
Q U A N T I TAT I V E T R U S T A S S E S S M E N T I N T H E

C L O U D

vom fachbereich informatik (fb20)
an der technischen universität darmstadt (d17)

zur erlangung des akademischen grades

eines doktor-ingenieur (dr .-ing .)
genehmigte dissertation von :

m . sc . ahmed taha

aus kairo, ägypten

datum der einreichung : 07 .02 .2018

datum der mündlichen prüfung : 25 .04 .2018

referenten :
prof . neeraj suri , ph .d

prof . dr . joachim posegga

darmstadt 2018

Taha, Ahmed : Quantitative Trust Assessment in the Cloud
Darmstadt, Technische Universität Darmstadt,
Jahr der Veröffentlichung der Dissertation auf TUprints: 2018
URN: urn:nbn:de:tuda-tuprints-74488
Tag der mündlichen Prüfung: 25.04.2018

Veröffentlicht unter CC-BY-NC 4.0 International - Creative Commons Attribution Non-commercial 4.0.
https://creativecommons.org/licenses/

E R K L Ä R U N G

Hiermit versichere ich, Ahmed Taha, die vorliegende Dissertation ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat
in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, 7. Februar 2018

Ahmed Taha

iii

iv

A C K N O W L E D G M E N T S

First and foremost, I would like to thank my advisor Neeraj Suri for building and leading a
research group, in which each member can pursue and develop his own research interests
individually. Thank you for providing us this freedom and for guiding me through the
time of my PhD endeavor. I am also very grateful to Joachim Posegga for accepting to be
my external reviewer, and to Stefan Katzenbeisser, Sebastian Faust, and Thomas Schneider
for being on my committee. I would like to thank Jesus Luna and Ruben Trapero for their
guidance and intensive discussions that we had throughout the years. I would like to
thank Daniel, Habib, Hatem, Heng, Kubilay, Nicolas, Oliver, Patrick, Sabine, Salman,
Stefan, Thorsten, Tsvetoslava, Ute, Yiqun, and Zhazira for being part of and contributing
to our group.

I consider myself very lucky for having worked with some very talented students and
I am very grateful for their input and support, especially Ahmed, Ataus, and Soha. I
would also like to thank Jolanda and Spyrous for providing the opportunity to work
on joint papers in the areas assessment techniques and privacy preserving computation
technique. Also, thanks to Saied for the many interesting discussions during our joint
proposal. Last but not least, I would like to thank my family and friends for their support
during this exciting time.

v

A B S T R A C T

Cloud computing offers a model where resources (storage, applications, etc.) are ab-
stracted and provided "as-a-service" in a remotely accessible manner. In such a service-
based environment, the Cloud provisioning relies on stipulated Service Level Agreements
(SLAs). Such an agreement is a contract between the Cloud Service Provider (CSP) and
the Cloud Service Customer (CSC) regarding the offered services. These SLAs specify the
Cloud services requested by the customers and are required to be achieved by the CSPs.
A variety of parameters for different aspects of a service can be included in the SLA, such
as but not limited to: availability, performance, downtime and location of the data.

Although there are numerous claimed benefits of the Cloud to ensure confidentiality,
integrity, and availability of the stored data, the number of security breaches is still on the
rise. The lack of security assurance and transparency prevented customers/enterprises
from trusting the CSPs, and hence not using their services. Unless the customer’s security
requirements are identified and documented by the CSPs, customers can not be assured
that the CSPs will satisfy their requirements. Although the recent efforts on specification
of security services using SLAs, also known as security SLAs or secSLAs, is a positive
development, multiple technical and usability issues limit the adoption of Cloud secSLAs
in practice. For example, multiple CSPs offer similar security services (e.g., "encryption
key management") albeit with different capabilities and prices. The customers need to
comparatively assess the offered security services in order to select the best CSP matching
their security requirements. However, the presence of both explicit and implicit depen-
dencies across security related services add further challenges for Cloud customers to:
(i) specify their security requirements taking service dependencies into consideration, (ii)
determine which CSP can satisfy these requirements in a qualitative way, and (iii) identify
threats that can compromise their data ownership requirements of security, functionality
and performance.

Although secSLA provides specifications for the security level to be provided, assurance
mechanisms are required to validate the compliance of the enforced security mechanisms
to the secSLA. The lack of security transparency on the security controls implemented
in the Cloud and the diversity of the security specifications covered in the secSLA make
validating the service to the secSLA a challenging task. Furthermore, the customer’s
compensation upon a violation is a manual time intensive process.

Finally, despite the benefits of enclosing security-related information in the secSLAs,
CSPs are hesitant to release detailed information regarding their security posture for se-
curity and proprietary reasons. This lack of security transparency makes assessing and
validating the offered security level and finding the best CSP matching the customer’s
security requirements a challenging task.

In this dissertation we address the aforementioned challenges. For challenges (i) and
(ii), two evaluation techniques for conducting the quantitative assessment and analysis
of the secSLA-based security level provided by CSPs with respect to a set of Cloud cus-
tomer security requirements are presented. The proposed techniques help to improve the
security requirements’ specifications by introducing a flexible and simple methodology
that allows customers to identify and represent their specific, imprecise and inconsistent
security needs. The techniques automatically detect conflicts resulting from inconsistent

vii

customer requirements and provide an explanation for the detected conflicts which in-
turn allows customers to resolve these conflicts. To tackle challenge (iii) and uncover
threats that can compromise the customer’s data ownership requirements, a threat analy-
sis process is presented which establishes the viability of identifying threats based on the
CSPs’ offered services and customers’ requirements.

To validate the compliance of CSPs to the contracted services in the secSLA(s), a de-
centralized customer-based monitoring approach is proposed. The monitoring approach
detects secSLA’s violations and autonomously compensates customers according to the
violation severity. The approach relies on the Ethereum blockchain to securely store moni-
toring logs and incorporate secSLAs as smart contracts. The compliance validation frame-
work is implemented and its functionality is evaluated on Amazon EC2.

Finally, a system that enables (a) CSPs to disclose detailed information about their of-
fered security services in an encrypted form to ensure data confidentiality, and (b) cus-
tomers to assess the CSPs’ offered security services and find those satisfying their security
requirements is presented. The system preserves each party’s privacy by leveraging an
evaluation method based on secure two-party computation and searchable encryption
techniques. The system is implemented and evaluated by applying it to existing stan-
dardized secSLAs. We show that the system’s performance is practical for the presented
use-case. The system is formally proved against a strong realistic adversarial model, using
an automated cryptographic protocol verifier.

viii

Z U S A M M E N FA S S U N G

Obwohl es zahlreiche Vorteile der Cloud gibt, um Vertraulichkeit, Intigrität und Verfüg-
barkeit der gespeicherten Daten zu gewährleisten, steigt die Anzahl an Verstößen weit-
erhin. Fehlende Sicherheit und Durchsichtigkeit halten Kunden/Unternehmen davon ab,
Cloud Service Anbietern (CSPs) zu vertrauen und ihren Dienst zu nutzen. Solange die
Sicherheitsanforderungen der Kunden von den CSPs nicht bekannt und dokumentiert
sind, kann den Kunden nicht versichert werden, dass die CSPs ihre Anforderungen er-
füllen können. Obwohl die jüngsten Anstrengungen die Sicherheit, mit Hilfe von Service
Level Agreements (SLAs), auch bekannt als Sicherheit SLAs oder secSLAS , zu präzisieren
eine positive Entwicklung darstellen, begrenzen viele technische und benutzerfreundliche
Punkte die Annahme von Cloud secSLAs in der Praxis. Obwohl secSLA Spezifizierun-
gen für das Sicherheitsniveau zur Verfügung stellt, sind "assurance mechanisms" erforder-
lich, um die Einhaltung der durchgesetzten Sicherheitsmechanismen der secSLA zu vali-
dieren. Mangel von Transparenz der Sicherheit der implementieren Sicherheitskontrollen
der Cloud und die Vielfalt der Sicherheitsspezifikationen, die in secSLA enthalten sind,
macht die Überprüfung der secSLA Dienste zu einer herausfordernden Aufgabe. Weiter-
hin ist die Kundenentschädigung bei Verletzung (des Vertrages) ein manuell zeitintensiver
Vorgang. Diese Dissertation beschäftigt sich mit den oben genannten Herausforderungen.
Zwei Formen der Evaluierung für die quantitative Bewertung und Analyse des auf sec-
SLA basierten Sicherheitslevels, bereitgestellt von CSPs mit Bezug auf eine Reihe von
Sicherungsanforderungen von Cloud Kunden, sind vorhanden. Die Techniken erkennen
Konflikte, die aus inkonsistenten Kundenanforderungen resultieren und stellen eine Erk-
lärung für diese zur Verfügung, was wiederum den Kunden erlaubt, diese Konflikte zu
lösen. Um die Übereinstimmung der CSPs mit den Vertragsservice der secSLA(s) zu va-
lidieren, wird eine dezentrale kundenbasierte "monitoring approach" vorgeschlagen. Das
"monitoring approach" erkennt secSLA Verletzungen und entschädigt automatisch Kun-
den gemäß der Schwere der Verletzung. Die Annäherung verlässt sich auf "Ethereum
blockchain". Die Annäherung der Überwachung wird durchgeführt und seine Funktion-
alität wird auf Amazons EC2 bewertet.

ix

The following publications are included in this dissertation.

[AWT+17] Soha Alboghdady, Stefan Winter, Ahmed Taha, et al. “C’Mon: Monitoring
the Compliance of Cloud Services to Contracted Properties.” In: Proc. of
ARES. 2017, p. 36.

[LTTS17] Jesus Luna, Ahmed Taha, Ruben Trapero, and Neeraj Suri. “Quantitative
Reasoning about Cloud Security Using Service Level Agreements.” In: IEEE
Transactions on Cloud Computing 5.3 (2017), pp. 457–471.

[TBL+18] Ahmed Taha, Spyros Boukoros, Jesus Luna, et al. “QRES: Quantitative Rea-
soning on Encrypted Security SLAs.” In: Privacy Enhancing Technologies (2018).
[Submitted].

[TMT+16] Ahmed Taha, Patrick Metzler, Ruben Trapero, et al. “Identifying and Uti-
lizing Dependencies Across Cloud Security Services.” In: Proc. of AsiaCCS.
2016, pp. 329–340.

[TTLS14] Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj Suri. “Ahp-based
quantitative approach for assessing and comparing cloud security.” In: Proc.
of TrustCom. 2014, pp. 284–291.

[TTLS17] Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj Suri. “A Framework
for Ranking Cloud Security Services.” In: Proc. of IEEE Services Computing.
2017, pp. 322–329.

The following publications are related to different aspects covered in this dissertation,
but have not been included.

[MTS16] Salman Manzoor, Ahmed Taha, and Neeraj Suri. “Trust Validation of Cloud
IaaS: A Customer-centric Approach.” In: Proc. of TrustCom. 2016, pp. 97–104.

[MTT+16] Jolanda Modic, Ruben Trapero, Ahmed Taha, et al. “Novel efficient tech-
niques for real-time cloud security assessment.” In: Computers & Security 62

(2016), pp. 1–18.

[TMS+17] Ruben Trapero, Jolanda Modic, Miha Stopar, et al. “A novel approach to
manage cloud security SLA incidents.” In: Future Generation Computer Sys-
tems 72 (2017), pp. 193–205.

[TMS17] Ahmed Taha, Salman Manzoor, and Neeraj Suri. “SLA-Based Service Se-
lection for Multi-Cloud Environments.” In: Proc. of Edge Computing. 2017,
pp. 65–72.

xi

C O N T E N T S

1 introduction 1

1.1 Research Questions and Scientific Contributions 2

1.2 Dissertation Outline . 5

i quantitative reasoning on security slas 7

2 quantitative framework for assessing cloud security 9

2.1 Motivation and Contribution . 9

2.2 Background . 10

2.2.1 Security Service Level Agreements . 10

2.2.2 Service Dependencies . 11

2.3 Quantitative Reasoning System Architecture 13

2.3.1 Trust Model . 14

2.3.2 Stage (A): Security Requirements Definition 14

2.3.3 Stage (B): Requirements Quantification 15

2.3.4 Stage (C): Dependency Management Approach 16

2.3.5 Stage (D): Structuring SecSLA Services 18

2.3.6 Stage (E): CSPs Evaluation . 21

2.4 Case Study: Security evaluation of CSP’s secSLAs 31

2.4.1 The Customer Perspective: Security Comparison of CSPs 33

2.4.2 The CSP Perspective: Maximising Offered Security Levels 44

2.5 Related Work . 44

2.6 Summary . 45

ii threat analysis 47

3 requirement based threat analysis 49

3.1 Motivation and Contribution . 49

3.2 Requirement Based Threat Analysis (RBTA) Process 50

3.3 Requirements Analysis . 50

3.3.1 Requirements Analysis from ESCUDO Use-Case 50

3.3.2 Adapted Requirements Catalogue . 51

3.3.3 Risk Assessment . 51

3.4 Dependency Analysis Across Requirements 55

3.4.1 Stage (A): Dependency Model Creation 55

3.4.2 Stage (B): Use-Case Requirements Validation 56

3.4.3 Stage (C): Structuring Use-Case Requirements Using DSM 56

3.5 Identifying Violations . 59

3.6 Related Work . 59

3.7 Summary . 60

iii quantitative secsla validation and enforcement 61

4 monitoring the compliance of cloud services 63

4.1 Motivation and Contribution . 63

4.2 Background . 64

4.2.1 Consensus Algorithms . 65

xiii

xiv contents

4.2.2 Types of Blockchains . 65

4.2.3 Ethereum Blockchain . 66

4.3 SecSLA Compliance Monitoring Framework 67

4.3.1 Monitoring Approach Architecture . 67

4.3.2 Stage (1): Measurement Definitions . 69

4.3.3 Stage (2): Monitoring Approach . 70

4.3.4 Stage (3): Monitoring System Processes 72

4.3.5 Distributed Customer’s Data Oracles 73

4.4 Security Vulnerabilities of Ethereum Smart Contracts 73

4.5 Implementation and Evaluation . 74

4.5.1 Setting-up Ethereum blockchain . 75

4.5.2 Cloud Customer Data Oracle . 75

4.5.3 Experiment 1: Evaluating the Functionality of the Approach on Ama-
zon EC2 . 76

4.5.4 Experiment 2: Consumed Gas (Cost) Evaluation 77

4.6 Related Work . 78

4.7 Summary . 79

iv use-case 81

5 qres : quantitative reasoning on encrypted security slas 83

5.1 Motivation and Contribution . 83

5.2 Background . 84

5.2.1 Format of secSLAs . 84

5.2.2 Searching Over Encrypted Data . 84

5.2.3 Privacy Preserving Computations . 85

5.3 Requirements Analysis . 86

5.3.1 System Overview . 86

5.3.2 Threat Model . 87

5.3.3 Trust Model . 87

5.3.4 System Requirements . 88

5.4 QRES Architecture . 89

5.5 Implementation and Evaluation . 92

5.6 Security Analysis . 94

5.6.1 Formal Analysis . 94

5.6.2 Further Security Considerations . 97

5.7 Related Work . 99

5.8 Summary . 99

6 conclusion 101

v appendix 103

a fuzzy notations 105

a.1 Crisp and Fuzzy Sets . 105

a.2 Triangular Fuzzy Number . 106

a.3 Operations of TFN - Approximation of Division 106

b operational semantics 109

b.1 Protocol modelling and properties verification 110

bibliography 113

L I S T O F F I G U R E S

Figure 1.1 Structure of the dissertation and scientific contributions (SC). 6

Figure 2.1 Cloud secSLA hierarchy based on security posture provided by the
STAR repository. 11

Figure 2.2 SecSLA hierarchy showing dependencies 12

Figure 2.3 Proposed system stages . 14

Figure 2.4 Dependency based secSLA validation stages 19

Figure 2.5 CSPs evaluation process . 22

Figure 2.6 Dependent secSLA Hierarchy . 23

Figure 2.7 Triangular fuzzy number. 26

Figure 2.8 Linguistic terms for criterion importance. 27

Figure 2.9 CSPs comparison with respect to Customer Case I requirements
using QHP. 36

Figure 2.10 CSPs comparison with respect to customer Case I requirements us-
ing fuzzy-QHP. 39

Figure 2.11 The total aggregated secSLA level with respect to customer require-
ments using QHP & fuzzy-QHP. 40

Figure 2.12 Sensitivity analysis: CSP
1

SLOs that maximise the overall security
level. 44

Figure 3.1 Dependency management approach stages 55

Figure 3.2 Use-case requirements arranged in a hierarchy structure showing
the dependencies between requirements 56

Figure 4.1 Monitoring system architecture . 68

Figure 4.2 System workflow phases - sequence diagram 71

Figure 4.3 Distributed oracles scheme workflow - single point of failure avoid-
ance . 74

Figure 5.1 QRES System Model . 87

Figure 5.2 QRES System Architecture . 89

Figure 5.3 Secure computation protocol between a CSP and the broker (QeSe). 91

Figure 5.4 Illustration of the secure computation protocol between the CSP
and the broker (QeSe). 92

