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A B S T R A C T

Wireless sensor networks are often deployed for environmental sampling and
data gathering. A typical wireless sensor network consists, from hundreds to
thousands, of battery powered sensor nodes fitted with various sensors to sam-
ple the environmental attributes, and one or more base stations, called the sink.
Sensor nodes have limited computing power, memory and battery. Sensor nodes
are wirelessly interconnected and transmit the sampled data in a multihop fash-
ion to the sink. The sheer number of sensor nodes and the amount of sampled
data can generate enormous amount of data to be transmitted to the sink, which
subsequently can transform into network congestion problem resulting into data
losses and rapid battery drain. Hence, one of the main challenges is to reduce the
number of transmissions both to accommodate to the network bandwidth and
to reduce the energy consumption. One possibility of reducing the data volume
would be to reduce the sampling rates and shutdown sensor nodes. However, it
can affect the spatial and temporal data resolution. Hence, we propose a compres-
sion scheme to minimize the transmissions instead of reducing the sampling.

The sensor nodes are vulnerable to external/environmental effects and, being
relatively cheap, are susceptible to various hardware faults, e.g., sensor saturation,
memory corruption. These factors can cause the sensor nodes to malfunction or
sample erroneous data. Hence, the second biggest challenge in data gathering is
to be able to tolerate such faults.

In this thesis we develop a spatio-temporal compression scheme that detects
data redundancies both in space and time and applies data modeling techniques
to compress the data to address the large data volume problem. The proposed
scheme not only reduces the data volume but also the number of transmissions
needed to transport the data to the sink, reducing the overall energy consump-
tion. The proposed spatio-temporal compression scheme has the following major
components:

Temporal Data Modeling: Models are constructed from the sampled data of the
sensor nodes, which are then transmitted to the sink instead of the raw samples.
Low computing power, limited memory and battery force us to avoid computa-
tionally expensive operations and use simple models, which offer limited data
compressibility (fewer samples are approximated). However, we are able to ex-
tend the compressibility in time through our model caching scheme while main-
taining simple models.

Hierarchical Clustering: The data sampled by the sensor nodes is often not only
temporally correlated but also spatially correlated. Hence, the sensor nodes are
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initially grouped into 1-hop clusters based on sampled data. Only a single model
is constructed for one cluster, essentially reducing the sampled data of all the
sensor nodes to a single data model. However, we also observed through ex-
periments that the data correlations often extend beyond 1-hop clusters. Hence,
we devised a hierarchical clustering scheme, which uses the model of one 1-hop
cluster to also approximate the sampled data in the neighboring clusters. All the
1-hop clusters approximated by a given model are grouped into a larger cluster.
The devised scheme determines the clusters that can construct the data models,
the dissimilation of the model to the neighboring clusters and finally the transmis-
sion of the data model to the sink. The accuracy of data to the single sensor node
level is maintained through outliers for each sensor node, which are maintained
by the cluster heads of the respective 1-hop clusters and cumulatively transmitted
to the sink.

The proposed spatio-temporal compression scheme reduces the total data vol-
ume, is computationally inexpensive, reduces the total network traffic and hence
minimizes the overall energy consumption while maintaining the data accuracy
as per the user requirements.

This thesis also addresses the second problem related to data gathering in sen-
sor networks caused by the faults that results into data errors. We have developed
a fault-tolerance scheme that can detect the anomalies in the sampled data and
classify them as errors and can often correct the resulting data errors. The pro-
posed scheme can detect data errors that may arise from a range of fault classes
including sporadic and permanent faults. It is also able to distinguish the data
patterns that may occur due to both the data errors and a physical event. The pro-
posed scheme is quite light weight as it exploits the underlying mechanisms al-
ready implemented by spatio-temporal compression scheme. The proposed fault-
tolerance scheme uses the data models constructed by the compression scheme to
additionally detect data errors and subsequently correct the erroneous samples.
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K U R Z FA S S U N G

Für die Erfassung von Umweltdaten kommen häufig Sensornetzwerke zum Ein-
satz. Derartige Netzwerke bestehen typischerweise aus einigen hundert bis zu
mehreren tausend batteriebetriebenen Sensorknoten (Quellen), welche die nötige
Sensorik zur Erfassung der Umwelteigenschaften enthalten, sowie einer oder
mehreren Basisstationen (Senken). Die Sensorknoten verfügen über eine begren-
zte Rechenleistung, wenig Speicher und kleine Batterien. Sie sind untereinander
drahtlos vernetzt und übertragen die gesammelten Daten über mehrere Sensor-
knoten, die als Zwischenstationen fungieren, zur Basisstation. Durch die enorme
Zahl von Sensorknoten können riesige Datenmengen entstehen. In Folge kommt
es zu Datenstaus oder gar zum Verlust von Messwerten und zu einer verkürzten
Laufzeit der Sensorknoten durch erhöhten Stromverbrauch für die Übertragung.
Eine zentrale Herausforderung bei Sensornetzwerken stellt somit die Optimierung
der Datenübertragung hinsichtlich Bandbreite und Energieverbrauch dar. Eine
einfache Methode, das Datenaufkommen zu reduzieren, bestünde in der Ver-
ringerung der Abtastrate und dem zeitweisen Abschalten von Sensorknoten. Alle-
rdings würde dies die zeitliche und räumliche Auflösung der Ergebnisse beein-
trächtigen. Wir schlagen daher stattdessen eine Komprimierung der aufgenomme-
nen Daten vor. Aufgrund ihres kostenoptimierten Aufbaus sind die Sensorknoten
störanfällig gegenüber externen Umwelteinflüssen. Auch interne Defekte wie
zum Beispiel Sensorsättigung oder Speicherfehler können auftreten. Diese Fak-
toren führen zu verfälschten Messergebnissen und im schlimmsten Fall zum Aus-
fall von Sensorknoten. Eine weitere Herausforderung ist somit die Fehlertoler-
anz des Netzwerkes gegenüber derartigen Fehlern. In dieser Arbeit entwickeln
wir ein Komprimierungsverfahren basierend auf der Erkennung von räumlichen
und zeitlichen Redundanzen. Durch Anwendung von Datenmodellierungsver-
fahren reduziert sich die Datenmenge, die Anzahl der nötigen Übertragungen
wird verringert und der Gesamtenergiebedarf gesenkt. Diese räumlich-zeitliche
Komprimierung gliedert sich in 2 Bereiche:

Zeitliche Datenmodellierung: Die aufgenommenen Sensordaten werden vor dem
Versenden in Modelle überführt und anstatt der Rohwerte zu den Basisstation
übertragen. In Anbetracht der begrenzten Ressourcen auf den Sensorknoten ver-
bietet sich die Nutzung komplexer Berechnungen. Zum Einsatz kommen daher
einfache Modelle mit etwas geringerem Komprimierungspotential, deren Opti-
mierung auf Basis einer geringeren Anzahl von Messwerten erfolgt. Es gelingt
uns allerdings, die zeitliche Komprimierung durch effiziente Zwischenspeicherung
der Modelle zu erhöhen. Hierarchische Gruppierung: Die gewonnenen Sensordaten
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sind häufig nicht nur zeitlich, sondern auch räumlich korreliert. Dadurch bietet
sich eine räumliche Gruppierung an. Unter Verwendung der aufgenommenen
Daten werden die Sensorknoten initial in sogenannte Ç1-hop’ Cluster zusam-
mengefasst. Pro Cluster wird auf Basis der Rohwerte aller enthaltenen Sen-
sorknoten jeweils nur ein einziges Datenmodell generiert. Experimente zeigten
darüber hinaus oft auch übergeordnete Abhängigkeiten zwischen Messwerten
außerhalb dieser ersten Ebene. Wir setzen daher auf eine hierarchische Grup-
pierung, welche die Daten benachbarter Cluster analog der Vorgehensweise der
ersten Ebene kombiniert und somit Cluster höherer Ordnung bildet. Das beschrie-
bene Verfahren beinhaltet die Ermittlung gruppierbarer Cluster, die Ausweitung
des Datenmodells auf passende Nachbarn sowie die finale Übermittlung der kom-
primierten Daten an die Basisstationen. Um Fehler durch die Prozessierung zu
vermeiden, wird die Güte der finalen Daten unter Einbeziehung von Ausreißern
auf Einzelsensorebene gewährleistet. Die Hauptknoten der ’1-hop’ Cluster sam-
meln entsprechende Daten und senden diese kumuliert an die Basisstationen.
Das vorgeschlagene räumlich-zeitliche Komprimierungsverfahren reduziert die
Gesamtdatenmenge, benötigt wenig Rechenleistung, minimiert die Anzahl der
Übertragungen und damit auch den Energieverbrauch des Netzwerkes. Dabei
lässt sich die Genauigkeit der gewonnenen Daten flexibel an die Bedürfnisse des
Nutzers anpassen. Neben der Komprimierung beschreiben wir in dieser Arbeit
auch Methoden zur Erhöhung der Fehlertoleranz gegenüber internen und ex-
ternen Einflüssen. Unregelmäßigkeiten in den Messwerten werden erkannt, als
Fehler klassifiziert und können in vielen Fällen korrigiert werden. Das vorgeschla-
gene Verfahren deckt eine breite Palette möglicher Fehlerfälle ab und verarbeitet
sowohl sporadische als auch permanente Abweichungen. Dabei ist es in der
Lage, Fehler von realen, durch plötzliche Änderung der zu messenden physikalis-
chen Größen hervorgerufenen, Abweichungen zu unterscheiden. Der verwendete
Ansatz ist sehr effizient, da er sich der Methoden der räumlich-zeitlichen Kom-
primierung bedient und bereits existierende Datenmodelle zur Erkennung und
Korrektur fehlerhafter Daten nutzt.
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1 I N T R O D U C T I O N A N D P R O B L E M
C O N T E X T

In Wireless Sensor Network (WSN) deployments, battery powered sensor nodes
are often distributed over the area of interest for varied applications involving
unattended environmental monitoring and supervisory functions. The sensor
nodes regularly update a central station, termed as the sink, with the sampled
environmental data for subsequent processing and analysis. The (multihop) data
delivery, from the nodes to the sink, requires exchange of several messages thus
depleting the batteries of involved sensor nodes, and reducing the residual net-
work lifetime. Hence, the dual target of continuous collection of data while pro-
longing the network lifetime is a challenging problem.

Fortunately, WSNs naturally generate highly redundant spatial samples due to
(a) the redundant sensor node deployment for connectivity and failure tolerance,
and (b) the correlated values of the environmental attribute over larger spatial
areas. This is also substantiated by our observation of available real world data S.
Madden, 2003, where we noticed that the trends/patterns are similar for a large
number of nodes in a given physical neighborhood. Fig. 1.1 depicts the sensor
readings of two pairs of nodes, from S. Madden, 2003, over four days time period.
The nodes in each pair are 1-hop neighbors and both pairs of nodes are separated
by several hops. The sampled attribute values also exhibit temporal correlation
Tulone and Samuel Madden, 2006 that can be exploited by constructing the mod-
els of the data and reporting the model parameters instead of raw sample values.

Applications requiring continuous data collection utilize the data for two promi-
nent use cases of (a) live/real-time decision making, such as surveillance, or (b)
offline/delay-tolerant processing such as modeling, analysis Tolle et al., 2005 and
inference Ali, Khelil, Shaikh, et al., 2009. The focus of our work is on designing
data compression scheme while exploit the delay-tolerant in data collection. Var-
ious WSNs deployed for scientific monitoring Akyildiz et al., 2005; Tolle et al.,
2005; Werner-Allen et al., 2005 continuously harvest data for modeling, analysis
and simulations. They generally tolerate a certain data collection latency. Hence,
for such applications real-time data acquisition does not have precedence over the
quality and quantity of the data. This delay-tolerance in reporting the data to the
sink opens up a fundamental design flexibility in data collection to significantly
improve WSN energy efficiency. We propose an adaptive hybrid compression
scheme that explicitly exploits the delay-tolerance in data collection to compress
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the data both in time and space, which gives us considerable benefits over the real-
time schemes that require frequent updates to be synchronized with the sink.

A number of approaches such as aggregation, temporal compression Jindal and
Psounis, 2006; Yonggang J. Zhao et al., 2002 and spatial compression Deshpande
et al., 2004; C. Zhang et al., 2006 have been proposed to reduce the data volume
to be transported to the sink. However, only a few composite spatio-temporal ap-
proaches, such as Ali et al., 2011a; Gedik et al., 2007; Tulone and Samuel Madden,
2006; C. Wang, Ma, Y. He, and Shuguagn Xiong, 2012; Yoon and Shahabi, 2007, ex-
ist. These approaches exploit both spatial and temporal correlation in data, thus
reaching higher data traffic reduction. However, the existing approaches are (a)
partially centralized limiting local decision making for adaptability, (b) tailored
to specific attribute dynamics, providing none or limited self-adaptability, or (c)
limited in their scope of exploiting either spatial or temporal correlation reducing
compressibility. Ali et al., 2011a is the only work to consider delay-tolerance in
spatio-temporal data compression. However, it is limited due to the use of static
models and limited scope for data compression.

WSNs, consisting of cheap and unreliable components, are prone to various
kinds of faults, including faults that result in data errors. The data errors signifi-
cantly impact the accuracy of the data and hence the performance of the compres-
sion schemes. Data compression schemes, like time-series based compression, is
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prone to erroneous data as they use the sampled data to construct the models
that are used for compression. However, if the reference data itself is corrupt, the
resulting models will also be affected, often significantly affecting the accuracy
of the data when reproduced at the sink .Hence, we propose a fault-tolerance
scheme that extends from the compression scheme and can tolerate a wide range
of faults by detecting and correcting the sampled data errors. We propose mecha-
nisms that enable the sensor nodes to detect the data errors and often correct them
at runtime. The proposed fault-tolerance scheme not only improves the accuracy
of the reproduced data but also reduces the data traffic as it manages to remove
the noise from the samples and the compression scheme is able to significantly
improve its modeling of the data.

Next, we briefly discuss the proposed compression and fault-tolerance schemes
and then present the proposed framework that consolidates the proposed schemes.

1.1 delay-tolerant spatio-temporal compres-
sion:

We exploit temporal redundancies using simple, computationally inexpensive
models considering the limited computation resources of the sensor nodes. The
simple models can naturally only approximate a limited number of samples.
Hence, in order to exploit the delay-tolerance in data collection, the nodes con-
secutively construct a batch of simple models to increase the number of approxi-
mated sample values. However, our scheme is optimized such that only a small
number of nodes need to construct these batches of models to approximate the
entire WSN. The spatial redundancy is exploited using a two-level hierarchical
clustering. In contrast to existing literature Gedik et al., 2007; H. Jiang et al., 2011;
Pham et al., 2010, our proposed clustering is based on models instead of raw sam-
ple values. A model-based clustering allows us to evaluate the correlations across
the nodes over a longer period of time in comparison to the sample value based
clustering which determines correlation only at a given instance of time. Hence,
the existing approaches require continuously maintaining large monolithic clus-
ters, incurring additional energy overheads. Using our hierarchical clustering, we
initially form 1-hop clusters by grouping nearby nodes with high correlation. The
small 1-hop clusters require minimal maintenance. The model batches are con-
structed on a subset of the 1-hop clusters. The models constructed by these clus-
ters are used to approximate the surrounding clusters based on the user defined
error tolerance. The 1-hop clusters approximated by a few batches of models are
merged to form the second clustering hierarchy. The second clustering hierarchy
depicts the dynamic correlations between the 1-hop clusters and is reconstructed
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in each iteration. Following this scheme, only a few model batches approximate
the entire network sample values over a long duration of time (depending on the
delay-tolerance limits). The model batches are sent to the sink, which uses these
models to regenerate the sample values of each sensor node in the network.

The proposed compression scheme is fully decentralized that does not require
any intervention from the sink apart from a few initial parameters for setup. It
offers adaptive modeling and can approximate a wide variety of environmental at-
tributes within the user defined accuracy requirements by dynamically adapting
to tune the parameters. We propose a novel technique of hierarchical clustering
based on adaptive models for spatial compression. The clustering adapts to the
distribution of the environmental attribute over the sensor network to maximize
the spatial compression. As the proposed scheme exploits delay-tolerance in data
collection, hence it can enhance the compression both in time and space.

1.2 fault-tolerance for data compression

Wireless Sensor Networks (WSNs) encounter varied faults typically being built
of low-cost, unreliable components and often deployed in harsh environments.
The faults can be hardware, memory, sensor or transceiver defects that result in
errors such as node crashes, message corruption, sampling errors, or communica-
tion failures such as message losses or network partitioning Cinque et al., 2013de
Souza et al., 2007M. Yu et al., 2007H. Liu et al., 2009Coronato and Testa, 2013.
As the core objective of a WSN is to collect data of usable fidelity, hence effec-
tive fault handling should address the issue of erroneous/corrupt data. Existing
works have documented that a substantial portion of aggregated data (up to 49%)
collected in actual WSN deployments was faulty, with up to 3-60% incorrect data
for a single sensor Sharma et al., 2010. Such high data corruption rates under-
mine the usefulness of the data, thus motivating our approach to address data
corruption.

A major challenge for battery-powered WSN deployments is the finite energy
constraint along with the dominant energy consuming communication operations.
Accordingly, our work proposes a fully distributed approach to handle data errors
as close to the data source as possible, and to use the data models, instead of
instantaneous sensor readings, for error detection and correction. This not only
helps us reduce the unnecessary messages cost but also allows to detect and
repair data errors efficiently. The proposed fault-tolerance scheme extends from
the data compression scheme, hence it is very economical in terms of resources
and energy consumption but it is still flexible enough to be adapted to various
data collection schemes.
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The proposed approach implicitly addresses a large number of potential faults
by defining an abstract/composite data error that benefits from the knowledge
of recently sensed data, either locally or in the immediate proximity. Using our
proposed model based Fault-Tolerance scheme for transient and permanent faults
Data Errors (FTDE), we detect the errors with minimal additional communication
and computation overhead. Surprisingly, the effective message cost is often nega-
tive because (i) the additional message cost incurred is almost negligible, and (ii)
our scheme detects the erroneous samples and discards them, which otherwise
would result into noise that cannot be approximated by the models and need to
be additionally transported to the sink, incurring considerable additional message
costs.

1.3 fault-tolerant spatio-temporal data com-
pression framework

In this thesis, we propose a comprehensive framework for data compression that
can exploit the data redundancy in space and time while using the delay tolerance
in data collection. The proposed framework also takes into account underlying
faults frequently found in WSNs that corrupt the sampled data and devises mech-
anism to improve the data accuracy by detecting and correcting the resulting data
errors. Fig. 1.2 depicts the proposed framework comprising of various modules
for data compression and fault-tolerance. In order to optimize the resource usage
and minimize the memory and energy consumption, different modules reuse the
mechanisms and network topology created by other modules.

The three main modules of the framework are 1. Temporal Data Compression
2. Spatial Data Compression 3. Fault-Tolerance. Temporal data compression
module constructs the data models from the sampled data, as briefly described in
Sec. 1.1. Spatial data compression module initially groups the nodes into small
1-hop clusters and then forms the hierarchical clusters in order to further merge
the sensor nodes with similar sampled values. Fault-tolerance module consists of
the data error detection and correction mechanisms to provide the fault-tolerance,
as briefly described in Sec. 1.2. Temporal data compression module provides the
foundations for the other two module, i.e., spatial data compression and fault-
tolerance modules, with its data models. Accordingly, spatial data compression
module exploits the data models from the temporal compression module in the
construction of hierarchical clustering. Similarly, fault-tolerance module uses the
same data models to detect data errors. It also exploits the existing 1-hop cluster
topology, from the spatial data compression module to detect the correlations
between the data errors and implements mechanism to correct the data errors.
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1.4 thesis contributions
The research work presented in this thesis makes several important contributions
for the wireless sensor networks research community. Next, we briefly present
major thesis contributions.

1.4.1 (C1) – Fault-Tolerant Spatio-Temporal Data Compression Frame-
work

The major contribution of this thesis is the development of a comprehensive
framework for fault-tolerant data compression in WSN. The proposed framework
encompasses various aspects of the addressed problem from modeling, compres-
sion, fault identification, error correction to the efficient transportation of the data
to the sink. The design criteria for developing the framework are efficiency (max-
imizing compression and reducing traffic) and accuracy (data corruption detec-
tion and correction). In order to increase the data compression and reduce the
data transportation cost the modeling and compression schemes are designed
to exploit the delay-tolerance. The proposed compression scheme exploits the
redundancies inherent in the network, both in space and time, through exploita-
tion of redundant node deployment in space and data correlation in time. The
fault-tolerance scheme proposes mechanisms to tolerate the faults that corrupt
the sampled data. The proposed fault-tolerance scheme is capable of detecting
the data errors occurring due to the underlying faults and thus repair the data
corruption. Through the proposed fault-tolerance scheme, we not only improve
the data accuracy and meet the user requirements but also reduce data traffic
further by removing the noise that incurs additional message cost.

1.4.2 (C2) – Modularity of the Proposed Framework

Continuously changing environmental and network conditions demand adapt-
ability and flexibility for any scheme trying to model it. Accordingly, proposed
framework has been designed in a modular fashion, in order to maximize flexibil-
ity and adaptability to various applications and environmental conditions. The
framework consists of data modeling, spatial compression and fault-tolerance
modules.

Modular approach for the framework allows us to be easily adapt it for dif-
ferent applications. Depending on the various network and environmental con-
ditions each module can be tuned independently in order to best fit the data at
hand. Different modules can also be used independently or combined together
to extend their functionality. For example, application requiring only temporal
modeling can skip the spatial compression module and use only temporal com-
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pression module, which can be easily extended by combining the fault-tolerance
module with the temporal compression module to provide fault-tolerant tempo-
ral compression. Similarly, temporal compression module can be combined with
the spatial compression module to provide spatio-temporal compression, which
can be further extended by combining them with the fault-tolerance module to
provide fault-tolerant spatio-temporal compression.

The flexibility provided by the framework allows it to be used in variety of
application ranging from simple sparse WSN deployments requirement simple
temporal data compression to very large and dense networks requiring spatio-
temporal data compression with fault tolerance.

1.4.3 (C3) – Delay- Tolerant Spatio-Temporal Compression Scheme

In the data compression module, we propose an Adaptive Spatial-Temporal Com-
pression (ASTC) scheme. The propose scheme is described in detail in Chapter 4.
The key idea is to develop an adaptive compression scheme that can exploit the
temporal and spatial redundancies of the sampled environmental attribute.

The temporal redundancies are exploited by constructing models from the sam-
pled data. The models are then used instead of raw sampled values, which results
in reduced message cost. The spatial redundancy is exploited through two level
hierarchical clustering. Initially 1-hop clusters are formed. A subset of the clus-
ters, called the master clusters, are selected to construct the models. The models
constructed in the master clusters are distributed to the neighboring clusters. The
cluster heads in the neighboring clusters use the received model to approximate
the sampled values in their respective clusters. If the sampled values collected
by cluster members in a given cluster, can be approximated within the user de-
fined error threshold, the model is accepted by the cluster head and the model
is distributed further to the neighboring clusters. However, if the model cannot
approximate the sampled values, it is rejected and a new model is constructed
within the cluster and selected by the cluster head and the cluster becomes a
master cluster itself.

Accordingly, the proposed scheme exploits the spatial data redundancy through
hierarchical clustering, consisting of master and standard clusters. The temporal
data redundancy is exploited by approximating the sampled data through mod-
els and then reporting the models to the sink instead of the raw samples. The
models are only constructed by a subset of clusters, the master clusters, which
are then used to approximate also the neighboring clusters. The models are col-
lected at the sink to reproduce the data sampled by all the sensor nodes in the
network. Specific node discrepancies are adjusted through the outliers sent by the
respective nodes to the sink.
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1.4.4 (C4) – Fault-Tolerance for Data Compression

We propose a Fault-Tolerance scheme for transient and permanent Data Errors
(FTDE) for data compression schemes. FTDE has been discussed in detail in
Chapter 5.

The data compression scheme proposed in Chapter 4 is especially vulnerable to
data errors, caused by sensor, memory or other faults. The compression scheme
relies on the models used to approximate the sampled data. However, if the
sampled data is corrupt, the resulting models will also be corrupted, because the
model will try to approximate the corrupted data as close as possible. Accord-
ingly, the reproduced data at the sink is also corrupted. Hence, we proposed a
fault-tolerance scheme for a wide range of faults that result into data errors. The
proposed scheme does not directly fix the faults itself, because often it cannot
be fixed without a physical intervention like replacing the sensor or other hard-
ware part. Rather, we focus on the consequence of the faults, i.e., the data errors
that result due to the faults. Detecting and correcting the data error implicitly
reverts the effect of a fault without needing to actually fix the fault itself. The
major strength of the proposed fault-tolerance scheme is that it uses the data
models and clusters already in place, being used by the compression scheme, to
additionally detect and fix the data errors. Hence, the resulting overhead of the
fault-tolerance scheme is minimal.

