
Dependability Driven System Level Co-Design and
Optimization of Embedded Systems

Vom Fachbereich Informatik der Technischen Universität Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Md. Shariful Islam

aus Bangladesch

Referenten:
Prof. Neeraj Suri, Ph.D.

Prof. András Pataricza, Ph.D.

Datum der Einreichung: 16.10.2008
Datum der mündlichen Prüfung: 10.12.2008

Darmstadt 2008
D17

ii

Executive Summary

Embedded systems are becoming pervasive in diverse application domains
such as automotive, avionic, medical, control and their functionality is in-
creasingly defined by software (SW). Such systems especially in safety-critical
(SC) applications, with implications on system dependability and real-time
must be designed to be dependable (fault tolerant) enough and have to
meet timing requirements in order to avoid any potential catastrophic conse-
quences. More and more new and innovative functionality is being integrated
into such systems, invariably leading to a heterogeneous environment con-
sisting of applications of mixed-criticality (SC and non-SC), each with asso-
ciated extra-functional requirements such as dependability, timing, resources
and power consumption. Efficient system design methods and techniques are
needed to be developed to integrate these diverse applications across limited
hardware (HW) resources.

This thesis develops a novel dependability-driven system level SW-HW
co-design methodology which systematically guides the design and optimiza-
tion of such embedded systems from requirements analysis phase through
integration to the prototyping. We first develop the concept of a consoli-
dated mapping of SC and non-SC applications onto a common distributed
computing architecture such that their operational delineation is maintained
over the integration. We then devise an optimization based co-design ap-
proach through quantifying the various design objectives/variables. Our aim
is to develop the design methodology for an integrated embedded architec-
ture.

A heuristic based systematic mapping process is elaborated for integrat-
ing varied criticality applications. A set of functional and extra-functional
requirements and constraints are satisfied during the mapping. At an early
design stage, the mapping considers rigorous design strategies such as fault
tolerance, fault/error containment, robust partitioning, timeliness, resource
and power consumption. Dependability is ensured through replication of ap-
plication jobs with high criticality and a schedulability analysis is presented
for guaranteeing the timeliness properties. The developed mapping algorithm
generates an initial feasible solution and guides the optimization in a unified
and efficient way.

We develop a comprehensive multi variable optimization (MVO) frame-
work which quantifies and optimizes a set of competing variables from de-
pendability, real-time and resource perspectives. During the optimization
process the satisfaction of constraints is maintained. The key aspect of the
approach is to enhance dependability by using fault containment mechanisms
including the quantification and estimation of the considered design variables.

iii

The framework is extended by quantifying and modeling the reliability and
system level power consumption as design variables.

In order to evaluate and validate the developed methods and techniques
presented in the thesis, we have performed extensive experiments. Through-
out the thesis we illustrate our ideas and concept using real-life automotive
examples (where these techniques were actually validated). The concept is
applied to a supporting tool set where we develop a prototype of the system
level co-design approach. The prototype is created adhering to a transfor-
mation based design process.

iv

Kurzfassung

Eingebettete Systeme sind in allen Bereichen der Automobil-, Avionik-
und Kontrollanwendungen gegenwärtig und werden zunehmend durch Soft-
ware (SW) definiert. Solche Systeme mit direkter Auswirkung auf die Zu-
verlässigkeit und Echtzeit müssen zuverlässig (fehlertolerant) genug sein und
strenge Echtzeitanforderungen erfüllen um mögliche katastrophale Folgen wie
den Verlust von Menschenleben, Schaden für die Umwelt oder den Verlust
von Eigenschaften zu vermeiden. Die Integration von vielen neuen und
innovativen Funktionalitten in solche Systeme führt unweigerlich zu het-
erogenen Umgebungen, bestehend aus sicherheitskritischen als auch nicht-
sicherheitskritischen Anwendungen (mixed-criticality), jeweils mit den damit
verbundenen extrafunktionalen Anforderungen bezüglich Zuverlässigkeit, Echt-
zeit und Ressourcen. Effiziente System-Entwurfsmethoden und Techniken
sind erforderlich, solch unterschiedliche Anwendungen in begrenzten Hard-
ware (HW) Ressourcen zu integrieren.

In dieser Dissertation entwickeln wir eine neue, verlässlichkeitsorientierte
SW-HW Co-Design-Methode für die Systemebene, die den Entwicklungsprozess
und die Optimierung solch eingebetteter Systeme von der Anforderungsanal-
yse über die Integrationsphase hin zur Realisierung des Prototypen in sys-
tematischer Weise führt. Zunächst entwickeln wir das Konzept einer gemein-
samen Abbildung von sicherheitskritischen als auch nicht-sicherheitskritischen
Anwendungen auf eine gemeinsame, verteilte Rechnerarchitektur, so dass
ihre operative Abgrenzung über die Integration erreicht wird. Weiterhin
haben wir durch Quantifizierung der verschiedenen Entwurfsziele und Vari-
ablen einen optimierungsbasierten Co-Design-Ansatz erstellt. Unser Ziel ist
es eine integrierte, eingebettete Architektur zu entwerfen.

Ein systematischer, auf Heuristiken basierter Abbildungsprozess wird für
die Integration von Anwendungen unterschiedlicher Kritikalität entwickelt.
Eine Reihe von funktionalen und extra-funktionalen Anforderungen und Rand-
bedingungen sind während des Abbildungsprozesses erfüllt. Schon in der
frühen Entwurfsphase berücksichtigt der Abbildungsprozess strenge Design-
strategien wie Fehlertoleranz, Fehlereingrenzung, robuste Partitionierung,
Echtzeit, Ressourcen- und Energieverbrauch. Zuverlässigkeit wird durch
Replikation von Anwendungen mit hoher Kritikalität garantiert, die Echtzeit-
eigenschaften durch eine Schedulability-Analyse gewährleistet. Der entwick-
elte Abbildungsalgorithmus generiert zuerst eine zulässige Lösung und führt
dann die Optimierung in einheitlicher und effizienter Weise durch.

Ein umfassendes Rahmenwerk für eine Multi-Variablen-Optimierung (MVO)
wird entwickelt, das eine Reihe von konkurrierenden Variablen im Hinblick
auf Zuverlässigkeit, Echtzeit und Ressourcenverbrauch quantifiziert und op-

v

timiert. Während des ganzen Optimierungsprozesses wird die Einhaltung
der Randbedingungen garantiert. Der wichtigste Aspekt dieses Konzepts ist
die Erhöhung der Zuverlässigkeit durch die Verwendung von Fehlereingren-
zungsmechanismen wie Quantifizierung und Abschätzung der betrachteten
Design-Variablen. Das Rahmenwerk wird dahingehend erweitert, dass die
Zuverlässigkeit des Systems und der Stromverbrauch auf Systemebene als
Design-Variablen quantifiziert und modelliert werden. Zur Evaluierung und
Validierung der in dieser Dissertation entwickelten Methoden und Techniken
werden umfangreiche Experimente durchgeführt. Im gesamten Verlauf der
vorliegenden Arbeit, werden unsere Ideen und Konzepte anhand von praxis-
nahen Beispielen aus der Automobilentwicklung erläutert (wobei der Einsatz
dieser Techniken zugleich validiert wird). Das Konzept wird auf eine Samm-
lung von Werkzeugen angewendet wobei wir einen Prototypen unseres Co-
Design Ansatzes für die Systemebene entwickeln. Der Prototyp wird gemäß
den Vorgaben eines transformationsbasierten Entwurfsprozesses erstellt.

vi

Acknowledgements

With great pleasure, I would like to take this opportunity to thank all the
people who have supported me in the successful completion of this thesis. At
first I would like to express my sincere thanks to my advisor Prof. Neeraj Suri
for his excellent supervision, scholastic guidance and constructive suggestions
during this four years of working in the DEEDS group. A very special thanks
to Prof. András Pataricza for accepting to be my external supervisor.

I am very thankful to all my past and present colleagues including Ute
and Sabine in the DEEDS group for their support and for a nice working
environment. Some of my research work has been done in collaboration with
the EC DECOS project, thanks to several academic and industrial partners
for fruitful discussion during the project work. I have got the opportunity
to apply my developed concept in practice. I am also very grateful for the
financial support from that project.

Last but not least I would like to express my thank to my parents, my
wife and my siblings for their support, encouragement and love during this
time period.

vii

viii

Contents

Executive Summary iii

Kurzfassung v

Acknowledgements vii

1 Introduction 1

1.1 System Level Design and Challenges 4

1.2 Dependability by Design and Optimization 10

1.3 Problem Statement and Thesis Research Questions 13

1.4 Thesis Contributions . 17

1.5 Thesis Organization . 20

2 Background and System Model 23

2.1 Preliminaries . 23

2.1.1 Target Application Domain 24

2.1.2 System Requirements 24

2.1.3 Preview of Resource Allocation Problem 27

2.1.4 Metaheuristics in Optimization 28

2.2 Related Research . 31

2.2.1 System Design and Co-Design 31

2.2.2 Mapping – Allocation and Scheduling 32

2.2.3 Optimization . 35

2.3 System Architecture and Models 38

2.3.1 The Architecture Model 38

2.3.2 The Communication Model 41

2.3.3 System Level Partitioning 43

2.3.4 The Application and SW Model 46

2.3.5 The Fault-Model . 50

2.3.6 Functional and Extra-Functional Constraints 51

ix

3 System Level Co-Design and Optimization Approach 57
3.1 Embedded Systems Co-Design Criteria 58

3.1.1 Satisfaction of Constraints 58
3.1.2 Dependability . 58
3.1.3 Real-Time . 59
3.1.4 Resource and Power Consumption 59

3.2 Co-Design Space Exploration 60
3.3 Constraints Handling . 60
3.4 Mathematical Formulation of the Problem 62
3.5 The Integrated Design Framework 65

3.5.1 The Overall Co-Design Methodology 66
3.5.2 Requirements Analysis and Specification 69
3.5.3 SW-HW Mapping . 70
3.5.4 System Design Optimization 70
3.5.5 Prototyping . 71

4 Dependability Driven SW-HW Mapping 73
4.1 Basis of the Mapping . 74

4.1.1 Fault Tolerance Schemes 74
4.1.2 Influence and Communication Reduction 78
4.1.3 Schedulability Analysis 82
4.1.4 Resource Consumption 87

4.2 Supporting Data Structure . 88
4.3 Ordering Heuristics . 89

4.3.1 Job Ordering . 91
4.3.2 Node Ordering . 92

4.4 The Mapping Algorithm . 93
4.4.1 Assignment Evaluation 95
4.4.2 Constraints Satisfaction Technique 96
4.4.3 Remarks . 97

4.5 Mapping Illustration . 97
4.5.1 HW Resources and Applications 98
4.5.2 Illustration of Mapping Phases 100

5 Multi Variable Optimization (MVO) 105
5.1 Essential Issues in MVO . 106

5.1.1 General Optimization Ideas 106
5.1.2 Properties of Co-Design Variables 109
5.1.3 Quantifiers of Variables 109
5.1.4 Integration Trade-Offs and Preferential Independence . 110
5.1.5 The Chosen Co-Design Optimization Variables 111

x

5.2 Quantification of Optimization Variables 112
5.2.1 Influence . 113
5.2.2 Slack and Scheduling Length 116
5.2.3 Bandwidth . 118
5.2.4 Example Describing the Metrics 118

5.3 Our MVO–SA Approach . 120
5.3.1 The MVO Function . 121
5.3.2 The MVO Algorithm – Application of SA 122
5.3.3 The Transformation Operator 124
5.3.4 Comparing the Mapping 125

6 Evaluation 127
6.1 Experimental Setup . 128
6.2 Performance Evaluation of the Mapping 129

6.2.1 Effectiveness . 130
6.2.2 Remarks . 133

6.3 Empirical Evaluation of the MVO-SA 133
6.3.1 Proof of Convergence and Effectiveness 133
6.3.2 Quantitative Gain . 137
6.3.3 CPU Utilization . 138
6.3.4 Reduction of FT Overhead 138

6.4 Validation and Comparative Study 140

7 Prototype of the System Level Co-Design 141
7.1 Transformation Based Design 142

7.1.1 MDD and PBD: Overview & Relevance 143
7.1.2 Model Transformation 144

7.2 Architecture of the Prototype 146
7.2.1 Modeling the Application and SW Development 147
7.2.2 Transforming the Design Steps 148
7.2.3 Scheduling Tool Support 149
7.2.4 PSM Prototype . 150

7.3 Deployment and Executable 150

8 Extendability and Adaptability 153
8.1 Applicability on a Heterogeneous Architecture 154
8.2 Reliability Measure . 157

8.2.1 Computing Reliability 158
8.2.2 Reliability and Mapping Analysis – An Example 158

8.3 System Level Power Optimization 160
8.3.1 Static Power Optimization 161

xi

8.3.2 Dynamic Power Optimization 161
8.3.3 FT and Power Analysis – An Example 163

9 Conclusions and Future Issues 167
9.1 The Overall Contributions . 167

9.1.1 The Integrated Design and Optimization Framework . 167
9.1.2 Consolidated Mapping of Mixed Criticality Applications168
9.1.3 Extra-Functionality Driven Optimization 169
9.1.4 Summarizing the Benefits 171

9.2 Future Issues . 172

Bibliography 175

Index 193

Curriculum Vitae 197

xii

List of Figures

1.1 Abstract view of system level design steps 5
1.2 Federated and integrated design approach 6
1.3 The fault, error and failure propagation 11

2.1 High-level model of the target HW architecture 39
2.2 A TDMA communication model for TTP/C 42
2.3 A TDMA communication model for FlexRay 42
2.4 Influence across modules at different levels 48
2.5 Brake force control application 50
2.6 Brake force control application after replication 50

3.1 Hypothetical design space . 63
3.2 System level co-design and optimization flow 67

4.1 Trade-off between different FT schemes (a)–(e) 76
4.2 Reduction of influence and communication overhead 80
4.3 Schedulability analysis . 83
4.4 Network delay (TN) . 83
4.5 Brake-by-wire application (a) and doors application (b). . . 99
4.6 Resulting mapping – architectural view 104

5.1 Design optimization flow . 106
5.2 Dominance and effectiveness frontier 108
5.3 Error propagation . 113
5.4 Combining influences . 116
5.5 Quantification of variables for different mappings 119

6.1 Performance of mapping heuristics (SC applications) 130
6.2 Performance of mapping heuristics (non-SC applications) . . . 131
6.3 CPU utilization . 132
6.4 Memory utilization . 132
6.5 Showing the convergence . 134
6.6 Performance evaluation of the MVO-SA 135

xiii

6.7 Effect of adding resources (laxation of constraints) 135
6.8 Run time comparison . 136
6.9 Mapping performance profile MPF 138
6.10 CPU utilization . 139
6.11 Reduction of replication overhead 139

7.1 Transformation based design 143
7.2 Prototype of the system level co-design 146
7.3 Allocation in model transformation 149
7.4 Deployment process . 150
7.5 Deployment steps [174] . 151

8.1 Application and heterogeneous architecture 155
8.2 Assignment on a heterogeneous architecture 156
8.3 Application and architecture model 159
8.4 Example mapping - FT and power analysis 164

xiv

List of Tables

2.1 Safety integrity levels . 26

4.1 Building assignment compatibility matrix 93
4.2 Building communication matrix 93
4.3 Chosen values of job properties (brake-by-wire system) 99
4.4 Chosen values of job properties (doors application) 100

4.5 The sub-matrix C̃ used in Phase 2 102
4.6 Jobs allocation of the brake-by-wire application 102
4.7 Building matrix Ã for doors control application 103
4.8 The sub-matrix C̃ used in Phase 3 103
4.9 Allocation of jobs from the doors application 103
4.10 Resulting allocation of jobs 104

5.1 Metrics of mapping configuration (a) 119
5.2 Metrics of mapping configuration (b) 119
5.3 Metrics of mapping configuration (c) 120
5.4 Metrics of mapping configuration (d) 120

6.1 Job properties . 128
6.2 Speeding up the convergency 136
6.3 Performance profile MPF for 40 jobs 137
6.4 Performance profile MPF for 60 jobs 137
6.5 Performance profile MPF for 80 jobs 138

8.1 Mapping configuration (a) and reliability 160
8.2 Mapping configuration (b) and reliability 160
8.3 Mapping configuration (c) and reliability 160

xv

xvi

List of Algorithms

1 Generic methodology for system level design optimization . . . 67
2 Network delay calculation for messages transmission 86
3 Extra-functionality driven SW-HW mapping algorithm 94
4 Satisfaction of constraints during the mapping 96
5 General optimization process 107
6 The MVO algorithm . 123
7 Transformation operator Γ . 124

xvii

xviii

Chapter 1

Introduction

Embedded systems are becoming pervasive in our daily lives as well as in
aspects where their proper functioning is crucial. Albeit hidden from the
user, in reality we are surrounded by varied complexity embedded systems
ranging from simple sensors, to wristwatch to cell phones, to the higher level
safety critical systems used in automotive, aerospace, medical and control
applications. Our growing use of embedded systems is driven by their sus-
tained delivery of desired services despite the occurrence of perturbations.
The perturbations range from electromechanical stresses, to system, soft-
ware and communication level failures. For safety-critical systems, the need
is to sustain operations in the presence of perturbations (dependability), this
is often complemented by temporal requirements and the time duration by
which a service is required (real-time) – also irrespective of the encountered
perturbations.

The trend for the future is that more systems will contain computer-
controlled/electronic components, i.e., will only increase the embedded con-
trolled systems. Automotive original equipment manufacturer (OEM) such
as DaimlerChrysler states that more than 90% of innovation (and hence value
added) in a car will be in electronics and other OEM BMW indicates that
more than 30% of the cost of manufacturing a car resides in the electronic
components [1]. The worldwide value creation in automotive electrical and
electronics systems, including SW, amounts to an estimated 127 billion EUR
in 2002 and an expected 317 billion EUR in 2015 [2]. The trend is that
use of electronics in modern car replacing critical mechanical and hydraulic
components is increasing. The number and type of critical functions im-
plemented by embedded electronic systems aboard a car and aeroplane is
evolving as well. It is unforeseen that this trend will stop in near future. The
design of such systems is becoming challenging and needs sound methods
and techniques.

1

2 CHAPTER 1. INTRODUCTION

In general, embedded systems are defined as a class of special purpose com-
puting system and are usually embedded (tightly or loosely) within a larger
system; functionality is mostly fixed and dedicated; working very often in a
reactive mode; responding frequently to external inputs; implemented by nu-
merous concurrently working processes; infrequently reprogrammed; exten-
sively sensitive concerning cost, power and performance criteria; have hard
dependability [3] and correctness constraints, e.g., a brake-by-wire system
aboard a car has to work bug-free and without interruption in any circum-
stances. The latter types are called as dependable embedded systems. These
types of system may consist of micromechanical, microelectronic and increas-
ingly use software components hence are heterogeneous containing hardware
(HW) and software (SW) parts. Nearly all functions, for example, in vehicles
and in aeroplane are controlled by software components (SW-Cs) running
on microprocessors. The complexity of designing such systems is however
growing at a very high pace through the integration of mixed-criticality ap-
plications (having both safety-critical and non-safety critical applications),
through the use of multiprocessor cores, system-on-chip (SOC) architecture
and through the high interactions between distributed applications. The con-
straints with respect to both functionality and extra-functionality are getting
tighter as well. The extra-functional properties includes dependability/fault
tolerance (FT)1, reliability, timeliness, power, cost and time-to-market.

In order to obtain a dependable operation of embedded systems while
maintaining performance/timeliness and resource efficiency, the design pro-
cess of such complex systems is becoming an important issue and also difficult
at the same time to meet varied requirements. Though the design approach
presented in this thesis is applicable for various embedded systems like auto-
motive, avionics, aerospace, control, seaborne, embedded mobile and wireless
systems, throughout this writeup we focus on examples for automotive appli-
cations, where we devote to apply our developed methods and techniques, for
both safety-critical (SC) and non-SC specially for X-by-Wire (XBW) [4; 5; 6]
and other critical applications where ’X’ stands for any SC applications such
as Brake-, Steer-, Flight-by-Wire. The critical applications include power-
train, car engine control, heart pace-makers, nuclear power plant control and
military radar systems. We provide a brief description of different classes of
automotive applications as follows.

Automotive Applications: A new class of computer-driven automotive
applications is emerging known as XBW systems which are categorized as
composite SC and hard real-time (RT) embedded applications. These types

1The terms dependability and FT will be used synonymously in the thesis.

3

of functionalities are used to control the movement of the car or assisting
the driver. They are increasingly being implemented as SW replacing the
mechanical and hydraulic systems in the car. The key benefits being en-
hanced processing capabilities, weight and cost. They often impose a high
dependability requirements and tight RT constraints, e.g., the driver assis-
tance system has to respond to the environment within a few milliseconds
once it gets a request from the driver. The response has to be made correctly
even in presence of any perturbations. These types of applications further in-
clude electronic stability programs, lane assistance, anti-lock brake systems,
adaptive cruise control etc. Another type of applications implemented as
SW-Cs is called as body electronics. These applications are less critical com-
parative to the ones defined earlier. The functionalities which control the
simple electronic devices in the vehicle such as doors and window control,
windshield wipers, lighting are categorized into this class. Usually they are
classified in the category of safety relevant and also as non-SC applications.
Recently many new and innovative functionalities are increasingly being de-
ployed in the car for user comfort and communication. These are classified
as infotainment and telematics applications. Examples of such applications
include instrument cluster, in-car navigation systems, multimedia systems,
car radio, hands-free phones, air conditioning system, car-to-car communi-
cation systems, etc. These are usually categorized as non-SC applications.
During the design process care has to be taken such that there is no erroneous
data or control flow from these types of applications or from applications of
body electronics to the SC applications, i.e., the fault/error propagation from
non-SC to SC application have to be prohibited by design.

Given the prime focus on designing SC embedded systems, we investi-
gate some common idiosyncrasies of SC systems (as follows) which make the
design of such systems challenging and look for new methodologies and tools.

. For embedded systems both the functional and extra-functional at-
tributes are extensively defined by SW-C, i.e., by the so called embed-
ded SW,

. These types of systems are composed of both SW-Cs and HW compo-
nents (HW-Cs) which interact in order to perform the given task,

. Embedded system applications are distributed in nature and should be
implemented over several microprocessors and HW architecture,

. The system often operates in SC contexts and has to provide services
dependably, and

4 CHAPTER 1. INTRODUCTION

. Have to fulfill stringent real-time (RT) constraints, as well as constraints
concerning timeliness, cost, weight, power and resource consumption.

The methodologies and techniques proposed in this thesis consider the
conceptual and applied guidelines (a) to integrate such varied functionali-
ties and characteristics of both SC and non-SC embedded applications, (b)
to achieve dependability/FT, and (c) is followed by RT/timeliness, perfor-
mance, power, resource and cost driven principles.

This chapter further provides a description of designing dependable em-
bedded system at higher abstraction level, i.e., at system level. An introduc-
tion of different design techniques such as federated and integrated design ap-
proach, the need for SW-HW co-design/integration [7; 8; 9] and some evolving
design challenges are described. The design at abstraction or system level
implies the design process that hides the unnecessary implementation details.
A short overview of system design for achieving and optimizing dependabil-
ity is depicted. Subsequently the chapter describes the problem statement
of the work and thesis research relevant questions. Finally the main contri-
butions of the thesis are previewed including the publications and a short
thesis outline is depicted.

1.1 System Level Design and Challenges

The design methods and techniques of embedded systems vary considerably
with respect to the application domain under design and the type of controller
and/or product under development. The applications are classified into two
main categories of SC and non-SC with different requirements and charac-
teristics. Many embedded controllers operate on systems that may cause
severe damages to people and property if they malfunction, i.e., they are SC.
These systems have to provide correct services at the correct time despite of
any perturbations. The emergence of XBW technologies in the automotive,
avionics and rail industry is significantly increasing the number and impor-
tance of such applications. The main advantages of using these technologies
in comparison with conventional mechanical systems are improvements of en-
hanced functionality, response characteristics, dependability, weight, power
etc.

The design choices and strategies of SC systems differ from the design
of non-SC systems. SC systems must achieve a level of dependability which
should be better than the dependability of any of its constituting SW and HW
components. These systems must also have to meet stringent timing require-
ments in presence of faults, i.e., they are hard-RT. They need to be assured

1.1. SYSTEM LEVEL DESIGN AND CHALLENGES 5

for deterministic and predictable system behavior. For instance violation of
the timing constraints can have catastrophic consequences. Whereas for the
design of non-SC systems the emphasis lies on low cost, flexibility, resource
efficiency and requires less stringent dependability and timing requirements.
They are usually soft-RT and can run in a performance degradation mode
as well. For instance in an engine control system not meeting the timing
constraints can lead to a less efficient fuel consumption and more exhaust.

The consolidated design of these types of SC and non-SC embedded sys-
tems needs rigorous strategies and must be designed to be dependable (fault
tolerant) enough and have to meet deadline requirement, i.e, the instant be-
fore which a result must be delivered, in order to avoid disastrous events such
as loss of human lives, loss of properties or environmental harm. The proba-
bility of any fault/error propagation from non-SC to SC applications has to
be prohibited by design. In the following, we describe and compare two de-
sign approaches practicing by automotive and avionics research community
such as federated and integrated design approach.

The system level dependable design of embedded systems refers to the de-
sign of such systems at higher level of abstraction providing dependability by
design and fulfilling different properties such as RT, power and resource con-
sumption. The system level design is started specifying the system and con-
structing the HW and SW model separately out of the defined specification.
Then the SW-Cs are mapped onto HW-Cs. Mapping is decomposed into
two subproblems: allocation and scheduling. Figure 1.1 depicts the abstract
view of essential steps of such design developed in this thesis. The design

System specification

Modeling

(SW,HW,Constraints)

Integration/Mapping

Design optimization

Prototyping

iterative

iterative

Co-design

space

exploration

Figure 1.1: Abstract view of system level design steps

flow includes activities such as system specification, SW, HW and constraints
modeling, dependability and RT driven SW-HW integration/mapping, design
optimization and the prototype of the system level design. Some design steps

6 CHAPTER 1. INTRODUCTION

are performed iteratively and refined by iterative improvement, e.g., mapping
and its optimization. The design/co-design space exploration enables to ex-
plore and exploit the search spaces by investigating alterative mappings and
their optimization in order to be able to find an optimized mapping from
the global design space. All these steps are detailed throughout different
chapters of the thesis.

Federated Design Approach

The traditional federated design paradigm implements a function onto a sin-
gle node through the vertical integration as shown in Figure 1.2. In auto-
motive community node is usually known as electrical control unit or ECU.
Figure 1.2 shows the integration of three different SC (SC1, SC2 and SC3)
and two different non-SC applications (nSC1 and nSC2). Applications are
further decomposed into executable fragments referred as jobs (Job11, Job12,
Job41, ..., Job3m, Job5p). Jobs have basic communication capabilities for ex-
changing information with other jobs. For instance Job11, Job12 and Job13
communicate with each other to provide the necessary service of SC1.

Job

11

Job

41

Job

3m

Job

32

Job

31

Job

2n

Job

22

Job

21

Job

13

Job

12
Job

52

Job

51

Job

43

Job

42

Job

5p

.

.

.

.

.

.

.

.

.

...

In
te

g
ra

te
d

 A
rc

h
ite

c
tu

re

Federated Architecture

SC1 SC2 SC3 nSC1 nSC2 ECU

ECU/Node...

Gate
way

...
... ...

N
e

tw
or

k
(e

.g
.,

 T
T

P
/C

)

Network (e.g., LIN)Network (e.g., CAN)

Vertical

integration

Horizontal integration

Figure 1.2: Federated and integrated design approach

In the federated or the customized solution approach, FT is provided
by simply replicating each of the ECU therefore the number of ECUs be-

1.1. SYSTEM LEVEL DESIGN AND CHALLENGES 7

come double/triple for each SC application. Due to its 1 function to 1 node
mapping philosophy, adding a new functionality in the system tantamount
a new node. However this approach provides spatial partitioning among the
applications which facilitates fault encapsulation and isolation (fault in one
application does not affect other application). Thus this type of design is
though desirable for dependability prohibitively expensive from the number
of ECUs, size, weight and cost perspectives. Moreover, as this design ap-
proach follows a customized implementation of 1 function to 1 node strategy,
functions distribution is not possible, i.e., transferability of functions across
nodes cannot be performed. For instance jobs of SC1 cannot be integrated
with jobs of SC2 even there are enough resources available on the node where
jobs of SC2 are assigned. Hence optimization cannot be applied for such a
design approach resulting a practically in-efficient use of available resources.
In the automotive domain, massive deployment of this design concept has led
to a large number of ECU/nodes, sensors, actuators and networks aboard a
car. A current premium car, for instance, implements about 270 functions
and deploys over sixty to hundred nodes and five to twelve different com-
munication networks [10; 11]. The networks may or may not be connected
with each other via gateways. Gateways are used to establish a minimum
exchange of information between networks as well as between different ap-
plications. The large number of nodes and networks have some undesirable
consequences like high number of wires contact and high costs. The wiring
and contact is one of the major causes of failure in automotive systems. Field
data has shown that more than 30% of electrical failures are due to connector
problems [12]. Design improvement is needed from this perspective as well.

The notable example of networks which are widely used for automo-
tive systems includes controller area network (CAN) [13], local interconnect
network (LIN) [14], media oriented system transport (MOST) [15], time-
triggered protocol (TTP/C) [16], FlexRay [17] and time-triggered ethernet
(TT Ethernet) [18]. TTP/C is a purely time-triggered network provides
deterministic messages transmission for FT-RT systems which is a suitable
candidate for the integrated architecture.

Integrated Design Approach

In order to tackle the challenges and drawbacks faced with the federated
approach an alternative design paradigm has been introduced called as the
integrated design approach. This approach promises cost saving through the
reduction of complete resource/ECU replication. Fundamentally, a single
node processor now executes a variety of both SC and non-SC applications.
In this approach integration of mixed criticality applications onto a com-

8 CHAPTER 1. INTRODUCTION

mon distributed computing architecture is carried out as shown in Figure 1.2
marked with the horizontal integration. We see that jobs from different crit-
icality applications can be assigned onto the same node. Thus this design
approach allows the interplay among application jobs enabling efficient use
of resources. FT is provided by active SW based replication where replicated
functions are integrated onto different ECUs without adding new ECU/node
in the architecture. As this approach requires less number of nodes and net-
works onboard a car, it improves dependability in terms of wiring and con-
nectors [12]. A low number of nodes benefits the design complexity, wiring,
mounting, HW cost, weight, space and many others. In an integrated archi-
tecture design concept, jobs from different SC applications as well as from
non-SC applications are implemented on the same node hence integration
of mixed criticality applications are carried out. Influence of non-SC to SC
applications has to be prohibited by design. Influence is the probability of
error propagation between modules where a module can be an application,
a job, a processor core or a node.

Recently a number of customized design efforts have been made and the
importance and benefits of such integrated approach is evident from the
design concepts in avionics industry, e.g, the Integrated Modular Avionics
(IMA) [19; 20; 21] as well as such design concept is currently being introduced
in the automotive industry such as in AUTomotive Open System ARchitec-
ture (AUTOSAR) [22] and in [12; 23]. Thus in order to (a) reduce devel-
opment, production and maintenance cost, (b) increase the dependability of
embedded applications, and (c) perform system optimization in the applica-
tion domains of dependable RT embedded systems, it is necessary to develop
the enabling technology to move from a federated to an integrated design
approach. The design of such system needs support of some architectural
and core services. An example of such an architecture is the Time-Triggered
Architecture (TTA) [24] which is a distributed integrated architecture sup-
ports developing and implementing varied critical applications to the highest
criticality class. TTA provides a set of core and high level services in order
to support application jobs execution and ensures the predictability and de-
terministic behavior of SC applications. The services include deterministic
and predictable message transmission, fault tolerant clock synchronization,
strong fault isolation and consistent diagnosis of failing nodes.

The current approaches are predominantly customized designs, which are
usually driven either by discrete FT or RT basis. The challenge remains to
provide composite FT and RT design for an integrated embedded architec-
ture (IEA) to achieve a certain level of dependability (FT and fault/error
containment) including fault encapsulation and isolation as in federated ar-
chitecture while meeting the RT, performance and power requirements and

1.1. SYSTEM LEVEL DESIGN AND CHALLENGES 9

constraints.

Design Challenges

As mentioned the complexity of embedded systems design is growing rapidly.
Furthermore in one hand SC applications have introduced a new design di-
mension due to the distributed nature of the system. On the other hand
one application may have control and data dependencies over other appli-
cations, e.g., collision avoidance system simultaneously need to control both
the brake-by-wire and steer-by-wire systems [25]. These phenomena entail
additional complexities, yet potentials for optimizations. The optimization
features include the reduction of the number of needed ECUs, fewer mechan-
ical parts, better performance, upgrading with new functionalities including
safety aspects. The trend is that the number and complexity of functions
as well as new innovative functions will increase drastically. Addition of
new functionalities and increased complexities are making the present design
methodologies rapidly obsolete. Furthermore the design has to ensure that
the SC functionalities are not affected by the non-SC ones. [26] states that
the development of methodologies, techniques and tools for system level de-
sign is the only solution to cope with the increasing complexity of embedded
systems and the productivity gap. The design of such complex and interacted
system is not possible by the existing traditional approaches, e.g., by the fed-
erated approach. Therefore the research presented in this thesis deals with
the design issues for an integrated architecture at system level of abstraction.
System level co-design is a new paradigm which focuses the embedded sys-
tem design challenges at higher level of abstraction hiding the architecture
specific implementation details as much as possible during different design
steps.

In order to ease the design complexity, integrated system design should
come up with guidelines, methodologies and tools [27] and needs a step-
wise design process. The development of such design concept also calls for
new forms of abstraction and design methodologies for bridging applications
and the architecture components. Particularly the design methodologies and
techniques should cope and meet with the following challenges:

. Growing complexity of embedded systems through adding new func-
tionalities,

. Achieving a certain level of dependability/FT as well as meeting the
other constraints such as RT, resources and power,

10 CHAPTER 1. INTRODUCTION

. Mapping of SW-Cs onto HW resources maintaining operational delin-
eation of SC and non-SC applications,

. Transferability of functions, i.e., optimal interplay across functions in-
tegration and quantification of multiple design criteria and their opti-
mization and trade-off analysis, and

. Reducing the development, production and manufacturing costs and
shorten the time-to- and time-in-market.

Therefore there is a need for a comprehensive and composite (FT and
RT) integration approach to cope with these challenges. The solution is
the system level SW-HW Co-design/Integration where dependability and RT
are the driving factors. Co-design addresses the concurrent design of SW
and HW and their mutual relationship during the design process. A unified
design methodology supporting design steps of system specification, HW
and SW partitioning, integration, validation, prototyping is the overall goal
of the co-design. Performing co-design at system level allows to efficiently
explore large design space and more design possibilities at early design stages.
Consequently, in this thesis we develop methodologies and techniques for such
system level co-design keeping the main focus on design for dependability and
its optimization.

1.2 Dependability by Design and Optimiza-

tion

Design of embedded systems with implications on dependability has to en-
sure that each application produces correct output and preserves the safety
of the operations in the presence of faults so that any potential catastrophic
consequences can be avoided. The term dependability of a computing system
is defined as the ability to deliver services that can justifiably be trusted [3].
To facilitate the conceptual understanding of dependability related terms
used in this thesis, we first explain faults, errors and failures. We further
describe their effects on system followed by a discussion on fault and er-
ror containment. Next, we explain how dependability can be achieved and
enhanced.

Faults are the causes of failures in the system by being activated (becom-
ing errors) and then propagating to the output of the system and there caus-
ing a failure. Figure 1.3 illustrates how a fault propagating to a error/failure
of a source module (module A) can be the input (fault) of another module

1.2. DEPENDABILITY BY DESIGN AND OPTIMIZATION 11

(target module B) and so on [29]. Further more on these terms and notions
can be found in [3; 28].

Fault Error Failure
Activation Propagation PropagationPropagation

FaultFailure

Module A Module B Module C

Figure 1.3: The fault, error and failure propagation

Faults, Errors and Failures

Faults, errors and failures are the reasons for a system to cease to perform
its correct operations, i.e., they are the threats to dependability. The prob-
lem related to a fault is occurred at physical level, for an error it occurs on
computational level and for a failure the problem occurs on a system level.
During the operation of computing systems, events such as noise, bugs, bro-
ken connectors or wires may occur which can threaten the system ability
to deliver the correct services are defined as faults. Different types of faults
can affect the system which are development faults that occur during the
development, physical faults which affect HW components and interaction
faults that are due to the environmental disturbances or due to other exter-
nal factors. A fault in itself may not threaten the proper functioning of the
system but it has to be activated. When a fault is activated, an error is said
to exist in that system. During the computation of a system if a faulty value
is used then an error is said to propagate, i.e., there is error propagation.
Due to the propagating error to the output of a system, the behavior of the
system is deviated from what is prescribed by the specification, i.e., a failure
is said to happen. Hence faults are reasons for errors and errors are reasons
for failures. As shown in Figure 1.3, an error and a failure may themselves
cause a fault/error/failure in another module lead the thinking of prohibition
of propagation or containment of them within the same module.

Fault and Error Containment

If a fault/error is present in a module, it is possible for this fault/error to
propagate to other modules and can cause multiple failures. The failure of
a module due to the failure of another module is called a cascading failure
which may risk generating the total system failure. In ultra-dependable sys-
tems [30] even a very small correlation of failures of the replicated units can
have a significant impact on the overall dependability [31]. Fault and error
containment is the process of isolating a fault and preventing propagation

12 CHAPTER 1. INTRODUCTION

of the effect of that fault, i.e., preventing error propagation throughout the
system. The purpose is to limit the spread of the effect of faults, i.e., error
from one module to another module of the same system or a different system.
In this thesis we use the term influence in regard to the fault and error con-
tainment which is the inverse of these terms and defined as the probability
of error propagation between modules.

Achieving Dependability

A dependable embedded system should be able to handle faults in individual
SW and HW components, faults introduced by the designer during develop-
ment, power failures or any other kinds of external perturbations or unex-
pected consequences and should still satisfy the specification. For designing
such systems, there are several methods and techniques that can provide de-
pendability, namely fault tolerance, fault prevention, fault removal and fault
forecasting.

Fault tolerance (FT) technique aims to avoid service failures or to assure
system correct functionality in presence of faults, i.e., to tolerate the effects of
faults hence the name fault tolerance. FT is mainly achieved using some form
of redundancy in spatial or in time domain. The redundancy allows either to
mask or to detect a fault, with the location, containment and recovery. Fault
prevention aims to prevent the occurrences or introduction of faults. The
system is designed in such a way that fault does not occur which is termed
as the fault prevention or avoidance. It is achieved by careful validation,
efficient test and quality control techniques during specification, integration,
implementation and fabrication stages of the design process. For example, a
rigorous design review may eliminate many of the specification faults. Fault
removal technique aims to reduce the number and severity of faults present
in a system. It is usually performed during the development phase, e.g.,
by verification, diagnosis and correction as well as during the operational
life of the system, e.g., by corrective and preventive maintenance. Fault
forecasting technique aims to estimate the number of faults present in the
system, possible future occurrences of faults, and the likely consequences
of faults. It is performed by qualitative and quantitative evaluation of the
system behavior with respect to the fault occurrences or activation.

We consider FT mechanism to achieve a certain level of dependability.
While providing FT, other properties such as RT, resource consumption are
satisfied as well. Embedded system designers particularly in the automo-
tive sectors are emphasizing now on a strategic shift from simply achiev-
ing feasibility, to achieving optimality. A key aspect of this thesis is to en-
hance/optimize dependability through providing the fault/error containment

1.3. PROBLEM STATEMENT AND THESIS RESEARCH QUESTIONS13

mechanisms such that the errors are not propagated but contained within a
module, i.e., by reducing the influence. Overall, we want to assure that a sys-
tem will perform as expected, i.e., a dependable embedded system is achieved
by design.

1.3 Problem Statement and Thesis Research

Questions

The constant growth of embedded systems design complexity due to inte-
gration of more and more critical, new and innovative functionalities into
such systems, invariably leads to a heterogeneous environment consisting of
applications of mixed criticality, each with associated dependability and RT
requirements. Each application introduces design constraints such as SW
complexity, cost, space, weight, resources, power and multiple other realiza-
tion constraints making the overall system composition a complex resource
allocation and optimization task. Thus efficient system design strategies are
needed to integrate these diverse applications across limited HW resources
while considering the interplay of FT and RT objectives including many oth-
ers. The system level co-design and optimization is the solution for designing
such integrated embedded architecture.

Traditional design techniques such as federated approach [32] are increas-
ingly becoming limited for developing such systems. Extra-functional prop-
erties such as timeliness, FT and safety are introduced often late in the de-
velopment process when the design is difficult and costly to change/upgrade.
For example, FT is treated as an add-on requirement in the design process.
A typical (and costly) approach being replicating the implementation, i.e., a
so called federated approach. Investigations show that this approach fails to
produce cost-effective dependable systems [12; 26; 33]. On the other hand
embedded products have become increasingly complex and must be devel-
oped quickly that current design methodologies are no longer efficient [40].
Therefore integrated approaches are often advocated and recently been at-
tracted by automotive and avionic industries where integration/mapping of
different criticality applications onto a common distributed computing archi-
tecture is carried out. The mapping needs to satisfy a set of functional and
extra-functional constraints and needs to perform in an efficient and opti-
mized way. Furthermore the design complexity can be reduced significantly
if the design and optimization process is carried out at system level [26; 41].

14 CHAPTER 1. INTRODUCTION

Mapping of mixed criticality and responsiveness2 applications onto dis-
tributed shared resources is the most important and crucial step for system
level design concept. A mapping is defined as: (I) assignment of jobs onto
suitable HW nodes such that platform resource constraints and dependability
requirements are met (resource allocation) and (II) ordering job executions
in time (scheduling). In general there are KQ ways of allocating Q jobs onto
K nodes. Finding a feasible solution out of KQ ways and meeting all the con-
straints for this particular problem is often NP hard [34] to solve in a tractable
manner where a solution can be found in polynomial time [35]. Thus in gen-
eral it requires development of heuristic techniques to solve those problems.
On the other hand, existing approaches, e.g., [20; 36; 37; 38] usually do not
address (I) and (II) together. Mostly scheduling is performed assuming a
predetermined manual allocation, e.g., [20; 36]. This may not be possible for
a fast growing embedded system where new functionalities and complexities
(due to large number of design requirements and constraints) are increasing
day-by-day. Thus intuitive mapping decisions are inherently limited beyond
a given complexity. Consequently, we have developed a heuristics based sys-
tematic resource allocation approach for the consolidated mapping of SC and
non-SC applications. Dependability/FT and RT requirements are the prime
drivers for the proposed mapping and they are taken into consideration in the
first step (I) of the mapping, i.e, extra-functionalities are considered early in
the design process.

The design process further faces new challenges under various resource
constraints and needs careful attention such that FT and RT requirements
are not compromised but achieve to a certain level. For instance a commonly
used value for dependability is 1 failure in 109 hours (1FIT), i.e., developing
the system with ultrahigh reliability requirements [30]. Examples of resource
constraints include limited physical resources, sharing the same distributed
computing architecture and the pressure from automotive industry to use a
less number of nodes. This phenomena entails the situation of considering
optimization in the design process in order to develop as good solution as
possible. The design optimization involves simultaneous consideration of
several incompatible and often conflicting objectives. The complexity of the
design endeavor becomes apparent when considering the huge design space
of possible solutions on one hand, and many competing design objectives on
the other [39]. Overall, better design methodologies are needed to handle
such complex optimization problem. In order to tackle this, we propose a
generic optimization framework considering different design variables from

2Responsiveness is a RT property where application has to respond within a certain
time.

1.3. PROBLEM STATEMENT AND THESIS RESEARCH QUESTIONS15

Dependability/FT, RT, power and resource consumption perspectives. A
single variable refers to optimization of a single objective3. The approach
is called as Multi Variable Optimization (MVO), which takes into account
the satisfaction of various constraints as well as the optimization of multiple
competing variables that evaluate the optimality of a solution. The key
challenge in optimization relies on modeling the estimation and quantification
of the considered design variables.

Based on these premises we formulate the design problem with various
thesis research questions. These are elaborated over different thesis chapters.

Thesis Research Questions

We pose the following research questions and briefly explain on each. The
details are developed over the thesis writeup. We also mark the references of
different thesis chapters and sections relating with the research contributions
of the thesis.

Research Question 1 [RQ1]: Why is a system level SW-HW Co-
Design/Integration needed? Why do we need to shift from a federated to an
integrated approach? How is the dependability driven co-design performed?

Co-design addresses cooperative and interdisciplinary design of both HW
and SW building a mutual relationship between both types of components as
well as allows better trade-offs between them. The overall objective of doing
co-design in this thesis is to develop a unified design methodology supporting
various design steps of system specification, SW-HW mapping, optimization,
analysis, evaluation and prototyping. If the design process is focused at the
low level then a very limited set of trade-offs, optimizations and design re-
finements can be done since most of the crucial function and architecture
decisions would have already been made. Thus the importance of doing co-
design and doing at system level lies on several benefits such as managing the
highest level of design complexity, performing the design not depending on
the target architecture, performing proper optimization, shorten the time-
to-market, reducing design efforts and reducing costs of designed products.
In order to develop the enabling technology which (a) reduces SW and HW
development, production and maintenance cost, (b) increases the dependabil-
ity of embedded applications, and (c) performs system optimization, recently
automotive and control industries have given attention for designing an in-
tegrated architecture versus the existing federated one.

A comprehensive dependability driven framework for system level co-
design presented in Chapter 3 addresses RQ1.