Figure 5.5 Time used by a customer to search for her/his different keywords
over varied number of SLOs offered by one CSP. 93

Figure 5.6 Time used by the customers to search for their different keywords
over 150 SLOs offered by varied CSPs. 94

Figure A.1 Membership functions for domestic and foreign cars, based on the
percentage of parts in the car made in Germany [Men95] 105

Figure A.2 Membership functions for T(height). 106

Figure A.3 Approximation of TFN division example. 107

Figure B.1 Constructors and destructors . 109

xv

Figure B.2 Operational semantics [BAF08] . 110

L I S T O F TA B L E S

Table 2.1 Dependency importance level . 13

Table 2.2 DSM mapping of the secSLA shown in Figure 2.2 21

Table 2.3 Final DSM mapping of the secSLA shown in Figure 2.2 after parti-
tioning and scheduling . 22

Table 2.4 QHP terms . 24

Table 2.5 Linguistic terms and values of ratings. 27

Table 2.6 Case Study: Excerpt of secSLA from CSPs and customer require-
ments. 32

Table 3.1 Relationship between use-case requirements and confidentiality, in-
tegrity, availability, performance and functionality attributes with
regards to data ownership. 52

Table 3.2 Use-case requirements and their direct and indirect assumptions
as well as an estimated likelihood of direct assumptions being vio-
lated, assumed impact and threat severity. 54

Table 3.3 DSM mapping of UC requirements shown in Figure 3.2 57

Table 3.4 Final DSM of UC requirements depicted in Table 3.3 after partition-
ing and scheduling . 58

Table 4.1 Instances configurations . 76

Table 4.2 Amazon EC2 instances results . 77

Table 4.3 Total gas consumed by the validation and compensation processes
based on one month logs with different batch sizes 78

Table 4.4 The consumed Gas of the validation and compensation processes
per SLO . 78

Table 5.1 Excerpt of a secSLA XML structure with the calculation of pre-fields 85

Table 5.2 The semi-honest threat model of our system 88

Table 5.3 Every participating entity’s initial knowledge 88

L I S T I N G S

Listing 2.1 Excerpt of dependency model of a secSLA 18

Listing 5.1 Excerpt of the SLA depicted in Figure 2.1 84

xvi

A C R O N Y M S

CSC Cloud Service Customer

CSP Cloud Service Provider

SecSLA Security Service Level Agreement

SLA Service Level Agreement

SLO Service Level Objective

PV Priority Vector

NW Normalized Weight

CM Comparison Matrix

AHP Analytic Hierarchy Process

DSM Design Structure Matrix

TFN Triangle Fuzzy Number

MCDM Multiple Criteria Decision Making

QHP Quantitative Hierarchy Process

ENISA European Union Agency for Network and Information Security

CSA Cloud Security Alliance

CSA STAR CSA Security, Trust and Assurance Registry

CSA CAIQ CSA Consensus Assessments Initiative Questionnaire

CSA OCF CSA Open Certification Framework

ISO International Organization for Standardization

RBTA Requirement Based Threat Analysis

QRES Quantitative Reasoning on Encrypted Security SLAs

QeSe Query Search Protocol

A B B R E V I AT I O N S

S Set of services a secSLA consists of such that S = s
1

, . . . , s
n

.

K Set of SLOs

k An SLO where k 2 K

V The set of all values of each k in K

v
i,k k value provided by CSP

i

xvii

xviii list of abbreviations

vCSC,k CSC required value for k

ṽ
i

TFN value k provided by CSP
i

such that ṽ
i

is represented as (l
i

,m
i

,u
i

)

B Broker

m Plaintext

c Ciphertext

k Symmetric encryption/decryption key

pkX Public key of party X

skX Private key of party X

certX X.509 certificate of party X

kauth
X Authentication secret generated and sent to party X

NX 2 {0, 1}� Random number generated by party X from the set of all binary strings
of length �

y $ A(x) On input x, algorithm A binds the output to variable y

m
1

||m
2

Concatenation of m
1

and m
2

KGen key generation

Enc Encryption algorithm

Dec Decryption algorithm

Enc(pk,m) Takes as input a public key pk, a plaintext m, and outputs a ciphertext c

Dec(sk, c) Takes as input a secret key sk, a ciphertext c, and outputs a plaintext m

Sig(sk,m) Signs m with a secret key sk, and outputs a signed message s
m

Verify(pk, s
m

) Verifies the signature using the public key pk and returns 1 if the signature
is valid for the given message and 0 if not

H(x) Hash function which takes as input x, and responds with a random out-
puts y. Ideally, a hash function is defined as a random oracle that re-
sponds with a random output y 2 Y to each given input for x 2 X. Where
X is the set of possible messages, Y is a finite set of possible digests

t1, . . . , tn The SLA XML file can be split into n substrings.

t1CSP
1

, . . . , tnCSP
1

Substrings generated by CSP
1

and are named tokens, where n is the
number of tokens

w1

CSC, . . . ,wn

CSC Substrings generated by the customer CSC and are named keywords,
where n is the number of keywords

1
I N T R O D U C T I O N

Cloud computing drives the vast spectrum of both current and emerging applications,
products, and services, and is also a key technology enabler for the future Internet. In
such a service-based environment, service provisioning relies on a Service Level Agree-
ment (SLA) which represents a formal contract established between the Cloud Service
Customer (CSC) and the Cloud Service Provider (CSP). The SLA specifies how provision-
ing takes place as well as the respective rights and duties of the customer as well as the
CSP. Furthermore, the SLA includes the list of Service Level Objectives (SLOs) which are
the measurable elements of an SLA that specify the Cloud services’ levels requested by
the customers, and required to be achieved by the CSP.

Although Cloud computing direct economic value is unambiguously substantial, tak-
ing full advantage of Cloud computing requires considerable acceptance of off-the-shelf
services. Specifically, both security assurance and transparency remain as two of the main
requirements to enable customer’s trust in CSPs. The lack of assurance and transparency,
along with the current paucity of techniques to quantify security, often results in Cloud
customers being unable to assess the security of the CSP(s) they are paying for. Despite
the advocated economic and performance related advantages of the Cloud, two issues
arise: (i) how can a (non-security expert) customer meaningfully assess if the CSP ful-
fills his/her security requirements?, and (ii) how can a CSP provide security assurance to
customer organizations during the full Cloud service life-cycle?

In this context, a number of Cloud community stakeholders (e.g., ISO 27002 [Sta13],
the European Union Agency for Network and Information Security (ENISA) [Nat13], and
Cloud Security Alliance (CSA) [Clo17a]) are pushing towards the inclusion of security
parameters and CSP’s security implementation in Service Level Agreements (named se-
curity SLAs or secSLAs [LGLS12]). Examples of security-related information are ciphers
used to encrypt data, vulnerability management/assessment procedures, minimum/aver-
age incident response times, security controls’ and configuration elements such as metrics
for measuring cybersecurity performance, etc.

Consequently, secSLA can be a useful mean not only to disclose information about each
CSP offered security services, but also to define the services’ key measurable parameters.
For example, how a CSP recovers from incidents is typically defined using two measurable
parameters which are the incident severity and the time to recovery [HD12]. Customers
can employ these measurable parameters to continuously assess and monitor (even with
a realistic level of automation) the CSP’s implementation of the acquired service level.
Using these assessments, customers aquire better information to compare different ser-
vice offerings provided by various CSPs, and thus, can select the CSP that satisfies their
requirements.

Despite the benefits of disclosing the security related information in secSLAs, Cloud cus-
tomers still face major problems that need to be addressed. In the next section, we define
these problems using four research questions. Furthermore, we highlight our scientific
contributions and specify the references where each contribution has been published.

1

2 introduction

1.1 research questions and scientific contributions

Research Question 1: How can customers (a) specify their security requirements without introduc-
ing conflicts resulting from the dependency relations across services, and (b) evaluate and assess
the security level of CSPs according to the their precise/imprecise requirements?

Dependency relations across services, or simply service dependencies, are the direct re-
lations between one or more services, where a service can depend on data or resources
provided by another service. Mainly, these dependency relations increase the difficulties
for the customers in finding a single CSP that satisfies their requirements, since these rela-
tions can easily introduce conflicts. For instance, a customer may require an unachievable
level of a dependent security service which causes these requirements to be impossible
to satisfy. Whereas, the unachievable service level exists when a service depends on re-
sources which are not provided by the corresponding dependent service. Moreover, a cus-
tomer requirement may influence or be influenced by other requirements. Consequently,
a CSP being unaware of related dependencies can erroneously agree on providing an un-
achievable level of security service according to the customer requirement. Consequently,
the CSP will not be able to fulfill this requirement, which results in a secSLA violation.

For example, the "encryption key management" service in the Cloud depends on several
factors such as: (a) the techniques used to store the encryption keys, (b) the processes
specifying how keys are accessed, (c) the possibility of the key recovery, and finally (d)
the control and management of each key. Each of these factors contains different levels of
services (e.g., different techniques to store and distribute the keys), which the customer
can require and the CSP agrees to fulfill. Note that most factors also depend on each
other.

As the number of Cloud security services grows, the number of dependencies across the
security services also increases, making it more likely for customers to introduce conflicts.
Also, it becomes harder to manually detect and identify the causes of these conflicts, es-
pecially when multiple types of dependency relations are involved. Therefore, customers
need to first consider the dependencies between security services that span across their
security requirements’ specifications, and then assess the security services offered by dif-
ferent CSPs to rank different CSPs based on the customer’s security requirements and
priorities.

Consequently, customers need techniques to quantitatively compare the security offer-
ings across the different CSPs according. However, most of the presented evaluation tech-
niques [LGLS12; GVB13] require customers to: (a) provide detailed values specifying their
requirements and (b) submit static weights to model their priorities. In fact, both of the
aforementioned requirements depend upon expert knowledge and are time consuming.
In addition, the lack of Cloud customer awareness about detailed security requirements
hinders them from specifying security requirements in accurate values.

To allow customers to smoothly adopt Cloud services, it is desirable to let them express
their "general" requirements or imprecise preferences in natural language phrases. By
using approximate linguistic descriptors, customers are able to define their requirement
exactly as desired. Therefore, it is becoming an important issue for the customers to
be able to make decisions regarding how to assess and rank CSPs with respect to their
secSLAs and according to the customers’ precise/imprecise requirements.

1.1 research questions and scientific contributions 3

Scientific Contribution 1: Proposing a secSLA based dependency representation model and a quanti-
tative reasoning framework that allow customers to specify their requirements using precise values,
linguistic descriptors and natural language phrases.

To assess the CSPs according to the customer security requirements, an analysis of the
security service dependencies with the handling of all conflicts that occur due to differ-
ent dependency relations across services is presented. We develop a dependency model
which ascertains direct and indirect dependencies across services to highlight conflicts
preventing the CSPs from satisfying customer requirements.

Furthermore, two secSLA assessment techniques are proposed which are based on Ana-
lytic Hierarchy Process (AHP) [Saa90] and fuzzy-AHP [Cha96]. The proposed techniques
allow customers to:

• Specify their requirements using natural language phrases and linguistic descrip-
tors as well as precise values. Thus, enabling both novice and expert customers to
provide their security requirements according to their expertise

• Assess, compare and rank various security services provided by different CSPs. We
employ membership functions to capture customers’ subjective requirements and
then use a hierarchical fuzzy inference system to derive precise security levels for
these requirements.

The proposed dependency analysis and validation framework has been presented at
AsiaCCS 2016 [TMT+16]. The proposed assessment techniques have been presented at
TrustCom 2014 [TTLS14], SCC 2017 [TTLS17], and TCC 2017 [LTTS17]. The first contribu-
tion is explained in Chapter 2.

Research Question 2: How can customers identify threats that can potentially violate their data
ownership requirements?

Cloud infrastructures are subject to multiple threats, which may target the technological
foundation of the Cloud infrastructure (e.g., virtualized environment) or architectural as-
pects of the next generation of Cloud storage system (e.g., availability). Virtualization
is the enabling technology for the different Cloud computing models and is expected
to offer secure logical isolation between virtual machines. Recently, researchers have
demonstrated that the isolation property may be violated by extracting the private key
of co-located users or by exchanging secrets between colluding users [PBSL13]. Different
factors affect the exploitability of these threats, such as the noise level of side-channels, or
deployed mechanisms. Similarly, the perceived lack of trust and control over outsourced
data raises major concerns about its security and privacy. To alleviate these concerns, a
systematic approach is required in order to estimate the feasibility of exploitation of these
threats in a specific operational context and under the stipulated assumptions. Addition-
ally, these threats need to be analyzed with regards to the requirements of the customer
in terms of functionality, performance and security, with the aim to properly identifying
which data to be outsourced is critical so that threat-modeling activities can be prioritized.

Scientific Contribution 2: Developing a requirement based threat analysis for estimating the risks
based on requirements analysis.

We developed a requirements-driven methodological process that ascertains direct and
indirect dependencies across the security requirements to highlight inconsistent specifica-

4 introduction

tions or assumptions that can lead to security breaches. Each Cloud service is presented
as a tree (Boolean or X-tree as relevant) that outlines the hierarchy of requirements pro-
viding the Cloud service. As multiple services are elaborated, the methodology explores
the linkages and dependencies across all the service requirements to ascertain either their
compatibility or incompatibility - the latter identifying the vulnerabilities. This linked
services model is a new contribution to the area of threat modeling and has resulted in
a systematic 3-step methodology (initial design of the dependency model, validation of
the model, use-case requirements reorganization). The presented threat analysis scheme
is explained in Chapter 3.

Research Question 3: How can customers ensure that the required security level is enforced by the
CSP?

In theory, by signing the secSLA, a CSP commits to providing the specified security level
throughout the full life-cycle of the service. However, in practice, the service may not
comply with the security level contracted in the secSLA during its full operation time.
Accordingly, the compensations to be paid to the customer upon any detected violations
are specified in the secSLA. However, most of the existing security compliance approaches
are proposed to help the CSP to manage security compliance of their services, whereas
none of the approaches addresses compliance management from the customer side.

Hence, how can customers (i) verify if the contracted security level is actually delivered,
and (ii) detect and prove any violations to the contracted service levels in the secSLA
at any time during the service life-cycle? At the same time, how to prevent customers
from misreporting for financial gain? Finally, how can customers get compensated au-
tonomously in case of security breaches? The current compensation process involves: (a)
the customer opening a case with the support team, (b) waiting for someone to analyze
the validity of the case, and finally (c) a payment or a refund is initiated in terms of credit
for future usage.

Scientific Contribution 3: Proposing an approach to continuously monitor the compliance of Cloud
services to secSLAs that autonomously compensates the customer if a secSLA violation is detected.

We present a framework for secSLA compliance validation which enables Cloud cus-
tomers to validate the compliance of the provided Cloud service to the contracted security
level in a secSLA. The framework relies on a proposed decentralized runtime monitoring
approach which builds upon the Ethereum blockchain infrastructure.

Firstly, we analyze and select the SLOs that can be measured from the customer side.
The analyzed SLOs are proposed by different frameworks and standards for security con-
trols. Secondly, measurement procedures to determine the measurable SLO values are
defined. Next, a decentralized customer side monitoring scheme for validating the com-
pliance of the service is established. Further, enforcement of the secSLA using a smart
contract deployed over the Ethereum blockchain. Finally, implementing an autonomous
compensation process for customers if a violation is detected.

We evaluate the functionality and performance of the monitoring scheme on Amazon
EC2 [Ama17]. The proposed monitoring approach has been presented at QRES 2017

[AWT+17] and is specified in Chapter 4.

1.2 dissertation outline 5

Research Question 4: Is the inclusion of security implementations information in the secSLAs
risky?, and will CSPs disclose detailed security related information in their secSLAs or only general
and abstract information about their security posture?

Despite the benefits of detailing the security-related information, CSPs still do not disclose
this kind of information in their secSLAs for security and/or commercial reasons [HD12].
The risks of including security-related information in the secSLA where pointed out by
ENISA [HD12]:

- Publicly disclosing security parameters may assist attackers in penetrating the sys-
tem using a hole in the publicized data. Accordingly, the rate of malicious security
breaches increases, which can be much harder to detect. This can also lead to a
significant financial loss as a result of the customers’ compensations.

- Publicly detailing commercially sensitive information (i.e., financial terms, service
levels, cost information, or/and vulnerability descriptions which may include pro-
prietary information, etc.) can be used by other competitors to improve their ser-
vices.

Scientific Contribution 4: Proposing a formally proved system which enables CSPs to publicly
disclose detailed information about their offered services in encrypted secSLAs while allowing cus-
tomers to assess the CSPs’ offered security services and subsequently find those satisfying their
requirements.

We design and implement a system called QRES (Quantitative Reasoning on Encrypted
SLAs). Our system simultaneously allows:

- CSPs to specify their services along with the key measurable parameters in secSLAs,
without revealing information about the offered security parameters or commer-
cially sensitive information.

- Customers to assess and evaluate the CSP’s offered security services and to choose
the best CSP matching their needs.