The proposed scheme is a two stage strategy. The models constructed by the
compression scheme are initially used to detect outliers. If the outliers are found
to be beyond a certain threshold, they are initially classified as sampling errors.
The erroneous samples are then sent to the cluster head. The cluster head cor-
relates the erroneous samples of various member nodes. Because the erroneous
samples are generated by the independent random process, hence they generally
are uncorrelated. Consequently, the erroneous samples that are shown to be cor-
related across multiple cluster members indicate an event instead of erroneous
samples, as it is highly unlikely that multiple nodes will generate erroneous sam-
ples with similar amplitudes at the same time. Hence, the correlated samples are
classified as events and are sent as outliers to the sink. Whereas, uncorrelated
erroneous samples are finally classified as erroneous samples and are discarded
and replaced with the model approximations. The data filtered and enhanced by
the fault-tolerance scheme is then used by the compression scheme to construct
the models. The resulting models enhance the approximation accuracy of the
environmental attributes.
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1.4.5 (C5) – Event Prediction in WSN

The proposed data compression scheme enables us to collect a large bulk of data
and over a long period of time. We can use the collected data to forecast the state
of the network for a given attribute. We propose a scheme based on the idea
of maps to detect the events in the forecasted states of the network, essentially
predicted the events that may take place, e.g., partitioning of the network.

A virtual map is constructed out of the collected data from the network. Suc-
cessive rounds of data collection generate a time varying view of the network.
The maps data over time is used to forecast the future state of the network, i.e.,
the future maps of the network. The forecasted maps are then used to detect the
events. Forecasting of various events allows to proactively take certain actions
if certain events are undesirable. For example, we can forecast if a certain part
of the network will be partitioned and proactively take some precautionary mea-
sure, e.g., deploy more nodes or divert the traffic, to avoid the situation before it
actually takes place.

1.5 publications resulting from the
thesis

The research work presented in this thesis is validated by several publications in
international conference proceedings and journals:

• Azad Ali, Abdelmajid Khalil and Neeraj Suri, "Fault-Tolerance for Transient
and Permanent Data Errors in Wireless Sensor Networks", Proceedings of
Symposium on Reliable Distributed Systems (SRDS), pp. 140-145, 2015.

• Azad Ali, Abdelmajid Khelil, Mohammadreza Mahmudimanesh, Neeraj
Suri, "Adaptive Hybrid Compression Scheme for Wireless Sensor Networks",
ACM Transactions on Sensor Networks (TOSN), Volume 11 Issue 4, Article
No. 53, 2015.

• Azad Ali, Abdelmajid Khelil, Faisal Karim Shaikh and Neeraj Suri, "Ef-
ficient Predictive Monitoring of Wireless Sensor Networks", International
Journal Autonomous and Adaptive Communications Systems, vol. 5, 3,
(IJAACS), 2012.

• Azad Ali, Abdelmajid Khelil, Piotr Szczytowski and Neeraj Suri, "An Adap-
tive and Composite Spatio-Temporal Data Compression Approach for Wire-
less Sensor Networks", Proceedings of ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM),
pp. 67-76, 2011.
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• Azad Ali, Abdelmajid Khelil, Faisal Karim Shaikh, and Neeraj Suri, "MPM:
Map based Predictive Monitoring for Wireless Sensor Networks", Proceed-
ings of Autonomics, pp. 79-95, 2009.

1.6 thesis structure

Next, we give a brief description of the rest of the chapters in the thesis.

Chapter 2: In this chapter we discuss the state of the art regarding the work that
we present here in the thesis. Initially, we discuss the existing work for spatial and
temporal compression schemes and then explore in detail current work regarding
the spatio-temporal compression schemes in WSN. Next, we explore the literature
regarding fault-tolerance in WSN, how the faults are handled in WSN and discuss
the novelty of our proposed scheme. Finally, we discuss the existing schemes
regarding the predictive monitoring of WSN.

Chapter 3: This chapter discusses various models that we use in the develop-
ment different scheme in this thesis. Initially, we discuss the system model as-
sumed for the whole thesis. Next, we set forth the design requirements and goals
that we are targeting to achieve during the development of various components
of the thesis. Afterwards, we discuss in detail various fault class that we target to
handle for the development of the fault-tolerance scheme and classify them into
subclasses.

Chapter 4: In this chapter we propose our delay-tolerant spatio-temporal com-
pression scheme Ali et al., 2011a Ali, Khelil, Suri, and Mahmudimanesh, 2015. We
initially introduce the proposed scheme and describe in details various stages of
the scheme. Next, we perform a comprehensive analysis of the efficiency and com-
pressibility of the proposed scheme. We also discuss in detail the message and
computation cost of incurred by the scheme. Finally, we carry out comprehen-
sive simulations and compare the proposed scheme’s performance to the existing
work.

Chapter 5: Here we propose our fault-tolerance scheme that extends the data
compression scheme to make it resilient to the data errors Ali, Khelil, and Suri,
2015. Initially, we discuss the abstraction and modeling of the faults and discuss
the vulnerability of the times series to various faults. Next, we propose the fault-
tolerance scheme and discuss in detail various types of resulting data errors that
we can correct. Finally, we perform comprehensive performance evaluation of the
proposed scheme.

Chapter 6: This chapter discusses our proposed long term predictive monitoring
scheme for WSN Ali et al., 2011b, Ali, Khelil, Shaikh, et al., 2009. We discuss in
detail various phases in the prediction of various events in the WSN. Next, we
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discuss a case study of network partitioning and evaluate the proposed scheme
with the help of comprehensive simulations.

Chapter 7: In this chapter we summarize our contributions in this thesis and
give a brief account of the propose mechanisms and the achieved results. We
conclude the chapter with the future directions in which the work proposed in
thesis can extended further.
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2 S TAT E O F T H E A R T A N D
P R A C T I C E

In order to provide appropriate context to the work presented in this thesis, we
discuss in detail the existing literature. Initially, we present the existing compres-
sion schemes, discussing the spatial only and temporal only schemes, and then
we discuss in detail the spatio-temporal compression schemes. Next, we discuss
existing work discussing the functional faults in WSN and how are they currently
handled. Finally, schemes regarding the predictive monitoring of a WSN are pre-
sented. We look at the strengths and weaknesses of the existing schemes.

This chapter serves to provide the needed background and context to the re-
search work carried out in the thesis. The chapter concludes with a discussion
on the need for fault-tolerant compression scheme that can also exploit delay-
tolerance inherent in various WSN application.
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2.1 delay-tolerant spatio-temporal data col-
lection

While discussing the data compression, our focus is on continuous data collection
rather than event-based WSN design. Our primary objective is to reduce the data
to be transported by spatio-temporally compressing the data during continuous
data collection. We also aim to maintaining sensor node level granularity while
exploiting delay-tolerance in data collection. There is a wide range of research
work in WSN for data compression Nakamura et al., 2007, e.g., simple aggrega-
tion Blaß et al., 2008, suppression Zhou et al., 2008, filtering, TinyDB S. R. Madden
et al., 2005 and Cougar Gehrke and Samuel Madden, 2004, to name a few. How-
ever, there is very limited work in spatio-temporal compression. We summarize
some of the important research work regarding spatial and temporal compression
and discuss in detail the existing spatio-temporal techniques.

2.1.1 Spatial Compression:

The objective of spatial sampling is to collect interested attribute snapshots. The
key idea behind spatial compression is to constrain neighboring sensor nodes
with similar senor readings from transmitting redundant data. Jindal and Psounis,
2006; Mahmudimanesh et al., 2010; Solis and Obraczka, 2009; Yonggang J. Zhao et
al., 2002 are a few spatial compression techniques relying on compressive sensing,
spatially correlated models, filtering and aggregation. The main weakness of all
pure spatial compression approaches is their focus on the spatial redundancy
while neglecting the temporal redundancy. Temporal resolution depends on the
implemented snapshot update mechanism. Pure spatial compression techniques
naively address temporal redundancy by creating a new snapshot or sending an
incremental update.

2.1.2 Temporal Compression:

The driver of temporal compression is to exploit temporal correlation present in
the attribute values. The key idea in these approaches is to let every sensor node
create a prediction model for its sensor readings and send the model to the sink.
The sensor node should send an updated model only if the model is not valid
due to changes in the signal dynamics. The approaches in Mini, Val Machado,
et al., 2005 and C. Zhang et al., 2006 construct models based on Markov-chains
and time series, respectively. These temporal compression schemes mainly focus
on the temporal redundancy. Some use limited forms of spatial compression (e.g.,
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by constructing 1-hop clusters and allowing only cluster heads keep consistent
models with the sink).

2.1.3 Spatio-Temporal Compression:

There is very limited research addressing spatio-temporal compression in WSN.
Here, we have attempted to give an exhaustive account of the state of the art in
this field. In Vuran et al., 2004, the authors developed a theoretical framework to
model the spatial and temporal correlations in WSN. This framework enables the
development of efficient medium access and reliable event transport protocols,
which exploit these advantageous intrinsic features of the WSN paradigm. This
work does not focus on continuous data collection contrary to our target applica-
tions. Gedik et al., 2007; H. Jiang et al., 2011; Pham et al., 2010 are value-based
clustering mechanisms that form large monolithic clusters based on instantaneous
values or aggregates of the values. Hence, they need to continuously collect data
from the member nodes to check for consistency and maintain these clusters by
breaking up and merging them.

We use hierarchical clustering based on models instead of instantaneous values,
i.e., (1) 1-hop cluster rarely requiring maintenance, and (2) cliques that are not
maintained rather reconstructed at a minimal message cost. Tulone and Samuel
Madden, 2006 proposes real-time data collection through repeated model con-
struction and synchronizing them with the sink. Tulone and Samuel Madden,
2006 uses 1-hop clusters, hence compression is limited both spatially and tempo-
ral. C. Wang, Ma, Y. He, and Shuguang Xiong, 2010 and C. Wang, Ma, Y. He,
and Shuguagn Xiong, 2012 relaxes the spatial constraints of Tulone and Samuel
Madden, 2006 to form larger than 1-hop clusters. Due to their focus on real-time
updates they bounded to approximate only a limited amount of data in time, con-
sequently limiting the temporal compressibility. On the other hand the focus of
our proposed scheme are the applications that are delay-tolerant concerning the
data collection, hence we can more efficiently compress the data both in space
and time due to relaxed time constraints. Villas et al., 2011 proposes values based
scheme to exploit temporal and spatial correlation and explicitly focuses on the
real-time reporting of the values. We on the other hand propose a model based
scheme to exploit the temporal and spatial correlation, extending the compress-
ibility both in space and time.

Min and Chung, 2010 uses Kalman filter for modeling within 1-hop clusters,
which incurs heavy computation cost on a sensor node. Baek et al., 2004 proposes
to reduce energy consumption through hierarchical aggregation. Both Min and
Chung, 2010 and Baek et al., 2004 require the node location information, which
could be prohibitively expensive. Our proposed scheme works independent of
the location information and uses simple models that are easily computable on a
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sensor node. C. Liu et al., 2007 and Gupta et al., 2008 use centralized heuristics for
cluster formation and nodes correlation determination. C. Liu et al., 2007 assumes
all sensor nodes to be within communication range of the sink, or, the deployment
of dedicated nodes, to act as cluster heads, to be able to communicate directly
with the sink. Such assumptions limit the applicability of the approach C. Liu
et al., 2007 to a generic WSN. Our proposed scheme on the other hand assumes
a generic WSN deployment with no additional requirement on communication
range or of any dedicated sensor nodes. Moreover, it is completely distributed
and does not require any global information other than a few static parameters
initially required from the sink to setup the proposed distributed scheme as per
the user requirements.

Yoon and Shahabi, 2007 has two modes of operation, i.e., interactive mode is
limited to spatial compression only and streaming mode performs both spatial
and temporal compression. L. Wang and Deshpande, 2008 and streaming mode
of Yoon and Shahabi, 2007 both construct Probability Density Function (PDF)
for modeling the attribute. Consequently, these schemes require the system dy-
namics to be known in advance, and hence need manual setup for appropriate
functioning. Additionally, correctness of such schemes cannot be guaranteed. A
PDF constructed in a certain time window cannot be guaranteed to be valid after
attribute dynamics change limiting the use of such schemes in long term continu-
ous monitoring. They also require expensive long training time (e.g., 15 days for
L. Wang and Deshpande, 2008).

We do not assume the system dynamics to be known in advance and construct
the model dynamically based on the changes in the dynamics. Therefore, our
technique cannot only track any changing attribute dynamic but can also adjusts
in case of unexpected changes in the dynamics. In our prior work Ali et al., 2011a,
we proposed spatio-temporal compression using models and clustering. In this
article, we improve over Ali et al., 2011a with flexibility to dynamically select a
range of models instead of one fixed model, dynamic temporal compression scope
and relaxed time synchronization as compared to strict time synchronization.

In summary, the existing hybrid approaches require the signal and its statisti-
cal properties (dynamics) to be known, require location information, are partially
centralized or use instantaneous values instead of models for clustering. The com-
mon factor among all the schemes is that they target real-time/immediate data
collection. None of existing works, other than Ali et al., 2011a, exploits the delay-
tolerance of many applications, thus, loose efficiency potentials. In contrast, our
approach is adaptive, does not require location information, is fully decentral-
ized, uses simple easily computable models and exploits the delay-tolerance to
maximize the data collection.

Another important class of compression methods for WSNs is based on trans-
form compression. In transform compression, a linear transform is applied on the
sensed signal that produces a more compressible version of the data and conse-
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quently reduces the amount of data that needs to be transmitted to the sink Duarte
et al., 2012. Both transform compression and model-driven classes of data com-
pression methods for WSNs take advantage of the compressibility of the sensed
signal to reduce the amount of in-network transmissions, though using differ-
ent approaches. Here, we study transform compression as an important related
method for WSN data compression and compare our work with a representative
implementation of transform compression. Distributed Transform Compression
(DTC) methods (also known as Distributed Transform Coding techniques) are
based on the fact that the raw data recorded from natural phenomena such as the
data sensed by a WSN are compressible under certain linear transforms Duarte et
al., 2012. After transforming and compressing the raw data, the compressed data
are sent to the sink. The sink then applies the inverse transformation to acquire
the original data.

2.2 fault-tolerance for data gathering
schemes

Fault handling in WSN, i.e., detection, prevention, isolation, identification and
recovery, has been extensively targeted given that WSNs are built using low-cost
failure-prone components. WSN relevant faults 1 are typically classified into two
broad classes: Functional faults and data errors where functional faults eventually
lead to data errors. We present a brief synopsis to highlight the needed research
gaps and refer the reader to Cinque et al., 2013de Souza et al., 2007M. Yu et al.,
2007H. Liu et al., 2009Coronato and Testa, 2013 for comprehensive details.

2.2.1 Handling Functional Faults in WSN

Functional faults include hardware faults (sensor, memory, unstable voltage, etc.)
and software faults Khan et al., 2014 (programming, algorithmic, bit flips, buffer
overflows, etc.), which may lead to compromised functionality or node failures
(transient or permanent crashes), communication failures, packet loss or link
breakage.

Given this diversity, handling functional faults has been conducted on varied
levels from hardware to software or physical, link and routing layers, etc. Ac-
cordingly, the different functionalities have been made robust to a subset of faults.
However, most of approaches either fail to be effective across functionalities or

1 A fault represents an anomalous condition; error is the observable deviance resulting
from the activation of the fault, and failure represents loss of service.
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across the varied classes of failures. As we focus on data errors, the following
discussion of functional faults is non-exhaustive.

The diagnosis of functional faults Mahapatro and Khilar, 2013 has been pro-
posed at different levels of a WSN. Diagnostic schemes are run either by one
node or in groups and address either node, region- or network-wide errors. Diag-
nosis can be either active or passive depending on whether the scheme generates
its own network traffic or just uses the ongoing traffic, e.g., by marking pack-
ets Y. Liu et al., 2010. Node self-diagnosis schemes K. Liu et al., 2011 detect
and identify node’s own faults, e.g., by measuring the current battery voltage,
monitoring the communication link quality to neighbors, etc. Cooperative diag-
nosis schemes involve monitoring of one node conducted by other nodes, e.g.,
by neighboring nodes. For instance, "consumer nodes" observe the behaviors of
the "service provider nodes" (e.g., next-hop relay nodes). Hierarchical failure de-
tection schemes rely on a well-defined fault tree and continuous monitoring of
the network to detect failures and root their causes. They usually run on a pow-
erful node (e.g., the sink). Examples are Sympathy Nithya Ramanathan et al.,
2005, Momento Rost and Balakrishnan, 2006b, and SNIF Ringwald et al., 2007

frameworks. Some approaches Ringwald et al., 2007J. Zhao et al., 2002 require
dedicated supplemental nodes for passive inspection and debugging. Region-
and network-level diagnosis aims to detect errors on region level by computing
global aggregates J. Zhao et al., 2003 or monitoring global properties such as the
residual energy map Yonggang Jerry Zhao et al., 2002.

Common to the techniques addressing functional faults is that they are often
driven by the network topology and less by sensed data content and semantics.
Accordingly, they focus on topology anomalies such as corrupt packets Kamal et
al., 2013, node crashes, faulty links, or network partitioning Barooah et al., 2012;
Dini et al., 2008; Kuei-Ping Shih et al., 2007.

2.2.2 Handling Data Errors in WSN

Data errors result from internal (functional faults) and external influences, e.g.,
environmental interference and noise. There are four primary classes of sensor
data errors: Sporadic irregularities/spikes, noisy values, constant/stuck values
and constant drifts from the phenomena value. Most of data error detection
schemes rely on a basic assumption that the sensor readings from the same region
should have similar values Vuran et al., 2004.

FIND Guo, H. Zhang, et al., 2014Guo, Zhong, et al., 2009 ranks event suspect-
ing nodes based on their sensor readings as well as their physical distances from
the event. FIND works for systems where the measured signal attenuates with
distance. A node is considered faulty if there is a significant mismatch between
the sensor data rank and the distance rank. Consensus-based fault-tolerance ap-
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proaches Clouqueur et al., 2004 abstract the fault pattern by achieving a data-
based agreement among the nodes that have detected a sudden reading change in
order to detect an event on consensus basis. Some work propose to solve constant
drifts through online calibration using a correction function Balzano and Nowak,
2007Bychkovskiy et al., 2003Feng et al., 2003Miluzzo et al., 2008N. Ramanathan
et al., 2006Whitehouse et al., 2002. The parameters of calibration function are
obtained in different ways, assuming either a certain sensing model Feng et al.,
2003Whitehouse et al., 2002, dense deployment Bychkovskiy et al., 2003Feng et
al., 2003, similarity of readings among neighbors Bychkovskiy et al., 2003Miluzzo
et al., 2008, or availability of reference data (e.g., from highly accurate deployed
nodes) Miluzzo et al., 2008N. Ramanathan et al., 2006Hasenfratz, 2012.

Outlier detection Y. Zhang et al., 2010Branch et al., 2013 is an approach related
to data error handling. Outlier detection is used either to suppress or amplify se-
lected outliers. Suppressing outliers (also known as data cleansing) improves the
robustness of data analysis. Amplifying outliers helps to find rare patterns in do-
mains such as event and intrusion detection. Outlier detection usually addresses
non-faulty but extremal data.

As the key functionality of WSN is delivering accurate data to the user, we
focus on the detection of data errors that can be rooted at arbitrary functional
defects (sensor defect, calibration errors). Accordingly, our data focused approach
is content/semantics driven, where the root cause is implicitly considered.

Unlike many existing approaches, which are based on instantaneous sensor
data values, our approach is based on data models. The main limitation of con-
temporary instantaneous fault monitoring is that the detection scheme often en-
counters fluctuations and the overhead is high as the detection scheme needs
to be executed for every sample on resource-constrained nodes. In our work, a
model constructed from a set of sensed data, is used to detect individual data
errors. This substantially improves our ability to detect corrupted data with high
accuracy and reduces the vulnerability to data fluctuations.

Most data error handling approaches addressing generic data corruption fault
are tailored to event-based WSN design. Our approach considers both event-
based and continuous data collection designs to cover a wide spectrum of WSN
applications, modeling the WSN data as a generalized time-series.

2.3 predictive monitoring of wsn
In predictive monitoring our focus is on predicting the future states of the net-
work and then attempting to detect events that might happen in future. In WSN
literature a variety of work addresses event detection [Yick et al., 2008]. The most
relevant work to our event detection strategy is [Xue et al., 2006], where the au-
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thors investigate map based event detection. The approach requires the user to (a)
specify the distribution of an attribute over space and (b) the variation of distribu-
tion over time incurred by the event. Three common types of events are defined
namely pyramid, fault and island. In contrast, our detection technique is inde-
pendent of event shape thanks to our generic regioning algorithm. Furthermore,
we apply the detection technique on predicted profiles allowing to predict events
rather than just detecting them. [Banerjee et al., 2008], presents a technique to
detect multiple events simultaneously. They employ a polynomial based scheme
to detect event regions with boundaries and propose a data aggregation scheme
to perform function approximation of events using multivariate polynomial re-
gression. Our work in addition to the capability of detecting multiple events,
can predict events beforehand. Various other works exist that address specific
event scenarios such as partition detection [Shrivastava et al., 2005], and fire de-
tection [L. Yu et al., 2005]. These specific solutions do not feature portability to
adapt to different application scenarios.

There is a variety of work for monitoring WSN’s and prediction of a certain at-
tribute. [Landsiedel et al., 2005] predicts the power consumption in WSN. [Mini,
Nath, et al., 2002] proposes a network state model to predict the energy con-
sumption rate and constructs energy map accordingly. In [X. Wang et al., 2007],
authors focus on predicting multimedia networks energy efficiency. These works
concentrate specifically on energy, also they do not provide any extension to pre-
dict other attributes. Authors in [Mamei and Nagpal, 2007] propose inference
mechanism using Bayesian network to detect anomalies. We provide a generic
framework to predict variety of events that might happen in future.

As we present a case study for network partition prediction, we discuss the
related work in this respect. In [Shrivastava et al., 2005], partition detection has
been addressed for a sub-class of linearly separable partitions, i.e., cuts. Me-
mento [Rost and Balakrishnan, 2006a] continuously collects connectivity informa-
tion at the sink to be able to detect network partitioning. The partition avoidance
lazy movement protocol for mobile sensor networks [K.-P. Shih et al., 2007] is a
decentralized approach, where a node periodically collects the position of all its
neighbors and checks if at leat one neighbor is located in a small angle towards
the sink. If no neighbor is located in this "promising zone", the node suspects
network partitioning and moves to avoid it. Based on our event prediction frame-
work as an example we propose a solution that is generalized and not dependent
on the shape, size or location of the partition. Moreover, our framework provides
for prediction of network partitioning rather than just the detection.
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2.4 chapter summary
Extensive investigation of the existing literature in WSN shows that current lit-
erate does not exploit the potential of delay-tolerance for optimal compression.
Considering delay-tolerance allows the proposed compression scheme to exploit
the data redundancy not only in space but also in time. This design feature allows
the data compression to performed extended length of time while using very sim-
ple, inexpensive models. This enables the possibility to compress the data even
further resulting in considerable message cost reductions.

We have also identified that compression scheme do not consider the WSN func-
tional faults and the resulting data errors. Hence, various compression schemes
inherently suffer performance issues due to corrupted data samples. Similarly,
various fault-tolerance schemes are developed independent of any specific ap-
plication (here specifically data compression), hence these schemes are not opti-
mized for the specific application and cannot take advantage of the infrastructure
already in place implemented for the compression scheme.

In this thesis we investigate how we can exploit delay-tolerance for optimal
spatio-temporal data compression and couple it with our fault-tolerance scheme
further increasing the approximation accuracy, while reducing the message cost.
To the best of our knowledge, this is the first work that exploits delay-tolerance
for data compression and couples it to the fault-tolerance scheme to further in-
crease its effectiveness. Moreover, various components have been integrated into
a framework that an be adapted to a variety of application scenarios.
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3 S Y S T E M , DATA A N D FA U LT
M O D E L S

In this chapter we present various models that make the basis for the fault-tolerant
spatio-temporal data compression scheme developed in this thesis. These models
mainly consist of system model, data model and fault model. The system model
describes various components of the considered sensor network. The data model
refers to the mathematical models that we use to approximate the sampled data.
The fault model is the abstraction of different data errors that result from various
underlying faults. The system model is considered throughout the thesis in the
development of various schemes. Whereas, the data and the fault model are ap-
plicable to the corresponding data compression and fault-tolerance components
in the proposed the framework.

While designing various components of the framework, we set forth certain
design requirements that must be met. These requirements allow the developed
framework to be adaptive and tunable by the end user by adjusting various design
parameters. It also allows the developed framework to be applicable to large
variety of application scenarios.

3.1 design requirements
For the temporal compression component and spatial compression component of
the framework, our objective is to maximize the spatio-temporal data compres-
sion with accuracy guarantees for continuous delay-tolerant data collection (i.e.,
monitoring of phenomena or environmental attributes). In order to meet these
objectives, we require the developed schemes to meet the following criteria

1. The proposed scheme must facilitate the reconstruction of the signal (sam-
ple values) of each sensor node from the collected models on the sink.