3In this thesis objective and variable are used synonymously.

16 CHAPTER 1. INTRODUCTION

Research Question 2 [RQ2]: What are the design constraints? How
are they satisfied? How they can be handled efficiently? What are the design
criteria?

Constraints define the conditions that limit the possible designs from a
dependability, RT, power or resource perspective. They are satisfied during
the mapping process specifically during the allocation of jobs onto available
HW resources. A list of functional and extra-functional constraints are given
in Section 2.3 of Chapter 2. The constraints are satisfied in a prioritized
manner. The constraints handling and satisfaction techniques are addressed
in Chapter 3 and 4. Since we consider the design of dependable RT embedded
systems, this thesis focuses on the criteria of dependability, RT, resource
utilization and power including the satisfaction of constraints. Various design
criteria are detailed in Chapter 3.

Research Question 3 [RQ3]: How is the SW-HW mapping performed?
How do we create a feasible mapping? Why is composite FT+RT the main
focus? How is FT+RT achieved, i.e., how a certain level of FT and RT be
reached? How can we prohibit the influence of non-SC on SC applications?

A heuristic based systematic mapping process is developed for allocating
SW-Cs onto HW nodes such that dependability and RT requirements are not
compromised. For creating a feasible mapping, a set of constraints need to
be satisfied as mentioned in the previous research question [RQ2]. Our target
applications consider SC systems and since dependability is a primary design
objective for such systems, the developed system level co-design optimization
framework presented in Chapter 3 puts emphasis on FT through replica-
tion of highly critical application jobs and satisfies RT properties through
schedulability analysis to provide the correctness of the function execution
in time. The design strategies such as achieving dependability, reducing in-
fluence, providing schedulability and the SW-HW mapping process itself are
described in Chapter 4. The influence reduction mechanisms (presented in
Section 4.1.2 and 5.2.1) aim to prohibit the error propagation from non-SC to
SC applications and then the system level partitioning mechanisms presented
in Chapter 2.3 restrict the erroneous flow of information.

Research Question 4 [RQ4]: What is the optimization of an integrated
design? How is the multi variable optimization (MVO) carried out? How is
the global search space guided? How are the variables of dependable embedded
real-time systems estimated and quantified? How do we optimize different
variables?

Optimization of a design process is defined as the technique to find as good
solution as possible. The process usually employs an iterative improvement

1.4. THESIS CONTRIBUTIONS 17

algorithm. The proposed MVO approach presented in Chapter 5 simulta-
neously quantifies and optimizes a set of competing design variables while
maintaining the feasibility of the design. During the optimization we em-
ploy a transformation operator Γ in order to explore the co-design space. By
employing the heuristics and constraints satisfaction techniques, the search
process is initially guided to create a feasible solution which is then guide
the optimization in a global design space. The MVO approach enhances
dependability through quantifying and confining the influence, i.e., by re-
ducing the error propagation probability between modules. A formulation of
the optimization process and the selection, quantification and optimization
of multiple variables for designing an integrated embedded architecture for
FT-RT systems are addressed in Chapter 5. The process is then applied to
an existing metaheuristic based optimization algorithm. The chapter further
elaborates on [RQ4].

Research Question 5 [RQ5]: How can we evaluate the performance
and effectiveness of a co-design methodology? How do we know that the
design is valid and optimal per se?

We provide an empirical evaluation of the overall system design approach
through performing extensive experiments. First, the initial feasible map-
ping generated by the heuristic approach is validated using an independent
tool [42]. We compare the heuristics based approach with existing base line
approaches. The experimental results show the effectiveness, performance
and robustness of the mapping heuristic. We discuss more on this in Chap-
ter 6. The experimental evaluation of the MVO approach shows the conver-
gency to a global minima (a near-optimal solution would suffice) which gives
a proof of optimality. Results show significant improvements (quantitative
gain) of the considered design variables over the contemporary analytical
initial feasibility solutions. The validation and experimental results are pre-
sented in Chapter 6 which elaborates [RQ5].

Research Question 6 [RQ6]: Which techniques can reduce the design
effort and shorten the time-to-market?

We believe that designing embedded systems at system level and using the
developed prototype in Chapter 7 will significantly reduce the design efforts
and time.

1.4 Thesis Contributions

Overall in this thesis, we make the following contributions to the embedded
system design and optimization research community.

18 CHAPTER 1. INTRODUCTION

Design Methodology: We develop a novel generic dependability driven
co-design methodology which meticulously guides the system level design and
optimization of integrated FT-RT embedded systems. [Chapter 3]

Rigorous Design Strategies: Rigorous design criteria such as classifi-
cation of requirements and constraints, robust partitioning between mixed-
criticality applications, SW reusability, FT, fault/error containment, time-
liness, resources and power consumption are comprehensively addressed in
our approach. The extra-functional requirements like dependability/FT, RT
are taken into account at early design phase. Moreover we present potential
design criteria of dependable embedded systems including essential co-design
issues for performing the mapping and optimization. [Chapter 2, Chapter 3]

Consolidated Mapping: Based on heuristics a systematic mapping of
SC and non-SC applications onto a common distributed computing plat-
form is carried out such that their operational delineation is maintained over
the integration. The design strategies stated above are the main drivers
behind the mapping. The constraints satisfaction technique such as con-
straints prioritization, consistency enforcing is a viable strategy for creating
the feasible mapping. This way the developed mapping algorithm generates
an initial feasible solution and guides the design optimization in an efficient
way. [Chapter 4]

Achieving and Enhancing Dependability: Dependability/FT is en-
sured through replication of high criticality application jobs. Jobs are repli-
cated according to their degree of criticality and are disseminated over dis-
tinct nodes. We then enhance dependability by providing techniques to con-
strain the propagation of errors hence fault/error are not propagated but
contained within a single node. While maintaining and improving the de-
pendability we present a schedulability analysis for guaranteeing the timeli-
ness/responsiveness properties. [Chapter 4, Chapter 5]

Quantification and Optimization: We develop an MVO approach
which provides the quantification and optimization of different competing
and conflicting design variables. The variables include influences, scheduling
length, and bandwidth utilization which enable us to solve the MVO problem.
The estimation and modeling of each of the design optimization variables is
detailed in the thesis. We employ an existing optimization algorithm within
the approach that enables a quantitative evaluation. [Chapter 5]

We extend the approach by quantifying and measuring the reliability and
system level power consumption as optimization variables while considering
a heterogeneous architecture comprises nodes of different speeds and failure
rates. Overall the MVO approach develops a comprehensive and unified

1.4. THESIS CONTRIBUTIONS 19

framework for FT and RT driven integration. [Chapter 8]

Performance Evaluation: In order to evaluate and validate the ap-
proach, we perform extensive experiments which show the effectiveness (qual-
ity of the solution), performance (reducing the search space and finding a
quick feasible solution) and robustness (consistent to perform the same map-
ping over many runs) of our design process. In order to proof the schedula-
bility a validation of the allocation process is performed as well. Throughout
different sections of the thesis we illustrate our ideas and concepts using differ-
ent examples of automotive applications. An empirical evaluation including
convergence and effectiveness of the MVO approach is provided. For a repre-
sentative target study, our evaluation shows significant design improvements
for the considered variables. [Chapter 6]

Prototyping: We have devised a prototype of system level co-design
which includes a supporting tool set and technologies. For the prototyping, a
transformation based design approach has been developed adhering to model
driven development and platform based design principles. We believe that
using our methodology and prototype the design time can be significantly
reduced. [Chapter 7]

Papers Published During this Work

The following list of papers were published in scientific conferences and jour-
nals during the course of this thesis work.

• Shariful Islam, Neeraj Suri, András Balogh, György Csertán & András
Pataricza, A Transformation Based Design for Integrated Dependable
Real-Time Embedded Systems, Submitted to the Journal of Design Au-
tomation for Embedded Systems (DAES) (In review), 2008.

• Shariful Islam & Neeraj Suri, A Multi Variable Optimization Ap-
proach for the Design of Integrated Dependable Real-Time Embedded
Systems, In the IFIP International Conference on Embedded and Ubiq-
uitous Computing (EUC), 2007.

• Shariful Islam, Robert Lindström & Neeraj Suri, Dependability Driven
Integration of Mixed Criticality SW Components, In the 9th IEEE In-
ternational Symposium on Object and Component-oriented Real-time
distributed Computing (ISORC), 2006.

• Shariful Islam, György Csertán, András Balogh, Wolfgang Herzner,
Thierry Le Sergent, András Pataricza & Neeraj Suri, A SW-HW Inte-

20 CHAPTER 1. INTRODUCTION

gration Process for the Generation of Platform Specific Models, Micro-
electronics (ME), 2006.

• Neeraj Suri, Arshad Jhumka, Martin Hiller, András Pataricza and
Shariful Islam, A Software Integration Approach for Designing and
Assessing Dependable Embedded Systems, Submitted to the Journal of
Systems and Software (In review), 2008.

• Shariful Islam & Hannes Omasreiter, Systematic Use Case Interviews
for Specification of Automotive Systems, In the Proceedings of the 12th
Asia-Pacific Software Engineering Conference (APSEC), 2005.

• Wolfgang Herzner, Martin Schlager, Thierry Le Sergent, Bernhard Hu-
ber, Shariful Islam, Neeraj Suri & András Balogh, From Model-Based
Design to Deployment of Integrated, Embedded, Real-Time Systems:
The DECOS Tool-Chain, Microelectronics (ME), 2006.

• Wolfgang Herzner, Rupert Schlick, Martin Schlager, Bernhard Leiner,
Bernhard Huber, András Balogh, György Csertán, Alain LeGuennec,
Thierry LeSergent, Neeraj Suri & Shariful Islam, Model-Based Devel-
opment of Distributed Embedded Real-Time Systems with the DECOS
Tool-Chain, In Proceedings of Society for Automotive Engineers (SAE)
Aerotech, 2007.

1.5 Thesis Organization

We organize the thesis as follows.

Chapter 2 depicts the thesis background, preliminaries and system ar-
chitecture and models. We also discuss the related work. The system model
mainly consists of HW model, system level partitioning, communication sys-
tems, SW model, fault model and the constraints model which are elaborated
in this chapter.

Chapter 3 presents our dependability driven system level co-design and
optimization methodology. We introduce different criteria for designing de-
pendable RT embedded systems. We present the mathematical formulation
of the problem following the design space exploration and the constraints
handling techniques. The framework for the design of an integrated embed-
ded architecture comprises two key parts – (a) the SW-HW mapping and (b)
the quantification and optimization.

1.5. THESIS ORGANIZATION 21

Chapter 4 describes the dependability and RT driven SW-HW mapping
following the prime drivers such as FT schemes, reduction of influence as well
as the communication bandwidth and schedulability analysis. We present
jobs and nodes ordering heuristics and supporting data structure for doing
the consolidate mapping of both SC and non-SC applications. The mapping
process is illustrated through a real automotive example.

Chapter 5 presents the MVO framework. First we describe the essen-
tial issues relevance to the optimization such as general optimization ideas,
properties and selection criteria of variables. As a key contribution the quan-
tification and estimation of the design variables from dependability, RT and
resource perspectives is then provided. Finally, based on an existing opti-
mization algorithm, we present the MVO approach.

Chapter 6 provides the experimental set up and based on this set up we
evaluate the approach in two folds. First the performance and effectiveness of
the generated feasible mapping is evaluated. Second we perform the empir-
ical evaluation of the MVO showing the convergency and quantitative gain.
Moreover we provide validation and comparative study of the approach.

Chapter 7 develops a prototype of the system level co-design, which
includes transformation based design approach, architecture of the prototype,
scheduling tool support and deployment process of a system. We present an
overview of the model driven development and platform based design relevant
to the transformation based approach.

Chapter 8 extends and adapt the approach by adding the measure of
reliability and system level power optimization while considering an archi-
tecture/platform comprises nodes of different speeds and failure rates. We
present the applicability of the SW-HW mapping process on such an archi-
tecture.

Chapter 9 concludes the thesis by providing the main ideas and contribu-
tions of the developed dependability driven co-design methodology. Finally,
we give some future research directions related to the thesis work.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Background and System Model

The needed background information, the base architecture and relevant mod-
els are described for developing the design concept. This chapter is mainly
divided into three parts: preliminaries, related works and system architec-
ture and models. We start by describing target application domains and
their requirements where we target to apply our developed design methods.
Since the design is relevant to the problem of jobs and nodes assignment, we
investigate some existing resource allocation problems including metaheuris-
tics techniques for optimization. Relevant research within the area of design
and optimization of dependable RT embedded systems has been exploited.
A notable focus has been given on the related work of allocation, schedul-
ing and multi objective optimization since they are the key aspects of our
design process. Finally, we present the system architecture which comprises
of various discrete models. The system architecture and models furnish the
fundamental issues of the co-design methodology presented in this thesis.
The system model comprises the HW architecture model, communication
systems, system level partitioning, the SW model, constraints model and the
fault model.

2.1 Preliminaries

For a better understanding of the applicability of our developed methods
and techniques, we further elaborate on the target application domains. The
target system requirements extracted from those applications are classified
into functional, performance and dependability requirements which are then
described. A preview of existing resource allocation problems and metaheuris-
tics is depicted which are the premises of the heuristics based mapping and
optimization.

23

24 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

2.1.1 Target Application Domain

As mentioned earlier, we target applications from a wide variety of domains
like automotive, avionics and control. We categorize a system domain con-
sisting of SC and non-SC applications. If we can classify any domain under
these classes, they can be designed according to our developed method and
process. The SC applications are the ones which have to provide services
despite of occurrence of faults. This category of applications must be highly
dependable and must have to provide services within a certain time period
otherwise any malfunctioning or delay produces catastrophic consequences
on the system. The non-SC applications can be categorized as the soft RT
systems where presence of any perturbations or missing a deadline though
degrade the system performance do not lead any catastrophic consequences.
The reason for considering both types of applications is that both are present
mostly in large heterogeneous FT-RT embedded systems. These systems are
classified as hard RT and soft RT systems [43], which usually corresponds to
the SC and non-SC systems respectively.

Therefore the target applications of the developed co-design methodology
are highly safety- and mission-critical and must be able to satisfy stringent
dependable and hard RT constraints. Furthermore, non-SC applications are
targeted as well. Though our developed method can be applied to various
applications domain, for illustration and experiments we use applications
mainly from the automotive arena in order to provide the proof of applica-
bility of the concept on a particular domain.

2.1.2 System Requirements

A typical FT-RT embedded system has to comply to a set of frequently
contradicting requirements formulating both envisaged functional and extra-
functional (performance and dependability) characteristics. Consequently, a
typical set of requirements for dependable embedded system should cover the
following:

Functional Requirements

The functional requirements simply describe the operational profiles or the
functional specification of applications as well as the operation of applica-
tion jobs. Each function takes a set of inputs and produces a set of outputs
after performing a successful computation/operation. Therefore these re-
quirements specify the expected services, functionality and characteristics of
the system. These types of requirements entail the phenomena that the out-

2.1. PRELIMINARIES 25

put of the function/application should comply to the specification. At job
functionality level we consider this requirement as a black box with input
and output ports to receive and send the necessary data and services among
them.

Performance Requirements

The performance requirements describe all timeliness requirements and prop-
erties of RT systems. The system particularly the hard RT systems [43; 44]
must have to respect all these requirements in order to deliver completely
predictable and deterministic services in addition to the compliance to the
functional specification. For instance, applications must finish their execu-
tion and provide services within a certain temporal limit, i.e., within its
deadline. The deadline of the application or job has to be set under this
requirement. These characteristics must be shown even in the presence of
undesirable circumstances or any external perturbations. The performance
requirements impose the condition that the output of a job should be correct
in time domain. The output of a job depends on its execution/computation
time and the dependency with other jobs which controls jobs starting time.
This dependency is known as the precedence relation between jobs. A suc-
cessor job can only start computation once it gets data from the predecessor
job. The computation time of a job depends on its functional complexity
and the speed of the processor where it is executed. This does not depend on
how the jobs are mapped onto nodes. The computation time may vary at run
time due to many reasons. For example, it may vary due to different condi-
tional branches which depends on different inputs. However in order provide
a deterministic behavior for the SC hard RT systems, this time should be
fixed a priori with their worst case execution time (WCET) – the maximum
time a job may take to perform its execution. The system designer either
assumes these properties relying on the experience on complexity of system
functionalities and the type of processors used to host the jobs or can obtain
by WCET analysis [45; 46]. A constraint imposed on timing behavior of a
job or an application is called as timing constraint.

Dependability Requirements

The dependability requirements consist in general any one or more of the
aspects of dependability properties, which are reliability, availability, safety,
security, integrity and maintainability [3]. The dependability of an overall
system should be much higher than the dependability of its individual SW,
HW components and other resources. In case of replication based safety, the

26 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

top priority requirements relates the number (or cumulated reliability) of
replicas to the designated reliability of the system. For example, if depend-
ability of an individual component is 99% (in terms of reliability measure)
then the dependability of a system consisting 4 components is 96.06% and
for 50 components it reduces to 60.50%. If a system composed of 250 compo-
nents even with higher dependability of each component equal to 99.9%, the
overall system dependability reduces tremendously to 77.87% provided that
there have been no techniques or redundancy applied to improve the system
dependability. The dependability requirements imply that the output result
of a function of both value and time domain must be correct despite of any
internal and external perturbations. Hence, vigorous techniques need to be
applied to achieve a desired level (set by the users) of overall system depend-
ability. However every function in a system must not need to achieve such a
level. The more complex and critical the function is the higher the level of
dependability requirements.

All the functionalities or jobs are not equally important in a system. The
importance or the criticality of a job is a positive integer number depends
on how critical the job is. For example, in cars the brake force control job
or the distronic function which measures the distance of an in-front car is
more important than the window control job. In a fly-by-wire system the job
that controls the flight of the flight control and management system is more
important than the navigation system which determine the current relative
position of the aircraft. The cabin air flow and temperature control jobs are
more important than the functionalities which run entertainment systems
onboard and so on. This way the system designer can set the degree of
importance or the criticality degree of jobs or applications. Moreover the
design decision has to take into account any erroneous influences from the
lower critical jobs to the higher critical ones. IEC 61508 [47] introduces
a safety integrity level (SIL) for functions safety, e.g., there is a standard
for automotive and control applications. Every safety function is associated

SIL Criticality System failure Probability of dangerous
failure per hour

4 Safety critical Catastrophic failure 10−8 ←→ 10−7

3 Safety relevant Sever failure 10−7 ←→ 10−6

2 Critical Major failure 10−6 ←→ 10−5

1 non-Critical Minor effect 10−5 ←→ 10−4

0 no dependability requirements

Table 2.1: Safety integrity levels

2.1. PRELIMINARIES 27

with this level shown in Table 2.1 according to its criticality which is then
taken into consideration in the design process. The degree of criticality of
an application or a job depends on its SIL level, the higher the level is the
higher the degree of criticality. The application jobs are replicated according
to the degree of criticality in order to provide FT.

2.1.3 Preview of Resource Allocation Problem

Since we formulate our allocation problem as a constraints satisfaction prob-
lem (CSP) [50], we discuss some existing resource allocation problems (as
follows) relevance to the jobs and nodes assignment problem. Each assign-
ment problem either generates a feasible solution while it satisfies the defined
constraints or generates an infeasible solution when it does not. Moreover
the solution is said to be optimized if it minimizes or maximizes one or more
particular objectives.

Multiple Knapsack Problem

The multiple knapsack problem [48] is described with a set of items of given
sizes (each item has an associated profit and weight) and knapsacks (bins)
of given capacities such that each of the knapsacks is filled with a subset of
the items without exceeding the knapsack capacity (a feasible assignment)
and maximizing the profit (optimization). The multiple knapsack problem
is a generalized case of well know single knapsack or bin pack problem and
similar to an special case of generalized assignment problem.

Generalized Assignment Problem

This type of assignment problem [48] is similar to the multiple knapsack
problem described above where the profit and size of the items can vary based
on the knapsack it is assigned onto. The generalized assignment problem is
NP hard and often described in terms of assigning tasks to agents, assigning
jobs to machines and similar types of assignment problems. The agent has
a given capacity and the task has profit and weight associated to each of
the agents. The goal of this assignment problem is to disseminate all the
tasks among the agents such that the sum of weights of all tasks assigned to
a particular agent does not exceed the capacity of that agent and the total
profit is maximized. Each task is assigned onto exactly one agent and the
assignment problem is constrained with the availability of resources.

28 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

Timetabling Problem

The university course timetabling [49] is the problem of assigning time slots
and rooms to the classes or lectures satisfying a set of rules. Rules are defined
as constraints for instance two lectures should not be allocated to the same
room at the same time or two lectures should not be assigned to one professor
at the same time.

Job Shop Scheduling Problem

The job shop scheduling problem [50] is represented by a set of jobs and
resources (processors) where each job is associated with a set of operations
or activities. Each activity needs a certain amount of time to finish its
operation on a particular processor. The objective is to find an scheduling
policy assigning each job to one resource and specifying the operation of each
job starting and finish time onto that resource/processor such that overall
time required for all jobs is minimized.

Traveling Salesman Problem

Instead of an allocation and constraint satisfaction problem like those de-
scribed in above, this problem rather directly deals with an optimization
problem. The traveling salesman problem [51] is given with a set of cities
and a traveling cost associated between any two cities. The goal of the sales-
man is to visit all the cities once and get back return to initial starting point
by minimizing the total cost.

All these problems discussed above are NP hard and generally difficult
to solve in a tractable way. Therefore these kinds of problems usually need
heuristics and metaheuristics based approaches and their guidance to find
a feasible and optimized solution. Often these problems are formulated as
constraints satisfaction and multiple objective or combinatorial optimization
problems. These problems are relevant to the job and node assignment prob-
lem described in this thesis.

2.1.4 Metaheuristics in Optimization

Metaheuristic or hyperheuristic is an improvement heuristic method for solv-
ing a class of constraints satisfaction and combinatorial optimization prob-
lems. Thereby, generally metaheuristics are applied to complex problems
for which there is no satisfactory problem specific algorithms or heuris-
tics, or practically sound to implement such a method. Exact algorithms
which search for optimal solution are computationally very expensive while

2.1. PRELIMINARIES 29

metaheuristics algorithms produce near-optimal solution within a reasonable
time [52]. According to [53], the principle of optimality states that – An opti-
mal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision. The metaheuristics are somehow
works obeying the same principle. Metaheuristics guide the search process
and efficiently explore the design spaces in order to find a near-optimal solu-
tion or a set of solutions. Investigations show that these types of optimization
algorithms are suitable to find design solutions for RT embedded applications
since usually they are not problem specific. In the next chapter we formu-
late our design problem mathematically as constraints satisfaction and multi
objective optimization problems. Though there are various rigorous meta-
heuristics techniques exist, in the following we describe a very commonly
used and most successful ones presented in the literature [52; 51; 55; 56].

Simulated Annealing (SA)

Simulated annealing is a metaheuristic based algorithm which applies com-
putational stochastic strategy to find a near optimal solution. The goal is
to find minimal configuration of the states of a system, e.g., to select the
lowest point in an energy landscape by minimizing an objective or energy
function. The method was derived from the observations of how slowly the
cooled molten metal can result in a regular crystalline structure, i.e., a so
called annealing process. It has been first successfully applied to a combi-
natorial optimization problem by [51]. The algorithm starts with an initial
state/solution and progressively explores all the states. The initial solution is
replaced by the candidate (a different state) solution if the candidate solution
has lower energy value than the initial. It accepts or rejects the candidate
solution with higher or equal energy value depending on the value of a prob-
ability function, termed as acceptance probability function ap. The value of
this function is controlled by a so called temperature parameter and thereby
implement a cooling schedule. Initially this temperature is set to a high value
to accept some solutions with higher energy values so that it explores large
search space. Otherwise, if the temperature is set to a lower value the solu-
tion may get stuck into a local optima and it may not converge to a global
optimized solution. The probability of accepting the solution of higher en-
ergy value is decreased with the decreasing of temperature value, i.e., with
the progress of search. Eventually the system state reaches to a lower en-
ergy value point. The cooling schedule controls such phenomena. During the
search it always stores the value with the minimum energy. The algorithm
has been proven, e.g., by [54] to converge asymptotically to a global minima.

30 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

Tabu Search

Tabu search is a metaheuristic approach which employs some specific strate-
gies (short and long term memory, intensification and diversification) to
guide the search in a systematic way in order to find an optimized solu-
tion. The algorithm implements these strategies in order to be able to avoid
the local minima and to efficiently explore the design space. The tabu search
ideas were first implemented by [55]. The short term memory implements a
short list of tabu solutions that have already been visited and prohibit the
further search to select solution from that list. Long term memory keeps the
history of the over all search process in order to be able to collect the informa-
tion of good visited solution. It is a kind of learning process which generates
other two strategies of intensification and diversification. The intensification
allows to use the accumulated search experiences and diversification refers to
exploration of new search spaces. The latter enables to explore the unvisited
space and generates the new solution which differ from the old ones. The
former exploits the good visited solution to create the neighbors. The proof
of convergency of tabu search algorithms is difficult.

Evolutionary Algorithms

Evolutionary algorithms are the population based search methods inspired
by the principal of natural evolution of survival of the fittest. They differ
from other metaheuristics in the sense that in each iteration they perform a
search from a set of solutions (population) rather than a single solution. A
number of operations is applied to the individual solutions of the current pop-
ulation to generate the individuals of the population of the next generation.
Crossover and mutation techniques are used as operators. These operators
are also called genetic operator. Crossover refers to produce new individu-
als by recombining two or three individuals. Mutation refers to the small
change of single solution and add diversity to the population. The selection
of individuals are based on their fitness (usually implemented by objective
functions). The higher the fitness the higher the probability of individual
that it gets into next generation/iteration population.

Genetic algorithm [56] is a type of evolutionary algorithm which focuses on
optimizing general combinatorial optimization problems. It follows the same
process as in the evolutionary algorithms and has the capability to evolve
the population and then converge to a higher quality solution. Though in
general the evolutionary algorithms are often applied for global optimization,
the convergence to a global minima/maxima is only guaranteed in a weak
probabilistic sense.

2.2. RELATED RESEARCH 31

2.2 Related Research

This section describes existing research in the area of designing dependable
RT embedded systems which are relevant to this thesis work. We particularly
focus on system design and co-design methods, the mapping problem (allo-
cation and scheduling) and on the design optimization (single and multiple
objectives). These are key problems which need to be solved for the design
of FT-RT embedded systems.

2.2.1 System Design and Co-Design

First, we discuss some existing works on SW-HW co-design which focus on
system level design. An overview of recent past co-design work can be found
in [57]. The author has mentioned that co-design is an ideal way to explore
the design space and to make efficient trade-offs between SW and HW. Pre-
vious co-design approaches have relied exclusively on the mapping step to
achieve optimality where the HW and SW design tasks are optimized sepa-
rately (proper co-design is not performed) using different techniques and then
integrated to the target architecture [8]. The co-design community in gen-
eral, referred to SW-HW trade-off evaluation and implementation at a very
late stage of the system development process. The current techniques are not
sufficient to meet future system design demands. Moreover, many of existing
techniques and tools focus at lower level design (in the absence of abstraction)
and use a single processor architecture for smaller embedded systems such
as COSYnthesis for eMbedded micro Architecture (COSYMA) [9] – chapter
8, LYngby CO-Synthesis (LYCOS) [58]. COSYMA is later upgraded with
the optimization of multiple objectives based on simulated annealing [59].
A unified co-design tool POLIS [60] supports the use of a multiprocessors
architecture and guides the user from the design of specification to the im-
plementation. Mostly, the existing work still follow the fix-it-later philosophy,
i.e., faults or errors occurred in the design are detected and fixed at the late
design stage. A very limited set of trade-offs, optimization and design re-
finements can be done at the low level since most of the crucial function
and platform decisions would have already been made [7] – page 2-3. If the
design processes are carried out at such a level then when any modification
is necessary, e.g., fixing any faults, will result significant cost and time.

In the recent past, many researchers have focused on the design at a higher
level of abstraction, i.e., at system level such as [8; 26; 61; 62; 63; 64; 65; 66].
The function-architecture co-design and optimization methodology of em-
bedded systems at higher level of abstraction is addressed in [8]. The author
elaborates on the function/architecture trade-offs and optimization analysis

32 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

of heterogeneous control flow dominated systems for both data and control
flow applications at system level. A mapping and optimization analysis of
heterogeneous embedded systems for distributed applications is discussed
in [26]. A system level synthesis comprises of selection of the architecture
including general purpose and dedicated processors is presented in [61]. The
process is termed as the allocation and mapping of specification onto the se-
lected architecture in space (binding) and in time (scheduling). Author uses
evolutionary algorithms for selecting the architecture with a heuristic based
scheduler for the synthesis of data-flow dominant SW and HW systems. [62]
develops a Y-chart based system level simulation model for design space ex-
ploration and multi objective optimization for embedded multimedia system
architecture. [63] explains various aspects of system level design and stated
that the co-design of HW and SW in diverse systems may lead to produc-
tivity gains, lower costs and first-pass design success. In [64], reliability is
addressed in a system level co-design flow. Author first considers the satis-
faction of timing, cost and area constraints and then introduces reliability in
a second level of the design which may produce inefficient design with respect
to the first level criteria. Co-design techniques which particulary implement
automotive applications on a federated architecture is presented in [65; 66].
[65] mentions about increasing the number of ECUs with increasing applica-
tions and gives the future directions of using an integrated architecture for
automotive systems.

The existing design techniques for embedded systems often either do not
systematically consider the metrics such as dependability, safety and RT or
consider them individually at different design stages making the system de-
sign not dependable enough and costly. Particularly, the needed focus has
not been given on dependability and its optimization while designing such
systems. Instead, we put the main focus on the aspects of dependability.
To the best of our knowledge, this is the first work which presents a de-
pendability driven system level co-design methodology of embedded systems
while considering other properties such as RT, resource utilization and power
consumption. Analysis and trading-off between SW and HW at system level
reduce the number of iterations at different design stages as well as reduce
the time-to-market.

2.2.2 Mapping – Allocation and Scheduling

In the first phase of the design process we create a feasible mapping by al-
locating HW resources to jobs while satisfying several constraints including
separation of replicas and timing. Different techniques have already been
used for solving such resource allocation problem, e.g., constraint program-

2.2. RELATED RESEARCH 33

ming [67; 68], branch and bound [69; 70; 71], inform branch-and-bound and
forward checking [37; 68] and mixed integer programming [72]. All these ap-
proaches perform the mapping (allocation and scheduling) straightforwardly
applying the above mentioned techniques. [69] describes the replication and
the allocation of task modules (including replicas) onto processing elements
(nodes) satisfying the precedence and deadline constraints for distributed RT
systems. Replicated tasks are disseminated over different processing elements
and the probability of satisfaction of deadline is termed as the probability
of no dynamic failure. The author uses the term probability of no dynamic
failure as an objective. An static allocation of periodic task modules onto
heterogeneous processing elements (processors have different speeds) is pre-
sented in [70] for distributed RT systems. Mostly tasks are selected to assign
on the processing element of higher speed. This approach is generalized
in [71] for both tasks and messages assignment and scheduling. [69; 70; 71]
employ a branch and bound algorithm for the allocation problem in order to
efficiently explore the search spaces.

A disadvantage of these approaches is that usually they do not put addi-
tional efforts to reduce the search space a priori while solving the complexity
of the problem. Many of them are limited to handle only a few constraints
either from RT or from FT. [67] addresses the allocation and scheduling
problem satisfying multiple constraints. The author applies symmetries ex-
clusion to reduce the search space as an add-on technique in their approach.
However this is more desirable in a homogeneous architecture where the archi-
tecture comprises nodes of symmetric multiprocessing (SMP). It is required
that the nodes should be unused to employ them in the symmetry exclusion
technique. An enhancement of the Quality-of-Service (QoS) based resource
allocation model [72] is presented in [38], where a hierarchical decomposed
scheme by dealing with smaller number of resources is described enabling
QoS optimization techniques for large problems. Tasks replication is used as
a QoS dimension to provide FT. In this thesis, we decompose our approach
into several subproblems and phases in order to reduce the complexity of
solving the problem. We also provide techniques for satisfying the design
constraints such that search spaces can be reduced. We describe more on
this in Section 3.4.

The major requirements for designing embedded RT systems are to meet
RT requirements and to provide dependability (achieving FT and avoiding
error propagation). Commonly used approaches typically address RT and
FT on a discrete basis [37; 38]). AIRES (Automatic Integration of Reusable
Embedded Systems) [37; 73] describes the allocation of SW components onto
HW platform for RT and embedded applications satisfying multiple resource
constraints. Based on constraint programming (CP), [68] presents an ap-

34 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

proach for solving the constraint-driven resource assignment and scheduling
problems for system level design. They develop a Java based constraint
solver engine which satisfies a set of different types of constraints including
power and the framework is extended by additional constraints. However
dependability/FT is not considered in any of these approaches. Moreover,
when scheduling for RT systems is performed, a predetermined allocation or
a simple allocation scheme is used (e.g., [20]). If the scheduling is performed
without assuming any pre-allocation it may significantly increase the compu-
tation complexity and can make the problem intractable (cannot be solved
in polynomial time [35]). Also if the allocation and scheduling are considered
completely separately, important information (e.g., considering constraints)
used from one of these activities is missed while performing the other. On
the other hand, usually FT is applied to an existing scheduling principle such
as rate-monotonic [74] or static off-line either by using task replication [75]
or task re-execution [76; 77]. [75] addresses timeliness and dependability
properties at the task level of scheduling. Utilizing the existing slack from
the scheduling, [76] implements FT mechanism where tasks perform the re-
execution in presence of transient and intermittent faults. Similarly, a static
off-line contingency scheduling approach with recovery technique for tolerat-
ing transient faults of SC embedded systems has been provided in [77].

Existing all these approaches typically do not address all the constraints
neither use any specific constraints satisfaction techniques or use a limited
fault model where dependability is essential. We apply constraints priori-
tization [78] during the allocation phase in order to satisfy the constraints
which reduces the complexity (takes less iteration to find the solution) to
solve the problem. [79] specifically addresses dependability driven mapping
(focuses on minimizing interaction) and presents heuristics for doing the map-
ping. However the focus is on design stage SW objects to aid integration.
A survey of various SW development processes addressing dependability as
extra-functional requirement at both early and late phases of the design is
described in [80]. The paper discusses several projects where most of them
consider both functional and extra-functional requirements particularly FT
in their design process. The author mentions that taking extra-functionality
at the late stage of design make the design more complex and costly. For
example most of them used an ad-hoc based solution in order to provide
dependability where FT is added once the main functionalities of the system
have been implemented often results more resources, complex system struc-
ture, poor performance and high cost. Unlike other approaches for task/job
allocation, the focus at this stage of our work is on finding an initial schedu-
lable allocation, a so called off-line allocation of mixed critical applications
onto a distributed computing architecture. In our design process we consider

2.2. RELATED RESEARCH 35

both functional and extra-functional properties at the system level, i.e., they
are addressed and analyzed at the early phase of the system level co-design.

2.2.3 Optimization

Many research efforts have already been made on design optimization of
embedded systems. The focus did rely on RT embedded systems domain
where satisfaction of FT and/or RT constraints and optimization of a single
objective has widely been studied [75; 76; 81; 82; 83; 84; 85; 86; 87; 88].
Satisfaction of timing constraints and minimization of total completion and
communication times are addressed in [81]. [82] considers the maximization
of the probability of meeting job deadlines as an objective function while al-
location (assignment and scheduling) of periodic tasks onto distributed plat-
form consists of different processing nodes. The paper discusses about the
precedence and deadline constraints of tasks. An static optimal scheduling
for both tasks and messages can be found in [71]. The author minimizes the
maximum task lateness (difference between the task completion time and the
task deadline). Generation of a feasible non-preemptive scheduling for dis-
tributed static systems is presented in [83], where the author minimizes the
jitter for periodic tasks. The author explains the application of simulated
annealing for distributed RT scheduling and optimization instead of using
conventional search algorithms. Satisfaction of multiple constraints (timing,
FT and memory) and optimization of a single variable (bandwidth utiliza-
tion) is presented in [84]. The paper also applies simulated annealing for
finding both the feasible and optimized solution. An additive objective func-
tion is used including function for satisfying hard constraints and minimiz-
ing the bandwidth utilization. However we may often face difficulty to poise
these two factors (constraints satisfaction and meeting objectives) together
specially when setting the weight/trade-off factors in the objective function.
All these approaches either consider FT as constraint or optimize a selected
operational variable from an RT perspective. Task allocation for maximiz-
ing reliability hence enhancing dependability has been presented in [86; 87],
where failures from processor and communication links are considered to
measure the system reliability without redundancy. Author assumes proces-
sors and the communication links with different failure rates. [88] presents
a hybrid particle swarm optimization based algorithm for solving the task
allocation problem with the goal of maximizing the system reliability sub-
ject to resource constraints. The overall objective function includes both
the constraints satisfaction by adding a penalty function and a single ob-
jective function for optimizing reliability. [93] elaborates a reliability model
for tolerating one processor failure while satisfying RT constraints for peri-

36 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

odic tasks. In [85], author describes that the interplay of active replication
and re-execution can provide an optimized design from the scheduling length
point of view. The presented approach assigns FT policy to the processes
which are mapped to the processors such that transient faults are tolerated
and timing constraints are maintained. A tabu search based algorithm has
been used for optimizing the mapping of distributed FT-RT systems.

Though optimizing one variable is straightforward, optimization of mul-
tiple variables while satisfying multiple constraints is a more complex and
difficult problem to solve. Simultaneous optimization of several variables en-
tails hard trade-offs between each other and is considerably more difficult to
find a solution. Several mapping techniques do exist but few are concerned
with optimizing extra-functionalities such as dependability/FT and RT is-
sues together. Bi-criteria objectives have recently been attracted attention by
many researchers such as [91; 92; 93; 94; 95; 96; 97; 98]. Mainly, the optimiza-
tion involved two criteria, either on FT/reliability and schedulability [91; 92]
or on FT/reliability and power [94; 95; 99] or on RT/schedulability and
power [96; 97; 98] while providing FT. [91] presents an algorithm based on
greedy list scheduling heuristic which maximizes the system reliability while
minimizing the scheduling length. An active replication based FT scheme is
used to improve the reliability and the scheme is represented by the reliabil-
ity block diagram that ease the analysis of reliability. A target/requirement
value is set for both objectives and the algorithm iteratively improves the so-
lution towards the target values. The author uses a heterogeneous architec-
ture where processors are connected by point-to-point communication links.
A genetic algorithm based allocation of system resources to the applications
with the goal of minimizing the execution time and the failure probability
of applications is discussed in [92]. Like the previous paper a same type of
heterogeneous architecture is used. The idea for maximizing reliability was
on assigning the highly critical tasks/jobs on less failure prone processors,
jobs require long computation time onto a fast processor and providing more
replicas to increase the reliability.

We now discuss some related work on optimizing power while consider-
ing reliability and schedulability. [94] presents an approach to utilize the
scheduling slack for power saving while preserving the overall system relia-
bility. The author deals with a problem of allocating slack to minimize the
power consumption and to maintain the reliability. They use a dynamic volt-
age and frequency scaling (DVFS) method to reduce the processor frequency
and consequently reduce the power consumption. An energy efficient opti-
mistic TMR (triple modular redundancy) scheme is discussed in [99] where
one processor is slowed down or put in sleep state to save power provided that
if there are any faults or errors in any other two processors then the third

2.2. RELATED RESEARCH 37

one should be able to speed up the execution and can finish the execution
by the deadline of the application.

However concurrent optimization of more than two criteria is still evolv-
ing in the area of dependable embedded systems. As we mentioned very few
addresses more than two objectives at the same time. Relying on pareto
based optimal solution and weighted sum methods, [33; 89; 90; 100] focus
on optimization of multiple objectives. Multiple objectives are combined
into a single weighted function. The focus mainly was on how to optimize
several variables instead of the necessary detailed quantification of each of
the considered variables. A multi-criteria schedulability analysis based on
earliest deadline first is presented in [100]. The author presents an approxi-
mation algorithm and showed that the multi criteria problem can be solved
in polynomial time. [89] considers several variables for the optimization such
as memory utilization, CPU utilization, communication and availability of
system services. The variables are then combined as a weighted sum method
and solved by using the multi objective optimization algorithm. A multi
objective optimization using genetic algorithm is described in [33], where de-
pendability is considered as an optimization criterion together with time and
cost for solving the problem. Replication is introduced at tasks level accord-
ing to their importance to provide the system dependability. However they
allow tasks of different applications to be assigned onto processors without
providing fault containment. Moreover a generic system design framework
for mapping and optimization is not provided. The approaches do not pro-
vide detail quantification neither enhance dependability nor consider power
as an optimization criteria. The author of [101] discusses multiple objectives
such as minimizing communication, load balancing, minimizing the maxi-
mum lateness and minimizing the energy consumption. Load balancing is
defined as the proper distribution of tasks among the processors such that
each of the processor is loaded with almost equal amount of computation.
The author compares application of different existing algorithms into their
approach for example simulated annealing and constraint programming. An
approach for the design of RT embedded avionic system is presented in [90].
The author uses a value function within simulated annealing framework and
considers several non-functionalities while optimizes different multiple objec-
tives. For an automotive embedded system, [102] provides a multi objective
optimization approach for the allocation of functions onto ECUs. The author
focuses on optimizing communication load on the bus, weight, cost and power
and uses an ant colony optimization metaheuristic technique for solving the
problem. The author does not consider any dependability/FT issues.

Nevertheless, optimization of dependability has not yet been focused
enough with other multiple optimization variables. Overall, in design op-

38 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

timization of FT-RT embedded systems, there is a dearth of work that ad-
dress and optimize dependability together with criteria such as RT, resource
utilization, power. In this thesis we consider optimization of several compet-
itive variables/objectives for designing dependable embedded systems. One
of the key focus has been given on the quantification of variables specially
estimating influence from a dependability perspective. Given the upper most
priority on dependability and for simplification, we first consider optimiza-
tion (minimization) of three different variables: influence, scheduling length
and bandwidth utilization. We progressively extend the approach and add
the quantification of reliability and power consumption.

2.3 System Architecture and Models

The dependable embedded systems design and optimization framework de-
veloped in the next chapter is based on the system architecture and models
presented in this section. The system architecture and models mainly com-
prises the distributed HW architecture model, the SW model, communication
model, constraints and the fault model. The architecture model describes the
HW platform which contains several computing nodes and their resources.
The SW model describes the functional and extra-functional requirements of
application jobs and the HW platform is the physical execution environment
for those jobs. The communication model establishes the communication
system between different nodes of the platform. The communication system
is necessitated by the distributed nature of applications and communicating
jobs. The fault model depicts the types of faults and their causes whereas
constraints restrict the possible solutions. A set of functional and extra-
functional constraints have been defined which are later then satisfied during
the allocation of jobs onto nodes. As a part of the architectural model differ-
ent aspects of system partitioning, policies for creating robust partitioning
and separation of concern between SC and non-SC applications are described.
SW reusability is then briefly presented. The classification of influences at
application and at job level is also addressed in this section. Through the
rest of this section various important aspects and characteristics of different
system models are elaborated. All these models are comprehensively taken
into consideration in the design issues presented in the next chapters.

2.3.1 The Architecture Model

The system level co-design usually cannot achieve optimality by making de-
sign optimizations and exploring suitable implementation choices without ad-

2.3. SYSTEM ARCHITECTURE AND MODELS 39

equate specification and proper modeling of the target architecture. Taking
this in consideration, our architecture model constitutes a distributed shared
HW platform with a network topology allowing every HW node to communi-
cate with each other node. The Figure 2.1 shows the high-level model of the
target architecture and resources elaborating the partitioning concepts and
the application execution environment where nodes are connected through a
bus topology. A HW node is a self-contained computational element and may

OS service provider - Kernel

Partition A

SC
Device driver

management

OS services
for driver

Partition B

non-SC

OS service provider - Kernel

SC Core Non- SC Core

HW

Node

HW

Node

HW

Node
HW

Node

Option1

Option 2

OS service B

Service

interface

Service
interface

OS service A

Partition A

Device driver

management

OS services

for driver

Partition C

Device driver
management

OS services
for driver

OS service provider - Kernel

CC

Node resources

CPU RAM

ROM

Sensors Actuators

OS service A

Service

interface

Service

interface

OS service C

I/O controller

SW

HWI/O controller

I/O controller I/O controller

Network (e.g., FlexRay, TTP/C)

Figure 2.1: High-level model of the target HW architecture

contain a single or multiple processors or a processor with multiple cores (e.g.,
dual core processors as in Option 1 in Figure 2.1). The nodes are connected
to the network through communication controllers. The communication con-
troller (CC) controls the exchange of messages with other nodes. HW nodes
may contain additional resources, e.g., sensors and actuators which access the
CPU through I(input)/O(output) interfaces. The platform may also contain
dedicated HW such as digital signal processor (DSP), field programmable
gate array (FPGA), application specific integrated circuit (ASIC) to speed
up the execution of some particular functionality if necessary. It is not neces-
sarily the case that every nodes of the platform need to have these additional

40 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

resources (sensors, actuators, dedicated HW) entailing a heterogeneous na-
ture of the HW architecture.

The set of nodes N = {n1, ..., nk} can be modeled as an interconnection
HW graph that represents limited HW quantity provided by the node pro-
cessor. The measure of limitation can be in time (e.g., a certain amount of
CPU time is assigned) or in space (e.g., a certain memory region is assigned
to a partition). The selection of platform or the HW instances depends on
parameters such as computation, type of CPU, power consumption, failure
rate, size and cost.

