infrastructure and delivers best-effort results in its ab-
sence. We have introduced the main challenges for designing atomic commit
protocols faced in generic mobile environments. We presented PeRTAC, an
efficient perturbation-resilient commit protocol that provides strict atomicity
in spite of frequent mobile environment perturbations. Especially PeRTAC
fills the gap between solutions provided for mobile infrastructure-based and
mobile ad-hoc (i.e., infrastructure-less) environments.

130 CHAPTER 7. GENERIC ENVIRONMENTS

Chapter 8

Conclusions and Future
Research

In this thesis we have investigated atomic commit protocols in mobile en-
vironments. The existing atomic commit protocols are appropriate for
some application scenarios, however, they show significant drawbacks in
perturbation-prone scenarios. In this thesis we developed a perturbation-
resilient framework for atomic commit protocols in mobile environments.

This chapter concludes the thesis by summarizing our main contributions
and discussing their extendability. In this light, we sketch possible extensions
of our framework to consider other dependability aspects like security and
to deploy the developed framework of atomic commit protocols in real world
scenarios. We believe that the work presented in this thesis opens up new
interesting research directions.

131

132 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

8.1 Overall Thesis Contributions

The main goal of the thesis was to study perturbation-resilient atomic commit
protocols in mobile environments. Our research effort was driven by the
current need for perturbation-resilient and efficient solutions in the studied
mobile environment where perturbations are part of the normal behavior of
the environment and not an exception. Accordingly, this section discusses
the key contributions made by the research presented in this thesis. Driven
by the research problem introduced in Section 1.1 and grouped by topic, the
thesis contributions are surveyed and their relevance is discussed.

8.1.1 Investigation of Perturbations in the Mobile En-
vironment

In order to build the background of our study of perturbation-resilient atomic
commit protocols in mobile environments, a perturbation-resilient framework
was developed in this work to provide strict atomicity for transactions in mo-
bile environments. The main goal of this framework was to investigate all
the perturbations in mobile environments that can affect and disturb the
normal execution of atomic commit protocols in such perturbation-prone
environments. This study builds the background and facilitates the deploy-
ment of a wide range of application scenarios in mobile environments where
strict atomicity is a requirement. To build our framework, we studied for ev-
ery identified perturbation the mechanisms and techniques used to tolerate
it. The identified and presented mechanisms and techniques represent the
building blocks of our modular framework of perturbation-resilient transac-
tion atomic commit protocols for mobile infrastructure-based, mobile ad-hoc
and mobile generic environments.

8.1.2 A Modular Framework of Perturbation-Resilient
Transaction Atomic Commit Protocols

The next step in this thesis was building a modular framework of
perturbation-resilient atomic commit protocols in the different identified
types of mobile environments, i.e. infrastructure-based, ad-hoc and generic
environments.

Mobile Infrastructure-based Environment: We started building our
modular framework for perturbation-resilient atomic commit protocols in

8.1. OVERALL THESIS CONTRIBUTIONS 133

mobile environments by providing a family of progressive mobile transac-
tion commit protocols (PPTC, FT-PPTC, FT-PPTC-Rec) for three common
classes of mobile infrastructure-based environments. This family of solutions
is extendable and adaptable in its nature which allows the designer to cus-
tomize protocol resilience to a subset of all possible perturbations based on
the overall costs involved such as message complexity and costs for bandwidth
utilization.

We have also demonstrated, using simulations and real experiments, the
efficiency, scalability and level of perturbation-resilience added by using our
proposed perturbation-tolerance techniques. We showed in our studies the
utility of the different building blocks we developed in our framework to cope
with perturbations specific to the mobile infrastructure-based environment.
We demonstrated how these blocks can be combined during design time to
adapt the atomic commit protocol to the characteristics and perturbations
of the considered mobile environment. Overall, the family of protocols devel-
oped for mobile infrastructure-based environments outperforms the existing
solutions with respect to efficiency and fault-tolerance. This is achieved by
adding a tolerable overhead in terms of message complexity and transaction
execution times.

Mobile Ad-Hoc Environment: Next, we extended our modular frame-
work for perturbation-resilient atomic commit protocols in mobile environ-
ments by introducing ParTAC, a novel atomic transaction commit protocol
that provides strict atomicity in mobile ad-hoc environments in spite of fre-
quent perturbations in this environment and especially network partitioning.
ParTAC is independent from the considered mobile ad-hoc environment and
it is generalized since it is not based on hard assumptions like consensus and
group membership. Being atomic and efficient, and maximizing the commit
rate, ParTAC guarantees data consistency while allowing for high transac-
tional service availability and scalability.