2. The reproduced data on the sink should be within the application-driven
error bound.

3. The developed scheme must incur minimal bandwidth and energy over-
head.

4. The proposed scheme should adapt to evolving attribute dynamics.
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5. The developed scheme should be agnostic to the network properties such
as node distribution, topology and routing protocols.

6. The data compression models should be efficiently computable on resource-
limited sensor nodes.

The requirement to be able to reproduce the data of every single sensor node in
the network allows us to cover the worst case situation. However, it is trivial to
adapt the scheme to gather data from fewer sensor nodes by reducing the number
of sensor nodes from which the data is gathered. Even more advanced schemes,
like duty cylices, can be adapted to cycle between different nodes to sample the
data. However, such schemes are beyond the scope of current work.

We extend our spatio-temporal compression scheme in Chapter 5 to make the
scheme fault-tolerant. Accordingly, we extend the design requirements such that
we require the developed scheme to be able to

1. detect data errors while being fault agnostic.

2. correct data corruption, hence, maintain data accuracy even in noisy condi-
tions whenever applicable.

3. identify and exclude permanently faulty nodes.

4. adapt to various compression schemes.

5. have low overhead and be fully decentralized.

For the predictive monitoring scheme, developed in Chapter 6, the following
design requirements must additionally be fulfilled

1. It should be lightweight, i.e., its creation, management and usage requires
minimal resources with respect to energy.

2. We desire the scheme to long-term predict attribute profiles, hence the
events. Depending on the context of the problem, long-term may mean
hours, days or even months that should be enough to activate a self* mech-
anism to support autonomic actions.

3. We desire the scheme to be generic to adapt to prediction of varied event
types.

3.2 system model
We consider a conventional WSN system model composed of N static sensor
nodes {S1, S2, . . . , SN} and a static sink. We assume that each sensor node is
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composed of a processor, sensor board, radio board, batteries, and software, all
of which may behave erroneously either transiently or permanently. We assume
that the clocks of nodes are synchronized, e.g., using Faizulkhakov, 2007. Sensor
nodes sample the environment attribute simultaneously and periodically every
τ time units. This synchronized sampling allows nodes to run duty cycling for
maximized energy efficiency, which is out of scope of this article. The sink is pow-
erful enough to store large amount of data. Sensor nodes are battery powered
and possess limited storage and processing capabilities. The WSN deployment
follows an arbitrary node distribution with varying spatial node densities as per
connectivity, coverage, fault-tolerance and sensing requirements. We assume the
availability of a reliable end-to-end data transport service, such as Shaikh, Khelil,
Ayari, et al., 2010, to transport messages from sensor nodes to the sink, and ac-
knowledgement schemes to ensure message delivery between neighboring nodes.
Initially, all nodes including the sink are considered to be non-faulty.

In addition to these generic system model to be used trough out the thesis we
make some further assumption for predictive monitoring scheme, presented in
Chapter 6.

3.3 data modeling

Generally, the sensor nodes, sampling the environmental attribute values, send
the raw sampled value to the sink. However, sending raw sampled values is very
expensive both in terms of energy and band width. Hence, we construct models
based on collected raw samples. The constructed models are later sent to the
sink to reproduce the data. In addition, they are also used by the fault-tolerance
module to detect data errors and spatial compression module to construct cluster
hierarchy. However, as given in the requirements Sec. 3.1, we require to use
computationally inexpensive models to approximate generic patterns typically
observed in sampled attributes. However, to model generic patterns using simple
models is challenging to achieve on a sensor node due to (a) the limited nodes
resources and (b) the unknown attribute dynamics. Hence, we will be using
simple models that are easily computable on a sensor node but also implement
additional mechanisms to cover the weaknesses of the models to maintain the
user required accuracy.

In order to formalize the data modeling, we represent the sampled data of a
sensor node as an infinite uni-variate time series that can be given by the expres-
sion

. . . , v(t), v(t− 1), v(t− 2), . . . (1)
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where v(t) is data sampled by a sensor node at time t.

We decompose the sampled values (time series) into finite duration segments,
so that the resource limited sensor nodes can process the data and compute the
models. We term the data segments as training queue, denoted as V(t) that are
used to estimate model parameters

V(t) = (v(t), v(t− 1), v(t− 2), . . . , v(t− T + 1)) (2)

where v(t) is data sampled by a sensor node at time t and T is the length of the
training queue (Section 3.3).

Each segment can be modeled as a linear and a random component. Hence,
V(t) can be approximated as

V(t) = µ(t) + x(t) (3)

where µ(t) is the linear component and x(t) is the random component as depicted
in Fig. 3.1 and 3.2 respectively. The linear component can be estimated as

µ(t) = a+ b× t (4)

where a and b are real constants. Modeling of the random component is ex-
plained next.

Random Component Estimation

One of the design goals is to support a wide range of applications. The key
to increase the scope of the proposed technique is to design it independent of
the statistical process of the sampled attribute values. Hence, we do not make
any assumptions for the underlying process other than requiring the process to
be weakly stationary, which is generally true for physical processes Ljung, 1998.
This allows to model the random component as a linear difference equation of
Autoregressive Moving Average (ARMA) models as given by Eq. (5):

x(t) =
φ1x(t− 1) + · · ·+φpx(t− p)+
θ1z(t− 1) + · · ·+ θqz(t− q)

(5)

where φ and θ are model coefficients, z(t) is white noise with mean zero
and variance σ2, denoted asWN(0, σ2) and p, q ∈N. We denote the model
constructed using Eq. 5 as Φ(x) (or Φ in short).The Moving Average (MA)
part of the ARMA model is relatively expensive to solve, hence to reduce
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the computation complexity we put q = 0 in Eq. (5) to reduce it to an
Autoregressive (AR) model as follows

x(t) = φ1x(t− 1) + · · ·+φpx(t− p) +w(t) =
p∑
i=1

φix(t− i) +w(t) (6)

where w(t) is white noise series with mean zero and variance σ2a.
AR model is a linear model hence to cope with the non-linearities we

use two mechanism 1. We collect outliers, not approximated by the model,
and send them to the sink so that the reproduced data can meet the user
required accuracy 2. We construct a new model if the already constructed
model cannot predicted the values within the defined error bounds. These
mechanisms are described in detail in Chapter 4.

Model Construction

In order to construct the model, a node maintains a training queue V =

{v1, v2, ..., vT } of T sampled values. The AR model parameters are com-
puted by (a) estimating the fitting error (e(Φ)), and (b) minimizing the
estimation error. The AR model fitting error e(Φ) is minimized in mean-
square error sense as given by Eq. (7)

∂

∂φk
e(Φ)2 =

∂

∂Φ

 T∑
i=1

x(i) − p∑
j=1

φjx(i− j)

2
 = 0 (7)

The estimated values as estimated by the model are given by

v̂(t) = µ(t) +

p∑
i=1

φi(v(t− i) − µ(t)) (8)

where v̂(t) is the estimated sample value. We denote V̂ as the approxi-
mated values set, where V̂ = {v̂1, v̂2...v̂Wa}, Wa is the number of estimated
values referred to as approximation window (explained further in detail
in section 4.1.3).

Data modeling scheme described so far is the basis for the compression
scheme detailed in Chapter 4. However, this simplistic model is not adap-
tive/tolerant to changing dynamics. Hence, in Chapter 4 we extend the
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basic data modeling to make it adaptive so that it can model changing
attribute dynamics and extend its temporal compression scope to approx-
imate more data samples.

3.4 fault modeling - fault classes and data
errors

WSNs, because of their nature, have various faults ranging from hardware
faults, such as sensor faults generating wrong readings, bit flips in mem-
ory affecting the sensor data, non-recommended deployment conditions
resulting in wrong calibrations, to software faults, such as incorrect sam-
pling algorithms wrongly transforming data. Many of these faults cannot
be repaired and would generally require replacement of the sensor node.
However, we are interested only in the faults that affect/corrupt the sam-
pled data. Moreover, we do not always need to repair the fault itself, rather
we can focus on the consequence, i.e., the data corruption, try to detect
and correct the data corruption. Accordingly, we can implicitly tolerate
the faults.

Data error types in sampled data from wireless sensor networks has
been extensively studied in Ni et al., 2009. Please note the term "data
errors" in current work and "data faults" in Ni et al., 2009 are equivalent.
Authors in Ni et al., 2009 classify the data errors as follows:

3.4.1 NOISE

The data corruption that occurs for a short duration but show high sample
values variation are termed as NOISE. The faults causing these data errors
are generally temporary and after a while the sampled values will return
back to normal and the correct data will be sampled again. NOISE may
occur due to low battery, hardware failure Szewczyk et al., 2004, poor wire
connections Sharma et al., 2007 or in the case the environmental values lie
out of the sensitivity range of transducer.

3.4.2 SHORT

A sharp sudden momentary changes between normal sampled values are
termed as SHORT. These data errors can very frequently occur in low qual-
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ity sensors. These data errors are temporary but recurring. Various condi-
tions can cause SHORT data samples including low battery, hardware and
poor connections or clipping, which refers to the condition when a sensor
is maxed out.

3.4.3 CONSTANT

Data errors that occur for long duration or when the data errors are con-
tinuously correct and do not heal over time are termed as CONSTANT
or "Stuck-at". CONSTANT data errors may also be caused by low battery,
hardware and connection issues and clipping.

Depending on the persistence of the error, we classify these errors as
follows:

3.4.4 Transient Data Errors

The data errors that occurring for a certain time duration but subside af-
terwards are termed as transient data errors. NOISE and SHORT are both
transient errors. These are generally the most frequent type of data errors
encountered during the operation of a WSN. The fault-tolerance scheme
developed in this thesis, in Chapter 5, uses the data models described in
Sec. 3.3 to identify such error and attempts to correct them.

3.4.5 Permanent Data Errors

Permanent data errors refer to the data errors where the data is continu-
ously corrupted and the fault does not subside over time. CONSTANT are
the permanent errors.

3.5 chapter summary
We presented in this chapter various requirements and constraints that we
impose on the schemes to be developed to make them viable for a real
WSN. We also presented various models that form the basis for the de-
velopment of various components of the framework. In the next chapters
we will developed our compression and fault-tolerance schemes where we
will be using the proposed models.
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4 D E L AY-TO L E R A N T
S PAT I O -T E M P O R A L DATA
C O M P R E S S I O N

Wireless Sensor Networks (WSN) are often deployed to sample the desired
environmental attributes and deliver the acquired samples to a central
station, termed as the sink, for processing as needed by the application.
Many applications stipulate high granularity and data accuracy that re-
sults in high data volumes. However, sensor nodes are battery powered
and sending the requested large amounts of data rapidly depletes their
energy. Fortunately, environmental attributes (e.g., temperature, pressure)
often exhibit spatial and temporal correlations. Moreover, a large class
of applications such as scientific analysis and simulations tolerate high la-
tency for sensor data collection. Hence, we exploit the spatio-temporal
correlation of sensor readings while benefiting from possible data deliv-
ery latency tolerance to minimize the amount of data to be transported
to the sink. Accordingly, we develop a fully distributed adaptive hybrid
compression scheme that exploits both spatial and temporal data redun-
dancies and fuses both temporal and spatial compression for maximal data
compression with accuracy guarantees.

We present two main contributions: (i) an adaptive modeling technique that
allows frugal and maximized temporal compression on resource-constraint
sensor nodes by exploiting the data collection latency, and (ii) a novel model-
based hierarchical clustering technique that allows for maximized spatial com-
pression resulting into a hybrid compression scheme. Compared to the
existing spatio-temporal compression schemes, our approach is fully de-
centralized and the proposed clustering scheme is based on sensor data
models rather than instantaneous sensor data values, which allows merg-
ing nearby nodes with similar models into large clusters over a longer
period of time rather than specific time instances. The analysis for com-
putation and message overheads, the analysis for theoretical compressibil-
ity, and simulations using real world data demonstrate that our proposed
scheme can provide significant communication/energy savings without
sacrificing the accuracy of collected data.
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4.1 the proposed adaptive spatio-temporal
compression
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Figure 4.1: Phenomenon Distribution

We propose a decentralized adaptive hybrid compression technique that
exploits application delay-tolerance. As observed in Fig. 1.1 (repeated here
for convenience), nodes in close proximity of 1-hop distance generally ex-
hibit persistently high correlations in sample values. However, correlation
between the nodes farther away from each other, i.e., between 1-hop clus-
ters, are generally non-persistent and dynamic when observed over a long
time window. The asymmetry in correlations between the nodes in close
proximity and the nodes farther away makes the spatio-temporal compres-
sion a challenging problem. The existing literature addresses this asymme-
try by limiting the modeling to 1-hop clusters Tulone and Samuel Madden,
2006, assuming the attribute dynamics to be constant Chu et al., 2006, re-
quiring assistance from the sink Gupta et al., 2008; C. Liu et al., 2007 or
by clustering based on the instantaneous values rather than models Gedik
et al., 2007; H. Jiang et al., 2011; Pham et al., 2010.
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We propose to exploit the spatial redundancy in two stages, i.e., (1)
Proactive formation of 1-hop clusters that are usually highly correlated,
(2) Merge 1-hop clusters to larger regions/clusters. Our spatial compres-
sion approach differs from contemporary approaches such as Gedik et al.,
2007; Yoon and Shahabi, 2007. These schemes form large monolithic clus-
ters making them vulnerable to frequent reconfiguration that incurs heavy
maintenance overhead. We exploit temporal redundancy by constructing
simple models on 1-hop clusters.

4.1.1 A Guide through the Proposed Adaptive Hybrid Compression (AHC)
Scheme

Given the nature of WSN deployment redundancies and sensed attributes
correlations, the proposed scheme performs spatio-temporal compression
in three stages:

• Stage 1: 1-hop clusters formation
• Stage 2: Temporal modeling on clusters
• Stage 3: Merging 1-hop clusters

In Stage 1, neighborhoods of sensor nodes with correlated sensor read-
ings form small 1-hop clusters based on a short history of the attribute
values to exploit strong local correlation. Depending on the deployed sen-
sor density the 1-hop cluster may consist of up to a dozen nodes.

In Stage 2, we exploit the temporal correlations by constructing the mod-
els on a small number of clusters, referred to as master clusters (depicted
in Fig. 4.2 bearing crown). Each constructed model is initially limited to
the respective master cluster and approximates the sampled values of all
member sensor nodes of the master cluster.

In Stage 3, we propose mechanisms to utilize the models constructed
on the master clusters to also approximate the sampled values of nodes
in surrounding 1-hop clusters. The master cluster sends the model to
its neighboring clusters. The cluster members fit the received model to
their sampled values and accordingly either accept the model or reject
it. The clusters accepting the model merge to form a correlated region (a
larger cluster) and further propagate the model to the 1-hop clusters on
the border of this region.

Following this scheme, only a small set of the models constructed on
master clusters can approximate the entire network both in space and time.
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The resulting spatial compression is a two level hierarchical clustering. The
first and second hierarchy levels are formed during Stages 1 and 3. Stage
1 is executed only once, while Stages 2 and 3 are repeated to continuously
model the sampled value and adapt to the changing dynamics. In the
following, we detail these three stages.

4.1.2 Stage 1: 1-Hop Cluster Formation

Notation Description
Si ith Sensor node
SCH Cluster head
Ci ith Cluster
r Cluster members count
CN Neighboring clusters list

Table 1: Cluster Notations

In contrast to existing approaches, we initially form small 1-hop clusters
instead of large monolithic clusters to exploit the strong local spatial cor-
relations. The 1-hop clusters are subsequently (Stage 3) merged to form
larger clusters to model the dynamic correlations between the 1-hop clus-
ters. Constructing and maintaining large monolithic clusters, in compar-
ison to smaller 1-hop clusters, would incur heavy maintenance costs as
we explain further in Section 4.1.4. As cluster formation is a very well-
studied topic in WSN Abbasi and Younis, 2007, we only briefly describe
the formation of 1-hop clusters.
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1-hop clusters are formed based on the similarity of short history of
the attribute values that are transmitted by the nodes that candidate to be
the cluster head. All the nodes in the network are initially candidates for
cluster heads. The sink issues the task of sampling the environment and
sending the compressed sampled values back to the sink. Nodes wait for a
random time t1h. On the expiry of t1h a node assumes the role of a cluster
head and issues a "join request" along with a set of its sampled values to
the 1-hop neighbors. Meanwhile, nodes receiving the join request cannot
issue the join requests. If more than one node issue the join request within
each other’s 1-hop neighborhood, the node with lower id withdraws its
request. Additionally, nodes may still receive join requests from other
nodes as a given node might be 1-hop member of many nodes that are not
1-hop neighbors of each other.

Nodes receiving the join request compare the received values with their
own sampled value. Nodes join the cluster for which the difference be-
tween their sampled values and received values is within the accuracy
requirement set by the application/user. Occasionally, the requests sent
by the candidate cluster might not be received by its 1-hop cluster mem-
bers due to collisions or hidden terminal problem Tobagi and Kleinrock,
1975. Nodes unable to join a cluster, either because they did not receive
the request or the error was too high, initiate their own cluster formation
requests.

 Cluster

Head

Gateway
Node

Communication
Range

Figure 4.3: 1-Hop Clusters
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The later requesting nodes can be claimed by the already existing clus-
ter heads if the cluster head finds the values of the requesting node to be
within the given threshold to compensate for the lost request message. Ac-
cordingly, we define a 1-hop cluster (Ci) to consist of one cluster head node
(SCH) and ’r’ member nodes (Si) such that they are 1-hop away from the
cluster head, i.e., Ci = {SCH, S1, S2, . . . , Sr},∧∀Si ∈ Ci t hopdist(SCH, Si) =
1 (where hopdist() returns the hop distance between two nodes). Mem-
bers of one cluster might be able to listen to more than one cluster head
but exclusively belong to one cluster, i.e., Ci ∩Cj = ∅, i 6= j.

Each 1-hop cluster head discovers immediate 1-hop neighboring clus-
ters (CN) around it. In the discovery process, the cluster heads exchange
the cluster ids (same as cluster head id) and hop distances of cluster head
from the sink. They also identify the nodes that will be used to commu-
nicate between the two neighboring cluster heads referred to a gateway
nodes as depicted in Fig. 4.3. The 1-hop cluster formation process is per-
formed only once. We do not explicitly refresh 1-hop clusters in order to
maintain the correlations between the nodes within these clusters. Instead,
we design Stages 2 and 3 in an adaptive manner such that 1-hop cluster
rearrangement takes place dynamically in response to the changes in the
physical phenomenon, as detailed further in Section 4.1.4.

4.1.3 Stage 2: Temporal Modeling in 1-Hop Clusters

We now elaborate a temporal compression scheme to model the sampled
values of a sensor node. We will use the developed temporal compres-
sion approach in Section 4.1.3 to model the sampled values of nodes in
1-hop clusters initially and extend the modeling beyond 1-hop clusters
in Section 4.1.4. The scheme has been developed such that the model con-
struction is carried out only by master clusters (selection of master clusters
is explained in Section 4.1.4), while the rest of the clusters use the models
constructed by the master clusters to approximate their sampled values.

Temporal compression scheme is based on the data modeling intro-
duced in Sec. 3.3. The data modeling scheme models the sampled data
using autoregressive models based on the raw attribute values gathered by
the sensor nodes. We repeat the equation to compute values approximated
by the model here again for ease of reference

v̂(t) = µ+

p∑
i=1

φi(v(t− i) − µ) (9)
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Notation Description
v(t) Sample value at time t
v̂(t) Approximated values at time t
V(t) or V Sampled values queue for training models (training queue)
V̂(t) or V̂ Estimated values
T Training queue length
p Model order of AR models
φ Model parameters
Φi ith Model
WΦ Approximation window of a model
Ψ Model cache (set of models)
WΨ Approximation window of a model cache
V̂Ψ Set of estimated samples by a model cache
m# Number of models in Ψ
ε Error threshold
O#max Maximum allowed number of outliers per model per node

Table 2: Modeling Notations

where v̂(t) is the estimated sample value and µ is the series mean. We
denote V̂ as the approximated values set, where V̂ = {v̂1, v̂2...v̂WΦ}, WΦ is
the number of estimated values referred to as approximation window.

Piece-Wise Adaptive Modeling (AM) through Outlier Detection

As we assume the statistical process of sampled values to be unknown,
the natural precondition is to have adaptability of the model according
to the changing statistical dynamics. The adaptability can be achieved by
providing feedback to the model to adapt to the new dynamics. This is
expensive due to continuous updates transmitted to the sink with new
model parameters elevating the message cost. Hence, we use an adaptive
update algorithm based on outliers rather than the model parameters.

Outlier Detection: The sample values that cannot be approximated by
the model can be tolerated and classified as outliers. If α is the maximum
tolerable estimation error then the estimated value must lie between [v−

α, v+α]. If an estimated value does not lie between the bounds, the node
replaces the value with the original sampled value and classifies it as an
outlier value. The outlier values should be reported to the sink separately
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for accurate signal regeneration. Nodes can determine an estimated value
to be an outlier using Eq. (10):

v̂(t) =

{
v(t), if |v̂(t) − v(t)| > α;
v̂(t), otherwise.

(10)

The 1-hop cluster head gathers and reports the outliers of its cluster mem-
bers to the sink to maintain accuracy within α. Fig. 4.4 shows the block
diagram for adaptive modeling based on Eq. (10) (z−1 represents the time
delay).
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Figure 4.4: Adaptive Modeling

The error upper bound and error probability associated with the esti-
mated values can be given by Lemma 4.1.1 (the detailed proof can be found
in Tulone and Samuel Madden, 2006).

Lemma 4.1.1. Let α = νσ, where ν is an application specified real constant
larger than 1, the actual sampled value vi(t) is contained in [v̂(t) − α, v̂(t) + α]

with error probability of at most 1/ν2.

Model Invalidation and Outliers Upper Bound: A model becomes in-
valid if it can no longer approximate the sampled values within the defined
accuracy bounds. Dissatisfying the accuracy bounds results into outliers
that increase the message cost. We consider a model to be valid until it re-
sults into a maximum number of outliers (O#max). The nodes approximate
the sampled values based on the constructed model using Eq. (9) and out-
liers are counted using Eq. (10). If the generated outliers for a given model
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are more than O#max the model becomes invalid and a new model must be
constructed. By adapting this scheme, we control the maximum number
of the generated outliers, satisfy the accuracy requirement and avoid the
unnecessary reconstruction of the model.

We have discussed the standard modeling technique, how to make it
adaptive and proposed to use simple AR models to meet the minimal
computation and memory requirements. However, we do not know what
order of AR model will best approximate the sample values. Hence, in the
next section we discuss the selection of the model that approximates the
sample values with minimal error, generating the least outliers, while still
satisfying the resource constraints.

Dynamic Adaptive Modeling (DAM) through Dynamic Model Order Selection

We have developed an adaptive modeling scheme that the sensor nodes
use to dynamically select an appropriate model order that best approx-
imates the sampled values and reduces the message overhead. It also
avoids unnecessary higher order computation.

Algorithm 4.1 Dynamic Model Order Selection
1: modelOrder← 1;
2: ΦCurrent ← train(V,modelOrder);
3: OutliersCurrent ← AM(ΦCurrent, x(t));
4: for modelOrder← 2 to maxOrder do
5: ΦNew ← train(x(t),modelOrder)
6: OutliersNew ← AM(ΦCurrent, V);
7: if OutliersNew < OutliersCurrent then
8: ΦCurrent ← ΦNew;
9: OutliersCurrent ← OutliersNew;

10: else
11: break; ;
12: end if
13: end for

Sensor nodes have limited computational capabilities, and higher order
models (e.g., AR(4) and higher) are typically computationally expensive.
Hence, we allow the nodes to choose the model from AR(1) to AR(3). A
node initially constructs the AR(1) and AR(2) models as described in Sec-
tion 3.3 and counts outliers for each model (Alg. 4.1, L. 1-6). Both models
have low computation cost as AR(1) solves a linear equation and AR(2)
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solves two linear equations. The outliers for lower order model (AR(1))
are compared with those for higher order model (AR(2)) (Alg. 4.1, L. 7). If
a higher order model does not outperform a lower order model in terms
of outliers, i.e., it does not have lower number of outliers, then it is dis-
carded and no further search is carried out (Alg. 4.1, L. 10-11). How-
ever, if the higher order model outperforms a lower order model then the
higher order model is considered and the lower order model is discarded
(Alg. 4.1, L. 8-9). Similarly, the next higher order model is evaluated
and compared until no further improvement is observed. Consequently,
the nodes dynamically select a model order that optimally matches the
approximated sampled data. The resultant scheme can adaptively model
the attribute samples and dynamically selects its order, and is termed as
Dynamic Adaptive Modeling (DAM). Conceptually, our scheme is neither
bound to the maximum AR(3) model nor to the AR model type. If sensor
nodes would possess better computation resources, then the choice for the
model order can be adaptively increased or other model types can be used
exclusively or in addition to AR models.