In order to achieve strong partitioning between SC and non-SC applica-
tions, a node architecture can have the physical partitions, each containing
a processor or a processor core, one hosting SC applications and the other
hosting non-SC applications (Option 1). Another architectural possibility is
to have a shared processor running mixed criticality applications (Option 2),
as long as strong partitioning is ensured (typically implemented by the OS
or by other mechanisms). Both implementation choices for platform nodes
are illustrated in Figure 2.1 and marked as Option 1 and Option 2. Our
approach requires that nodes utilize a similar configuration, either Option 1
or Option 2. In Figure 2.1, the OS service provider (kernel) layer is used
to virtualize the CPU, dividing it into protected partitions (shown as A, B,
etc.), inside which a job executes. The service interface encapsulates the
OS services to the specific job running in that partition. The OS kernel
layer supports the intra-node processor communication (e.g., by using shared
memory or buffer). The communication between jobs residing on the same
node is called as intra-node or intra-processor communication. When jobs
are residing on different nodes and needs to communicate then the inter-node
communication (e.g., by message passing) is established. In this case nodes
share the same communication channel to send and receive messages. In the
next section, we describe more on the communication system.

On Uses of Multi-Core Architecture

In this thesis during the illustration of the mapping process (Section 4.5),
we employ a HW architecture where nodes contain dual core processors that
have some additional benefits apart from the fault containment. We use dif-
ferent cores for implementing SC and non-SC applications which provides
the separation between these two types of applications. A particular embed-
ded applications would also benefit from a faster and more repeatable RT
response. It is possible to run such RT jobs on a dedicated execution core
without interference from other jobs that would otherwise compete for CPU
resources. The approach can significantly improve the determinism of the RT

2.3. SYSTEM ARCHITECTURE AND MODELS 41

response by reducing its interaction with less time-critical system functions.
In automotive applications, an important benefit of multi core architecture is
that it provides redundancy to the critical applications. Moreover platforms
that use dual-core processors can be constructed with a single processor board
containing a single set of central processor resources (memories, disks, and so
on). For the OEMs, this could reduce system cost and size by up to 40 percent
or more when compared to high-performance RT embedded systems imple-
mented with multiple linked computer systems [103]. The dual-core system
architecture is simpler and more reliable compared to segregated systems
having their own power supplies, mass storage devices, system packaging,
and high-speed communication interconnect hardware. Multi-core platform
also benefits from power consumption view (since each core runs at a lower
frequency) than a single-core processor for the same level of performance.
Nevertheless, it may suffer from a single point of failure, e.g., occurring a
fault on common and shared resources can damage the operability of both
cores. This can be avoided by using less error prone shared resources and
components in the architecture.

2.3.2 The Communication Model

As mentioned in the previous section we assume a network topology allow-
ing every HW node to communicate with all other nodes (n1, ..., nk). The
HW nodes share a network, i.e., use the same communication channel for
inter-node communication to send and receive messages (e.g., by message
passing). Use of different functionalities such as critical, control and multi-
media functions in vehicles and competition among automotive companies
for using low cost networks have led to design and integrate a large number
of competitive communication networks. The communication medium is a
critical resource of distributed embedded systems, since loss of communica-
tion messages results in the loss of overall system services. Therefore the
dependability of the communication system should be an order of magnitude
higher than the dependability of the individual nodes [43] – page 33. As
our prime focus is on designing dependable hard RT systems, the commu-
nication between nodes is primarily based on a fault tolerant time-triggered
network. A survey and comparison of such networks for SC systems can be
found in [104]. Currently for the integration of XBW applications and other
control applications (e.g., engine control, cruise control) only these types of
FT time-triggered networks are being used. Moreover, to increase the de-
pendability of messages communication within an application, it is possible
to use virtual network services [105]. A virtual network is an overlay network
implemented on top of the physical networks. This network encapsulates the

42 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

communication activities between different applications.
The physical network uses the time division multiple access (TDMA)

protocol (as shown in Figure 2.2) as its media access scheme which provides
deterministic access to the medium. The order of the periodic message trans-
missions are defined statically at design time. Each node can send messages

s1 s2 s3s0

TDMA0

s1 s2 s3s0

TDMA1

Cycle of two TDMA rounds

n1n0 n2 n3 n0 n3

E.g., node n0 sends in time slot s 0

n1 in time slot s1 ...

Frame

n1 n2

Figure 2.2: A TDMA communication model for TTP/C

only during a predetermined time interval, called slot si, over a TDMA round
TDMAi. Each node is statically allowed to use a single and fixed slot dur-
ing a TDMA round, e.g., in TTP/C [16]. A cluster or a communication
cycle which is executed periodically is forming a sequence of multiple TDMA
rounds. A more flexible message transmission is provided by FlexRay [17].
In the FlexRay communication system a node can use more than one slot
to transmit messages in a TDMA round and leave dynamic window with
mini slots for the transmission of event messages as shown in Figure 2.3. A

s1 s2 s3s0

TDMA static slots

s5

Mini slots

n1n0 n0 n2 n3

E.g., node n0 sends in time slot s 0 and s2

n1 in time slot s1 ...
Frame

n2

s4

n1n0Dynamic window

Figure 2.3: A TDMA communication model for FlexRay

network integrating a set of services (e.g., predictable message transmission,
clock synchronization, node membership and redundancy management) is
necessary for the implementation of dependable RT systems. TTP/C is a
purely time-triggered network whereas FlexRay and TT Ethernet support a
combination of both time-triggered (static window) and event-triggered (flexi-
ble/dynamic window) communication systems. The time-triggered messages
are the ones which appear periodically in the system, e.g., current speed

2.3. SYSTEM ARCHITECTURE AND MODELS 43

value of a car. Whereas the event-triggered messages appear in the system
in response to an event occurring, e.g., the difference between speeds when
it goes higher than a certain threshold.

2.3.3 System Level Partitioning

In this section we describe the aspects of partitioning. We start by defining
partitioning which conceptually means that the boundaries among jobs as
well as among applications are well defined and protected so that operations
of a job will neither be disrupted nor corrupted by the erroneous behavior
of another job [32]. This erroneous behavior of a job can be the result of a
SW fault or a failure in a HW element used exclusively by that job. Par-
titioning is needed to ensure that SC applications are not affected by the
erroneous behavior of non-SC applications. Each job is allocated to a single
partition as shown in Figure 2.1, providing a certain amount of computa-
tion and memory resources and means to access devices. The total number
of partitions available on a node processor (and consequently the maximum
number of jobs that can be allocated to that node), depends on the avail-
ability of resources on that processor. The goal of partitioning is to create
fault containment units or partitions such that behavior in one partition is
unaffected by the behavior of another partition, including faulty behaviors.
The concept of partitioning among SW-Cs in an integrated architecture helps
emulate a corresponding federated architecture.

In this thesis we present a weaker notion of partitioning through influ-
ence reduction for designing integrated systems. Influence is based on the
observation that partitioning and fault containment is a strong requirement.
The main means of achieving robust partitioning is the implementation of
well-defined and protected damage confinement regions between components
assuring a guaranteed blocking of inter-component error propagation. The
different policies can be distinguished according to the granularity of the ar-
chitecture, i.e., the notion of components they apply. This also provides the
assurance of fault/error containment at different levels. We discuss several
system level partitioning aspects as follows:

Higher-/Node Level Partitioning

This level of partitioning provides physical separation between nodes as in
federated architecture. It is a traditional policy adopting the granularity of
HW nodes as elementary construction and fault isolation components. Each
(usually highly dedicated) HW node runs a single functional component of
the system. Similarly, replication is introduced at the HW node level. The

44 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

same separation principle is used for isolating the implementations of repli-
cas and SC and non-SC functionalities, as well, by strictly deploying each
function onto a separate HW node. Damage confinement isolates faulty com-
ponents. This paradigm necessitates a high HW overhead due to the redun-
dancy induced by the architectural granularization for fault isolation. It typ-
ically results in an architecture composed of at least one separate computing
node per each individual function interconnected by a fabric of point-to-point
communication links.

Core-/Processor Level Partitioning

Processor or core level partitioning is a modified version of node-level par-
titioning for nodes embedding multiprocessors for a higher computational
power. The loose coupling between processors provides a basic inter-processor
isolation to take processors as partitioning units, while sharing the remaining
(less critical) shared resources such as external communication channels or
other I/O interfaces. This is shown in Option 1 in Figure 2.1 – Section 2.3.1.
This configuration gives the provision of assigning SC and non-SC appli-
cations onto different processor cores on the same HW node so that the
influence from non-SC to SC applications are prohibited by design.

However the feasibility of the principle of system composition of dedicated
parts is limited in scope for ever increasing function complexity of embedded
systems. A large number of HW components interconnected by a complex
fabric becomes prohibitively expensive from the point of view of resource
usage, power consumption and space/weight. Moreover the high level of
redundancy rapidly results in reduced overall system reliability despite the
increase in component reliability as induced by technology development. This
paradigm necessitates the use of a high-level HW redundancy.

Lower-/Job Level Partitioning

Independent of the approach presented above, there is a need for partition-
ing mechanisms [32; 106; 107] in each processor/core which restrict spatial
interactions/influences (e.g., error propagation via shared resources between
jobs) and temporal interactions (e.g., starvation of a job caused by another
one stealing its processor time, or causing a delay of execution of the later)
across jobs. Job level partitioning policies use a more fine granular approach
by taking jobs as allocation and replication units. It allows HW resource
sharing by the deployment of multiple functions (implemented as isolated
SW jobs) onto the same HW component (Option 2 in Figure 2.1). Safety of
the systems is still based on replication of the critical parts.

2.3. SYSTEM ARCHITECTURE AND MODELS 45

Isolation of the jobs is carried out by means of the standard support mech-
anism built-in into most modern processors, such as memory segmentation
in the Memory Management Unit (MMU) further enforced by specialized
HW and OS [32]. Strict spatial and temporal isolation is provided in plat-
forms intended for SC applications (e.g., TTP) by means of extra HW units
assuring FT for each main isolation-related functionality both in the multi-
tasking run-time environment and in the communication infrastructure over
shared buses. However in this thesis we provide the notion of reducing error
propagation/influence during integration so that the partitioning will be less
reliant on the use of OS and other partitioning mechanisms.

SW Reusability

Reuse of existing components is a key approach aimed at reducing deve-
lopment and manufacturing times and costs. An efficient workflow covering
all phases of the development process (design, component integration, vali-
dation and testing, certification) is one of the key factors in the reduction of
development and manufacturing costs and time. Two kinds of possible SW
reusability is described as follows.

• As job level partitioning looses the dependence on the level of dedi-
cation of the HW platforms, they may increasingly become a generic
type, thus supporting the reuse of COTS and other legacy components.
Automotive, avionics, control and seaborne systems are representative
examples of SC systems relying on a rapidly growing number of SW-Cs
and a HW-C integration system design paradigm.

• Another evolving form of reuse is that of the intellectual property.
While the change in the functionality offered by subsequently devel-
oped members of a product family follows typically an evolutionary
path, their implementations can drastically differ due to the revolu-
tionary changes in the HW platform technology background.

Note, that there is an interesting interplay between reusability and ro-
bust partitioning in building SC systems [21]. As the core concept of robust
partitioning is a strict componentization assigning a single partition to each
individual functionality to be executed, modification of a functional com-
ponent influences only those ones, which are in an explicit functional inter-
dependence with it. As side effect freedom is guaranteed by principle with
respect to other ones, robust partitioning facilitates the reuse, modification,
debugging, integration, and certification of components.

46 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

2.3.4 The Application and SW Model

We consider a SW model consisting of both SC and non-SC applications
derived from the automotive, avionic and control domains. Compatible to a
system level design method, the SW model is constituted at an abstraction
level completely independent from architectural details. Consideration of
varied system functionalities from several application domains significantly
increases the design complexity. The complexity of large heterogeneous dis-
tributed embedded systems can only be managed if the overall system can
be decomposed into (nearly independent) applications with linking interfaces
that are precisely specified in both the value and time domain [108]. A nearly
independent application of a large distributed RT system typically performs
a specified service. For instance a brake-by-wire system allows the vehi-
cle driver to electronically control the wheel brake. We use the SW model
which consists of such applications (A = {A1, ..., Ap}) of varied functionality
and criticality. Applications are subsequently decomposed into smaller units,
called jobs. We define a job as the smallest executable SW fragment with
basic communication capabilities for exchanging information with other jobs.
Jobs are the leaf functions of a tree-base functional decomposition [7]. No
knowledge of the internal structure of a job is assumed, allowing for the in-
tegration of jobs for which no source code is available. This allows us to take
the benefit of system level design where a job is characterized by their inter-
faces hiding their implementation details. Therefore the input and output
behavior of jobs and the functional dependencies between jobs are sufficient
to know.

We consider a job to have the following properties, which are required as
input to the co-design process during the mapping phase:

. Job name and ID: Each job is provided with a unique name and ID.

. Input and output ports: A job is represented as a black box with
its input and output ports. A job employs input ports for using the
services from other jobs particularly from the predecessor jobs. The
output ports enable a job to provide services to the successor jobs or
to provide services to the environment.

. Timing requirements: An application as well as its jobs has to finish
their functional operations by a certain time. Moreover computation of
one job depends on the result of another job which is often described by
the precedence relations. This relation also impacts the starting time of
a successor job. These properties are defined based on the performance
requirements mentioned in the earlier section.

2.3. SYSTEM ARCHITECTURE AND MODELS 47

. Bandwidth requirements: This property indicates the volume of
data between communicating jobs in terms of bytes. The network
bandwidth is required only by the inter job communication.

. Dependability requirements: According to this requirement, the
degree of replication dci necessary for the ith job is set in order to
provide the required level of FT. dci depends on the level of criticality
of an application or a job. This property is defined for example applying
the technique described in Section 2.1.2. The influence value between
jobs is also set under this requirement.

. Resource requirements: These requirements are summarized in a
record (represented by the vector ~ri) composed of the different quanti-
tative descriptors of resource capacity required, such as memory size,
availability of a certain kind of sensors/actuators.

SW Graph

The application model described above can be represented by a SW graph.
The SW graph consists of a set of jobs and their interactions and commu-
nications. Inter-job communication is characterized by a weighted directed
graph (WDG), G = (J , E), having the job types as vertices V , and an edge
between jobs js and jt, if they communicate. At job level the timing prop-
erties is represented as (ti), which is the triple of ti(ESTi, CTi, Di), where
EST, CT, D are the earliest start time, computation time and deadline of
a job respectively. EST is the earliest possible time that a job can start
its execution. CT is defined as the amount of time required by a job to
complete the execution on a particular processor. CT depends on functional
complexity of the job and on the speed of the processor it is running on. D
is denoted as the deadline of a job by which a job or an application must fin-
ish its execution. Based on their experiences the system designer estimates
the values of these properties. However the values can be determined for
example deadline assignment algorithm as in [109] can be applied in order
to set the deadline for jobs as well as for the application. Precedence rela-
tions between jobs are utilized to calculate the deadline. eij ∈ E is an edge
between two job vertices (vi, vj) ∈ V , which is the notion of both of influ-
ence (Iij) and communication data (bi,j) (bytes) between jobs. Iij denotes
the cumulated conditional probability of error propagation from the source
job js to the target job jt, either via message passing or shared resources,
assumed, that js is in a erroneous state. An estimation of determining this
value is detailed later in the thesis where this property is taken as a design
criteria. bi,j is the intensity of the required communication between jobs, for

48 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

instance measured by the maximal total size of information to be transferred
per execution cycle.

In case a job needs to be replicated for providing dependability/FT, a new
node as well as a new communication link is created in the SW graph (as
shown in Figure 2.6). The replication depends on how important and critical
the job is, e.g., if a job has the highest degree of criticality then it needs to
be replicated three or four times and if the job has next degree of criticality
then it needs to be replicated two times. This can be set, e.g., according to
the SIL level as described above. Replicas themselves are connected by edges
of weight 0 expressing complete isolation, i.e., there is no influence among
themselves.

Influences Across Modules

Influence is defined by the probability of error propagation from a source
module to a target module. Faults can occur either in the source module
or in the communication channel. Shared memory is a typical element po-
tentially causing error propagation between different functionalities. This
propagation depends on the size of the memory they share and how often
they access it. Errors can also propagate through message passing which
depends on the size of the sending/receving messages and how frequently
messages are being sent and received. All these error propagations between
any modules are termed as influence. We distinguish two classes of influences
(error propagation), depending on the level of detail at which the system is
observed. The classification of influences is shown in Figure 2.4 and is dis-
cussed below.

Job 1

SC

application

Job 2

Job 3

non-SC

application

Job 4

Job 5

Job 6

Class 2

Class 1

Figure 2.4: Influence across modules at different levels

2.3. SYSTEM ARCHITECTURE AND MODELS 49

Class 1: This class of influence is considered at application level.
Faults/errors must be detected before they propagate into another
SC application. In this case, high criticality applications need to be
shielded from low criticality applications, but not vice-versa. For ex-
ample, it may be acceptable, in terms of safety, for a brake force control
application to corrupt the air conditioning systems in vehicles and for
a flight control application to corrupt the onboard passenger announce
subsystem in avionics systems but there will be catastrophic conse-
quences if it happens in opposite way.

The issue of error containment plays a crucial role since consequences
of a particular error must not have an adverse effect on a SC func-
tion. If this cannot be ensured, the error needs to be classified as
catastrophic [43].

Class 2: This class of influence is occurred at job level. Interactions
between two communicating jobs of an application, may lead to prop-
agation of errors from one job to another. When these jobs are placed
on different nodes then this influence may lead to an error propagation
at node level. Also, the sharing of resources by different jobs on the
same node may lead to error propagation.

The interaction/influence at different levels can lead to harmful error
propagation from one module to another (influences between applications
or between jobs). When the errors are not propagated they are said to be
contained within a module (error containment) and avoid catastrophic con-
sequences by avoiding multiple failures. Thus, to ensure fault/error contain-
ment, we strive to reduce their propagation probabilities while performing the
mapping and its optimization (for details see Section 4.1.2 and Section 5.2.1).

An Example Application Model

We briefly describe an automotive SC application that is a brake-force control
(BFC) of adaptive cruise control system. BFC is a video-based emergency
brake for the collision warning and avoidance system. The BFC is a dis-
tributed periodic application. This application is decomposed into four jobs
(speed sensor j1, distance control j2, brake force control j3 and brake ac-
tuator job j4) as shown in Figure 2.5. Speed sensor job is responsible for
reading car speed value from the speed sensor and sends the speed message
data to brake force control job. Brake force control is a control object job
for computing the necessary brake force. Distance control job reads distance
value of the nearest object from the image sensor and sends the correspond-
ing value via a message to brake force control job. This job now computes

50 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

Speed

sensor job j1

Distance

control job j2

Brake force

control job j3

Brake

actuator job j4

Figure 2.5: Brake force control application

the brake force within a certain period of time and transmits the computed
message to brake actuator job which activates the brakes in order to make
the necessary actions to avoid collision. In order to provide FT each job
needs to be replicated according to their degree of criticality dci or according
to the dci set at application level. The brake force control application after
replication is shown Figure 2.6. The values of dci is set as 2, 2, 3 and 2 for
jobs j1, j2, j3 and j4 respectively. The replicas are represented as j1a, j1b for
j1 and similarly for other jobs. As mentioned the influence values between
replicas are assumed to be 0 which is shown in the figure for example the
value between j1a and j1b.

j1a

j1b

j2a

j2b

j3b

j3c

j3a

j4a

j4b

0

0

0

0

0

Figure 2.6: Brake force control application after replication

2.3.5 The Fault-Model

We consider both SW and HW faults, therefore a fault can occur in any job,
HW node or communication link. The consequence of a fault is an error
which can propagate from a source module to a target module explicitly

2.3. SYSTEM ARCHITECTURE AND MODELS 51

via an erroneous message sent by a faulty job or via some shared resources
(implicit propagation channel). The failure of a job is defined as the violation
of the specification in either the time or the value domain. A failure in the
value domain implies that the content of a message does not conform to its
specification. A timing failure implies that the send or receive instant of the
message is incorrect (either early or late).

For SW faults, each job is considered as a unit for SW fault containment.
A SW fault containment module (FCM) [79], should ideally by design, also
ensure that errors do not propagate but are contained and tolerated. In
case of SW faults, jobs are assumed to fail independently. Fault occurrence
is considered within an FCM and over communication across them. The
consequence of a fault is an error which can propagate from the source to a
target by an erroneous message of a faulty job. SW faults occurring in one
job propagate to another job if and only if there is a communication between
them.

For HW faults, a node is referred to as a HW FCM. A HW node may con-
tain resources shared across jobs, e.g., processor, memory and power supply.
A single (transient or permanent [3]) fault impacting any of these shared
resources is likely to affect several or all of the jobs running on the node.
Therefore the shared resources introduce new paths for error propagation.
Hence, in case of HW node failures (e.g., transient fault or permanent/crash
fault) replicated jobs should be allocated onto different HW nodes in order
to ensure FT of application services. Transient faults are the faults which
appears for a short duration in the system and can affect the system for the
short time period only whereas permanent faults cause a long term or per-
manent damage of a particular component or the overall system in the worst
case. In the latter case the component needs to be repaired or be replaced
with the backup one. In both cases FT mechanisms need to be provided. In
the case of communication link, only transient faults are considered, e.g., in
automotive cars electro magnetic interferences (EMI) can causes communica-
tion failure. We assume that whenever an EMI occurs, the communications
on the bus is perturbed during a certain time period (transient errors in
nature) and bits transmitted during this period is corrupted with a certain
probability.

2.3.6 Functional and Extra-Functional Constraints

Embedded systems are heterogeneous (comprises of SW-C, HW-C and exter-
nal resources) in nature which often operate with limited physical resources
and interact with the environment and have to operate correctly in any cir-
cumstances entailing the consideration of a large set of constraints. The

52 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

co-design of such systems is therefore subject to constraints. For better SW-
HW trade-offs both the functional and extra-functional constraints need to
be considered at the early phase of the co-design process. Formally, the con-
straints are defined as the conditions that limit the possible designs from the
dependability, timing or resource perspectives. In other words constraints are
conditions that the system has to satisfy to ensure correct behavior (both
functional and extra-functional). In general, they are divided into two cat-
egories: hard constraints and soft constraints. We define hard constraints
hC that need to be satisfied else the solution is not valid. For example, a
hard RT system must respect all timing constraints. In order to be able to
create a feasible solution, these constraints have to be satisfied during the
allocation phase of the approach. Soft constraints are those whose violation
makes the solution inefficient (a performance degradation from RT view)
but not completely invalid. Often design objectives are formulated as soft
constraints.

A set of constraints need to be extracted and defined for a particular
embedded system design. We define them for designing dependable RT em-
bedded systems. Some constraints can be derived from the functional and
architectural specification and some others can be derived according to the
extra-functional properties of the target system applications. Unlike single-
constraint driven integration, e.g, as mentioned in the related work mostly
satisfies only timing constraints, our approach is characterized by a con-
current set of constraints. Several constraints, which restrict the possible
designs, are considered in our approach described as follows.

Binding Constraints

Binding constraint is described as the need of special resources by some
particular functionality which entails a phenomena of one-to-one assignment
of function and node. Some functionalities/jobs can only be mapped on a
subset of available nodes due to the need of certain resources such as need of
sensors, actuators or any dedicated HW like watchdog, DSP or ASIC.

Dependability Constraints

We first consider dependability as constraints and then as an optimization
variable. Therefore dependability is taken directly in the process to achieve
a required level by design. Primarily we define two aspects and formulate
them as constraints as follows. Violation of these constraints may lead to a
catastrophic consequences in the system.

Separation of replicas: This constraint is necessitated by the SC

2.3. SYSTEM ARCHITECTURE AND MODELS 53

jobs. Replicated jobs (jobs are replicated according to their degree
of criticality) must be in partitions of different HW nodes in order to
provide a certain level of FT.

SC and non-SC partitioning: We consider this in order to maintain
strong partitioning between components of different criticality.

Timeliness Constraints

A hard RT system must respect all timing constraints. When these con-
straints are violated, a major malfunction may occur specially often in the
case of SC embedded systems. Deterministic and predictable timing behav-
ior is the primary concern for such systems. The timing constraints are often
can be modeled as inequality constraints [68]. At design time, satisfaction of
the following temporal constraints define a schedulable allocation according
to deadlines.

Precedence relations: This constraint is necessitated by the com-
municating jobs where jobs are dependent with each other. When a
job depends on the result of another job a precedence relation is estab-
lished. This relation can be formulated as an inequality constraint as
follows: ESTi + CTi ≤ ESTj. Where, job j depends on job i meaning
that job j starts its execution only when job i finishes its execution.

Deadlines: Each application should provide services within a certain
amount of time usually according to a respond to the environment.
Therefore, application jobs should finish execution before their dead-
lines. This can be expressed by the following relation: ∀i ESTi+CTi ≤
Di. The deadline of a particular job must be greater than the sum of
earlier start time and computation time of that job.

Computing Constraints

These constraints are extracted from the limitation of the processor capacity
and are categorized into following two classes.

Computational capability: Each job runs on a processor with a cer-
tain amount of computation time. The sum of computation times of all
jobs running on the same processor must be less than the computation
capability provided by that processor.

Memory consumption: A job assigned on a processor consumes
a certain amount of memory. The memory usage by the total jobs

54 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

allocated onto a processor cannot exceed the available memory capacity
of that particular processor provided that multiple processors are not
sharing a common memory device.

Communication Constraints

Following two requirements are set under this constraint.

Bandwidth requirement: This requirement is necessitated by the
inter job communication. A sufficient bandwidth for communicating
jobs on different nodes must be provided by the network.

Allocation/Sharing protocol: Communication between jobs and
the required bandwidth depends on the considered protocol.

Additional Constraints

We define additional constraints as the constraints which are not directly
addressed in the approach.

Physical constraints: The typical example of this constraint is the
size and weight of all the materials and components used in a system.
In automotive industry, even though mechanical parts are replacing by
the SW components, the weight of the car is growing due to installing
large number of electronic devices and wiring. The cabling and wiring
used in vehicles and the number of nodes impact on the size, weight
and space of the vehicle. Each node (ECU) in a car consume a certain
amount of resource weight itself by using the micro-controller, boxing,
sensors, actuators and other electronics. The weight can be reduced
by using new and lighter material, however, the mapping decision does
not impact on this. The mapping can impact on the weight of the
wiring and the number of nodes used. This can be benefited from our
targeted integrated design approach by reducing the number of ECUs
and wiring. Reducing the weight has a great effect on reducing the fuel
consumption of the car.

Power dissipation: Recently power management is becoming one of
the key issues for designing embedded systems. Specially reduction of
power consumption is very important for systems which carry their own
energy sources. It would be a critical factor for the recently developed
electric cars (can drive 100km with a 6 hours of battery charge) which
are only battery operated. A power aware design is preferable than

2.3. SYSTEM ARCHITECTURE AND MODELS 55

simply a low power design for such systems. Therefore it is necessary
to integrate efficient power management techniques to the system level
co-design process. A system level power aware scheduling technique
is derived in [110] for Mars Pathfinder. Power can be modeled as a
pure constraint as well. A job runs on a processor consume a certain
amount of power. The total power consumption by a mapping must not
exceed a maximum power limit given by the system. Nevertheless, we
have considered power as a system level optimization variable with an
extension to our approach (see Section 8.3 for more detail on modeling
the power).

56 CHAPTER 2. BACKGROUND AND SYSTEM MODEL

Chapter 3

System Level Co-Design and
Optimization Approach

The design methodology of embedded systems is an evolving process. Also
the growth in the complexity of the design is a key issue as functionalities and
extra-functionalities get added leading to the need for new design methods
and techniques. The system level co-design process enables better functions
(SW) and architecture (HW) trade-offs analysis while dealing with extra-
functional attributes which have strong consequences on design objectives.
Consequently, we develop an extra-functionalities driven system level co-
design and optimization methodology for designing an integrated embedded
architecture (IEA). Our proposed SW-HW co-design methodology focuses
on design analysis, mapping, optimization, prototyping and their evalua-
tion/validation at system level of abstraction. A key issue of the methodol-
ogy is that we provide quantification of various extra-functional attributes
such as FT, influence, schedulability, resource utilization and power.

Before we start presenting the system design and optimization flow, we
describe some increasingly important design aspects of dependable RT em-
bedded systems which are later then taken into consideration in the co-design
process. An important issue of system design is the co-design space explo-
ration which helps to traverse the overall design space is explained next. In
order to efficiently explore the search spaces, various techniques and the way
of tackling the constraints are described. We mathematically formulate the
problem of exploring the design space by resource allocation and optimiza-
tion. The mapping problem is then formulated as a constraints satisfaction
as well as a multi objective optimization problem. We develop a generic
framework in order to perform the system level co-design and optimization
for the design of an integrated dependable RT embedded system. The frame-
work mainly comprises the following design issues: requirements analysis and

57

58CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

specification modeling, SW-HW mapping, design optimization and prototyp-
ing. This chapter provides the answers of the part of the Research Questions
1, 2, & 3 [RQ1], [RQ2] and [RQ3] which are related to design constraints,
optimization and the co-design framework.

3.1 Embedded Systems Co-Design Criteria

There may be several ways in which a co-design methodology can be devel-
oped, thereof, we need to define what constitutes a good design and what
factors need to be considered that impact on the design and its optimization.
The consideration of these design issues strongly depends on objectives of the
target system design and on the considered system model. Our goal is to de-
sign dependable RT embedded systems thus we consider criteria from those
perspectives. In order to be able to create a feasible design the first criteria
is to satisfy the hard constraints and then meet the desired system require-
ments and objectives for an optimized system design. These are described in
the following sections.

3.1.1 Satisfaction of Constraints

We refer this design issue as satisfaction of hard constraints, which implies
the absolute constraints on behavior, whether semantic, temporal, or oth-
ers. The constraints for example separation over replication to provide FT
and precedence and deadline constraints to ensure RT properties are hard
constraints. These constraints must be satisfied to create a feasible design.
However it is not considered how the jobs and replicas are assigned to achieve
better dependability and how the schedulability can be optimized, e.g., re-
ducing the length of the schedule. These are the measures to optimize and
to assess the design. While some constraints can be evaluated a priori oth-
ers can only be checked after assignment, if so, this is always the primary
concern. The constraints defined in the previous chapter are satisfied during
the allocation phase of the design process.

3.1.2 Dependability

Since dependability is the primary objective for the design of SC systems,
as mentioned earlier our aim is to achieve and optimize dependability by
design. In this regard, we first replicate the high criticality jobs and then we
endeavor to minimize the influences between jobs as well as nodes in order to
increase the fault containment. There is a probability of error propagation

3.1. EMBEDDED SYSTEMS CO-DESIGN CRITERIA 59

from one node to the other due to interacting jobs allocated in different nodes.
Traditionally system designer design the system just to provide FT. However
the system should not only provide dependability for critical applications, we
should also design the system as good as possible from dependability point
of view, e.g., minimizing influences in order to reduce the error propagation
probabilities to provide better FT. Replicated jobs must be assigned onto
distinct HW nodes, however, it is necessary to find the criteria in which we
can assign them (replicas) in a way such that dependability is optimized.
Given the first priority to dependability, the properties from this perspective
are not compromised while generating the design. Thus we consider design
optimization variables from dependability perspective.

3.1.3 Real-Time

A hard RT system must respect all timing constraints, e.g, jobs have to finish
their execution by a certain amount of bounded time, i.e., by their deadlines.
However in case of soft RT, this condition can be relaxed. It is acceptable
for soft RT jobs to run in a performance degradation mode. In classical
scheduling theory, in order to evaluate (performance measure or optimality
criteria) scheduling results typically usage variables are for example mini-
mizing the sum of completion time, minimizing schedule length, minimizing
the weighted sum of completion times, minimizing the no of processors re-
quired, or minimizing the maximum lateness [111]. Some of these variables
for example sum of completion time may not directly satisfy the timing prop-
erties. Even it may not cover several aspects like deadline or periods while
optimizing a design using only a single variable. Slack is also a valuable RT
properties which is utilized to optimize different variables. It is defined as
the gap remain between two jobs execution and how unloaded a processor is.
The aim of considering variables from this criteria is to proper utilization of
the computing power and to achieve better performance of the design.

3.1.4 Resource and Power Consumption

Resource utilization is a classical factor for optimizing the design of embedded
systems. Resources can be utilized from different point of views, e.g., uti-
lizing the bandwidth resource, utilizing the number of nodes, utilizing load
balancing and power consumption. Load balancing is the technique where
jobs/processes are evenly distributed among the nodes to leave as much slack
as possible in the design. Resources are utilized either from performance or
cost point of view. For instance, if less number of nodes is required in the
design that means it requires less amount of cost. Now a days a significant

60CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

focus is being given on the power consumption issues at design time due to
the increasing fuel prices.

3.2 Co-Design Space Exploration

Co-design space exploration (CSE) is a process of investigating different map-
ping solutions in the global design space in quest of identifying the most
prominent solution, i.e., an optimal solution. CSE enables the system de-
signer to germinate and compare various design alternatives under specified
constraints and variables in order to find out an appropriate either a fea-
sible or an approximated optimized solution. The exploration techniques
tries to find a feasible solution from an exhaustive of KQ (allocation of Q
jobs onto K nodes) ways of assignment from the design space. Adding dif-
ferent objectives into the design process makes the problem more complex.
Thus the satisfaction of multiple concurrent constraints and involvement of
enormous trade-offs between diverse competitive and conflicting design cri-
teria/variables make the CSE difficult. Strategies and methods are needed
for efficient CSE which can reduce the design space as well as can cover the
overall design space.

In order to cope with the increasing design complexity, our system level
co-design allows the system designer to explore the search space at early
phase of the design. There are various methods and techniques, heuristics
and hyper-/meta-heuristics one can apply to explore the design space [61; 98;
112; 52]. The search spaces is guided/pruned by the satisfaction of different
constraints. We apply constructive heuristics to prune the search spaces and
use metaheuristic technique to cover the design space. Finding a feasible
solution in the design space is comparable to a resource allocation problem
on the other hand investigating different better quality solutions is compared
with the optimization problem. In the next section we discuss different tech-
niques of how to handle the constraints in order to be able to reduce the
design search spaces. We then provide a mathematical formulation of the
mapping and its optimization problem.

3.3 Constraints Handling

The precise definition of requirements reduces the design space as they define
constraints and objectives in addition to the designated functions, that limit
the possible mappings from the dependability, temporal or resource perspec-
tives. It helps to avoid the exploration of infeasible design alternatives [43].

3.3. CONSTRAINTS HANDLING 61

Moreover a properly selected objective function may control an automated
synthesis process to deliver (sub)optimal solutions. Applying the efficient
search methods and techniques for constraints satisfaction, the unnecessary
exploration of infeasible regions can be avoided and can effectively guide the
co-design space exploration. In the following we discuss how the constraints
are handled during the mapping and describe different search techniques em-
ployed in the allocation phase of the design process. The constraints handling
techniques are employed and satisfied during the mapping algorithm.

Constraints Prioritization: The efficient management of a large set of
constraints can rely on constraints prioritization [78]. The system designer
assigns priority levels to the individual constraints estimating their order
to guide the searching process. This technique can be used for partition-
ing complex constraint systems into sequentially solvable blocks by exposing
causal interdependencies between individual constraints. For instance, the
replication of SC jobs precedes in a SC application all other decisions on job
allocation (as is expressed by the topmost priority assigned to the related
constraints).

While searching for a feasible mapping the constraints are checked in a
priority basis to satisfy them on each time node assignment, i.e., an evaluation
is performed for the assignment in order to increase the search efficiency.
There are several search techniques, e.g., consistency enforcing, retrospective,
backtracking, one can apply a priori by which the design space can be explored
in a better and efficient way. The backtracking is seldom needed when search
procedure integrates the mentioned techniques (prioritization and a prior
check) together with the ordering heuristics presented in Section 4.3. The
backtracking is applied only when there is an inconsistency, i.e., a dead-end
is reached.

Consistency Enforcing: Consistency enforcing prune the search space
by avoiding the local inconsistencies in the assignment process [50]. This
technique allows us not to try to assign the replicas on the same node and is
also enforced by the FT constraint. The assignment process does not need to
know a priori (before checking the constraints) that whether there is a replica
already assigned. When a replicated jobs are instantiated to be assigned from
the list, a new node is selected for it to be assigned. Once a job is selected
from the ordered list (the jobs and nodes are ordered), this process tries it to
assign onto a node satisfying all the constraints without backtracking. Look-
ahead method can also be applied together with the consistency enforcing.

62CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

Look Ahead Technique: The look ahead technique or the retrospective
technique is characterized by the assignment of a job to a node while checking
other jobs that are already assigned in this node in order to avoid conflicts.
For example when checking the timing constraints for a job it is necessary to
check the schedulability combining with the jobs which are already assigned
onto a particular node (all the possible combinations of jobs are checked).
Ordering jobs and nodes is the first step of look ahead technique meaning
that we know in advance which job to be assigned next.

Backtracking: This mechanism enables us to undo some previous assign-
ments in case there is an inconsistency1, i.e., no feasible assignment is possible
with the current search path. The backtrack process goes back to the earlier
assignments and changes them to the alternative feasible ones. One simple
and easy backtracking mechanism is the chronological backtracking which
systematically changes the most recent assignment and tries alternative ones.
If it is not possible then it respectively goes back to the next most recent
assignment. We have implemented this technique which includes moves like
relocate (relocating a job to a different node) and swap (swapping the nodes
between two jobs). If there is no assignments left to undo, i.e., search reaches
its initial state, then the mapping is infeasible and the process terminates.

3.4 Mathematical Formulation of the Prob-

lem

The crucial problem of the system level co-design process is to map the
jobs onto suitable nodes in an optimized way. The problem is divided
into two parts: creating a feasible mapping and finding an optimized map-
ping. We formulate the creation of a feasible mapping as a generalized
resource allocation problem which is modeled as a constraints satisfaction
problem (CSP) [50]. The problem is characterized by a given set of jobs
J = {j1, ..., jm}, a distributed computing architecture associated with k
nodes N = {n1, ..., nk} and by a set of constraints C = {c1, ..., cl}. A solution
to this problem is an assignment of each of the n jobs to one of the k nodes
such that all constraints C = {c1, ..., cl} are satisfied and objectives are met.
Once the objectives (either single or multiple) are met the design is said to
be optimized. The set of all possible mappings for a given set of jobs and
nodes is called the design space (X) that includes feasible (X

′
) and infeasible

region (X −X
′
). In order to find a feasible solution the overall design space

1An assignment when it violates any constraints is said to be inconsistent.

3.4. MATHEMATICAL FORMULATION OF THE PROBLEM 63

X is explored. The constraint surface (see Figure 3.1) divides the design
space into two regions: feasible and infeasible. Constraints that represent
limitations on the behavior or performance of the system are termed as be-
havior constraints (e.g., FT and RT constraints) and that represent physical
limitations are called geometric/side constraints (e.g., weight, size, binding
constraints) [113].

Satisfaction of all

constraints (C)

INFEASIBLE REGION

(X-X
’
)

Behavior constraint (e.g., FT)

(e
.g

., R
T

)

Behavior

constraint

(e.g., power)

Side constraint

(e.g., need of sensor)

Side constraint
(e.g., need of resources)

FEASIBLE REGION

x* x

X
’

N(x)

Γ

Design

optimization

XDESIGN SPACE

CSE

X-X
’

IN
F

E
A

S
IB

L
E

 R
E

G
IO

N

B
e
h

a
v

io
r c

o
n

s
tra

in
t

Figure 3.1: Hypothetical design space

A hypothetical design space is shown in Figure 3.1, where infeasible regions
are indicated by the hatched line. A point x in the design space X repre-
sents a mapping of jobs onto nodes. Points located in the region of constraints
satisfaction are feasible points. A mapping is either feasible/aceptable or in-
feasible/unacceptable. A feasible mapping is a solution which satisfies all the
constraints C. If a constraint is not satisfied then the mapping is infeasible.
These constraints are referred to hard constraints. The neighborhood space
N(x) ⊆ X of a point x is the set of all points that are reachable by perform-
ing a move operation (e.g., relocating a job to a different node). We employ
a transformation operator (Γ) to perform the move operation (see Section 5.3
for details), i.e., to explore the neighborhoods leading to covering the design
space. This parameter is used either creating an initial feasible mapping
when backtrack is necessary or finding an optimized mapping both from fea-

64CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

sible and infeasible points. Our mapping algorithm explores the global space
X in order to find a solution in the region of X

′
. It is a constructive heuristic

which creates a feasible mapping for a set of jobs and nodes in every single
run of the algorithm.

Usually there exist many mappings that satisfy the defined constraints,
i.e, there are more than one feasible mapping. Therefore measures are needed
to find a suitable and as good as possible mapping. The value of a point is
a measure of the suitability of the mapping represented by that point. The
function f(x) is used to measure the value of a point in the design space. We
term this function as MVO function MV O(v) (see Section 5.3.1 for details),
where v is the variable that needs to be quantified and optimized. A very
important aspect to determine the value of this function is to quantify the
considered design variables (see Section 5.2 for details). For an optimization
problem, which minimizes the value of objectives/variables, good mappings
have low values. The task is to find a mapping x∗ ∈ X with the lowest func-
tion value, i.e., f(x∗) ≤ f(x) ∀x ∈ X. x∗ is the optimized mapping from the
design space X. However guidance of heuristics is necessary for an efficient
search in the global design space in order to obtain an optimized mapping
with less computation cost. In order to prove this we have performed a
comparative study with [42], where scheduling (ordering jobs execution) is
implemented and conducted in a CPLEX based tool [114]. CPLEX is an
ILOG software product for solving linear and mixed integer programming
problems. As mentioned, we first create a feasible mapping and then this
feasible mapping is provided as an input to the optimization algorithm and
feasibility is maintained throughout the quest by an external function call
(see Section 5.3.3 for details), therefore the problem space remains in the
feasible region X

′ ∈ X (set of all admissible solutions), which reduces the
search space considerably. We strive to find the optimized design x∗ ∈ X

′
,

where f(x∗) ≤ f(x) ∀x ∈ X
′
.

For an MVO problem, the value function is structured with multiple vari-
ables, which evaluate or measure the mapping. The function is represented
as an optimization function in additive form (see Section 5.3.1 for details)
as follows. The constraints are not formulated in this function (see Equa-
tion 3.1). They are satisfied separately by the implementation of an external
function. If both constraints and variables are included in a single value
function it would be difficult to poise these two factors together, e.g., setting
the trade-off factors. On the other hand if the number of variables and con-
straints are increased in a single function then this increases the complexity
of the problem. Thus we do not consider the constraints satisfaction func-
tion with the value (optimization) function. Note that for a single variable

3.5. THE INTEGRATED DESIGN FRAMEWORK 65

optimization problem the value function is straightforward.

min f(x) ≡ MV O(v) =
n∑

i=1

λifi(xi)

= λ1 ∗ f1(x1) + λ2 ∗ f2(x2) + ...λn ∗ fn(xn) (3.1)

where, λi are the trade-off factors and n is the number of variables. The value
of each variable is represented in a vector form in a matrix M [v] for a partic-
ular mapping x. In this case the aim is to find the best non-dominated set of
variables, i.e., a set of pareto solutions that satisfy the system requirements
and objectives.

M [v] ≡ ∀iM [fi(xi)] ≡ M [v1, v2, v3, ..., vn] (3.2)

where, x1, x2, ..., xn are the design points, f1(x1), f2(x2), ..., fn(xn) are the
corresponding value functions of the variables and vi = fi(xi) for a specific
mapping x.

It is already mentioned that the mapping problem is NP hard, therefore,
in order to reduce the complexity we divide the process into subproblems.
The mapping itself is divided into two subproblems: allocation and schedul-
ing. First, we create a feasible allocation by using the proposed algorithm
satisfying all the defined constraints including schedulability. The algorithm
considers the proposed jobs and nodes ordering heuristics in its construction.
The jobs and nodes are ordered before the allocation takes place which assist
to find a feasible solution with less number of iterations (see experimental
results in Section 6). During the allocation phase all the constraints are
satisfied in a prioritized manner in order to be able to create a feasible map-
ping. If a constraint is not satisfied in Step 7 of the Algorithm 3 we perform
backtracking in Step 8 (see Section 4.4). A validation test for the allocation
is then performed so that it can be scheduled. The output of the algorithm
derives the basic scheduling. An optimized solution can then be easily found
by using CPLEX or any other approaches presented in Section 5. The initial
feasible mapping guides the optimization process in an efficient way to find
the solution (see the validation and comparative study in Section 6.4).

3.5 The Integrated Design Framework

The proposed system level co-design and optimization methodology for the
design of integrated dependable RT embedded systems meticulously guides
the multiple constraints and variables driven mapping towards an optimized
mapping. We first perform a heuristics based systematic mapping of SW-Cs

66CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

onto HW-Cs such that constraints are satisfied. We then provide a multi
objective optimization technique called as MVO to quantify and model the
variables and to optimize the design. The variables are considered from
dependability, RT, power and resource perspectives. The design is then pro-
totyped in order to deploy the system onto a target architecture. The overall
co-design optimization steps and the flow are depicted in Algorithm 1 and in
Figure 3.2 respectively. In the following section, we simultaneously describe
all these necessary steps and the design flow.

3.5.1 The Overall Co-Design Methodology

The co-design process starts with the idea of separation of concern at sys-
tem level by characterizing the SW and HW model separately. The models
are specified from the description of system functional, performance and
dependability requirements. At first the requirements need to be elicited.
The requirements can be captured for example by using the technique such
as [115], which collect both functional and extra-functional user requirements
specially giving the focus on describing the context-driven functionalities.
Context-driven functionalities describe the special types of functions in an
application including extra-functionality. The system requirements are ab-
stractly modeled in the SW model without the knowledge of the HW archi-
tecture. The co-design process continues over setting the architecture and
HW platform resources and performing the mapping, optimization and the
evaluation. We assume that the description of the SW model and the candi-
date set of HW resources and services are available prior a mapping can take
place. Essentially, the SW model is characterized with jobs and their prop-
erties like functionality, computation time, degree of criticality, which are
extracted from the system requirements and specification document. This
constitutes the system architecture and SW model in Step 1 (shown both in
Algorithm 1 and in Figure 3.2).