Transactional services represent a key part of service oriented architec-
tures and increasingly for mobile ad-hoc environments, vehicular ad-hoc
networks etc. ParTAC guarantees consistency of data and maximizes the
commit rate. This is achieved for mobile ad-hoc environments showing an
arbitrary degree of perturbations with respect to network partitioning as il-
lustrated in our performance evaluation studies. Furthermore, the ParTAC
approach helps in reducing the transaction decision time resulting in a bet-
ter transactional throughput and consequently in a better scalability. This
allows maximizing the number of users that can use the database resources
on resource-limited mobile nodes.

134 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

Mobile Generic Environment: Finally, the modular framework for
perturbation-resilient atomic commit protocols in mobile environments was
augmented by the PeRTAC protocol that represents a generic and evolv-
able atomic commit solution in mobile generic environments. PeRTAC ben-
efits from the presence of an infrastructure and delivers best-effort results
in its absence. PeRTAC is an efficient perturbation-resilient commit pro-
tocol that provides strict atomicity in spite of frequent mobile environment
perturbations. Especially, PeRTAC fills the gap between solutions provided
for mobile infrastructure-based and mobile ad-hoc (i.e., infrastructure-less)
environments.

The performance evaluation of PeRTAC shows that this approach takes
advantage of accessing the wired infrastructure whenever possible to achieve
better performance especially: (i) with respect to the transactional service
availability by increasing the commit rate of initiated mobile transactions
and (ii) with respect to commit latency by reducing the commit decision
time of these transactions. Furthermore, our evaluation studies have shown
the existence of a trade-off between the chosen lifetime and the performance
of the PeRTAC protocol in terms of commit rate, decision time and message
complexity. By defining an appropriate lifetime, the application also limits
and controls the cost of the initiated transactions.

8.2 Application Scenario Implementation

Despite the fact that almost all protocols described in this thesis where im-
plemented on mobile devices using the J2ME (Java 2 Micro Edition) [Java
ME], we targeted also the implementation of a complete application scenario
to show how the work done in this thesis can be useful in real life. We
have chosen the coordination across autonomous vehicles application sce-
nario described in Section 4.1. We describe now briefly the application and
the corresponding real world implementation.

8.2.1 Application Scenario Description

Data-based agreement is increasingly used to implement traceable coordina-
tion across mobile entities such as ad-hoc networked (autonomous) vehicles.
In our implementation, we focused on data-based agreement using database
transactions where mobile entities agree on a set of coordinated tasks that
need to be performed by them in an atomic way. The data about the agreed
tasks and their corresponding stakeholders are kept in local databases as
a proof for the obtained agreement. This proof might be needed by users

8.2. APPLICATION SCENARIO IMPLEMENTATION 135

and regularities/authorities involved depending on the application scenario.
Through this application scenario we demonstrate our effort to provide for
partition-aware atomic commit protocols for transactional data-based agree-
ment.

Coordination across autonomous networked vehicles is an excellent sce-
nario for atomic transaction protocols in mobile ad-hoc environments. It
presents a potential application where mobile transactions are needed for the
purpose of coordination for safe and traceable navigation of unmanned au-
tonomous networked vehicles. Like airplanes, we assume in our application
scenario that autonomous vehicles are equipped with black boxes which are
basically mobile databases. Figure 4.1 shows four unmanned vehicles at a
traffic intersection. These vehicles need to agree on an order how they will
pass the intersection. Prior to their actual passing, this order information
needs to be agreed upon and recorded atomically to their corresponding black
boxes. This information would be absolutely useful for insurance companies
or the police department in case an accident occurs between these vehicles.

Figure 8.1: LEGO Mindstorms equipped with HTC PDA

8.2.2 Prototype Implementation

To demonstrate the inter-vehicle scenarios described above, we use four
LEGO Mindstorms NXT 2.0 robots [Lego Mindstorms] equipped with ul-
trasonic and color sensor to play the role of the unmanned vehicles. We
select the HTC Touch Diamond 2 [HTC Touch Diamond 2] Personal Digital
Assistant (PDA) as our development platform as it provides a WiFi inter-
face, large memory and a good development environment. Every robot is
equipped with one PDA (Figure 8.1) that represents the computation and
communication unit of the unmanned vehicle. The PDA sends commands

136 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

to the robot via Bluetooth. These commands control the movement of the
robot and sensing activity of its environment.

The unmanned vehicles communicate with each other using WiFi (IEEE
802.11b/g) interfaces of their corresponding computation and communica-
tion units (PDAs). We implement our application using J2ME (Java 2 Mi-
cro Edition). For this purpose, we install on every PDA a J2ME virtual
machine (IBM J9 MIDP 2.0 [IBM J9]). We install on every PDA a mobile
database (Mimer Mobile SQL [Mimer SQL Mobile]) needed for the realiza-
tion of the black boxes described in the inter-vehicle coordination scenarios
in Section 8.2.1. We implement the ParTAC protocol described in Chapter 6
to coordinate the unmanned vehicles passage at the traffic intersection. Us-
ing their sensors, the robots are able to detect their position in the field and
the information is transmitted to their corresponding PDAs via Bluetooth.
Every vehicle in our demonstration has a unique ID.