With our adaptive scheme, the number of samples approximated by a
certain model is also dynamic and hence the compression scope of each
model may be different at different time in order to adapt to the changing
signal dynamics. In the next section, we detail the adaptability process to
approximate the varying number of samples.

Dynamic Approximation Window

A model, in general, can approximate only a limited number of sampled
values within the accuracy bounds. We refer to the number of samples
that a model can approximate as the approximation window and define it
as:

Definition 1. Approximation window (WΦ) for a model is the number of samples
that a model (Φ) can approximate within the required accuracy bounds while
allowing O#max outliers.

The approximation windows depends on accuracy bounds, allowed out-
liers, model order and the attribute dynamics. Increasing the tolerated
accuracy bounds, maximum allowed outliers and the model order usually
increases the approximation window.

Whereas, the increasing non-linearity in the signal generally decreases
the approximation window because of the use of linear models, the ac-
curacy bound is fixed based on the user requirements. The maximum
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Figure 4.5: Dynamic Approximation Window

allowed number of outliers is fixed by design to limit the message cost.
The model order is dynamically selected for optimal compression (Sec-
tion 4.1.3). Hence, given the accuracy requirements and outliers bounds
the attribute dynamics determine the approximation window for a certain
model.

The constructed model is used to approximate the values that it was
trained with, i.e., the training queue (V). The approximated values set is
denoted by V̂ (V̂ = {v̂(t), v̂(t− 1)...v̂(t−WΦ + 1)}). Due to the dynamic na-
ture, the number of samples for an approximation window may vary. In
Fig. 4.5, we illustrate the idea of dynamic approximation window. The tail-
ing sample values are estimated using the model (Φ) constructed from the
training sampled values. The number of estimated values (model approxi-
mation windows) is denoted as WΦ. WΦ can vary in number of estimated
values from approximated sample short of the training length to samples
beyond it depending on the underlying process dynamics, error threshold
and maximum allowed outliers.

Fig. 4.5 depicts various cases, e.g., V̂1 estimates samples to the length of
training vector V̂1, V̂2 runs short of V2 and V̂4 runs pass the training length
of V4. In the case of V̂ ( V , where the estimated values in V̂ run short of
the training samples length, the values not estimated in a training set are
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passed to the next training set. For example, in Fig. 4.5 the samples of V2
not estimated by V̂2 are passed to V3 to train the next model. Occasionally,
a model may estimate all the sample values in the training set (e.g., V̂4)
and still the number of outliers is less than O#max. In this case, the model
keeps on approximating the next values (i.e., predicting) until the number
of outliers are less than O#max.

We now develop a mechanism to construct a batch of models so that
instead of sending individual models, a batch of models may be sent to
the sink in just one message.

Maximal Temporal Compression and Model Caching

We assume that data delivery can be delayed as specified by the delay-
tolerance for the application. We denote the application delay-tolerance
in terms of samples that can be collected and used to construct the model
cache and then report to the sink. The delay is represented as the total
number of samples approximated by the model cache, given as WΨ. The
tolerated latency, and hence the length of V̂Ψ, are generally many orders
longer than the approximation window of a simple AR model. In general
the nodes will require more than one model to approximate the entire
length of the sampled data.

The master cluster heads construct a consecutive batch of models re-
ferred to as the model cache. A sensor node collects training data (V) with T
samples that are used to train the model as described in Section. 3.3. The
constructed model is used to approximate the samples (V̂). Subsequent
samples are used to construct a new training queue. The new training
queue is again used in the same manner to construct the next model. This
process keeps on repeating untilWΨ samples have been approximated. We
define the set of m# models, that are used to approximate WΨ samples, as
a model cache denoted by Ψ and defined as Ψ = {Φ1, Φ2, . . . Φm#}. The
construction of a model cache has also been illustrated in Fig. 4.6. Due
to delay-tolerance and presence of the model cache, we do not repeatedly
need to construct a model, send it to the sink and send a new model once
the previous model is invalid. Such a scheme would require repeated
transmission of the model parameters to the sink. By constructing the
model caches the master clusters refrain from reporting each model and
avoid such repeated re-transmissions, decreasing the message cost con-
siderably. Consequently, we increase the temporal compression window,
handle non-linearities, decrease message cost, save energy and still use
simple computationally inexpensive models. Next, in 4.1.2 we show that
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the samples estimated by a model cache error lie within user defined error
threshold.

Lemma 4.1.2. For a model cache Ψ, the actual sampled valued v(t) belonging
to the approximated model cache value v̂Ψ(t) (∧v̂Ψ(t) ∈ V̂Ψ(t)) is contained in
[v̂Ψ(t) −α , v̂Ψ(t) +α].

Proof. A model cache is set of m# AR models, i.e., Ψ = {Φ1, Φ2, . . . Φm#}.
The sampled values for each model Φi ∈ Ψ are contained in [v̂Φi(t) − α,
v̂Φi(t)+α] (where v̂Φi is the approximated sampled value using modelΦi)
due to Lemma 4.1.1. Hence, the sampled values approximated by model
cache Ψi are contained in [v̂Ψ(t) −α , v̂Ψ(t) +α].

The temporal compression scheme developed so far can be used by any
sensor node to dynamically determine a model cache that best approx-
imates its sampled values. However, we have developed our proposed
scheme such that only a few nodes in the network belonging to the mas-
ter cluster actually execute the proposed scheme to construct the models.
Next, we describe how a cluster head of a master cluster uses the devel-
oped technique to construct a model. The selection of the master clusters
and how other clusters can be approximated using the model cache con-
structed on master cluster are discussed later in Stage 3.
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Master Cluster Model Construction

The fundamental basis of our compression scheme is that only one node
(or a set of a few nodes) should construct a model that carefully approxi-
mates the largest number of nodes in its surrounding clusters, i.e., within
the defined accuracy bounds. Accordingly, we construct the models on
master clusters that are used to approximate the sampled values of the
nodes not only in the master cluster but also in clusters surrounding the
master clusters. The selection of master clusters is discussed in Section
4.1.4. Once, the master cluster is selected the model cache is constructed
as described earlier.

For a model cache constructed on cluster head to approximate the sam-
pled values of other sensor nodes, we need to define a measure for the
similarity of the sampled values between two sensor nodes.

Definition 2. If the approximated sampled values from a sensor si and sj are
given by v̂i(t) and v̂j(t) respectively, then approximation loss for approximating
sample values of sensor node sj using model cache (Ψi) of sensor node si can be
given by Lij(t) = |v̂i(t) − v̂j(t)|.

In order to meet the user’s accuracy requirements, we define two at-
tribute values to be similar only if their approximation loss is bounded
by β. Accordingly, if a sensor node si and sj satisfy the approximation
loss bound, i.e., Lij(t) 6 β, then the approximation error between the two
nodes can be given by Lemma 4.1.3.

Lemma 4.1.3. The maximum approximation error for sensor node si using model
cache Ψj from nodes sj while satisfying the approximation loss bound, is at the
most α+ Lij = α+β, with the error probability less than 1/ν2.

Proof. Suppose sensor nodes si constructs a model cache Ψi and sensor
node sj uses Ψi to estimate its sampled values such that si and sj satisfy the
approximation loss bound at any given time t for the length of the model
cache. The approximation error between the two sensors can be given by
|vi(t)− v̂j(t)| = |vi(t)− v̂i(t)+ v̂i(t)− v̂j(t)| 6 |vi(t)− v̂i(t)|+ |v̂i(t)− v̂j(t)| =

|vi(t) − v̂i(t)|+ Lij(t). Using lemma 4.1.1, |vi(t) − v̂i(t)| can be at the most
α with he probability 1/ν2, additionally Lij(t) has an upper bound of β.
Hence, the approximation error can be at the most α+βwith a probability
of 1/ν2.

In order to simplify the application of the developed scheme, we define
a single parameter for error threshold, ε, instead of using two separate pa-
rameters α and β. Accordingly, we will use ε to define the error threshold
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for the sensor nodes constructing their own model caches and the sensor
nodes that use the model caches from other sensor nodes (e.g., master clus-
ter heads). Where necessary, the original error threshold parameters can
be used to maintain the necessary level of granularity.

The model cache constructed on the master cluster is used to approx-
imate a larger number of nodes. Hence, the constructed model cache
should produce minimal approximation error. However, the sampled data
may naturally contain spurious and noisy values. The sampled values
are used to train the models and the noisy values may introduce model-
ing errors. Hence, the model cache constructed on a particular node, e.g.,
cluster head, may not necessarily be the model cache with minimal ap-
proximation error. In order to build the minimal error model cache, the
cluster head along with a few randomly selected member nodes build the
model caches and the best model cache amongst them is selected. Accord-
ingly, the master cluster head broadcasts a request to its member nodes
to construct the model cache. A few randomly selected cluster members
build the model cache using DAM (Section 4.1.3) and send it to the cluster
head. The cluster head accumulates all the model caches and broadcasts
them to the member nodes. Each member node (including cluster head)
fits each model cache to its sampled values using AM scheme (Section
4.1.3) and reports back outliers for each model. The cluster head selects
the model cache that generates the least number of total outliers for the
cluster member nodes. This criteria allows us to select the model cache
that best approximates the sampled values of all sensor nodes in the clus-
ter but also results into minimal message cost as we have to spend fewer
messages to send the outliers to the sink.

The search for least error model cache incurs some additional cost in
terms of computations and message exchange. However, this single model
cache is used to approximate large number of nodes in the surrounding
clusters. Hence, this additional cost is compensated with the saving of
large number of outliers that would otherwise incur large message penal-
ties.

4.1.4 Stage 3: Merging 1-Hop Clusters Based on Master Cluster Model
Cache

In Stage 1, we exploited limited but strong spatial correlations by form-
ing 1-hop clusters. In Stage 2, we constructed the model caches to exploit
the temporal correlation on the master clusters, achieving spatio-temporal
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compression. Now, we detail our scheme to extend the spatio-temporal
compression beyond the master clusters. Various existing techniques use
monolithic clustering based on instantaneous values Abbasi and Younis,
2007; Gedik et al., 2007; Yoon and Shahabi, 2007 to exploit the spatial cor-
relation. They generally are very costly as they incur continuous cluster
maintenance cost. We use models instead of instantaneous values to form
the clusters. Large monolithic clusters based on models would require
tracking of all sensor nodes that fit the entire model cache length. More-
over, the attribute dynamics may often change beyond the 1-hop cluster
range. Hence, active tracking of the sensor nodes to form and maintain
large clusters can require continuous message exchanges resulting in high
energy consumption. Therefore, instead of forming large monolithic clus-
ters we use a two level hierarchical clustering. The first level is 1-hop
clusters (Stage 1) where (typically) the nodes are highly correlated. The
second hierarchical clustering level is constructed by merging the 1-hop
clusters that can be approximated by the same model cache to form larger
clusters referred to as model cache cliques or simply cliques (Def. 4). The
schemes described next (including the schemes in Stage 1 and 2) are exe-
cuted on sensor nodes without assistance from the sink highlighting the
fully decentralized nature of our approach. Before describing clique for-
mation, we discuss how the master clusters are selected and how a model
cache constructed on the master cluster can be used to approximate the
sampled values of the nodes in surrounding clusters.

Master Cluster Head Selection

A master cluster merges with its surrounding clusters based on its model
cache to form cliques or regions. We are interested in determining the
smallest possible number of regions in the network or smallest set of
model caches that best approximates the largest network parts in order
to achieve maximal spatio-temporal compression, i.e., transport maximum
data in least number of messages to the sink. We formulate the problem
of defining the minimum number of spatio-temporally correlated regions
in terms of cliques in a network graph.

Definition 3. Given a sensor network consisting of a set of sensor nodes S, the
topology of the sensor network can be modeled as an undirected graph G(D,E),
where D is the set of vertices and E is the set of edges. An edge (Si, Sj) is included
in the edge set E if Nodes Si and Sj can communicate directly with each other.
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The network sub-graph induced by a subset SM, of set S, is the sub-graph of G
involving only the vertices and nodes in SM.

Following the formation of 1-hop clusters, we get a virtual network con-
sisting of a set of cluster heads SCH that are modeled as an undirected
graph GC(DC, EC), whereDC is the set of vertices and EC is the set of edges
based on cluster heads. (Ci, Cj) is included in the edge set EC if Cluster
Heads Ci and Cj can communicate (through a gateway node SG ∈ D) with
each other.

Definition 4. We define a clique as a network sub-graph QC, a subset of the
cluster heads of set DC, such that a model cache Ψ approximates the samples
values within the given error bounds for all the member nodes of each cluster
belonging to cluster heads in QC.

Finding the master clusters that can construct the model caches that
forms the largest coverage clique (approximates largest number of clus-
ters) is NP complete Abello et al., 1999. Hence, we utilize a heuristic based
on the requirement of minimizing the message overhead. As the informa-
tion flow direction is from the network to the sink, we propose the farthest
cluster to be selected as the master cluster to initiate the clique formation
and expand the clique in the direction of the sink by sending its model
cache to the neighboring clusters. Looking at the alternate possibility if the
clusters nearer to the sink initiates the clique formation, the clique might
expand in the direction away from the sink. We will have to spend addi-
tional messages to transport the accumulated information back to the sink.
Hence, the heuristic biased to expand in the direction of the sink generally
reduces the message cost to transport the information to the sink. Each
cluster head knows its hop distance and the neighboring cluster heads
hop distance from the sink as explained in Section 4.1.2. The cluster heads
use this information to figure out the farthest cluster and hence the master
cluster locally. In case of cluster heads having the same number of hops,
the cluster head with higher id has the precedence. Next, we describe how
a model cache constructed on master cluster (Section 4.1.3) can be used
to approximate the sampled values of the nodes in the surrounding 1-hop
clusters

Model Cache Acceptance by 1-Hop Clusters

The master cluster constructs the model cache as described in Section 4.1.3
and sends it to the neighboring clusters. A model cache received by a
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neighboring cluster must approximate the values of its member nodes
within the defined error bounds (Section 4.1.3). Because of similar attribute
distribution and redundant deployment a model constructed in a master
cluster can approximate the sensor nodes in the surrounding clusters.

Algorithm 4.2 Model Cache Acceptance
1: MSG.type=’Ψfit’;
2: MSG.Ψ← Ψ;
3: timer.start();
4: broadcast(MSG)
5: function msgReceive(MSG)
6: if MSG.type==’Ψfit’ then
7: vote← (solve Eq. 12 for Φ, Φ ∈ Ψ)?reject:accept
8: if vote == reject then
9: unicast(vote,outliers[],CH);

10: else if count(outliers > 0) then
11: unicast(outliers[],CH);
12: end if
13: end if
14: add Ψ to Ψ_List;
15: function timer.expired()
16: Ψ.accepted← (Ψ_List total accepts> %k, k ∈ C)
17: broadcast(Ψ.acceptance);
18: if Ψ.accepted then
19: remove member that rejected Ψ & add the new requesting member
20: end if

To evaluate whether the received model cache approximates the sam-
pled values, each member node approximates its samples values as:

v̂(t) = µlocal +

p∑
i=1

φi.(v(t− i) − µlocal) (11)

where v(t) are the sample values of the node, µlocal is the sample mean of
the local cluster head and model parameters are as received from the mas-
ter cluster. Each cluster uses µlocal as we observed µ changes very quickly
from one cluster to the other, while model parameters remain similar.

The nodes in the surrounding clusters approximate their sampled values
using received model parameters as given in Eq. (11), calculate the error
v̂(t) − v(t) and count the outliers. As discussed in Section 4.1.3, we allow
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a certain number of outliers for a model to be accepted by a sensor node.
Total count of the outliers for each model Φ in the model cache Ψ should
be less than the maximum number of allowed outliers (O#max) for model
acceptance (Section 4.1.3). Hence, for each model in the model cache to be
accepted, the node counts the outliers for each model as:

count
∣∣vj(t) − v̂j(t) > ε∣∣ 6 O#max, v̂j(t) ∈ V̂i, i = 1...m# (12)

If all models in the cache satisfy the criteria in Eq. (12) the model cache is
accepted by the node.

In Alg. 4.2, we describe the model cache acceptance by the cluster head
and model cache evaluation by the sensor nodes in a neighboring cluster.
When a neighboring cluster head receives the model cache from the mas-
ter cluster, it broadcasts the model cache with local means, calculated from
cluster receiving cluster head’s sample values, to its cluster members (Alg.
4.2, L. 1-4). The cluster head starts a timer to wait for the responses to be
collected (Alg. 4.2, L. 3). Each cluster member prepares a vote, using Eq.
(12), by counting outliers to either reject or accept the model cache (Alg.
4.2, L. 7). Each member node must accept all the models in the model
cache to accept it for the entire 1-hop cluster. In order to reduce the mes-
sage cost we use the negative acknowledgement scheme. Accordingly, the
cluster head is not notified of the acceptance of the model cache (implicit
vote), rather when the timer expires on the cluster head it assumes the
model cache to be accepted by its member nodes. The negative votes are,
however, explicitly reported along with the outliers to be reported to the
sink (Alg. 4.2, L. 9). Withholding report for positive votes saves messages
because most of the nodes in the 1-hop cluster usually accept the model
cache. The member nodes send outliers to the cluster head instead of send-
ing them to the sink (Alg. 4.2, L. 10). The cluster heads report the outliers
efficiently to the sink by concatenating multiple outliers in one message.

The cluster head counts the votes for model cache when the timer ex-
pires (Alg. 4.2, L. 15-16). A model cache is accepted as a model cache for
the cluster if the cluster head received acceptance from at least k% member
nodes (Alg. 4.2, L. 16).

We discussed the construction of model cache on a master cluster and
how a model constructed on a master cluster can be used to approximate
the sample values of the nodes in other clusters. However, it is required by
the clusters to be synchronized in time so that other clusters can use the
model cache of the master cluster to approximate nodes sample values. If
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the clusters are not synchronized, the sample values might have been col-
lected at different time instances (or time segments). Consequently, master
cluster model cache may not approximate the other cluster sample values
as the model construction time segment and the time segment of the sam-
ples to be approximated might be entirely different.

Self-adaptive Clique Formation

So far, we have described the formation of the 1-hop clusters, the construc-
tion of the model cache on the master clusters and how a model cache
constructed on the master cluster can be used to approximate the values
of sensor nodes in the surrounding clusters. We now describe the clique
formation based on the model caches of the master clusters. For clique
formation the master cluster sends its model cache to its immediate neigh-
boring 1-hop clusters. Each neighboring cluster evaluates the model cache
for acceptance. If the neighboring cluster head accepts the model cache,
it joins the clique and sends the model cache to its neighboring clusters
(except the neighbor that sent the model cache) and so forth. Hence, the
clique formation is essentially a controlled flooding of model cache over
the cluster heads around the master cluster. The flooding stops once the
model cache is not accepted anymore by the surrounding cluster heads or
it reaches the boundary of the network. We now detail this scheme.

Alg. 4.3 describes the expansion of the clique and the functionality of
the clusters that constitute the clique and send the model caches to their
neighboring clusters to further expand the clique. Initially, only master
cluster constitutes the clique as it initiates the clique. Alg. 4.4 describes
the functionality of a neighboring cluster receiving the clique ’join’ request
to merge into the clique.

Model Cache Dispersion and Clique Expansion: A master cluster initi-
ates the clique formation by constructing the model cache. Fig. 4.7 shows
the format of the JOIN message payload that is used by the cluster heads to
propagate the list of constituting clusters and the model cache. The mas-
ter cluster head adds its cluster id, the model parameters and the sample
mean values for each model in the model cache to the message payload.
It sends the JOIN message to all the neighboring clusters (CN) through
the gateway sensor nodes (SG) (Alg. 4.3, L. 1). Each neighboring cluster
head executes the 1-hop cluster model acceptance according to Alg. 4.2
(Alg. 4.4, L. 4). If the model cache is accepted, the cluster joins the clique
by appending its cluster id and the sample mean values to the message
payload. The cluster joining the clique considers itself on the boundary of

52



the clique and executes Alg. 4.3 to further propagate the JOIN message
to its neighboring clusters, hence expand the clique (Alg. 4.4, L. 8-9). The
neighboring clusters receiving JOIN message always notify the requesting
cluster whether it is joining the clique (Alg. 4.4, L. 11). Each cluster head
maintains a local record of its neighboring cluster with respect to their
status regarding the clique. The receiving cluster heads update their local
record regarding the neighboring cluster status from the clique JOIN mes-
sages during each message exchange (Alg. 4.4, L. 7). Once the responses
from all the neighboring cluster CN are received by the requesting clus-
ters, it uses its local record to check if all CN around it belong to the same
clique. If all the surrounding clusters belong to the same clique, it implies
that this cluster is not on the clique boundary. It notifies all cluster heads
in CN that it is not on boundary anymore through a "Not Boundary Clus-
ter" message (NBC) and transfers its local list of clusters in the clique to the
neighboring clusters (Alg. 4.3, L. 6-9). Each cluster head knows the status
of each neighboring cluster whether it has joined the clique and whether
it is on the clique boundary by continuously maintaining the local record
and forwarding it to its neighbors.

Algorithm 4.3 Clique Expansion
1: 1HSend(JOIN, Ci ∧ ∀CiεCN)
2: function receive(MSG)
3: if MSG.type==’RESP’ then
4: clique.add(MSG.accepted,MSG.CHR); R#++;
5: if R#==CN# then
6: if ∀ clique.acctance then
7: NBC.clique← clique;
8: 1HSend(NBC, Ci ∧ ∀Ci ∈ CN)
9: end if

10: end if
11: else if MSG.type==’NBC’ then
12: clique.CHi.boundary← ′ false ′ ∧CHi ==MSG.CH;
13: clique.remove((NBC.clique);
14: end if

Model Cache Flood Control: The clique expansion continues until the
new clusters return positive join responses. A cluster head then knows
that the clique expansion has stopped locally if it received the responses
from all the neighboring clusters and one or more responses are negative.
This cluster now stays on the clique boundary. As the join message is
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flooded from the master cluster to the final boundary of the clique, each
boundary cluster possesses the partial list of clusters forwarded during
clique expansion by the clusters from the clique body. The border is tra-
versed to accumulate the clusters list. The border traversal is initiated by a
cluster possessing special token termed as the Boundary Traversal Token
(BTT). The master cluster initially assigns itself the BTT. The BTT possess-
ing cluster forwards it to its neighboring cluster with least hops from sink
if the BTT possessing cluster is no longer on the boundary. The boundary
cluster possessing BTT transfers its partial list of the clique constituting
cluster to its neighboring cluster on the boundary. The neighboring clus-
ter merges its partial list with the received list and repeats the process until
all the boundary clusters are traversed. The last cluster on the edge of the
boundary forwards the aggregated list to the sink.

Algorithm 4.4 Clique Joining by Neighboring Cluster
1: function receive(MSG)
2: if MSG.type← ’join’ then
3: RESP.accept← ’false’;
4: Call Alg. 4.2 to evaluate MSG.Ψ
5: if MSG.Ψ.accepted then
6: RESP.accept← ’true’;
7: clique.add(MSG.CRequestCH);
8: me.Boundary← true;
9: Execute Alg. 4.3

10: end if
11: 1HSend(RESP, CHR)
12: end if

The clusters beyond the clique boundary follow the normal procedure
of determining the farthest cluster to initiate and form a new clique. The
cluster adjacent to the boundary of the clique exclude their neighbors that
are already part of another clique in determining the farthest cluster. Us-
ing our proposed scheme the nodes dynamically group to create a region
that is spatially and temporally correlated for a given attribute for the
modeled time duration. Hence, we have one model cache to be reported
to the sink that represents the behavior of the spatio-temporally correlated
region. During the clique formation each node in each cluster takes part
in model cache acceptance, hence, the data regenerated from the model
caches on the sink are accurate to the level of single node. The particular
discrepancies are corrected through the outliers sent by the cluster heads
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for their respective members. We do not assume any particular distribu-
tion of the sensor nodes. Therefore, there can be multiple 1-hop clusters in
different parts of the network that may have the maximum number of hops
in the local neighborhood. We also set an upper bound on the time (Tmax)
that a cluster head can wait for the larger hop number cluster (clusters far-
ther from sink) to initiate the following round of clique formation. On the
expiration of the wait time period the cluster head initiates clique forma-
tion. Hence, there can be multiple instances of clique formation executing
in parallel. Two or more clique formations execute mutually exclusively,
i.e., a growing clique stops at the boundary of the other growing clique.
We put this restriction because the two cliques are growing based on two
different model caches.