In Step 2, constraints are modeled, which need to be satisfied during the
mapping to ensure correct system behavior. All constraints imposed on ap-
plication or platform level are extracted from the specification or defined by
a system designer before resource allocation can take place. Prior to do the
allocation job information is needed as well, which includes measurements or
estimations of job code and data size and timing requirements (as shown in
Figure 3.2). Measurements on existing code or estimations can be used to
obtain timing information, e.g, determining jobs CT s. For SC jobs, designer
has to specify the required degree of replication in order to ensure FT. Other
types of constraints, such as the computational capability and memory ca-
pacity of the computing nodes as well as the network bandwidth have to be

3.5. THE INTEGRATED DESIGN FRAMEWORK 67

Algorithm 1 Generic methodology for system level design optimization

1: Derive the system architecture and model;
2: Extract design constraints;
3: Define design variables;
4: Order jobs and nodes;
5: Generate an initial current mapping - apply heuristics;
6: Generate candidate mapping - exploring neighborhoods;
7: a) Compare candidate mapping with the current mapping;

b) Go back to Step 6 until stoping criteria is met;
8: Define minimum requirements to select the mapping (the aspiration values);
9: Assess/evaluate the mapping and return the good mapping (a near-optimal one);

Near-optimal

mapping

SW model

Architecture model

(HW resources)

Design constraints

& variables

non-feasible

Feasible

mapping

Prime driver:
Dependability,

real-time

Assessment/

evaluation

Optimization

applied ?

yes

no

Optimization

(dependability, RT,

power, resources)

System specification

and requirements

Job allocation &

schedulability

Scheduling

succeed

Abort, Change/

configure HW

resources

SW-HW MappingJob information
estimation:

- EST
- CT

- code size

- data size

Job and node

ordering

fail

succeed

iterative

Prototyping

Constraints

handling

it
e
ra

ti
v
e

Figure 3.2: System level co-design and optimization flow

extracted from the platform details. In the previous chapter we have already
defined a set of such constraints. Design variables are defined in Step 3,

68CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

which are employed in the mapping optimization phase shown in Figure 3.2.
Variables are used for capturing the design criteria and they strongly depend
on the objectives of the system design [116] and on the considered system
model.

Mapping algorithms need heuristics to efficiently prune the search space
and to achieve good performance. Of particular importance are job and node
ordering that decide which job to assign next and what node to assign that
job onto. Job and node ordering are described in Step 4. A crucial and the
most important part that arises at this design stage is the mapping of jobs
onto suitable nodes. An initial mapping is created in Step 5 where allocation
and scheduling is performed off-line in the early design phase. It is necessary
to satisfy the hard constraints during the creation of an initial mapping. The
allocation is performed iteratively and the outcome is used for scheduling. If
allocation or scheduling fails, e.g., if all constraints are not satisfied due to
the lack of enough resources then an infeasible mapping is aborted (see Fig-
ure 3.2). Furthermore we may need to change or reconfigure the architecture
with more resources, e.g., adding more nodes to the architecture or adding
certain sensors/actuators to the nodes in order to create a feasible mapping.
The result of this step is a feasible mapping and is likely to be insufficient
from a system design perspective. However use of this mapping as an input
to the optimization resulted in a significant performance gain and reduces
the search space considerably. We elaborate more on this in the evaluation
chapter (see Chapter 6). The purpose of the rest of the steps is to find a
better mapping by using the developed quantification and optimization tech-
niques. In this regard, Step 6 generates a candidate mapping from a set of
possible solutions. Candidate mapping is generated by exploring the neigh-
borhood spaces. In order to select a better design, the candidate mapping
is compared with the current mapping in Step 7. The value of the mapping
is calculated by using the MVO function. If a better mapping is found, the
current mapping is updated. This step is iterative so that the comparison
can be made with all the possible mappings. This way the co-design space
is explored. The optimization aspect is shown at the end part of Figure 3.2.
In Step 9, the mapping is evaluated and assessed to ensure that it satisfies
the minimum system requirements defined in Step 8. Essentially, we are in-
terested in finding a near-optimal mapping meeting particularly the design
objectives of dependability/FT, RT and resource utilization.

Overall, the integrated design framework encompasses the following de-
sign challenges which are further elaborated in the subsequent sections and
chapters:

. Requirements analysis,

3.5. THE INTEGRATED DESIGN FRAMEWORK 69

. SW-HW mapping – allocation and scheduling,

. Design optimization, and

. Prototyping

3.5.2 Requirements Analysis and Specification

At the very beginning of the design process the system designer has to spec-
ify the functionality and extra-functionality of the target system domain.
Specifying systems in a proper way is an important task. A system may
fail either because it does not act in accordance with the specification, or
because the specification did not describe its function adequately [28]. For
example, defining the degree of criticality for SC systems, the criticality has
to be set properly because the FT design decision depends on it. Therefore
a good and error free system design relies on adequate requirements specifi-
cation. If the requirements are inconsistent, incomplete or invalid then the
design will probably be inappropriate or even useless. Moreover faults/errors
detected during development and testing phases are one order of magnitude
more costly to fix them those detected during requirements phase [117]. Thus
a consistent and complete specification is essential.

The consideration of varied mixed criticality heterogeneous systems re-
quires advanced techniques to ensure properties such as correct behavior and
adequate performance. These difficulties yield complex requirements speci-
fication and raise many challenges along the way. As SW is an important
factor for innovation and creation of value in modern industries (SW will
make an estimated 38% value creation of total production costs in the year
2010 [118]), high quality and reliability SW should be achieved. One critical
precondition for reaching high-quality automotive SW is correct SW require-
ments. The development of embedded SW systems is becoming a cause of
widespread concern due to the risk of errors. Specification errors represent
the majority of the failure caused in SW development. Therefore an error free
requirements specification is the first design goal to achieve dependability by
design. Once exact and correct requirements are elicited, different specifica-
tion representation models and languages can be used to involve them further
in the co-design process. Examples include sate oriented models [119], which
represent the function of a job with a set of states and a set of transitions
between them, e.g., petri net, finite state machine etc. [8] – page 33 and mod-
eling approaches such as unified modeling languages (UML) [120], Y chart
modeling language [62] and the SAE (society for automotive engineers) ar-
chitecture analysis and design language (AADL)[121] which is a part of the
architecture description language (ADL) [122].

70CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

3.5.3 SW-HW Mapping

Proper execution of the specification describing jobs functionalities onto node
processors entails the decision of how and which nodes will host what func-
tionalities while maintaining large variety of design constraints. This process
is carried out by performing the mapping of SW (job functionalities) onto
HW (nodes). The mapping is a crucial design step of the co-design process
enabling trade-off analysis between SW and HW. Considering a wide range
of constraints such as dependability, timing and resource constraints, Chap-
ter 4 presents a heuristic based systematic resource allocation approach for
the consolidated mapping of SC and non-SC applications onto a shared dis-
tributed architecture such that their operational delineation is maintained
over integration. We describe different mapping strategies and policies prior
to do the assignment of jobs onto nodes. The strategies include FT, reduc-
tion of communication and influence, schedulability and resource utilization.
These policies are taken into account while constructing the mapping. We
propose an ordering heuristics to prune the search space. Thus a mapping is
created efficiently by reducing the search space and finding a feasible solu-
tion with less number of iterations. The premises of the ordering heuristics
is to order the jobs and nodes according to their importance to take part in
the assignment process. Our mapping algorithm is a multi-phase assignment
process that explores various combinations of mappings subject to specified
constraints. The algorithm considers different criticality jobs at different
phases in order to achieve a maximum separation (minimum influence) be-
tween them.

3.5.4 System Design Optimization

The design should make the best use of available resources. The mapping of
jobs onto nodes should be as effective and efficient as possible necessitating
the design optimization. Optimization looks for the best possible solution
in a design space. The optimization process improves the system design
either from single objective or from multiple objectives. The example of op-
timization can be found in everyday real life such as finding the shortest path
between home and office to save time and fuel cost, getting the suitable warm
water by tuning the hot and cold tab at the expense of less hot water, turn
on the oven a prior to cook to save energy and cooking time etc. The design
of heterogeneous embedded systems comprises of SW and HW together with
the consideration of various emerging design criteria from such systems en-
tails performing the multi objectives optimization in the co-design process.
Moreover in order to avoid inefficient resource usage, optimization is applied

3.5. THE INTEGRATED DESIGN FRAMEWORK 71

since faster processors and large number of nodes and resources as many as
needed may not be affordable due to the cost constraints. As our provision is
to design an integrated approach where optimization allows transferability of
functions from heavily used nodes to a less used node making the resources
properly utilized. New and innovative functionalities may need to be added
and existing functions may need to be upgraded over system life time. Op-
timization supports such scenario where new functionalities to be integrated
later in the design as it enables design adaptability and scalability [123].

In our design process during the mapping stage we first allocate jobs onto
nodes according to the heuristic of reducing influences so that the mapping
algorithm can possibly find a better solution. However there can be several
variables that need to be improved simultaneously and can have more than
one feasible mapping and even more than one local optimal or near-optimal
mapping. Therefore we need mechanisms to explore all the feasible regions
and consideration of different variables in order to create a suitable optimized
mapping. Consideration of multiple variables together entails the trade-off
analysis between variables that can be resolved by applying the weight ac-
cording to the importance of the variable as well as the system designer
can informally weigh the trade-off. Different objectives/variables are com-
bined into a single function by applying weights expressing their importance,
and/or reached by using multi objective optimization techniques presented
in Chapter 5. In order to find a near-optimal solution a Multi Variable Opti-
mization (MVO) approach is developed. The approach considers satisfaction
of multiple constraints and optimization of several competing variables at
the same time. Each of the considered variables are estimated and mod-
eled through appropriate technique and optimized during the MVO process.
The design is optimized by using an existing metaheuristics based optimiza-
tion algorithm. We use simulated annealing (SA). Section 5.3 depicts the
reasoning for choosing SA and elaborates the MVO-SA approach.

3.5.5 Prototyping

After the integration and evaluation process once the system designer is sat-
isfied with the developed design, the design is prototyped in order to deploy
a system onto the target architecture. In order to ease the development
process a set of supporting tools is integrated in a single platform and the
design is prototyped. For this we have developed a transformation based
design approach adhering to model driven development [124] and platform
based design [125] principles. By the guidance of the system level co-design
and mapping process, we generate platform specific post integration model
which controls the deployment task of the target applications. The prototyp-

72CHAPTER 3. SYSTEM LEVEL CO-DESIGN AND OPTIMIZATION APPROACH

ing starts with specifying the systems in an abstract model we call it platform
independent specification model. Primarily, in the prototype UML [120] and
XMI (XML (extensive markup language) Metadata Interchange) [126] are
used as modeling languages for the specification and representation of differ-
ent models. We elaborate on prototyping in Chapter 7.

Chapter 4

Dependability Driven SW-HW
Mapping

Embedded systems functionalities are increasingly being implemented in SW.
However the availability of physical resources is not necessarily such that
each SW-C can be allocated to its own HW node. The situation is limited
by physical (space, size), weight and economic constraints. Therefore map-
ping of those SW-Cs needs to be performed onto limited and shared HW
resources. As already mentioned, the mapping problem becomes intractable
to find a feasible solution and invariably leads to a constraints satisfaction
problem. It becomes even more complex when considering extra-functional
requirements and objectives in the design. Thus, in general this problem re-
quires development of heuristic based techniques to solve them in a tractable
manner. Given the highest priority on designing SC embedded systems,
a heuristic based dependability driven mapping of SW functionalities onto
HW nodes is what is needed while satisfying extra-functionalities and HW
imposed constraints.

We develop a framework which systematically guides such mapping of
SW-Cs (jobs) onto HW-Cs (nodes). The main characteristics of the map-
ping are (a) to provide FT assuring a certain level of dependability desired
by the user, (b) to enhance dependability by reducing the probability of er-
ror propagation, and (c) to satisfy the timeliness properties (RT) through
schedulability analysis. Other requirements and constraints, e.g., satisfac-
tion of need of certain resources and desire to reduce the communication
load are taken into account as well to ensure a valid suitable mapping. A
key feature of the mapping is the job and node ordering heuristics. Dur-
ing the assignment process jobs and nodes are selected from an ordered list.
The mapping is based on these premises which are discussed in details. This
chapter mostly covers the answer of Research Question 3 [RQ3], particularly

73

74 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

the creation of a feasible SW-HW mapping. The developed algorithm for do-
ing the mapping employs ordering heuristics (presented in Section 4.3) and
different mapping strategies in its construction. The constraints set C are
satisfied during the assignment in each phase of the algorithm. The creation
of a feasible mapping is accomplished by using an iterative process. In or-
der to facilitate the representation of the mapping and ordering heuristics, a
supporting data structure is described. To demonstrate the usefulness and
effectiveness of the approach the mapping process is applied to an actual
automotive system which is illustrated in Section 4.5. For this illustration
we use a HW architecture where nodes consist of dual core processors. One
core is for the assignment of SC applications and the other for non-SC appli-
cations. The experimental evaluation of the mapping is given in Chapter 6
and is prototyped in Chapter 7.

4.1 Basis of the Mapping

The strategies are outlined that drive the SW-HW mapping assuring the
appropriateness of system design from FT and RT perspectives. We start
by discussing the strategies for ensuring FT, followed by discussions on the
desire to reduce sensitivity to errors by influence reduction. Different FT
schemes are described which either tolerate permanent or transient faults or
tolerate both types of faults. The schedulability analysis is then presented. In
order to produce an schedulable mapping all these strategies are considered
in the allocation phase of the design.

4.1.1 Fault Tolerance Schemes

Traditionally FT scheme predominantly utilized HW based redundancy, e.g.,
Multi-computer Architecture for Fault Tolerance (MAFT) [127], Maintain-
able Real-Time Systems (MARS) [128], XBW [4] and JAS 39 Gripen [129].
The active replication based FT is used in order to tolerate both permanent
and transient faults. Usually multiple HW components/nodes are formed as
a single unit called as fault tolerant unit (FTU) in order to tolerate either
one permanent and/or one transient fault. When a node detects a fault,
it falls silent and other replica nodes provide the necessary services. In this
approach adding a new function requires to add a new HW node which is fur-
ther needed to be replicated to provide FT. Hence this method of redundancy
incurs high HW costs for adding new functionalities.

Thus, in distributed hard RT systems, FT is usually achieved through
active SW or timing redundancy. In case of active replication, critical SW

4.1. BASIS OF THE MAPPING 75

components/jobs in the system are replicated and the replicas perform their
services in parallel [130]. The technique employs replica deterministic agree-
ment protocols, e.g., assure that all replicas start with the same initial state
and perform the same operation. For timing redundancy, once there is a
fault during the primary execution of a job it repeats the execution from the
beginning. The FT scheme presented in this thesis ensures dependability
through replication of jobs from SC applications. FT is provided by allocat-
ing replicas of jobs onto different nodes and either having recovery replicas
to take over when a failure is detected, or use voting to mask the failure of a
job. As jobs from an application may not be equally critical, all jobs from a
single application do not need to be replicated to an equal level. The degree
of replication of jobs is specified by the system designer based on the level
of criticality, e.g., derived from the SIL level or from the specifications of the
system or from the experimental vulnerability analysis [131] results. If the
user sets a criticality degree (usually based on the knowledge and complexity
of the application) uniformly on an application, all the jobs from that appli-
cation have to be replicated equally. Replication of critical jobs makes the
system more dependable. However overprotection leads to brute replication
that may in turn come at the expense of increased hardware cost, power and
schedulability. Thus a suitable degree of criticality needs to be set for each
application jobs. We have also investigated different techniques complement-
ing active SW based replication, such as re-execution, checkpointing [132] or
roll-back recovery and interplay of these techniques (e.g., the interplay be-
tween active replication and re-execution [85]). Figure 4.1 shows the trade-off
between different redundancy based FT techniques such as spatial and tem-
poral redundancy, where the system tolerates 2-transient faults. Prior to
execute any FT scheme, the fault needs to be detected. The fault detection
process detects the existence of faults in the system either implemented with
the FT schemes or implemented separately. Examples of fault detection tech-
niques include signatures, HW watchdogs, assertions, comparators etc [133].
The overheads in time for fault detection and recovery always need to be
considered with the computation time of particular job.

As we see from Figure 4.1 (a) that the SW based active replication uses
more resources while taking less time to finish the computation. This con-
figuration tolerates permanent faults as well. Whereas techniques like re-
execution and checkpointing (and combination with replication) use com-
paratively less physical resources but incur large time overhead and are only
applicable for transient faults (see Figure 4.1 (c), (d) and (e)). The primary
backup technique computes a replica if there is a fault or error in the primary
replica (the replicated job which starts executing first).

Under the assumption of transient fault, [85] has shown that the inter-

76 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

Fault

Detection

(without

recovery)

Time redundancy

S
p
a

tia
l r

e
d
u
n
d
a
n
c
y

j1
1

j1
2

j1
3

N0

N1

N2

Primary backup (b)

j1
1

j1
2

j1
3

N0

N1

N2

Active replication (a)

j1
1 j1

2
N0

j1
3

N1

Re-execution and replication (e)

j1
1 j1

2 j1
3

N0

Re-execution (c)

j1
1 j1

2 j1
3N0

Checkpointing (d)

Fault detection

overhead

Tolerating 2 faults

Fault recovery

overhead

Check-pointing

overhead

Figure 4.1: Trade-off between different FT schemes (a)–(e)

play of active replication and re-execution can provide an optimized system
design from the scheduling point of view and thereof provide FT under lim-
ited resources. When the slack (defined as how unloaded a processor is)
in scheduling does not allow the entire job re-execution, checkpoints may
need to be inserted. The checkpointing or roll-back recovery requires less
amount of computation time than complete re-execution on average. So the
combination of active replication and checkpointing would be even a better
technique than the combination of replication and re-execution for tolerating
transient faults [134], which may tolerate more number of faults and may
require less amount of computing resources per se. Thus a combination of
replication and re-execution or checkpointing can be used as an FT scheme
when transient faults are assumed as shown in Figure 4.1 (e). The desired
FT technique depends on the considered fault model and also depends on
particular application requirements. If an application needs to tolerate a
permanent fault it has to be replicated and on the other hand if it needs to
tolerate only transient faults then re-execution/checkpointing would suffice
provided that the application meets the deadline.

In this work we consider SW based active replication for tolerating both
transient and permanent faults. The reasons for choosing active job repli-
cation over roll-back recovery or checkpointing is that while on one hand
we consider tolerating permanent faults and on the other hand in hard RT

4.1. BASIS OF THE MAPPING 77

systems roll-back recovery is often of limited use [43] – page 13, due to, e.g.:

(i) As the roll-back recovery can take an unpredictable amount of time, it
is difficult to guarantee the deadline after the occurrence of a fault,

(ii) An irrevocable action which has been effected on the environment can-
not be undone,

(iii) The temporal accuracy of the checkpoint data is invalidated by the
time passed between the checkpoint time and the instant now and

(iv) Usually a perfect fault detection mechanism and permanent fault free
data storage are assumed which may not be the case in practice.

In the following we briefly discuss several FT schemes which are shown
in Figure 4.1.

FT Scheme 1: Active Replication

SW based active replication is used as an FT scheme which depends on
the SW redundancy in spatial domain where replicas execute in parallel on
distinct computing nodes. SW-Cs are replicated according to their degree
of criticality. All the replicas execute their operations independent of fault
occurrences. If there is a fault in one replica then other replicas provide the
necessary services. This type of FT scheme is shown in Figure 4.1 (a) where
the job tolerates either 2 permanent or transient faults. This FT scheme
though take more resources, tolerates both permanent and transient faults.
The possibility of meeting application deadline is higher as comparatively it
takes less time than other FT schemes which are based on timing redundancy.
As mentioned earlier with the reasons that we use active replication based FT
scheme in our approach. For the sake of completeness we briefly discuss about
the following schemes where most of them are based on timing redundancy.

FT Scheme 2: Primary Backup

In the primary backup FT scheme the main or the primary job run on a
computing node and provide services until there is a fault. If there is a fault
in that particular job then the backup replica starts execution on a different
node and provide the necessary services. Again if there is a fault (in case it
tolerates 2 transient faults) in this backup replica then the third replica takes
over which is shown in Figure 4.1 (b). However this configuration can tolerate
permanent faults as well. One replica executes at one time, when there is
a fault the next backup replica is triggered to execute. An FT scheme by

78 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

using the primary backup scheme for an static scheduling of heterogeneous
systems is described in [135] where the technique tolerates one permanent
fault.

FT Scheme 3: Re-execution

This FT scheme is based on the timing redundancy. A job is re-executed on
the same processor when there is a fault during the first time computation.
The job starts re-execution from the same initial state. This type of FT
scheme incurs large time overhead which is not a suitable approach for hard
RT applications with short deadline. The deadline of the application has to
be maintained such that the RT properties are not violated. The scenario
is shown in Figure 4.1 (c). The re-execution process is a recovery technique
with single checkpointing.

FT Scheme 4: Checkpointing

Due to the large time overhead of re-execution process (as the job needs to
run with complete CT to recover from a fault) a more complex FT scheme can
be used to reduce the timing overhead. In this scheme the execution process
is divided into several parts called as checkpointing. Different states of the
execution of a job are stored or checkpoint and the job starts re-execution
from that point when there is a fault. Thus checkpointing avoids a complete
re-execution and takes less time to recover from a fault. The phenomena is
shown in Figure 4.1 (d). Checkpointing can be made periodically either static
or dynamic or it can be made depending on the states and knowledge of the
application job. More checkpointing increases the complexity and checkpoint
overhead on the other hand less checkpointing requires long execution time
to recover (e.g., re-execution precess requires one checkpoint), thus a suitable
number of checkpointing is necessary. An analysis of checkpointing for RT
systems can be found in [97; 132]. The deadline of the application has to be
maintained while performing checkpointing.

4.1.2 Influence and Communication Reduction

By allocating jobs with the highest mutual communication onto the same
node, we strive to minimize the interactions and influences between jobs and
the communication load on the physical network. The allocation of highly
communicating jobs onto the same node is beneficial both for reducing the
bandwidth and confining the inter job error propagation within a single node.

4.1. BASIS OF THE MAPPING 79

In doing this, it is important not to violate FT, timing and resource con-
straints. Communication clustering heuristics, which attempts to allocate
highly communicating jobs to the same node, thus reducing the overall com-
munication load on physical network, have been addressed in [84; 136]. As
we endeavor to design an integrated embedded architecture where several
nodes share a single network, the communication clustering heuristic is de-
sirable. Between two communicating jobs, there is an influence that may
lead to propagation of errors from one job to the other. When communi-
cation between two jobs is high, the influence between them is considered
high as well. If a job is affected by an error of the node it is running on,
it might propagate errors by interacting with jobs on other nodes. These
interactions risk the failure of multiple nodes and may consequently lead to
an overall system failure which are undesirable. Moreover messages sending
over the network can cause loss of messages due to transmission error, e.g.,
in automotive cars EMI may cause communication failure due to transient
errors. In Section 5.2.1 we describe a lot more on the influence including how
to measure and estimate influence.

Example Describing the Benefits

We consider an example application (similar to [137]), which consists of four
jobs j1, j2, j3, and j4. They need to be mapped onto an architecture consists
of two nodes (n0 and n1) communicating via a network. The application
and the architecture is shown in the upper part of Figure 4.2. All jobs
must finish their execution by 140ms, i.e., by the deadline of the application.
Individual CTs for each job are shown in the figure, e.g., job j1 takes 40ms
for the execution. Each job takes same amount of CT to execute on either
processors. j1 is a predecessor of j2 and j3, and sends messages m12 and
m13 to j2 and j3 respectively. j4 is a successor of j2 and j3, and receives
messages m24 and m34 from j2 and j3 respectively. A TDMA based network
is assumed for the communication where a TDMA round TDx comprises
two slots s0 and s1. For the purpose of deterministic message transmissions
node n0 and n1 are statically assigned to slot s0 and s1 respectively. The
slot length of the network is equal to 10ms and maximum 2 messages can be
sent per slot. The time for intra-communication (communication within the
same node) is assumed to be zero. This is shown in Figure 4.2 (b) when j1

and j3 are allocated on node n0. These two jobs communicate through the
services provided by the OS kernel layer while taking a negligible amount
of time comparing with the time taken by the communication channel. We
assume that the partition switching time is also negligible.

In the mapping configuration shown in Figure 4.2 (a), jobs j1 and j4

80 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

j1

j2

j3

j4

30

40 20

m34

m24

m13

m12

n0

s0 s1 s0 s1

j1

m12

j2 j3

s0 s1

j4

... s1

n0

n1

m24 m34

Length

decreases 30ms

m13

(a)

(b)

n1

30

140ms

s1

m12 m34

s0 ...

j1 j3

j2 j4

OS Kernel

j1 j3

m13 m13

n1n0

TD0 TD7TD1

Figure 4.2: Reduction of influence and communication overhead

are assigned on node n0 and j2 and j3 are assigned on n1. As we see that
this mapping takes 140ms to finish the computation of all the jobs which
just satisfies the deadline and sends 4 messages over the network. This is
due to directly interacting jobs are allocated on the separate nodes where
job j4 waits to start execution for the result of j3. Whereas the mapping
configuration shown in Figure 4.2 (b) (interacting jobs are on the same node)
takes 110ms which is 30ms less than the previous mapping configuration
and only 2 messages sends over the network. Therefore this configuration
decreases the probability of messages loss over the network as well as reduces
the error propagation probabilities between nodes.

We emphasize the following key benefits (where first two benefits enhance
dependability) of assigning highly interacting jobs to the same node:

(1) Restricting the possible nodes from correlated faults,

(2) The probability of loosing messages over the network is reduced,

(3) The communication load on the network is reduced (may allow for the
use of a slower but cheaper bus [67]), and

4.1. BASIS OF THE MAPPING 81

(4) Increases the over all performance by reducing the total execution time
(computation time + time to send/receive messages) of a job since
network delays are avoided.

Reducing Messages Loss – Perspectives

The transmission error, e.g., EMI may cause a severe threat to the correct
behavior of the system functionality. In automotive systems, the EMI can
either be radiated by in-vehicle electrical devices (switches, relays etc.) or
come from a source outside the vehicle (radio, radars, flashes of lighting).
EMI could affect the proper functioning of jobs by affecting the message
transmission over the network and also could affect the correct functioning
of any of the electronic devices, e.g., aboard a car. The transmission support
is particularly weak link and the use of an all-optical network, which offers
very high immune to EMI, is not generally feasible because of the low-cost
requirement imposed by the industry. With a redundant transmission sup-
port such as in TTP/C, it is assumed that in case a single-bit or multiple-bits
burst error is detected by cyclic redundancy checksum (CRC) on one channel,
the redundant data on the unaffected channel is used. Even in this situation
the network is not immune to transmission errors though provide some re-
silience to those errors [11]. A perturbation is likely to affect both channels
in quite a similar manner because they are identical and very close one to
each other. There is an ongoing research at NASA to avoid communication
failure due to transient error caused by EMI. The proposed idea there is to
use ROBUS (Reliable Optical BUS) [138] which is more immune to transient
errors caused mainly by EMI. However the solution of using such network is
very costly.

Other possibility could be on network protocol level such that either send-
ing less number of messages over the network which reduces the probability
of messages being corrupted or finding a way of using network such that less
number of messages get corrupted even though there is a transient error on
the communication channel. The second criteria is a suitable one for the
replicas because replicas send messages over the network anyway as they are
distributed over distinct nodes. When two replicas send messages in con-
secutive slots and if a transient error occurred between end of the first slot
and beginning of the second slot then there is a probability of loosing mes-
sages from both of the replicas. Messages from two replicas can be sent such
that a gap (preferably at least the length of the perturbation) is kept in the
network between messages in order to minimize this probability of loosing
messages from both replicas. If the message size is not equal to the length of
the slot then first message can be sent at the beginning of the corresponding

82 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

node slot and the second message can be sent at the end of the assigned slot.
Other possibility is to assign two replicas onto two different nodes where
those nodes do not use consecutive slots.

4.1.3 Schedulability Analysis

Schedulability analysis deals with the timing analysis that provides the condi-
tion to satisfy the timing constraints of RT systems such that a valid schedul-
ing can be found for a given set of jobs. The timing constraints (precedence
and deadline) defined in Section 2.3.6 describe the RT properties of the sys-
tem. In this section we provide a schedulability analysis to satisfy those
constraints. In the mapping algorithm during the assignment of jobs the
timing constraints are checked to assure that the allocation is schedulable.
We assume that jobs may start executing from their earliest start time (EST)
and takes a certain amount of CT which must finish before their deadline.
If there are any precedence relations between jobs these must be preserved.
When assigning jobs to a processor which already hosts one or more jobs,
timing constraints are checked to ensure schedulability. The condition for
schedulability presented in this thesis is necessary, and if preemptions are al-
lowed, the condition is also sufficient. Since the proposed mapping takes place
during the early stage of design, we do not enforce any particular scheduling
strategy. Furthermore, there is no restriction on choosing either periodic or
aperiodic jobs. As the underlying TDMA based time triggered communica-
tion base naturally supports periodic jobs, these are utilized in the examples.
In general, most control applications specially SC applications such as the
example in automotive area, often use periodic job sets.

For checking timing constraints, we let J be the set containing all jobs
already assigned to that node, as well as the job we are about to assign. If the
difference between maximum end time (highest deadline) and minimum EST
for any possible combination of jobs in J is less than the sum of their compu-
tation time, then we cannot assign the job to this processor. If the resulting
mapping is to be schedulable, the condition shown below (Equation 4.2) must
hold for all subsets of jobs to be allocated on the same processor.

max∀j∈J (Dj)−min∀j∈J (ESTj) ≥
∑
j∈J

CTj (4.1)

Where J is the set of jobs that are being checked.

We now consider an example. Two jobs j3 ≡ {EST, CT, D} ≡ {2, 4, 10}
and j4 ≡ {7, 6, 14} are already assigned to a given node. If we try to map

4.1. BASIS OF THE MAPPING 83

another job j5 ≡ {5, 5, 10} to this node, timing constraints are violated due
to this job as the combination does not hold Equation 4.2. Scheduling of
these jobs will not be possible (see Figure 4.3) since ((14− 2 = 12) < (15 =
4+6+5)). Thus j5 must be assigned to a different node. Of course, the total
computing time required by the jobs running on a single processor must not
exceed the computational capability provided by that processor.

0 1 5 62 98743 10 11 12 13 14

Timing conflict

Time

j3 j4

j5

Figure 4.3: Schedulability analysis

For communicating jobs located on different processors the message trans-
mission time through the network has to be considered to make the jobs
schedulable. We assume a maximum network delay TN for transmitting a
message across the bus. This time must be bounded by using an appropri-
ate protocol, e.g., a statically scheduled TDMA protocol [109]. Of course
the network delay depends on whether a node gets access to a TDMA slot
for sending messages in this TDMA round or will have to wait for the next
round. The deadline of a job sending a message to another job located on
a different node must be reduced by the time TN to accommodate for pos-
sible network delays (see Figure 4.4). The message transmission time (TN)
estimation process is described later in this section.

Job period

TNCT

Deadline for sending

messages over network

Job

deadline

time

EST

Figure 4.4: Network delay (TN)

84 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

Scheduling for Integrated Approach

A hard RT system must execute a set of jobs in such a way that the time-
critical jobs meet their specified deadlines [43]–page 228. Usually RT systems
are divided into hard and soft RT systems, where scheduling of hard RT sys-
tems must be deterministic and have to satisfy hard deadlines. In hard RT
systems often the jobs are periodic in nature (time triggered) and the schedul-
ing for hard RT systems is thus made statically at design time. Whereas for
scheduling of soft RT systems (event triggered) missing some deadlines may
be acceptable for a degraded system performance. Moreover scheduling can
be categorized as preemptive and non-preemptive. In a schedule if a running
job is preempted, i.e., interrupted by another higher priority/important job
then this is said to be a preemptive scheduling. On the other hand if a run-
ning job cannot be interrupted until it finishes the execution or releases the
currently occupied resource, is said to be a non-preemptive schedule.

In traditional system design one function is assigned to a single node and
therefore, typically, application jobs are scheduled on an independent pro-
cessor, i.e., uniprocessor scheduling. Often the scheduling is also performed
assuming an independent set of jobs. Such types of schedulability analy-
sis and scheduling have been discussed in [139]. We now briefly describe
some relevant scheduling techniques. One method for performing scheduling
is the fixed-priority scheduling techniques where jobs are prioritized before
scheduling, e.g., according to the shortest deadline or the earliest start time.
Using this technique, [140; 141] present timing and schedulability analysis
for hard RT periodic tasks model on a uniprocessor. Mostly the principal
assumptions made were scheduling independent tasks/jobs onto a single pro-
cessor. An efficient and exact method (sufficient and necessary condition of
schedulability) is presented in [142] for the same type of fixed priority RT
systems. However in our system design, jobs from different applications are
assigned onto single processor and jobs from single application are assigned
onto different processors, i.e., a multiprocessor scheduling. Moreover usually
jobs have precedence relations among each other, i.e., the execution of one
job depends on the result from the other. Consequently, new scheduling
techniques are needed [26] which can consider distributed applications, data
and control dependencies, and accurately take into account the communica-
tion protocols that have a significant influence on the timing properties. For
such distributed RT systems, specifically the type of systems whose failure
can be catastrophic due to violation of deadline, static/off-line scheduling
algorithms are used to build, a schedulable table with activation and finish
times for each jobs such that timing constraints are satisfied. An optimal task
allocation and scheduling for communicating periodic hard RT tasks on a het-

4.1. BASIS OF THE MAPPING 85

erogeneous distributed platform is stated in [70]. A distributed scheduling
for RT tasks on multi core platforms is described in [143], which is based on
a cache-aware Pfair scheduling (specially used for periodic jobs scheduling).
We have mentioned about various scheduling in the related work section.
Particularly, we employ time-triggered scheduling which can be applied on a
distributed platform/architecture consisting of multiple node processors. In
order to validate the schedulability analysis we use an independent embedded
time-triggered scheduling tool presented in [42].

TTP/TTX-Plan and TTP/TTX-Build (for TTP/C and TTX stands for
FlexRay) are comprehensive commercial tools and part of the TTP/TTX-
tools SW development suite [144; 145] employ scheduling techniques for dis-
tributed RT embedded systems. Using the time-triggered communication
protocol (TDMA as communication scheme), TTP/TTX-Plan and TTP/TTX-
Build tools derive the off-line schedule for messages and jobs respectively.
Both of the tools exploit the advantages of time triggered architecture paradigm.
These tools are the candidate set for our developed prototype to generate the
scheduling.

Message Transmission Time

We provide an estimation of the message transmission time TN through the
network which has to be considered for communicating jobs located on dif-
ferent node processors to make the jobs schedulable. A similar message
communication planning can be found in [109; 137] where the authors deter-
mine the slot and the specific TDMA round for a particular message to be
sent. The estimation of TN as well as the actual EST of allocated jobs are
provided by the Algorithm 2 which is adopted from [109; 137]. The assumed
time-triggered protocol provides deterministic access to the medium by or-
dering the message transmissions statically at design time and thus response
time is guaranteed.

We use following parameters in the algorithm. nk is the node which is
ready to send the message over the network and sk is a specific slot assigned to
that node. bmi

is the size of the message ready to send at time release time.
Therefore, release time is the message delivery time of a job. bsk

is the size
of corresponding slot where as startsk

is the starting time of the slot in a
round for the corresponding node nk. For a successor of more than one job,
maximum delay caused by all its precedence jobs is used for calculating the
actual EST and is computed as follows:

ESTi = max
{
ready(ji, nk), max∀jj∈pred(ji)

(
ft(jj, np) + TNi,j

)}
(4.2)

86 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

Algorithm 2 Network delay calculation for messages transmission
1: Function: message transmission(nk, bmi

, release time)
2: sk = assigned slot to nk; /*Slot assigned in TDMA round*/
3: round = floor(release time/round length); /*Calculate current round*/

/*Next step checks whether the slot of the current round has passed*/
4: if release time− round ∗ round length > startsk

then
5: round = round + 1; /*Increase a TDMA round*/
6: end if
7: while bmi

> bsk
− boccupied do

8: round = round + 1;
/*Increase round if the message size does not fit in this slot*/

9: end while
10: TNi

= round ∗ round length + startsk
+ slot length− release time;

/*Calculate the delay for a job depends on messages over the network*/
11: return(round, sk, TNi);
12: end message transmission

where ready(ji, nk) is the earliest time at which processor nk is ready to
start executing the job ji. pred(ji) is the set of all predecessor jobs of ji.
ft(jj, np) is the finish time of job jj in node np computed by the sum of
ESTj and CTj. The message transmission delay between (ji, nk) and (jj, np)
is TNi,j

.

After assigning the slot sk to a respective node nk in Step 2 of the Algo-
rithm 2, the TDMA round is determined where a node can possibly use its
assigned slot. Whether a node can send messages using this slot is checked
at Step 4. If the starting slot time startsk

of the corresponding TDMA round
has passed comparing to the message release time (release time) then the
next TDMA round is selected for the message to be sent. If the size of the
messages is bigger than the size of the corresponding slot (which is checked in
Step 7) then some messages are sent in the next TDMA round. The overall
delay due to the message transmissions over the network is calculated for
each successor job at Step 10.

Estimation of TN and EST : For inter-job communication, it is necessary
to calculate the network delay. This delay depends on the type and speed
of the network. The function shown in Algorithm 2 is used for calculating
TN and actual EST . In order to illustrate the determination process of
actual EST we use the same example and mapping configurations depicted
in Figure 4.2. We describe estimation of EST s for the jobs which are having
precedence relations. We choose the mapping configuration of Figure 4.2 (b)
where more messages are sent over the network. Node n0 and n1 are assigned
to slot s0 and s1 where the slot starting time starts0 and starts1 is 0ms

4.1. BASIS OF THE MAPPING 87

and 10ms respectively for every TDMA round where TDx = 20ms. We
progressively calculate TN and EST for each predecessor job. We calculate
the actual EST for job j2 which is dependent on j1 and can only start
execution once it gets message from j1. These two jobs are mapped onto
different nodes. TN needs to be calculated by the delay caused by the message
received from j1 which is assigned onto node n0. The release time of j1 is
40ms as it starts execution from 0ms. In this case the TDMA round will be
2 and the condition in Step 4 is not satisfied thereof no need to increase the
TDMA round. Thus the node will send the messages m12 and m13 of j1 from
this slot as the slot is unused yet and has the capacity of sending two messages
at the same time. j2 has to wait 10ms which is the TN (calculated at Step
10). If the size of the slot would have been smaller than the two messages
size then it has to wait another round to send the next message. The actual
EST of j2 will be (40 + 10) = 50ms (calculated from the Equation 4.2). In
this way we can estimate the actual EST of j4 considering all the previously
assigned jobs which is 120ms.

4.1.4 Resource Consumption

We explain the memory resource consumption denoted by Mr. Each job
has its own memory requirement. The total amount of memory required by
all jobs which are allocated to the same processor, has to be supported by
the memory capacity available for jobs on that processor. The utilization of
memory available for jobs on a processor should be less than or equal to 100%.
The following equation describes this relationship, where mi = memory used
by the ith job allocated to the kth node processor, mck = memory capacity
of that processor and n is the number of total jobs:

Mr = ∀i,k

∑
1<i≤n mi ∗Mi,k

mck

≤ 1 (4.3)

where,

Mi,k =

{
1 if ith job is assigned to kth node,
0 otherwise.

However the above memory strategies must not necessarily be hold in
every cases, e.g., if two or more processors share a memory device then the
memory capacity per processor must not be fixed a priori.

88 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

4.2 Supporting Data Structure

We introduce matrices for the purpose of ease structuring and implementing
the ordering heuristics and the mapping algorithm. The allocation compati-
bility matrix A is used to check the usable nodes for each job and accordingly
jobs and nodes are ordered (Job ordering 1a and 1b – Section 4.3.1). The
communication matrix C represents the communication between jobs and is
used to determine the most communicating jobs (Job ordering 2a and 2b).
These matrices are discussed in the following.

Allocation Compatibility Matrix A

A rectangular matrix Ak×n is used to describe the possible assignment of a
single job onto nodes, in such a way that rows represent nodes and columns
represent jobs, where k is the total number of nodes and n is the total number
of jobs. Note that all replicas of the same job are represented using only one
column. Each element of the matrix is filled with either 0 or 1, 1 if a job ji

can be assigned to a node nk and 0 if it cannot. Restrictions on which nodes
a job can be assigned to is the result of binding constraints and are mostly
determined by the use of particular resources, e.g., when a job needs sensors
or actuators.

Some special criteria are listed below (but not restricted to) for deciding
whether a job can be assigned to a node or not due to its binding functionality.

. When a job needs sensors or actuators,

. If a job needs any special I/O devices and peripherals,

. If DSP, ASIC or HW watchdog are needed by jobs, etc.

Communication Matrix C

A communication matrix of size n × n is used in order to determine the
most communicating jobs. Each element of the matrix corresponds to the
communication of a pair of jobs, and n being the number of jobs (counting
replicas of the same job only once). If there is communication between two
jobs i and j, we use the value Ci,j ≡ (bi,j) to represent the total amount
of data (bytes) being transferred. If there is no communication, 0 is used.
This means that the communication matrix by construction will be square
symmetric (the values of main diagonal are zero and the values of upper-
triangular and lower triangular are similar, see Table 4.2). Note that Ci,j

denotes the maximum amount of communication possible between jobs i

4.3. ORDERING HEURISTICS 89

and j for one time execution (i.e., the available size of sent and received
messages as defined by the system user) in a period.

Mapping Matrix M : The mapping matrix is an n×m binary matrix,
which represents the mapping of n jobs onto m nodes. Each element Mi,k of
the matrix is filled with either 1 or 0, 1 if a job ji has been allocated to the
node nk and 0 otherwise. This matrix has been implemented to represent the
resulting mapping and have used to check whether a job already has been
assigned to a node or not.

4.3 Ordering Heuristics

Ordering heuristics are used to create feasible mapping for a reduced number
of backtracking or even no backtracking is necessary if an optimal ordering
can be obtained [50]. The idea behind our ordering heuristics is to judi-
ciously determine the ordering of jobs and nodes in order to facilitate the
recursive assignment. Jobs are ordered so that the most conflicting and most
constrained jobs are handled first. Similarly, the nodes which allow the most
assignments are ordered first. During the mapping algorithm, we start by as-
signing the first job from the ordered list onto the first node from the ordered
nodes and continue until all jobs have been assigned.

The assignment process needs two important heuristics for having better
performance of solving the mapping problem, namely how to decide which
job to assign next (ordering of jobs), and which node to assign to this job (or-
dering of nodes). This is similar to so called variable1 (job) and value (node)
ordering heuristics which are concerned with the order in which variables
are instantiated and values are assigned to each variable. A good variable
ordering is one that starts with the variables that are the most difficult to
instantiate (i.e., most constraining variable ordering heuristic) and a good
value ordering heuristic is one that leaves open as many options as possible
to the remaining uninstantiated variables (i.e., a so-called least constraining
value ordering heuristic). Using an example we provide more reasonings on
the ordering heuristics. These ordering heuristics can have a great impact
on search efficiency. No backtracking would be necessary if an optimal vari-
able/value ordering is achieved [50], thus in such a case a linear time solution
for the mapping problem is possible. Also, [146] shows that a proper and good
selection of ordering can reduce, on average, the number of steps/iterations
to find a feasible solution. Consequently, a bad selection or no selection of
ordering may increase the number of iterations as well as the search space.

1The meaning of this variable is not the same as used in the optimization and other
part of the thesis. This meaning [50] is only used in this section.

90 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

There are several heuristics one can consider for the ordering, e.g., consider
those jobs first which participate in the highest number of constraints [146],
ordering jobs according to their combined resource consumption (computa-
tion, memory and bandwidth) in descending manner [37], or ordering them
according to their importance, or importance of their properties [79].

Therefore, a proper and good selection of ordering is essential and can
reduce the number of iterations to find a feasible solution. For creating the
mapping, we propose job and node ordering heuristics which are described
in the subsequent sections. The overall aim of the ordering heuristics is:
Generation of a list of the most conflicting (jobs that cannot be mapped on
the same node, e.g., replicas) and the most important jobs (if a job needs
any binding functionality) which can easily guarantee the feasibility of the
generated initial solutions.

Justification of Ordering Heuristics

The algorithm presented in Section 4.4 considers the most important and
conflicting jobs first for the assignment which can ease the creation of feasible
mappings. This consideration is realized by explaining the following example.