Figure 8.2: Intersection scenario

8.2.3 Demonstration

We demonstrated our application scenario in the 11th International Confer-
ence on Mobile Data Management (MDM 2010), held in the city of Kansas

8.3. OPEN ENDS - BASIS FOR FUTURE WORK 137

City, Missouri, from May 23rd to May 26th, 2010. For our demonstration
we placed the vehicles (LEGO Mindstorms NXT 2.0 equipped with a PDA
each) on a virtual traffic intersection as shown in Figure 8.2. Using their sen-
sors the vehicles are able to detect an intersection. The first vehicle which
reaches the intersection will stop and detect the presence of other vehicles in
the intersection by broadcasting a HELLO message. Every vehicle that re-
ceives this message, responds with its ID. Upon receiving the reply messages,
the initiator vehicle sends a transaction to all the other vehicles present in
the intersection. The order of passage of the vehicles is determined by the
order of the messages received from the other vehicles present in the intersec-
tion. Using the ParTAC protocol, the application decides either to commit
or abort the transaction. In case the transaction commits, the intersection
passage order of the unmanned vehicles is saved in the database and send to
all other vehicles.

8.3 Open Ends - Basis for Future Work

While the work presented in this thesis addressed the research problem driv-
ing it towards making the discussed contributions, it also opened new and
interesting research perspectives along its way. In the following, we briefly
present some of the most promising ones.

• We studied in this thesis atomic commit protocols in mobile environ-
ments which are deployed mainly to guarantee the Atomicity and Con-
sistency transaction properties (we refer to the transaction ACID prop-
erties defined in Chapter 1). The framework developed in this thesis
can be extended to investigate concurrency control protocols (which
ensure the Isolation property), recovery and replication protocols (to
guarantee the Durability property).

• Another important issue that is gaining importance in mobile environ-
ments is security. In this thesis, we assumed all entities to be trusted.
Eventually, the design of atomic commit protocols will also have to in-
corporate concepts that protect against malicious nodes. One possible
research direction in this field is to study the behavior of mobile trans-
action users and store this behavior in user profiles that can be used in
future to detect abnormal and eventually malicious behavior of nodes
participating in the mobile transaction execution.

• The multiple coordinator strategy used in the mobile ad-hoc and
generic environments showed its strengths in providing partition-
tolerant solutions for the atomic transaction commit problem in

138 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

infrastructure-less scenarios. In our evaluation studies, we adopted
a scheme of selecting randomly the preselected COs from the set of
P-MNs. It will be interesting to study other schemes such selecting the
preselected COs based on their connectivity, computational and stor-
age capabilities and mobility patterns compared to others P-MNs and
to identify some heuristics which define how this selection should be
performed.

• Another interesting extension of this work is to investigate the atomic
transaction commit problem in wireless sensor networks which repre-
sent an emerging and promising research field. Wireless sensor networks
can be seen as a special case of mobile ad-hoc environments where the
nodes (sensor nodes) are significantly constrained in computational,
storage and energy resources compared to laptops, PDAs and mobile
phones.

• Finally, the extension of the implementation of the protocols performed
during this work to other real-world deployments. Especially it is in-
teresting to develop a testing framework to assess the perturbation-
resilience of the developed approaches in these real-world deployments.

Bibliography

Emile Aarts, Rick Harwig, and Martin Schuurmans. Ambient intelligence.
In The Invisible Future: The Seamless Integration Of Technology Into Ev-
eryday Life. McGraw-Hill Companies, 2001.

Rafael Alonso and Henry F. Korth. Database system issues in nomadic
computing. In Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 388–392, 1993.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

Christophe Bobineau, Philippe Pucheral, and Maha Abdallah. A unilateral
commit protocol for mobile and disconnected computing. In Proceedings of
the 12th International Conference on Parallel and Distributed Computing
and Systems (PDCS), 2000.

Christophe Bobineau, Cyril Labbé, Claudia Lucia Roncancio, and Patri-
cia Serrano-Alvarado. Comparing transaction commit protocols for mo-
bile environments. In Proceedings of the 15th International Workshop on
Database and Expert Systems Applications, pages 673–677, 2004.

BonnMotion. BonnMotion: The BonnMotion Mobilty Sce-
nario Generation and Analysis Tool. http://iv.cs.uni-
bonn.de/wg/cs/applications/bonnmotion/, 2009.

Joos-Hendrik Bose, Stefan Böttcher, Le Gruenwald, Sebastian Obermeier,
Heinz Schweppe, and Thorsten Steenweg. An integrated commit proto-
col for mobile network databases. In Proceedings of the 9th International
Database Engineering & Application Symposium (IDEAS), pages 244–250,
2005.