Iterations and Dynamic Adaptability

The second level of cluster hierarchy or the clique is a temporary entity
to determine the correlated region based on the model cache and is not
strictly a larger cluster in conventional sense. It does not have a cluster
head and we do not maintain it. Maintaining such a large cluster body
may be very costly, because it is built using the model cache, which re-
quires the clusters to agree for a longer duration of time. Hence, cliques
are reconstructed rather than being maintained. We show in Section 4.3.1
that message overhead to construct a clique is very low. The reconstruction
of the cliques allows to continuously adapt to the changing dynamics. The
1-hop cluster that were part of one clique may be part of another clique
or even make their own clique in the next iteration of clique formation de-
pending on the dynamics of the phenomenon. After reporting the model
caches, the cluster heads wait for enough data to be collected to construct
the next model cache as explained in Section 4.1.3. The process of the
model cache construction and the clique formation is repeated and the
sink receives accurate continuous data.

1-Hop Cluster Dynamic Rearrangement

The 1-hop cluster members usually stay correlated. However, due to
changes in the physical phenomenon, the correlations even at the 1-hop
cluster level may change and the clusters require rearrangement. We do
not implement an explicit mechanism to detect such changes as it would
require further message overhead. We determine such changes in the node
correlations in Section 4.1.4 when k% of nodes agree with the model cache
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and the model cache is accepted by the cluster head due to majority vote.
The cluster head evicts the remaining r− k% nodes that send the negative
votes (reject the model cache). Using overlapping nature of the clusters the
evicted sensor nodes wait and snoop the model caches sent by the rest of
surrounding clusters. An evicted sensor node checks the model cache as
if it were part of this cluster and updates the cluster head accordingly. If
the model cache is accepted by the cluster head, the evicted sensor node
joins the cluster. If the evicted node cannot join any surrounding cluster it
forms a new cluster and becomes the cluster head as described in Section
4.1.2. Such rare condition arises due to a new phenomenon developing in
local region. The sensor nodes in this region (around the evicted sensor
node) will start leaving their current cluster (as the evicted sensor node
did) and will eventually form a cluster with the evicted sensor node. Con-
sequently, the sensor nodes rearrange the 1-hop cluster to self-adapt to the
environmental changes.

4.2 efficiency and compressibility analy-
sis

In this section, we carry out the cost analysis of our proposed scheme
in terms of number of messages required for compression and transport
of the information. We discuss the efficiency of our proposed scheme in
terms of theoretical compressibility that we can achieve. Finally, we also
discuss the computational overhead incurred by the proposed scheme.

4.2.1 Message Payload

The analysis and structure of the message payload that carries the com-
pressed data is very important, because it directly impacts the message
cost. The general structure of the model cache message (MsgΨ) payload is
as depicted in Fig. 4.7. The complete information about the model cache
and the clusters taking part in the formation of the clique are contained in
the message payload. The payload consists of three parts: 1) The model
type of each model in the model cache, 2) all the model parameters of each
model in the model cache, and 3) the cluster ids (Cid) and the local means
of each cluster.
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We denote the bytes required to denote a certain parameter by a "B" in
subscript, e.g., model typeB denotes bytes required for model type, or φB
denotes bytes required by a model parameter. If there are m# number of
models in the model cache and p denotes the model order then the total
size of the message payload can be given as:

payloadB = model typeB +
∑
Φ∈Ψ

φB ×Φp +
∑
C∈Q

(CidB + µCB ×m#)

The three parts of the equation correspond to the three parts of the mes-
sage payload.

Model   Type   Model  Parameters   

1 
…   

Cluster   
Id 1 

    
… 

ψ   
Region Cluster  I nformation   

…   θ 1   θ 2   …   θ p   θ 1   θ 2   …   θ p   µ 1   θ 1   θ 2   …   θ p   
2 m# 1 2 m# 

…   µ 2   µ m#   
Cluster   

Id 2 
  

µ 1   …   µ 2   µ m#   
…   

2 
bits 

2 
bits 

2 
bits 

Figure 4.7: Message Payload Format

Notation Description
r Cluster members count
µC Mean value for Cluster C
Q Clique
vB Bytes per sample value
S#Ci Sensors in cluster Ci
MsgReq Model cache request
MsgΨ Model cache message
MsgOut Outliers message
S#rand Random number of nodes
S#G Number of gateway nodes

Table 3: Efficiency and Compressibility Analysis Notations

The size of payload in comparison to the amount of data that is com-
pressed using our proposed scheme is fairly small. For typical values of
3 models per model cache and 2 bytes to store each model parameter, the
bytes required for modeling will be 2bytes+ 2bytes× 3(parameters)×
3(models) = 20 bytes. If we reserve 2 byte for cluster id and 2 bytes for
mean value, then we require 8 bytes (2 bytes for cluster id+ 3 models×
2 bytes for mean per model) for each new participating cluster. Hence,
for the given case, we typically require 28 bytes to store the complete in-
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formation for one cluster and 8 bytes for each additional cluster in the
clique.

TinyOS Levis et al., 2004 (an established OS for WSN) has a default
payload size of 28 bytes. However, radios on various popular platforms,
such as telos Polastre et al., 2005, support message lengths of up to 128

bytes. Hence, we can easily transport the model cache with multiple clus-
ter information in a single message by changing the default payload size.
In contrast to TinyOS, Contiki Dunkels et al., 2004 (another popular plat-
form) does not have such limitations.

4.2.2 Maximum Theoretical Compressibility and Efficiency

In order to keep the nodes synchronized, we limit the number of samples
that a node can compress using a single model cache to V̂Ψ. Hence, each
node in each cluster in the clique compresses V̂Ψ samples using the model
cache. If S#Ci denotes the number of nodes in cluster Ci accepting the
model cache (minimum is k%, otherwise model cache is rejected), then the
maximum theoretical compression that our proposed scheme can achieve
is given by Eq. (13):

Totalbytes =
∑
Ci∈Q

V̂ΨB × (S#Ci) (13)

Eq. (13) shows that the maximum theoretical compression in a given clus-
ter is equal to the number of bytes representing the sample values (max:
V̂Ψ) of nodes accepting the model cache. To determine the total achieved
compression for the clique, this factor should be summed for all the clique
member clusters. Assuming a conservative value for V̂Ψ = 75, average
cluster size of 7 members and 2 bytes per sample, the total data that we
compress is 2× 75× 7 = 1050 bytes for one cluster. Interestingly, we re-
quire only 28 bytes to represent the complete data in the cluster as shown
in Section 4.2.1. Consequently, we would achieve a compression ratio of
more than 37 times for the assumed parameter values. For each next clus-
ter, we require only 8 bytes in message payload to compress an additional
1050 bytes of data. In terms of message we require only one message. We
present the analytic details of message costs and elaborate it further in
Section 4.3.1.

The actually achieved compression, however, falls slightly short of the
theoretical maximum compressibility. The reduction in compressibility is
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due to the outlier values that cannot be approximated by the models to sat-
isfy the accuracy requirements imposed by the user. However, the decre-
ment is limited. The worst case compression that we can really achieve
can be given by the following equation

Totalbytes =
∑
Ci∈Q

(VΨB × (S#Ci) − vB ×O#max ×m#) (14)

Eq. (14) gives the compression when we assume each node in the clus-
ter has outliers equal to the maximum number of outliers allowed. If we
assume maximum allowed outliers value to be 5, the achieved compres-
sion decrements by 2 bytes× 5× 3× 7 = 210 bytes. Still we are able to
compress 840 bytes after fulfilling the accuracy requirements for the given
parameters.

4.3 message and computation cost for com-
pression

We now detail the cost of message exchange to achieve the data compres-
sion.

4.3.1 Message Overhead

In Section 4.2.2, we discussed the maximum theoretical and practically
achieved compression in terms of the number of bytes reduced using our
scheme. However, for WSN the notion of number of messages is the true
measure of compression to be achieved. Hence, in WSN reduction in num-
ber of bytes is only an indirect measure and may be eclipsed or become
completely irrelevant if the compression is achieved at the cost of high
number of messages exchanged. Hence, we have systematically broken
down each stage of the proposed scheme to account for the message cost
incurred to achieve the spatio-temporally compression and transportation
of information to the sink.

Master Cluster Model Cache Construction

Model cache Ψ is constructed on a few master clusters. The cluster head
broadcasts the request (MsgREQ) to the cluster members to send their
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model caches (MsgΨ). A few random members (S#rand) send their model
caches. The cluster head broadcasts back all the collected model caches
to the members. Finally the cluster members respond back with the num-
ber of outliers for each model cache (MsgOUT ). If the master cluster has r
members then the total number of messages exchanged in a master cluster
to construct a model cache can be estimated by the following equations:

Msgs =MsgREQ +MsgΨ × S#rand +MsgΨ +MsgOUT × r (15)

The cluster head and the nodes constructing the model cache in the master
cluster transmit two messages and the rest of the nodes in the cluster
transmit just one message to construct a model cache. Hence, in worst case
a node in the master cluster needs to transmit two messages to compress
the data and construct the model cache.

Intra-Cluster Agreement

The clusters other than the master cluster use the model cache constructed
by the master cluster to estimate the sample values of the nodes in the
cluster. To evaluate whether the model cache estimates the sample values
of the sensor nodes, the cluster head broadcasts the model cache. The
sensor nodes evaluate the models and respond with the outlier values to
the cluster head. The count of messages for this stage can be given by the
following equation:

Msgs = MsgΨ +MsgOUT

Accordingly, in the clusters other than master cluster the worst case count
of messages to decide a model cache is one for any node in the cluster.

Model Cache Dispersion

Once the master cluster has constructed a model cache or a normal cluster
has accepted a model cache, it disperses the model cache to its neighboring
cluster through the gateway nodes. If SG denotes a gateway node and S#G
is the count of gateway nodes then the total number of messages required
by each cluster to disperse the model cache is given by the following equa-
tion:

Msgs = MsgΨ +MsgΨ × S#G
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This equation represents the worst case situation when the cluster are non-
overlapping (which is not typically the case as in Fig. 4.3) and all gateway
nodes transmit without optimization, like avoid transmitting to the neigh-
boring clusters that already are part of clique.

Joining Clique

If the model cache is accepted by the cluster head, it joins the clique. The
joining cluster head sends a message to the requesting cluster head to
report for joining the clique through the gateway node, accounting to one
message for cluster and the corresponding gateway node.

Clique Border Expansion

During the model cache dispersion the clique expands and the border of
the clique extends further. If a cluster head finds out, after receiving the
responses from the neighboring cluster, that it no longer is on the border
of the clique it sends this confirmation to the neighboring clusters so that
it may no longer be considered on the border of the clique.

Msgs = MsgΨ +MsgΨ × S#G

The clique border expansion accounts for one message broadcast from the
cluster head and further transmission to neighboring cluster by the gate-
way node.

In summary the number of transmissions range from one to four mes-
sages depending on their role and whether they are in the master cluster
or the non-master cluster. In the worst case and with very large clique for-
mation, more than one packets may be required to contain the complete
clique information. The above calculations assume the roles of the nodes,
from functional point of view, to be mutually exclusive. However, in real-
ity they may not necessarily be exclusive, e.g., a gateway node may also be
the same node as the node participating in model cache construction.

4.3.2 Computation Overhead

The computation cost arises mainly during the model learning phase where
the model parameters are evaluated (Section 3.3). During the training
phase the intent is to avoid unnecessary model construction as proposed
in Section 4.1.3. Initially only the first and second order models are con-
structed. The third order model (or any higher order model in general) is
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estimated, and used only if an improvement is observed with increasing or-
der. The parameter estimation consists of solving AX = B in p unknowns
and accordingly computing the matrices A and B. For a third order model,
which represents the worst case situation, we need to carry out 12(T − 3)
sum and production operations and additionally the cost to solve the lin-
ear system of equations. As we compute a higher order model only if it
is needed, hence generally we need to carry out even fewer computations.
Additionally, the linear set of equations resulting due to higher order con-
tains terms already computing for the lower order system. Hence, com-
puting a higher order model is not same as the computation of each term
in the linear system of equation rather only a few new terms in the higher
order system. In addition to the optimization mechanisms that we have
in place to reduce the computations as much as possible, we also limit the
model construction only to a small sub-set of the clusters, i.e., the mas-
ter clusters. Other clusters only use the estimated model parameters to
determine the model’s estimation accuracy, which is a fairly inexpensive
operation. The nodes use Eq. (11) for this purpose, which comprises of 3

multiplication and 4 addition operations to estimate a sample value for a
third order model.

4.4 experiments and discussion

In this section, we evaluate the proposed spatio-temporal compression
technique.

4.4.1 Simulation Settings

In order to carry out comprehensive simulations for the evaluation, we
used publicly available real-world data set S. Madden, 2003, containing
traces for temperature, humidity, light and voltage. The network simula-
tions are performed in TOSSIM. The signal reconstruction at the sink is
conducted using MATLAB.

For extensive evaluation of the proposed scheme the simulations were
performed on temperature and humidity data as they are not monotonic
and continuously change during day and night and hence provides a good
opportunity to test the adaptability to the changing dynamics.
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The considered network consists of 52 nodes. We selected the AR mod-
els which are fairly inexpensive to evaluate. The order of the models is
dynamically selected as described in Sec. 4.1.3. The model training length
has been fixed to T = 75. Tulone and Samuel Madden, 2006 shows that
long training windows do not necessarily improve either accuracy or ef-
ficiency. We also conducted initial studies to determine optimal value
(range) for T and came to the same conclusion as Tulone and Samuel Mad-
den, 2006 that accuracy and efficiency almost stagnates beyond T = 75,
while the cost to train the model keeps increasing. Hence, in our simu-
lations we deliberately did not vary this parameter and used the specific
value of T=75.

AHC has been thoroughly evaluated with a wide array of various param-
eter values. The maximum allowed outliers (O#max) is set to the values of
15, 30 and 45 outliers per model cache per node. Model cache approxima-
tion window size WΨ is assigned values of 60, 75, 90, 105 and 120 samples.
The desired error threshold ε is simulated for the values of 0.01, 0.05 and
0.1. Comprehensive simulations have been carried out to evaluate and an-
alyze the impact and role of each parameter. As we discussed in Section
4.2.1, we require a larger payload size than the default size of 28 bytes in
TinyOS. Hence, we have set the message payload size to 90 bytes. Haas
and Wilke, 2011 shows that increasing the payload size to some extent
does not increase the energy consumption, which we exploit here.

Comparison with the State of the Art Techniques

In order to put the performance of the proposed scheme in perspective,
we compare the performance of AHC to that of our prior delay-tolerant
spatio-temporal data collection scheme, i.e., ASTC Ali et al., 2011a, that
of the time-series based real-time data spatio-temporal collection scheme
PAQ Tulone and Samuel Madden, 2006 and that of another class of in-
network compression methods, namely transform compression that is based
on signal compression. This comparison gives us an even more compre-
hensive study of the performance of AHC alongside other data compres-
sion methods that are based on a different paradigm. The dataset that is
being used by our simulation shows high compressibility of the tempo-
ral data under Discrete Cosine Transform (DCT) Ahmed et al., 1974. We
evaluate the performance of representative Distributed Transform Coding
or Distributed Transform Compression (DTC) method that uses DCT as
its compressive basis Duarte et al., 2012. The sensor nodes first compute
the DCT of the temporal data and select the largest DCT coefficients. The
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magnitude and location of the most significant DCT coefficients are then
communicated to the sink. The sink reconstructs the original data by ap-
plying the inverse DCT transform on the received data while setting the
value of non-significant coefficients to zero. We set the accuracy require-
ments for ASTC, AHC, PAQ and DTC the same and compare the amount
of in-network transmissions required by each method to fulfill the accu-
racy prerequisite. For DTC, we observed that a high enough accuracy is
attainable by looking for the most significant DCT coefficients in the first
20 values of the DCT transform. Accordingly, we limit the size of the
DCT transform in order to avoid too much memory requirements as the
memory of a sensor node is quite limited.

Design Parameters and Trade-offs

Various parameters were introduced while developing AHC. Each param-
eter influences the performance achieved by AHC. In Section 4.1.3 we have
already discussed the effect of certain parameters, such as model order, on
the performance of AHC. Accordingly, an automated mechanism was de-
veloped to optimally select the best values for these parameters. However,
we have to explicitly define other parameters, such as error threshold (ε)
and approximation window (WΦ), user accuracy requirements and delay-
tolerance level. Hence, before discussing the results, we describe here the
implications of various parameters and how they can affect compressibil-
ity, efficiency and accuracy.

User defined error threshold (ε) defines the maximum error desired in
the reproduced data at the sink. It plays a key role in the degree of com-
pression that we can achieve both temporally and spatially. In terms of
temporal compressibility, stringent accuracy requirement (lower values of
ε) can increase the number of resultant outliers. It can decrease the num-
ber of sample values that can be approximated by a given model, as a
model is valid only for a limited number of outliers (O#max).

In terms of temporal compression, smaller values of O#max will invali-
date a model quickly and we may require more models per model cache to
approximate the same number of samples. For spatial compression fewer
neighboring clusters may accept a model cache from a master cluster for
fewer number of outliers, forming smaller cliques and generating more
model caches. Increasing the allowed outliers may increase the temporal
compressibility and form larger clique (hence fewer model caches). But
larger O#max also means transporting larger number of raw sample values,
which may in turn increase the message cost again.
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In terms of temporal compression the larger the value of WΨ, less num-
ber of model caches are required to transport the data. However, in
terms of spatial compression, increasing WΨ may negatively impact the
spatial compressibility, because larger WΨ requires the clusters to agree
for a larger number of samples (hence longer duration of time). Hence,
larger WΨ may result in smaller cliques and may consequently require
more model caches to be constructed. Increasing WΨ also means increas-
ing the latency/delay in reporting the samples to the sink. Hence, the
upper bound for WΨ is already defined by the tolerated latency in collect-
ing the sampled values.

The discussion about the parameters and their impact on the degree of
compression provides the basic understanding of their behavior while dis-
cussing them independently. However, they do influence each other. For
example, ε influences the resultant number of outliers or O#max influences
the number of a models in a model cache. We will further discuss these
parameters and their inter-dependencies in the results section next.

4.4.2 Experimental Performance Evaluation

Our performance evaluation is based on two key metrics: Accuracy of col-
lected data and message efficiency. Accuracy measures how closely the
sampled data is approximated after being approximated through AHC
and reproduced on the sink. Whereas, message efficiency measures the
number of messages required during the whole operation of AHC. Less
message efficiency (more number of messages) would imply less energy
efficient, as more energy would be consumed with more messages. Sim-
ilarly, more message efficiency (fewer number of messages) would imply
more energy efficient.

Efficiency

We define efficiency in terms of message overhead, i.e., the total message
transmissions that account for all messages transmitted during all three
stages of AHC. Message overhead comprises of intra-cluster and inter clus-
ter message exchange for model caches construction and verification, and
then reporting of the model caches and outliers to the sink.

total message overhead Fig. 4.8 shows the total message cost for in-
tra and inter-cluster communication and model caches and outliers trans-
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port to the sink. Fig. 4.8 (a), (b) and (c), show message cost for maximum
allowed outliers (O#max) of 5, 10 and 15 per model per node respectively.
Each figure depicts the variation in message cost for increasing approxi-
mation window (WΨ) for different error thresholds (ε). From Fig 4.8, we
make the following notable observations:

1. For stringent accuracy requirement, i.e., ε = 0.01, the message over-
head is highest and the message cost decreases rapidly with decreas-
ing ε, i.e., to ε = 0.05 and ε = 0.1, resulting in fewer outliers and
more clusters accepting the model caches forming larger cliques re-
sulting in fewer messages to be transported.

2. The message overhead decreases with increasing approximation win-
dow because, as explained in Section 5.4.1, the increasing approxima-
tion window requires fewer rounds to complete the complete length
of data to be compressed and transported. It results in lesser num-
ber of model caches to be constructed, saving the intra-inter cluster
communication costs and model cache transportation costs.

3. Message overhead drops when O#max is increased to 10 (Fig. 4.8(b))
but the total message overhead increases when O#max is increased
further to 15 in Fig. 4.8(c). It happens due to drop in inter- and
intra-cluster messages and increase in outliers message overhead.

message overhead for inter- and intra-cluster communication :
We now dig deeper in the total message transportation costs results and
explore further why we observe various trends while discussing Fig. 4.9
and 4.10, depicting the total message cost excluding the outliers cost and
only outliers cost respectively. In Fig. 4.9 (a), (b) and (c), similar to Fig.
4.8, we depict the inter- and intra-cluster message exchange for various
maximum allowed outliers (excluding the outliers cost). The interesting
results to be observed here are:

• We observe a considerable drop in the inter- and intra-cluster mes-
sage overhead when the error threshold is relaxed from ε = 0.01 to
ε = 0.05 in Fig. 4.9 (a). The relaxed error threshold results in larger
differences between the approximated value and the sensed values to
be tolerated. Hence, we have larger cliques, fewer model cache rejec-
tions, fewer new model cache constructions, fewer model caches to
be transported to the sink and consequently fewer overall messages
to be exchanged.
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Figure 4.8: Total Message Cost for Inter- and Intra-Cluster Communication,
Cache Construction and Caches and Outliers Transportation of Tem-
perature Data to the Sink
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• Reduction in message overhead is observed with increasing O#max.
More outliers relax the requirements for the acceptance of a model
cache by a neighboring cluster and allow it to accept a model cache
in spite of more outliers. Hence, we also observe a significant drop
in the message overhead for ε = 0.01 when O#max is increased from
15 to 30 as depicted in Fig. 4.9 (a) and (b). However, because of
relaxed error threshold that results in wider model cache acceptance
by the neighboring clusters in general, we do not observe a similarly
significant drop in Fig. 4.9 (c).

message overhead for reporting outliers Fig. 4.10 depicts only
the message cost associated with the outliers for various O#max and ε. The
notable observations are:

• Similar to the cost of model cache messages, we observe very small
changes in message cost for relaxed error threshold when maximum
outliers are increased.

• However, contrary to the model cache, we see a significant increase in
message overhead as we increase the maximum outliers for ε = 0.01.
The outliers are expensive to transport not only because they are raw
sample values but also because they carry extra overhead of value
indices and the value owner id. Whereas, for ε = 0.05 and ε = 0.1
the message cost remains almost similar because relaxed accuracy
requirements do not dictate the data to be more accurate and does
not produce any significantly greater number of outlier messages.

• Though we observe a consistent increase in message overhead with
increasing O#max, we initially observe a reduction in the total mes-
sage overhead in Fig. 4.8, because the reduction in the inter- and
intra-cluster message cost is greater than the increase in the outliers
message overhead. However, when we increase O#max even further,
the increase in the outliers message cost exceeds the reduction in the
inter- and intra-cluster message cost and the total message starts to
increase again.

In Fig. 4.11, we compare the message cost of AHC with ASTC with
extended approximation window WΨ from 35 to 120 samples and error
threshold ε from 0.01 to 0.2 for AHC. Whereas, ASTC has been simulated
at ε = 0.2. We can see that AHC consistently performs betters than ASTC
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by a large margin not only for the same error threshold (i.e., ε = 0.2)
but even for lower error threshold thanks to adaptive modeling (Section
4.1.3) and dynamic approximation window (Section 4.1.3) that consider-
ably reduce the inter- and intra-message cost and yield considerably fewer
outliers.
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Figure 4.11: Impact of ε on Message Cost on ASTC and AHC

4.4.3 Comparison to Related Work

efficiency Fig. 4.12 depicts the message overhead comparison between
AHC, ASTC, PAQ and DTC. We observe that AHC clearly outperforms the
other techniques in terms of message cost, which was the design goal for
AHC. The large gap between PAQ and AHC is due to the design choices,
as PAQ targets realtime monitoring applications, hence in contrast to AHC
it cannot exploit the temporal redundancies. Whereas, ASTC similar to
AHC not only exploits the spatial and temporal redundancies but also
exploits the delay-tolerance. Hence, it also successively collects the data
samples, compresses them and then the compressed models are sent to
the sink collectively. However, adaptive model and dynamic prediction
window of AHC give it an edge over ASTC that reduce the message cost
further. Consequently, we can conclude that if the application can tolerate
delays in data collection then AHC could be a better choice, as its design
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takes into consideration the application delay tolerance. Hence, for delay
tolerant applications AHC can compress the data even further and reduce
the message cost.
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Figure 4.12: Message Cost Comparison Between Various Compression Scheme
for Different Error Thresholds ε

accuracy In Fig. 4.13, we depict the mean error of all sensor nodes in
the network for the entire length of monitored data for AHC, ASTC and
PAQ. The figure depicts for AHC the attained error versus the maximum
error thresholds for various prediction windows. The error thresholds set
in the simulations mean very high accuracy requirement. The error thresh-
old of ε = 0.01, ε = 0.05 and ε = 0.1 represent maximum error of 0.044%,
0.22% and 0.43% of the mean sample value. In Fig. 4.13, we observe an
increase in the attained error but it always remains well below the defined
maximum threshold. We can observe that all three schemes easily attain
the user accuracy requirement. However, the message cost incurred to
attain the desired accuracy level shows the efficiency of the scheme. We
can put the results from Fig. 4.13 in perspective by looking at the mes-
sage cost (Fig. 4.12) incurred by each scheme to achieve the accuracy level.
By considering both figures, we observe that AHC is manifolds more effi-
cient then ASTC and PAQ in terms of message cost in order to meet the
same user accuracy requirement. Hence, AHC is able to meet the user

72



requirement with fewer number of messages that effectively reduces the
energy consumption and can prolong the life of the individual nodes and
the network overall.
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Figure 4.13: Mean Approximation Error on Sink for Temperature Data set

Note: We cannot include DTC in our comparison w.r.t. accuracy, since
there is no equivalent parameter for error threshold ε in DTC. Neverthe-
less, Fig. 4.12 still gives a good comparison of the discussed compression
methods. In Fig. 4.12, both axes of the diagram correspond the parameters
that exist in all classes of the compression schemes mentioned here. Our
implementation of DTC involves transmitting the largest DCT coefficients
of the transformed temporal data. The number of transmitted coefficients
is determined before data gathering such that a certain level of accuracy is
achieved when the DCT coefficients are sent to the sink. Determining the
outliers for a given error threshold ε requires inverse DCT computation at
the sensor nodes which is beyond the hardware capabilities of these nodes.
Therefore, it is not possible to compare DTC with ASTC, AHC and PAQ
based on the error threshold ε as such an implementation of DTC that
finds outliers depending on a given ε is not realistic.
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4.4.4 Versatility - Phenomena Independence

In order to evaluate the versatility of the proposed scheme, we also car-
ried out extensive simulations (however, to save space we show here only
limited results), similar to temperature, for the humidity data that is also
available in the real-world data set S. Madden, 2003.

efficiency Similar to temperature data, Fig. 4.14 depicts the message
cost results for humidity. Fig. 4.14 (a) shows the total message cost
incurred in inter-intra cluster communication, model cache and outliers
transportation. Fig. 4.14 (b) and (c) further break down the message
cost. Fig. 4.14 (c) shows only the message cost related to transporting
the outliers to the sink, where as Fig. 4.14 (b) depicts the rest of the mes-
sage cost related to inter-intra cluster message exchange and model caches
transportation. The trends observed in Fig. 4.14 are similar to the ones
discussed related to the temperature data, hence we do not discuss them
again here. However, these results signify the versatility, consistency and
adaptability of the proposed scheme to various data types.

accuracy Fig. 4.15 depicts the mean approximation error for the humid-
ity data set reproduced from its model caches on the sink. Similar to tem-
perature data set we can observe that the proposed scheme not only meets
the accuracy requirement but easily exceeds the desired accuracy level. We
can further observe that the reproduced data error remains well below the
error threshold even for one standard deviation around the mean.