QRES is built around a two-party privacy preserving query over encrypted data scheme
(named QeSe). QeSe allows customers to search for their requirements over encrypted
secSLA blindly without neither the CSPs learning these requirements, nor the customers
knowing the CPSs’ secret keys.

The proposed framework has been submitted to PETS 2018 [TBL+18] and is explained
in Chapter 5.

1.2 dissertation outline

The outline of the dissertation is structured according to the depiction in Figure 1.1, which
shows the relationship between the chapters and the scientific contributions discussed.
The remainder of this dissertation is organized as follows:

• Chapter 2 presents two different techniques to conduct security assessment based
on the quantitative and qualitative analysis of security information. Both techniques
were empirically validated through case studies using real-world CSP data obtained
from the Cloud Security Alliance. Furthermore, we introduce a novel dependency

6 introduction

2. Quantitative Reasoning on Security SLAs (SC1)

CSPs
SecSLAs

Security
Requirements and

Dependency
Management

CSPs

Validated customer
requirements

Customer
requirements

Security
Evaluation

3. Threat
Analysis
(SC2)

Matching
CSP’s secSLA

CSPs’ secSLAs

Customer &
CSP’s agreed-

on SLOs

4. Quantitative secSLA
Validation and Enforcement

(SC3)

Customer
side

Monitoring

Violation
detection and
autonomous

compensation

5. Use-
Case
(SC4)

Figure 1.1.: Structure of the dissertation and scientific contributions (SC).

model and show its capability for validating each customer and CSP requirement by
checking the existence of conflicts that occur due to to different dependency relations
between service/SLOs.

• Chapter 3 develop a dependency model and highlights its capability for identify-
ing threats by ascertaining and visualizing the dependencies across services. By
assessing the degree of dependencies across the services, the potential threats are
identified and the critical areas where services should be protected are specified.

• Chapter 4 presents the compliance validation framework. The framework validates
the compliance of the service throughout the Cloud’s full life-cycle by continuously
testing the SLO values.

• Chapter 5 presents a novel system which enables CSPs to create secSLAs and publish
them encrypted. At the same time, customers can find the CSP matching their
security needs by contrasting their requirements against the encrypted secSLAs.

• Chapter 6 summarizes the contributions of the dissertation.

Part I

Q U A N T I TAT I V E R E A S O N I N G O N S E C U R I T Y S L A S

2
Q U A N T I TAT I V E F R A M E W O R K F O R A S S E S S I N G C L O U D S E C U R I T Y

The quantitative security level assessment of CSPs is the primary objective of the pro-
posed framework described in this chapter. Using this assessment approach, the CSPs are
ranked (as per their secSLA’s) as to how well they match Cloud Service Customer (CSC)
requirements.

To achieve this, we first analyze the customer requirements according to the customer
security expertise. Second, we create a dependency model to capture information about
secSLAs’ services and the dependencies that occur between them. Using this model, both
the CSP’s offered services and customers requirements are validated by checking service
conflicts and different SLO’s compatibility issues. Next, the validated services are struc-
tured in a precise order to easily assess these services and rank the CSPs according to
customer requirements. We propose two different evaluation and assessment techniques
to assess and rank the CSPs according to the customer requirements. Finally, we validate
the framework by applying it to real-world data that leverages the standardized Cloud
SLA’s structure proposed in the ISO/IEC 19086 standard [Int14].

2.1 motivation and contribution

In the Cloud area, security parameters and mechanisms are typically specified in the
form of secSLAs to model security among both CSPs and customers. As the primary
interfaces between the CSP and the customer are these secSLAs (which are primarily
textual legal contracts of a mixed qualitative and quantitative nature), the need exists
to be able to: (a) quantitatively specify and assess customer/CSP security requirements,
(b) consider the dependencies between security services that span across customer/CSP
security specifications, and (c) compare the security services offered by the different CSPs
based on the customer’s both certain and uncertain security requirements.

Although the state-of-the-art predominantly focuses on the methodologies to build and
represent Cloud secSLAs, there is still a conspicuous lack of techniques that: (a) quantita-
tively evaluate Cloud secSLAs to provide security assurance and (b) validate the secSLAs
by checking the existence of conflicts that occur due to different dependency relations
between services. This lack of techniques that quantitatively evaluate and validate Cloud
secSLAs to provide security assurance along with the existence of multiple CSPs offering
similar security services, often results in Cloud customers being unable to trust and assess
the security of the CSP’s provided services they are paying for.
Contributions. To tackle the aforementioned problems, we make the following contribu-
tions:

1. Developing two evaluation techniques (QHP [TTLS14] and fuzzy-QHP [TTLS17])
for conducting the quantitative assessment and analysis of the secSLA-based se-
curity level provided by CSPs’ with respect to a set of Cloud customer security
requirements. These proposed techniques improve the specification of security re-
quirements by introducing a flexible and simple methodology that allows customers
to identify and represent their "specific" and "vague/uncertain" security needs. To

9

10 quantitative framework for assessing cloud security

capture customers’ subjective requirements, we deploy membership functions and
then use a hierarchical fuzzy inference system to derive precise security levels for
these requirements.

2. Proposing a dependency representation model for validating the secSLAs by check-
ing the existence of conflicts that occur due to different dependency relations be-
tween services. The process of analyzing conflicts is both iterative and interactive.
Furthermore, representing the security requirements in an easy dependent ordered
structure using Design Structure Matrix (DSM) [Ste81]. In this structure, the security
services are ordered according to their level of dependency. This makes the secSLA
services and dependencies explicit and traceable regardless the number of security
services. This structure assists customers who could not resolve the conflicts and
thus could not specify their requirements.

3. The developed techniques along with the developed dependency model are val-
idated using four use-case scenarios, leveraging actual real-world CSP SLA data
derived from the publicly available Cloud Security Alliance’s Security, Trust and
Assurance Registry [Clo17d], which is compliant with the relevant ISO/IEC 19086

standard [Int14].

2.2 background

In this section we provide background information, which is necessary for better compre-
hension of the other sections. Practically, we define the concepts of security Service Level
Agreement (secSLA) which are used in all the dissertation chapters. Furthermore, we give
a short introduction on the dependency relations pertinent to the Cloud secSLA, on which
our proposed assessment and validation approaches in Chapters 2 and 3 are based.

2.2.1 Security Service Level Agreements

A Cloud secSLA describes the provided security services, and represents the binding
commitment between a CSP and a customer. Basically, this outlines the desired security
services, each of which contains a list of SLOs. Each SLO is composed of one or more
metric values that help in the measurement of the Cloud SLOs by defining parameters and
measurement rules that facilitate assessment and decision making. Based on the analysis
of the state of practice presented in [LTTS17], Cloud secSLAs are graphically modeled
using a hierarchical structure, as shown in Figure 2.1. The root of the structure defines the
main container for the secSLA. The intermediate levels (second and third levels in Figure
2.1) are the services which form the main link to the security framework used by the CSP.
The lowest level (SLO level) represents the actual SLOs committed by the CSP which are
consequently offered to the Cloud customer. These SLOs are the threshold values which
are specified in terms of security metrics.

It is worth noting that the process of modeling values to a quantitative metric is not
straightforward, as SLOs can have varied types/ranges of composite qualitative and quan-
titative values. Hence, we introduce the notion of a "security level" associated to each SLO
of the secSLA. To formalize this concept, we introduce the following definition:

Definition 1 A secSLA consists of a set of services S = s
1

, ..., s
n

. Each service s consists of finite
positive number n of SLOs k

i

; where i = 1 . . . n. Each SLO k
i

consists of m different metric

2.2 background 11

values v
i

; such that k
i

= v
i,1, v

i,2, ..., v
i,m. Each value implies a different security level offered by

the CSP and required by the customer. The total order of security levels k
i

is defined using an order
relation " <

i

"; such that k
i

= v
i,1 < v

i,2 < ... < v
i,m. Each k

i

value is mapped to a progressive
numerical value according to its order. These numerical values are then normalized with respect to

the k
i

’s number of values (m) such that k
i

=
1

m
<

2

m
< . . . <

m

m
.

Entitlement
category

(Sn.1)

Percentage of
timely incident
reports (S1.1.1)

Recovery time
(S1.1.2)

Crypt brute force
resistance

(Sn.1.1)

Password
storage

protection level
(Sn.1.2)

…

…

…

…

Ro
ot

le

ve
l

SL
O

 le
ve

l
Se

rv
ice

s l
ev

el

Cloud secSLA

Identity and Access
Management IAM

(S1)

Information Security
Incident Management

(S1.1)

Application
&Interface

Security
AIS (Sn)

Figure 2.1.: Cloud secSLA hierarchy based on security posture provided by the STAR repository.

An example of an SLO, as shown in Figure 2.1, is "Percentage of timely incident reports"
SLO which is composed of {yearly < half- yearly < monthly < weekly} values which
are defined using security levels as level

1

< level
2

< . . . < level
4

respectively. These

security levels correspond to {
1

4
<

2

4
< . . . <

4

4
}. Let us consider a CSP committing

"Percentage of timely incident reports" such that the CSP’s secSLA specify: Percentage of

timely incident report= level
2

such that v
i

=
2

4
. A CSP commits other SLOs in a similar

manner such that the overall CSP’s secSLA contains a list of SLOs with different values
that the CSP is committed to fulfill. If any of these committed values are not fulfilled by
the CSP, then the secSLA is violated.

We illustrate the secSLA’s structure and functionality better with an example. We con-
sider a customer processing financial transactions using Software-as-a-Service (SaaS). The
customer looks for a secSLA which specifies a recovery time objective of less than 1

minute and a monthly report offered by the selected CSP specifying the mean recovery
times [HD12]. Using this example, we specify two SLOs ("Percentage of timely incident re-
ports S

1.1.1" and "Recovery time S
1.1.2") as shown in Figure 2.1. The "Percentage of timely

incident reports" SLO is composed of {yearly,half - yearly,monthly,weekly} values
which are defined using service levels as level

1

, level
2

, . . . , level
4

respectively. If a CSP is
committing a "Percentage of timely incident reports" of monthly, then v

S

1.1.1 = level
3

.

2.2.2 Service Dependencies

A service dependency is a directed relation between the services offered in Cloud sce-
narios. It is expressed as a 1 : n relationship where one service (termed as dependent)

12 quantitative framework for assessing cloud security

depends on one or multiple services (termed as antecedent). A service can depend on
data or resources provided by another service. A service s

1

is dependent on service s
2

if
the provisioning of s

1

is conditional to the provisioning of s
2

. Explicit knowledge about
dependencies is needed to support the management of secSLA by both CSPs and cus-
tomers. Several types of dependencies are used in literature such as Quality of Service
(QoS), price, resource and time dependencies [WSS10]. We only consider resource de-
pendencies which are validated by matching the security values of the dependent and
antecedent SLOs specified in their secSLAs.

For example, let us consider "Authentication & Authorization" Control (which defines
the available authentication and user-credentials protection mechanisms) [Csi] that is com-
posed of three different SLOs, namely "CSP authentication"1, "User authentication and
identity assurance level"2 and "Third-party authentication support" 3. If we consider that
a CSP offering an authentication mechanism is performed by third-party (specified using
"Third party authentication support" SLO in the secSLA), then the CSP does not need to
specify the "User authentication and identity assurance level", as the other authentication
SLOs become less relevant as authentication is performed by a third-party. This means the
"Third party authentication support" SLO complements the other authentication SLOs.

Root

service 1
s1

k1

s1.2

k2

k5k3

k4

k6

k7

k8

k9

service 2
s2

s2.1 s2.2

…

Horizontal dependency
Vertical dependency

s1.1

Unidirectional
Bidirectional

s1.3

3 3

3

3 1 1 2 2 2

3
3 2 2 2 2 1

23

2
3 3

2

2

2

2

2
1

11

le
ve

l1
le

ve
l3

le
ve

l2
le

ve
l0

2

Ro
ot

le
ve

l

Figure 2.2.: SecSLA hierarchy showing dependencies

We classify dependencies based on their occurrence between services and/or SLOs at
the same hierarchical level (horizontal dependencies), as well as between different lev-
els in the hierarchical structure (vertical dependencies) [WS09] as shown in Figure 2.2.
Dependencies can be further classified into direct and indirect dependencies. Direct de-
pendencies occur between two interacting services. Indirect dependencies occur between
services which do not directly interact with each other, but where a transitive relation-
ship exists via an intermediate service. Figure 2.2 illustrates different dependencies such
as, service s

2.2 depends on service s
2.1 in the same hierarchical level, which represents a

1 Specifies the available authentication mechanisms supported by a CSP on its offered Cloud services.
2 Specifies the level of assurance of the CSP supported mechanisms used to authenticate a user.
3 Specifies whether third party authentication is supported by the Cloud service.

2.3 quantitative reasoning system architecture 13

direct horizontal dependency. Furthermore, s
2.1 depends on k

6

and k
7

, which specifies
direct vertical dependencies. As a result, s

2.2 depends on k
6

and k
7

indirectly through
s
2

.1 (i.e., Transitivity property). In many cases horizontal and vertical dependencies occur
at the same time and both dependencies affect the whole composition hierarchy. We also
consider different level of dependencies importance presented using a three level scale as
shown in Table 2.1 and Figure 2.2.

All the dependencies explained so far are considered unidirectional dependencies. Other
dependencies as bidirectional (interdependent relations between services) may occur as
well. Bidirectional dependency occurs between services s

1

and s
2

if the provisioning of
s
1

is conditional to the provisioning of s
2

and at the same time the provisioning of s
2

is
conditional to the provisioning of s

1

.
We assume that dependencies between services and SLOs in the secSLA are predefined

and described by relevant standards working groups. In these groups, usually industry
and academia, the secSLAs’ contents are defined along with the type of dependencies and
associated dependency importance levels. These sets of dependencies are categorized in
the secSLA template. This template is later used in the creation of the dependency model
and for the SLOs validation (cf., Section 2.3.4).

Numeric scale Meaning

1 Weak dependency
2 Medium dependency
3 Strong dependency

Table 2.1.: Dependency importance level

2.3 quantitative reasoning system architecture

The system involves five progressive stages as depicted in Figure 2.3. In Stage (A), we
express in a common way both the customer’s security requirements and the CSP’s com-
mitted SLOs using a standardised secSLA template (e.g., based on ISO/IEC 19086 [Int14]).
The customer and CSPs’ secSLAs from the preceding stage feeds into (B) to evaluate the
rules and computes quantitative values of the customers’ security requirements and CSPs’
secSLA. A dependency model is created in Stage (C) to capture information about sec-
SLAs’ services and the dependencies that occur between them. This model is specified
using a machine-readable format in order to allow automated validation for checking
service conflicts and different SLOs’ compatibility issues. After that in (D), the validated
secSLAs are structured using the Dependency Structure Matrix (DSM). The structured sec-
SLA shows the level of dependencies between services in a precise order that makes the
secSLA clear. The structured secSLAs are utilized in Stage (E) to assess and rank the CSPs
according to the customer requirements. We propose two assessment techniques which
evaluate different security levels committed by various CSPs and rank them according
to their secSLAs; namely, the Quantitative Hierarchical Process (QHP) [TTLS14] and the
Fuzzy Quantitative Hierarchical Process (fuzzy-QHP) [TTLS17].

14 quantitative framework for assessing cloud security

(C) Dependency management
approach

1

3
2

Ranked CSPs

(A) Security
requirements

definition

Auditor

CSPs
secSLAs

(D) Structuring
secSLA services

using DSM

CSC
secSLA

1. Dependency model creation
2. secSLA validation Validated CSPs

secSLAs

Validated
CSC secSLA

Trusted
repository

(E) CSPs evaluation
(QHP, fuzzy-QHP)

CSPs
Customer

(CSC)

(B) Requirements
Quantification

Figure 2.3.: Proposed system stages

2.3.1 Trust Model

Before detailing the proposed framework stages, we note that customers are only able to
trust the result of the proposed assessment as long as the information taken as input is re-
liable. In order to guarantee the validity of the proposed system, the secSLAs provided by
the participating CSPs are required to come from a trusted source. In a real-world setup,
the trust relationships can be given by an Auditor performing a third-party attestation of
the CSP secSLA (e.g., through a scheme such as the CSA Open Certification Framework
(OCF) [Clo17c]). The audited secSLAs are then stored by the CSPs in a trusted repository
of SLAs (e.g., the CSA STAR repository [Clo17d]), as shown in Figure 2.3. This trust as-
sumption relies on the fact that the certifications and the repository are trusted, and that
the published secSLAs were valid at the time of issuing the corresponding certification or
publishing the information in the repository. Stronger assurance levels can be provided by
mechanisms such as continuous monitoring (e.g., the CSA STAR continuous monitoring
defined at the level 3 of the OCF). The described trust model is able to mitigate the risk
of having malicious CSPs publishing false secSLA information with the goal of achieving
higher scores in the proposed evaluation system. Other minor risks (e.g., tampered evalu-
ation systems’ software) can be mitigated through traditional security controls and secure
software development techniques.