We consider four jobs j1, j2, j3 and j4 and their allocation onto nodes n1

and n2. Job j2 is a high critical job and is replicated twice j2a, j2b according
to its degree of criticality. We assume that two jobs (not the replicas) can
run on one node and three jobs can run on another node with sufficient
resources, i.e., a node can host maximum three jobs. Four types of constraints
{c1, c2, c3, c4} are defined which need to be satisfied during the assignment
process: c1 – due to the binding functionality j1 must run on n1, c2 – j2a

and j2b must run on separate nodes in order to tolerate faults, c3 – due to
computational capability and c4 – due to memory resource capacity. The
type c3 and c4 are common/general constraints that are always required by
each job and present in each allocation problem. Since they refer to all jobs,
do not give us a direct hint which jobs should be assigned first. On the
other hand, constraint c2 explicitly refers to conflicting jobs, i.e., replicas j2a

and j2b cannot be assigned onto the same node and c1 exclusively mentions
about importance of j1 which requires a sensor. Thus, j1 and j2 are to be
considered first for the mapping. Therefore we start by assigning j1, j2 and
then j3, j4 as follows: (a) assign j1 onto n1 as enforced by c1, (b) j2a and j2b

are assigned to n1 and n2 due to constraint c2, (c) j3 can now be assigned
to either node, we arbitrarily choose n1 and (d) j4 must be assigned to n2

(due to the resource constraints of the nodes). Now, assume an arbitrary job
ordering of j1, j3, j4, j2(j2a, j2b). The assignments are as follows: (a) assign j1

onto n1 as enforced by c1, (b) j3 can be assigned to either node, we arbitrarily

4.3. ORDERING HEURISTICS 91

choose first node n1, (c) j4 can be assigned to any node, we choose n1 again,
(d) as enforced by c2, j2a and j2b have to assign on different nodes but we fail
to assign on n1 due to c3 and c4, therefore, (e) backtracking (or back jumping
to step (b) and (c)) is necessary so that either j3 or j4 can be moved to n2 to
create a feasible assignment. When job j1 requires binding functionality is
considered last in the order list backtracking is also necessary. Of course the
proposed ordering is no guarantee that backtracking will never be necessary.
However we believe that the proposed a priori heuristics for ordering jobs
and nodes is a viable strategy for developing the SW-HW mapping.

4.3.1 Job Ordering

Job ordering heuristics are used to order the jobs in a list, i.e., to decide which
jobs to assign first. The compatibility matrix A and the communication
matrix C presented in the previous section is employed in the ordering as
follows:

1a. Create a sub-matrix Ã of the assignment compatibility matrix A, con-
taining only those jobs (columns) to be assigned in a Phase of the
allocation2. If a job can be assigned to a node the corresponding cell
of Ã is set to 1 otherwise 0.

b. Sum each column (representing a job) in the matrix Ã. Order the jobs
in ascending order, i.e., the jobs with the least possible assignments will
come first. By considering these jobs first, the search space is likely to
decrease since these jobs are the most constrained (with respect to
binding constraints). Ties are broken according to the second heuristic
given below.

2a. Create a sub-matrix C̃ of the communication matrix C, containing only
those rows and columns belonging to jobs that are to be assigned in
this specific Phase. For Phase II, a sub-matrix C̃ of the communication
matrix C is created, containing both the rows and columns belonging
to jobs that are to be assigned in this Phase, as well as those rows
and columns belonging to jobs assigned in Phase I. The reason for
including already assigned jobs in the matrix C̃ in Phase II, is that
jobs to be assigned in this phase belong to SC applications and thus
are more likely have communication with the jobs previously assigned
in Phase I.

2Phases I, II and III are used in the mapping Algorithm 3 described in Section 4.4.

92 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

b. Search the matrix C̃ and find the pair of jobs with the highest mutual
communication between them. Arbitrarily, select one of the jobs in the
pair and order that job first, followed by the second job in the pair. If
any (or both) of the jobs in the pair have already been ordered, just
ignore it. Continue with selecting the next most communicating pair
and order those jobs as described, until there are no jobs left. Ties are
broken arbitrarily. This heuristic can be applied stand-alone when jobs
are not restricted by binding constraints.

Note that for implementing these heuristics, it is not necessary to create
the full compatibility matrix A nor the full communication matrix C, the sub-
matrices (Ã and C̃) will suffice. Further the sub-matrix of the communication
matrix, which is used in Phase I is itself a part of the sub-matrix used in
Phase II. Hence, the sub-matrix of Phase II could be created and used in
Phase I, reducing the number of matrices that need to be created. Also, the
symmetry of the communication matrix (and its sub-matrices) can possibly
be exploited in the implementation. In this case the search for the highest
mutual communication pair relies either only upper or lower triangular part
of the matrix C̃.

4.3.2 Node Ordering

Just as in the job ordering heuristics, the same sub-matrix Ã of the alloca-
tion compatibility matrix A is used for ordering nodes. Nodes are ordered by
taking the sum of each row (representing nodes) in the sub-matrix Ã, and or-
dering the nodes in descending order. By using this ordering the nodes which
allow the most assignments are ordered first. Ties are broken arbitrarily.

Example Describing the Ordering Heuristics

We take an example which consists of four jobs j1, j2, j3, j4 and two nodes
n0, n1. Job j2 needs a sensor and node n1 has a sensor attached to it. Let us
assume that the mutual communication volume within a time period between
j1 and j2 is 4 bytes, between j1 and j3 5 bytes, between j2 and j4 8 bytes and
between j3 and j4 is 5 bytes. When the assignment compatibility matrix A
is created (Table 4.1), we see that job j2 can only be assigned to node n1,
correspondingly n1 is the only usable node for j2. Since j2 cannot be assigned
onto n0, we put 0 in the corresponding cell. All other jobs can be assigned to
any of the two nodes. We put 1 in the corresponding cell when a job can be
assigned onto a node. The ordering of jobs will start by j2 and node n1 will
come first in the node ordering. Ties are broken for other jobs by using the

4.4. THE MAPPING ALGORITHM 93

A j1 j2 j3 j4

∑

n0 1 0 1 1 3
n1 1 1 1 1 4∑

2 1 2 2

Table 4.1: Building assignment
compatibility matrix

C j1 j2 j3 j4

j1 0 4 5 0
j2 4 0 0 8
j3 5 0 0 5
j4 0 8 5 0

Table 4.2: Building com-
munication matrix

communication matrix (Table 4.2). Each cell of the communication matrix
is filled by the total amount of mutual communication volume in bytes of
the corresponding jobs pair. The upper and lower triangular parts of this
matrix is symmetric. Hence during the implementation we only need to
search for the communication pairs either in upper or lower triangular part.
We see that job j2 and j4 have high mutual communication among all the
pairs followed by the pair j4, j3 and j3, j1. Hence the job ordering will be
j2, j4, j3, j1 and the node ordering will be n1, n0. If a job appears more than
once in different pairs then from the first pair it is placed in the ordered list.
If we assume that maximum two jobs can be assigned on a single node due
to the computation and resource constraints then node n1 will host the jobs
j2 and j4 and n0 will host the jobs j3 and j1. The replicas are not included
in either matrices only the primary job is included. When a job is replicated
two times the corresponding communication link of the job is also replicated
and the communication volume becomes double. Only the primary replicas
(the main job) are considered in the communication matrix for their ordering.
The other replicas are not considered as they will be assigned onto different
nodes anyway and will disseminate messages over the network.

4.4 The Mapping Algorithm

On the background of particularly the SW and HW models, the constraints
set and on the premises of mapping policies (separation of replicas, schedu-
lability, reduction of communication and influences) and ordering heuristics,
we now present the mapping algorithm. The goal of the mapping is to as-
sign jobs onto available HW resources satisfying all the defined constraints.
The construction of the algorithm is inspired by the established constructive
heuristics in space allocation [48], in course timetabling [49] and by the order-
ing heuristics of the job shop scheduling constraint satisfaction problem [50].
The mapping algorithm employs the constraints handling techniques as well

94 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

as the search techniques presented in Section 3.3. The algorithm works in

Algorithm 3 Extra-functionality driven SW-HW mapping algorithm

Input: Set of jobs and nodes
Output: Mapped jobs onto nodes

1: Let J be the set of all jobs to be assigned in this phase.
2: Replicate jobs according to their degree of criticality, so that J now

contains a set of replicas. Replicas are represented as jia...z (e.g.,
if job j1 is replicated two times then it is represented as j1a, j1b).
/*Replication only occurs in Phase I*/

3: Order the jobs according to a job ordering heuristics, and let J
represent the list of ordered jobs.
/*Section 4.3.1 provides a discussion of the heuristics used*/

4: Order the nodes according to a node ordering heuristics, and let N
represent the list of ordered nodes.
/*Section 4.3.2 provides a discussion of the heuristic used*/

5: Select the first job ji ∈ J.
6: Select a node nk ∈ N that has not been evaluated already as a possible

assignment for ji.
7: Evaluate if the selected job ji can be assigned to node nk ∈ N. If

the assignment is possible, then assign ji to node nk, else go back to
Step 6.
/*See Section 4.4.1 for a detailed discussion*/

8: If the assignment was successful proceed to Step 9, else a dead-end has
been reached (i.e., a valid assignment cannot be found for ji). When
a dead-end is reached then backtrack, i.e., undo one or more previous
assignments and try alternative ones. If no feasible solution is
found by backtracking, then report that the mapping is infeasible and
terminate.
/*The backtracking goes back to the next most recently instantiated job, i.e, chrono-
logical backtracking*/

9: Remove the allocated job ji from the list J and then repeat (from Step

5) the same procedure until the list J is empty.

three phases and considers SC applications and non-SC applications sepa-
rately to reduce influences. As a result of component based design, SC and
non-SC applications communicate minimally, thus they can be treated sepa-
rately. To facilitate strong partitioning between SC and non-SC applications,
we allow that jobs of SC applications and jobs of non-SC applications can be
allocated onto separate processors or processor cores on the same node. The
jobs are assigned in three different phases, mentioned below:

Phase I: High critical jobs of SC applications,

Phase II: Non-replicated jobs (if any) of SC applications, and

4.4. THE MAPPING ALGORITHM 95

Phase III: Jobs from non-SC applications.

The prescribed algorithm is executed once in each Phase of the mapping
process. We start by considering the most conflicting jobs that cannot be
mapped on the same node (i.e, replicas) in the first phase. Throughout the
process the most constrained jobs (with respect to binding constraints Bf)
are assigned first. Using this ordering and assigning replicas in Phase I, the
number of backtracks are reduced (see experimental results in Section 6.2).
In Phase II, we continue with non-replicated jobs of SC applications, they
will be integrated with the replicated jobs of SC applications in a way that
reduces job influences. As the lower critical jobs from SC applications are
treated in a different phase, it is more likely that there will be less influences
between them. Finally, jobs from non-SC applications are allocated in the
third phase. A high level description of each mapping phase is outlined in
Algorithm 3.

4.4.1 Assignment Evaluation

An evaluation has to be performed a priori a job can be assigned to a node.
Different techniques are applied to satisfy the constraints while assigning jobs
onto nodes and to explore the search space. In this step of the mapping, all
the defined constraints hC are satisfied according to the procedure shown in
Algorithm 4. If the node is empty, i.e., there are no previously assigned jobs
to that node, then only binding constraints need to be checked. If there are
already assigned jobs on a node then apply retrospective techniques. If all
constraints (Bf , fault tolerance Ft, schedulability St and memory resource
consumption Mr) hold, i.e., consistency enforcing is ensured then the next
job is selected. While assigning jobs during Phase I, different nodes are se-
lected for the replicas in Step 6, which significantly reduces the number of
iterations as well as the number of backtracks to find the feasible solution.
If the verification of consistency fails, exploration continues with the next
node. When all nodes for this job has been checked unsuccessfully, the back-
tracking goes back to the most recently instantiated job, and so on (Step 8
of Algorithm 3). Backtracking is simply performed by swapping or moving
the jobs between nodes. After performing a move if a feasible assignment is
found then the algorithm is continued with selecting the next job from the
actual list. If a solution is not found after sufficient backtracking then the
algorithm returns an infeasible mapping.

96 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

4.4.2 Constraints Satisfaction Technique

Algorithm 4 Satisfaction of constraints during the mapping
1: Function: Constraints hC satisfier C(hC)
2: Initialize bool: Bf , Ft, St,Mr, hC, Feasibility;
3: hC = {Bf , Ft, St, Mr};
4: Let ith job is instantiated to assign onto kth node;
5: i also associates the corresponding job ID at this point;

6: repeat
7: Bf = bindFunctionality(i, k);

/*Checking the binding functionality Bf ∈ hC*/
8: if (Bf == true) then
9: Ft = faultTolerance(i);

/*Assuring replicas are not in the same node, Ft ∈ hC*/
10: if (Ft == true) then
11: St = schedulability(i);

/*Checking timing constraints, St ∈ hC*/
12: if (St == true) then
13: Mr = memoryConsumption(i);

/*Memory constraints checking, Mr ∈ hC*/
14: end if
15: end if
16: end if
17: if ((Bf && Ft && St && Mr) == true) then
18: return hC = true;
19: else
20: hC = false;
21: end if
22: if ((hC == false)&&

(all the nodes have been explored for ith job)) then
23: backtrack = changeAssignment(i);

/*Changing the allocation*/
24: if ((Bf && Ft && St && Mr) == true) then
25: return hC = true;
26: else
27: Feasibility = false;
28: Failed to satisfy constraints, i.e., hC = false
29: return Infeasible mapping;
30: end if
31: end if
32: if ((the list J is empty) && (hC == true)) then
33: Feasibility = true;
34: return Feasible mapping;
35: end if
36: until ((!Bf) ‖ (!Ft) ‖ (!St) ‖ (!Mr))

The constraints satisfaction algorithm (Algorithm 4) is implemented at

4.5. MAPPING ILLUSTRATION 97

Step 7 of the Algorithm 3. It is also applied while performing the backtrack
whenever necessary until all the constraints hC are satisfied. If any one of
the constraints is not satisfied then the next (k + 1)th node is selected for
assigning the current ith job. All the nodes are visited in this way. If the
constraint is still not satisfied then backtracking is necessary. The condition
whether all the nodes have been explored by a selected job is controlled by
the Algorithm 3.

4.4.3 Remarks

In the case when non-SC applications share the same processor as SC ap-
plications, some optional strategies are possible. After the jobs belonging to
SC applications have been assigned, nodes can be re-ordered in a way that
eases the assignment of non-SC jobs. As an example, ordering the jobs ac-
cording to the amount of remaining computation capacity of each node thus
better load balancing between nodes can be achieved. Another possibility
is to re-order the nodes according to least memory utilization or nodes hav-
ing less failure rate (useful when heterogeneous platform is assumed). All of
these re-orderings might also be beneficial from a dependability viewpoint.
Since non-SC jobs will be assigned primarily to nodes with few/no jobs from
SC applications, the separation of SC and non-SC jobs is likely to increase.
This will reduce the likelihood of errors occurring in non-SC applications
propagating to SC applications.

Since each node can host multiple jobs from different applications, we can
consider that the jobs should be assigned according to the physical placement
of HW nodes in order to reduce the wiring and communication overhead. For
example, the node located in the right front of the car can be allocated by
the jobs of right front brake-by wire system and by the jobs of right front
window lifter of doors subsystems.

4.5 Mapping Illustration

In order to illustrate the mapping process, we present real-life example of
automotive applications, consisting of one SC and one non-SC application.
We consider a HW architecture where each node (HW-C) comprises dual core
processors for the computation. To the best of our knowledge, no mapping
processes consider architectures making use of separate processor cores for SC
and non-SC applications. However this type of architecture might be required
for implementing highly dependable systems. To show the uniqueness of
our approach, in this illustration, we consider such an architecture. The

98 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

scheduling of such architecture can be found in [143]. We start by describing
the HW architecture onto which the jobs are mapped. Next, we describe the
applications forming our example and the jobs they consist of. We continue
by showing how the jobs of the applications are mapped onto nodes in the
architecture during different Phases of the mapping algorithm. Finally, we
summarize the results of the mapping.

4.5.1 HW Resources and Applications

The available hardware architecture for this illustration consists of four nodes
(n1, n2, n3, n4) each containing two processor cores. During the assignment
process we take the decision of assigning SC applications in one core and
non-SC applications on another core. The nodes are connected to a physical
network. All nodes have identical processors with equal computing power and
the same amount of memory and bandwidth. The memory capacity of each
processor of a node is 15MB and nodes are connected to a communication
channel with a bandwidth of 10kb/s. Node n3 has a temperature sensor
attached to it.

A brake-by-wire [147] system is used to represent a typical SC application.
The non-SC application is a door control system extracted from an actual
FIAT vehicle specification. Values for the different jobs (SW-Cs) properties
of the applications have been chosen to illustrate the mapping algorithm.

Safety Critical Application

The brake-by-wire system in a car is a SC application that must provide
services despite of any perturbations. The considered brake-by-wire system
consists of six jobs j1, j2, . . . , j6, namely the brake pedal sensor (BPS) which
produces the pedal signal. The brake force control (BFC) uses the pedal
signal to calculate the brake forces for the four actuators (BAFR-brake actu-
ator front right, BAFL-brake actuator front left, BARR-brake actuator rear
right, BARL-brake actuator rear left). BPS j1 and BFC j2 are SC jobs and
are replicated three times to run in a TMR setting. A structural model of
the brake-by-wire application is shown in Figure 4.5 (a) (before and after
replication). For simplicity, only one brake actuator (BA) is shown in the
figure. The values of job properties are shown in Table 4.3. In the commu-
nication column the entry 50 → j2 indicates that the corresponding row job
j1 sends 50 bytes of data to job j2.

4.5. MAPPING ILLUSTRATION 99

BPS BFC

BA

BPS

BPS

BFC

BFC

BPS BFC BAPedal_signal Brake_forces

SP

RM

LM

NBC

RL LL

RWL

LWL

 Key_status

Pos /ref

Open/close

Open/close

up/down

(a) (b)

Figure 4.5: Brake-by-wire application (a) and doors application (b).

Job list Name EST CT D Memory Communication
(ms) (ms) (ms) (MB) (bytes)

j1a BPS 0 5 14 5 50 → j2

j1b BPS 0 5 14 5 50 → j2

j1c BPS 0 5 14 5 50 → j2

j2a BFC 2 4 12 3 60 → j3, 60 → j4

80 → j5, 80 → j6

j2b BFC 2 4 12 3 60 → j3, 60 → j4

80 → j5, 80 → j6

j2c BFC 2 4 12 3 60 → j3, 60 → j4

80 → j5, 80 → j6

j3 BAFR 4 7 17 4
j4 BAFL 4 6 14 4
j5 BARR 7 6 20 6
j6 BARL 5 7 18 6

Table 4.3: Chosen values of job properties (brake-by-wire system)

Non-Safety Critical Application

The doors control application (assuming a two doors car) is a non-SC ap-
plication which controls the closing of the doors and windows as well as the
heating of the mirrors. We decompose this application into following 8 jobs
j7, j8 . . . , j14. A switch panel (SP) detects whether the switches are pressed
or released and sends the corresponding commands to the window lifter and
mirror. The mirror handler consists of two jobs - one for the left mirror

100 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

and one for the right mirror (LM and RM) which are designed for moving,
heating and comfort closing of mirrors. These two jobs require temperature
sensors (TS), i.e., they have binding functionality (Bf). The window lifter
consists of two jobs for lowering and raising the windows, left front window
lifter (LWL) and right front window lifter (RWL). The lock-unlock function
is responsible for locking, unlocking and dead-lock functionality of the door.
It comprises two jobs: right lock-unlock (RL) and left lock-unlock (LL). The
body computer node (NBC) coordinates the operation of the other jobs (mir-
ror, window lifter and lock-unlock) and sends the status information to the
switch panel (SP). A structural model of the doors application is shown in
Figure 4.5 (b). The values of job properties are outlined in Table 4.4.

Job list Name Bf
EST CT D Memory Communication
(ms) (ms) (ms) (MB) (bytes)

j7 NBC 0 7 15 7
40 → j8

30 → j13, j14

30 → j9, j10, j11, j12

j8 SP 0 6 16 8 40 → j9, j10, j11, j12

j9 LM TS 4 4 13 3
j10 RM TS 4 4 12 3
j11 LWL 3 8 17 6
j12 RWL 3 8 17 6
j13 RL 5 5 20 4 30 → j7

j14 LL 5 5 20 4 30 → j7

Table 4.4: Chosen values of job properties (doors application)

4.5.2 Illustration of Mapping Phases

We proceed by describing the allocation of jobs that takes place during the
three phases of our mapping algorithm depicted in Section 4.4. We demon-
strate the assignment of jobs from above stated two applications onto the
nodes of considered architecture.

Phase 1: Assignment of Replicated Jobs of SC Applications

In Phase 1, we consider the high-criticality jobs from SC applications. In this
example the high-criticality jobs are j1 and j2, which both have a degree of
criticality equal to three. We replicate these jobs to get all the jobs that need
to be assigned in this Phase. This gives us the following jobs to consider:

4.5. MAPPING ILLUSTRATION 101

j1a, j1b, j1c, j2a, j2b, j2c. We then proceed by creating the allocation sub-matrix
Ã and the communication sub-matrix C̃, which may assist in the ordering of
jobs and nodes. As none of the jobs require any special features, they can
both be assigned to any node. Hence, the sub-matrix Ã relevant for Phase 1
will contain only ones. Using the first job ordering heuristic results in a
tie. Thus, the jobs are ordered using the second heuristic. Since, we are only
assigning two jobs (replicas are not considered in the communication matrix).
Using the communication heuristics also results in a tie. The jobs are thus
ordered arbitrarily, lets assume they are ordered as j1a, j1b, j1c, j2a, j2b, j2c.

Now, we try to order the nodes using the sub-matrix Ã. The result is a tie,
since all jobs can be assigned to all nodes. This means that the nodes can be
ordered arbitrarily, lets say that they are ordered as n1, n2, n3, n4. We then
select job j1a and successfully try to assign it to node n1. Then we select job
j1b and try to assign this to node n1 as well. However the node assignment
evaluation (Step 7 of the Algorithm 3) shows that this is impossible since it
violates the requirement that replicas should be separated as a requirement
for FT. Consequently, job j1b will be assigned to the next node n2 and job
j1c will be assigned to node n3. Similarly, the three replicated jobs of j2 will
be assigned to the first three nodes. However in order to reduce the search
space for large number of jobs we take different nodes for replicas to be
assigned. The node assignment evaluations show that these assignments can
be performed without any violation of constraints. This concludes Phase 1.

Phase 2: Assignment of non Replicated Jobs of SC Applications

In Phase 2, we try to assign the non-replicated jobs of SC applications. In
the example, this means that jobs j3, j4, j5 and j6 are needed to be assigned.
Again, the assignment compatibility sub-matrix Ã cannot be used for de-
ciding the job ordering. Thus we use a sub-matrix C̃ of the communication
matrix C, to decide the job ordering. This reduces interactions and commu-
nication load on the network. The used matrix is shown in Table 4.5. As
discussed in the job ordering heuristics section, this sub-matrix also contains
the already assigned jobs j1 and j2. Applying the communication heuristics
we come up with the following job ordering: j5, j6, j3, j4 (with ties broken
according to lowest index first).

The nodes are already ordered. Job j5 can be assigned to node n1 with-
out violating any constraints. The schedulability analysis shows that job j6

cannot be assigned to n1 due to a timing constraint violation. The high-
est/maximum deadline among those jobs assigned (j1a, j2a, j5) and the job
(j6) about to be assigned to n1 is 20 and the lowest earliest start time
is 0. Thus, the difference is 20, while the sum of computation times is

102 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

Job list j1 j2 j3 j4 j5 j6

j1 0 50 0 0 0 0
j2 50 0 60 60 80 80
j3 0 60 0 0 0 0
j4 0 60 0 0 0 0
j5 0 80 0 0 0 0
j6 0 80 0 0 0 0

Table 4.5: The sub-matrix C̃ used in Phase 2

(5 + 4 + 6 + 7) = 22, which is greater than 20. In this case we applied the
schedulability analysis presented in Section 4.1.3. Consequently, job j6 is
assigned to the next explored node, i.e., to n2. Since there is not enough
memory capacity, job j3 cannot be assigned to any of the nodes n1 and n2.
Also, assigning j3 to any of the nodes containing replicas of j1 and j2 would
violate timing constraints. Therefore, job j3 will be assigned to node n4.
The same reasoning holds for j4, which is also assigned to the node n4. The
allocation resulting from the execution of Phase 1 and Phase 2 for the SC
application is shown in Table 4.6.

n1 n2 n3 n4

j1a, j2a, j5 j1b, j2b, j6 j1c, j2c j3, j4

Table 4.6: Jobs allocation of the brake-by-wire application

Phase 3: Assignment of Jobs of non-SC Applications

In this Phase we consider the jobs of the non-SC doors application. Jobs
are ordered according to the sub-matrix Ã of the assignment matrix A. As
jobs j9 and j10 need temperature sensors, the only node usable for them is
node n3. Since these jobs have the least number of usable nodes, they are
ordered first. All other jobs have the same number of usable nodes. The
allocation compatibility sub-matrix is shown in Table 4.7 whereas Table 4.8
shows the sub-matrix C̃ used for the communication job ordering heuristics.
The communication heuristics is used to order all tied jobs. From Table 4.7,
if we order the summation of rows according to the ascending order then
jobs j9 and j10 comes first in the job ordering and if we order the summation
of columns according to the descending order then the node n3 comes first
in the node ordering which is the only usable node for j9 and j10. Jobs j9

and j10 are still tied for first place and the job ordering becomes as follows:
j9, j10, j7, j13, j14, j8, j11, j12 (with remaining ties broken by lowest index first).

4.5. MAPPING ILLUSTRATION 103

A j7 j8 j9 j10 j11 j12 j13 j14
∑

n1 1 1 0 0 1 1 1 1 6
n2 1 1 0 0 1 1 1 1 6
n3 1 1 1 1 1 1 1 1 8
n4 1 1 0 0 1 1 1 1 6∑

4 4 1 1 4 4 4 4

Table 4.7: Building matrix Ã for doors control application

Job list j7 j8 j9 j10 j11 j12 j13 j14

j7 0 40 30 30 30 30 60 60
j8 40 0 40 40 40 40 0 0
j9 30 40 0 0 0 0 0 0
j10 30 40 0 0 0 0 0 0
j11 30 40 0 0 0 0 0 0
j12 30 40 0 0 0 0 0 0
j13 60 0 0 0 0 0 0 0
j14 60 0 0 0 0 0 0 0

Table 4.8: The sub-matrix C̃ used in Phase 3

Nodes are then ordered using the sub-matrix Ã (see Table 4.7). As we
see that node n3 is ordered first. It is the least constrained node, allowing
all jobs to be mapped onto it. The rest of the nodes are tied and we consider
the following order in the example: n3, n1, n2, n4 (with ties broken according
to lower index first).

Jobs j9 and j10 are mapped onto node n3. This is the only feasible
assignment, since this node has the required temperature sensor. During
the assignment evaluation, both schedulability and resource constraints are
checked. Job j7 is selected to be assigned next. It cannot be assigned to
node n3 since this would violate schedulability St ∈ hC . Consequently it is
mapped onto the next node n1. Jobs j13 and j14 will also be mapped onto
node n1 for the same reason. Due to violation of constraints (timing and
memory), jobs j8 and j11 are assigned to node n2. Finally, job j12 is assigned
to node n4 since no other assignment is possible. The mapping of doors
control application is shown in Table 4.9.

n1 n2 n3 n4

j7, j13, j14 j8, j11 j9, j10 j12

Table 4.9: Allocation of jobs from the doors application

104 CHAPTER 4. DEPENDABILITY DRIVEN SW-HW MAPPING

Comments

The resulting mapping of both SC and non-SC applications are shown in
Table 4.10 and in Figure 4.6 for the brake-by-wire and doors applications.
SC jobs are shown in the row of SC core whereas non-SC jobs are shown

n1 n2 n3 n4

SC core j1a, j2a, j5 j1b, j2b, j6 j1c, j2c j3, j4

non-SC core j7, j13, j14 j8, j11 j9, j10 j12

Table 4.10: Resulting allocation of jobs

BPS

 BFC

BARR

NBC

RL

LL

BPS

 BFC

BARL

SP

 LWL

BPS

BFC

LM

RM

BAFR

BAFL
RWL

CC CC CC CC

Communication network

SC non-

SC

SC non-

SC

SC non-

SC

SC non-

SC

n1 n2 n3 n4

Figure 4.6: Resulting mapping – architectural view

in non-SC core. Furthermore it can be seen that the first node hosts three
jobs from the SC application and three jobs from the non-SC application.
The second node runs three jobs from the SC and two jobs from the non-SC.
The third node runs two from the SC and two from the non-SC and the
fourth node runs two jobs from SC and one job from the non-SC application.
Figure 4.6 shows the architectural view of the resulting mapping. However in
practice (e.g., aborad a car) this four nodes architecture may host more jobs
until it can satisfy the underlying constraints. For demonstration purpose,
we have shown the mapping of two small applications onto this four nodes
dual core processors architecture. In order to tolerate faults at least 3 nodes
are necessary for these applications since the highest critical job from the
brake-by-wire application are replicated three times which must be assigned
onto three distinct nodes.

Chapter 5

Multi Variable Optimization
(MVO)

The design of heterogeneous embedded systems comprises of varied SC and
non-SC functions, SW and HW components, several competing objectives/-
variables including dependability/FT and RT among many others entailing
the concurrent consideration of multiple constraints and competing variables
in the design process. The design of such systems is performed under limited
resources, i.e, they are resource constrained. An evolving design process is
needed which can properly utilize the resources. On the other hand a sys-
tematic and efficient process is needed to tackle the complexity including
the challenge of composite consideration of various design variables. Conse-
quently, we develop a co-design optimization technique – the MVO approach,
enabling the consideration of various design criteria and their quantification
while satisfying multiple constraints and variables simultaneously instead of
considering them on a discrete basis.

The Research Question 4 [RQ4] is fully covered by this chapter. Before
presenting the main aspects of the approach some essential issues related to
the optimization process is discussed first. These include general optimiza-
tion ideas, selection criteria/properties of the design variables, a discussion on
quantifiers of the variables, preferential independency and trade-off analysis
and the chosen set of design optimization variables. We provide quantifica-
tion and estimation of each of the optimization variables. Given the premises
on designing dependable RT systems we elaborate on influence, scheduling
length and bandwidth utilization as co-design variables. The optimization
process is employed to an existing metaheuristics algorithm called as sim-
ulated annealing. The effectiveness and the performance evaluation of the
approach is presented in the next chapter.

105

106 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

5.1 Essential Issues in MVO

The importance of various design issues depends on the application model
under consideration and on the number of variables. For instance we consider
design and optimization of dependable RT embedded systems. A proper se-
lection of variables is essential for the design optimization and in ascertaining
trade-offs between variables. Therefore there are several points that need to
be concerned about such as general optimization flow, pareto dominance,
selection criteria of variables and evaluators for the variables. The crucial
part is to define the exact set of variables for the target system design. In
the subsequent sections we describe all these aspects.

5.1.1 General Optimization Ideas

A general structure found in most multi objective optimization literature of
how to get an improved solution is stated below in Algorithm 5. This is often
called as iterative improvement algorithm where a move is only accepted if the
candidate solution is better (smaller the better for minimization and greater
for maximization) than the current solution. However this process may often
get stuck in a local optima. We depict a design optimization flow describing
the steps in Figure 5.1. This structure is followed by the existing meta-
heuristics like simulated annealing, tabu search and genetic algorithm which
integrate various techniques for generating the candidate solution. These al-
gorithms employ their own technique (as described in Section 2.1.4) to avoid
getting stuck in local optima.

Initial feasible

mapping

New/candidate

mapping

Stopping

criteria met ?

Optimized mapping

(a near-optimal one)
no yes

Latest stored

mapping

Evaluating/
comparing

mapping

Quantification

of variables Transformation
operator to change

the mapping

Storing better
mapping

Figure 5.1: Design optimization flow

5.1. ESSENTIAL ISSUES IN MVO 107

Algorithm 5 General optimization process
1: Generate a current mapping f(x) and evaluate its merit (either

minimization or maximization);
2: Generate candidate mapping f(x′) from f(x) by applying transformation to

the current mapping f(x) or using the heuristics (guided or randomly);
3: if Evaluation of f(x′) is better than evaluation of f(x) then
4: f(x) = f(x′); /*Current mapping is replaced by the candidate mapping.*/
5: else
6: The current mapping f(x) is kept;

/*If f(x′) < f(x) for minimization and f(x′) > f(x) for maximization then the
mapping f(x′) is treated as a better solution, if equal or even worse mapping is
found then worse move like in tabu search or acceptance criteria is considered like
in simulated annealing.*/

7: end if
8: if Stopping condition is met then
9: Finish;

10: else
11: Go to Step 2;
12: end if

The design optimization flow shown in Figure 5.1 starts with an initial
feasible mapping. In order to find a better mapping a candidate mapping
is generated and compared with the current mapping. A transformation
operator (see details in Section 5.3.3) is employed to guide the move for
creating a candidate mapping. The better mapping is stored and then always
used as the current mapping. If the candidate mapping is better then the
current mapping is replaced by the candidate mapping and stored as better
ones. Whenever a new mapping is created the quantified values of all the
considered variables is updated and used in every run of the optimization.
If a stopping criteria is met for example the algorithm finishes a maximum
number of a priori set iterations or a certain parameter like the temperature
is reduced to an specific low value, e.g., in simulated annealing, then the
optimization process is terminated. The final stored mapping is treated as
the optimal mapping or it can be a set of pareto optimal.

Pareto Dominance

A multi objective optimization problem can be represented as finding a set of
pareto optimal solutions where several objectives are treated separately in-
stead of combining to a single function. The solutions are selected according
to a guidance called dominance rule. An alternative design vector A1 dom-
inates another A2 iff there exists one variable of A1 which is strictly better
than the corresponding variable of A2, with all other variables of A1 being

108 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

better than or equal to each corresponding variable of A2. Suppose we have
two distinct design vectors A1 = (q1, q2, · · · , qn) and A2 = (q

′
1, q

′
2, · · · , q

′
n)

containing the objective values of two alternatives for an n-objective mini-
mization problem, therefore:

(α) A1 strictly dominates A2 iff A1i < A2i, for i = 1, 2, · · · , n;

(β) A1 dominates A2 if A1i < A2i, for at least one i and A1i ≤ A2i, for
i = 1, 2, · · · , n;

(γ) A1 and A2 are incomparable if neither A1 dominates A2 nor A2 domi-
nates A1.

Variable VX

V
a

ri
a

b
le

 V
y

Dominatedn
o
n
-D

o
m

in
a

te
d

Vector points AC on C dominates

all other points (minimization)

C

worse

better

Figure 5.2: Dominance and effectiveness frontier

The first (α) and second (β) conditions can be applied directly to dis-
card the dominated design alternatives by the aspiration vector or discard
if dominated by each other among the alternatives. The dominated alter-
natives are the worse designs and do not satisfy the desired system re-
quiremetns/aspiration values. Design alternatives which falls in the third
(γ) condition remain in the decision process. When the vector of variables is
represented as weighted sum then the decision is taken based on the output
sum. The set of vectors which are not dominated is called the effectiveness
frontier. These are depicted in Figure 5.2. The points of vector AC on effec-
tiveness frontier C, which also known as Pareto optimal set, dominates all
other points in the graph. For minimization problem, points which lie on the
upward/front direction of the curve C are the worse points and which lie on
the downward direction are the better points.

5.1. ESSENTIAL ISSUES IN MVO 109

5.1.2 Properties of Co-Design Variables

A consistent and complete set of design variables are needed to define so that
the chosen variables are adequate in indicating the degree to which overall
objectives are met. Generally in case of design with multiple objectives, a set
of selected onjectives/variables should satisfy some properties [116]. Though
there is no concrete way or any step-by-step procedure to select variables,
following points should be kept in mind while considering them in the co-
design and optimization process.

. It is essential to have a clear picture about adding variables so that
they cover important aspects of the problem. It is helpful to ensure
the completeness property of variable selection, i.e., whether the se-
lected set of variables cover overall optimization criteria. For example,
whether it covers the main design issues of FT-RT embedded systems.

. The variables should be operational meaning that the selected ones
should be valuable.

. Avoid redundancy of variables, i.e., avoid selecting variables which is
same in operation but different in names.

. The dimension of the metrics should be minimum. It is a trick to min-
imize the effort, time and cost of evaluating the variables and solving
the problem.

. Considering one variable may affect one or more other variables, thus
ascertain trade-offs between them.

. A small amount of dependency between variables can be ignored within
a sufficient local region of the comparison space [148].

. When the number of variables increases, e.g., if more than 6 variables
are needed to handle, then it should be possible to decompose them.
As an example if the problem deal with seven variables, it should be
possible to break the problem into two subproblems, one involving four
and another involving three.

5.1.3 Quantifiers of Variables

To quantify the amount of variables in each design, we need evaluators for
them. For instance, in case of communication variable, one possible evaluator
for communication may be number of messages sent and received per execu-
tion or period time. A possible evaluator for fault containment would be to

110 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

take the inverse of the minimum influence value between two nodes which
results in maximum fault containment. Some criteria (e.g., mathematical
formulation) would help to quantify the specific variables value. Assuming
n evaluators, one for each variable and applying n evaluators to a design
results in an n-dimensional vector. More formally, denoting the ith variable
by vi, the ith variable evaluator by Ei, and the quantity of the ith variable by
qi, then Ei(vi) = qi. Design solution is then represented as multi variable
metrics A = (q1, q2, ..., qn), where A is the design alternative of n evaluators
E1(v1), E2(v2), ..., En(vn). In Section 5.2, we quantify different variables for
the design of dependable embedded systems.

5.1.4 Integration Trade-Offs and Preferential Indepen-
dence

As the complex design involves multiple conflicting criteria, it is in fact true
that no dominant alternative will exist that is better than all other alterna-
tives in terms of all of these variables. This phenomena entails the trade-off
analysis. Trading-off between variables means making the compromise be-
tween the variables such that gain in one variable against another variable
and vice versa. More specifically, for example, let the aspiration alternative
Aa = (q1, q2, q3, q4) and a design alternative Ai = (q5, q6, q7, q8). Assume also
that q1 = q5, q2 = q6, q3 < q7 and q4 > q8. The above problem is then
summarized as follows: Is trading-off some of q4 for more of q3 in Aa ok, such
that Ai is obtained? If true, then design Ai is good since it is not dominated
and is as preferable as Aa. Otherwise, Ai is rejected as a bad design. Another
design Aj is then considered and the same process continued. If we know
the importance of the variables a priori and if the variables are preferentially
independent then the trade-off between variables can be resolved by giving
the weight to the individual variable according to their importance.

While integrating SW functions, some trade-offs might be necessary. For
example, it may be preferable to assign two critical processes onto different
HW nodes, but that may not be possible since both have to be replicated,
and the number of HW nodes are limited. Specifically, if the HW has four
nodes and two critical processes need to be triplicated then two sets of these
replicates must be mapped onto the same node. Other problems might in-
clude such as need for a resource that present on only one processor, or a
very high communication load. This is the basis for considering integration
tradeoff [79] i.e., Is there a limit to the level of integration one should design
for.

5.1. ESSENTIAL ISSUES IN MVO 111

Preferentially Independence

It is defined as the trading-off between two variables is independent on any
other variables. If v1, v2, and v3 are three variables then trade-offs between
v1, v2 is independent of third variable v3, similarly trade-off between v3, v2 is
independent of the value of v1. In general, variables are mutually preferen-
tially independent. To better understand this concept, let us consider the
following example: Assume there are n nodes in the system, with node n1

having a high computation load, and all other nodes n2 . . . nk have low com-
putation loads. Also, the processes running on n1 are such that they have a
high degree of influence, such that the mutual influence value between them
is high. Any possible trade-off would entail reassigning some of the processes
on n1 to other nodes, thereby balancing the load in the system at the expense
of having lesser fault-containment, since highly interacting processes will then
be located on different nodes. This is irrespective of whether another node
ni has two high criticality processes running on it, i.e., high criticality value
of the system. In this sense, the trade-off between fault containment and
load balancing is irrespective of the criticality value. Hence, these variables
are mutually preferentially independent. Observe that we do not imply that
the variables are independent. However, intuitively, the mutual preferential
independence implies that, for a given trade-off, instead of looking at all
the variables at the same time, the system designer can focus only on the
variables of interest.

5.1.5 The Chosen Co-Design Optimization Variables

The design optimization of a dependable RT embedded systems naturally
entails the variable selection from the dependability, RT and resource per-
spectives. Respecting the embedded systems co-design criteria described in
Section 3.1, we have chosen variables for the optimization process so that the
quality of the design can be evaluated properly. The first criteria is to obtain
dependability by design where our focus is in two folds: (a) first to provide a
certain level of FT and then (b) to confine the propagation of errors between
nodes and to increase the robustness of message delivery over the network.
We then consider a variable from RT point of view. We also consider the
variables from resource utilization point of view. Nevertheless, without loss
of generality designer can select their own variables according to their sys-
tem requirements/goal and can apply into our optimization framework. The
variables considered in this thesis are listed as follows in decreasing order of
importance and are quantified and modeled in the subsequent sections.

112 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

(i) Influence (Îf): As our main objective is to achieve and optimize de-
pendability by design we endeavor to minimize the influences between
different modules. This variable refers to how well the errors are con-
tained within a single node. Low influence values between nodes implies
good error containment. Assigning highly interacting jobs on the same
node reduce the error propagation probability across nodes, i.e., the
error does not propagate but contained within one node. Since de-
pendability is the prime design driver for SC embedded systems, the
importance of fault/error containment is uppermost.

(ii) Slack and scheduling length (Ŝl): It represents the total completion
time of the system and how unloaded a processor is. This aspect of
the design is considered since having some slack in the system later
upgrades is possible. The slack from an schedule can be utilized both
for FT and for power savings. Minimizing scheduling length is benefited
from the resource usage perspective where more jobs can be executed
satisfying their deadlines or future upgrade of job is possible.

(iii) Communication (B̂w): The amount of communication volume be-
tween nodes is represented by this variable. It is considered from a
performance and resource utilization point of view which reduces the
communication overhead and allows to use a low cost network.

5.2 Quantification of Optimization Variables

We present the quantification and modeling of a set of variables for the de-
sign of mixed critical RT embedded systems. This includes how to esti-
mate/measure variables, and how to formulate them in terms of function
minimization. The primary objective is to enhance dependability by design,
where our focus is to minimize influences, i.e., to reduce the propagation of
errors between nodes. The second and third considerations are the schedul-
ing length and the bandwidth utilization respectively which are important
in terms of performance and resource utilization and consequently lead to
designs with lower cost. In the subsequent sections, we provide details of
the considered variables used to quantify and optimize the design objectives.
We extend the framework by adding two more variables in the design opti-
mization. One is again from the dependability aspect which is reliability and
the other is power consumption. We describe them in the extendability and
adaptability Chapter 8.

5.2. QUANTIFICATION OF OPTIMIZATION VARIABLES 113

5.2.1 Influence

We endeavor to minimize the influences across jobs as well as across nodes
by design. Influence is the probability of error propagation from a source to
a target. Error, which is the consequence of a fault can propagate from a
source (s) to a target (t) if the source s interact with the target t. We have
investigated two potential ways in which influences between s and t could
take place. Below we state them and provide details of how we estimate
influence.

Case 1: Errors occur in the source and propagate to the target via
message passing or shared resources. If a job is affected by an error of
the node it is running on, it might propagate errors to jobs on other
nodes with which it communicates/interacts or shares a resource. Such
influences risk the failure of multiple nodes and are undesirable.

Case 2: Messages sent over the network can be lost or erroneous due
to transmission errors. Erroneous messages can propagate to different
nodes and may cause unexpected behavior.

Estimating influences

The influences shown in Figure 5.3 consists of three phases of error propaga-
tion, namely:

(1) an error occurring in a module or in a communication link,

(2) propagation of the error to another module, and

(3) the propagating error causing a cascaded error in the target module.

Source

(s)

Target

(t)

p(message corruption)

Inputs

1

2

3

s
P

t
P

ts
I ,

l
P

Figure 5.3: Error propagation

114 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

In order to measure influences, let us assume Pe is the probability of error
propagation from s to t considering no corruption over the network and Pl

is the probability of message corruption over the network. The probability
of error propagation from a source (s) to a target (t) is denoted by Ps,t and
defined as follows:

Ps,t = p{error propagation|no corruption over the network}∗
p{no corruption over the network}

= Pe · (1− Pl)

= Ps · Pt ∗ (1− Pl) (5.1)

Where,

Pe = Ps · Pt

Ps = p{error in output of s|error in input of s}
Pt = p{error in state of t|error in input of t coming from s}
Pl = p{message corruption|error on the communication link}

The probability that s outputs an error and sends it to the input of t is Ps.
The probability that an error occurs in t due to the error received from s is
Pt. The former indicates how often s allows errors to propagate out of s and
the latter indicates how vulnerable t is to errors propagating from s. The
probability of message corruption Pl can be seen as the unreliable message
transmission over the network, which is calculated as follows. Assume that
the failure rate of the communication link is λl.

Pl = 1− exp(−λl · bs,t

T
) (5.2)

Where, bs,t is the size of the messages between s and t and T is the transmis-

sion speed. exp(−λl · bs,t

T
) is the reliability factor due to message transmissions

over the network, i.e, the probability that the messages are transmitted safely.

We further elaborate on different error probabilities. An error (e.g., a bit
flip transient error) occurs at any inputs of s or generated from any other
sources and may propagate to input of t, where an error may occur. The
probability of an error in Iy the yth input or the yth source to propagate out

of s is P
Iy
s which is given by the following relation.

0 ≤ P Iy
s = p{s|Iy} ≤ 1 (5.3)

5.2. QUANTIFICATION OF OPTIMIZATION VARIABLES 115

If there is more than one inputs or error sources, the above equation is
generalized [131; 149] for calculating the error transmission probability Ps:

Ps =
Y∑

y=1

(p{Iy}/Y) ∗ p{s|Iy} (5.4)

Where Y is the number of inputs of s and p{Iy} is the probability of occurring
error in inputs or in any other sources.

The analytical model of calculating different error propagation probabili-
ties across modules resemble the error detection probability in inputs and out-
puts of combinatorial and sequential circuits using random testing [150; 151].