Stefan Böttcher, Le Gruenwald, and Sebastian Obermeier. A failure tolerat-
ing atomic commit protocol for mobile environments. In Proceedings of the

139

140 BIBLIOGRAPHY

8th International Conference on Mobile Data Management (MDM), pages
158–165, 2007.

Yuri Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. Overview
of multidatabase transaction management. VLDB Journal, 1(2):181–239,
1992.

Linda Briesemeister and Günter Hommel. Localized group membership ser-
vice for ad hoc networks. In Proceedings of the International Workshop on
Ad Hoc Networking (IWAHN), pages 94–100, 2002.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta
Jetcheva. A performance comparison of multi-hop wireless ad hoc network
routing protocols. In Proceedings of the 4th annual ACM/IEEE interna-
tional conference on Mobile computing and networking (MobiCom), pages
85–97, 1998.

Ernest Chang and Rosemary Roberts. An improved algorithm for decentral-
ized extrema-finding in circular configurations of processes. Communica-
tions of the ACM, 22(5):281–283, 1979.

Panos K. Chrysanthis. Transaction processing in a mobile computing envi-
ronment. In Proceedings of the IEEE Workshop on Advances in Parallel
and Distributed Systems (APADS), pages 77–82, 1993.

Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in
a partitioned network: a survey. ACM Computing Surveys, 17(3):341–370,
1985.

Margaret H. Dunham, Abdelsalam Helal, and Santosh Balakrishnan. A mo-
bile transaction model that captures both the data and movement behav-
ior. Mobile Networks and Applications, 2(2):149–162, 1997.

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. John-
son. A survey of rollback-recovery protocols in message-passing systems.
ACM Computing Surveys, 34(3):375–408, 2002.

George H. Forman and John Zahorjan. The challenges of mobile computing.
IEEE Computer, 27(4):38–47, 1994.

Hector Garcia-Molina. Elections in a distributed computing system. IEEE
Transactions on Computers, 31(1):48–59, 1982.

BIBLIOGRAPHY 141

Hector Garcia-Molina. Using semantic knowledge for transaction processing
in a distributed database. ACM Transactions on Database Systems, 8(2):
186–213, 1983.

Gartner. Gartner Consulting Firm. http://www.fortune500global.com/news/
number-of-computers-sold-worldwide-in-2009-rose-gartner/, 2009.

Jim Gray. Notes on data base operating systems. In Operating Systems, An
Advanced Course, pages 393–481, January 1978.

Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Transactions on Database Systems, 31(1):133–160, March 2006.

Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers of
replication and a solution. pages 372–381, 1998.

Jörg Hähner, Dominique Dudkowski, Pedro José Marrón, and Kurt Rother-
mel. A quantitative analysis of partitioning in mobile ad hoc net-
works. ACM SIGMETRICS Performance Evaluation Review, 32(1):400–
401, 2004.

Jörg Hähner, Dominique Dudkowski, Pedro José Marrón, and Kurt Rother-
mel. Quantifying network partitioning in mobile ad hoc networks. In Pro-
ceedings of the 8th International Conference on Mobile Data Management
(MDM), pages 174–181, 2007.

Theo Härder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys, 15(4):287–317, 1983.

Theo Härder and Andreas Reuter. Principles of transaction-oriented database
recovery. Morgan Kaufmann Publishers Inc., 1994.

Xiaoyan Hong, Mario Gerla, Guangyu Pei, and Ching-Chuan Chiang. A
group mobility model for ad hoc wireless networks. In Proceedings of the
2nd ACM international workshop on Modeling, analysis and simulation of
wireless and mobile systems (MSWiM), pages 53–60, 1999.

HTC Touch Diamond 2. HTC Touch Diamond 2: Personal Digital Assistant.
http://www.htc.com/de/product/touchdiamond2/overview.html, 2010.

Elgan Huang, Wenjun Hu, Jon Crowcroft, and Ian Wassell. Towards com-
mercial mobile ad hoc network applications: A radio dispatch system. In
Proceedings of the 6th ACM international symposium on Mobile ad hoc
networking and computing (MobiHoc), pages 355–365, 2005.

142 BIBLIOGRAPHY

IBM DB2. IBM Software Products, DB2 Product Family. http://www-
01.ibm.com/software/data/db2/, 2009.

IBM DB2 Everyplace. IBM Software Products, DB2 Everyplace.
http://www-01.ibm.com/software/data/db2/everyplace/, 2009.

IBM J9. IBM J9: IBM Java Virtual Machine. http://www-
01.ibm.com/software/wireless/weme/, 2010.

Tomasz Imielinski and B. R. Badrinath. Mobile wireless computing: chal-
lenges in data management. Communications of the ACM, 37(10):18–28,
1994.

Information Week, 2009. Information Week business technology magazine.
http://www.informationweek.com/news/internet/webdev/showArticle.
jhtml?articleID=222001329, 2009.

J-Sim. J-Sim: The J-Sim Website. http://sites.google.com/site/jsimofficial/,
2005.