2.3.2 Stage (A): Security Requirements Definition

Customers can assess the CSPs and choose the CSP that best satisfies their security re-
quirements only if the CSPs shared security information are relevant to customers’ con-
cerns (i.e., stemmed from customers’ requirements) and are of an equal value [Mes06]. To
achieve this, customer creates his/her set of security requirements using the same secSLA
hierarchical structure used by the CSP to specify the offered security services (as depicted

2.3 quantitative reasoning system architecture 15

in Figure 2.1)4. Accordingly, the Cloud secSLA hierarchy is used in two different ways.
On the one hand, it is used to represent the CSP’s secSLA by defining SLOs at the lowest
level of the hierarchy. Each CSP’s secSLA define the set of security services and their
corresponding values that each CSP undertakes to fulfill. On the other hand, the sec-
SLA hierarchy can also be used to define the customers’ requirements and specify their
preferences at different levels of granularity (which is at different levels of the hierarchy
structure) according to their expertise.

Three different types of requirements specification, according to the customer expertise,
are specified in this stage:

1. Precise values: Expert customers can specify their requirements at the SLO level by
defining the required value for each SLO. Mainly, CSPs specify their offered levels
at the SLO level.

2. Linguistic terms: Used by novice customers who could not specify precise values
at the SLO level. In order to let these customers adopt Cloud services, it would
be desirable to allow them to express their general requirements in a descriptive
manner. Thus, customers specify qualitative requirements using terms such as (Not-
Required (NR), Less-Required (LR), Required (R), Highly- Required (HR), and Do-
not-know (Dk)) to reflect their requirements.

Highly-Required denotes that all security SLOs are mandatory requirements for the
customers. Not-Required (NR) indicates that the security SLOs are not required by
the customers. Required and Less-Required specify the customers’ different degrees of
requirements importance where the customers can accept varied values specifying
several degrees of importance that depend on the considered scale. Do-not-know
specifies the customers’ unknown requirements.

3. Natural language statements: Since humans are accustomed to using descriptive
phrases to make rough estimations, they can easily submit meaningful requirements
in the form of natural language statements. To achieve this, (i) such a language
must be based upon information that customers find cognitively easy to reflect upon
and express, and (ii) the information communicated in such language should be
reasonably easy to interpret.

Considering this list of requirements, it appears unavoidable that such a language
would be based on linguistic terms or qualitative information. For example “I highly
require a provider encrypting data in transit and at rest".

Blended submissions of different types of requirements for the same secSLA are also
supported in our proposed approaches. Chapter 2.4 illustrates, using a real-world case
study, how different types of requirements help customers to define their requirements.
The output of this stage is a customer secSLA which is then used along with one or more
CSP’s secSLAs, as an input to the next stage.

2.3.3 Stage (B): Requirements Quantification

To assess and compare the security levels provided by different CSPs according to the dif-
ferent customers’ expertise, a measurement model for different security SLOs is defined.

4 Cloud Security Alliance (CSA) has created a consensus assessments initiative questionnaire (CAIQ) [Clo17b],
to define the security controls contained in an secSLA.

16 quantitative framework for assessing cloud security

However, the process of modeling SLO values to a quantitative metric is not straight-
forward, as SLOs can have varied types/ranges of qualitative and quantitative values.
Considering the different nature of SLOs (i.e., qualitative and/or quantitative), two as-
sessment techniques are proposed in this chapter (QHP and fuzzy-QHP). Each assessment
technique introduces a different approach to quantification.

For example, the QHP [TTLS14] defines security levels for each SLO separately, depend-
ing on the type of the SLO. QHP allows customers to specify precise values and/or linguis-
tic terms to detail their requirements. Unlike QHP, fuzzy-QHP aims to solve the problem
of "accurately" evaluating the security level of a CSP when qualitative requirements are
defined by the customers. Fuzzy-QHP allows customers to specify their requirements us-
ing natural language statements as well as precise values and linguistic descriptors. These
statements are defined using if-then rules which are used to capture the imprecision of cus-
tomers’ requirements according to their security expertise by using the triangular fuzzy
numbers (TFNs) [Men95].

We detail the standalone operations of each technique from the secSLA perspective in
Section 2.3.6.

2.3.4 Stage (C): Dependency Management Approach

A dependency model is created in this stage to capture information about secSLAs’ ser-
vices and the dependencies that occur between them. This model is specified using a
machine-readable format to allow automated validation for checking service conflicts and
different SLOs’ compatibility issues. The approach for managing service dependencies
builds on a dependency model, which is used to capture information about security ser-
vices and the dependencies that occur between them. In order to model service dependen-
cies, it is important to first derive the expected requirements that the dependency model
should support.

1. Support of different dependency types. The dependency model should support different
types of dependencies as well as various dependency classifications (e.g., horizontal,
vertical, unidirectional, and bidirectional dependencies).

2. Support of multiple dependencies. One security service can have dependencies with sev-
eral other security services. These dependencies could be of the same or of different
types.

3. Dependency model validation. It should be possible to validate the dependency model
to avoid inconsistencies and conflicts.

This dependency management approach is performed in two steps as shown in Figure
2.3.

Step 1: Dependency Model Creation

Handling all the dependencies in the secSLA is a very time consuming and complex
task. Therefore, a dependency model is created for each secSLA to cover all identified
dependencies within the secSLA. This model is used to capture information about services
(each composed of a set of SLOs) and the dependencies that occur between them. We
model a secSLA by a tuple secSLA = (S, l,�!

S

,K,�!
K

, v) where:

2.3 quantitative reasoning system architecture 17

• S is a set of services s with associated hierarchy levels l(s) 2 {0, 1, . . . ,n- 1}. As
shown in Figure 2.2, a secSLA is composed of four hierarchical levels. A secSLA
contains exactly one service s with l(s) = 0, which is the root service. Level n is the
SLO level.

• �!
S

✓ S ⇥ (S [K) ⇥ {1, 2, 3} models service dependencies where {1, 2, 3} shows the
dependency importance level w (cf., Table 2.1).

• We write s
1

w�!
S

s
2

if s
1

(dependent service) depends on s
2

(antecedent service)
with dependency importance level w, where w 2 {1, 2, 3}. We write s �!

S

o to
express that s w�!

S

o for some w 2 {1, 2, 3} (where o is either a service or an SLO).

• K is a set of SLOs with associated hierarchy level l(k) = n for all k 2 K.

• �!
K

✓ K⇥ K⇥ {1, 2, 3} models SLO dependencies. We have k
1

w�!
K

k
2

if k
1

(depen-
dent SLO) depends on k

2

(antecedent SLO) with importance level w.

• v : K 7! V is an assignment of values in V to SLOs, where V is the set of all metric
values of each SLO in K.

• Constraints on the SLO dependency relation are specified using a constraint set
C�!K

v ✓ K⇥ K⇥ {=, 6=,<,6,>,>}. A constraint (k
1

,k
2

,⌘) 2 C�!K
v is satisfied if the

values of k
1

and k
2

are related by the given comparison, i.e., v(k
1

) ⌘ v(k
2

). A de-
pendency relation k

1

�!
K

k
2

is called valid, written validC�!K
v

(k
1

,k
2

), if the relation
satisfies all its constraints, i.e., 8(k 0

1

,k 0
2

,⌘) 2 C�!K
v .(k

1

= k 0
1

and k
2

= k 0
2

)) v(k
1

) ⌘
v(k

2

)k.

• We write the transitive closure of �!
S

as !+
S

, i.e., s
1

!+
S

s
2

if s
1

�!
S

s
2

or 9s
3

2
S.s

1

�!
S

s
3

and s
3

!+
S

s
2

. A dependency o
1

! o
2

, where !2 {�!
S

,�!
K

}, between
two objects o

1

,o
2

2 S [K is called symmetric if also o
2

! o
1

. Otherwise, o
1

! o
2

is called non-symmetric. In other words, o
1

and o
2

are symmetrically dependent if
o
1

! o
2

and o
2

! o
1

.
Note that it is possible that o

1

! o
2

is symmetric while the relation ! is non-
symmetric. We explain this using an example, let us consider!= {(o

1

,o
2

,w), (o
2

,o
1

,
w), (o

1

,o
3

,w)} which is a non-symmetric relation and where we have that o
1

! o
2

is symmetric.

• A secSLA has to satisfy the following constraints:

1. Services do only depend on services of the same or the next lower hierarchy
level: 8s

1

, s
2

2 S.s
1

�!
S

s
2

) l(s
1

) = l(s
2

) or l(s
1

) + 1 = l(s
2

)

2. Only services of hierarchy level n- 1 depend on SLOs: 8s 2 S8k 2 K.s �!
S

k)
l(s) = n- 1

3. Services do not depend on themselves: 8s 2 S.¬s �!
S

s

4. All services depend directly or indirectly on an SLO: 8s 2 S9k 2 K.s!+
S

k

Step 2: SecSLA Validation

A meta-model is developed based on the dependency definitions. This meta-model allows
the description of SLOs along with information on the secSLA drafted for it. The meta-
model is specified using a machine readable format (allowing an automaated validation)

18 quantitative framework for assessing cloud security

such as an XML data structure using an XML Schema. In this Schema, dependency rela-
tions between services are modeled by including the involved service SLOs and their roles
as dependent or antecedent as well as their values. Moreover, the constraint comparison
is extracted and modeled in the Schema. A brief excerpt from the secSLA dependency
model is shown in Listing 2.1, where an example of two SLOs named "User authentication
and identity assurance level" (kUsauth) and "CSP Authentication" (kCSauth) and the depen-
dent relation between them are shown, so that kUsauth �!K

kCSauth. Their security levels are
modeled as v(kUsauth) and v(kCSauth), respectively.

The requirement is that the security level of Enc is higher than or equal to the security
level of kUsauth, i.e., v(kCSauth) > v(kUsauth). This requirement is modeled as (kUsauth,kCSauth,6
) 2 C�!K

v .
Note that all service levels (e.g., level

2

, level
3

, . . .) are modeled as numerical values. These
numerical values are the security SLOs’ values in the XML schema shown in Listing 2.1.

Listing 2.1: Excerpt of dependency model of a secSLA

<secSLA slaid=" sla1 ">
<dependencyModel Depmodelid="depmod_1">

<sloDependency Depid="dep-1" type=‘‘unidirectional">
<dependent depSLOid="AA1.1_sla1" value ="2"/>
<antecedent antSLOid="AA1.2_sla1" value="3"/>
<constraint> leq </constraint>

</sloDependency>
</dependencyModel>
</secSLA>

Following the development of the dependency model, the secSLA SLOs are validated, as
shown in Figure 2.4. The validation is done by first extracting the secSLA ID, dependency
model ID, and dependency ID of two dependent SLOs (each dependency relation in the
same dependency model has a unique ID) defined in the XML Schema. Furthermore,
for each dependent relation, the antecedent and dependent SLO’s values are extracted.
This entails extracting the constraint comparative (i.e., =, 6=,6,>) and checking if the two
dependent SLO values satisfy the constraint. If the constraint between dependent SLOs
is not satisfied, the validation scheme shows a conflict between these two SLOs. The
dependency ID and dependent SLO ID of the affected SLOs are saved in a list, while
the evaluation is continued to determine further conflicts. At the end of this phase, a
list of all conflicts found in the CSP’s secSLA with the conflicts explanation is sent to the
CSP in order to resolve these conflicts and resubmit his/her secSLA again to be validated.
Similarly, a list of all conflicts found in the customer requirements (specified using the
customer secSLA) are resolved by the customer and validated again. If no problems are
detected, both the validated CSPs’ secSLAs along with the customer’s secSLA are used as
an input to Stage (D).

Algorithm 1 details the necessary steps for extracting the values of validating a depen-
dency relation between SLOs in pseudocode notation.

2.3.5 Stage (D): Structuring SecSLA Services

In a secSLA, as the number of offered services and SLOs along with the dependencies
between them increases, the secSLA hierarchical structure (shown in Figure 2.2) quickly
becomes cluttered and becomes a disorderly network of tangled arcs. This makes it hard

2.3 quantitative reasoning system architecture 19

secSLA Validation

Get antecedent SLO

Get dependent SLO

Get comparator

Validate the data SLOs conflicts List of conflicts

no

More dependenciesyes

yes

no End

Dependency
model

Figure 2.4.: Dependency based secSLA validation stages

for (i) the customers to specify their requirements and resolve the conflicts (which requires
an expert customer and is time consuming) and (ii) the CSPs to check the dependency re-
lations between their offered services to avoid any violation. Consequently, the objective
of this stage is to embody the secSLA hierarchical structure by mapping the dependencies
in a precise order where services and SLOs are ordered according to their level of depen-
dency. This ordering makes the dependency relations explicit and more traceable regard-
less of the size which allows customers to (a) easily define their security requirements and
(b) assess and rank the CSPs according to their security requirements. Furthermore, this
provides CSPs with the guidance on the security improvements that should be performed
in order to achieve the customer requested security level.

A variety of techniques exist for the analysis, management, and ordering of the secSLA
services and SLOs other than the graphs used in building the secSLA hierarchical struc-
ture. One of these techniques is the program evaluation and review technique [WL77].
Although this technique incorporates more information than the directed graphs, it is
still inadequate for representing the vast majority of design procedures where iteration5

task relationships are involved. Another technique which has been widely used in docu-
menting design procedures is the structured analysis and design technique [Ros77]. This
technique attempts to overcome the size limitations by restricting the amount of infor-
mation that can be placed on each document. Unfortunately, loops remain an unsolved
problem [MM87].

A representation which overcomes the size and the iteration tasks limitations of those
discussed above is the Design Structure Matrix (DSM) (also known as "Dependency Struc-
ture Matrix") [Ste81]. There are two main categories of DSMs: static and time-based
[Bro01]. The DSM embodies the structure of the underlying design activity by mapping
the relations between services in a precise order which makes the secSLA clear and easy
to read, regardless of the size. To clarify, a secSLA of n services is represented as an n⇥n

matrix with identical row and column labels. The matrix element a
ij

is empty if the ith

column is independent on the jth row, and not empty if they are dependent. This means,
services and SLOs with empty rows have all required information and do not depend

5 A loop of information which occurs if there are bidirectional relations between services, which means each
service is waiting for information from the other one.

20 quantitative framework for assessing cloud security

Algorithm 1 : Validation
Input: String slaID, String depmodelID, String depID
Output: List affectedSLOs= NIL
List dependencyList = NIL
Value dependentValue = NIL
Value antecedentValue = NIL
List dependencyModels = getModels(depmodelID, slaID)
for model 2 dependencyModels do

dependencyList = getDependencies(depID, model)
for depend 2 dependencyList do

dependentValue=getValue(depend.depSLOvalue, depID)
antecedentValue=getValue(depend.antSLOvalue, depID)
dependentConst=getConst(depend.constraint, depID)
if validate(dependentValue, antecedentValue, dependentConst) 6= true then

affectedSLOs.add(depend.depSLO)
end if

end for
end for

on others. Furthermore, the empty columns provide no information required by other
services and SLOs.

To demonstrate the idea of DSM, the mapping of the secSLA shown in Figure 2.2 into a
DSM is presented in this section and is depicted in Table 2.2. As the dependencies of ser-
vices on themselves are not considered (as specified in the dependency model constraints
in Section 2.3.4), there are no marks along the diagonal. The strength of the dependencies
is given using numerical values; these values provide more detailed information on the
relationships between the different system services [Ste81]. We utilize the three level scale
dependency importance rating defined in Table 2.1. Examining row 2, we note that s

1

strongly depends on s
2

and s
1.1, and weakly depends on s

1.2 and s
1.3. Examining row 10,

we note that SLO k
2

weakly depends on k
3

.
After mapping the secSLA into a DSM, we can start reordering the DSM rows and

columns in order to transform the DSM into a lower triangular form (that is, the matrix
has no entries above the diagonal), this is called DSM partitioning [GE91] and is done in
two steps:

Step (1) Services which have a minimum number of dependencies (initially there will be
none) are placed at the top of the DSM. These services are identified as services
with minimum number of row values. If there is more than one such service, the
one with maximum number of column values is selected.

Step (2) Services that deliver no information to others in the matrix are placed at the bottom
of the DSM. This is easily identified by observing an empty column in the DSM.
Once a service is rearranged, it is removed from the DSM and step 2 is repeated on
the remaining elements.

Table 2.3 shows the result of partitioning the DSM depicted in Table 2.2. Bidirectional
dependencies occur when the matrix cannot be reordered to have all matrix elements sub-
diagonal. As shown in Table 2.3, k

2

and k
3

are bidirectionally dependent (indicated by

2.3 quantitative reasoning system architecture 21

Root s1 s2 s1.1 s1.2 s1.3 s2.1 s2.2 k1 k2 k3 k4 k5 k6 k7 k8 k9
1 Root . 3 3

2 s1 . 3 3 1 1

3 s2 . 2 2 2

4 s1.1 . 3 3

5 s1.2 . 2 2

6 s1.3 3 . 2 2 2 1

7 s2.1 . 2 3 3

8 s2.2 2 2 . 2 2

9 k1 .
10 k2 . 1

11 k3 1 .
12 k4 .
13 k5 2 .
14 k6 . 1

15 k7 .
16 k8 2 .
17 k9 .