Measuring by Fault Injection: We now describe an experimental esti-
mation of influence using fault injection. The error propagation probability
is estimated using the following procedure: (a) in each input Iy of s inject
an error (one input at a time, i.e., no multiple errors), (b) observe the state
and output signals of s and the state and outputs of t, and (c) use golden
run comparison (i.e., comparing an injection run with a golden reference or
the fault-free run) in order to detect when errors have occurred in either. Let
the number of injection runs where errors in the output of s and in the state
and output of t have been detected be denoted as ηerr,s and ηerr,t respectively.
The total number of injection runs is denoted as ηinj. We then estimate the
error probability as Ps = ηerr,s

ηinj
and Pt = ηerr,t

ηinj
.

Overall System Level Influence

Considering both Ps,t (comprises Ps and Pt) and Pl, the influence for a single
error propagation path is calculated as follows:

Is,t = Ps,t + Pl (5.5)

Io
s,t is the overall influences between a set of jobs assigned together on a

node and interacting jobs allocated on different nodes, which is expressed by
the following equation:

Io
s,t = 1 − (1− I1

s,t) · (1− I2
s,t) · · · (1− Ix

s,t)

Io
s,t = 1 −

∏
ρ

(1− Iρ
s,t) (5.6)

where ρ = 1, ..., x is the number of influences paths between two modules.

116 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

An Example: We consider the following example shown in Figure 5.4
where a job j1 is assigned to a node n1 and another two interacting jobs j2

and j3 are assigned onto n2. The overall influence of node n1 to n2 will be:

Io
n1,n2

= 1− [(1− 0.4) · (1− 0.3)] = 0.42

j1
j3

j2

Node Node 2n1n

.4

1
2,1I =

.3
2

2,1I =

Figure 5.4: Combining influences

Influences are assumed to be zero for jobs which are assigned on the same
node, e.g., the influence between j2 and j3. If all the three jobs could be
assigned onto a single node then the error would contain within that node
only. However it is not possible to assign all interacting jobs onto a single
node due to imposed constraints. Also replicas need to be placed on different
nodes which might have influences with other jobs. Hence, there will be jobs
interacting across nodes. We strive to minimize these influences as much
as possible for a mapping such that dependability is enhanced by design.
Values for error occurrence probabilities can be obtained, for example, from
field data or from system specification or by fault injection [131; 149]. The
computation of the system level influence Îf is expressed as follows, which is
then normalized, where k is the number of nodes:

Îf =
k∑

i,j=1

Io
i,j (5.7)

5.2.2 Slack and Scheduling Length

This variable represents the total completion and communication time for a
set of jobs on a node. As we use replication as the FT scheme, this results
in more jobs needed to be scheduled which naturally incurs a overhead on
scheduling. The goal is to minimize this overall scheduling length (Ŝl) on a
node satisfying precedence and deadline constraints. Minimizing scheduling
length is important from the viewpoint of the uses of a set of processors,

5.2. QUANTIFICATION OF OPTIMIZATION VARIABLES 117

since it leads to maximization of the processor utilization and the minimiza-
tion of the maximum in-process time of the scheduled set of jobs. In every
scheduling, gap may remain between two consecutive jobs executing on the
same node due to precedence relations and communication cost. We define
this gap as in-between slack (IBS). IBS can be used either reduce the fre-
quency and/or supply voltage for energy savings or to schedule recoveries for
higher performability which is defined as the probability of finishing the job
correctly within its deadline in the presence of faults [152]. Therefore slack
can be used for future upgrading of jobs and also for energy savings.

The scheduling length for a candidate mapping is calculated using the
following equation:

Ŝl = ∀k max

[
n∑

i,j=1

(Mi,k · CTi,k + IBSi,j)

]
(5.8)

where, n is the number of jobs, CTi,k is the computation time of the ith job
in the kth node, IBSi,j = ESTj − LETi, where i is the job executed before
j on the same node, LETi is the latest ending time of job i, and

Mi,k =

{
1 if ji is assigned to Nk

0 otherwise.

The scheduling length of a mapping can also be calculated by using the
following expression:

Ŝl = max∀(i,k) {ft(ji, nk)} (5.9)

where, ft(ji, nk) is the finish time of job ji in node nk which is equivalent to
LETi.

If the scheduling length is minimized then the CPU utilization, i.e., the
computational workload per processor is maximized, which can be seen from
the following equation termed as utilization factor (UF):

UF =
Sl −

∑n
i,j=1 IBSi,j

Sl

=

∑n
i=1(Mi,k ∗ CTi,k)

Sl

(5.10)

Reducing the Length: There may be different techniques that one can
attempt to reduce the scheduling length, however, violation of any hard con-
straints and the violation of achieving first objective/variable (a trade-off
factor is weighed with influence) are undesirable. To reduce the schedul-
ing length following acts can be performed with the transformation operator

118 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

(Γ): (a) Move a job which can be scheduled in a different node and se-
lect the allocation which result a reduced scheduling length, (b) If two jobs
can be assigned to the same node then first assign with the lower EST
which causes reduced scheduling length, (c) Scheduling length also depends
on the communication protocol which can be seen as optimization of bus ac-
cess scheme [137], and (d) Randomly move jobs and calculate the length of
the scheduling after each move.

5.2.3 Bandwidth

In an integrated system design, jobs of different criticality and from different
applications may be assigned onto a single node and jobs from a single ap-
plication may be assigned onto different nodes. Therefore good utilization of
shared communication links is necessary. Bandwidth utilization (B̂w) is the
ratio between the total bandwidth required by the system and the available
bandwidth of the network (BT) defined as follows. The equation used here
independent of a particular communication protocol.

B̂w =
k∑

i,j=1

bi,j/BT (5.11)

where k is the number of nodes and bi,j is the total bandwidth requirements
in terms of message size between nodes i and j. Minimizing this variable
may allow for the use of a slower but cheaper data communications bus [67].

5.2.4 Example Describing the Metrics

Let us consider the same example which has already been presented in Fig-
ure 4.2 of Section 4.1.2. In this case, we try to show how different mappings
can be created and their results with respect to system dependability and
RT properties. We constitute the metrics for the considered optimization
variables. All jobs in the application should finish their execution by 140ms.
The computation time CT , messages size bi,j between jobs as well as the
influence values Iij are shown in the Figure 5.5 (α).

Assume that each TDMA has equal slot length of 10ms and at least 2
messages each of size of 5bytes can be sent per slot considering the bus speed
is equal to 1Kbytes/s. The largest message size is equal to the size of the slot
which is 10bytes. We further assume that each node can only host any two
jobs out of these four jobs. In Figure 5.5 (a), two interacting jobs j1 and j2

are assigned onto n0 and j3, j4 are assigned onto n1. The overall influences
of the mapping, i.e., the probability of error propagation among nodes, is 0.2

5.2. QUANTIFICATION OF OPTIMIZATION VARIABLES 119

n0

n1

s0 s1 s0 s1

j1

m12

j2 j3

s0 s1

j4

s0 s1

n0

n1

s1 s0

j1

j2

j3

j4

s1 s0

n0

n1

s0 s1 s0 s1

j1

m13

j2

m24

j3

s0 s1

j4

s0 s1

m24 m34

m24

TDMA0 TDMA6

120ms

s1 s0

m13

140ms

s1 s0

m13

n0

n1

s1 s0

j1

j3j2

j4

s1 s0

m24

s1 s0 s1 s0

m12

m13
m34

.3

.3

.1

.2

t

t

(α)

t

t(a)

(b)

(c)

(d)

j1

j2

j3

j4

30

40 20

m34

m24

m13

m12

30

n1n0

Figure 5.5: Quantification of variables for different mappings

calculated by using the Equation 5.6. The normalized scheduling length of
this mapping is 0.78 and two messages are sent over the network. In Fig-

Influence 0.20
Scheduling length 0.78

Communication overhead 0.10

Table 5.1: Metrics of mapping config-
uration (a)

Influence 0.45
Scheduling length 1.0

Communication overhead 0.20

Table 5.2: Metrics of mapping config-
uration (b)

ure 5.9 (b), j1, j4 are assigned onto n0 and j2, j3 are assigned onto n1, where
jobs are interacting indirectly. In this case the overall influence becomes 0.45,

120 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

Influence 0.22
Scheduling length 0.78

Communication overhead 0.10

Table 5.3: Metrics of mapping config-
uration (c)

Influence 0.45
Scheduling length 1.07

Communication overhead 0.20

Table 5.4: Metrics of mapping config-
uration (d)

i.e., the probability of error propagation is higher though it just maintains
the deadline. The scheduling length is increased by 30ms and four messages
are sent over the network. Since more messages sent over the network, the
probability of propagation of error is higher between the two nodes and the
possibility of messages get corrupted is also higher. Now, if the slot order is
changed then this allocation violate the deadline constraint as shown in Fig-
ure 5.5 (d). The change of slot order does not affect on the first assignment
policy. However the mapping with this slot ordering and the configuration
of j1, j3 onto n0 and j2, j4 onto n1 is shown in Figure 5.5 (c). The quan-
tification values of the variables for all the mappings (a)–(d) are shown in
Tables 5.1, 5.2, 5.3 and 5.4. The mapping of Figure 5.5 (a) is considered
to be the best mapping where the values for all variables are pareto non-
dominated. We see that the value of the first variable is strictly better and
others are equal or better compared to the (b)–(d) mapping configurations.

5.3 Our MVO–SA Approach

We apply an existing optimization algorithm within our integrated design
framework. For this purpose, we have chosen simulated annealing (SA) [51].
SA is a metaheuristic based algorithm which converges to the global minima
while solving an MVO problem, hence we termed this problem as MVO-
SA. SA is a long established effective metaheuristic with an explicit schema
for avoiding local minima [51; 83; 84; 52]. The reason for choosing SA is
that it has been applied to a great variety of multiple objective optimization
problems as well and is considered effective in general sense [153; 154; 155].
[83; 84] have shown the applicability of simulated annealing in RT tasks
scheduling. Alternative approaches such as genetic algorithm [56], tabu
search [55] were also investigated as options. However the global minima
possibility with SA makes it attractive. A recent study has shown in [156]
that SA works better than the evolutionary algorithms for many objectives
test problems, i.e., for multi objective optimization problems.

Our overall optimization process is shown in Algorithm 6, which differs
from the usual single objective SA. We have adapted SA for multiple ob-

5.3. OUR MVO–SA APPROACH 121

jectives, which returns the best values of variables together with the best
mapping found so far. In the following we list some features of SA, which
led us to select it for the optimization.

• SA is applicable to a wide variety of complex, discrete and composite
optimization problems which is a generic method and usually indepen-
dent on the nature of the specific problem, thereof, we adapted it into
our optimization problem,

• It has the technique to avoid local optima by accepting worse moves
(so called hill climbing) and has the property of convergence to a global
optimal solution,

• SA has the ability to scale to a large heterogeneous problem, and

• It is comparatively simple and easy to implement.

We now proceed this section by presenting the MV O function which is
similar to a multiple objectives additive function [116; 157]. We then present
the MVO-SA algorithm itself followed by the description of the different
techniques used in the optimization process like exploring the search spaces
by the transformation operator and comparing the value of different mapping.

5.3.1 The MVO Function

MV O(v) is a function, which returns a natural number that corresponds to
the overall quality of a given mapping. This section formulates the MVO
function as a value function by employing the considered design variables.
The value of the function depends on the quantified/estimated values of vari-
ables. The function can be formulated as a scalar-valued function MV O(v)
to each point v from a design space to an objective space, representing the
system designer preferences such that MV O(v) is minimized. When the con-
dition of mutual preferential independence between variables holds, the value
function can be represented as an additive form [116]. In order to break
down the assessment of a complex multi variable value function into smaller
problems that can be solved independently, additive value function is used,
which is a powerful mechanism. Usually these problems are solved by scalar-
izing the overall function meaning that the problem is converted into one
single or a family of single objective optimization problem. We construct the
MV O(v) function as a weighted sum of the function of each variable, which
is a widely used method for this class of problems [116; 48; 157]. The value

122 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

of the function is determined by using the values of variables Îf , Ŝl,, B̂w, and
the trade-off factors ψi, ψs and ψb.

MV O(v) = ψi · Îf + ψs · Ŝl + ψb · B̂w (5.12)

The individual values of the variables are represented in a matrix form:
M [v] ≡ M [Îf , Ŝl, B̂w]. After performing a move, the function is denoted
as MV O(v

′
) and the matrix as M [v

′
].

5.3.2 The MVO Algorithm – Application of SA

We now employ the MVO approach in SA, which is a well-known solver
to this class of problems. We present the MVO-SA algorithm that requires
the following inputs. The output of the algorithm represents the optimized
mapping of jobs onto nodes.

(i) The workloads (set of jobs and nodes including their properties) to
create the initial mapping,

(ii) Design optimization variables (Îf , Ŝl, B̂w), the MV O(v) function and
the trade-off factors (ψi, ψs, ψb),

(iii) The Γ operator to change the mapping (neighborhood exploration and
guided local search), and

(iv) SA parameters - initial temperature Tinit, the cooling schedule Th and
the cooling factor cf for lowering the temperature.

At the starting point of the Algorithm 6, we initialize the annealing pa-
rameters, e.,g., by setting the heating temperature Th and create the initial
feasible mapping. The initial mapping either can be a feasible mapping or can
be an infeasible mapping. However, in our case as we only consider the vari-
ables in structuring the MVO function, the initial mapping is assumed to be
a feasible mapping. The feasibility of the mapping is maintained throughout
the search by an external function call C(hC), i.e., the best feasible mapping
is sought. However when calling the function to check feasibility, i.e., to
satisfy the hard constraints hc, it has to be performed as efficiently as pos-
sible to reduce the run time of the overall algorithm. In this way we always
guide the search in the direction of feasible solutions. The values of all vari-
ables are set in the MVO function (Equation 5.12) and MV O(v) is computed
in Step 4. In order to generate the candidate mapping, neighborhoods are
explored in Step 6. We apply the transformation operator (Γ) to explore
neighborhoods which is described in the next section. While applying this

5.3. OUR MVO–SA APPROACH 123

Algorithm 6 The MVO algorithm
1: Initialization; heating temperature Th = Tinit;
2: Generate an initial mapping;
3: Create the matrix M [v] ≡ M [Îf , Ŝl, B̂w] for this mapping;
4: Evaluate the initial mapping MV O(v);
5: repeat
6: Explore neighborhood of the current mapping using Γ;
7: Generate candidate mapping;
8: Create matrix M [v′] ≡ M [Î ′f , Ŝ′l, B̂′

w];
9: Evaluate candidate mapping MV O(v′) for the new matrix;

10: Calculate δv = MV O(v′)−MV O(v) ;
11: if δv < 0 then
12: M [v] = M [v′] and MV O(v) = MV O(v′);
13: else
14: Calculate acceptance probability ap = e−δv/Th and

generate r = random[0, 1];
15: if ap ≥ r then
16: M [v] = M [v′] and MV O(v) = MV O(v′)
17: else
18: Restore the current mapping, i.e., keep M [v] and MV O(v);
19: end if
20: end if
21: Reduce the temperature Th by using a cooling schedule Th = cf · Th−1;
22: until Some stopping criterion is met
23: return The best mapping MV O(v) and the corresponding matrix M [v]

operator the feasibility of the mapping is checked. In Step 9, the candidate
mapping MV O(v′) is evaluated in order to compare it with the current best
mapping. For the first time run, the generated initial mapping is the current
mapping. The current mapping is updated with the better mapping found
in each iteration. If the difference δv is less than zero (minimization) then
we choose the candidate mapping as the better mapping.

δv = MV O(v′)−MV O(v)

If δv is greater or equal to zero, then the candidate mapping is accepted
with a certain probability, called as the acceptance probability (ap). One of
the commonly used acceptance probability functions is [83; 84]:

ap = e−δv/Th

The technique used by SA to not get stuck at a local optima is to accept
some worse moves as the search progresses. For larger δv, i.e., when the
candidate mapping is extremely undesirable, the probability of acceptance
diminishes. If Th is higher ap gets higher, thus the initial temperature (Tinit)

124 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

is set to a sufficiently high value to accept the first few candidate mappings
even they are worse. The value of ap decreases as Th decreases. If an accep-
tance criteria is met, the candidate mapping is chosen, otherwise the current
mapping is restored and the process is continued. Th is reduced according
to a simple logarithmic cooling scheduling shown below which is the most
commonly used one in the literature [48; 83].

Th = cf · Th−1, 0 ≤ cf < 1, T0 = Tinit

Where cf is the cooling parameter that control the temperature. The value
for cf is usually chosen more than 0.90. Reheating of the temperature can
also be applied if necessary. Reheating is the setting back the value of Th

to Tinit after a certain number of iterations. We perform several iterations
at the same Th (so called Metropolis Monte Carlo attempts [51]) to cover a
larger search space. The algorithm returns the best mapping found so far
when the temperature is reduced to a certain value.

5.3.3 The Transformation Operator

The transformation operator Γ performs the moves to the current mapping
in order to generate a candidate mapping, as shown in Algorithm 7, where
M(ji, nk) represents that the job ji is assigned onto node nk satisfying all
constraints. Specifically, Γ generates the move to perform the local search,
i.e., to explore the neighborhood and then the candidate mapping is created.
In this way we traverse/explore the co-design space.

Algorithm 7 Transformation operator Γ
1: Function: Γ operation Γ(hC)
2: repeat
3: Select jobs to perform a move;
4: Γ on M(ji, nk);
5: Call the function C(hC);
6: if (hC == true) then
7: Perform Γ;
8: return To the MVO Algorithm 6 at Step 7;
9: else

10: Do not perform Γ;
11: Go to the Step 3 to select the next job;
12: end if
13: until (hC == true)

Three different kinds of move [48] are discussed below together with their
respective size in terms of the number of allocated jobs (q) and the number

5.3. OUR MVO–SA APPROACH 125

of assigned nodes (k). The operators Γr, Γs and Γi refer to the relocate, swap
and interchange neighborhoods respectively.

(a) Relocate a job to a different node, Γr = q(k − 1),

(b) Swap the nodes between two jobs, Γs = q(q − 1)/2, and

(c) Interchange the allocated jobs between two nodes, Γi = k(k − 1)/2.

As already mentioned that while performing these moves, the feasibility of a
mapping is maintained. After performing each move (Step7) the value of the
MVO function is recalculated by using the Equation 5.12. The Algorithm 7
(Step5 − 6) checks and maintains the feasibility of the mapping satisfying
hC = {Ft, St,Mr}, where Ft, St,Mr are correspond to the fault tolerance,
schedulability and memory resource consumption respectively. A move is
accepted when it satisfies all the constraints. The C(hC) function checks the
constraints which is shown in Algorithm 4. Note that, during the optimiza-
tion process we do not change the assignment of jobs which require binding
functionality Bf , i.e., the jobs that associated with special resources.

5.3.4 Comparing the Mapping

After a successful move, the candidate mapping is evaluated and compared
with the current stored mapping in Step 10 in Algorithm 6. Whether a
mapping can be accepted or not, is also determined as follows.

(a) A jump from a feasible mapping to an infeasible never occurs, i.e.,
feasible mapping always wins even if the infeasible mapping is better
than feasible mapping in terms of value,

(b) Two feasible mappings are compared based on their MVO function
values. The lower value is better for minimization problem, and

(c) A jump from a lower value of MVO function to a higher function value
may occur with a decreasing probability as the heating temperature Th

decreases.

A candidate feasible mapping can lead to three possibilities for the status
of the optimization variables in a matrix such as:

(i) Improve all the variables in the matrix,

(ii) Improve some of the variables and some others deteriorate or remain
same, and

126 CHAPTER 5. MULTI VARIABLE OPTIMIZATION (MVO)

(iii) Deteriorate or worsening all the variables in the metrics.

In the first case it is easier to decide the mapping immediately since the
candidate mapping is better from every variables than the current one. The
search should continue in the present direction. In case all variables deteri-
orate and the value of the MVO function gets higher, in SA the candidate
mapping is evaluated by using some sort of acceptance function in Step13
of Algorithm 6. When some variables get worse and some get better, the
mapping can be chosen as the priority based improvement of the variables.
We attribute priority on choosing variables, for instance in our case first pri-
ority is to minimize the influences. If this variable is improving and others
are worsening, we still consider the candidate mapping as a better mapping
than the current mapping. And the search should continue in this direction
as well. If the second and even lower priority variables are improving then
mapping can be selected by using the acceptance criteria. In our algorithm,
this is maintained by using the weighting factors in the aggregated MVO
function.

Chapter 6

Evaluation

The co-design and optimization framework presented in the previous chapters
is evaluated by performing a set of extensive experiments. We present ex-
perimental results to prove the effectiveness of the mapping heuristics and to
evaluate the performance and quantitative gain of the optimization approach.
The proposed heuristics are compared with existing base line approaches. We
have performed extensive experiments which show the effectiveness (quality
of the solution), performance (reducing the search space and finding a quick
feasible solution) and robustness (consistent to perform the same mapping
over many runs) of our mapping process. By using an independent tool [42] a
validation of the output of the allocation is done to check the schedulability.
An empirical evaluation including performance and effectiveness of the MVO
approach employed in simulated annealing is provided. For a representative
target study, our evaluation shows significant design improvements for the
considered variables over contemporary analytical initial feasibility solutions.
Results show significant quantitative gain in terms of influences, scheduling
length, bandwidth utilization, CPU utilization and FT overhead.

We divide the design problem into multiple phases (ordering heuristics, al-
location, scheduling, optimization and prototyping) and use different heuris-
tics which provide a real basis for the optimization and reduce the com-
plexity of the problem and save computation time significantly. We perform
the evaluation based on an experimental setup considering randomly gen-
erated workloads. The workload is defined as a set of SC or non-SC jobs
and nodes including their properties. After establishing this setup, we depict
the performance and effectiveness of the approach by explaining the various
experimental results. We show the convergency of the MVO algorithm and
measure the quantitative gain comparative to initial contemporary solution.
We also present different other aspects like proper CPU utilization, load bal-
ancing and reduction of FT overhead. At the end of this chapter a validation

127

128 CHAPTER 6. EVALUATION

and a comparative study of the approach is provided. This chapter addresses
the Research Question 5 [RQ5].

6.1 Experimental Setup

In order to evaluate the developed design concept and process at first we
depict the experimental setup. We use randomly generated workloads con-
sist of mixed-criticality sets of 10 to 200 jobs denoted as J10, J20,...,J200
respectively. All jobs, along with their replicas, are to be assigned in an
optimized way onto the available nodes. Job properties are uniformly dis-
tributed within the following ranges and are given in Table 6.1: Replication
factor ∈ {2, 3}, Interaction ∈ [.04, .52], EST ∈ [0, 80] ms, CT ∈ [2, 20] ms,
D ∈ [14, 200] ms, Memory size ∈ [4, 15] MB and Message size ∈ [2, 120] bytes.
The message transmission delay time (size of the exchanged messages divided

Replication factor 2-3
Influences .04 to .52

EST 0 to 80
CT 2 to 20
D 14 to 200

Memory 4 to 15 MB
Messages 2 to 120 bytes

Table 6.1: Job properties

by the transmission speed of the link or need to be bounded by an existing
communication protocol) between communicating jobs executing on different
nodes are subtracted from the deadlines. The HW model comprises of varied
number for nodes (from 2 to 10), which are connected to a communication
link with a speed of 150kbps. The number of nodes are varied according to
the different experimental set up (workloads) which is mentioned with the re-
spective experiment. Sensors and actuators are attached arbitrarily to nodes.
The memory capacities of nodes have been chosen arbitrarily as 100, 150 and
250 MB. Nodes n2 and n3 have sensors and n5 and n7 have actuators at-
tached to them. We assume that for all the node processors the computing
power and also the value of the failure rates are same unless we explicitly
mention about these properties. Even though all these data were not derived
from existing real-life examples, they are realistic with respect to current
dependable RT embedded systems. The experiments have been carried out
on a windows platform with Pentium 4 at 3Ghz with 2GB of memory. The
implementation has been done in C/C++ programming language.

6.2. PERFORMANCE EVALUATION OF THE MAPPING 129

Supporting Data File

While performing the experiments different data files have been implemented
which contain the necessary information for jobs, messages and for nodes.
Accordingly we construct three different files. The content of the files were
randomly generated. In case of job data file, the total number of randomly
generated jobs are stored with each job ID, name, corresponding properties
(dci, EST,CT,D, Mr) and the information whether a job needs sensor or
actuator. In the message file, the communication and influences values are
stored. Jobs are mentioned as sending and receiving jobs with the corre-
sponding messages size and influence values (sending job → messages size,
influence values → receiving job). The node data file contains the total num-
ber of nodes and their properties. The information includes node ID, name of
the node, sensor/actuator attached to a node and the memory capacity of the
node. All these information have been retrieved during the implementation
of the heuristics and algorithms.

MVO–SA Parameters

In order to implement the SA based algorithm, it is necessary to set the
annealing parameters. Mostly used in the literature [48; 51] and after inves-
tigating different runs of our algorithm with various workloads and configu-
rations, we tune the MVO-SA parameters as follows: the value of the initial
temperature (Tinit) was set to 50000, the cooling factor (cf) was set to 0.98,
and the trade-off factors were ψi = 1500, ψs = 20 and ψb = 500 for influence,
scheduling length and bandwidth respectively. In order to generate the can-
didate mapping we have performed two types of moves (random reallocation
and swapping - 50% each of Monte Carlo iteration) at the same temperature
to cover larger search space. Experiments showed that applying both types
of moves together gives a better solution than only using a single type of
move.

6.2 Performance Evaluation of the Mapping

We evaluate the performance and effectiveness of the heuristics based feasible
mapping (the algorithm has been presented in Section 4.4) and describe the
result in this section. The evaluation is carried out by considering both SC
and non-SC applications and different applications patterns. The results
are compared among different assignment techniques. The use of heuristics
takes less number of iterations to find a feasible mapping compared to other
techniques. As the mapping problem is NP complete, we do not show the

130 CHAPTER 6. EVALUATION

complexity of the algorithm, instead we show how we can get a feasible
solution with less or no backtracking and possibly a good mapping.

6.2.1 Effectiveness

We are interested to show the performance (finding a feasible solution while
reducing the complexity of the problem) of the heuristics. We observe that
our multi-phase algorithm requires less or no backtracking to find a feasible
solution. Several experiments have been carried out. First the assignment
policy is applied with the job and node ordering-heuristics, we call it Heuristic
solution. Second, we consider random selection of nodes which is the Random
solution. Third, a Thrashing approach is considered which implements a
different way of exploring nodes, where first node from the order is tried
for every job to be assigned. If all constraints are satisfied, the selected job
is assigned onto this node, otherwise next node is explored. According to
the heuristics of considering most constrained and conflicting jobs first, high
critical jobs are assigned in Phase I of the mapping Algorithm 3. When jobs
are assigned in this phase, different nodes are selected for them in Step 6
of Algorithm 3. These considerations result a significant number of less
iterations to find a feasible solution.

0

01 0

02 0

03 0

04 0

05 0

06 0

07 0

08 0

09 0

001 0

01 02 30 04 05

eH uristics

Ra modn

oN O rd. +
hT rashing

 # Jobs (SC)

#
It

e
ra

ti
o

n

0

002

004

006

008

0001

0021

0041

0061

0081

0002

02 04 06 08 001

eH uristics

Jo O b r .d +

hT r hsa ing

oN Ord. +

hT r hsa ing

 # Jobs (SC)

#
It
e
ra

ti
o
n

(a) (b)

Figure 6.1: Performance of mapping heuristics (SC applications)

Figure 6.1 (a) shows the number of iterations needed for different assign-
ment policies. Five nodes were chosen for this experiment. We observe that
applying the mapping heuristics takes least number of iterations and hardly
need backtrack to find a feasible solution. However this does not guarantee

6.2. PERFORMANCE EVALUATION OF THE MAPPING 131

that the backtracking is not needed at all to find feasible solutions. While
performing the mapping for other workloads, the backtracking may be needed
to create the feasible mapping. We have applied simple swapping (swap the
nodes between two jobs) and reallocation (relocate a job to a different node)
in the case backtrack was necessary. In case iteration bars touch the highest
iteration line shown in Figure 6.1 (a) & (b), a feasible solution has not been
found for that allocation policy despite of changing some assignments when
backtrack was necessary. The reason might be that the search process got
stuck to an infeasible design space. In Figure 6.1(b), the results found by
heuristics process are compared with job ordering + thrashing and with no
job ordering + thrashing. We observe that heuristics based solution requires
least number of iterations to find a feasible mapping. In this set up (Fig-
ure 6.1(b)), the number of nodes were increased with the increasing number
of jobs. 5 nodes were used for 20 and 40 jobs; 7, 8 and 10 nodes were for
60, 80 and 100 jobs respectively.

0

02

04

06

08

001

021

041

061

081

002

01 02 03 04 05 06 07

rueH is it sc

modnaR

rhT ihsa ng

Jobs (non-SC)

#
It

e
ra

ti
o

n

Figure 6.2: Performance of mapping heuristics (non-SC applications)

Figure 6.2 shows the result of the similar type of experiments, which has
been performed for the non-SC jobs set. In this case the heuristics also works
better than random or thrashing solution. Since there are no high critical jobs
in non-SC applications, jobs are less constrained and only binding constraints
do impact in the ordering heuristics. Four nodes were used for this set up.

Resource Utilization: We have performed experiments in order to com-
pare the CPU and memory utilization of heuristics process with the random

132 CHAPTER 6. EVALUATION

and thrashing policy. We observe that the distribution of CPU and memory
capacity by the heuristics approach is comparable with the random solution
which is almost equally distributed among all the processors (see Figure 6.3
and 6.4). In case of thrashing, the load (computation and memory) among
nodes are not properly distributed, i.e., are not properly load balanced. The
measured utilization is based on the computation and memory available only
for applications jobs. Resource consumption for middleware code and for
other services are not included.

0

0.2

0.4

0.6

0.8

1

n1 n2 n3 n4 n5 n6

Heuristics

Random

Thrashing

Node ID

U
ti
li
z
a

ti
o

n

Figure 6.3: CPU utilization

0

0.2

0.4

0.6

0.8

1

n1 n2 n3 n4 n5 n6

Heuristics

Random

Thrashing

Node ID

U
ti
li
z
a

ti
o

n

Figure 6.4: Memory utilization

6.3. EMPIRICAL EVALUATION OF THE MVO-SA 133

6.2.2 Remarks

We have conducted similar experiments by using different application pat-
terns. For example, deadline is set at the application level, therefore, all
jobs within an application have the same deadline equal to the deadline of
the application. The estimation of jobs properties are also varied, e.g., by
changing the criticality degree, varying the computation time, deadline and
messages size. We observe that our heuristics approach finds similar results
to those discussed above. This shows the applicability and robustness of our
algorithm on a wide area of applications. Furthermore, when we applied the
communication heuristic, most of the communicating jobs are instantiated
to allocate onto the same node. If we allow all these jobs to be assigned onto
the same node satisfying other constraints, it may result poor load balancing.
In order to tackle this we have applied load balancing technique (striving to
assign the jobs equally among nodes while having the gain on communication
heuristic) so that the loads are properly distributed among nodes.

6.3 Empirical Evaluation of the MVO-SA

We have performed extensive experiments in order to evaluate the MVO-
SA and discuss the results in this section. For this experiment we have
considered different set of jobs of J40, J60 and J80 and most of the cases
an architecture of 8 nodes was assumed. First we show the convergency of
the Algorithm 6 for different workloads to see whether there is an optimized
design achieved per see. We then evaluate the performance of the approach
by using various strategies such as computing the algorithm with different
initial mappings and by adding extra resources to the platform. We depict
the design performance profile as percentage gain in terms of the variables
and the profile of the composite FT and RT gain.

6.3.1 Proof of Convergence and Effectiveness

As a part of the empirical evaluation of the optimization approach, we first
observe the convergence of MVO-SA. Figure 6.5 shows that after a cer-
tain number of iterations with decreasing in temperature the MVO function
reaches a minimum. At higher temperatures, more states have been visited
by the transformation operator Γ to cover the large search space. We also
see that for the same architecture configuration, in case of J40 the algorithm
finds the convergence point earlier than J60 and J80 and takes less number
of iterations to converge.

134 CHAPTER 6. EVALUATION

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0
 50000 100000 150000 200000 250000 300000

n
o itc

n
u f

O
V

M f
o e

ul a
V

Iterations (as T decreases)

J40

J60

J80

J60

J80

J40

Figure 6.5: Showing the convergence

Given the proper selection of the parameters and the problem size, SA
gives global solution by construction [51; 52]. Nevertheless, we have per-
formed several experiments to evaluate if the MVO algorithm converges to
a single point. Even though the algorithm is started with different feasi-
ble mappings (Feas1, Feas2 as shown in Figure 6.6), MVO-SA converges
towards a solution every time. However the convergence points may differ
negligibly, as shown in Figure 6.6 in case of J60 (Feas1, Feas2).

A good performance test of a mapping algorithm is to take a solvable
problem and add resources [84], the algorithm should return a mapping no
worse than the result of the original problem. We added two more nodes to
the configuration of J40 and the resulted mapping displayed better perfor-
mance. The convergence is shown in Figure 6.7 marked as J40 (10 nodes).
To show the effectiveness of starting the optimization with a feasible map-
ping, we also have run the MVO-SA algorithm starting from an infeasible
mapping. In this case the constraints and the objectives were considered at
the same time during the optimization process. Though this can converge to
an improved solution, it is slower than starting from a feasible solution (time
for the creation of feasible mapping is included).

As mentioned before, the algorithm is started by using a feasible map-
ping which is generated at the same run either by using a heuristic or by a

6.3. EMPIRICAL EVALUATION OF THE MVO-SA 135

 1000

 2000

 3000

 4000

 5000

 6000

 0 50000 100000 150000 200000

n
o itc

n
u f

O
V

M f
o e

ul a
V

Iterations (as T decreases)

J40 Feas1

J40 Feas2

J60 Feas2

J60 Feas1

J40 Feas1

J40 Feas2

J60 Feas1

J60 Feas2

Figure 6.6: Performance evaluation of the MVO-SA

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20000 40000 60000 80000 100000 120000

n
o itc

n
u f

O
V

M f
o e

ul a
V

Iterations (as T decreases)

J40(8 nodes)

10 nodes

J40(10 nodes)

J40(8 nodes)

Figure 6.7: Effect of adding resources (laxation of constraints)

136 CHAPTER 6. EVALUATION

 0

 500

 1000

 1500

 2000

 40 60 80

]ces[e
mit ec

n e
gr e

v
n

o
C

Jobs

Feasible-I200

Infeasible-I200

Feasible-I400

Infeasible-I400

Figure 6.8: Run time comparison

random assignment. To show the effectiveness of this, we were also inter-
ested to evaluate the algorithm in case it starts from the scratch with an
infeasible mapping. Though it can converge to an improved solution, cost
a significant amount of time comparing to the former (when starts with a
feasible mapping), as shown in Figure 6.8. This phenomena is also shown
in Table 6.2 with % speed up compared with the optimization starting with
a feasible solution. For larger workloads the difference will be more. For
Feasible I200 and I400 graph the cost in time for creating the initial feasible
solution is included. I200 and I400 are the maximum iterations used at the
same temperature.

Workloads Infeasible (s) Feasible (s) Speed up (%)

J40 – I200 135 113 20
J40 – I400 298 253 18
J60 – I200 612 472 30
J60 – I400 1464 1001 46
J80 – I200 962 677 42
J80 – I400 1788 1374 30

Table 6.2: Speeding up the convergency

6.3. EMPIRICAL EVALUATION OF THE MVO-SA 137

In order to demonstrate the effectiveness of the framework, we also ran the
algorithm considering large number of jobs set, e.g., J200. It took 44562s
(around 121

2
h) to find the convergence point with 1000 metropolis monte

carlo iteration at the same temperature. Selecting the maximum iteration
at the same temperature (the so called Metropolis Monte Carlo attempts)
depends on the specific problem size such that the larger search region should
cover within a judicious time as the simulation time increases linearly with
increasing in iterations (see Figure 6.8). For each experiment, the maximum
iteration is set accordingly.

6.3.2 Quantitative Gain

We are interested in evaluating the quantitative gain compared to a con-
temporary initial solution. As this gain depends on the value of the ini-
tial mapping, we have performed experiments using different initial feasible
mappings. Table 6.3, 6.4 and 6.5 depict the mapping performance profile
(MPF) as percentage improvement for J40, J60 and J80 in terms of (i)
Îf , (ii) Ŝl, (iii) B̂w and also present the value of overall mapping MV O(v)
and the improvement. The values shown in these tables are the quanti-
fied values of the variables corresponding to the initial and final/optimized
value of the mapping. For example, consider J40 and we see that the fi-
nal mapping metrics M [vopt] ≡ M [.24, .32, .22] dominates the initial metrics
M [vinit] ≡ M [.42, .49, .29] according to the dominance rule described in Sec-
tion 5.1.1. We consider minimization problem where lower value is better
than the higher value.

Îf Ŝl B̂w MV O(v)

M [vinit] 0.42 0.49 0.29 2715.39
M [vopt] 0.24 0.32 0.22 1746.89
MPF (%) 42.86 34.02 24.14 35.67

Table 6.3: Performance profile MPF for 40 jobs

Îf Ŝl B̂w MV O(v)

M [vinit] 0.66 0.76 0.60 4304.95
M [vopt] 0.32 0.54 0.40 2822.98
MPF (%) 51.52 29.1 33.33 34.42

Table 6.4: Performance profile MPF for 60 jobs

138 CHAPTER 6. EVALUATION

Îf Ŝl B̂w MV O(v)

M [vinit] 0.68 0.92 0.70 5057.41
M [vopt] 0.36 0.64 0.53 3358.78
MPF (%) 47.06 30.43 24.29 33.59

Table 6.5: Performance profile MPF for 80 jobs

0

0.1

0.2

0.3

0.4

0.5

0.6
 Î lŜ

 wB̂

40J 60J 80J

Q
u

a
n

ti
ta

ti
v

e
 g

a
in

 MVO(v)

Figure 6.9: Mapping performance profile MPF

In Figure 6.9 the performance profile MPF is shown as relative gain with
respect to the initial mapping which portray the overall MPF for the work-
loads of J40, J60 and J80 in terms of Îf , Ŝl, B̂w and MV O(v). We observe

that the gain is higher in case of Îf , which ensures dependability driven
design. In our case studies, on average, our approach has found 35% bet-
ter solutions (composite gain), which leads to significantly better designs for
dependable RT embedded systems.

6.3.3 CPU Utilization

Figure 6.10 shows the computation utilization by different node processors
for jobs set J40, J60 and J80, which is about equally distributed among
node CPUs, i.e., a proper load balancing is maintained by the approach. It

is calculated by UF =
∑n

i=1(Mi,k·CTi,k)

Sl
.

6.3.4 Reduction of FT Overhead

Due to the replication of jobs more number of jobs need to be mapped and
scheduled which naturally incurs the overhead on resources and scheduling.

6.3. EMPIRICAL EVALUATION OF THE MVO-SA 139

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n1 n2 n3 n4 n5 n6 n7 n8

J40 J60 J80

Node ID

U
ti

li
za

ti
o
n
 f

ac
to

r
(U

F
)

Figure 6.10: CPU utilization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3

Replication factor

Initial
Optimized

S
ch

ed
u

li
n

g
 l

en
g

th
 (

N
o

rm
al

iz
ed

)

Figure 6.11: Reduction of replication overhead

However we try to assign them in an efficient way such that computational
resources can be optimized. We observe the FT overhead (see Figure 6.11)
both for initial and optimized mapping in terms of scheduling length. We
varied the replication factor (Replication factor = # jobs after replication/#
jobs) from 1 to 3. We have assumed that the highest criticality class of
jobs need to be replicated three times. On average, the quantitative gain
is 34.33%. Obviously, scheduling length has increased due to increasing the
replication factor. Therefore, a design trade-off between RT properties and

140 CHAPTER 6. EVALUATION

the level of FT is necessary. The quantitative gain shows that the overhead
is reduced significantly by the optimized mapping, which provides an FT
design with reduced scheduling length.

6.4 Validation and Comparative Study

The result of the allocation process is validated using an independent tool [42].
The tool supports optimization-based allocation and scheduling of embedded
time-triggered systems. Although, this tool uses mathematical optimization
framework [114], it may lack of performance in case of large system mod-
els, so the tool and our solution proposed in this work can complement each
other.

The optimization-based tool supports MVO in the scheduling phase, in-
cluding criteria such as robustness, extensibility and throughput. The de-
veloper can select an appropriate composite objective function that delivers
the needed combination of the target criteria. Our method uses heuristics-
based search that delivers solutions quickly. This initial solution can either
be validated (proving schedulability), or optimized using other tools. Our
experiments show that the usage of allocation algorithm as part of the input
to the optimization resulted in a significant performance gain. The result
with less number of workloads shows that in case of optimization the pres-
ence of the initial feasible solution can help to reduce the search space by
at least an order of magnitude. The experiments are done using multiple
objectives function as described in [42]. The independent tool is used to
perform the proof-of-correctness of the output of the allocation algorithm for
different size of workloads. However we experienced some limitations while
performing optimization in the tool using large workloads.

Both methods are complementing each other, because (i) the result of the
heuristic approach can be validated and scheduled using the optimization-
based method, and (ii) the basis solution can be used to improve the perfor-
mance of the optimization.

Chapter 7

Prototype of the System Level
Co-Design

In the previous chapters we have described the concept and methodology
of various steps of dependability driven co-design and have evaluated the
approach for embedded systems. We now develop the prototype of the pro-
posed co-design methodology. In this regard, the concept and algorithms
introduced in the earlier sections have been implemented in an open, exten-
sible development environment. The task to develop a prototype representing
the platform specific post integration information is a complex one. To ease
the designer task, this should come with guidelines, methodology, patterns
and rules. In this thesis the development of the prototype is performed by
the guidance of the system level co-design adhering to the transformation
based design principles such as model driven architecture [124] and platform
based design [40]. The prototyping relies on developing concrete models
(representing the design at particular stage) at different co-design stages
and transforming the model from one form to another and from one level
to another. Usually there are individual tools and technology which sup-
ports one or more development activities such as modeling the functionality,
requirements specification, modeling the architecture, allocating jobs onto
nodes, scheduling, performance analysis and optimization. However integra-
tion among these different technologies and tools in a convenient way are
often lacking. Since different tools use different file formats and even differ-
ent technologies, to make them work in a consistent manner is a difficult task
and takes huge manual effort and time. In order to address this drawbacks
our developed prototype integrates a set of tools and technologies on a single
platform. In order to represent the system requirements and specification
characteristics we use a platform independent specification model (PIM) at
the higher abstraction level. By employing our co-design methodology into

141

142CHAPTER 7. PROTOTYPE OF THE SYSTEM LEVEL CO-DESIGN

a supporting tool set we transform this model to an architecture/platform
dependent model which we call as platform specific post integration model
(PSM). This model is then employed to control the task of deployment of a
complete system onto a physical architecture.

This chapter starts with briefly describing the idea of transformation
based design followed by the description of the overview and relevance of
model and platform based design concepts. Different types of transforma-
tions are discussed to ease understanding the structure of the prototype. We
present the architecture of the prototype and then describe different imple-
mentation steps of the prototype. Finally, the deployment and executable
steps are depicted which enable us to run a complete system onto a target
architecture. The supporting tools and technologies have been developed
in conjunction with the DECOS (Dependable Embedded Components and
Systems) project [145] partners.

7.1 Transformation Based Design

Using a transformational approach and adhering to model and platform based
design principles, our aim is to convert/transform initial platform indepen-
dent SW-C specifications into a platform specific post integration model
(PSM) (Figure 7.1, below). The platform independent model (PIM) is cre-
ated by specifying the functional, timeliness and dependability properties of
application jobs, which is completely independent of platform specific pro-
gramming details. We develop this model for varied criticality applications
(detail of the application modeling is given in Section 7.2.1). For each ap-
plication a single PIM is created. For SC application an SC PIM is created
and for a non-SC application a non-SC PIM is created. On the other hand,
the selected architecture/platform must support and host the functionalities
while meeting the performance and dependability requirements. In [158], the
HW architecture model is called as the cluster resource description (CRD)
model. It is represented using a metamodel called hardware specification
model (HSM) for capturing the resources of the architecture, e.g., compu-
tational resources, type of CPU, type and size of memory, communication
resources, special purpose HW like sensors or actuators. The creation of CRD
is also dealt with the resource composition to form the node describing the
resource primitives. Adhering to model driven architecture (MDA), [158]
has developed a tool based on this HSM metamodel which speeds up the
modeling process. Primarily the PIM and HSM are created based on UML
(unified modeling language) class diagrams and are then transformed into
XMI format (XML Metadata Interchange) [126] such that they can be easily

7.1. TRANSFORMATION BASED DESIGN 143

Platform independent SW

components model (PIM)

(language based on UML)

Platform specific post

integration model (PSM)

Modeling the

architecture (in UML)
 Mapping

transformation

Deployment and

Executable

Figure 7.1: Transformation based design

used and integrated by other tools. At this stage mapping of SW-Cs onto
HW-Cs is performed resulting a platform specific post integration model.
Our aim is to provide an interactive (semi-automated) and iterative trans-
formation based design (transforming PIM to PSM or so called PIM-to-PSM
mapping). The PSM metamodel shown in Figure 7.1 treated as a candidate
PSM which models the interconnection and instances of the mapping for
example jobs are assigned on a node and communicating jobs may need to
use the network but the decision has not yet been made such as the job has
already been allocated onto that node.