J-Sim Wireless. J-Sim Wireless: The J-Sim Wireless Extension Tutorial.
http://www.j-sim.org/v1.3/wireless/wireless tutorial.htm, 2005.

Java ME. Java ME: Java 2 Micro Edition. http://java.sun.com/javame/,
2010.

Randi Karlsen. An adaptive transactional system - framework and service
synchronization. In Proceedings of the 5th International Symposium on
Distributed Objects and Applications (DOA), pages 1208–1225, 2003.

Abdelmajid Khelil, Pedro José Marrón, Christian Becker, and Kurt Rother-
mel. Hypergossiping: A generalized broadcast strategy for mobile ad hoc
networks. Ad Hoc Networks, 5(5):531–546, 2007.

Abdelmajid Khelil, Faisal Karim Shaikh, Brahim Ayari, and Neeraj Suri.
MWM: a map-based world model for event-driven wireless sensor networks.
In Proceedings of the 2nd International Conference on Autonomic Com-
puting and Communication Systems (AUTONOMICS), pages 1–10, 2008.

Abdelmajid Khelil, Faisal Karim Shaikh, Piotr Szczytowski, Brahim Ayari,
and Neeraj Suri. Map-based design for autonomic wireless sensor networks.
In Autonomic Communication, pages 309–326. Springer US, 2009.

BIBLIOGRAPHY 143

Abdelmajid Khelil, Christian Reinl, Brahim Ayari, Faisal Karim Shaikh, Pi-
otr Szczytowski, Azad Ali, and Neeraj Suri. Sensor cooperation for a sus-
tainable quality of information. In Pervasive Computing and Networking.
John Wiley, (accepted, to appear), 2010.

James J. Kistler and Mahadev Satyanarayanan. Disconnected operation in
the coda file system. ACM Transactions on Computer Systems, 10(1):
3–25, 1992.

Kyong-I Ku and Yoo-Sung Kim. Moflex transaction model for mobile hetero-
geneous multidatabase systems. In Proceedings of the 10th International
Workshop on Research Issues in Data Engineering (RIDE), page 39, 2000.

Vijay Kumar. A timeout-based mobile transaction commitment protocol. In
Proceedings of the East-European Conference on Advances in Databases
and Information Systems, pages 339–345, 2000. ISBN 3-540-67977-4.

Vijay Kumar and Margaret H. Dunham. Defining location data dependency,
transaction mobility and commitment. TR 98-CSE-1, Southern Methodist
Univ., February 1998.

Vijay Kumar, Nitin Prabhu, Magaret H. Dunham, and Ayse Yasemin Sey-
dim. TCOT-A timeout-based mobile transaction commitment protocol.
IEEE Transactions on Computers, 51(10):1212–1218, 2002.

Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

Leslie Lamport and Mike Massa. Cheap paxos. In Proceedings of the In-
ternational Conference on Dependable Systems and Networks (DSN), page
307, 2004.

Lego Mindstorms. LEGO Mindstorms. LEGO Website.
http://mindstorms.lego.com, 2010.

Sanjay Kumar Madria and Bharat Bhargava. A transaction model to improve
data availability in mobile computing. Distributed Parallel Databases, 10
(2):127–160, 2001.

Navneet Malpani, Jennifer L. Welch, and Nitin Vaidya. Leader election algo-
rithms for mobile ad hoc networks. In Proceedings of the 4th international
workshop on Discrete algorithms and methods for mobile computing and
communications (DIALM), pages 96–103, 2000.

144 BIBLIOGRAPHY

Salahuddin Mohammad Masum, Amin Ahsan Ali, and Mohammad Touhid
youl Islam Bhuiyan. Asynchronous leader election in mobile ad hoc net-
works. In Proceedings of the 20th International Conference on Advanced
Information Networking and Applications (AINA), pages 827–831, 2006.

Mimer SQL Mobile. Mimer SQL Mobile: Mimer Relational DBMS for mobile
devices. http://www.mimer.com/leftright.asp?secId=172, 2010.

C. Mohan and B. Lindsay. Efficient commit protocols for the tree of pro-
cesses model of distributed transactions. ACM SIGOPS Operating Systems
Review, 19(2):40–52, 1985.

Nadia Nouali, Anne Doucet, and Habiba Drias. A two-phase commit protocol
for mobile wireless environment. In Proceedings of the 16th Australasian
Database Conference (ADC), pages 135–143, 2005.

Nadia Nouali-Taboudjemat and Habiba Drias. A policy-based context-aware
approach for the commitment of mobile transactions. In Proceedings of
the 8th international conference on New technologies in distributed systems
(NOTERE), pages 1–11, 2008.

Nadia Nouali-Taboudjemat, Lynda Boukantar, and Habiba Drias. Perfor-
mance evaluation of atomic commit protocols for mobile transactions. In-
ternational Journal of Intelligent Information and Database Systems, 1(2):
122–155, 2007.