Table 2.2.: DSM mapping of the secSLA shown in Figure 2.2

shading); k
2

needs the information of k
3

and k
3

needs the information of k
2

. If k
2

and k
3

are regarded as a single composite service, the cycle can be eliminated [SJSJ05].
Quantified and validated CSPs and customers secSLAs serve as an input for the next

stage of the process (Stage (E)), where each CSP’s secSLA is evaluated with respect to
customer’s secSLA.

2.3.6 Stage (E): CSPs Evaluation

The quantitative security level assessment of CSPs (for their match to the customer re-
quirements) is the primary objective of the proposed framework developed in this stage.
The challenge is not only how to quantify different SLOs in the secSLAs, but also how
to aggregate them with a meaningful metric. Contemporary Cloud security assessment
techniques mostly focus on their use in an environment where performance is not impor-
tant (e.g., in decision-making dashboards where the customer requirements are elicited
for the entire secSLA and only subsequently evaluated). Nevertheless, it is important to
develop high efficiency assessment algorithms which, by decreasing the time complexity
of each assessment cycle, (i) enable processing of many requests in parallel, and (ii) facil-
itate customer decisions by allowing them to select and adjust their requirements on the
fly according to the current results based on what has already been chosen.

To this end, we have developed two assessment techniques to evaluate security levels
guaranteed by CSPs and rank them by quantifying and comparing their secSLAs. In
this section, we detail each of the proposed assessment techniques. We first detail the

22 quantitative framework for assessing cloud security

k1 k4 k7 k9 k3 k2 k8 k6 k5 s1.2 s1.1 s2.1 s2.2 s1.3 s2 s1 Root
1 k1 .
2 k4 .
3 k7 .
4 k9 .
5 k3 . 1

6 k2 1 .
7 k8 2 .
8 k6 1 .
9 k5 2 .
10 s1.2 2 2 .
11 s1.1 3 3 .
12 s2.1 3 3 2 .
13 s2.2 2 2 2 2 .
14 s1.3 2 1 2 3 2 .
15 s2 2 2 2 .
16 s1 1 3 1 3 .
17 Root 3 3 .

Table 2.3.: Final DSM mapping of the secSLA shown in Figure 2.2 after partitioning and scheduling

standalone operations of each technique from the secSLA perspective, and subsequently
discuss guidance for their usage discretely and collectively. Also the empirical validation
of these techniques will be presented through four use cases (using real-world data) in
Section 2.4. As an overview of the two techniques, the secSLA assessment and the ranking
of CSPs is performed in four progressive phases as depicted in Figure 2.5.

Figure 2.5.: CSPs evaluation process

2.3.6.1 Quantitative Hierarchy Process (QHP)

Given the fact that a secSLA might have a high number of individual security SLOs and
that customers might specify their requirements with different levels of granularity, QHP
is based on Analytic Hierarchy Process (AHP) [Saa90] for solving Multiple Criteria De-
cision Making (MCDM) [Zel82] problems. The advantages of AHP over contemporary

2.3 quantitative reasoning system architecture 23

methods are its ability to handle composite qualitative and quantitative attributes, along
with its flexibility and ability to identify inconsistencies across requirements [Saa90].

QHP is developed in the following progressive phases as depicted in Figure 2.5.

k5

k3

k4

k6
k7

k8

k9

 k2

k1

W
ei

gh
ts

W
ei

gh
ts

W
ei

gh
ts

W
ei

gh
ts

W
ei

gh
ts

Bottom-up aggregation approach

level0

s2

s1

W
ei

gh
ts

Ro
ot

1
1

2

2
1 s2.1

s1.2

s1.1

s1.3

W
ei

gh
ts

W
ei

gh
ts

s2.2

Figure 2.6.: Dependent secSLA Hierarchy

Phase 1. Hierarchical Structure

The DSM mapping of each secSLA (either the customer’s secSLA or the CSPs’ secSLAs)
is modeled as a hierarchical structure in this phase. In this structure, the top level of
the hierarchical structure defines the main goal and aims to find the overall rank (i.e.,
the root level). The lowest level is represented by the least dependent SLOs. Figure 2.6
outlines the hierarchical representation of the DSM shown in Table 2.3, where lowest level
is represented by the least dependent SLOs which are the SLOs with empty rows in Table
2.3 . Using hierarchical structure, basic customers can simply specify their requirements
at the lowest level only (i.e., level

0

in Figure 2.6).

Phase 2. Weights Assignment

The dependency importance level of each dependency relation (strong, medium or weak
dependency with numerical scaling 3, 2 and 1, respectively; cf., Table 2.1) is specified as
a weight (w) during the assessment process. The weight of each relation is used to show
how different dependency levels affect the overall security level.

Phase 3. Service Quantification

In order to evaluate the Customer requirements with respect to a CSP’s secSLA, the so-
called measurement model for different security SLO metrics needs to be defined. Over
this phase, different comparison metrics for different types of requirements are defined,
so they can be applied for the quantitative security assessment.

24 quantitative framework for assessing cloud security

Denoting CSP
i

as the i-th CSP, i = 1, 2, . . . ,m, and k as the k-th SLO, k = 1, 2, . . . ,n.
Notations presented in Table 2.4 are used in this section.

Term Definition
V The set of all values of each SLO (k) in the set of

SLOs (K)

vCSP,k CSP provided value for SLO k.

vCSC,k Customer CSC required value for SLO k.

W
i,j,k Relative rank of CSP

i

over CSP
j

with respect to SLO
k.

W
i,CSC,k Relative rank of CSP

i

over customer CSC with re-
spect to SLO k.

Table 2.4.: QHP terms

Security SLOs considered in the secSLA can be either boolean (expressing whether a CSP
offers a security feature or not, e.g., encryption of data at rest) or numerical (expressing
different possible values for a security property, e.g., cryptographic key length). The QHP
method handles both cases by modeling them with security levels. Assuming a numerical
SLO k can have n different values v

1

, v
2

, . . . , v
n

, where value v
n

assures the highest level
of security with respect to the SLO k, the values are modeled as v

i

! i, i = 1, 2, . . . ,n. Let
us assume that the highest security level assigned to all numerical SLOs considered in the
assessment process equals N. In this case, boolean metrics are modeled as yes ! N and
no! 0 assuming yes provides higher security assurance and no! N and yes! 0 if no
assures better security service.

Note that QHP assumes that if a CSP offers a specific value for an SLO, it is also able to
provide all SLO values with lower level of granted security. The QHP does not differenti-
ate between a CSP that is able to grant the exact provision required by the customer (CSC)
and a CSP that is able to offer even higher security levels. Thus, before any calculations
are done, all SLO values for all CSPs are normalized to the customer requirements (i.e.,
each v

i,j is updated to min
�
v
i,k, vCSC,k

�
). This setting eliminates the so-called masquerad-

ing effect which occurs when the overall aggregated security level value mostly depend
on those security controls with a high-number of SLOs, thus affecting negatively groups
with fewer although possibly more critical provisions.

The QHP ranks CSPs by performing pairwise comparisons among all of them. The
relative rank of CSP

i

over CSP
j

with respect to the SLO k is defined as

W
i,j,k =

8
<

:
1, if v

i,k = 1,

0, if v
i,k = 0,

(2.1)

in boolean case, and as

W
i,j,k =

8
<

:
1, if v

i,k ⌘ v
j,k,

v
i,k/vj,k, if v

i,k 6= v
j,k,

(2.2)

2.3 quantitative reasoning system architecture 25

in numerical case. The same formulas hold when evaluating a CSP with respect to the
CSC desired value for an SLO. In the boolean case, we take

W
i,CSC,k =

8
<

:
1, if v

i,k = 1,

0, if v
i,k = 0.

(2.3)

In the numerical case, the expression becomes

W
i,CSC,k =

8
<

:
1, if v

i,k ⌘ vCSC,k,

v
i,k/vCSC,k, if v

i,k 6= vCSC,k.
(2.4)

In order to rank CSPs for a specific SLO k with respect to CSC desired value for the
SLO, the QHP methodology defines the Comparison Matrix (CM) as

CM
k

=

0

BBBBBBBB@

CSP
1

CSP
2

. . . CSP
n

CSC

CSP
1

W
1,1,k W

1,2,k . . . W
1,nCSP,k W

1,CSC,k

CSP
2

W
2,1,k W

2,2,k . . . W
2,nCSP,k W

2,CSC,k
...

...
...

...
CSP

n

W
nCSP,1,k W

nCSP,2,k . . . W
n,nCSP,k W

nCSP,CSC,k

CSC WCSC,1,k WCSC,2,k . . . WCSC,nCSP,k WCSC,CSC,k

1

CCCCCCCCA

(2.5)

The relative ranking of all CSPs for the SLO k is defined as the normalized eigenvector
(called a Priority Vector (PV)) of the corresponding comparison matrix CM

k

. The PV
indicates the numerical ranking of all the CSPs by specifying an order of preference among
them, as indicated by the ratios of the numerical values.

Phase 4. Services Aggregation

In the final phase, we follow up with a bottom-up aggregation to give an overall assess-
ment of the security levels and a final ranking of the CSPs (cf., Figure 2.6). To achieve that,
the priority vector of each SLO (Phase 3) is aggregated with their relative normalized
weights (dependency importance level) specified in Phase 2. This aggregation process is
repeated for all the SLOs in the hierarchy with their relative weights.

PV
aggregated

=
h
PV

k

1

. . . PV
k

n

i
.
h
NW

i
T

(2.6)

Where NW is the set of normalized weights of different SLOs such that NW = nw
k

1

,nw
k

2

,
. . . ,nw

k

n

. Note that the weights are normalized to satisfy the AHP requirements. PV
k

1

is the PV calculated for SLO k
1

. PV
aggregated

is the aggregated PV which shows the
ranking of all the CSPs based on the customer-defined requirements and weights. We
demonstrate and validate the framework presented in this section using a real-world case
study in Section 2.4.

2.3.6.2 Fuzzy Quantitative Hierarchical Process (Fuzzy-QHP)

The assessment approach is utilized so that, the CSPs are ranked (as per their secSLA’s)
for the best match to the customer requirements. As specified earlier, the challenge is
not only how to quantify different secSLA services, but also how to aggregate them in a

26 quantitative framework for assessing cloud security

meaningful metric. Multiple Criteria Decision Making (MCDM) [ZC73] methods such as
the Analytic Hierarchy Process (AHP) [Saa90] are used to solve these issues, as specified
in QHP. However, according to [KH11], the AHP method is: (1) mainly used in nearly
fixed decision applications and (2) it is not able to reflect the decision makers’ uncertain
preferences through fixed values.

Fuzzy-AHP is used to relieve the uncertainty and inability of the AHP in handling un-
certain preferences. It allows a more accurate description of the decision-making process,
where fuzzy set theories are used to express the uncertain requirements and preferences
as fuzzy numbers. Basically, a fuzzy number defines a fuzzy interval in the real number,
in the sense that it does not refer to one single value but rather to a connected set of possi-
ble values, where each possible value has its own membership function between 0 and 1.
Hence, fuzzy numbers are used to translate the vagueness and imprecision of customers’
requirements according to their security expertise. The most commonly used shapes for
fuzzy numbers are triangular, trapezoidal, piecewise linear and Gaussian. The triangular
fuzzy numbers (TFNs) [Men95] (depicted in Figure 2.7) are used in our study to capture
the vagueness of the parameters by representing the fuzzy interval by two end points and
a peak point (l,m,u), where the parameters l and u represents the two end points and
denote the lowest possible value, and the upper possible value respectively. While m de-
notes the most promising value that describes the fuzzy event (i.e., when l = m = u, the
fuzzy number becomes a real number). We refer the reader to Appendix A.1 for further
details of TFN M̃.

1

0 xl m u

M
µM(x)

M
em

be
rs

hi
p

fn

Figure 2.7.: Triangular fuzzy number.

As an overview of our evaluation framework, the secSLA assessment and the ranking
of CSPs are performed in the following progressive phases:

Phase 1. Hierarchical Structure

Similarly, as in QHP, the DSM mapping of each secSLA is modeled as a hierarchical
structure from the least to the most dependent services.

Phase 2. Weights Assignment

Similarly, as in QHP, the dependency importance level of each dependency relation (i.e.,
strong, medium or weak dependency with numerical scaling 3, 2 and 1, respectively).

2.3 quantitative reasoning system architecture 27

Phase 3. Services Quantification

In this phase, three cases for the TFN representation of the SLO values are considered.
These cases are considered according to the type of customer requirements as specified
Section 2.3.2.

1. Linguistic terms: are represented as TFNs and specified using their membership
functions as depicted in Figure 2.8.

1

0

Required
Highly-

Required

Less-
Required

1 2 3 4

De
gr

ee
 o

f M
em

be
rs

hi
p

x

µM(x) Do-not-
know

Figure 2.8.: Linguistic terms for criterion importance.

The proposed methodology allows the customers to: i) assign linguistic terms at
varied levels of the hierarchical specification, and ii) individually adjust the linguis-
tic terms according to their requirements. To further ease the task, especially for
novice customers, the system can set default values for each linguistic requirement
as shown in Figure 2.8 and Table 2.5. In our model, we set the range of member-
ship functions between 0 and 4, but as specified earlier, this range is up to the user
definition.

We represent Not-Required (NR) as (0, 0, 0) as it is not required by the customer and
Do-not-know which specifies customer uncertain requirements as a TFN that can
have all possible ranges from 1 to 4, we define it as (1, 2.5, 4), which means the most
promising value is 2.5.

Linguistic scale for importance TFN (l,m,u)

Less-Required (LR) (1, 1, 2)

Required (R) (1, 2, 3)

Highly-Required (HR) (2, 3, 4)

Not-Required (NR) (0, 0, 0)

Do-not-know (Dk) (1, 2.5, 4)

Table 2.5.: Linguistic terms and values of ratings.

2. Natural language statements: are mapped into values representing the customer
requirements. This can be done only if we have a consistent set of statements for a

28 quantitative framework for assessing cloud security

given language. In that case, every statement is mapped to the appropriate param-
eter that yields to a value function that represents the customer requirement. We
define this set of statements using if-then rules, where the customer should specify
the required service name and his/her preferences in his/her statement. Using a fuzzy
search algorithm6 based on Levenshtein distance, we get the required service from
the list of secSLA services and the needed preference. For example, “I highly re-
quire a provider encrypting data in transit and at rest" statement is converted to an
if-then rule at the end of this stage, such that: If data encryption in transit (s

1

) is highly
required AND data encryption at rest (s

2

) is highly required then ṽ
s

1

is HR AND ṽ
s

2

is
HR. Thus, at the end of this stage the customer requirements are assigned as linguis-
tic terms and represented using TFNs. Multiple rules specifying different security
controls can be combined using AND or OR operators. In addition, if a customer
does not specify or does not care about other services, by default these services are
set to Less-Required.

3. Precise values assigned as fixed values to each SLO k
i

.

We demonstrate that using a real-world case study in Section 2.4.

To formalize the usage of TFNs in order to model the customers vague requirements,
we extend Definition 1 by the following definition:

Definition 2 Each SLO k
i

in a secSLA consists of m different values ṽ
i

. Each value implies a
different security level offered by the CSP and required by the customer. Each value ṽ

i

is specified
using TFN (l

i

,m
i

,u
i

); such that k
i

= {ṽ
i,1, ṽ

i,2, . . . , ṽ
i,j}. The total order of security levels is

defined using an order relation “�
i

"; such that k
i

= ṽ
i,1 � ṽ

i,2 � . . . � ṽ
i,j.

In order to assess each CSP’s secSLA, a quantification model for different SLOs should
be defined. We use the fuzzy-AHP relative ranking model based on a pairwise relation of
the services (a) provided by different CSPs, and (b) required by customers’ such that:

CSP
1,k

i

/CSP
2,k

i

=
ṽ
1,k

i

ṽ
2,k

i

(2.7)

where CSP
1,k

i

/CSP
2,k

i

indicates the relative rank of CSP
1

over CSP
2

, regarding k
i

. such
that:

CSP
1,k

i

/CSP
2,k

i

= (1, 1, 1), if ṽ
1,k

i

⌘ ṽ
2,k

i

=
(l

1

,m
1

,u
1

)

(l
2

,m
2

,u
2

)
, if ṽ

1,k
i

6⌘ ṽ
2,k

i

The TFN division is defined as [PSK08]:

(l
1

,m
1

,u
1

)

(l
2

,m
2

,u
2

)
= (l

12

,m
12

,u
12

) = (
l
1

u
2

,
m

1

m
2

,
u
1

l
2

) (2.8)

Similarly, CSP
i,k/CSCk

indicates the relative rank of CSP
i

over Cloud Service Customer
CSC, which specifies whether or not CSP

i

satisfies the customer requirements, with re-
spect to k. This pairwise comparison results in a one-to-one comparison matrix Ã for each

6 Fuzzy search algorithm as well as basic notations used covering fuzzy and crisp sets, membership functions,
operations of TFN are specified in Appendix A.1

2.3 quantitative reasoning system architecture 29

SLO. The comparison matrix is of size (n+ 1)⇥ (n+ 1), considering n CSPs and one CSC
for each SLO, such that:

Ã
k

i

=

0

BBBBBBB@

1 2 . . . n n+ 1

1 ã
11

ã
12

. . . ã
1n

ã
1u

2 ã
21

ã
22

. . . ã
2n

ã
2u

...
...