4.5 chapter summary
In this chapter, we have presented Delay-Tolerant Spatio-Temporal Data
compression scheme for of wireless sensor networks corresponding to
Temporal Compression and Spatial Compression modules of the proposed
framework. We provided adaptive mechanisms that allows the proposed
scheme to be applicable to wide variety of applications. The proposed
schemes maximizes the data compression both in time and space. We have
also demonstrated the efficiency and accuracy achieved by our proposed
spatio-temporal compression scheme.

The proposed scheme is, however, vulnerable to data errors. The data
modeling scheme uses the sampled data to construct models. If the sam-
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Figure 4.15: Mean Approximation Error on Sink for Humidity Data Set

pled data would contain corrupted samples, the resulting models will also
be corrupted, as the model tries to correspond closest to the sampled data.
Hence, the data reproduced on the sink is also corrupted. In the next
chapter we address the data corruption issue and extend the proposed
scheme to be resilient to a large class of faults that effectively result into
data errors.
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5 FA U LT-TO L E R A N T DATA
C O M P R E S S I O N

Wireless Sensor Networks (WSNs), typically comprising of hundreds of
battery-powered sensor nodes, get deployed for monitoring environmental
attributes and transporting the data to a central computer (sink) for pro-
cessing. Given the constrained bandwidth and energy resources, WSNs
often employ data compression schemes to efficiently collect and transfer
the sensed data. However, various factors such as low node reliability
(node crashes), harsh operating environments and communication faults
can compromise the core objective of accurate collection and delivery of
the sensor data. However, most current data acquisition and compression
schemes fail to consider either the source faults or the resulting data errors.
Consequently, the data collated at the sink is also often erroneous.

Here, we proposes a novel and efficient fault-tolerance technique that
extends from the compression schemes proposed in Chapter 4. In con-
trast to existing schemes that utilize instantaneous sensor readings, we
propose a model-based scheme to provide fault-tolerance. Being fully dis-
tributed, our scheme corrects data errors at the point of origin (faulty sen-
sor nodes), and thus avoids costly transmissions of corrupt data. The pro-
posed scheme is flexible and scalable to ensure easy integration also with
the varied available compression techniques and to also enhance compres-
sion effectiveness by correcting the erroneous samples. The overhead of
the proposed scheme, in terms of computation and memory, is minimal.
In terms of messages, the scheme not only exploits the background traffic
to avoid new messages but also reduces the existing data collection traffic
through the removal of erroneous samples.

5.1 fault abstraction and modeling

We refer to the environmental data that needs to be collected (e.g., temper-
ature, pressure) as reference data. The data actually collected by the sensor
nodes is the sampled data. The sampled data may not necessarily be same
as the reference data because of the faults causing data errors. Hence, the
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sampled data is often not good enough to be used as the reference data.
Moreover, the instantaneous (sampled) values are not suitable for fault de-
tection because of the erroneous samples. Hence, we need a time spread
(i.e., time-series) data approximating mechanism to approximate the refer-
ence data. Consequently, we propose a scheme where we first construct
a model out of the sampled data and use the model to represent the ref-
erence data. The model is then used to detect and correct the erroneous
samples. The model does not depend on a single instantaneous value,
hence it is relatively less prone to the the faults and the resulting data er-
rors. Fig. 5.1 illustrates the reference data and the model approximation of
the reference data (based on model proposed in Sec. 5.1.2) with 10% and
20% corrupted samples. We observe that the model approximation of the
corrupted data is very close to the reference data. Hence, we assume that
the selected model provides a good approximation of the reference data.
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5.1.1 The Fault Abstraction

Various functional faults result into data errors. Examples include sensor
faults generating wrong readings, bit flips in memory affecting the sensor
data, non-recommended deployment conditions resulting in wrong cali-
brations, incorrect sampling algorithms wrongly transforming data, etc.
However, we do not detect the faults explicitly, rather we focus on the de-
tection and correction of erroneous data produced by the underlying faults.
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Consequently, we do not require any specific knowledge of a given fault
but still implicitly correct it by correcting sampling errors. Hence, in the
rest of the manuscript, we will be dealing with data errors (or erroneous
samples) instead of faults directly. In order to detect an erroneous sample,
we define it as follows:

Definition 1. An erroneous sample ve(t) at time t deviates at least ξ units from
the reference value v(t), i.e., |ve(t) − v(t)| > ξ.

As the sensor nodes do not have the reference value, the functional faults
causing erroneous samples deviating less than ξ from the reference values
are not discernible from the non-erroneous sampled data (as detailed in
Sec. 5.3.1).

5.1.2 Data Error Detection Models

As discussed earlier, we derive a model from sampled data for reference
data approximation that we can afterwards use to detect data errors. The
types of models that are most suitable for data modeling and tracking,
and that are also commonly used in WSN, include Kalman filter Min
and Chung, 2010, Probability Density Function (PDF) Yoon and Shahabi,
2007 and Auto-regressive (AR) models Tulone and Samuel Madden, 2006.
Kalman filters are computationally expensive for resource constrained sen-
sors. PDF requires expensive training routines (up to 15 days L. Wang
and Deshpande, 2008) and expects the data patterns to remain consistent.
AR models, on the other hand, are adaptive Tulone and Samuel Madden,
2006 and computationally inexpensive Borgne et al., 2007. Moreover, these
models are already used by a large body of existing work in our target
domain of data compression. Examples include Tulone and Samuel Mad-
den, 2006Ali et al., 2011aC. Wang et al., 2012 Borgne et al., 2007 Miranda
et al., 2013 P. Jiang and S.-Q. Li, 2010 G. Li and Y. Wang, 2013. In order
to detect the errors and eliminate them, we are interested in reducing the
noise as much as possible. Accordingly, AR models are well suited acting
as low pass noise filters. We also prefer AR models because they are read-
ily available and already computed by the proposed compression scheme
as discussed in Section. 3.3. The reuse of the available models allows us to
save resources both in terms of memory and computation. It additionally
reduces the overall complexity of the scheme.

The proposed Fault-Tolerant Data Compression (FTDC) scheme pro-
vides mechanisms of evaluating whether a certain sample, that is being
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approximated, is erroneous. Similar to standard schemes, FTDC also uses
the same sampled data and constructs the models using the same data.
However, because model is constructed from a large set of sampled val-
ues, depending on the rate of data corruption, the model is only partially
affected by the data corruption. Hence, the model can still predict val-
ues close to reference values even for the corrupted samples. For standard
compression scheme, if model cannot approximate a sample, as per Eq. 10,
it is due to outliers. But, for FTDC it could be due to outliers or corrupted
samples. Accordingly, if the model can’t approximate a certain sample,
FTDC does not always replace the data points with the sampled data (stan-
dard technique will always do, considering it an outlier). Instead, FTDC
uses various heuristics to decide whether it is an outlier or a corrupted
sample to choose either the model predicted data or the sampled data .If
FTDC detects a sample to be erroneous, it discards the collected sample
and uses the model approximation instead. The main difference between
FTDC and standard time-series compression scheme, such as PAQ/ASTC,
is that PAQ and ASTC trust the sampled data to be the reference data and
try to approximate it as close as possible.

However, FTDC also has its limitations due to the fact that the model
is constructed from sampled data, which can potentially be corrupted.
Hence, the model itself will be biased to some or greater degree, depend-
ing on the extent of sample data corruption. However, to cope with this
situation we keep the training length long enough to mitigate the corrup-
tion of model parameters. But, if the noise is uniform with high corrup-
tion rate or concentrated around the training samples, the model will be
accordingly affected by the noise. As, we demonstrate in our simulations
in Sec. 5.4.2 that FTDC is able to detect most of the erroneous samples,
even when the models are constructed from corrupted data. But, if more
than 50% of the samples are corrupted, the performance of FTDC starts
to deteriorate, though it still is better than the base performance of the
compression scheme without FTDC.

Before, we develop the fault-tolerance scheme, we discuss briefly how
time-series compression schemes are vulnerable to faults that cause data
errors.
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5.2 fault vulnerability of compression
schemes

Some compression schemes are more vulnerable to faults than others, e.g.,
Compressive Sensing Luo et al., 2009 schemes are less vulnerable to faults
than time-series based schemes because of the nature of the underlying
mechanisms. The time series based compression, while very efficient for
data compression, are particularly vulnerable to the sampling errors as
they fundamentally rely on the correctness of the sampled data. Standard
time series compression schemes do not have a mechanism to determine
if the collected samples are erroneous. Hence, they try to approximate the
sampled data as close as possible. In the absence of a suitable mechanism
capable of detecting the erroneous data, these schemes end up approximat-
ing the erroneous data! Overall, given the high vulnerability of time-series
schemes to data errors but with their extensive application in WSN Tu-
lone and Samuel Madden, 2006Ali et al., 2011aC. Wang et al., 2012 Borgne
et al., 2007 Miranda et al., 2013 P. Jiang and S.-Q. Li, 2010 G. Li and Y.
Wang, 2013, we focus on this class of compression schemes. Though, the
developed fault-tolerance scheme extends from the compression scheme
proposed in chapter 4, it can easily be adapted to be used with other times
series schemes Tulone and Samuel Madden, 2006Ali et al., 2011aC. Wang
et al., 2012 Borgne et al., 2007 Miranda et al., 2013 P. Jiang and S.-Q. Li,
2010 G. Li and Y. Wang, 2013. Hence, next we will be presenting FTDC in
a relatively broader context of being applicable to the class of time-series
compression schemes, instead of being just an extension of AHC.

5.3 model-based data-fault tolerance
We now detail the proposed fault-tolerance scheme for time-series com-
pression schemes. We elaborate two classes of data errors, i.e., sporadic
and permanent errors, and devise the mechanisms to detect and also cor-
rect them whenever possible.

5.3.1 Sporadic Data Errors

Sporadic data errors refer to SHORT data errors and also NOISE when it
lasts for less than one fourth the training queue length (T). For sporadic
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data errors we first propose a mechanism to detect the anomalies in the
sampled data and then describe a mechanism to correct these anomalies.
The detection process is divided into two stages, (a) local node level detec-
tion, and (b) cluster level detection. Most of the time series schemes such
as PAQ Tulone and Samuel Madden, 2006 and ASTC Ali et al., 2011a al-
ready have a clustering scheme implemented. Hence, for FTDE we do not
have to additionally implement any clustering scheme utilizing available
clusters.

Node Level Detection

Each node initially detects sporadic data errors. However, as shown later,
individual nodes can misclassify some legitimate samples as data errors.
Hence, a second cluster-level stage is needed to scrutinize the classification
in the first stage (node level) and make final classification.

Sensor nodes first construct a model out of the sampled data as de-
scribed in Sec. 5.1.2. Using the constructed model, the estimated reference
data is calculated using Eq. (11). The sampled values not appropriately
approximated by the model within the user defined accuracy bounds (ε),
but still are termed as outliers. Accordingly, if the difference between the
sampled value and the model estimated value exceeds ε, it is classified as
an outlier. However, during normal operation of the WSN, the value of the
physical attributes generally do not significantly vary around their mean,
hence the outliers are expected to be within a specified valid range. Hence,
as described in Def. 1, we have a threshold ξ to detect data errors, and if
the approximation error is beyond ξ, it is classified as a data error.

Algorithm 5.1 Error and Outliers Detection Algorithm
1: for v̂(t)inV(t) do
2: e := |v̂(t) − v(t)|
3: if e > ε and e < ξ then
4: v̂(t)← v(t);
5: Append v(t) to O(t);
6: else if e > ξ then
7: Append v(t) to E(t);
8: end if
9: end for

Alg. 5.1 describes the process on a sensor node for the classification of
sampled values into outliers or data errors. The set V refers to the approx-
imated reference values v̂(t) as estimated by the model. Alg. 5.1 tracks
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data errors and outliers by constructing two sets, namely O(t), set of sam-
ples classified as outliers and E(t), set of sampled classified as data errors.
Based on the outlier and data error threshold (ε and ξ), the estimated value
is classified either as an outlier (Alg. 5.1, Line 5), or as a data error (Alg.
5.1, Line 7), or it is correctly estimated by the compression scheme. The
lists of outliers (the set O) and preliminary errors set (data errors) (the set
E) are then sent to the cluster head for further processing. The data errors
are further processed to identify if any sample values originating from an
event were incorrectly classified as data errors.

Cluster Level Detection

A physical event, i.e., sudden change in physical attribute such as temper-
ature, pressure, etc. may also exhibit behavior similar to sporadic errors
and consequently be misclassified as a data error during stage 1. Hence,
we consider the node level sporadic data error detection only as an ini-
tial/temporary classification, because a single node does not have enough
information to determine if the classification of the sample as a data error
is due to corruption of the sample by an underlying functional fault or it is
a result of a physical event. Hence, we have devised a second stage cluster
level sporadic data error detection mechanism that can reclassify the sam-
ple values classified as data errors in the first stage to either data errors or
events. FTDE requires simple 1-hop clusters that are typically available in
different compression schemes Ali et al., 2011a Tulone and Samuel Mad-
den, 2006. The cluster head collects the data errors from all the member
nodes in the cluster, hence it can use this information to verify if the initial
classification by a node was incorrect and then reclassify the incorrectly
classified samples as an outliers

In order to differentiate a data error from a physical event, we develop
a formal notation for data errors and then develop a logical basis for dif-
ferentiating the data errors from physical events. We now define the terms
related to the probabilistic random error events and physical events. The
classification of a sample value as an error (hence, detection of a sporadic
fault or an event) is a random event.

Definition 2. We define the random event that a sensor node classifies a sample
as a data error due to corruption by an underlying functional fault as a data error
event.
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Definition 3. We define the random event that a sensor node classifies a sample
as an event arising due to a change (sudden, extreme, etc) change in the physical
phenomenon as a phenomenon event.

Note that a single node cannot differentiate the two events and in both
cases it classifies the samples as data errors, because both the data error
event and phenomenon event exhibit similar behavior at the level of a
single node.

Next, we discuss both events, i.e., data error event and phenomenon event
and analyze how they can be differentiated using the samples of multiple
sensor nodes in the cluster.

Distinguishing Data Error Events from Phenomenon Events: We now
develop the basis to differentiate the data error events from phenomenon
events and then use it to classify them on the cluster head.

Axiom 1. Data error events taking place on two separate sensor nodes are inde-
pendent.

Based on the discussion in Sec. 5.3.1, the underlying cause of the data er-
rors are predominantly random hardware faults resulting in random data
errors. As each node has its own underlying fault generating the errors
and the fault of one node does not influence the sampling of another node.
The underlying fault in each sensor nodes can be caused by various fac-
tors, such as, build quality, faulty sensors and/or external parameters such
as very high/low temperature, corrosion and other unexpected damages.
These factors affect each sensor node independently. Moreover, faults of
one node cannot cause errors on another node. Hence, a faulty sensor on
Node 1 will not corrupt the samples of Node 2. Accordingly, if sporadic
data errors on Nodes 1 and 2 are given by E1(t) and E2(t), then data error
events occurring on two different nodes are independent from each other,
i.e., P(E1(t)∧ E2(t)) = P(E1(t))P(E2(t)).

As data error events are random events (Def. 2):

Theorem 5.3.1. Data error events occurring on two different sensor nodes are
independent random variables.

Proof: A data error event being detected on a sensor node is a random
stochastic event. Accordingly, we assume R1 and R2 represent random
variables for data error events on sensor node S1 and S2. For R1 and
R2 to be independent, each data error event (random event) of R1 must
be independent of data error events of R2 and vice-versa. From Axiom
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1, each data error event E1(t) and E2(t) belonging to random variables
R1 and R2 is independent because of physically independent hardware
faults that cannot influence the other sensor node, hence R1 and R2 are
also independent random variables.

Corollary 5.3.2. The random variables for data error events on a set of n sensor
nodes are independent.

Using Theorem 5.3.1, each pair of data error event random variables Ri
and Rj belonging to sensor pair Si and Sj, i 6= j is independent. Hence, all
data error event random variables for n sensor nodes are independent of
each other.

Axiom 2. An environmental event sensed separately by two sensor nodes at
time t is not independent.

Unlike data error events, where each event is generated by a separate
stochastic process (hardware fault), the environmental events are essen-
tially replication of the same random variable, generated by a single stochas-
tic process (e.g., suddenly change in temperature/pressure) that is sam-
pled by multiple sensor nodes. Hence, an environmental event happening
on two sensor nodes at time t is not independent.

Axiom 2 can be extended, similar to Axiom 1, to show that the envi-
ronmental random variables (random variables related to environmental
events) are not independent.

Corollary 5.3.2 and Axiom 2 set the foundation for differentiating data
error events from environment events. Accordingly, the cluster head can
determine if event random variables (initially reported by all the sensors
as data error events) of two sensor nodes are independent then these are
due to data error events, otherwise they are cause by environment events.
However, cluster head needs to know the joint probabilities and the prob-
abilities of the events to determine independence of the events, as given in
Axiom 1. Moreover, sensor nodes have very limited computational, mem-
ory and energy resources. Given that we have shown that (a) the error
events are independent, while (b) phenomenon events are not indepen-
dent, and (c) the evaluation on the sensor nodes is not computationally
feasible, we have devised a simpler measure to infer the independence of
the events to detect the data error events.

Detection of Data Error and Phenomenon Events: The cluster head col-
lects the preliminary errors set (which contains both the data error events
and phenomenon events but all are initially classified as data error events)
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from all the cluster members. Due to the collected preliminary error sets
from the member nodes, the cluster head possesses a broader localized
view on the events. The cluster head uses the results from Corollary 5.3.2
to detect data error events. However, as discussed earlier, using Corollary
5.3.2 is complex as the cluster heads do not have the joint probabilities.
Hence, we propose a simple two stage mechanism to detect data error
events.

The cluster head (SH) constructs a cumulative preliminary error set
(ESH(t), Alg. 5.2, Line 1) by merging preliminary error sets of its mem-
ber nodes (ESi(t), where ESi(t) is the preliminary error set from sensor
node Si belonging to the cluster Cj). The cluster head detects the error
events in two stages using the cumulative preliminary errors set.

In the first stage, the cluster head determines if more than one sensor
node detected a data error event for a given time index (Alg. 5.2, Line 3).
As the data error events are independent (Axiom 1), it is highly unlikely
that more than one node will detect the data error events at the same
time index. Even if they do detect data error events at the same time,
they will still be independent. Whereas, for a phenomenon event we can
easily observe more than one nodes reporting a data error event (due to
mis-classifiction during in the preliminary error set), which actually will
be indicative of a phenomenon event, rather than a data error. However,
we cannot fully rule out the possibility of data error events taking place at
more than one nodes at a given time index as a coincidence, depending on
the cluster size and node density. Hence, if the cluster head detects a data
error on more than one sensor node, it needs to process further to verify
and finally classify the concerned sample either as a data error event or a
phenomenon event.

In the second stage, the cluster head processes the values detected as
data error events in the first stage. It computes the standard deviation of
these error values for all cluster member nodes that reported these data
error events (Alg. 5.2, Line 4). If the error values were generated by a
phenomenon event, the sampled values collected by various nodes will be
highly correlated (as they are not independent) and the standard devia-
tion is expected to be low. Whereas, for error events, even if they happen
to occur at the same time index, it is highly unlikely that the values sam-
pled due to the data errors are correlated. Hence, we define a tolerance
threshold for the standard deviation around the mean for the errors (ρ) to
qualify as phenomenon event, i.e., if the standard deviation of the error
values are beyond the defined threshold then they are classified as data
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error events (Alg. 5.2, Line 5), otherwise, they are classified as the phe-
nomenon event (Alg. 5.2, Line 6-8). In Alg. 5.2, I(t), P(t) refer to finally
classified data error events and phenomenon events sets respectively. The
sample values related to final phenomenon event set P(t) are passed to
the sink as outliers, so that the sink may appropriately approximate the
phenomenon anomalies, whereas, the data errors classified as data error
events are suppressed and not sent to the sink. Instead model is used for
sample estimation .

Algorithm 5.2 Classification of preliminarily faults into fault and phe-
nomenon events

1: Construct ESH from ESi for Si ∈ Cj
2: for ti ∈ T do
3: if COUNTSj∈Ck(ESH(Sj, ti)) > 1 then
4: if SDSj∈Ck(ESH(Sj, ti)) > ρ then

5: I(t)← I(t)∪
(⋃

Sj∈Ck ESH(Sj, ti)
)

;

6: else‘
7: P(t)← P(t)∪

(⋃
Sj∈Ck ESH(Sj, ti)

)
;

8: end if
9: else

10: I(t)← I(t)∪
(⋃

Sj∈Ck ESH(Sj, ti)
)

;

11: end if
12: end for

Reducing False Positive Errors and False Negative Outliers: We demon-
strate later in simulations (Sec. 5.4) that we can also use the mechanism
developed in stage 2 (Sec. 5.3.1) to reduce the false positive errors and
false negative outliers. We can keep ξ lower than desired value and let
the outliers be classified as errors in stage 1 (Sec. 5.3.1) and exploit the
correlations analysis of Stage 2 (Sec. 5.3.1) to correctly classify them back
to outliers. However, it will reduce the probability of the errors to be in-
correctly classified as outliers.

Event duration and sampling rate: We have, so far, used only the spa-
tial sampling information to detect error events, However, we can also
use temporal information to aid in such classification, i.e., a phenomenon
event generally happens for a certain time duration and successive sam-
ples might actually have the same phenomenon event detected. However,
detection of a phenomenon event for successive time indexes is highly
dependent on the sampling frequency Hempstead et al., 2008 and the du-
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ration of the physical events. If the sampling frequency is lower than the
duration of the physical event then the successive samples may not in-
dicate any phenomenon event. In typical WSN deployments, targeting
long term monitoring of a physical phenomenon, the sampling frequency
is ranges from many minutes or even hours. Hence, temporal sampling
information may not be as reliable as the spatial information.

5.3.2 Complete Data Corruption

Complete data corruption refers to CONSTANT data errors and NOISE
when the number of erroneous samples is more than at least quarter of the
training length. As we focus on time-series based compression schemes,
hence we exploit the underlying model construction and acceptance mech-
anism of compression scheme for fault detection. Time-series based data
compression schemes construct data approximation models. These mod-
els are constructed by one or more nodes in a 1-hop cluster that are used
to approximate the sampled values of the other sensor nodes in the clus-
ter. However, for a model to approximate the samples of a given node it
should be accepted by the given node. Hence, in the acceptance phase, the
data approximation model is sent to the node whose sampled data is to
be approximated. A model is only considered to be valid and accepted
by a sensor node if it can approximate the sampled data with at the most
Omax number of outliers. Otherwise, the model is rejected. Based on data
approximation model acceptance mechanism we propose Theorem 5.3.3 to
detect a faulty sensor node in a 1-hop cluster head, generating constantly
corrupted samples. The following discussion is in the context of 1-hop
clusters, as the model construction process is performed in a 1-hop cluster.