A vigorous supporting tools and technologies in a VIATRA1 based frame-
work [159] is provided to perform the transformation. It is based on a meta-
model driven infrastructure. Once all the defined transformations including
allocation are done in VIATRA framework, the PSM of the target system
is generated. The post integration phase is defined in the PSM, where sys-
tem functionalities are already mapped onto the platform meeting various
requirements and objectives.

7.1.1 MDD and PBD: Overview & Relevance

The emerging model driven development (MDD) and platform based design
(PBD) initiatives address the model based design at a higher abstraction
level. These two design concepts are used for system development which
are based on models representing specification, design, etc. These technolo-
gies separate and relate the information of PIM and PSM depending on the

1VIATRA (VIsual Automated model TRAnsformations) is an open source model trans-
formation tool.

144CHAPTER 7. PROTOTYPE OF THE SYSTEM LEVEL CO-DESIGN

level of the design. In order to develop an efficient transformation based
design and adhering these methodologies, following three aspects have been
characterized for this design approach:

(i) Modeling the application and jobs functional and extra-functional char-
acteristics abstractly independent from the architectural implementa-
tion details,

(ii) Modeling the HW architecture such that it can support the function-
alities defined in the first step, and

(iii) Transforming the mapping/integration such that the jobs functionali-
ties are mapped onto available platform/architecture resources satisfy-
ing various design constraints resulting a PSM.

In PBD technology the third step is often termed as meeting-in-the-middle
process. According to MDD, PSM is the level where system design meets im-
plementation concepts and languages. According to that, the PSM is a view
of a system from the platform specific viewpoint and is expressed in terms of
the specification model of the target platform. There are various work which
also use these concepts, e.g., by applying the MDD design environment and
focusing on domain specific modeling language (DSML), [161] develops a tool
suite which designs HW and SW based on the PICML (platform indepen-
dent component modeling language) and ECSL (embedded control systems
language) and integrates them onto an execution platform through genera-
tion of platform specific artifacts. In Section 7.2, we progressively formulate
above three characteristics and create the prototype of the design process.

7.1.2 Model Transformation

The model transformation (MT) is the process of converting one model to
another model which applies some rules like graph transformation [162]. In
this context, transformation of the PIM to the PSM of the same system is
performed. There exist many ways in which such a transformation can be
done, e.g., manually, automatically or by computer assistance. In which way
the transformation is done, it produces a model specific to a particular plat-
form from a set of PIMs. Transforming PIM directly to PSM is a formidable
task and has a large abstraction gap between them. It is necessary to gen-
erate intermediate models to bridge large abstraction gaps between models,
instead of directly generating from the source to the target model. Therefore,
in pursuit of developing the prototype we have classified different types of
MTs to come up with the final PSM prototype. The MT is classified as the

7.1. TRANSFORMATION BASED DESIGN 145

intra model transformation which is done in the same abstraction level, the
quality driven transformation which is done according to specific properties
and the inter model transformation which is done between different level of
abstraction models. These are described in the following:

Intra MT: This type of transformation is done on the same abstraction
level, i.e., changes are propagated across models on the same level of ab-
straction, e.g., transformation which is done within PIM level, such as trans-
forming the UML/XMI file created by rational rose or any other tools to the
VIATRA compatible file format. Moreover, since the XMI files produced by
the supporting tools may contain a lot of unnecessary information (such as
graphical placement of model elements) which is then by transformation need
to be simplified to be used in the prototype. The task of either creating the
XML file or transforming the file into other format is tedious and error prone
to do them manually. In this context it is done automatically by VIATRA
model transformation tool.

Quality-driven MT: The key instigator of this transformation is particu-
lar quality attribute, for example, incorporating replication and job allocation
into VIATRA can be categorized in this type where the transformation rules
(e.g., rules that define the replication of jobs) plays a vital role. This type
of transformation can be classified as intermediate MT as well. Transform-
ing the allocation into VIATRA model space and transformation regarding
interfacing the scheduler can be categorized into this class.

Inter MT: This type of transformation is done between models of dif-
ferent levels of abstraction, for example, when abstract application model
is transferred to the technology specific model. The PIM-to-PSM mapping
transformation is categorized into this type MT which is not directly per-
formed in one step. An inter model transformation may contain more than
one intra model and quality-driven transformations.

VIATRA – A Transformation Tool

The VIATRA2 (release version 2) model transformation engine addresses
the challenges of model transformations and provides a complete system to
define, develop, test, debug and maintain the model transformations and
code generation. The PIM and CRD input models are transformed into
the VIATRA model space and from where these models are used in other
transformations for example in job replication and allocation. This way the

146CHAPTER 7. PROTOTYPE OF THE SYSTEM LEVEL CO-DESIGN

VIATRA model space is enriched by each transformation and at the end the
prototype of the PSM is generated which enhances the deployment process
of a system.

7.2 Architecture of the Prototype

The co-design steps are implemented on top of the open Eclipse tool integra-
tion framework. Eclipse is a Java-based, open-source extensible system which
is currently one of the mostly used open platforms for tool development [160].
It supports specification of models using XMI, Java and XML schema. As
the tool-chain works with multiple modeling languages and facilitates multi-
ple model transformations, we use VIATRA2 a generic, open-source model
transformation framework [159], which is an official Eclipse extension. VIA-
TRA2 supports the reliable and simultaneous handling of multiple models,
modeling languages and transformations as well as the code generation. The

PIM
XM

L

PIM
XM

L

PIM

XMI

PIMs

PIM metamodel

CRD metamodel

PSM metamodel

Replication

Marking

Allocation

Heuristics

VIATRA model space

Eclipse framework

CRD

XMI

Configuration data,

C code

Optimization

Job code

information
XML

TTP/TTX -

Plan

TTP/TTX -

Build
Python

Python

Figure 7.2: Prototype of the system level co-design

structure of the prototype implementation is shown in Figure 7.2, which is
developed through appropriate techniques such as [173]:

• Supporting tool suite

• Implementing the allocation process

– Transformation rules

7.2. ARCHITECTURE OF THE PROTOTYPE 147

– Heuristics base

• Support for multiple model manipulation (transformations)

• Interactive basis – user interactive

• Smart graphical user interface

The inputs are the PIM models (each containing a single application)
in XMI format, the CRD model (also in XMI format), and the job code
information files (in XML). The PIM and CRD models have been transformed
from the UML to the XMI format. These models are stored in the VIATRA
model space as metamodels which are semantic frameworks for expressing
models and their inter-operation. In order to improve usability of the tool,
a custom user interface is implemented that hides the technical details of
models and transformations and shows only the high level information. After
the allocation and scheduling are done, all the necessary configuration files
and source code for the system are generated. The SW is compiled and
deployed using third party, system specific C compiler and SW download
tools, e.g., TTP-Load [144]. The detail of these architectural steps including
the supporting tool set is addressed in [163]. All the steps shown in Figure 7.2
are briefly described in the subsequent sections.

7.2.1 Modeling the Application and SW Development

The functional, performance and dependability requirements and proper-
ties are formally specified in PIM models and metamodels either by using
a standard UML tool or by the dedicated domain specific editor [164]. To
support the ease creation, the PIM model can also be developed by using
the design patterns [165]. There are three packages that are created for
different requirements of functional, performance and dependability. Jobs
attributes are configured accordingly. The functional package contains dif-
ferent job characteristics, ports, information for messages, sensor/actuator
jobs etc. The performance package contains the job information such as CT
(WCET), deadline D, code size, etc. In the dependability package the degree
of criticality is specified for the job properties, e.g., followed by the safety
integrity level described in Section 2.1.2. Accordingly jobs are replicated in
an early design phase and are executed onto distinct nodes. Not all PIMs
create the dependability package meaning that for SC applications all these
three packages are created and for non-SC applications creation of functional
and performance packages is sufficed.

148CHAPTER 7. PROTOTYPE OF THE SYSTEM LEVEL CO-DESIGN

In parallel with the co-design process, the behavioral design of applica-
tions is need to be carried out which describe the definition of job behaviors.
The applications or jobs codes are generated out of these behavioral steps.
There are several commercial tools that can be used for this purpose, e.g.,
SCADE [166] and Matlab/Simulink [167]. SCADE is specially used for SC
embedded applications (formally defined, deterministic) and two properties
are interesting to get the information required for the prototype: (i) the
code execution time is bounded and (ii) in order to meet DO178-B con-
straints [168], generated code from SCADE qualified code generator involves
only a small subset of the ANSI-C language, with no fancy pointer arithmetic
or such. This makes the estimation of WCET analysis reasonably applicable.

7.2.2 Transforming the Design Steps

In this section we describe the steps shown in Figure 7.2. In the first step
the input models are imported to VIATRA model space. Importing the job
code information (in XML) and sensor/actuator jobs replication (applying
transformation rules) are then performed. The jobs code information is a
feedback from the behavioral design process. A marked PIM is created by
marking the platform specific information which are not yet given either in
PIM or in CRD. This model contains the pre-allocation information like job
placement definition and application interconnection definition. Job place-
ment definition allows the designer to decide whether a job will be placed in a
core node or will be in a node attached to a field bus. The application inter-
connection definition enables to mark the source and the target applications
gateway messages for exchanging the inter-application information. The al-
location compatibility matrix is defined in the marked PIM by marking the
job compatibility, e.g., if a job needs a sensor/actuator it has to be allocated
on a node attached with the sensor/actuator. This has been formulated as
binding constraints. Replication is performed according to the degree of job
criticality, in this case one-to-one job and resource mapping is done.

The heuristics and mapping algorithm are transformed into model space
by applying the model transformation rules, i.e., by rules of graph transfor-
mation. An abstract view of how the mapping is considered in the transfor-
mation engine is shown in Figure 7.3. The PIM and CRD models (all are
in XMI format) are used as inputs together with the estimation of job prop-
erties, e.g., the estimation of memory and code size, timeliness properties
(EST, CT , and D).

The input and output file format of the message and job/partition schedul-
ing is a python [172] file. The python file is generated from the model space
with the allocation information. These are discussed in the next section. At

7.2. ARCHITECTURE OF THE PROTOTYPE 149

Transformation

engine

Heuristics,

 design strategies

and algorithm

MT rules

Input

models

Output for

scheduling

Figure 7.3: Allocation in model transformation

this point, all information is available that is needed to create message and
job scheduling in the cluster. We decided to use third-party scheduling tools
therefore the mapping process exports the data to the scheduler and then
reads back the results. The final step of the whole process is the genera-
tion of application glue code and configuration files for the OS and for the
communication controllers.

7.2.3 Scheduling Tool Support

A scheduling tool is necessary to provide a means of ease analyzing the
timing constraints of the applications whether the constraints are met and
assess that the deadlines are satisfied. Various tools exist which provide the
scheduling of jobs/tasks, such as RapidRMA [169], VEST (Virginia Embed-
ded Systems Toolkit) [170] and AIRES ToolKit [171]. These tools mainly use
the rate monotonic analysis (RMA) for uniprocessor scheduling. Neverthe-
less, as mentioned in Section 4.1.3, TTP/TTX-Plan and TTP/TTX-Build
are exploited in our approach as an example tools set for scheduling SC
applications on a distributed architecture. These tools implicitly assess a
feasibility test to check whether a given system assignment is schedulable
and perform the scheduling and generate the necessary configuration files.

The input format of both tools is a Python script file. The input data
has to be defined in form of a Python program that manipulates the internal
database of the tool, creating all necessary elements before scheduling (clus-
ter, nodes, jobs, messages). The mapping tool generates the Python scripts
from the actual PSM, and invokes the tools. At first TTP/TTX-Plan creates
the message schedule and communication configuration for the cluster. In
the second step the node-level job scheduling is done by TTP/TTX-Build.
This tool (also driven by an automatically generated Python script) loads the
communication schedule and generates the node level schedule and the con-

150CHAPTER 7. PROTOTYPE OF THE SYSTEM LEVEL CO-DESIGN

figuration files of the operating system. Results from the scheduling process
are the configuration of the communication controllers, the configuration of
the node operating systems and stubs for the jobs. In order to generate mid-
dleware configuration code, a custom code generator is invoked that emits
the code required to bind the operating system stubs with the behavioral
code generated e.g., by SCADE. This code generator also configures the
middleware modules that are necessary for legacy support.

7.2.4 PSM Prototype

The result of the mapping is the platform specific post integration model
of the system that contains all the information about the SW and the HW
components, and about the mapped jobs onto nodes. The model for the
PSM is created and stored in the native XML format of VIATRA which
provides the foundation of the mapping tool. The model does not need
to be exported, as all transformations and marking steps are executed in
the VIATRA framework. The creation of the PSM prototype is elaborated
in [173].

7.3 Deployment and Executable

The generated PSM controls the deployment task of the system development
process where all the source files (application code – generated from behav-
ioral design either from a tool or manually coded, middleware code, configura-
tion code for the OS) are compiled and linked into object files and executable
files. Finally, in order to run a complete system these files are downloaded

Mapped jobs,

configuration data

Behavior code

generation

PSM

Deployment

(compiling, linking)

Executable

(loading)

TTP/TTX -

Load

Figure 7.4: Deployment process

onto the target platform, e.g., by using the TTP/TTX-Load [144].

7.3. DEPLOYMENT AND EXECUTABLE 151

The deployment process to an actual target platform is divided into six
steps as shown in Figure 7.5, which are controlled by a Makefile and are listed
below [174].

Application
code

Wrapper
code

Configuration
code

oFTL Task

code

Object

files

COS object

files

Step 1.

compile

Linker script

files

Step 2. detect_

partitions

Executable

elf file

elf file with

checksums

cmm

files

Step 6.

Download to

target HW

Step 3.

link
Step 4.

make_ifxsag

_config

Step 5.

make_flash

_cmm

Figure 7.5: Deployment steps [174]

• All the C source files (application code, wrapper code, oFTL (opti-
mized fault tolerance layer) tasks, Core-OS configuration code) [174]
generated from the tool set are compiled into object files using the
TASKING TriCore C compiler [175] in the first step.

• The second step is to detect partitions and generates linker scripts files
which are crucial for memory protection and therefore for partitioning.

• In the linking step the generated linker script files are used to link the
object files with the Core-OS.

• The CRC checksums of configuration data are pre-computed and writ-
ten into the elf file using the Infineon SAG tool [176]. The Signature
Analysis Generator (SAG) Tool generates the CRC checksum for the
data in a linked ELF (Executable and Linking Format) format file be-
fore downloading.

• The last action triggered by the Makefile is the generation of a cmm
batch file.

• Lauterbach TRACE32 [177] uses the generated batch file to download
the ELF file to the target platform.

152CHAPTER 7. PROTOTYPE OF THE SYSTEM LEVEL CO-DESIGN

Chapter 8

Extendability and Adaptability

We have developed and validated the framework for an architecture which
consists of node processors of equal speed and failure rate. We describe the
extendability and adaptability of our approach in an architecture which com-
prises of node processors having different failure rates and speeds/frequencies.
While performing the integration/mapping, it is necessary to use such an
architecture efficiently. We describe how the framework can be extended
to reliability measure and power optimization. Consequently we provide
the quantification and estimation of these variables. Replication based FT
scheme assures a certain level of dependability. We provide a measure of
such level in terms of reliability. This variable can be improved during the
mapping process when different failure rates of nodes are considered.

To explain the extendability and adaptability of the approach we assume
that errors in node processors occur at a different rate of λn1 , λn2 , . . . , λnk

and errors in the communication links occur at a rate of λl. We also assume
that node processors can have different speed/frequency (fn1, fn2, . . . , fnk).
Therefore the computation time for a job with the same degree of complexity1

will be varied on different nodes. The processors should be able to run in a
different frequency level with different voltages.

In this chapter first we describe the adaptability of the mapping Algo-
rithm 3 (presented in Section 4.4) on a heterogeneous architecture and illus-
trates the concept by using an example. We show the quality of the mapping
in terms of the previously considered variables (influence, scheduling length
and bandwidth utilization). We then discuss the extendability and adapt-
ability of the optimization process by additional variables. In this regard,
the quantification and modeling of reliability and power consumption are de-
picted. These variables either can be included with the variables presented in

1Complexity in terms of functionality – a more complex job is with more functionalities
and requires long CT

153

154 CHAPTER 8. EXTENDABILITY AND ADAPTABILITY

the previous chapters or they can be considered differently in the optimization
process. However this may increase the complexity of solving the problem.
The co-design framework can be configured with the needed/required num-
ber of variables (either 3, 4 or 5) according to the importance of variables
defined by the system designer.

8.1 Applicability on a Heterogeneous Archi-

tecture

We explain the adaptability of the mapping algorithm presented in Sec-
tion 4.4 onto a heterogeneous (in terms of computation and failure rates)
architecture/platform. A heterogeneous architecture may consist of node
processors of different speeds (fnk) and of different failure rates (λnk). There-
fore each job may have different CT s on different nodes and also the jobs
failure probability can be different. A processor with less failure rate is ob-
viously more reliable and more jobs are assigned onto this node so that the
system reliability is maximized. On the other hand a high speed processor
can execute a job faster than a low speed processor. These may overload
some processors while other processors are less utilized. However the high
speed processors may have higher failure rates. Thus a better trade-off is
necessary. In order to tackle this, heuristics like in [178] can be utilized
while applying the retrospective technique in Step 7 of Algorithm 3. The
technique is to allocate jobs onto a processor according to the product of the
failure rate and the total time (Tt) required by the instantiated job and already
assigned jobs on that processor. Assign the selected job on a processor where
the product λnk ·Tt is minimum. This heuristic (HetHeus) provides a better
trade-off between reliability and schedulability of the mapping. Moreover,
if a job needs a certain level of reliability and only a specific processor can
provide it then this job should be assigned on that processor or if a job needs
high CT then it has to be assigned onto a high speed processor. These types
of requirements can be taken into account in the allocation compatibility
matrix A described in Section 4.2.

Illustration on a Heterogeneous Architecture

Using an automotive example, we demonstrate the applicability of the map-
ping process to an architecture consists of processors of different comput-
ing power and failure rates. For this illustration, we consider a HW ar-
chitecture consisting of 4 nodes. Let us assume the speed of node pro-
cessors n0, n1, n2 and n3 are 1(for125MHz), 1.25 (i.e, 156MHz), 1.5 and

8.1. APPLICABILITY ON A HETEROGENEOUS ARCHITECTURE155

1.25 unit respectively. Therefore a job assigned on node n1 requires 1/1.25
times less time to finish the execution. The failure rates (λnk) per hour are
1× 10−5, 1.5× 10−5, 1.5× 10−5 and 1.75× 10−5 for node processors n0, n1, n2

and n3 respectively. The slots s0, s1, s2 and s3 are statically assigned with
nodes n0, n1, n2 and n3 respectively. Maximum two messages of size 25bytes
can be sent from each slot.

j1

j2

j3 j4

m13

m12

m34

20

20

25 15
0.4

0.4 0.3

n1n0 n3n2

λn0 n1 n2 n3λ λ λ
fn0 fn1 fn2 fn3

Figure 8.1: Application and heterogeneous architecture

We use the same application of brake-force control (BFC) as explained
in Section 2.3.4 and assume the following job properties. Replication factor:
2, 2, 2 and 3; EST : 0, 0, 20 and 45ms; CT : 20, 20, 25 and 15ms for jobs
j1, j2, j3 and j4 respectively. The mentioned jobs CT s are for the processors of
having relative speed of 1 unit (for 125MHz). The values of CT s are updated
according to the speed of the node processor where the jobs are assigned. Jobs
j1, j2, j3 and j4 are correspond to speed sensor, distance control, brake force
control and brake actuator job respectively. The influence value (probability
of error propagation) between j1, j3 and between j2, j3 is assumed as 0.40
and between j3, j4 is 0.30. The message size between each pair of job is
25bytes. Jobs j1a and j1b are the replicas of j1 and similar type of notation is
used for all other replicas. All jobs from this application have to finish their
execution by the deadline equal to the period of 150ms. The chosen FT
scheme tolerates one fault (either transient or permanent). The application
and the architecture model is shown in Figure 8.1.

All jobs along with the replicas are assigned onto available nodes. Two
mapping configurations shown in Figure 8.2 are illustrated as follows. For
the first mapping (Figure 8.2 (a)) jobs are assigned without the guidance of
the heuristics. For the other configuration (Figure 8.2 (b)), according to the
ordering heuristics we first assign sensor jobs j1 and j2. For the remaining
jobs, we then apply the HetHeus in Step 7 of Algorithm 3. As all jobs are
high critical only Phase I is executed. Let us consider the case of assigning
j3a. We calculate the value of the product λk · Tt for nodes n0, n1, n2 and n3

which are (20 + 25) × 1 = 452, (16 + 20) × 1.5 = 54, (14 + 17) × 1.5 = 46.5

2For simplicity 10−5 is discarded from the value of λnk.

156 CHAPTER 8. EXTENDABILITY AND ADAPTABILITY

n0

n1

s0 s1 s3

j1a j2a

t
s2

n2

n3

j1b j2b

m23 m23m13m13

j3b

m34
m34

j4c

j4a

j4bj3a

s0 s0

(a)

n0

n1

t

n2

n3

m23

m23 m13m13 m34m34

j1a j3a j4c

j1b j4a

j2a j3b

j2b j4b

s0 s1 s3s2 s0

(b)

Figure 8.2: Assignment on a heterogeneous architecture

and (16+20)×1.75 = 63 respectively. According to HetHeus j3a is assigned
to node n0, which has resulted the smallest product value. Similarly j3b is
assigned to n2. In this way all other jobs are assigned. When there is a tie,
a node is chosen arbitrarily. We observe that high reliable nodes (less failure
probability) execute more jobs while maintaining the scheduling length to a
minimum. There exists always a trade-off between reliability and scheduling
length. In order to maintain a better trade-off between them, this heuristic
can be applied stand alone or can also be applied when there is a tie in the
communication heuristic described in Section 4.3.1.

Quality Mapping

The metrics in terms of influence, scheduling length and communication load
have been calculated for both mappings. The values are 0.58, 92ms, 150bytes
and 0.43, 83ms,150bytes which correspond to the assignment shown in Fig-
ure 8.2 (a) and (b) respectively. These objectives are used for measuring the

8.2. RELIABILITY MEASURE 157

quality of the mapping. The overall influence and the scheduling length have
been calculated by using the formulae given in Equation 5.6 and in Equa-
tion 5.9 respectively. The communication overhead is calculated by the sum
of size of the messages transferred over the network. Both mappings satisfy
all the constraints, i.e, both are feasible mapping. However mapping shown
in Figure 8.2 (b) should be chosen as good mapping due to its less overall
influence and scheduling length value. Note that this mapping has been cre-
ated by applying the heuristics. As described earlier, these three variables
have also been used for the optimization framework, where the experimental
results show a significant quantitative gain.

8.2 Reliability Measure

Reliability is a property of dependability [3]. The reliability of a mapping is
defined as the probability that all the assigned jobs are operational during
a time period often called as mission time. In this section we present the
estimation of reliability and some techniques of how to improve the relia-
bility during the design process. Note that the measure of the reliability
of a mapping becomes an important factor when nodes have different fail-
ure rates (failure/hour) and have different processor speeds. At the design
time meaning that while conducting the mapping the reliability hence the
dependability can be improved by using several techniques, such as:

(i) Replication of critical jobs,

(ii) Assigning job onto a node which has a less failure probability,

(iii) Assigning more complex job (incurs large CT) onto a high speed node
processor,

(iv) Assign jobs onto nodes according to the minimum product of sum of
execution time of the already allocated jobs and the corresponding node
failure probability. This gives a better trade-off between reliability and
schedulability, and

(v) Putting highly communicating jobs onto the same node decreases the
system failure probability by avoiding the cascading failure and fail-
ure due to the fault in communication link, i.e., increases the system
reliability.

In the following section we depict how we compute reliability and illus-
trate the improvement of reliability using an example.

158 CHAPTER 8. EXTENDABILITY AND ADAPTABILITY

8.2.1 Computing Reliability

The reliability <̂l of a mapping is computed by the following expression:

<̂l =
n∏

i=1

(
1− (1− rki

)dci
)

(8.1)

where n is the number of jobs, rki
is the probability that a job/replica i

operates correctly on kth node and dci is the degree of replication for the
critical jobs. The probability that a job/replica operates correctly depends
on: (i) node processor nk does not fail and (ii) incoming communication link
is operational. Therefore, rki

= rproc · rlink. Where rproc is the reliability
factor depends on the failure rate of the processor and rlink is the reliability
depends on the failure rate of the communication link.

rproc = e−λnk·CTi is the probability that job ji run successfully without
the failure of its host processor. A job which takes more time to execute on
a processor has a higher probability to fail than the ones which takes less
time. Of course this is also depends on the failure probability (λnk) of the
processor. The higher the failure rate of the processor is the higher the chance
that a job running on that processor may fail. The reliability factor due to
jobs communicating over the network is calculated as: rlink = e−λl·msgi,j/bn ,
where λl ·msgi,j/bn is the unreliability factor due to inter-job communication
between job ji and jj. This factor is counted only when two communicating
jobs are assigned onto different nodes. It depends on the failure rate of the
communication link λl as well as the time taken by transmitting the messages
over the network. The larger is the message size the higher is the probability
that the message get faulty/corrupted.

All the variables in the optimization framework are considered as min-
imization variable meaning that the lower the value of a variable is better
for the design. Therefore in the optimization process the unreliability factor
µ<l is used while considering with other variables. The unreliability factor
is equal to 1− <̂l.

8.2.2 Reliability and Mapping Analysis – An Example

We first take a very simple example to discuss the replication and reliability
analysis when considering node processors of different failure rates. Let us
assume an example which consists of two replicas j1a and j1b. We need to
find a mapping to assign them onto two nodes from three nodes n1, n2 and n3

in such a way that the reliability of the mapping is maximized. We assume
that the job run on node n1 and n3 with higher reliability than on n2. The
reliability of a job run on nodes n1, n2 and n3 is rk1 = 0.9, rk2 = 0.8 and

8.2. RELIABILITY MEASURE 159

rk3 = 0.9 respectively. If we consider a mapping such as j1a is assigned
onto n1 and j1b is assigned onto n2 then the reliability of the mapping is
<l = 1 − (1 − .9)(1 − .8) = 0.98. Now consider a different mapping where
j1a is assigned onto n1 and j2b is assigned onto n3, in this case the overall
reliability of the mapping becomes: <l = 1−(1−.9)(1−.9) = 0.99. Obviously
the second mapping configuration would be chosen as a better mapping with
respect to the reliability. We observe that the reliability is dependent on the
assignment policy when considering the node processors of having different
failure probabilities. Furthermore in one hand replication of jobs increase the
reliability and on the other hand the assignment policy of replicas impact the
reliability.

j1a

j2a

j3a

j4a

30

40 20

m34

m24

m13

m12

30

n2n1

j1b

j2b

j3b

j4b

40

30

30 20

m13

m12

m34

m24
n3

λn1 λn2 λn3

Figure 8.3: Application and architecture model

We now consider the example presented in Section 5.2.4 to be assigned
onto an architecture of three nodes n1, n2 and n3 with different failure rates
of λn1 = 10−3/h, λn2 = 2 × 10−4/h and λn3 = 5 × 10−4/h respectively. All
the jobs j1, j2, j3 and j4 are replicated two times and the assumed CT s are
40, 30, 30 and 20ms respectively. The application (after replication) and the
HW architecture is shown in Figure 8.3. All the 8 jobs (after replication the
workload becomes double) have to finish their execution by 200ms. Assume
that there is a probability of communication link failure at a rate of 10−3/h.
With this given workload the reliability varies with the different mapping
configurations. We have examined three different mapping configurations
and estimated the reliability. Note that considering more number of jobs the
difference of resulting reliability will be more prominent.

The mapping with the highest reliability will be chosen as a better map-
ping, in this case the configuration shown in Table 8.1 will be opted as a
better mapping from a reliability view point. Note that when we use the
HW architecture comprising the node processors of equal failure rates then

160 CHAPTER 8. EXTENDABILITY AND ADAPTABILITY

Node Assigned jobs Reliability <l

n1 j1a, j2a, j4a

n2 j1b, j2b, j3a 0.9999831
n2 j3b, j4b

Table 8.1: Mapping configuration (a) and reliability

Node Assigned jobs Reliability <l

n1 j3b, j4b

n2 j1b, j2b, j3a 0.9999829
n2 j1a, j2a, j4a

Table 8.2: Mapping configuration (b) and reliability

Node Assigned jobs Reliability <l

n1 j1b, j2b, j3a

n2 j3b, j4b 0.999974
n2 j1a, j2a, j4a

Table 8.3: Mapping configuration (c) and reliability

all the mapping configurations would return same reliability.

8.3 System Level Power Optimization

Given the increasing fuel prices in the world wide market, recently power/en-
ergy consumption has been attracted a significant research focus. Hence it
is important to introduce a new dimension of power consumption into the
system level co-design process. By the reduction of power consumption, for
example in cars, cost and weight can be reduced as it may require low size
generator and battery, for example, in car [102]. When the engine of a car is
on all the networks and nodes are actively running almost all the functional-
ities, therefore the allocation cannot influence the power consumption much
at this point. However dynamic power consumption minimization techniques
can be applied to reduce the power at run time. Some functions/applications
may require power until a certain time and some other functions require to
provide services all the time when the car is stopped/parked. For these kind
of applications saving power statically or at design time is important and this
power consumption can be utilized by the allocation process. In the following
we discuss methods and techniques of how to reduce the power consumption

8.3. SYSTEM LEVEL POWER OPTIMIZATION 161

for both static and dynamic power cases.

8.3.1 Static Power Optimization

The static or at design time power consumption minimization may depend
on the mapping decision particularly when the engine is off and the ignition is
off. As mentioned some functionalities need to run all the time and some need
to run a certain time period. Hence, the power consumption is significantly
important as the availability of services of functionalities depends on the
battery life time. It is not necessarily the case that as big or powerful battery
as we want is possible to install onboard a car. We are constrained by
the size, weight and cost. For a comfort application like radio a limited
time of availability though may not cause a problem but for safety relevant
applications such as hazards light, parking light, it may not be acceptable to
keep running the functions for a limited time period. There are several types
of functions which need to be activated or to provide services on demand
at any time, e.g., cost-critical applications like anti-theft protection, central
locking system. For instance the sensors and actuators attached to those
functionalities need to be activated all the time. Jobs from these type of
applications can be grouped and assigned or allocated onto a common node
then it would be sufficient to keep on only this node instead of spreading them
over different nodes. The battery life time is increased by the consumption of
less power. On the other hand when less amount of power is needed a small
size of the battery would be sufficient. These types of assignment decisions
can be taken into account in the ordering heuristics (allocation compatibility
phase) of our mapping approach.

8.3.2 Dynamic Power Optimization

We use replication based FT scheme to tolerate both permanent and transient
faults. More replicas consume relatively more power as more jobs need to be
executed on processors. System level low power techniques should judiciously
manage the replication resources to reduce the power consumption [179].
There are several techniques exists one could apply for the reduction of power
consumption during the system design. The in-between slack (IBS) defined
in Section 5.2.2, which is the gap between two consecutive jobs executing on
the same node in a schedule, can be utilized for saving the power dynamically.
In this section we simply term this as slack. The slack that cannot be used to
run a complete job can be utilized for power saving or for future upgrading
of a particular job. However slack may remain more than the amount of the
computation time of a job which can be used for providing FT. In this section

162 CHAPTER 8. EXTENDABILITY AND ADAPTABILITY

we discuss how this slack can be utilized for power/energy saving. Obtain
a snapshot view of remaining slacks and the amount of the slack from a
schedule then use this information to set the new voltage or frequency level
for a processor. However the slack can be utilized in an efficient way by
applying the technique such as contingency scheduling [77]. If it is necessary
to change the scheduling in order to obtain more slack for a better power
saving it should be done in a way that the scheduling of one processor should
not affect the scheduling of other processors. The technique for dynamic
voltage and frequency scaling (DVFS) is described below.

Usually slack is utilized both for recovery from faults and for energy
savings in a way that the deadline of the application is maintained [95; 96; 97].
In this case only transient faults are tolerated. The recovery time is usually
included with WCET. However this may not be the case for applications with
short deadlines which require to provide instant services despite of faults. In
our case as we use active replication based FT scheme, the remaining slack
from the scheduling can be fully utilized for power saving.

Dynamic Voltage and Frequency Scaling (DVFS)

Dynamic voltage and frequency scaling (DVFS) [180] is a technique to save
power by dynamically scale the processor frequency and by controlling the
system supply voltage. Higher processor frequency (when the processor runs
at maximum frequency or at the highest voltage) increases die temperature
and creates thermal stresses on the die which results more transient faults
during the system operation. Therefore use of DVFS by scaling down the
voltage and consequently saving the power is also beneficial from the depend-
ability view point. On the other hand, lower processor voltage likely to lead
to lower noise margin and more transient faults (induce by cosmic particle).
Hence the voltage level has to be maintained or a recovery mechanism has
to be provided for the faults that occurred due to lower voltage. Processor
has to capable of adjusting the speed continually on a different level within
minimum and maximum frequency/voltage range. From this discussion, it
entails that while considering DVFS, care has to be taken to set and con-
trol the processor frequency by scaling down/up the operating voltage. The
overhead or the cost (usually in µs range) due to switching the voltage level
also need to be taken care.

The system level power model presented in [152] is described, where the
power consumption P̂o of a computing system is measured by the following
expression. The model is utilized for power saving by DVFS technique.

P̂o = Ps + ~(Pind + Pd) = Ps + ~(Pind + Ceff
m) (8.2)

8.3. SYSTEM LEVEL POWER OPTIMIZATION 163

Where Ps is the sleep power, which includes the power to maintain basic
circuits and to keep the clock running. It can be dislodged only by powering
off the whole system. Pind is the frequency independent active power, which
consists of the components of memory and processor power. This part of
the power consumption can be efficiently dislodged by putting systems to
sleep state and is independent of system supply voltage and frequency. It
is possible to minimize this part of the power by the mapping decision for
some special applications mentioned in the previous section. The frequency
dependent active power Pd = Ceff

m includes processor dynamic power and
any power that depends on system processing speeds. ~ equals 0 if the system
is in sleep state and equals 1 otherwise. The effective switching capacitance
Cef and the dynamic power exponent m (in general, larger than or equal to
2) are system dependent constants [95] and f is the processing frequency, i.e.,
the speed of the processor. While processor voltage as well as the frequency
is changed the CT of each job is needed to be updated accordingly. The new
CT ′ of each job running on different node processors is calculated by using
this relation:

CT ′ = CT · fmax/f

Assume that fmax = 1 then the relation becomes CT ′ = CT/f . Where, f
is the frequency of the corresponding scaled down voltage of the processor.
When the slack is known, the new frequency can be determined as:

f = CT/CT ′ = CT/(CT + IBS)

As we see from the Equation 8.2, the higher the frequency is the higher the
power consumption (depending on the active power component Pd). There-
fore jobs execute on a lower frequency will consume less power than execute
on a higher speed. However too low frequency could consume more power
as it takes too long time to finish the job execution. It is necessary to scale
up/down the processor frequency and run it with a moderate/appropriate
voltage while saving the power.

8.3.3 FT and Power Analysis – An Example

We analyze the power consumption with respect to the FT scheme and show
how the consumption of power can be reduced for a mapping by utilizing
the slack. We illustrate this by using an application and a HW architecture
comprises of two nodes, which needs to tolerate 1-fault (shown in Figure 8.4).
The application consists of four jobs j1, j2, j3 and j4 associated with the
CT s of 20, 20, 30 and 20ms respectively. For simplification, the overhead for
fault detection, recovery and the voltage switching time are included with

164 CHAPTER 8. EXTENDABILITY AND ADAPTABILITY

the corresponding job CT . All jobs have to finish their execution by the
deadline of 160ms and each slot length is equal to 10ms. According to the FT
requirement, the degree of criticality dci has been set at the application level
equal to 2. Therefore all jobs under this application have been replicated two
times and the corresponding messages have also been replicated. Figure 8.4
shows the application graph after replication. This FT scheme can tolerate
either one permanent (fail-silent) or one transient fault. Assume that all the
jobs run on each processor with maximum frequency of f1 (the jobs with the
higher width as shown in the figure).

j1b j4a

j2a

j3a

n0

n1

m34

20

30 2020

f1

j1a

j2b

j3b j4b

30 2020

20

m34

m13

m13

m23

m23

s0 s1 s0 s1 s0 s1... s1

m34m34

s0 ...

j1a

m13m13 m23 m23

j1b j2b

j2a

j3b

j3a j4b

j4a
f2

m13

m13

m23

m23 m34 m34

n1n0

Figure 8.4: Example mapping - FT and power analysis

Reliability is increased by replicating more jobs which increases the num-
ber of jobs executing on different computing nodes resulting increased schedul-
ing length and more power consumption. However techniques can be applied
first to provide FT and then to minimize the power consumption while still
satisfying the schedulability. Particularly the available slack can be utilized
for power saving without impacting the existing scheduling. For example
in Figure 8.4, job j1b, j2b, j3b, j3a can run with long CT utilizing their front
slack which will not impact the overall scheduling on any nodes (so called
contingency scheduling). This can be done by scaling down the voltage that

8.3. SYSTEM LEVEL POWER OPTIMIZATION 165

run the processor on a lower frequency f2 (f2 < f1). For instance, j1b runs
in a frequency of f2 = f1 ∗ 20/(20 + 10) = 0.67 ∗ f1. As we see from the
Equation 8.2 that if the frequency is low then less amount of power is re-
quired as well. Hence the overall power consumptions due to more replicas
can be minimized. We calculate the energy consumption of the mapping
shown in the figure for both cases (before and after DVFS). We assume that
the processor of each node consume 10mW of power (the value of the power
has been chosen according to AMD K6-2E 400MHz processor [181]). In the
calculation, we use only the active power part Pd = Ceff

m as this the only
part which depends on the frequency, where m = 2.6 [99] and Cef is constant
for both cases. Before applying the energy saving technique, the total energy
consumption is 3000µJ and after DVFS technique it becomes 2126.33µJ.
Therefore a clear reduction of energy consumption can be noticed for this
small mapping configuration.

166 CHAPTER 8. EXTENDABILITY AND ADAPTABILITY

Chapter 9

Conclusions and Future Issues

In this thesis we have developed methods and techniques for designing in-
tegrated dependable real-time (RT) embedded systems. Different design
concepts and strategies have been developed for the integration of varied
criticality SW-Cs onto a common distributed HW architecture such that
dependability/fault-tolerance (FT) and RT requirements are not compro-
mised. Moving from the traditional federated design or customized design
approach we provide design and optimization methodology for an integrated
design architecture. The design methodology has been developed at system
level, i.e., at higher abstraction level.

In the following we summarize the main contributions made in this thesis.
Furthermore the chapter provides future research directions relevant to the
thesis work.

9.1 The Overall Contributions

The goal of the thesis was to develop a dependability driven system level co-
design and optimization methodology for embedded systems. This section
summarizes the overall contributions.

9.1.1 The Integrated Design and Optimization Frame-
work

We have developed a novel extra-functionality (FT, RT, resources and power)
driven system level co-design methodology for designing FT-RT embedded
systems and have presented in this thesis. To the best of our knowledge
this is the first co-design/integration approach dealing at system level where
the prime focus is on design and optimization of both dependability and

167

168 CHAPTER 9. CONCLUSIONS AND FUTURE ISSUES

RT. The proposed approach meticulously guides the defined co-design steps
presented in Chapter 3. The design starts from requirements analysis through
mapping to its optimization and prototyping. Under this framework various
embedded system co-design criteria and guidance for exploring and exploiting
the design space have been presented. During the overall design process, we
first have developed a heuristic based systematic mapping approach which
produces an initial feasible solution. A mapping is feasible when it satisfies
all the defined constraints. The optimization has then been performed from
that feasible design point. Starting the optimization from a feasible point
and maintaining the feasibility during the process reduces the search space
considerably. Overall we have developed the design and optimization concept
for an integrated embedded architecture.

Resultant Publications

• Shariful Islam, Neeraj Suri, András Balogh, György Csertán & András
Pataricza, A Transformation Based Design for Integrated Dependable
Real-Time Embedded Systems, Submitted to the Journal of Design Au-
tomation for Embedded Systems (DAES) (In review), 2008.

• Shariful Islam & Neeraj Suri, A Multi Variable Optimization Ap-
proach for the Design of Integrated Dependable Real-Time Embedded
Systems, In the IFIP International Conference on Embedded and Ubiq-
uitous Computing (EUC), 2007.

• Shariful Islam, Robert Lindström & Neeraj Suri, Dependability Driven
Integration of Mixed Criticality SW Components, In the 9th IEEE In-
ternational Symposium on Object and Component-oriented Real-time
distributed Computing (ISORC), 2006.

9.1.2 Consolidated Mapping of Mixed Criticality Ap-
plications

A systematic and consolidated mapping of different criticality applications
(both safety-critical and non-safety critical) onto a common distributed com-
puting platform has been performed, thus designing an integrated system.
The functional and extra-functional requirements have been considered at
an early design stage, which reduces the design efforts. In the course of the
system level co-design, we have presented comprehensive mapping strate-
gies for ensuring FT (replicated jobs have been placed onto distinct nodes),
enhancing dependability (reducing the influence, i.e., by reducing the error

9.1. THE OVERALL CONTRIBUTIONS 169

propagation probability between nodes) and providing schedulability analysis
(satisfying timeliness properties). These design strategies have been main-
tained during the optimization process as well. A so called job and node or-
dering heuristic has been used in the mapping algorithm to create the initial
feasible mapping. By using these heuristics the mapping has been generated
with least number of iterations. We have employed different constraints sat-
isfaction techniques as well as the technique to increase the performance of
creating the mapping such as constraints prioritization, consistency enforcing
and backtracking.

Experimental results show the effectiveness, performance and robustness
of our initial mapping process as the mapping considers the following im-
portant aspects: (i) uses of job and node ordering heuristics, (ii) checking
the constraints during the assignment process (applying retrospective tech-
nique) and are satisfied as a basis of constraints prioritization which reduces
the search space by avoiding unnecessary exploration of infeasible design
space, (iii) as the algorithm uses the ordering heuristics and run into multi-
ple phases it takes less number of iterations as well as less convergence time,
and (iv) the generated initial solution is used to improve the performance of
the optimization.

Resultant Publications

• Shariful Islam, Robert Lindström & Neeraj Suri, Dependability Driven
Integration of Mixed Criticality SW Components, In the 9th IEEE In-
ternational Symposium on Object and Component-oriented Real-time
distributed Computing (ISORC), 2006.

• Shariful Islam, Neeraj Suri, András Balogh, György Csertán & András
Pataricza, A Transformation Based Design for Integrated Dependable
Real-Time Embedded Systems, Submitted to the Journal of Design Au-
tomation for Embedded Systems (DAES) (In review), 2008.

9.1.3 Extra-Functionality Driven Optimization

We have presented a generic Multi Variable Optimization (MVO) framework
for the design of an integrated FT-RT embedded system. The framework de-
picts a composite extra-functionalities driven system design and optimization
of various competing design variables from dependability, RT, resource and
power perspectives. The optimization is an iterative improvement process.
Multiple constraints and several variables have been considered simultane-
ously during the optimization process. A feasible mapping has been used

170 CHAPTER 9. CONCLUSIONS AND FUTURE ISSUES

as an input to the MVO algorithm. However the feasibility of the mapping
has been maintained by implementing an external function which check the
constraints in each iteration. In this way the search process has always been
directed in the feasible region of the global design space. The approach has
been applied to an existing metaheuristic based optimization algorithm. For
this purpose we have used simulated annealing which has converged to an
optimized solution (a near-optimal solution is sufficed).

The experimental results show the effectiveness of the approach and a
significant improvement of the proposed design compared to a straightfor-
ward solution where optimization has not been applied. We have shown how
the variables are quantified and optimized. The variables include influence,
scheduling length and bandwidth utilization. An MVO function has been
constructed as weighted sum of the function of each variable which returns
the overall value of a corresponding mapping (measure the quality of the
mapping). We have discussed in Chapter 8 how the generic framework can
be extended with additional variables, e.g., we provide quantification and
optimization technique for reliability and power.

Quantification of Variables

The quantification and modeling of a set of variables for the design of mixed
critical RT embedded systems have been given in detail. This includes how to
estimate/measure variables, and how to formulate them in terms of function
minimization. The quantification of variables is a prerequisite for performing
the optimization. In this thesis we have quantified a set of variables from
dependability/FT, RT and resource perspectives. In order to reduce the error
propagation probability between different modules (either between jobs or
between nodes), i.e., to confine the fault/error within a single node, we use the
variable influence. For schedulability analysis and to reduce the length of the
scheduling we have used scheduling length. In order to reduce the overhead on
the network, bandwidth utilization technique has been employed. In addition
we have provided the measure of reliability and power consumption.

Resultant Publication

• Shariful Islam & Neeraj Suri, A Multi Variable Optimization Ap-
proach for the Design of Integrated Dependable Real-Time Embedded
Systems, In the IFIP International Conference on Embedded and Ubiq-
uitous Computing (EUC), 2007.

9.1. THE OVERALL CONTRIBUTIONS 171

Prototyping

We have designed a prototype for the developed process which integrates
different tools for modeling the application to the deployment of a com-
plete system. The post integration platform specific model generated by the
tool-chain controls the deployment task of the system development process
to run executables on the target platform. The implementation of custom
user interface enhances the usability of the tool-chain providing convenient
user interface, ease in importing models, one-click transformation, perform-
ing mapping algorithm, generating configuration files and results.

Resultant Publications

• Shariful Islam, György Csertán, András Balogh, Wolfgang Herzner,
Thierry Le Sergent, András Pataricza & Neeraj Suri, A SW-HW Inte-
gration Process for the Generation of Platform Specific Models, Micro-
electronics (ME), 2006.