...
...

n ã
n1

ã
n2

. . . ã
nn

ã
nu

n+ 1 ã
u1

ã
u2

. . . ã
un

ã
uu

1

CCCCCCCA

(2.9)

where ã
ij

= CSP
i

/CSP
j

, ã
iu

= CSP
i

/CSC. For example, ã
12

= CSP
1

/CSP
2

regarding

SLO k
i

, which indicates the relative rank of CSP
1

over CSP
2

. Note that, ã
ij

=
1

ã
ji

=

(
1

u
ji

,
1

m
ji

,
1

l
ji

) (cf., Equation 2.8).

Next, the respective scores for all the CSPs and the customer, for each SLO, are obtained
by calculating the priority vector (PV) of the corresponding fuzzy comparison matrix Ã

k

i

.
There are several procedures to attain PV in fuzzy-AHP. The widely used Chang’s extent
analysis method [Cha96] is the one utilized in our technique (fuzzy-QHP).

Chang’s extent analysis method on fuzzy-AHP overview

We explain Chang’s method using an example of two TFNs (l
1

,m
1

,u
1

) and (l
2

,m
2

,u
2

)
which represent a provider security-level and a user requirement for a particular SLO. By
calculating the comparison matrix using Equation 2.9, the comparison matrix is equal to:

Ã =

j = 1 j = 2

i = 1 (1, 1, 1) (l
12

,m
12

,u
12

)

i = 2 (l
21

,m
21

,u
21

) (1, 1, 1)

!

After Ã calculation, the steps of Chang’s extent analysis to obtain the PV are detailed as
follows:

- Step 1. The value of the fuzzy synthetic extent with respect to ith object is calculated
such that:

E
i

= (
mX

j=1

l
j

,
mX

j=1

m
j

,
mX

j=1

u
j

)⌦ (
1P

n

i=1

u
j

,
1P

n

i=1

m
j

,
1P

n

i=1

l
j

) (2.10)

Whereas ⌦ denotes fuzzy multiplication, i = 1 . . . n, and j = 1 . . .m so that:

E
i

= (

P
m

j=1

l
jP

n

i=1

u
j

,
P

m

j=1

m
jP

n

i=1

m
j

,
P

m

j=1

u
jP

n

i=1

l
j

)

We explain this step using the two considered TFNs’ comparison matrix Ã (m = n =
2) so that:

E
1

= (1+ l
12

, 1+m
12

, 1+ u
12

)⌦

(
1

1+ u
12

+ 1+ u
21

,
1

1+m
12

+ 1+m
21

,
1

1+ l
12

+ 1+ l
21

)

30 quantitative framework for assessing cloud security

E
2

= (l
21

+ 1,m
21

+ 1,u
21

+ 1)⌦

(
1

1+ u
12

+ 1+ u
21

,
1

1+m
12

+ 1+m
21

,
1

1+ l
12

+ 1+ l
21

)

By the end of this step, E
1

and E
2

will be represented as TFN with values (l
1

,m
1

,u
1

)
and (l

2

,m
2

,u
2

).

- Step 2. The degree of possibility of E
2

= (l
2

,m
2

,u
2

) > E
1

= (l
1

,m
1

,u
1

) is defined
as D(E

2

> E
1

) = sup[min(µ
E

1

(x),µ
E

2

(x))] and is represented as follows:

D(E
2

> E
1

) =

8
>>>><

>>>>:

1, if m
2

> m
1

0, if l
1

> u
2

l
1

- u
2

(m
2

- u
2

)(m
1

- l
1

)
, otherwise

(2.11)

For the comparison we need the values of both of D(E
1

> E
2

) and D(E
2

> E
1

).

- Step 3. The degree possibility for a fuzzy number to be greater than o fuzzy numbers
E
i

where i = 1, 2, . . . ,o can be defined by
D(E > E

1

,E
2

, . . . ,E
o

) = D[(E > E
1

), (E > E
2

), . . . , (E > E
o

)]

D(E > E
1

,E
2

, . . . ,E
o

) = min(D(E > E
i

)), i = 1, 2, . . . ,o (2.12)

Assuming that d 0
(A

i

) = min(D(E
i

> E
o

)), for o = 1, 2, . . ., n; o 6= i. Then the prior-
ity vector is given by PV

0

= (d
0
(A

1

),d 0
(A

2

), . . . ,d 0
(A

n

))T where A
i

(i = 1, 2, . . . ,n)
are n elements.

- Step 4. Via normalization, the normalized priority vectors are PV = (d(A
1

),d(A
2

), . . . ,
d(A

n

))T where PV is a non-fuzzy number that gives priority weights of an attribute
with respect to other attributes.

At the end of Step 4, we attain the priority vector of the fuzzy comparison matrix for a
particular SLO. This method is done for all the SLOs’ matrices.

PV
k

i

=
⇣CSP1,k

i

CSP
2,k

i

. . . CSP
n,k

i

CSC
k

i

N
1,k

i

N
2,k

i

. . . N
n,k

i

NCSC,k
i

⌘
(2.13)

Such that N
1,k

i

is a numerical value representing the relative rank of CSP
1

to other
CSPs and the CSC regarding SLO k

i

. Similarly, NCSC,k
i

is the relative rank of the CSC
required security level with respect to the security levels offered by the CSPs.

Phase 4. Services Aggregation

In the final step of the QHP process, the evaluation of the overall security level offered
by each CSP (and thus the final ranking of CSPs with respect to customer requirements)
is obtained by the bottom-up aggregation. This means that a PV is calculated for each
element in the secSLA considering the importance weight assigned to the element by the
customer. For n elements with importance weights nw

i

, i = 1, 2, . . . ,n, to be aggregated
at some hierarchy level (either at SLO, control group or control category level) we have

PV
aggregated

=
h
PV

k

1

. . . PV
k

n

i
·
h
nw

k

1

,nw
k

2

, . . . ,nw
k

n

i
T

(2.14)

2.4 case study : security evaluation of csp’s secslas 31

PV
aggregated

represent the scores for the entire secSLAs. The last element of the
PV

aggregated

is the score for the customer secSLA and serves as the benchmark. Note
that the weights are normalized to satisfy the fuzzy-AHP requirements.

2.4 case study : security evaluation of csp’s secslas

This section shows an empirical validation of the proposed framework through four sce-
narios that use real-world secSLA information derived from the CSA-STAR repository
[Clo17d].

3
2

q
u

a
n

t
i
t

a
t

i
v

e
f

r
a

m
e

w
o

r
k

f
o

r
a

s
s

e
s

s
i
n

g
c

l
o

u
d

s
e

c
u

r
i
t

y

Cloud secSLA based on CSA STAR [Clo17d] CSPs Customer (CSC)

Services SLO
CSP

1

CSP
2

CSP
3

Case I Case
II

Case
III

Case
IVcategory lvl category lvl category lvl name dep. lvl req rev

Root

3

Audit &
Compli-

ance
AC

3

Planning
AC1

2 AC1.1 Dep
1

yes yes yes yes yes
HR

HR

3 AC1.2 Dep
2

2 level
2

level
2

level
3

level
3

3

Independent
Audits
AC2

3 AC2.1 Dep
1

2

yes yes yes yes

HR

Dep
3

3

3 AC2.2 Dep
4

3 no yes yes no yes

2 AC2.3 Dep
4 no yes yes yes

Dep
5

2

1 AC2.4 Dep
6

1 yes no yes yes

1 AC3.1 yes yes yes yes

1 AC3.2 no yes yes yes

3

Regulatory
Mapping

AC3

2 AC3.1 Dep
3

yes yes yes yes yes

NR
2 AC3.2 Dep

5

no yes yes yes yes

3 AC3.3 level
2

level
1

level
3

level
3

level
3

3

Business
Continu-

ity
BC

2

Testing
1 BC2.1 Dep

7

1 yes yes yes no yes

Dk

NR

BC2
1 BC2.2 Dep

6

no yes no no no

2

Policy
BC11

3 BC11.1 Dep
7

yes yes yes yes yes

3 BC11.2 level
3

level
2

level
3

level
3

level
3

2

Regulatory
2 AC3.1 yes yes yes yes

Mapping
2 AC3.2 no yes yes yes

AC3
3 AC3.3 level

2

level
1

level
3

level
3

3

Interface
Security

IS

3

Application
Security

IS1

2 IS1.1 Dep
8

1 weekly weekly daily weekly daily daily daily

1 IS1.2 Dep
8

1

level
2

level
2

level
3

level
3

level
3

level
3

Dep
2

1 AC3.1 yes yes yes yes

Table 2.6.: Case Study: Excerpt of secSLA from CSPs and customer requirements.

2.4 case study : security evaluation of csp’s secslas 33

2.4.1 The Customer Perspective: Security Comparison of CSPs

This initial validation scenario, demonstrates how a Cloud customer can apply the pre-
sented framework to compare side-by-side three different CSPs based on their advertised
secSLAs (compliant with the hierarchy of Figure 2.2) and with respect to a particular
set of security requirements (also expressed as a secSLA). Table 2.6 presents a sample
dataset used for this scenario which is based on the information available in the CSA
STAR repository, where the values associated to 15 SLOs for the three selected CSPs are
presented. In order to perform a comprehensive validation, the selected SLOs comprised
both qualitative and quantitative metrics. The qualitative metrics are specified as security
levels (cf., Definition 1) such as monthly,weekly, and daily, denoted as security levels
level

1

, level
2

, level
3

, and then modeled as TFN values 1̃, 2̃, 3̃ (cf., Definition 2). Further-
more, no and yes are denoted as 0̃ and 3̃, respectively.

All CSPs’ security SLOs are normalized to the customer requirements to eliminate mas-
querading. Furthermore, Table 2.6 shows four sets of Cloud customer requirements used
as a baseline for comparing the selected CSPs. The first two cases specify a customer spec-
ifying precise SLO values, thus QHP and fuzzy-QHP are used to rank CSPs. The other
two cases model novice customer with uncertain requirements, hence only fuzzy-QHP is
used to rank the CSPs according to the customer requirements.

1. In Table 2.6 column marked as "Case I", the customer requirements are expressed
at a per-SLO granular level. This represents a security-expert customer where the
customer specifies his/her requirements at Case I "req” column. After that the cus-
tomer secSLA is validated to check if each constraint between two dependent SLOs
is satisfied and at the end of the validation showing the conflicts found. The cus-
tomer then resolves the SLO conflicts by specifying new values to the SLOs causing
conflicts. These new values are shown at Case I "rev” column in Table 2.6.

2. The column marked as "Case II" shows a set of requirements on SLOs that do not
depend on any other SLO (identified using the DSM). This set of SLOs is used to
model the customer requirements for the remaining SLOs. This might be the case of
a non-expert customer who cannot specify all the secSLA SLOs and resolve the SLO
conflicts, if any are found.

3. Column "Case III" shows a customer specifying (i) linguistic terms at different levels
of the hierarchical structure according to his/her expertise with each service and (ii)
detailed specification for other SLOs at the lowest level. Linguistic terms are speci-
fied as TFN as depicted in Figure 2.8. This case represents a semi-expert customer.

4. The column marked as "Case IV", customer requirements are specified using natural
language statements. This might be the case of a customer that is not a security
expert (i.e., novice customer).

Finally, we consider dependencies between services and SLOs which are going to be
validated using the validation model presented in Section 2.3.4 such that:

SLO dependencies:

• AC2.1 is medium dependent on AC1.1 (this dependency relation is named as Dep
1

in Table 2.6 and the level of dependency is shown in the SLO "lvl” column). This is
modeled as AC2.1 2�!

K

AC1.1 with constraint (AC2.1,AC1.1,=) 2 C�!K
v .

34 quantitative framework for assessing cloud security

• AC1.2 is medium dependent on IS1.2 (i.e., named as Dep
2

) so that AC1.2 2�!
K

IS1.2
with constraint (AC1.2, IS1.2,=) 2 C�!K

v .

• In the same way, Dep
3

, Dep
4

and Dep
5

are specified as AC2.1 3�!
K

AC3.1 with
(AC2.1,AC3.1,=) 2 C�!K

v , AC2.2 3�!
K

AC2.3 with (AC2.2,AC2.3,=) 2 C�!K
v and

AC2.3 2�!
K

AC3.2 with (AC2.3,AC3.2,=) 2 C�!K
v respectively.

• Dep
6

is modeled as AC2.4 2�!
K

BC2.2 with constraint (AC2.4,BC2.2, 6=) 2 C�!K
v .

• Finally, IS1.1 and IS1.2 are symmetrically dependent (i.e., Dep
8

) so that IS1.1 1�!
K

IS1.2 ^ IS1.2 1�!
K

IS1.1 with constraint (IS1.1, IS1.2,=) 2 C�!K
v .

Service dependencies:

• AC equally depends on AC1, AC2 and AC3 (i.e., equally depends refers to the
level of dependency shown in the second column named "lvl” in Table 2.6). So that
AC

3�!
S

AC1 ^ AC
3�!

S

AC2 ^ AC
3�!

S

AC3.

• BC equally depends on BC2, BC11 and AC3. Furthermore, IS strongly depends on
IS1. Each is further depending on the SLOs with different dependency importance
levels as shown in Table 2.6.

• AC2 depends on two of AC3 SLOs which are AC3.1 and AC3.2 (shaded in Table
2.6).

• Since BC depends on AC3, and AC3 depends on SLOs AC3.1, AC3.2 and AC3.3.
Then using transitive closure BC !+

S

AC3.1 ^ BC !+
S

AC3.2 ^ BC !+
S

AC3.3
(shaded in Table 2.6).

2.4.1.1 Cloud customer Case I requirements: Expert customer

In this case, both the customer requirements and the CSPs secSLAs are validated to check
conflicts between SLOs based on the defined dependencies as specified in Section 2.3.4.
Errors in the customer requirements are automatically detected based on the modeled
dependencies, such that:

• Dep
1

Validation: AC2.1 security level (level
1

) is equal to the AC1.1 security level
(level

1

), v(AC2.1) = v(AC1.1). Result: Valid.
Dep

2

Validation: AC1.2 security level (level
3

) is equal to IS1.2 security level. Result:
Valid. Similarly, Dep

3

and Dep
5

are valid.

• Dep
4

Validation: AC2.2 security level (level
0

) is not-equal to the AC2.3 security
level (level

1

). Result: An SLO conflict occurs, thus the customer modifies AC2.2
(dependent SLO) to yes (level

1

) to satisfy the dependency constraint (as shown in
Case I "rev” column in Table 2.6). In the same way, Dep

7

is validated.

• Dep
6

Validation: Since the (AC2.4,BC2.2, 6=) 2 C�!K
v and AC2.4 security level

(level
1

) is not-equal to the BC2.2 security level (level
0

), v(AC2.4) 6= v(BC2.2) the
constraint is satisfied. Result: Valid.

• Dep
8

Validation: IS1.1 security level (weekly which is level
2

) is not-equal to the
IS1.2 security level (level

3

). Result: SLO conflict occurs. The customer changes
IS1.1 to daily (level

3

).

2.4 case study : security evaluation of csp’s secslas 35

After the customer has resolved all the SLO conflicts and the CSPs secSLAs are validated,
each secSLA is mapped to a DSM (cf., Section 2.3.5) to embody the secSLA hierarchical
structure. This structure is used in the ranking of CSPs according to the customer re-
quirements (cf., Section 2.3.6). The ranking computation process for Cloud security SLOs
defined in Table 2.6 is explained step-by-step using QHP and fuzzy-QHP.

2.4.1.2 QHP

For the Audit & Compliance control of Cloud secSLA, there are three security controls
(AC1,AC2 and AC3) which are further divided to SLOs (AC1.1, AC1.2, AC2.1, . . .). For
AC1.2 the providers and the customer can specify their SLOs values from level

1

to level
3

.
Using the data shown in Table 2.6, Equations 2.2 is used to define the AC1.2 pairwise
relation such that:

CSP
1,AC1.2/CSP3,AC1.2 =

2

3
/
3

3
, CSC

AC1.2/CSP2,AC1.2 =
3

3
/
2

3

Thus, the CM of AC1.2 is calculated using Equation 2.5 as:

CM
AC1.2 =

0

BBBB@

CSP
1

CSP
2

CSP
3

CSC

CSP
1

1 1 2/3 2/3

CSP
2

1 1 2/3 2/3

CSP
3

3/2 3/2 1 1

CSC 3/2 3/2 1 1

1

CCCCA

The relative ranking of the CSPs for AC1.2 is given by the priority vector of CM
AC1.2

PV
AC1.2 =

⇣CSP1 CSP
2

CSP
3

CSC

0.2 0.2 0.3 0.3
⌘

This implies that only CSP
3

satisfies the customer requirement for AC1.2. In a similar
way, we calculate CM

AC1.1 and PV
AC1.1. The AC1 priority vector is then premeditated

by aggregating PV
AC1.1 and PV

AC1.2 with the normalized dependency levels (which are
defined as weights nw

AC1

) where AC
1

is medium dependent on AC1.1 and strongly de-
pendent on AC1.2 then after normalization:

nw
AC1

=

✓AC1.1 AC1.2
2

5

3

5

◆

Thus, PV
AC1

is calculated using Equation 2.6 such that:

PV
AC1

=

0

BBBB@

PV
AC1.1 PV

AC1.2

CSP
1

0.25 0.2
CSP

2

0.25 0.2
CSP

3

0.25 0.3
CSC 0.25 0.3

1

CCCCA
.

nw

AC1

0.4
0.6

!