Theorem 5.3.3. A faulty sensor node SF with complete data corruption neither
accepts data approximation models from other sensor nodes, nor do other nodes
accept the data approximation model constructed by SF.

Proof: Assume n data samples v(t) are collected between time tm and
tn by the k non-faulty sensor nodes Si and a faulty-sensor node SF in a
1-hop cluster C (∀Si, i ∈ {1...k} and SF ∈ C). If vSF(t) and vSi(t) represent
the data sampled by faulty and non-faulty sensor nodes respectively, then
for any data sample |vSF(tp) − vSi(tp)| > ξ and tp ∈ {tm, . . . , tn} as given
by Def. 1. Accordingly, if a model constructed by a faulty sensor node
(ΦF) is used to approximate the sample values of non-faulty sensor nodes,
then |vSi(tp) − v̂(Si,ΦF)(tp)| > ξ and tp ∈ {tm, . . . , tn} where v̂Si,ΦF(tp) is
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the approximated data sample of sensor node Si using model ΦF of faulty
sensor node SF. Hence, for each sensor node Si ∈ C, the approximation of
sampled data using ΦF results in more Omax number of outlier. Accord-
ingly, ΦF is rejected by all the sensor nodes Si ∈ C. Similarly, if a model
constructed by a non-faulty sensor node ΦSi is used to approximate the
sampled values of faulty sensor node then |vSF(tp) − v̂(SF,ΦSi)

(tp)| > ξ for
tp ∈ {tm, . . . , tn}. Accordingly, the faulty sensor node rejects the model
from all the sensor nodes used to approximate its sampled values.

Using Theorem 5.3.3, a cluster head can detect if a sensor node is faulty.
Accordingly, if the cluster head detects if a certain node is neither accepting
the models from any other sensor node nor is the model from the given
node being accepted by any other node, the cluster head can isolate the
concerned sensor node as faulty sensor node.

In specific circumstances, a sensor node may incorrectly be identified
faulty. One such situation is the change in phenomenon distribution such
that one or more nodes from the cluster may sense different data samples
than the rest of the sensor nodes. For example, in a sensor network sensing
light levels, the nodes in the shadow may group themselves into a cluster
and the ones in sun light group themselves in another cluster. However,
over time the position of sun changes and one or more of the sensor nodes
in the shade may start sensing more light than the rest of the sensor nodes
in the cluster. The sensor nodes newly sensing more sun light will be re-
jected by the rest of the sensor nodes in the cluster. Hence, in order to
cope with such conditions, we do not immediately classify a sensor node
as faulty. Rather, when a sensor node is identified as faulty using Theorem
5.3.3, the node attempts to join the other surrounding clusters by request-
ing the model from the neighboring cluster. If the sensor node was initially
rejected from its native cluster because of the changing phenomenon then
it can find a model from the surrounding cluster that can fit its sample
values.

5.4 performance evaluation

On this analytical basis, we now describe the experimental setting support-
ing our evaluations.
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5.4.1 Simulation Settings

In order to conduct comprehensive evaluation simulations, we used the
publicly available real-world data set S. Madden, 2003 as a reference. We
use TOSSIM to perform network simulations and MATLAB to reconstruct
the signal at the sink. We implemented FTDE for PAQ and ASTC to evalu-
ate the FTDE’s adaptability to different schemes. We conduct simulations
on humidity data as it varies steadily over time, hence, it allows to ad-
ditionally evaluate the adaptability of the proposed scheme to changing
dynamics.

We selected third order AR models with user defined desired approxi-
mation threshold for compression scheme ε = 0.1, inter-node error thresh-
old ρ = 0.5, data error threshold ξ = 4 and a training length of 75. In order
to intensively evaluate FTDE, we performed controlled corruption of the
original data set at the rate of 5%, 10%, 20%, 30%, 40%, 50%, 60%, and 70%
by adding noise. As discussed earlier, we know from the literature that
the aggregated data in WSN can be corrupt up to 49% and up to 60% for
an individual node Sharma et al., 2010. Hence, we successively corrupted
data at the rate of 5% to 50%. However, we increased the corruption rate
even further to 70%, as it allows us to evaluate the behavior of the pro-
posed scheme when the amount of corrupt data is more than the real data.
We observe very interesting results when FTDE starts to degrade for error
rates beyond 50%, as the models constructed out of majority of corrupted
samples actually match closely to the corrupted samples than the refer-
ence data. The added data errors are the combination of SHORT, NOISE
and CONSTANT at varying degrees, as various real world data from sen-
sor nodes contain these data errors at varying degrees Sharma et al., 2010.
The values for ξwas estimated by computing the standard deviation of the
reference data. ξ is selected to be two times the standard deviation. Twice
the standard deviation threshold causes some of outliers to be misclassi-
fied as errors in stage 1 (Sec. 5.3.1). However, it reduces the chances of the
erroneous samples to be classified as outliers. Due to our multistage error
classification mechanism the misclassified outliers samples in stage 1 (Sec.
5.3.1) are later correctly classified back to outliers in stage 2 (Sec. 5.3.1).

Interestingly we do not have to explicitly adapt to the rate of data cor-
ruption to detect the faults. If the faults rate is lower and there are predom-
inantly SHORT or short duration NOISE data errors they are corrected by
the transient error detection mechanism. However, if the transient error
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detection fails, the permanent error detection mechanisms runs in parallel
to detect the CONSTANT and long duration NOISE data errors.

Scheme Specifics and Trade-offs

Different schemes have different underlying mechanism. Accordingly, FTDE
adapts to exploit the underlying mechanisms in order to further enhance
the performance. For example, ASTC selects a model by choosing the
best fitted model from multiple sensor nodes. Hence, the performance of
FTDE with ASTC considerably outperforms FTDE with PAQ concerning
the accuracy of collected models and the reconstructed data at the sink.
Interestingly, no special adaptations are needed in this case to take the
advantage of the ASTC model selection mechanism.

Methodology and Performance Metrics

Our performance evaluation is based on two key metrics: Accuracy of col-
lected data and message efficiency as an implied measure of the energy con-
sumption. The humidity data set S. Madden, 2003 is considered as the
reference. The corrupted data set is used in the simulations. Please note
that in reality we will not have the reference data, rather only the sam-
pled data (potentially containing corrupted samples). The corrupted data
used for the simulations is equivalent to the sampled data. We collect
the data models and outliers at the sink through PAQ and ASTC, both
enhanced by FTDE to detect and correct the sample errors in the network.
The collected data (approximations using the received models and outliers)
is then compared with the reference data to evaluate the effectiveness of
FTDE. We define accuracy as the mean square error between the data col-
lected assuming corrupted data and the reference data. The plots depict
the aggregated mean square error of all the sensor nodes over the complete
duration of approximated data as accuracy measure. We measure the mes-
sage efficiency as the message overhead created by the selected enhanced
compression scheme, i.e., either PAQ with FTDE or ASTC with FTDE. The
message cost accounts for all the stages of both compression scheme and
FTDE, i.e., modeling, outliers, errors and events detection, reporting to the
cluster head and finally transporting the models and the outliers to the
sink. In the first simulation study, we compare the performances of PAQ,
FTDE-PAQ (PAQ enhanced with FTDE) and FTDE-PAQ-CHEF (PAQ en-
hanced with FTDE and where the data collected by the cluster head (CH)
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data is Error Free (EF)). In a second study, we compare the performance
of ASTC to FTDE-ASTC (ASTC enhanced with FTDE).

5.4.2 Results
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Figure 5.2: Mean Approximation Error Relative to Reference Data

Fig. 5.2 depicts the approximation error relative to the reference data
for PAQ, FTDE-PAQ and FTDE-PAQ-CHEF. We can easily observe that
PAQ cannot detect the erroneous samples and blindly tries to fit to the
corrupted data. Hence, relative to the reference data the resulting error is
considerably larger than the user required error threshold ε = 0.1. FTDE,
on the other hand, can easily detect the erroneous samples and stays close
to the user defined error threshold up to 10% of data corruption. The
impact of error threshold is negligible on FTDE in terms of achieved cu-
mulative mean square error, hence the results for various error thresholds
overlap indistinguishably on the graph (though, accuracy values are dis-
tinguishable for individual nodes, which are not shown here). However,
the performance of FTDE also starts to degrade with increasing data cor-
ruptions. As the sampled data (here the corrupted data) is used for con-
structing the models, hence the models also get corrupted (as discussed in
Sec. 5.2). However, we can clearly observe that FTDE performance is con-
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sistently better than the standard PAQ scheme. FTDE-PAQ-CHEF depicts
a hypothetical scenario, where the cluster head data is not corrupted and
the data for the rest of the nodes is corrupted as usual. Due to error free
data on the cluster head, the constructed model is error free. Accordingly,
FTDE can easily detect the erroneous samples and the resulting error is
considerably reduced. Though, this is a hypothetical scenario, it gives a
very important hint that the performance of FTDE can be significantly im-
proved by constructing the model on nodes that have the least corrupted
data. This potential of FTDE is exploited by ASTC, as discussed later.

Fig. 5.2 effectively highlights capability of FTDE to detect erroneous
samples, discard them and approximate the data in noisy conditions. The
accuracy achieved by FTDE is within the user defined threshold for low
error rates and considerably higher than standard compression scheme.
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Figure 5.3: FTDE-PAQ Message Cost

Fig. 5.3 depicts the message cost incurred by PAQ, FTDE-PAQ and
FTDE-PAQ-CHEF. As the errors and outliers are indifferent to PAQ, hence
it classifies all as outliers and accordingly transport them to the sink to
maintain the accuracy. The large number of outliers entail a high message
cost. In contrast, FTDE-PAQ can detect the erroneous samples and dis-
card them using the proposed two-stage model based scheme. Due to true
distributed nature of the scheme, we are able to detect and discard the
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erroneous sample at the origin. Eliminating erroneous samples reduces
the number of outliers to be reported, considerably reducing the message
cost. We also observe that more the data is corrupted, more the samples
are classified as erroneous and discarded and not transported to the sink,
instead they are approximated through compression scheme models. This
results in steady decline in message cost.

In order to investigate these results further, we simulated the FTDE-PAQ
with additional error threshold of ε = 0.3 and ε = 0.5. These additional
simulations show that we do actually observe a slight increase in message
cost initially when the data corruption is increased from 5% to 10%. How-
ever, then message cost drops with increasing data corruption until 50%.
It is noteworthy that ε = 0.1 represents a very high level of accuracy re-
quirement for the given data set, as it requires the model approximation to
be within 0.2% of the original data. Hence, (a) there are many outliers pro-
duced due to high accuracy requirement, and (b) the model is not accurate,
as it was constructed from the corrupted data. However, as we increase
the data corruption rate, it reduces outliers and instead introduces more
erroneous samples (as more outlier samples are also replaced by the er-
roneous samples). Once, data corruption rate crosses 50%, the corrupted
samples become more abundant than the actual data. The constructed
model built from these corrupted sampled and tries to approximate the
corrupted samples instead, which results in mis-classification of errors as
outliers increasing message cost.

Fig. 5.3 gives the interesting and surprising result. As the message
cost includes all the message exchanges, including the message overhead
of FTDE, hence we can observe that the effective message cost of FTDE
is negative in comparison to the standard compression scheme. This is
because the overhead introduced by the FTDE is negligible in comparison
to the message overhead it reduces by detecting the erroneous samples and
avoid to report them to the sink as outliers (that the standard compression
scheme does). Hence, FTDE not only increases the approximation accuracy
but additionally reduces the message cost.

FTDE has been designed such that it can fit to different compression
schemes and exploit their capabilities to further enhance the data error
detection. In contrast to PAQ, ASTC is an adaptive scheme that selects the
best suitable models in the cluster. Hence, in order to test capability of
FTDE to take advantage of ASTC’s best adaptive mechanism, we designed
the data sets that were not uniform as in PAQ simulations. Accordingly,
the data corruption was carried out at different rates for different nodes,
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Figure 5.4: FTDE-ASTC Accuracy and Message Cost

ranging from 10% to 50%, which approximates the natural distribution of
data errors better in contrast to uniform error rate across all nodes. In
Fig. 5.4, we illustrate the performance results for FTDE-ASTC and plain
ASTC w.r.t. accuracy and message efficiency. We observe that FTDE-ASTC
easily maintains a mean square error of maximum 0.4 most of the time.
This is because FTDE can exploit the best model selecting scheme of ASTC
to detect the erroneous values and discard them to maintain low mean
errors, which results in fewer message transmissions. Here also, FTDE-
ASTC outperforms standard ASTC in all aspects.

5.5 chapter summary

In this chapter, we have improved the spatio-temporal compression to be
fault tolerant. We have shown that the proposed fault-tolerance scheme
can detect the resulting data errors and correct them. The proposed scheme
is applicable to large variety of faults and is agnostic to underlying faults
as it detects the resulting data error. The reduced data errors results into
improved data accuracy and reduced message cost because the models
can approximate the environmental attribute better and fewer outlier sam-
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ples need to be reported to the sink. The proposed fault-tolerance scheme
is efficient both in terms of memory and computation time as it reuses
the existing mechanisms of the underlying compression scheme. Simul-
taneously, it is flexible enough to be portable and adaptable to a class of
time-series compression schemes, instead of being limited to one single
compression scheme.
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6 E F F I C I E N T P R E D I C T I V E
M O N I TO R I N G O F W S N

Wireless Sensor Networks (WSN) are deployed to monitor physical events,
such as fire, or the state of physical objects, such as bridges, in order to
support appropriate reaction to avoid potential damages. However, many
situations require immediate attention or long reaction plan. Therefore,
the classical approach of just detecting the physical events may not suf-
fice in many cases. We present a WSN level event prediction scheme to
forecast the physical events well in advance. Our approach is generic and
allows to predict also the network events such as network partitioning,
thus supporting proactive self* actions. For example, by monitoring and
subsequently predicting trends on network load or sensor nodes energy
levels, the WSN can proactively initiate self-reconfiguration to meet its de-
sired operational requirements. The scheme collects the state of a specified
attribute on the sink for a certain duration of time. Based on the collected
history of attribute values, the future state of the targeted attributes are
predicted using time series modeling. The forecasted future state is then
used to detect generalized future events through our proposed event de-
tection algorithm. Additionally, the proposed scheme is adaptable to cover
multiple application domains.

6.1 introduction

Wireless Sensor Networks (WSN) typically entail an aggregation of both
sensing and communicating sensor nodes to result in an ad hoc network
linking them to the base station or sink. The sensor nodes typically pos-
sess limited storage and computational capabilities and require low-energy
operations to provide longevity of operational time.

WSN’s are deployed for monitoring different environmental attributes.
Based on the sensed data, the corresponding decisions are made to carry
out the appropriate reaction if needed. The decisions to take actions are
triggered by some events happening in the network. For example, while
monitoring the physical pressure in a certain facility an event could be trig-
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gered to indicate either high or low pressure. Similarly, we can have many
events related to numerous attributes. In addition to the environmental
events, there are also network events to be considered such as network par-
titioning. Various works exist for detecting different discrete events [Yick
et al., 2008] such as, fire detection [L. Yu et al., 2005] and network parti-
tioning [Rost and Balakrishnan, 2006a; K.-P. Shih et al., 2007; Shrivastava
et al., 2005]. Most of these efforts develop excellent foundations, however,
are tailored for specific scenarios. Other works do consider generic scenar-
ios [Xue et al., 2006], but they suppose the event to take specific shapes
and patterns. Also, all of these efforts focus on detecting the events after
the events have already occurred. It could be already too late to react to
many such events if the traditional approach of detecting and reacting to
the events is followed. Consequently, it is either insufficient or inefficient
just to react to the events. For example, if we detect network partition-
ing, the repair might require a long time and the required resources may
not be available. Meanwhile, the functionality of network and hence the
monitoring, which is the main objective of deployment, will be lost. Thus,
reporting of such events beyond simple monitoring becomes highly use-
ful if these events can be predicted in advance. The ideological shift from
detecting the events to predicting them provides enough time window to
take appropriate autonomic actions. Consequently, we could avoid or de-
lay events from happening. Multiple efforts exist for forecasting in WSN
[Landsiedel et al., 2005; Mini, Nath, et al., 2002; X. Wang et al., 2007]. How-
ever, most of them are either limited to predicting specifically a certain
attribute such as energy or provide only node level short-term prediction
for data compression to minimize data to be reported from the network.

It is very useful to combine generic prediction techniques with gener-
alized event detection to predict the events and to carry out self* actions
well in advance. To the best of our knowledge there exists no work that
proposes generic event prediction. Here, we develop a generic scheme
to predict the events. It predicts the future states of the network for the
attribute of interest, e.g., temperature or residual energy. The developed
generic event detection technique is used on "predicted future state of at-
tributes" to effectively forecast the events. We target long-term predictions
that require the history of the attribute to be long enough to contain suffi-
cient system dynamics. However, a sensor node does not possess the com-
putational resources required to model the complex dynamics in attribute
values to accurately predict the future states. Hence, we collect multiple
profiles of the considered attribute and conduct modeling on the sink. We
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refer to the collection process of attribute values from network as profiling.
Accordingly, a profile is the state of the attribute in the network at a spec-
ified instance of time. We use the technique, we developed in Chapter 4,
to efficiently and accurately collect such a history of the attribute from the
network. On this background this work makes three specific contributions,
namely

• Generalized scheme design for sink-aided attribute profile predic-
tion, allowing to predict varied physical and network events.

Generic event detection technique to detect events from the predicted
profiles.

•• Case study of network partition as validation for our efficient predic-
tive monitoring scheme.

6.2 system model
The basic system model assumptions are the same as presented in Chap-
ter 3. In addition, we also assume that the sensor nodes know their geo-
graphic position either using distributed localization methods [T. He et al.,
2005] or GPS. A typical WSN deployment may contain hundreds or thou-
sands of sensor nodes with varying densities according to the coverage
requirements. We consider an arbitrary node distribution, provided the
network is connected at deployment time. We assume all sensor nodes
to be homogeneous. Hence, the sensor nodes have the same transmission
range R and same initial battery capacity. We consider that nodes crash
due to energy depletion only. We assume the events for predictions to be
happening over a longer period of time, e.g., events that may take hours,
days or even months to develop. We consider that events are (a) not spon-
taneous, (b) spatially correlated, (c) do not depend discretely on a single
node, and (d) display attribute trends that can be predicted.

6.3 efficient predictive monitoring
We develop the proposed scheme in a modular manner for it to be appli-
cable to a variety of scenarios. The scheme consists of three phases, i.e.,
data collection phase, prediction phase and event detection phase. In the data
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collection phase, attribute values related to an event are periodically but
efficiently fetched from the network on the sink. The prediction phase is
used for predicting future states of the network for the interested attribute
using the previous history of attribute fetched from the network during
data collection phase. The main objective in event detection phase is to
detect events in the predicted state of the network, obtained in prediction
phase, essentially predicting the events. The techniques we propose in
each phase are independent of the attribute to be monitored, thus fulfill-
ing generality requirements of our scheme. It is important to highlight
that we do not limit the proposed scheme to only these techniques. Rather,
for a particular implementation, specialized additional techniques can be
easily accommodated due to the proposed scheme’s modular structure.
These phases are individually detailed in the following sections.

6.3.1 Data Collection Phase

From the nature of the problem we can expect an efflux of data (sensed
attribute values) from the network towards the sink. A simplistic periodic
approach to collect data from each sensor node on the sink would lead to
high communication and energy overhead on sensor nodes rendering the
proposed scheme impracticable. Hence, for fetching the data an efficient
data compression scheme, like AHC as discussed in Chapter 4, can be
used.

6.3.2 The Prediction Phase

The prediction phase takes place on the sink. We regenerate the profiles for
the desired attribute using the collected models of clusters. Generic time
series modeling techniques are then used to model the complete history of
each node to predict the future profiles.

The models received on the sink in data collection phase for each cluster
are used to regenerate the attribute history through reverse transformation.
It is rather a simple procedure as sink has the models for each cluster, so
reverse transformation comprises of solving the cluster model equation
for each node in each cluster constituting each cluster. Hence, the reverse
transformation generates many complete profiles of the WSN. The reverse
transformation forms a temporal stack of such profiles as shown in Fig. 6.1.
The regenerated history of each node contains all the complex dynamics.
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On the sink we can now take the complete history of each node and model
its complete behavior using time series analysis for predictions as opposed
to on node piecewise modeling. Individual models of each node can then
be used to predict future values by fitting a prediction model, effectively
predicting future profiles. The time series can be modeled in different
ways [X. Wang et al., 2007]. Here, we use the widely used time domain
modeling because of its general applicability.
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Figure 6.1: Temporal stack of the grid maps

Modeling Time Series:

A time series X(t) can be modeled as a process containing following com-
ponents

X(t) = Tt + St + Rt (16)

where Tt is a trend, St is a function of the seasonal component with known
period, and Rt is the random noise component. To keep the notion of
generality valid for the proposed scheme we use a well known generalized
technique termed Box-Jenkins Model to model a time series containing any
of these components.

Box-Jenkins Model:

Box-Jenkins (BJ) model predicts a time series by fitting it an Autoregressive
Integrated Moving Average (ARIMA) process. To fit an ARIMA process
the model and the order of the model needs to be specified. The BJ model
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provides a guideline to select the appropriate model, i.e., either Autore-
gressive (AR, Eq. (17)) or Moving Average (MA, Eq. (18))

X(t) = φ1Xt−1 + · · ·+φpXt−p (17)

X(t) = θ1Zt−1 + · · ·+ θpZt−q (18)

or combination of both, i.e., ARMA process as given in Eq. (5). It also
gives the guideline for the model order selection. BJ modeling is a four
steps procedure:

i.) Data Preparation: BJ model requires a time series to be stationary
Ljung, 1998. Therefore, if it contains trends and seasonal components
then these should be appropriately removed. This can be achieved by
either Least Square Polynomial Fitting (LSPF) or differencing as X(t) =

X(t) − X(t+ u). For a simple linear trend, u is 1. For higher order trends
or seasonal component of period s, u equals s. This operation is repeated
until stationarity is achieved.

ii.) Model Identification: At this stage run-sequence plot or Autocorrela-
tion Function (ACF) can be used to identify the stationarity of the time
series and the order of the AR model. ACF for k lag is given by

ρk =

∑N−k
i=1

(
Xi − X̄

) (
Xi+k : X̄

)∑i=1
N

(
Xi − X̄

)2 (19)

where X̄ is the mean value. Non-stationarity is often indicated by an
ACF plot with very slow decay. Order of the AR and MA models are
determined with the help of ACF and Partial Autocorrelation Function
(PACF) [Montgomery et al., 2008]. To automate the model selection pro-
cess either Akaike’s Information Criterion (AIC) or Akaika’s Final Predic-
tion Error (FPE) [Ljung, 1998] can be used. Various models can be com-
puted and compared by calculating either AIC or FPE. The least value of
AIC or FPE ensures the best fit model.

iii.) Parameter Estimation: In this step the values of the ARMA model co-
efficients that give the best estimate of the series are determined. Iterative
techniques are used for model parameter estimation [Ljung, 1998].

iv.) Prediction: Once the modeling is complete, it is simple to predict the
series values using the estimated model. It comprises of calculating the
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future values at next time instances and reversing all the transformations
applied to the series in phase 1 for data preparation.

6.3.3 The Event Detection Phase

We now develop a generic event detection technique. Subsequently, using
this technique we detect events in the predicted profiles of the attribute
obtained in prediction phase, effectively predicting upcoming events in
the network.

The main objective of our proposed scheme is to predict events. How-
ever, it is a very generic term in WSN. It may refer to an event as simple
as sending a message to very complex events like network partitioning.
We do not refer to a more generic definition of event, rather to a certain
class of events that qualify for certain attributes. We target the events that
either rely on physical or network attribute, do not depend on a single
node and take relatively long time for development. In the system model
(Section 6.2) we have described the domain of the events that we are tar-
geting in our work. These can be exemplified by detection of temperature
above a certain threshold in a certain part of network that is indicative of
fire. Similarly, there are many other events associated with each physical
attribute such as pressure, humidity etc. Our challenge here is to design
an event detection mechanism that is generic and can be ported to wide
range of scenarios. To cope with this problem we use here an abstraction
of maps for WSN. For a WSN an eMap is an energy map that represents
the current residual energy of the network [Yonggang Jerry Zhao, 2002], or
tMap for temperature etc. Once a WSN is converted to a map for a certain
attribute such as temperature, pressure etc., the events appear as regions
in these maps. For example, in a tMap of WSN the part of the network
that is beyond the given threshold of temperature will appear as a region
in a tMap. Consequently, in our proposed scheme we define an event as a
region of map whose values fall in the range of attribute values for which
the event is defined. Using the abstraction of maps for WSN and regions
for events we are able to keep the proposed scheme generic enough to be
portable to different scenarios. Thus, the quantification of WSN space and
the conversion of a WSN to a map abstraction is the key to detect generic
events.