Sebastian Obermeier, Stefan Böttcher, and Dominik Kleine. CLCP-A dis-
tributed cross-layer commit protocol for mobile ad hoc networks. In Pro-
ceedings of the 6th International Symposium on Parallel and Distributed
Processing with Applications (ISPA), pages 361–370, 2008.

Sebastian Obermeier, Stefan Böttcher, Martin Hett, Panos K. Chrysan-
this, and George Samaras. Blocking reduction for distributed transaction
processing within manets. Distributed Parallel Databases, 25(3):165–192,
2009.

Oracle Database Lite. Oracle Corporation, Oracle Database
Lite 10g: The Internet Platform For Mobile Computing.
http://www.oracle.com/technology/products/lite/index.html, 2009.

Oracle Database Standard Edition. Oracle Cor-
poration, Oracle Database 11g Standard Edition.
http://www.oracle.com/database/standard edition.html, 2009.

BIBLIOGRAPHY 145

Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers. ACM
SIGCOMM Computer Communication Review, 24(4):234–244, 1994.

Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance
vector routing. In Proceedings of the 2nd IEEE Workshop on Mobile Com-
puting Systems and Applications (WMCSA), pages 90–100, 1999.

Evaggelia Pitoura and Bharat Bhargava. Revising transaction concepts for
mobile environments. In Proceedings of the 1st IEEE Workshop on Mobile
Computing Systems and Applications, pages 164–168, 1994.

Evaggelia Pitoura and Bharat Bhargava. Maintaining consistency of data in
mobile distributed environments. In Proceedings 15th International Con-
ference on Distributed Computing Systems (ICDCS), pages 404–413, 1995.

Evaggelia Pitoura and Bharat Bhargava. Data consistency in intermittently
connected distributed systems. IEEE Transactions on Knowledge and Data
Engineering, 11(6):896–915, 1999.

Dhiraj K. Pradhan, P. Krishna, and Nitin H. Vaidya. Recovery in mobile
wireless environment: Design and trade-off analysis. In Proceedings of
the 26th International Symposium on Fault-Tolerant Computing (FTCS),
pages 16–25, 1996.

Gruia-Catalin Roman, Qingfeng Huang, and Ali Hazemi. Consistent group
membership in ad hoc networks. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE), pages 381–388, 2001.

Patricia Serrano-Alvarado. Transactions Adaptables pour les Environnements
Mobiles. PhD thesis, Joseph-Fourier University, Grenoble, France, 2004.

Patricia Serrano-Alvarado, Claudia Roncancio, Michel Adiba, and Cyril
Labbé. Adaptable mobile transactions and environment awareness. In
Proceedings of the 19èmes Journées Bases de Données Avancées (BDA),
2003.

Patricia Serrano-Alvarado, Claudia Roncancio, and Michel Adiba. A sur-
vey of mobile transactions. Distributed Parallel Databases, 16(2):193–230,
2004a.

Patricia Serrano-Alvarado, Claudia Roncancio, Michel Adiba, and Cyril
Labbé. Context aware mobile transactions. In Proceedings of the 5th
International Conference on Mobile Data Management (MDM), page 167,
2004b.

146 BIBLIOGRAPHY

Patricia Serrano-Alvarado, Claudia Lucia Roncancio, Michel Adiba, and
Cyril Labbé. An Adaptable Mobile Transaction Model for Mobile Environ-
ments. International Journal Computer Systems Science and Engineering
– Special issue on Mobile Databases, 20, 3, 2005.

Faisal Karim Shaikh, Abdelmajid Khelil, Brahim Ayari, Piotr Szczytowski,
and Neeraj Suri. Generic information transport for wireless sensor net-
works. In Proceedings of the 3rd International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC), pages 27–34,
2010.

SimJava. The SimJava discrete event-based simulator.
http://www.dcs.ed.ac.uk/home/hase/simjava, 2004.

Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981 ACM
SIGMOD International Conference on Management of Data, pages 133–
142, 1981.

Dale Skeen and Michael Stonebraker. A formal model of crash recovery in
a distributed system. IEEE Transactions on Software Engineering, 9(3):
219–228, 1983.

D. Swaroop. String Stability of Interconnected Systems: An application to
Platooning in Automated Highway Systems. PhD thesis, University of Cal-
ifornia, Berkeley, USA, 1994.

D. Swaroop and J.K. Hedrick. String stability of interconnected systems.
IEEE Transactions on Automatic Control, 41(3):349–357, 1996.

Hung-Ying Tyan, Ahmed Sobeih, and Jennifer C. Hou. Design, realization
and evaluation of a component-based, compositional network simulation
environment. Simulation, 85(3):159–181, 2009.

Amin Vahdat and David Becker. Epidemic routing for partially-connected ad
hoc networks. Technical Report Tech. Rep. CS-200006, Duke University,
2000.