• Wolfgang Herzner, Martin Schlager, Thierry Le Sergent, Bernhard Hu-
ber, Shariful Islam, Neeraj Suri & András Balogh, From Model-Based
Design to Deployment of Integrated, Embedded, Real-Time Systems:
The DECOS Tool-Chain, Microelectronics (ME), 2006.

• Wolfgang Herzner, Rupert Schlick, Martin Schlager, Bernhard Leiner,
Bernhard Huber, András Balogh, György Csertán, Alain LeGuennec,
Thierry LeSergent, Neeraj Suri & Shariful Islam, Model-Based Devel-
opment of Distributed Embedded Real-Time Systems with the DECOS
Tool-Chain, In Proceedings of Society for Automotive Engineers (SAE)
Aerotech, 2007.

9.1.4 Summarizing the Benefits

We emphasize the following preeminent benefits of our overall approach:
(i) the developed methodology meticulously guides the design of integrated
dependable RT embedded systems, (ii) dependability/FT is provided and is
enhanced by restricting the possible nodes from correlated faults, (iii) RT
requirements are met and the scheduling length is minimized, which increases
the overall system performance, (iv) bandwidth utilization is reduced, which
allows the use of a slower but cheaper bus, (v) the optimization enables the
usage of less number of resources/nodes, integration of new functionality and
the future upgrading of possible functions, (vi) extendability and adaptability
of the design approach, and (vii) we believe that the developed co-design

172 CHAPTER 9. CONCLUSIONS AND FUTURE ISSUES

methodology and prototype will reduce the design and development efforts
and time.

9.2 Future Issues

The developed methods and techniques presented in this thesis have opened
up new working directions. We discuss some issues as follows. We have
provided the concept of integration of varied criticality applications onto a
common distributed HW architecture. However it would be interesting to
apply the concept on a MPSoC (Multiprocessor System on Chip) architec-
ture. Moreover an online adaptation (specially for non-SC applications) of
the approach or a reconfiguration technique can be applied. We also list the
following issues as part of the future work.

• We have provided an integration/co-design process considering the ar-
chitecture of symmetric multiprocessing (SMP) and have briefly dis-
cussed the applicability on a heterogeneous architecture comprises pro-
cessors of different speeds and failure rates. In future this issue of
heterogeneity needs to be elaborated.

• Both transient and permanent faults are assumed in the current fault
model, therefore we apply active SW based replication as an FT scheme.
If only transient faults are assumed to be tolerated then replication,
re-execution, checkpointing or interplay of these techniques can be ap-
plied. A further investigation is necessary for an optimal FT technique
(when only transient faults are assumed) such that RT properties are
maintained and resources are properly utilized.

• The developed system level co-design is a generic framework which we
have showed by extending it adding more design variables during the
optimization phase. The optimization process can be performed adding
more variables (reliability and power consumption). Currently, we have
provided the quantification of these variables. However they need to
be used in the optimization algorithm.

• To find an optimized solution the MVO approach has been applied to an
existing algorithm called simulated annealing. However as mentioned
other techniques such as tabu search or genetic algorithm can also be
applied.

9.2. FUTURE ISSUES 173

Integration on MPSoC Architecture and Reconfiguration: System-
on-Chip (SoC) is a complete digital system build on a single chip and often
contains multiple embedded processors leading to an Embedded SoC (ESoC)
or MPSoC design. MPSoC contains heterogeneous processors for better per-
formance and power achievement [182]–p 279. We have presented the appli-
cability of the approach on a heterogeneous architecture which might also
be useful for the MPSoC architecture. The challenges remain on the in-
tegration/mapping of mixed criticality applications onto ESoC or MPSoC
architecture while still providing FT, fault isolation and encapsulation, i.e.,
maintaining the separation between different criticality applications. Such
an architecture has been developed in [183], where multiprocessor SoC with
a time-triggered (TT) network-on-chip formed an architecture called as TT-
SoC. A job introduced in this thesis can be run on a microcomputer (self-
computing element) of a TT-SoC architecture. A further elaboration on the
architecture providing FT and fault isolation is developed in [184]. [185] de-
scribes the mapping and optimization approaches on a MPSoC while [186]
discusses about considering the dependability properties. The method and
technique for developing the heuristic based mapping and optimization pre-
sented in this thesis would be a viable strategy for developing the design
concept for MPSoC architecture.

The developed methods and techniques are applied statically at design
time to provide predictable and deterministic behavior of safety-critical sys-
tems. However the approach can be adapted to run time design. The design
can be reconfigured depending on the run time behavior of the system. When
there is a fault in a node or in a communication link, the affected jobs on
that specific node need to be re-executed on different nodes (a different map-
ping configuration), in order to achieve a certain level of dependability/FT.
This can be performed by triggering the execution of a faulty job on another
node. If there is a fault in the communication link then jobs which uses that
link need to be re-executed on different nodes such that they can commu-
nicate via different link. A set of different mapping configurations can be
created a priori and an appropriate mapping can be selected at run time
according to the need of the overall system dependability requirements. An
online approach for SW-HW co-design (online SW-HW partitioning) is pre-
sented in [187], where the author develops a fault tolerant and self-adaptive
technique for reconfigurable networked embedded systems. The approach
is applied at system level and allows functionality move from one node to
another at run time.

174 CHAPTER 9. CONCLUSIONS AND FUTURE ISSUES

Bibliography

[1] B. Bouyssounouse & J. Sifakis, Current Design Practice and Needs in
Selected Industrial Sectors, Artist FP5 Consortium: Embedded Systems
Design, LNCS 3436, pages 15 - 38, 2005.

[2] J. Dannenberg & C. Kleinhans, The coming Age of Collaboration in
the Automotive Industry, Mercer Management Journal, 17, pages 88-
94, 2004.

[3] J-C., Laprie, & B. Randell, Basic Concepts and Taxonomy of Depend-
able and Secure Computing, IEEE Transactions on Dependable Secure
Computing (TDSC), 1(1), pages 11–33, 2004.

[4] V. Claesson, S. Poledna & J. Soderberg, The XBW Model for De-
pendable Real-Time Systems, International Conference on Parallel and
Distributed Systems (ICPADS), pages 130–138, 1998.

[5] C. Wilwert, N. Navet, Y.-Q. Song & F. Simonot-Lion, Design of Au-
tomotive X-by-Wire Systems, In The Industrial Communication Tech-
nology Handbook, CRC Press, 2004.

[6] X-by-Wire Project, Brite-EuRam 111 Program, X-By-Wire - Safety
Related Fault Tolerant Systems in Vehicles, Final Report, 1998.

[7] S. Kumar, J. H. Aylor, B. W. Johnson & W. A. Wulf, The Codesign
of Embedded Systems: A Unified Hardware/Software Representation,
Kluwer Academic Publishers, 1996.

[8] B. Tabbara, A. Tabbara & A. Sangiovanni-Vincentelli, Func-
tion/Architecture Optimization and Co-Design of Embedded Systems,
Kluwer Academic Pblishers, 2000.

[9] J. Staunstrup & W. Wolf (eds.), Hardware/Software Co-Design: Prin-
ciples and Practice, Kluwer Academic Publishers, 1997.

175

176 BIBLIOGRAPHY

[10] M. Broy, I.H. Kruger, A. Pretschner & C. Salzmann, Engineering Auto-
motive Software, Proceedings of the IEEE, 95(2), pages 356–373, 2007.

[11] N. Navet, Y. Song, F. Simonot-Lion and C. Wilwert, Trends in Auto-
motive Communication Systems, Proceedings of the IEEE, 93(6), pages
1204–1223, 2005.

[12] H. Kopetz, R. Obermaisser, P. Peti & N. Suri, From a Federated to an
Integrated Architecture for Dependable Embedded Real-Time Systems.
Technical Report 22, Institut für Technische Informatik, Technische
Universität Wien, Treitlstr. 1-3/182-1, 2004.

[13] CAN Specification, Controller Area Network Spec-
ification and Implementation, Robert Bosch GmbH,
http://www.semiconductors.bosch.de/pdf/can2spec.pdf, 1991.

[14] LIN Specification, Local Interconnect Network, http://www.lin-
subbus.org/, Accessed 21 July, 2008.

[15] MOST Specification, Media Oriented Systems Transport, Rev 3.0,
05/2008, http://www.mostcooperation.com/, Accesses 21 July, 2008.

[16] H. Kopetz & G. Grünsteidl, TTP - A Protocol for Fault-Tolerant Real-
Time Systems, Journal of Computer, 27(1), pages 14–23, 1994.

[17] The FlexRay Group, FlexRay Communications System Protocol Spec-
ification, Version 2.1, http://www.flexray.com/, 2005.

[18] H. Kopetz, A. Ademaj, P. Grillinger & K. Steinhammer, The Time-
Triggered Ethernet (TTE) Design, IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC), pages 22–
33, 2005.

[19] ARINC, Design Guidance for Integrated Modular Avionics, Aeronau-
tical Radio Inc., ARINC Report 651, 1991.

[20] Y.-H. Lee, D. Kim, M. Younis, J. Zhou & J. McElroy, Resource
Scheduling in Dependable Integrated Modular Avionics, International
Conference on Dependable Systems and Networks (DSN), pages 14–23,
2000.

[21] M. F. Younis, M. Aboutabl & D. Kim, Software Environment for Inte-
grating Critical Real-Time Control Systems, Journal of System Archi-
tecture, 50(11), pages 649–674, 2004.

BIBLIOGRAPHY 177

[22] AUTOSAR, Technical Overview V2.0.1, AUTOSAR GbR 2006.

[23] P. Peti, R. Obermaisser, F. Tagliabo, A. Marino & S. Cerchio, An
Integrated Architecture for Future Car Generations, IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC), pages 2–13, 2005.

[24] H. Kopetz & G. Bauer, The Time-Triggered Architecture, Proceeding
of the IEEE, 91(1), pages 112–126, 2003.

[25] M. Broy, Automotive Software and Systems Engineering, ACM and
IEEE International Conference on Formal Methods and Models for Co-
Design (MEMCOD), pages 143–149, 2005.

[26] P. Pop, P. Eles, Z. Peng & T. Pop, Analysis and Optimization of Dis-
tributed Real-Time Embedded Systems, ACM Transactions on Design
Automation Electronic Systems, 11(3), pages 593–625, 2006.

[27] A. Berger, Embedded Systems Design: An Introduction to Processes,
Tools and Techniques, CMP Books, USA, 2002.

[28] E. Dubrova, Fault-Tolerant Design: An Introduction, Kluwer Academic
Publishers, 2007.

[29] A. Johansson, Robustness Evaluation of Operating Systems, PhD The-
sis, Technische Universität Darmstadt, 2008.

[30] N. Suri, M. Hugue & C.J. Walter, Advances in Ultra-Dependable Dis-
tributed Systems, IEEE Computer Society Press, 1995.

[31] B. Bouyssounouse & J. Sifakis, Embedded Systems Design: The
ARTIST Roadmap for Research and Development, Springer-Verlag,
2005.

[32] J. Rushby, Partitioning in Avionics Architectures: Requirements,
Mechanisms, and Assurance, SRI International, NASA/CR-1999-
209347, 1999.

[33] A. Jhumka, S. Klaus & S. A. Huss, A Dependability-Driven System-
Level Design Approach for Embedded Systems, Design, Automation
and Test in Europe Conference and Exposition (DATE), pages 372–
377, 2005.

178 BIBLIOGRAPHY

[34] D. Fernandez-Baca, Allocating Modules to Processors in a Distributed
System, IEEE Transactions on Software Engineering, 15(11), pages
1427–1436, 1989.

[35] M. R. Garey & D. S. Johnson, Computers and Intractability : A Guide
to the Theory of NP-Completeness, W. H. Freeman, 1979.

[36] A. Damm, J. Reisinger, W. Schwabl & H. Kopetz, The Real-Time
Operating System of MARS, ACM SIGOPS Operating Systems Review,
23(3), pages 141–157, 1989.

[37] S. Wang, J. R. Merrick & K. G. Shin, Component Allocation with Mul-
tiple Resource Constraints for Large Embedded Real-Time Software
Design, IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 219–226, 2004.

[38] S. Ghosh, R. Rajkumar, J. Hansen & J. Lehoczky, Scalable Resource
Allocation for Multi-Processor QoS Optimization, International Con-
ference on Distributed Computing Systems (ICDCS), pages 174-183,
2003.

[39] M. Eisenring, L. Thiele & E. Zitzler, Conflicting Criteria in Embedded
System Design, IEEE Design & Test of Computers, 17(2), pages 51–59,
2000.

[40] A. Sangiovanni-Vincentelli & G. Martin, Platform-Based Design and
Software Design Methodology for Embedded Systems, IEEE Design &
Test of Computers, 18(6), pages 23–33, 2001.

[41] A. Sangiovanni-Vincentelli & M. Di Natale, Embedded System Design
for Automotive Applications, Journal of Computer, 40(10), pages 42–
51, 2007.

[42] A. Balogh, A. Pataricza & J. Rácz, Scheduling of Embedded Time-
Triggered Systems, Proceedings of the Workshop on Engineering Fault
Tolerant Systems (EFTS), pages 44–49, 2007.

[43] H. Kopetz, Real-Time Systems, Design Principles for Distributed Em-
bedded Applications, Kluwer Academic Publishers, 1997.

[44] J. A. Stankovic & K. Ramamritham, Tutorial: Hard Real-Time Sys-
tems, IEEE Computer Society Press, 1989.

BIBLIOGRAPHY 179

[45] R. Kirner & P. Puschner, Classification of WCET Analysis Techniques,
IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC), pages 190–199, 2005.

[46] J. Staschulat, J. C. Braam, R. Ernst, T. Rambow, R. Schlor & R.
Busch, Cost-Efficient Worst-Case Execution Time Analysis in Indus-
trial Practice, International Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA), pages 204–211,
2006.

[47] International Electrotechnical Commission, Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Sys-
tems (IEC 61508), International Electrotechnical Commission,
http://www.iec.ch/, Accessed 22 August 2008.

[48] J. L. Silva, Metaheuristic and Multiobjective Approaches for Space
Allocation, University of Nottingham, PhD thesis, 2003.

[49] O. Rossi-Doria, & B. Paechter, An Hyperheuristic Approach to Course
Timetabling Problem Using an Evolutionary Algorithm, Technical Re-
port CC-00970503, Napier University, Scotland, 2003.

[50] N. Sadeh & M.S. Fox, Variable and Value Ordering Heuristics for the
Job Shop Scheduling Constraint Satisfaction Problem, Artificial Intel-
ligence, 86(1), pages 1–41, 1996.

[51] S. Kirkpatrick, C. D. Gelatt & M. P. Vecchi, Optimization by Simulated
Annealing, Journal of Science, 220(4598), pages 671–680, 1983.

[52] C. Blum & A. Roli, Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison, ACM Computing Surveys
(CSUR), 35(3), pages 268–308, 2003.

[53] R. Bellman, Dynamic Programming, Dover Publications, Incorporated,
2003.

[54] M. Lundy & A Mees, Convergence of an Annealing Algorithm, Math-
ematical Programming: Series A and B, 34(1), pages 111–124, 1986.

[55] F. Glover, Tabu Search – Part I, Journal on Computing, 1(3), pages
190–206, 1989.

[56] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and
Engineers, World Scientific Publishing, 1999.

180 BIBLIOGRAPHY

[57] W. Wolf, A Decade of Hardware/Software Codesign, Journal of Com-
puter, 3(4), pages 38–43, 2003.

[58] J. Madsen, J. Grode, P. V. Knudsen, M. E. Petersen & A. Haxthausen,
LYCOS: The Lyngby Co-Synthesis System, Journal of Design Automa-
tion for Embedded System, 2(2), pages 195–235, 1997.

[59] J. Henkel & R. Ernst, An Approach to Automated Hardware/Software
Partitioning using a Flexible Granularity that is Driven by High-level
Estimation Techniques, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 9(2), pages 273–289, 2001.

[60] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara,
A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki & A. Sangiovanni-
Vincentelli, Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach, Kluwer Academic Publishers, 1997.

[61] T. Blickle, J. Teich & L. Thiele, System-Level Synthesis using Evolu-
tionary Algorithms, Journal of Design Automation for Embedded Sys-
tems, 3, pages 23–58, 1998.

[62] A. D. Pimentel, C. Erbas & S. Polstra, A Systematic Approach to Ex-
ploring Embedded System Architectures at Multiple Abstraction Lev-
els, IEEE Transactions on Computers, 55(2), pages 99–112, 2006.

[63] A. Sangiovanni-Vincentelli, Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design, Proceedings of the
IEEE, 95(3), pages 467–506, 2007.

[64] C. Bolchini, L. Pomante, F. Salice & D. Sciuto, Reliability Proper-
ties Assessment at System Level: A Co-Design Framework, Journal
of Electronic Testing: Theory and Applications, 18(3), pages 351–356,
2002.

[65] J. Axelsson, HW/SW Codesign for Automotive Applications: Chal-
lenges on the Architecture Level, IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC), pages
123–126, 2001.

[66] R. von Hanxleden, A. Botorabi & S. Kupczyk, A Codesign Approach
for Safety-Critical Automotive Applications, IEEE Micro, 18(5), pages
66–79, 1998.

BIBLIOGRAPHY 181

[67] C. Ekelin & J. Jonsson, Evaluation of Search Heuristics for Embedded
System Scheduling Problems, Principles and Practice of Constraint
Programming (CP), pages 640–654, 2001.

[68] K. Kuchcinski, Constraints-Driven Scheduling and Resource Assign-
ment, ACM Transaction on Design Automation of Electronic Systems
(TODAES), 8(3), pages 355–383, 2003.

[69] C.-J. Hou & K. G. Shin, Replication and Allocation of Task Modules
in Distributed Real-Time Systems, International Symposium on Fault-
Tolerant Computing (FTCS-24), pages 26–35, 1994.

[70] D. Peng, K. G. Shin & T. F. Abdelzaher, Assignment and Scheduling
of Communicating Periodic Tasks in Distributed Real-Time Systems,
IEEE Transactions on Software Engineering, 23(12), pages 745–758,
1997.

[71] T. F. Abdelzaher & K. G. Shin, Combined Task and Message Schedul-
ing in Distributed Real-Time Systems, IEEE Transactions on Parallel
and Distributed Systems (IPDS), 10(11), pages 1179-1191, 1999.

[72] R. Rajkumar, C. Lee, J. P. Lehoczky & D. P. Siewiorek, Practical So-
lutions for QoS-Based Resource Allocation, IEEE Real-Time Systems
Symposium (RTSS), pages 296–306, 1998.

[73] S. Kodase, S. Wang, Z. Gu & K. Shin, Improving Scalability of Task
Allocation and Scheduling in Large Distributed Real-Time Systems
using Shared Buffers, IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 181–188, 2003.

[74] C. L. Liu & J. W. Layland, Scheduling Algorithms for Multi-
Programming in a Hard Real-Time Environment, Journal of the Asso-
ciation for Computing Machinery, 20(1), pages 40–61, 1973.

[75] Y. Oh, & S. H. Son, Enhancing Fault-Tolerance in Rate-Monotonic
Scheduling, Real-Time System: Special Issue on Responsive Computer
Systems, 7(3), pages 315–329, 1994.

[76] S. Ghosh, R. Melhem & D. Mossé, Enhancing Real-Time Schedules
to Tolerate Transient Faults, IEEE Real-Time Systems Symposium
(RTSS), pages 120–129, 1995.

[77] N. Kandasamy, J. P. Hayes & B. T. Murray, Tolerating Transient Faults
in Statically Scheduled Safety-Critical Embedded Systems, IEEE Sym-
posium on Reliable Distributed Systems (SRDS), pages 212–221, 1999.

182 BIBLIOGRAPHY

[78] J. Yuan, C. Pixley & A. Aziz, Constraint-Based Verification, Springer
Science+Business Media, Inc., New York, USA, 2006.

[79] N. Suri, S. Ghosh & T. Marlowe, A Framework for Dependability
Driven Software Integration, International Conference on Distributed
Computing Systems (ICDCS), pages 406–415, 1998.

[80] S. Mustafiz & J. Kienzle, A Survey of Software Development Ap-
proaches Addressing Dependability, Scientific Engineering of Dis-
tributed Java Applications(FIDJI), pages 78–90, 2004.

[81] V. M. Lo, Heuristic Algorithms for Task Assignment in Distributed
Systems, IEEE Transaction on Computer, 37(11), pages 1384–1397,
1988.

[82] C.-J. Hou, & K.G. Shin, Allocation of Periodic Task Modules with
Precedence and Deadline Constraints in Distributed Real-Time Sys-
tems, IEEE Transaction on Computer, 46(12), pages 1338–1356, 1997.

[83] M. D. Natale & J.A. Stankovic, Scheduling Distributed Real-Time
Tasks with Minimum Jitter, IEEE Transaction on Computer, 49(4),
pages 303–316, 2000.

[84] K. Tindell, A. Burns & A. Wellings, Allocating Hard Real-Time Tasks:
An NP-Hard Problem Made Easy, Real-Time System, 4(2), pages 145–
165, 1992.

[85] V. Izosimov, P. Pop, P. Eles & Z. Peng, Design Optimization of Time-
and Cost-Constrained Fault-Tolerant Distributed Embedded Systems,
Design, Automation and Test in Europe Conference and Exposition
(DATE), pages 864–869, 2005.

[86] S. M. Shatz, J. Wang & M. Goto, Task Allocation for Maximizing
Reliability of Distributed Computer Systems, IEEE Transaction on
Computer, 41(9), pages 1156–1168, 1992.

[87] S. Kartik & C. Murthy, Task Allocation Algorithms for Maximizing
Reliability of Distributed Computing Systems, IEEE Transaction on
Computer, 46(6), pages 719–724, 1997.

[88] P.-Y. Yin, S.-S. Yu, P.-P. Wang & Y-T Wang, Task Allocation for
Maximizing Reliability of a Distributed System using Hybrid Particle
Swarm Optimization, Journal of Systems and Software, 80(5), pages
724–735, 2007.

BIBLIOGRAPHY 183

[89] F. Bicking, B. Conrard & J.-M. Thiriet, Integration of Dependability
in a Task Allocation Problem, IEEE Transactions on Instrumentation
and Measurement, 53(6), pages 1455–1463, 2004.

[90] I. Bate & P. Emberson, Design for Flexible and Scalable Avionics Sys-
tems, IEEE Aerospace Conference, pages 1–12, 2005.

[91] I. Assayad, A. Girault & H. Kalla, A Bi-Criteria Scheduling Heuristic
for Distributed Embedded Systems under Reliability and Real-Time
Constraints, International Conference on Dependable Systems and Net-
works (DSN), pages 347–356, 2004.

[92] A. Dogan, & F. Özgüner, Biobjective Scheduling Algorithms for Execu-
tion Time-Reliability Trade-off in Heterogeneous Computing Systems,
Journal of Computer, 48(3), pages 300–314, 2005.

[93] W. Luo, X. Qin & K. Bellam, Reliability-Driven Scheduling of Periodic
Tasks in Heterogeneous Real-Time Systems, Proceedings of the 21st In-
ternational Conference on Advanced Information Networking and Ap-
plications Workshops (AINAW), pages 778–783, 2007.

[94] D. Zhu & H. Aydin, Energy Management for Real-Time Embedded
Systems with Reliability Requirements, Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
528–534, 2006.

[95] D. Zhu & H. Aydin, Reliability-Aware Energy Management for Peri-
odic Real-Time Tasks, IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 225–235, 2007.

[96] R. Melhem, D. Mosse & E. Elnozahy, The Interplay of Power Manage-
ment and Fault Recovery in Real-Time Systems, IEEE Transaction on
Computer, 53(2), pages 217–231, 2004.

[97] Y. Zhang & K. Chakrabarty, A Unified Approach for Fault Tolerance
and Dynamic Power Management in Fixed-Priority Real-Time Em-
bedded Systems, IEEE Transaction on Computer Aided Design of In-
tegrated Circuits and Systems, 25(1), pages 111–125, 2006.

[98] G. Palermo, C. Silvano & V. Zaccaria, Multi-Objective Design Space
Exploration of Embedded Systems, Journal of Embedded Computing,
1(3), pages 305–316, 2005.

184 BIBLIOGRAPHY

[99] D. Zhu, R. Melhem, D. Mosse & E. Elnozahy, Analysis of an Energy Ef-
ficient Optimistic TMR Scheme, Proceedings of the International Con-
ference on Parallel and Distributed Systems (ICPADS), pages 559–568,
2004.

[100] U. Bordoloi & S. Chakraborty, Performance Debugging of Real-Time
Systems Using Multicriteria Schedulability Analysis, IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
193–202, 2007.

[101] C. Ekelin, An Optimization Framework for Scheduling of Embedded
Real-Time Systems, PhD Thesis, Chalmers University of Technology,
2004.

[102] B. Hardung, Optimisation of the Allocation of Functions in Vehicle
Networks, PhD Thesis, Universität Erlnagen-Nürnberg, 2006.

[103] P. Leteinturier, Multi-Core Processors: Driving the Evolution of Au-
tomotive Electronics Architectures, Published on Embedded.com dated
16/09/07, http://www.embedded.com/design/multicore/201806714,
Accessed 23 July, 2008.

[104] J. Rushby, Bus Architectures for Safety-Critical Embedded Systems, In
T. Henzinger and C. Kirsch, editors, Embedded Software (EMSOFT),
LNCS 2211, pages 306–323, 2001.

[105] R. Obermaisser, P. Peti & H. Kopetz, Virtual Networks in an Inte-
grated Time-Triggered Architecture, IEEE International Workshop on
Object-oriented Real-time Dependable Systems (WORDS), pages 241–
253, 2005.

[106] R. Seyer, C. Siemers, R. Falsett, K. Ecker & H. Richter, Robust Par-
titioning for Reliable Real-Time Systems, Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages
117–122, 2004.

[107] P. Parkinson & L Kinnan, Safety-Critical Software Development for
Integrated Modular Avionics, White Paper, Wind River Systems, Inc.,
2006.

[108] H. Kopetz & N. Suri, Compositional Design of RT Systems: A Con-
ceptual Basis for Specification of Linking Interfaces, IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC), pages 51–60, 2003.

BIBLIOGRAPHY 185

[109] N. Kandasamy, J. P. Hayes & B. T. Murray, Dependable Communica-
tion Synthesis for Distributed Embedded Systems, Computer Safety,
Reliability and Security Conference (SAFECOM), LNCS 2788, pages
275–288, 2003.

[110] J. Liu, P. H. Chou, N. Bagherzadeh & F. Kurdahi, A Constraint-
based Application Model and Scheduling Techniques for Power-aware
Systems, International Symposium on Hardware/Software Codesign
(CODES), pages 153–158, 2001.

[111] J. A. Stankovic, M. Spuri, M. D. Natale & G. C. Buttazzo, Impli-
cations of Classical Scheduling Results for Real-Time Systems, IEEE
Computer, 28(6) pages 16–25, 1995.

[112] C. Erbas, A. D. Pimentel, M. Thompson & S. Polstra, A Framework for
System-Level Modeling and Simulation of Embedded Systems Archi-
tectures, EURASIP Journal of Embedded System, 2007(1), pages 2–12,
2007.

[113] S. Rao, Engineering Optimization: Theory and Practice, A Wiley-
Interscience Psublication, 1996.

[114] ILOG CPLEX, Optimization Tool, http://www.ilog.com/products/cplex/,
Accessed 15 September 2008.

[115] S. Islam, Automated Specification of Automotive Software Functions
Based on Expert Interviews, Master Thesis, Institute of Industrial
Automation and Software Engineering, University of Stuttgart, in co-
operation with DaimlerChrysler AG, Germany, 2004.

[116] R. L. Keeney & H. Raiffa, Decisions with Multiple Objectives: Prefer-
ences and Value Tradeoffs, Cambridge University Press, 1993.

[117] B. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

[118] B. Hardung, T. Kölzow & A. Krüger, Reuse of Software in Distributed
Embedded Automotive Systems, ACM International Conference on
Embedded Software (EMSOFT), pages 203–210, 2004.

[119] S. Narayan, F. Vahid & D. Gajski, System Specification with the Spec-
Charts Language, IEEE Design & Test of Computers, 9(4), pages 6–13,
1992.

186 BIBLIOGRAPHY

[120] OMG, Unified Modeling Language (UML) Specification, v2.1.2,
http://www.omg.org/technology/documents/formal/uml.htm,
Accessed 4 August 2008.

[121] The SAE Architecture Analysis and Design Language (AADL), A Stan-
dard for Model Based Engineering, http://www.aadl.info/, Accessed 17
September 2008.

[122] Architecture Description Language (ADL),
http://www.sei.cmu.edu/architecture/adl.html, Accessed 17 Septem-
ber 2008.

[123] I. Bate & N. Audsley, Flexible Design of Complex High-Integrity Sys-
tems Using Trade Offs, IEEE International Symposium on High As-
surance Systems Engineering (HASE), pages 22–31, 2004.

[124] OMG: Model Driven Architecture (MDA), A Technical Perspective,
OMG Document No. ab/2001-02-04, Object Management Group, 2003.

[125] A. Sangiovanni-Vincentelli, Defining Platform-based Design, EEDesign
of EETimes, 2002.

[126] OMG XML Metadata Interchange (XMI), v2.0,
http://www.omg.org/docs/formal/03-05-02.pdf.

[127] R. M. Keichafer, C.J. Walter, A.M. Finn & P.M. Thambidurai, The
MAFT Architecture for Distributed Fault Tolerance, IEEE Transac-
tions on Computers, 37(4), pages 398–405, 1988.

[128] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft
& R. Zainlinger, Distributed Fault-Tolerant Real-Time Systems: The
Mars Approach, IEEE Micro, 9(1), pages 25–40, 1989.

[129] K. Alstrom & J. Torin, Future Architecture for Flight Control Systems,
Digital Avionics Systems Conference (DASC), 1, pages 1B5/1–1B5/10,
2001.

[130] S. Poledna, P. Barrett, A. Burns, & A. Wellings, Replica Determinism
and Flexible Scheduling in Hard Real-Time Dependable Systems, IEEE
Transactions on Computers, 49(2), pages 100–111, 2000.

[131] A. Jhumka, M. Hiller, & N. Suri, Assessing Inter-Modular Error Prop-
agation in Distributed Software, IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), pages 152–161, 2001.

BIBLIOGRAPHY 187

[132] S. Punnekkat, A. Burns & R. Davis, Analysis of Checkpointing for
Real-Time Systems, Real-Time System, 20(1), pages 83–102, 2001.

[133] V. Izosimov, Scheduling and Optimization of Fault-Tolerant Dis-
tributed Embedded Systems, PhD Thesis, Linköping University, 2006.

[134] V. Izosimov, P. Pop, P. Eles & Z. Peng, Synthesis of Fault-Tolerant
Embedded Systems with Checkpointing and Replication, IEEE Inter-
national Workshop on Electronic Design, Test and Applications, pages
440–447, 2006.

[135] X. Qina & H. Jiangb, A Novel Fault-Tolerant Sheduling Algorithm for
Precedence Constrained Tasks in Real-Time Heterogeneous Systems,
Journal of Parallel Computing, 32(5-6), pages 331–356, 2006.

[136] K. Ramamritham, Allocation and Scheduling of Precedence-Related
Periodic Tasks, IEEE Transactions on Parallel and Distributed Systems
(TPDS), 6(4), pages 412–420, 1995.

[137] P. Eles, Z. Peng, P. Pop & A. Doboli, Scheduling with Bus Access
Optimization for Distributed Embedded Systems, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 8(5), pages 472–491,
2000.

[138] P. Miner, M. Malekpour & W. Torres, A Conceptual Design For a Reli-
able Optical Bus (ROBUS), IEEE Digital Avionics Systems Conference
(DASC), pages 1–11, 2002.

[139] J. W. S. Liu, Real-Time Systems, Prentice Hall PTR, NJ, USA, 2000.

[140] M. G. Harbour, M. H. Klein & J. P. Lehoczky, Timing Analysis for
Fixed-Priority Scheduling of Hard Real-Time Systems, IEEE Transac-
tions on Software Engineering, 20(1), pages 13–28, 1994.

[141] E. Bini & G. C. Buttazzo, Schedulability Analysis of Periodic Fixed Pri-
ority Systems IEEE Transactions on Computers, 53(11), pages 1462–
1473, 2004.

[142] R. I. Davis, A. Zabos & A. Burns, Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems, IEEE Transactions on Comput-
ers, 57(9), pages 1261–1276, 2008.

[143] J. H. Anderson, J. M. Calandrino & U. C. Devi, Real-Time Scheduling
on Multicore Platforms, IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 179–190, 2006.

188 BIBLIOGRAPHY

[144] TTTech-Tools, TTTech-Tools SW Development Suite,
http://www.tttech.com/products/software.htm, Accessed 14 August
2008.

[145] DECOS – Dependable Embedded Components and Systems, IST, EU
FP 6 Project, http://www.decos.at, 2004.

[146] V. Kumar, Algorithms for Constraint-Satisfaction Problems: A Survey,
AI Magazine, 13(1), pages 32–44, 1992.

[147] B. Hedenetz & R. Belschner, ”Brake by Wire” without Mechani-
cal Backup by Using a TTP Communication Network, SAE World
Congress, pages 296–306, 1998.

[148] D. Prasad & J. McDermid, Dependability Evaluation using a Multi-
Criteria Decision Analysis Procedure, Proceedings of the Conference on
Dependable Computing for Critical Applications (DCCA), pages 339–
358, 1999.

[149] M. Hiller, A. Jhumka & N. Suri, An Approach for Analysing the Prop-
agation of Data Errors in Software, International Conference on De-
pendable Systems and Networks (DSN), pages 161–172, 2001.

[150] R. David, Random Testing of Digital Circuits: Theory and Applica-
tions, Marcel Dekker, New York, 1998.

[151] A. A. Ismaeel & M. A. Breuer, The Probability of Error Detection in
Sequential Circuits using Random Test Vectors, Journal of Electronic
Testing: Theory and Applications, 1(4), pages 245–256, 1991.

[152] D. Zhu, R. G. Melhem & D. Mossé, The Effects of Energy Manage-
ment on Reliability in Real-Time Embedded Systems, International
Conference on Computer-Aided Design (ICCAD), pages 35–40, 2004.

[153] P. Czyzak & A. Jaszkiewicz, Pareto Simulated Annealing - A Meta-
heuristic Technique for Multiple-Objective Combinatorial Optimiza-
tion, Journal of Multi-Criteria Decision Analysis, 7, pages 34–47, 1998.

[154] K. Smith, R. Everson & J. Fieldsend, Dominance Measures for Multi-
Objective Simulated Annealing, The Proceedings of Congress on Evo-
lutionary Computation (CEC), pages 23–30, 2004.

[155] K.I. Smith, R.M. Everson, J.E. Fieldsend, C. Murphy & R. Misra,
Dominance-Based Multiobjective Simulated Annealing, IEEE Trans-
actions on Evolutionary Computation, 12(3), pages 323–342, 2008.

BIBLIOGRAPHY 189

[156] S. Bandyopadhyay, S. Saha, U. Maulik & K. Deb, A Simulated
Annealing-Based Multiobjective Optimization Algorithm: AMOSA
IEEE Transactions on Evolutionary Computation, 12(3), pages 269–
283, 2008.

[157] I. Y. Kim & O. de Weck, Adaptive Weighted Sum Method for Multi-
objective Optimization: A New Method for Pareto Front Generation,
Journal of Structural and Multidisciplinary Optimization, 31(2), pages
105–116, 2006.

[158] B. Huber, R. Obermaisser & P. Peti, MDA-Based Development in
the DECOS Integrated Architecture-Modeling the Hardware Platform,
IEEE International Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC), pages 43–52, 2006.

[159] A. Balogh & D. Varró, Advanced Model Transformation Language
Constructs in the VIATRA2 Framework, ACM Symposium on Applied
Computing (SAC), pages 1280-1287, 2006, .

[160] Eclipse Foundation, http://www.eclipse.org/, Accessed 20 August
2008.

[161] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits & S.
Neema, Developing Applications Using Model-Driven Design Environ-
ments, IEEE Computer, 39(2), pages 33–40, 2006.

[162] H. Ehrig, M. Korff & M. Löwe, Tutorial Introduction to the Algebraic
Approach of Graph Grammars Based on Double and Single Pushouts,
Graph Grammars and Their Application to Computer Science, LNCS
532/1991 pages 24–37, 1991.

[163] W. Herzner, R. Schlick, M. Schlager, B. Leiner, B. Huber, A. Balogh,
G. Csertán, A. LeGuennec, T. LeSergent, N. Suri & S. Islam, Model-
Based Development of Distributed Embedded Real-Time Systems with
the DECOS Tool-Chain, In Proceedings of Society for Automotive En-
gineers (SAE) Aerotech, 2007.

[164] DECOS Project Deliverable, PIM Design Methodology and Specifica-
tion Model, http://www.decos.at, 2005.

[165] W. Herzner, A. Balogh & G. Csertán, Design Patterns for Domain-
Specific Application Modeling, Proceeding of the DECOS/ERCIM
Workshop on Dependable Embedded Systems at EUROMICRO, 2006.

190 BIBLIOGRAPHY

[166] SCADE Suite, The Standard for the Development of
Safety-Critical Embedded Software, http://www.esterel-
technologies.com/products/scade-suite/, Accessed 20 August 2008.

[167] The MathWorks, The MathWorks Homepage,
http://www.mathworks.com/, Accessed 21 August 2008.

[168] DO 178 Industry Group, http://www.do178site.com/, Accessed 21 Au-
gust 2008.

[169] RAPID RMA: The Art of Modeling Real-Time Systems,
http://www.tripac.com/html/prod-fact-rrm.html, Accessed 20 August
2008.

[170] J. A. Stankovic, VEST: A Toolset for Constructing and Analyzing
Component Based Embedded Systems, International Workshop on
Embedded Software (EMSOFT), LNCS 2211, pages 390–402, 2001.

[171] AIRES-ToolKit, Automatic Integration of Reusable Embedded Soft-
ware, http://kabru.eecs.umich.edu/bin/view/Main/AIRES, Accessed
20 August 2008.

[172] Python Software Foundation, The Python Programming Language,
http://www.python.org/, Accessed 20 August 2008.

[173] DECOS Project Deliverable, Prototype of an Interactive PSM Devel-
opment Tool, http://www.decos.at, 2005.

[174] DECOS Project Deliverable, Encapsulated Execution Environment
(COS, POS, Tool support), http://www.decos.at, 2006.

[175] TASKING TriCore Vx-Toolset, v2.2r3,
http://www.tasking.com/support/TriCore/readme 2 2r1.html, 2006.

[176] Infineon technologies; Signature Analysis Generator (SAG); User man-
ual, Version 1.5, Dec. 2005.

[177] Lauterbach TRACE32, Microprocessor Development Tools,
http://www.lauterbach.com/frames.html, 2008.

[178] J. Dongarra, E. Jeannot, E. Saule & Z. Shi, Bi-objective Scheduling
Algorithms for Optimizing Makespan and Reliability on Heterogeneous
Systems, ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 280–288, 2007.

BIBLIOGRAPHY 191

[179] O. S. Unsal & I. Koren, System-Level Power-Aware Design Techniques
in Real-Time Systems, Proceedings of the IEEE, pages 1055–1069, 2003.

[180] Y. Zhang & K. Chakrabarty, Task Feasibility Analysis and Dynamic
Voltage Scaling in Fault-Tolerant Real-Time Embedded Systems, De-
sign, Automation and Test in Europe Conference and Exposition
(DATE), pages 1170–1175, 2004.

[181] Y. Cai, S. M. Reddy & B. M. Al-Hashimi, Reducing the Energy
Consumption in Fault-Tolerant Distributed Embedded Systems with
Time-Constraint, International Symposium on Quality Electronic De-
sign (ISQED), pages 368–373, 2007.

[182] W. Wolf, High-Performance Embedded Computing: Architectures, Ap-
plications, and Methodologies, Morgan Kaufman, 2006.

[183] R. Obermaisser, H. Kopetz, C. Salloum & B. Huber, Error Contain-
ment in the Time-Triggered System-On-a-Chip Architecture, Interna-
tional Embedded Systems Symposium (IESS), 2007.

[184] R. Obermaisser, H. Kraut & C. Salloum, A Transient-Resilient System-
on-a-Chip Architecture with Support for On-Chip and Off-Chip TMR,
Seventh European Dependable Computing Conference(EDCC), pages
123–134, 2008.

[185] C. Erbas, S. Erbas & A. D. Pimentel, Multiobjective Optimization and
Evolutionary Algorithms for the Application Mapping Problem in Mul-
tiprocessor System-on-Chip Design, IEEE Transaction on Evolutionary
Computation, 10(3), pages 358–374, 2006.

[186] W. Stechele, O. Bringmann, R. Ernst et al. Autonomic MPSoCs for
Reliable Systems, Zuverlässigkeit und Entwurf (ZuD), 2007.

[187] T. Streichert, D. Koch, C. Haubelt & J. Teich, Modeling and Design of
Fault-Tolerant and Self-Adaptive Reconfigurable Networked Embedded
Systems, EURASIP Journal on Embedded System, 2006(1), pages 1–15,
2006.

192 BIBLIOGRAPHY

Index

Allocation compatibility matrix, 88

Backtracking, 62
Bandwidth

Estimation, 118
Brake force control, 49
Brake-by-wire, 98

Co-design, 10, 15
Co-design criteria, 58
Co-design methodology, 66
Co-design space exploration, 60
Communication controller, 39
Communication systems, 41

FlexRay, 42
TDMA, 42
TTP/C, 42

Consistency enforcing, 61
Constraints, 16, 51

Binding, 52
Communication, 54
Computing, 53
Deadline, 53
Dependability, 52
Handling, 60
Hard constraints, 52
Physical constraint, 54
Power consumption, 54
Precedence relation, 53
Prioritization, 61
Soft constraints, 52
Timeliness, 53

Constraints satisfaction, 58
Constraints satisfaction problem, 62

Converge, 29
Convergency, 127, 133

Deadline, 5
Dependability, 10, 25, 58

Cascading failure, 11
Error, 11
Failure, 11
Fault forecasting, 12
Fault prevention, 12
Fault removal, 12
Fault tolerance, 12
Faults, 11
Influence, 12

Deployment, 150
Design space, 62
Doors control application, 99
Dynamic power, 161

Embedded system, 2
Evaluation, 127
Event triggered, 42
Extra-functional, 24
Extra-functionality, 2

Failure rate, 153
Fault containment, 11
Fault containment module, 51
Fault model, 50

HW faults, 51
Permanent, 51
SW faults, 51
Transient, 51

Feasible mapping, 63

193

194 INDEX

Federated architecture, 6
FT scheme, 74

Active replication, 77
Checkpointing, 78
Primary backup, 77
Re-execution, 78

Functional, 24

Hyperheuristic, 28

Infeasible mapping, 63
Influence, 48, 113

Estimation, 113
Overall influence, 115

Integrated architecture, 7
Integrated design framework, 65
Integrated embedded architecture, 57

Job, 46

Load balancing, 133
load balancing, 37
Look ahead technique, 62

Mapping, 14
Resource allocation, 14
Scheduling, 14

Mapping algorithm, 93
Assignment evaluation, 95
Constraitns satisfaction, 96

Mapping comparison, 125
Mapping illustration, 97
Message transmission, 85
Metaheuristic, 28

Evolutionary algorithm, 30
Genetic algorithm, 30
Simulated annealing, 29

Metaheuristics
Tabu search, 30

Model transformation, 144
MPSoC architecture, 173
Multi core, 40

Fault containment, 40
Power consumption, 41

Multi Variable Optimization, 15, 105
Issues, 106
MVO algorithm, 122
MVO function, 121
MVO-SA, 120, 122

Neighborhood space, 63

Optimality, 29
Optimization, 16, 70, 106

Algorithm, 107
Ordering heuristic, 89

Job ordering, 91
Node ordering, 92

Pareto dominance, 107
Partitioing

Temporal partitioning, 44
Partitioning, 43

Core level partitioning, 44
Job level partitioning, 44
Node level partitioning, 43
Spatial partitioning, 44

Performance, 25
Power consumption, 160
Preferentially independence, 111
Prototyping, 71, 141
PSM prototype, 150

Real-time, 4, 59
Reconfiguration, 173
Reliability, 14, 157, 158
Requirements, 24
Research question, 15
Resource allocation, 27

Assignment problem, 27
Job shop scheduling, 28
Knapsack problem, 27
Timetabling, 28

Resource consumption, 59, 87

INDEX 195

Reusability, 45

SA parameters, 122
Safety-critical, 2
Schedulability, 82
Scheduling, 84

Length estimation, 116
Reducing length, 117

Scheduling tools, 149
Static power, 161
SW graph, 47
SW model, 46
SW-HW mapping, 73
System level, 4
System level co-design, 57
System model, 38

Architecture model, 38

Time-triggered, 42
Timeliness, 46
Trade-off, 110
Transformation operator, 124

Interchange, 125
Relocate, 125
Swap, 125

Transformational approach, 142
Traveling salesman problem, 28

Variables, 14
Optimization variables, 111
Properties, 109
Quantification, 112
Quantifiers, 109

Virtual network, 41

XBW, 2

196 INDEX

Curriculum Vitae

2004-2008: Ph.D. (Dr.-Ing.) in Computer Science, Technische Universitt Darm-
stadt, Germany.

2002-2004: Master of Science (M.Sc.) in Information Technology [Focus: Embed-
ded Systems Engineering], Universitt Stuttgart, Germany.

1995-2000: Bachelor of Science (B.Sc.) in Electrical and Electronics Engineering
(EEE), Bangladesh Institute of Technology, Khulna, Bangladesh.

1982-1994: Secondary and Higher Secondary School Certification, Bangladesh.

197