PV
AC1

=
⇣CSP1 CSP

2

CSP
3

CSC

0.22 0.22 0.28 0.28
⌘

36 quantitative framework for assessing cloud security

This means that only CSP
3

satisfies the customer requirements for AC1 as shown in Fig-
ure 2.9. Similarly, the Independent Audits and Regulatory Mapping priority vectors are
calculated. Subsequently, the three Audit & Compliance services AC1, AC2, AC3 priority
vectors are aggregated to have the overall Audit & Compliance priority vector PV

AC

.
In a similar way, the Business Continuity and Interface Security priority vectors are con-
sidered, such that the IS1 priority vector is calculated by aggregating PV

IS1.1, PV
IS1.2 and

PV
AC3.1 with the normalized dependency levels (nw

IS1

) using Equation 2.6.

PV
IS1

=
⇣CSP1 CSP

2

CSP
3

CSC

0.21 0.21 0.29 0.29
⌘

This means only CSP
3

satisfies IS1 customer requirement as shown in Figure 2.9. Finally,
the priority vectors of Audit & Compliance, Business Continuity and Interface Security
are aggregated to obtain the total secSLA priority vector PV

Root

.

PV
Root

=

0

BBBB@

PV
AC

PV
BC

PV
IS

CSP
1

0.1693 0.2260 0.21
CSP

2

0.2357 0.2267 0.21
CSP

3

0.2975 0.2736 0.29
CSC 0.2975 0.2736 0.29

1

CCCCA
.

0

BB@

nw
Root

0.3333
0.3333
0.3333

1

CCA

PV
Root

=
⇣ CSP

1

CSP
2

CSP
3

CSC

0.2018 0.2241 0.2870 0.2870
⌘

Consequently, CSP
3

is the only provider that fulfills the customer’s requirements. That
was expected, as CSP

1

is not offering AC2.2, AC2.3, AC3.2 and is under-provisioning IS1.1
and IS1.2. CSP

2

is not providing BC2.2 and is not fulfilling customer requirements for
AC1.2, AC3.3, BC11.2, IS1.1 and IS1.2. Only CSP

3

fulfills all the customer’s requirements.
As a result, CSP

3

is the best matching provider according to the customer’s requirements,
followed by CSP

2

and CSP
1

, as shown in Figure 2.11.

AC1 AC2 AC3 BC2 BC11 IS1

0.1

0.2

0.3

A
gg

re
ga

te
d

Se
cu

ri
ty

le
ve

l

CSP
1

CSP
2

CSP
3

CustomerCaseI

Figure 2.9.: CSPs comparison with respect to Customer Case I requirements using QHP.

2.4 case study : security evaluation of csp’s secslas 37

2.4.1.3 Fuzzy-QHP

The customer specifies his/her requirements at the lowest level of the secSLA (i.e., SLOs)
as shown in Table 2.6. In this case, each SLO k

i

value is mapped to a progressive TFN
value according to its order such that k

i

= 1̃ < 2̃ < . . . < j̃. These TFN values are repre-
sented as k

i

= (1, 1, 1) < (2, 2, 2) < . . . < (j, j, j).
For the Audit & Compliance control control of Cloud secSLA, AC1.2 the providers and the

customer can specify their values from level
1

to level
3

. Using the data shown in Table 2.6,
Equation 2.7 is used to define the AC1.2 pairwise relation such that:

CSP
1

/CSP
2

=
2̃

2̃
= (

2

2
,
2

2
,
2

2
), CSP

2

/CSP
1

=
2̃

2̃
= (1, 1, 1), CSC/CSP

1

=
3̃

2̃
= (

3

2
,
3

2
,
3

2
)

Thus, the comparison matrix of AC1.2 Ã
AC1.2 as specified in Equation 2.9 is:

Ã
AC1.2 =

0

BBBBBBBBBBBBBB@

CSP
1

CSP
2

CSP
3

CSC

CSP
1

(1, 1, 1) (1, 1, 1) (
2

3
,
2

3
,
2

3
) (

2

3
,
2

3
,
2

3
)

CSP
2

(1, 1, 1) (1, 1, 1) (
2

3
,
2

3
,
2

3
) (

2

3
,
2

3
,
2

3
)

CSP
3

(
3

2
,
3

2
,
3

2
) (

3

2
,
3

2
,
3

2
) (1, 1, 1) (1, 1, 1)

CSC (
3

2
,
3

2
,
3

2
) (

3

2
,
3

2
,
3

2
) (1, 1, 1) (1, 1, 1)

1

CCCCCCCCCCCCCCA

Then, using Chang’s extent analysis method explained in Section 2.3.6.2, we get the rel-
ative ranking of the Cloud providers for AC1.2, which is given by the priority vector of
Ã

AC1.2 (PV
AC1.2). PV

AC1.2 is calculated as follows. Using Equation 2.10 we get the value
of the fuzzy synthetic extent for Ã

AC1.2 such that:

E
CSP

1

= (3.33, 3.33, 3.33)⌦(1

16.67
,

1

16.67
,

1

16.67
) =

⇣ lCSP

1

m
CSP

1

u
CSP

1

0.2, 0.2, 0.2
⌘

E
CSP

2

= (3.33, 3.33, 3.33)⌦(1

16.67
,

1

16.67
,

1

16.67
) =

⇣ lCSP

2

m
CSP

2

u
CSP

2

0.2, 0.2, 0.2
⌘

E
CSP

3

= (5, 5, 5)⌦(1

16.67
,

1

16.67
,

1

16.67
) =

⇣ lCSP

3

m
CSP

3

u
CSP

3

0.3, 0.3, 0.3
⌘

E
CSC

= (5, 5, 5)⌦(1

16.67
,

1

16.67
,

1

16.67
) =

⇣ lCSC

m
CSC

u
CSC

0.3, 0.3, 0.3
⌘

Afterwards, using Equation 2.11 we get the degree of possibility so that:
D(E

CSP

1

> E
CSP

2

) = 1 (as m
CSP

1

> m
CSP

2

),
D(E

CSP

1

> E
CSP

3

) = 0 (as l
CSP

3

> u
CSP

1

),
D(E

CSP

1

> E
CSC

) = 0 (as l
CSC

> u
CSP

1

)

38 quantitative framework for assessing cloud security

Then, the possibility for a fuzzy number to be greater than other fuzzy numbers is calcu-
lated using Equation 2.12:

d
0
(A

CSP

1

) = min(D(E
CSP

1

> E
CSP

2

,E
CSP

3

,E
CSC

)) = min(1, 0, 0) = 0

Similarly d
0
(A

CSP

2

),d 0
(A

CSP

3

), and d
0
(A

CSC

) are calculated using Equations 2.11 and
2.12. Thus, the AC1.2 priority vector PV is given by:

PV
AC1.2 =

⇣CSP1 CSP
2

CSP
3

CSC

0 0 1 1
⌘

This reflects which of the CSPs provide the AC1.2 security SLO relative to other CSPs and
to the customer requirements. After normalization, PV

AC1.2 is:

PV
AC1.2 =

⇣CSP1 CSP
2

CSP
3

CSC

0 0 0.5 0.5
⌘

This means that only CSP
3

equally satisfies CSC’s AC1.2 requirement. However, CSP
1

and CSP
2

do not fulfill that requirement. Similarly, the priority vector of AC1.1 is calcu-
lated using its comparison matrix Ã

AC1.1. The AC1 priority vector is then premeditated,
using Equation 2.14, by aggregating PV

AC1.1 and PV
AC1.2 with the dependency relation

importance level (nw
AC1

) defined in Column "lvl" in Table 2.6. Thus,

PV
AC1

=
⇣CSP1 CSP

2

CSP
3

CSC

0.1 0.1 0.4 0.4
⌘

Independent audits and Regulatory mapping priority vectors are calculated the same way
such that:
PV

AC2

=

0

BBBB@

PV
AC2.1 PV

AC2.2 PV
AC2.3 PV

AC2.4 PV
AC3.1 PV

AC3.2

CSP
1

0.25 0 0 0.333 0.25 0

CSP
2

0.25 0.333 0.333 0 0.25 0.333
CSP

3

0.25 0.333 0.333 0.333 0.25 0.333
CSC 0.25 0.333 0.333 0.333 0.25 0.333

1

CCCCA
.

0

BBBBBBBBBB@

nw
AC2

0.27
0.27
0.18
0.09
0.09
0.09

1

CCCCCCCCCCA

Therefore,

PV
AC2

=
⇣CSP1 CSP

2

CSP
3

CSC

0.12 0.28 0.3 0.3
⌘

PV
AC3

=

0

BBBB@

PV
AC3.1 PV

AC3.2 PV
AC3.3

CSP
1

0.25 0 0

CSP
2

0.25 0.333 0

CSP
3

0.25 0.333 0.5
CSC 0.25 0.333 0.5

1

CCCCA
.

0

BB@

nw
AC3

0.285
0.285
0.43

1

CCA

2.4 case study : security evaluation of csp’s secslas 39

Thus,

PV
AC3

=
⇣CSP1 CSP

2

CSP
3

CSC

0.071 0.166 0.38 0.38
⌘

Subsequently, the three Audit & Compliance controls AC1, AC2, AC3 priority vectors are
aggregated to have the overall Audit & Compliance priority vector PV

AC

.In a similar way,
the Business Continuity and Interface Security priority vectors are considered. The CSPs
secSLA’s rankings according to the customer requirements at the control category level
are shown in Figure 2.10. Finally, the priority vectors of Audit & Compliance, Interface
Security, and Interface Security are aggregated to obtain the total secSLA priority vector, as
shown in Figure 2.11.

PV
total

=

0

BBBB@

PV
AC

PV
BC

PV
IS

CSP
1

0.1 0.18 0.0625
CSP

2

0.18 0.16 0.0625
CSP

3

0.36 0.33 0.4375
CSC 0.36 0.33 0.4375

1

CCCCA
.

0

BB@

nw
total

0.3333
0.3333
0.3333

1

CCA

Thus,

PV
total

=
⇣CSP1 CSP

2

CSP
3

CSC

0.114 0.134 0.375 0.375
⌘

Consequently, CSP
3

is the only provider who fulfills the customer’s requirements, as
shown in Figure 2.11. That was expected, as CSP

1

is not offering AC2.2, AC2.3, AC3.2 and
is under-provisioning AC1.2 and AC3.3. CSP

2

is not providing BC2.2 and is not fulfilling
customer requirements for AC1.2, AC3.3, IS1.1 and IS1.2. Similarly, CSP

2

is not fulfilling
the customer requirements. Only CSP

3

fulfills customer’s requirements and, as a result,
CSP

3

is the best matching provider according to the customer’s requirements, followed
by CSP

2

then CSP
1

, as shown in Figure 2.11.

AC BC IS

0.2

0.4

A
gg

re
ga

te
d

se
cu

ri
ty

le
ve

l

CSP
1

CSP
2

CSP
3

CSC

Figure 2.10.: CSPs comparison with respect to customer Case I requirements using fuzzy-QHP.

40 quantitative framework for assessing cloud security

QHP-C
as

eI

fu
zz

y-Q
HP-C

as
eI

QHP-C
as

eII

fu
zz

y-Q
HP-C

as
eII

I

fu
zz

y-Q
HP-C

as
eIV

0.1

0.2

0.3

0.4
A

gg
re

ga
te

d
se

cu
ri

ty
Le

ve
l

CSP
1

CSP
2

CSP
3

CSC

Figure 2.11.: The total aggregated secSLA level with respect to customer requirements using QHP
& fuzzy-QHP.

2.4.1.4 Fuzzy-QHP and QHP comparison

Although, QHP allows customers to specify their priorities at varied levels of granularity,
it only allows customers to provide defined values specifying their requirements and sub-
mit static weights to model their priorities (i.e., only "Case I" can be used by QHP; as QHP
could not model customer uncertain requirements shown in "Case III" and "Case IV"). As
depicted in Figure 2.11, fuzzy-QHP and QHP show the same rankings for customer "Case
I" requirements, but with different scales. This indicates that fuzzy-QHP provides the
same rankings if the customer specifies the SLO level requirements. In addition to, only
fuzzy-QHP methodology is capable of modelling the customer uncertain requirements as
explained in the following sections. This denotes that fuzzy-QHP can model customers un-
certain requirements and give the CSPs fulfilling customer requirements rankings. This is
done without assuming fixed numerical values to each SLO metric (the QHP case), which
creates an unrealistic scale of judgment and evaluation.

2.4.1.5 Cloud Customer Case II Requirements - SLO level after structuring using DSM

In this case we consider a novice customer who cannot specify his/her precise SLO re-
quirements and/or resolve the SLOs conflicts. The structured secSLA presented using
DSM enables the customer to easily specify his/her requirements, regardless of the size
of the secSLA and the number of dependencies. In this case the customer defines the least
dependent SLOs - these are specified using DSM and are shown in the column marked as
Case II in Table 2.6. We explain this Case using only QHP as similarly will be fuzzy-QHP.

Using the data shown in Table 2.6, Equations 2.1 defines the AC1.1 pairwise relation as
in Case I. Then the relative ranking of the CSPs for AC1.1 is given by the priority vector
calculated using Equation 2.13 (as explained in Case I).

PV
AC1.1 =

⇣CSP1 CSP
2

CSP
3

CSC

0.25 0.25 0.25 0.25
⌘

Similarly, all the lowest level SLOs (least dependent SLOs) are calculated. The PV
AC3.1,

PV
AC3.2, PV

AC3.3, PV
BC2.2, PV

BC11.1, PV
BC11.2, PV

IS1.1 and PV
IS1.2 are calculated in a

2.4 case study : security evaluation of csp’s secslas 41

similar way. Then based on the DSM order AC1.2 is calculated. AC1.2 is depending on
IS1.2 (Dep

1

), thus the PV
AC1.2 is equal to PV

IS1.2.

PV
AC1.2 =

⇣CSP1 CSP
2

CSP
3

CSC

0.2 0.2 0.3 0.3
⌘

In the same way, PV
AC2.3, PV

AC2.4 and PV
BC2.1 are calculated (they are equal to PV

AC3.2,
PV

BC2.2 and PV
BC11.1 respectively). Furthermore, AC2.1 is calculated. AC2.1 depends

on AC1.1 and AC3.1 (Dep
1

and Dep
3

) with different levels of dependencies. Thus, using
Equation 2.6:

PV
AC2.1 =

0

BBBB@

PV
AC1.1 PV

AC3.1

CSP
1

0.25 0.25
CSP

2

0.25 0.25
CSP

3

0.25 0.25
CSC 0.25 0.25

1

CCCCA

nw

AC2.1

0.4
0.6

!

After all the SLO priority vectors are determined, the priority vectors are aggregated with
the dependency importance level to get the overall rank of CSPs according to the customer
requirements as specified in Case I (as depicted in Figure 2.11). As a result the root priority
vector is equal to:

PV
Root

=
⇣ CSP

1

CSP
2

CSP
3

CSC

0.2018 0.2241 0.2870 0.2870
⌘

2.4.1.6 Cloud customer Case III Requirements - different levels of granularity

The customer specifies his/her requirements using linguistic descriptors (depicted in Fig-
ure 2.8) at different levels of the secSLA hierarchical structure as shown in column "Case
III" in Table 2.6. We assume that the customer specifies Highly-Required to Audit planning
and Independent audits as well as Not-Required to Regulatory mapping. Furthermore, we as-
sume the customer specifies Do-not-know for Security architecture, and specifies low-level
requirements for Resiliency, as shown in Table 2.6. Moreover, the customer submit qualita-
tive labels to specify the required level of importance.
Since Audit planning is assigned HR, the respective SLOs value of both AC1.1 and AC1.2
are set to (2, 3, 4). Note that, we model the pair wise relation of the HR customer require-

ments (3̃) as CSC/CSC which is equal to (1,1,1) and not (
2

4
,
3

3
,
4

2
). Thus, for AC1.2 the

pairwise relation is defined using Equation 2.7 such that:

CSP
3

/CSC = (
3

4
,
3

3
,
3

2
), CSC/CSP

1

= (
2

2
,
3

2
,
4

2
), CSC/CSC = (1, 1, 1)

Thus, the comparison matrix of AC1.2 Ã
AC1.2 as specified in Equation 2.9 is:

42 quantitative framework for assessing cloud security

Ã
AC1.2 =

0

BBBBBBBBBBBBBB@

CSP
1

CSP
2

CSP
3

CSC

CSP
1

(1, 1, 1) (1, 1, 1) (
2

3
,
2

3
,
2

3
) (

2

4
,
2

3
,
2

2
)

CSP
2

(1, 1, 1) (1, 1, 1) (
2

3
,
2

3
,
2

3
) (

2

4
,
2

3
,
2

2
)

CSP
3

(
3

2
,
3

2
,
3

2
) (

3

2
,
3

2
,
3

2
) (1, 1, 1) (

3

4
,
3

3
,
3

2
)

CSC (
2

2
,
3

2
,
4

2
) (

2

2
,
3

2
,
4

2
) (

2

3
,
3

3
,
4

3
) (1, 1, 1)

1

CCCCCCCCCCCCCCA

Afterwards, using Equations 2.10, 2.11 and 2.12 the AC1.2 priority vector PV is given by:

PV
AC1.2 =

⇣CSP1 CSP
2

CSP
3

CSC

0.115 0.115 0.38 0.38
⌘

PV
AC1

is then calculated by aggregating PV
AC1.1 and PV

AC1.2 such that:

PV
AC1

=

0

BBBB@

PV
AC1.1 PV

AC1.2

CSP
1

0.25 0.115
CSP

2

0.25 0.115
CSP

3

0.25 0.38
CSC 0.25 0.38

1

CCCCA
.

nw

AC1

0.4
0.6

!