Sudarshan Vasudevan, Jim Kurose, and Don Towsley. Design and analysis
of a leader election algorithm for mobile ad hoc networks. In Proceedings
of the 12th IEEE International Conference on Network Protocols (ICNP),
pages 350–360, 2004.

Gary D. Walborn and Panos K. Chrysanthis. Supporting semantics-based
transaction processing in mobile database applications. In Proceedings of

BIBLIOGRAPHY 147

14th Symposium on Reliable Distributed Systems (SRDS), pages 31–40,
1995.

Gary D. Walborn and Panos K. Chrysanthis. Transaction processing in pro-
motion. In Proceedings of ACM symposium on Applied computing (SAC),
pages 389–398, 1999.

Wanxia Xie. Supporting Distributed Transaction Processing Over Mobile and
Heterogeneous Platforms. PhD thesis, Georgia Institute of Technology,
Georgia, USA, 2005.

L. H. Yeo and Arkady B. Zaslavsky. Submission of transactions from mobile
workstations in a cooperative multidatabase processing environment. In
Proceedings of the 14th International Conference on Distributed Computing
Systems (ICDCS), pages 372 – 379, 1994.

148 BIBLIOGRAPHY

Index

2PC, 14, 45, 61, 65
3PC, 15, 45

ACID properties, 3
agent concept, 49
application scenarios, 2, 5, 40, 134
atomicity, 3, 137
atomicity properties, 70, 92, 118

consistency, 70, 92, 119
non-triviality, 71, 92, 119
stability, 70, 92, 118
termination, 71, 92, 119
validity, 71, 92, 119

bank/stock transactions, 5, 40

CLCP, 24, 86
CO2PC, 21, 72
commit rate, 42, 77, 79, 94, 96, 98,

101, 103, 121, 124–126
communication failures, 36
consistency, 3, 137
coordination across autonomous vehi-

cles, 40, 134
core phase, 49, 61

decision time, 85, 86, 94, 94, 97, 98,
102, 103, 121, 123, 125, 127

decoupling, 48, 54, 61, 66, 76, 81, 109
delay-aware, 43, 105, 108
delay-tolerance, 43
disaster management, 42
durability, 4, 137

efficiency, 43, 72, 94, 121

environmental constraints, 35, 44

fixed node failures, 37, 53
framework

application scenarios, 40
design requirements, 42
environmental constraints, 44

energy, 47
heterogeneity of nodes and

links, 45
unstable storage, 46

message losses, 52
methodology, 44
network disconnections, 47

permanent, 51
transient predictable, 50
transient unpredictable, 51

network partitioning, 54
node failures, 52

fixed node failures, 53
permanent mobile node fail-

ures, 53
transient mobile node failures,

52
FT-PPTC commit

base protocol, 61
baseprotocol

coordinator, 63
initiator mobile node, 62
participant fixed node, 65
participant mobile node, 65

correctness basis, 70
fault-tolerant and recovery proto-

col, 68

149

150 INDEX

fault-tolerant coverage protocol,
66

mobile node agent, 67
overview, 60
performance evaluation, 72

comparison to other existing
approaches, 72

simulation methodology and re-
sults, 74

Group-based transaction commit, 26,
86

health-care ambient intelligence, 5,
42

Integrated commit, 25, 86
isolation, 3, 137

lifetime, 43, 46, 54, 64, 75, 85, 86, 88,
95, 110, 113, 122, 125

M-2PC, 22, 48, 72
message loss, 36, 52
mobile ad-hoc environment, 30
mobile environment models

perturbation model, 33
classification of perturbations,

33
system model, 30
transaction model, 33

mobile gaming, 41
mobile generic environment, 31
mobile infrastructure-based environ-

ment, 30
mobile node agent, 48, 67, 109, 118

network disconnection, 36, 47
network partitioning, 37, 54
node failures, 37, 52

ParTAC Commit
correctness basis, 92

overview, 86
performance evaluation, 94

discussion, 103
methodology and simulation

settings, 94
simulation results, 95

protocol operations
participant mobile nodes, 87
preselected coordinators, 88

Paxos commit, 17, 24
permanent mobile node failures, 37,

53
PeRTAC Commit

correctness basis, 118
overview, 108
performance evaluation, 121

discussion, 129
methodology and simulation

settings, 121
simulation results, 123

protocol operations
coordinators, 113
mobile node agents, 118
participant fixed nodes, 118
participant mobile nodes, 113