To quantify the continues space of WSN profile and construct the map a
grid is virtually placed over the WSN profile and each grid cell represents
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the aggregated attribute of all the nodes located within the grid cell. We
define the resultant quantification as Grid Map or simply Map.

Map Abstraction

In order to reach an acceptable spatial resolution with higher level abstrac-
tion of network as a map, we considered virtual grids and Voronoi dia-
gram [Aurenhammer, 1991] techniques to segment WSN profile. Voronoi-
based segmentation depends only on sensor node distribution and is static
for a given node distribution. However, we require a segmentation strategy
that allows variable spatial sampling to accommodate both the physical
and network parameters. Such variability also allows us to detect events
from a single node to a region of the network. Grid allows such flexibil-
ity therefore, we base our map construction on grid. The virtual grid or
simply grid divides the WSN profile into fixed size squares or grid cells as
shown in Fig. 6.1. Thus, nodes that fall within a cell are grouped. For
the grid map construction, two parameters must be specified. The first
parameter is the grid cell size γ, which is a spatial sampling or resolution
parameter. The second parameter is the aggregation value ξ that a grid
cell represents. Both parameters are essential for event detection. γ de-
fines the geographic area covered by the grid cell. The number of nodes
being grouped in a grid cell is dependant on γ. It can also be seen as a
zooming parameter. Hence, it can be used to decide at which level the user
intends to detect the event, i.e., very detailed (zoomed-in) level of node or
an overview at the level of regions. The grid cell value ξ is an aggregate
of the attribute values of the set of nodes in a cell. The choice of the ex-
act function depends on the application. For example, for temperature or
pressure, it is most appropriate to average the values of the nodes in the
grid cell. If ξij is the grid cell value in the (i, j)th grid cell gij and vn rep-
resents attribute value of node n in gij then ξij is an aggregation function
such as average, min, max of vn:

ξij = f(vn) ∀ n ∈ gij (20)

We do not impose assumptions on the selection of γ and f(.), highlight-
ing the generality of our proposed scheme (requirement on our scheme).
An illustration for the selection of both parameters is given in the case
study in Section 6.4.
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Centralized Regioning Algorithm

As the events appears as regions in a map, we propose here a centralized
regioning algorithm (CRA) that can detect the regions and their borders in
WSN map, which leads to generic event detection. CRA is conceptually the
same as its distributed counterpart DCF. However, it has been used here
for entirely a different purpose of detecting events. The parallel between
the two applications of conceptually same algorithm is that in DCF the
models build correlated regions based on similarity of models and in CRA
the events build regions based on similar values of attribute for an event.

The regions are formed because the attribute values fall into a certain
class of values. For example, we normally classify the temperature as
freezing, low, normal, high or very high. These classes also contain event
class (range of values belonging to event, e.g., temperature above 500oC
for fire). This gives us more acceptable abstraction than the exact values
themselves. In the context of events, we do not care about the continuous
values of physical parameters rather classes in which these values appear.
It is necessary to maintain the exact values till prediction phase so that
we can model these values to accurately predict the future values. How-
ever, the classification of the values becomes important when we consider
events like fire or network partitioning. Therefore, thresholding of values
into classes becomes logical representation for event detection. Thus, to
detect these events we define the class maps that thresholds the exact val-
ues of the cells in grid map with their class denominations. If we define
class map values K as k1, k2, · · · for the range of the values of grid cell
gij between (ξ2, ξ1] and (ξ3, ξ2] · · · respectively, then a class map value is
defined by

K =


k1 if ξ2 < ξij 6 ξ1
k2 if ξ3 < ξij 6 ξ2
· · ·

(21)

CRA (Alg. 6.1) takes the grid map as input and determines border and
regions belonging to different classes and hence events. We refer to the
resultant output as the regions map. CRA essentially needs a class map to
group all the same class cells and determine the boundary. The process of
converting to class map and determining the regions boundary are both
carried out concurrently. In order to merge the cells into regions, we define
attribute classes as in Eq. (21). Neighboring cells are merged to form the
same region if they belong to the same class. The definition of attribute

105



classes and fusion of same class grid cells makes CRA independent of the
shape that a region takes or the number of regions (hence the number of
events) in the map.

Algorithm 6.1 CRA: Centralized Regioning Algorithm (On the Sink)
1: Var: rB= regionBorder, mB= mapBorders, nRB= newRegionBorder,

rM= regionsMap, rId= regionId, nL= neighborList, Gcxy= Grid cell
at (x,y)

2: rM[][]=-1;
3: mB[][];
4: while rM(i, j) = −1 do
5: rB[]=(Gcij ∧ rM(i, j) = −1))
6: dilateRegion(map, rB[], rM[], rId)
7: mB[rId][]=rB;
8: rId++;
9: end while

10: Function dilateRegion(map, rB[], rM[], rId)
11: repeat
12: changeInBorder=0;nRB[]=0;
13: for Gcij∧ ∀Gcij ∈ rB) do
14: nL[] = 8Nbrs(Gcij);
15: for Gckl ∧ ∀Gckl ∈ nL[] do
16: if (class(Gcij) = class(Gckl) & rM(k, l) = −1 then
17: rM(k,l)=rId;
18: nRB.add(Gckl);
19: changeInBorder=1;
20: end if
21: end for
22: if class(Gcij) 6= class(Gckl)∧ ∀Gckl ∈ nL[]) then
23: nRB.add(Gcij);
24: end if
25: end for
26: rB[]=nRB[];
27: until changeInBorder

The algorithm starts by defining all the cells as not assigned to a region
by initializing the variable rM[]=-1. Next it searches a grid cell that has
not been assigned a class yet and lists it as the border of the region, as
the region itself and region border at this moment consists of a single
cell (Alg. 6.1:L 5), cell with -1 in rM is not assigned a region yet). CRA
then starts expanding/dilating the region (Alg. 6.1:L 6). To expand the
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region, the neighboring eight cells around this region cell are checked if
they already belong to any class (Alg. 6.1:L 14-16), if not then they are also
classified according to Eq. (21). If they belong to the same region they
are assigned the same region ID and the new qualifying cells are listed as
the region border, otherwise the previous cells retain their status as region
border (Alg. 6.1:L 17-18). To further expand the region neighboring cells of
each cell in the border cells are searched iteratively until no change occurs
in the border of the region (Alg. 6.1:L 11,27), which implies the completion
of the construction of a single region with its boundary. The whole process
repeats again by searching a new cell that has not been assigned a region
yet. It keeps on repeating until all the cells in the map are classified into
their corresponding regions (Alg. 6.1:L 4,9).

We maintain the generality of the proposed scheme by devising a tech-
nique that does not assume any shape, size or number of events occurring
in the WSN.

6.4 case study: network partition predic-
tion

We need to formulate the problem according to the abstractions (maps,
classes, etc.) of the proposed scheme, to use our scheme for network parti-
tion prediction.

6.4.1 Problem Formulation

Partition detection is a complex problem as physical and network parame-
ters are coupled, i.e., energy level of the nodes and communication range
necessary to maintain connectivity. Given that sensor nodes are resource
constrained, eventually a WSN has to consider the depletion of node bat-
teries leading to the partitioning of the network. The energy dissipation,
however, is generally spatially correlated. Therefore, groups of nodes form
hotspots that deplete to coverage holes. A hole can be defined as a part
of the network, which due to the energy depletion is no longer covered.
These holes, when grow, can disconnect a part of network from accessing
the sink, defined as a partition. If the network energy state can be modeled
and predicted, then we can predict the occurrence of the holes and conse-
quently the partitions. The holes and partitions appear as regions in an
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energy map. Our scheme has all the necessary tools to profile the energy
dissipation patterns, predict the network future energy state and detect
the regions formed due to partitioning. Therefore, partition prediction
becomes a natural candidate problem to be solved using our scheme.

We can now define the problem according to the abstraction of our pro-
posed scheme. A grid cell (cell in a grid map) gets disconnected from
the network if it has energy below a minimum threshold so that it cannot
communicate anymore. These depleted grid cells form a region that rep-
resents a hole in an eMap. Partition, however, is a group of non-depleted
grid cells that cannot access sink due to the holes. It is therefore sufficient
to profile the energy status of the network during its lifetime by collecting
the energy profiles in order to predict network partitioning. As per defini-
tion the adaptation of the scheme to predict network partitioning consists
of three phases (Section 6.3) that we discuss as follows.

6.4.2 The Data Collection Phase

The nodes start the formation of 1-hops clusters as in [C. Wang et al.,
2012]. During the 1-hop cluster formation cluster heads are selected, the
cluster heads learn about their neighboring clusters. All cluster heads start
aggregating the energy values. The models for regions are aggregated and
periodically sent to the sink.

6.4.3 The Prediction Phase

The sink regenerates the time series (energy values of cluster and hence
the nodes) by applying reverse transformation. The data regeneration of
the reporting nodes actually generates the energy profiles. The energy pro-
files of each node are modeled and predicted as described in Section 6.3.2.
Energy dissipation is a decaying process so the time series contains trends
but no seasonal components. The trends are removed by fitting polynomi-
als. ARMA models are fitted to random components, selecting the best fit
model using AIC criteria. After completion of modeling the node energy
values are predicted and hence the future WSN energy profiles.
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6.4.4 The Event (Holes and Partition) Detection Phase

The first step towards the abstraction of the WSN profile as a grid map
(eMap in this case) is the selection of resolution, i.e., grid cell size at which
this event (network partitioning or holes) is to be detected. From the for-
mulation of the problem we know that we have two coupled parameters,
i.e., energy and communication range. Therefore, an upper bound for γ
is the communication range (R). To accommodate a worst case scenario
of two nodes lying on opposite corners of two grid cells, γ is given by
γ < R/2

√
2, as shown in Fig. 6.2. The lower bound can be obtained from

the node density, it should be selected such that the network area is not
over sampled, as we show in simulation Section 6.4.5. A cell is connected
to the neighboring cells until at least a single node has enough energy
to communicate. The node having the highest energy level is selected as
reporting node and Eq. (20) becomes ξij = max(vn) ∀ n ∈ gij.

R 

2 2 
R g< 

Figure 6.2: Max grid size

The predicted energy profiles are converted to the eMaps. CRA devel-
oped in Section 6.3.3 is used for both partition and hole detection on these
eMaps. As per the given scheme we define two energy classes at 10%
and below as the partition (or hole) class, and above 10% as non-partition
class. This definition of energy classes gives the areas that are vulnerable
to partitioning because of low energy.

6.4.5 Simulation Settings

As two phases of the proposed scheme are carried out on the sink, there-
fore we performed our simulations in Matlab. It is a very well-known sim-
ulation tool and suits our work as it facilitates to model energy dissipation
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patterns of very huge number of nodes. The network that we used in our
simulations is generated as a random non-uniform distribution of nodes.
For energy dissipation modeling the common hotspot model [Yonggang
Jerry Zhao, 2002] was used. The energy dissipates in a spatially correlated
manner around the hotspot. The nodes nearest to the hotspot are more
active and hence dissipate more energy. The parts of the network that
act as the coverage-bridge between two parts of the network and around
the sink show relatively high energy dissipation rates. Subsequently these
areas are modeled as hotspots.

We used a network containing 5000 sensor nodes that span in an area
of 50× 100 unit2, each node having a communication range R = 2 units.
For R = 2 the upper bound for grid cell size is 0.7 units. We found 0.3 as
the lower bound because if we take a grid size smaller than 0.3 then we
have more occupied grid cells than the number of nodes that over samples
the network area. We therefore selected three grid sizes between upper
and lower bounds 0.3, 0.5 and 0.7 units. Energy dissipation history of
164 profiles was collected from all the nodes. To evaluate the statistics
we divided the history of profiles into two parts. 139 profiles were used
for modeling purposes and 25 used for validation. 164 profiles represent
the network lifetime history. If we scale 164 lifetime profiles to 164 days
then 139 days of network operation are used to predict the next 25 days
network status. 139 profiles of WSN were used to predict next 25 profiles.
Each predicted profiles of the network was transformed to grid map.

6.4.6 Simulation Results

Fig. 6.3 shows the mean square sum of error for 25 prediction steps for 3

different grid sizes.The low values of mean square error show that the pre-
dictions are very accurate. The increasing trend is natural, as an increasing
number of prediction steps makes the prediction model less accurate.

Fig. 6.4 shows the misclassified cells count. The mean square error
results (Fig. 6.3) imply that we cannot expect much inaccuracy in mis-
classification. The highest count is naturally in the case of grid size 0.3,
which reaches 88 at the peak. The total number of occupied grid cells
at this resolution is 4196, so a worst case misclassification of 88 cells ac-
counts to around 2% of the total cells. We also see an increasing trend
in the misclassification for each prediction step because of the increasing
error between model approximation and the actual data. The oscillations
in the graph give interesting insight. We have defined two classes of en-
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ergy and as soon as the grid cells cross the class threshold (10% of energy)
they are classified into the partitioned class. The crests appear when cells
in the actual data (Kr) cross the threshold of 10% but the cells from the
modeled data (Kt), due to the lag in value, do not cross the threshold at
the same time. Therefore, cells from the reference class are classified in
the partitioned class but corresponding cells in the test class are still in
the non-partitioned class, which increases the count of difference cells. As
soon as the modeled data crosses the threshold the error decreases and
troughs appear but a clear trend in increase of error continues.

Fig. 6.5 gives account of the error in the detected regions predicted
through profiles of the WSN. To summarize the results we have selected
prediction maps separated by five prediction steps. On first prediction
step there are only three regions with less than 2% max percentile error.
With each next prediction step the number of regions increases and errors
distribute between the different regions. In the worst case scenario a region
has a maximum percentile error of less than 2.7%. The results however
show that each region is very accurately detected. Misclassification per
region on the average is less than 3% which shows the accuracy of our
approach to detect the regions and their boundaries.
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Figure 6.5: Misclassification percentile error per region

Now, we summarize the results w.r.t. efficiency metric, i.e., number of
packets needed to create energy profile of the whole network. To profile
the whole network of 5000 nodes and to collect 164 profiles over the entire
lifetime requires nearly 1 million data points. This overhead is reduced
dramatically by using the spatio-temporal compression. Models are con-
structed for clusters and regions. We fix the length of history that can
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be represented by a model. We chose 8, 14 and 20 values to be modeled
by a single model. The graphs in Fig. 6.6 and 6.7 represent cumulative
sum of region formed and outliners respectively that we require over the
lifetime of network. To observe the impact of maximum allowed outliers
for a model, we chose values from 0 to 4 to allow the clusters to form
regions. As a model does not approximate 100% accurately all the data,
therefore in addition to outliers per model, we also allow outliners for
each cluster head to build its model and fit to its data. Therefore, we will
observe outliners even when we set outliers per model to zero. From Fig.
6.6 we can conclude that the number of regions being formed decreases
as we allow more outliners. Allowing more outliners relaxes the neighbor-
ing clusters to fit to a given model. Similarly from Fig. 6.7 the number
of outliners to be reported naturally increases also. The length of data
to be represented by a model also affects the regions to be formed. The
shorter length (8) forms more cumulative regions over the lifetime as it
has to report more often than the longer length models that manage to fit
more data within one model. However, shorter length model has to re-
port very few outliners first, but shoots immediately as shorter length has
more regions. Longest length models (20) have least regions initially again
because it reports the complete data in less cycles of sending the models
but increases to maximum as its very hard for the neighboring clusters to
agree for a very long length of attribute. These long length models also
have the maximum number of outliners to be reported even outliers per
model are zero. Therefore, maximum number of regions are formed but
decreases afterwards as it has to make less updates. The data length to
be modeled is a very important factor in this whole compression scheme.
We found from our analysis that there is a compromise between the two
extremes, which in our case was around 14. At this value the number of
regions formed and the number of outliners to be reported is balanced
between the two extremes.

Each region in Fig. 6.6 is equivalent to sending a message to the sink
as a region is represented by this model. Three outliners are grouped in
one packet, the number of packets for outliners is equivalent to 1/3rd of
the outliners. With the settings of modeled data length=14 and ∆Nci=1,
we have to send 40499 packets, which is 4.93% of the total raw data to be
reported otherwise.

The results obtained in the evaluation are in accordance with the design
requirements of the scheme. The achieved predictions are long-term and
accurate, represented by the maximum prediction error of approximately
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3% in misclassification of the regions of the map for 25 prediction steps.
The proposed scheme detects energy holes that may partition the network
in 22nd days (in scaled time as explained in Section 6.4.5). From Fig. 6.5,
we conclude that the partition prediction is more than 97% reliable (be-
cause of 97% region accuracy).

6.5 chapter summary
In this chapter, we have presented a generic scheme for event forecasting in
WSN. We presented an abstraction mechanism for the sampled attribute
in the form of maps. Periodically collected attribute values are used to
construct the maps, which in turn are used to forecast the future maps. The
future maps represent the state of the network at a later point of time in
the network. We also proposed a generalized mechanism to detect events
using the maps. We demonstrated the proposed scheme using the example
of network partitioning.
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7 C O N C L U S I O N S A N D F U T U R E
R E S A E R C H

In this thesis we have investigated long term data compression and gath-
ering schemes, specially time-series based compression schemes. The ex-
isting compression schemes are suitable for some application scenarios,
however, they rapidly start to deteriorate in the presence of noise. In this
thesis we develop a framework for fault-tolerant compression scheme to
be employed in the noisy environments that explicitly exploits the long
term monitoring nature of WSN.

This chapter concludes the thesis by presenting the main contributions
and then we discuss the extensibility of our proposed work. We discuss
the possible extensions of our work to compression schemes beyond the
time series based compression schemes and possibility of extending the
scheme to simultaneous multi-variate fault-tolerant compression. We are
very positive that the research work presented in thesis opens up new and
interesting research directions.
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7.1 overall thesis contributions

The main objective of this thesis was to study long term data gathering and
compression schemes that are resilient to underlying faults that corrupt
the sampled data. Our research work was driven by the current need for
an efficient solution for long term data gathering that may also be resilient
to the faults. Accordingly, here we discuss the key contributions made
by the research presented in this thesis. Driven by the research problem
introduced in Sec. 1 and grouped by topic, the thesis contributions are
surveyed and their relevance is discussed.

7.1.1 Delay-Tolerant Spatio-Temporal Data Compression

We have developed Adaptive Hybrid Compression (AHC) , a fully dis-
tributed spatio-temporal data compression technique for accurate contin-
uous sensor data collection in WSN. AHC dynamically self-adapts to ap-
proximate the monitored attribute both in space and time. In order to
achieve the adaptability, AHC proposes (a) automated mechanisms to de-
termine optimal models to best approximate the observed attribute, (b) dy-
namic hierarchical clustering based on models, and (c) automated mecha-
nisms to adjust the compression scopes both in time and space. The use of
’simple models batches’ instead of complex monolithic models was the key
idea to design a technique that adapts to the dynamic changes of the mon-
itored attribute. This key design choice has allowed for the first time to
delay data collection rounds as tolerated by the application, thus, maximiz-
ing compression ratio and significantly reducing the message cost. In our
experiments, we were able to reconstruct the signal from spatio-temporally
compressed data on the sink with granularity of a single node and mean
error less than 0.04%. In order to put the performance of AHC in perspec-
tive, we compare it to the relevant state of the art work PAQ, ASTC and
DTC. The simulation results demonstrate that AHC easily outperforms the
rest for delay-tolerant applications that it specifically targets.

7.1.2 Fault-Tolerant Data Compression

We proposed Fault-Tolerant Data Compression (FTDC), a fully distributed,
fault-agnostic data error detection and correction scheme. FTDC exploits
the existing logical infrastructure already in place, created and used by
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the compression scheme, to implement proposed fault-tolerance mecha-
nisms. For example, it uses the data models, created by compression
scheme, to identify the sampling errors and uses 1-hop cluster infrastruc-
ture to further filter out noisy samples from samples resulting from phys-
ical events. Due to reuse of the resources, the proposed scheme is very
lightweight in terms of memory, computation and message cost. In spite
of the ability to exploit existing resources, FTDC is still flexible to be eas-
ily posted to various time-series based compression schemes. This has
also been demonstrated in chapter 5 through simulations. The simulation
results clearly demonstrated that established time-series based compres-
sion schemes, when enhanced by FTDE, are able to isolate erroneous data
and maintain high approximation accuracy relative to the non-enhanced
schemes. In addition, FTDE actually reduced the message overhead since
it allows to suppress the transmission of erroneous data. We demonstrated
through the simulations that FTDE can adapt to different time-series based
schemes and accordingly further improves its own performance by exploit-
ing the specific enhancement of a given scheme.

7.1.3 Efficient Predictive Monitoring

We developed a generalized framework for efficient predictive monitoring
to forecast events in order to support an autonomic self* system for WSN.
We presented an abstraction mechanism for the sampled attribute in the
form of maps. Periodically collected attribute values are used to construct
the maps, which in turn are used to forecast the future maps. The fu-
ture maps represent the state of the network at a later point of time in
the network. We also proposed a generalized mechanism to detect events
using the maps. We demonstrated that it can be effectively used to pre-
dict events related to different attributes. We described it as a three phase
strategy. In the data collection phase we proposed efficient algorithms to
spatio-temporally compress the attribute values and transport them to the
sink. In the prediction phase, we long-term predicted the attribute states.
In the event detection phase, we proposed a generalized event detection al-
gorithm. We demonstrated the feasibility and validity of approach by pre-
dicting the network partitioning as a case study. We were able to predict
multiple holes and the resulting partitioned area of the network; informa-
tion necessary to initiate proactive self* actions. Simulations support the
practicality of our approach by showing its high accuracy and low moni-
toring overhead on the network. In order to further increase the efficiency,
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we propose to adapt the spatio-temporal data compression to the occur-
rence probability of events. For instance sensor nodes should increase data
model accuracy if they are located in areas where events frequently occur
or when an event is suspected. We demonstrated the proposed scheme
using the example of network partitioning.

7.2 future work
AHC is our first step to efficiently transport large volumes of wireless
sensing data with accuracy guarantees in extremely computation/energy
constrained devices and networks. Despite this effort, additional work
to further extend the network lifetime is needed. The proposed scheme
provide various optimizations in order to increase the energy efficiency.
Accordingly, it provides varied dynamic adaption mechanisms to achieve
that goal. However, the current work seriously lacks on the dynamic adapt-
ability of the roles of the nodes and does not explicitly perform any load
balancing. For example, once a certain node adapts a certain role, e.g., clus-
ter head, it stays in that role, unless a change in the phenomenon forces the
nodes to rearrange to better model the change in the phenomenon. Hence,
the current work can be extended to incorporate the concept of load bal-
ancing so that no a specific node or set of nodes are adversely affected over
a duration range of time. Studying the repercussions of such a load balanc-
ing scheme is important and it should be made sure that it does not have
detrimental effects on the performance of the performance of the scheme.
For instance integrating a duty cycling technique or intelligent selection
of subset of nodes while maintaining the spatial resolution to save energy
without sacrificing the required data accuracy.

One major weakness of AHC is that, currently, it cannot handle multi-
variate data. Theoretically, AHC is not limited to just single variable. How-
ever, it still is a challenging problem to extend it to a multi-variate situation.
A multi-variate extended version of the scheme will be able to simultane-
ously compression and transport multiple physical attributes being gath-
ered by the sensor nodes. Hence, such an extension can further reduce the
data transportation costs.

The proposed fault-tolerant scheme is very well suited to our proposed
compression scheme and is flexible enough to be ported to other time-
series based compression schemes. It can also be further extended beyond
the domain of data compression to more generic time-series based WSN
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operations such as data aggregation and data prediction with the aim of
designing a generalized data fault tolerance scheme. It would also be very
interesting and challenging to extend to schemes beyond time-series based
schemes and investigate how well does it extend to compression scheme
other than time-series. The proposed fault-tolerance scheme also does not
cope well against drifting sensor values, i.e., the sampled data that drift
over time away from the actual values. Such error arise specially when
the physical characteristics of the sensor change, e.g., if a sensor is being
heated due to sun light. FTDC can identify can easily identify and isolate
a sensor node if such an error occurs in a single sensor node. However,
if a group of nodes shows such behavior, FTDC will not be able to detect
such errors. Extending the scheme to also identify such errors will make
the proposed scheme even more robust.

Similarly to AHC, it would be really interesting to study and investi-
gate how fault-tolerance in FTDC can be further increased by extending
it to a multi-variate fault-tolerance problem. Often sampled values from
different sensors vary in tandem, e.g., light and temperature both tend to
increase if exposed to sun light. Because different sensors have different
physical characteristics, thresholds and saturation values, when investi-
gated together as a multi-variate problem they can be used to identify the
sensors with drifting values.
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