perturbation-tolerance and recovery,
42

pre-commit phase, 48, 61

resource blocking time, 43, 72, 77, 79,
82, 92, 117

scalability, 43, 80, 94, 121
semantic atomicity, 21

TCOT, 19, 45, 72
thesis

contributions, 6
modularity of the proposed

framework, 7
perturbation-resilient atomic

commit framework, 7

INDEX 151

The FT-PPTC commit Ap-
proach, 7

the ParTAC commit approach,
8

the PeRTAC commit approach,
8

problem statement, 4
resulted publications, 9
structure, 10

throughput, 43, 72, 76, 105, 124
transient mobile node failures, 37, 52

UCM, 18, 48, 72

152 INDEX

Curriculum Vitae

Personal Data

Name: Dipl.-Inform. Brahim Ayari

Date of birth: June 22nd, 1977

Place of birth: Tunis, Tunisia

School Education

1983-1989 Primary School, “École Primaire Khaznadar Denden”, Tunis,
Tunisia

1989-1996 High School, “Lycée Secondaire du Bardo”, Tunis, Tunisia

University Education

1996-1997 German Language Course – Studienkolleg, Ruprecht-Karls-
Universität Heidelberg, Germany

1997-1999 Vordiplom in Computer Science – Technische Universität
Kaiserslautern, Kaiserslautern, Germany

1999-2004 Diplom in Computer Science – Technische Universität Kaiser-
slautern, Kaiserslautern, Germany

2004-2010 Ph.D. in Computer Science – Technische Universität Darm-
stadt, Darmstadt, Germany

153

154 INDEX

	Title page
	Abstract
	Abstract
	Kurzfassung (german)
	Kurzfassung
	Zusammenfassung
	Acknowledgements
	Acknowledgements
	Acknowledgement
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Algorithms
	List of Algorithms
	Introduction and Problem Context
	Problem Statement
	Thesis Contributions
	Publications Resulting from the Thesis
	Thesis Structure

	State of the Art and Practice
	Classical Transaction Commit Protocols
	Two Phase Commit
	Three Phase Commit
	Paxos Commit

	Commit Protocols for Mobile Infrastructure-Based Environments
	Unilateral Commit for Mobile
	Transaction Commit On Timeout
	Combination of Optimistic Approach and 2PC
	Mobile Two-Phase Commit

	Commit Protocols for Mobile Ad-Hoc Environments
	Cross Layer Commit
	Integrated Commit
	Group Based Transaction Commit

	Chapter Summary

	Mobile Environment Models
	System Model
	Transaction Model
	Perturbation Model
	Classification of Perturbations
	Operational/Environmental Constraints
	Failure Modes

	Chapter Summary

	Perturbation-Resilient Atomic Commit Framework
	Application Scenarios
	Bank/Stock Transactions
	Coordination across Autonomous Vehicle Systems
	Mobile Gaming
	Disaster Management
	Health-Care Ambient Intelligence

	Design Requirements and Issues
	Perturbation-tolerance and recovery
	Delay-tolerance/-awareness
	Efficiency
	Scalability

	Methodology
	Coping with the Environmental Constraints
	Heterogeneity of Nodes and Links
	Unstable Storage
	Energy

	Tolerating Network Disconnections
	Transient Predictable Network Disconnections
	Transient Unpredictable Network Disconnections
	Permanent Network Disconnections

	Tolerating Message Losses
	Tolerating Node Failures
	Transient Mobile Node Failures
	Permanent Mobile Node Failures
	Fixed Node Failures

	Tolerating Network Partitioning
	Chapter Summary

	Atomic Commit for Infrastructure-based Environments
	Overview of our Approach: The FT-PPTC Commit
	Base Protocol: PPTC
	Activities of the initiator mobile node
	Activities of the coordinator
	Activities of a participant mobile node
	Activities of a participant fixed node

	Fault-Tolerant Coverage Protocol: FT-PPTC
	Activities of a mobile node agent

	Fault-Tolerant and Recovery Protocol: FT-PPTC-Rec
	Correctness Basis
	Performance Evaluation
	Comparison to other Existing Approaches
	Simulation Methodology and Results

	Chapter Summary

	Atomic Commit for Ad-Hoc Environments
	Overview of our Approach: The ParTAC Commit
	Protocol Operations
	Activities of Participant Mobile Nodes
	Activities of Preselected Coordinators

	Correctness Basis
	Performance Evaluation
	Methodology and Simulation Settings
	Simulation Results
	Discussion

	Chapter Summary

	Atomic Commit for Generic Environments
	Overview of our Approach: The PeRTAC Commit
	Protocol Operations
	Activities of Participant Mobile Nodes
	Activities of Coordinators
	Activities of Mobile Node Agents
	Activities of Participant Fixed Nodes

	Correctness Basis
	Performance Evaluation
	Methodology and Simulation Settings
	Simulation Results
	Discussion

	Chapter Summary

	Conclusions and Future Research
	Overall Thesis Contributions
	Investigation of Perturbations in the Mobile Environment
	A Modular Framework of Perturbation-Resilient Transaction Atomic Commit Protocols

	Application Scenario Implementation
	Application Scenario Description
	Prototype Implementation
	Demonstration

	Open Ends - Basis for Future Work

	Bibliography
	Index