Thus,

PV
AC1

=
⇣CSP1 CSP

2

CSP
3

CSC

0.169 0.169 0.328 0.328
⌘

Similarly the Independent audits SLOs value are set to (2, 3, 4). On the other hand, Regula-
tory mapping is denoted as NR by the customer, which means it will not affect the overall
security level of the providers as it is not required by the customer. Therefore, PV

AC1

,
PV

AC2

and PV
AC3

are aggregated with nw
AC

such that:

PV
AC2

=
⇣CSP1 CSP

2

CSP
3

CSC

0.12 0.268 0.305 0.305
⌘

Therefore PV
AC

is equal to:

PV
AC

=
⇣ CSP

1

CSP
2

CSP
3

CSC

0.1445 0.2185 0.3165 0.3165
⌘

This implies that CSP
1

and CSP
2

do not fulfill CSC Audit & Compliance control and only
CSP

3

satisfies AC requirement. For Business Continuity, the customer specifies Do-not-
know, which is assigned as (1, 2.5, 4). Thus,

2.4 case study : security evaluation of csp’s secslas 43

PV
BC

=
⇣CSP1 CSP

2

CSP
3

CSC

0.24 0.22 0.27 0.27
⌘

Similarly, Interface Security is evaluated as explained in Case I. Next, PV
AC

, PV
BC

, and
PV

IS

are aggregated to obtain the total secSLA priority vector, as shown in Figure 2.11.

PV
total

=
⇣CSP1 CSP

2

CSP
3

CSC

0.149 0.167 0.34 0.34
⌘

Therefore, only CSP
3

satisfies the customer needs, whereas both CSP
1

and CSP
2

do not
fulfill customer requirements, as shown in Figure 2.11. That was expected, as AC2.3 is
highly required by the customer and not provided by CSP

1

. Moreover, CSP
1

and CSP
2

are not fulfilling the customer IS requirement. The presented framework can give accurate
CSP ranking even if the low level is not defined and vague preferences are specified at the
highest levels, which means a customer can define weights at the higher levels instead of
answering multiple low-level questions.

2.4.1.7 Cloud Case IV requirements - natural language sentence

The customer requires "a provider with only extremely high Audit & Compliance and does
not require Business Continuity and Interface Security". Using Rule 1, the customer allocates
Highly-Required for Audit & Compliance, and Not-Required for Security architecture and Re-
silience. Similarly, as shown in previous cases, the priority vector of AC is calculated, such
that:

PV
AC

=

0

BBBB@

PV
AC1

PV
AC2

PV
AC3

CSP
1

0.1 0.12 0.08
CSP

2

0.1 0.268 0.19
CSP

3

0.4 0.305 0.36
CSC 0.4 0.305 0.36

1

CCCCA
.

0

BB@

nw
AC

0.333
0.333
0.333

1

CCA

Therefore,

PV
AC

=
⇣CSP1 CSP

2

CSP
3

CSC

0.1 0.19 0.35 0.35
⌘

As BC and IS are not required by the user, thus:

PV
total

=
⇣CSP1 CSP

2

CSP
3

CSC

0.1 0.19 0.35 0.35
⌘

Consequently, only CSP
3

is satisfying the customer requirements, followed by CSP
2

then
CSP

1

. Therefore, the presented framework can give accurate CSPs ranking even if the
customer only specified requirements using natural language sentences.

44 quantitative framework for assessing cloud security

2.4.2 The CSP Perspective: Maximising Offered Security Levels

The second validation scenario presented applies the secSLA evaluation techniques to
solve problems faced by CSPs i.e., which specific security SLO from the offered secSLA
should be improved in order to maximise the overall security level according to the cus-
tomer requirements? This might be the case of a well-established CSP deciding where
to invest in order to achieve the highest possible security level, or a new CSP designing
the secSLA. To answer this question, we could perform a sensitivity analysis to ascertain
the security benefits of improving one or more SLOs. However, this analysis becomes
impractical as the number of SLOs and the dependencies between them increase. Thus
the sensitivity analysis is performed on the least dependent SLOs identified by the DSM.

We used the CSP
1

dataset described at Table 2.6, and applied the Case II requirements
to setup the customer’s baseline for the security evaluation. From the existing 9 least
dependent SLOs (Case II column in Table 2.6) the CSP

1

is under-provisioning 4 of them
(AC3.2, AC3.3, IS1.1 and IS1.2). Figure 2.12 shows how the proposed framework can be
used to analyse an existing secSLA, and extract the individual SLOs that, if enhanced,
would result on different improvements associated to the overall security level. In this
case, the X-axis represents the improvement associated to the overall security level after
enhancing any of the SLOs. It is shown as a percentage where 0% corresponds to the orig-
inal secSLA and 100% is the most effective SLO. For example, providing tenants with the
security policies applicable to virtualised resources (AC3.2 in Figure 2.12), quantitatively
increases CSP

1

security level better than improving the thresholds committed for any of
the other SLOs.

70 80 90 100

AC3.2
IS1.1

AC3.3
IS1.2

Security level improvement (%)

Figure 2.12.: Sensitivity analysis: CSP
1

SLOs that maximise the overall security level.

2.5 related work

Multiple approaches have been emerging to assess the functionality and security of CSPs.
In [LYKZ10], Li et al. proposed a framework to compare different Cloud providers across
performance indicators. Garg et al. [GVB13] proposed an Analytic Hierarchy Process
(AHP) based ranking technique that utilizes performance data to measure various Quality
of Service (QoS) attributes and evaluates the relative ranking of CSPs. A framework of
critical characteristics and measures that enable comparison of Cloud services is presented
by Siegel et al. [SP12]. However, these studies focused on assessing performance of Cloud
services and not their security properties.

While some approaches have focused on specifying Cloud security parameters in sec-
SLAs, fewer efforts exist for quantifying these SLA security services. Henning et al.
[Hen99] identified security SLAs with applicable types of quantifiable security metrics
for non Cloud systems. These metrics were expanded by Irvine et al. [IL01] outlining the

2.6 summary 45

term QoSS for quality of security service. Based on QoSS, Lindskog et al. [Lin05] defined
four dimensions that specify a tunable Cloud security service.

Security requirements for non Cloud services have been addressed by Casola et al.
[CMMR06], who proposed a methodology to evaluate security SLAs for web services.
Chaves et al. [CWL10] explored security in SLAs by proposing a monitoring and control-
ling architecture for web services. As pointed out by Chaves et al., it is a challenge to
define quantifiable security metrics, but they give examples related to password manage-
ment, frequency of backups and repair/recovery time. A technique to aggregate security
metrics from a web services’ secSLAs has been proposed by Frankova et al. [FY07] and
krautsevich et al. [KMY11]. However, the authors did not propose any techniques to as-
sess Cloud secSLAs or empirically validate the proposed metrics. In [AGI11], Almorsy et
al. propose the notion of evaluating Cloud secSLAs by introducing a metric to benchmark
the security of a CSP based on categories. However, the resulting security categorization is
purely qualitative and lacks the support of dependencies. Luna et al. [LGLS12] presented
a methodology to quantitatively benchmark Cloud security with respect to Customer de-
fined requirements (based on control frameworks). However, the presented techniques
only considered SLO values assignment at the SLO level. Mostly, they depend on a static
weight assessment for preference modeling, which (a) is time consuming, (b) does not
take into account the uncertainty associated with the mapping of customers’ judgement
to a number, as human assessment of qualitative attributes is always subjective and thus
imprecise, and (c) did not consider the dependencies across services and conflicts detec-
tion.

To address customers uncertainty, fuzzy logic has been applied by Wang et al. [Wan09].
The authors used a fuzzy-based MCDM algorithm to rank web services. Hamzeh et
al. [AM13] developed a fuzzy-based MCDM approach that uses linguistic descriptors to
model preferences. However, all these studies focus on the performance of Cloud services
and not on security properties. Noor et al. [NS11] and Habib et al. [HRM11] evaluated
trust of Clouds according to customer feedback. Nevertheless, they ignored customers’
diverse requirements. In [Sup+12], Supriya et al. used a fuzzy inference system to evaluate
the trust of providers. However, they required that customers manually tune the inference
system according to their expectations for each query. Furthermore, the dependencies and
conflict detection are not covered in any of them.

Dunlop et al. [DIR02] proposed a model to specify policies of permission, prohibition
and obligation in a temporal logic language that can reason about the sequences of events.
In [CYZ+12], Chen et al. presented a framework for automatic detection of conflicts cover-
ing violation of enterprise policies and inconsistency of customer requirements. Ensel et al.
[EK01] introduced an approach to handle dependencies between managed resources (e.g.,
web application server, database) in a distributed system. However, the support for sec-
SLA management is not provided. The COSMA approach [LF08] supports the providers
of composite services to manage their SLAs. However, COSMA does not support the
determination of the effect of SLO violations on other services based on dependency in-
formation. Also non of the specified techniques considered services’ dependencies.

2.6 summary

In this chapter, we developed two techniques to conduct security assessment based on
the quantitative and qualitative analysis of security information. We propose techniques
to conduct quantification of information, techniques for information composition and for

46 quantitative framework for assessing cloud security

security comparisons across Cloud providers. The proposed techniques were designed
based on the specifics of secSLAs from state-of-the-art works and standardization bodies.
Furthermore, both techniques were empirically validated through case studies using real-
world CSP data obtained from the Cloud Security Alliance. The validation experiments
were useful not only to highlight the applicability of our techniques to real-world CSPs
but also to highlight the advantages and limitations of these techniques, and to provide
an objective comparison of both of them in order to guide (prospective) adopters. Further-
more, we developed a novel dependency model and evaluated its capability for validating
each customer and CSP requirements.

In the next chapter, we utilize the customer defined requirements as a reference level
of details to drive requirement based threat analysis. The proposed requirement based
threat analysis is an exploration to determine the potential of ascertaining design-level
threats from the analysis of requirements. The completeness of a requirement based threat
analysis inherently depends on the level of detail of the provided requirements.

Part II

T H R E AT A N A LY S I S

3
R E Q U I R E M E N T B A S E D T H R E AT A N A LY S I S

In the preceding chapter we presented a security assessment and validation of Cloud
providers according to the customer’s security requirements. On the one hand, the as-
sessment process includes two different evaluation techniques as specified in the previous
chapter. On the other hand, the validation process captures information about secSLA
services’ dependencies and checks service conflicts and different services compatibility
issues. In this chapter, we explore threat analysis at the requirements level while tak-
ing service dependencies into consideration, named Requirement Based Threat Analysis
(RBTA). Specifically, the threat analysis focuses on threats that can potentially violate the
customer’s data ownership requirements of security, functionality and performance. Thus,
we present a systematic analytic RBTA process which is able to establish the viability of
identifying threats based on a customer requirements analysis. The requirements also
form the basis for testing and validation.

3.1 motivation and contribution

Typical dependency relations across requirements can easily introduce conflicts leading
to various threats. Consequently, threat analysis process is used to establish the viability
of identifying threats based on customer requirements. However, generally this process
is manual which is both time intensive and makes no assurance on completeness of the
analysis

Accordingly, we develop RBTA approach to systematically conduct the process of as-
certaining and visualizing the dependencies across the requirements to identify threats.
Specifically, RBTA approach provides an input for estimating the risks based on such
requirement analysis. Thus, building upon the basic viability of the RBTA result, the
proposed approach developed a systematic analytical technique that enumerates a set of
customer use-case (UC) requirements and then determines all possible direct/indirect de-
pendencies across them to conduct a generalized threat analysis from their requirements.
The initial UC specific RBTA approach can be extended to apply to generic UC via the
development of a generalized Cloud threat model.
Contributions. We make the following contributions:

1. Developing an efficient architectural threat modeling approach that allows partly
automating and focusing security assessment based on assets and security objec-
tives in the system. The threat analysis involves developing a dependency model
and showing its capability for identifying threats by visualizing the dependencies
across services. The threat analysis utilizes information from the customer require-
ments, the number of requirements, the maximum/average values for the Violation
Likelihood and Threat Severity, and the ordering of the requirements from the least
to the most dependent services. These Violation Likelihood and Threat Severity mea-
surements as well as the violations identification are considered to illustrate the
violations severity that could potentially occur across the services.

49

50 requirement based threat analysis

2. Validating the presented approach, for its effectiveness, on a ESCUDO-CLOUD Eu-
ropean project UC [Pro17]. The approach can be also generalized to apply to other
requirements. Using the specified UC’s security-related information, an automated
threat identification is achieved.

3.2 requirement based threat analysis (rbta) process

Threat analysis (TA) is a process to systematically identify, detect, and evaluate security
vulnerabilities. Threat analysis considers the full spectrum of threats for a given system.
For example, TA can be conducted at the level of architecture diagrams, at trust bound-
aries, over detailed data flow diagrams, attack surfaces at the component or functional
levels, on source code, via misuse-cases and many other dimensions.

We explore TA at the requirements level by considering two main stages namely, re-
quirements analysis and dependency analysis. These two main stages are conducted in
progressive steps:

Step (1) Identifying security requirements from multiple dimensions. These dimensions are
a) security properties (Confidentiality, Integrity and Availability); b) sharing require-
ments; c) access requirements. For example, CRUD (Create, Read, Update, and
Delete) operations for infrastructure and tenants’ keys and scalable design of key
management system.

Step (2) Identifying the relationship between requirements and their impact on performance,
functionality and security properties.

Step (3) Assigning a priority level to each requirement to ascertain the dependencies among
the requirements, e.g., scalable design of key management depends on the CRUD
operations for infrastructure and tenants’ keys. This helps to better understand the
threats associated to each requirement and the consequence of its violation on other
requirement(s).

Step (4) Once we have identified the basic requirements and their dependencies, the next
step is to ascertain the assumptions behind the requirements, which can be direct
and indirect. For example, the direct assumption for CRUD operations for tenant
keys is the need of a trusted administrator and the indirect assumption is the need
for a trusted infrastructure. If such assumptions are violated, it will result in confi-
dentiality violation for the tenant data which is a high severity threat.

Step (5) The final step is to model security requirements and their dependencies utilizing a
hierarchical/tree structure.

3.3 requirements analysis

In this section we consider various Cloud requirements (i.e., services) using ESCUDO-
CLOUD use-case [Pro17].

3.3.1 Requirements Analysis from ESCUDO Use-Case

Cloud computing requires data owners to outsource their data to a Cloud provider. To
prevent unauthorized access, data has to be encrypted before outsourcing. However, the

3.3 requirements analysis 51

data still has to be utilizable for business purposes. Most business scenarios, like the ones
involving complex supply chains, involve several parties which do not necessarily trust
each other. This depicts a conflict: on the one hand, sharing of data is a must in order to
guarantee a better success of the business. On the other hand, substantial threats have to
be taken care of in data sharing. Therefore, one goal of this use-case is to come up with
solutions allowing a data owner to share information without losing control over his data.
This is realized by developing new systems for cooperation based on encrypted database
technology. With such systems data owners should be empowered to outsource their data
to the Cloud, while preserving security and functionality. Technology based on the search
and aggregation of encrypted data ensures these functionalities. The technology also
offers the data owner to selectively grant and revoke data access to their trusted business
partners.

3.3.2 Adapted Requirements Catalogue

Table 3.1 identifies the subset of requirements relevant for data ownership attributes. Table
3.1 first names and describes use-case (UC) requirements followed by their priority levels
and the dependencies across these requirements. Subsequently, the specific attribute of
CIA/Performance/Functionality relevant to the requirement is identified. This table now
forms the basis of identifying the threats for these requirements.

3.3.3 Risk Assessment

Using the relevant data-ownership requirements in Table 3.1, a requisite risk assessment is
enumerated in Table 3.2. For each requirement, firstly, we identify the direct assumptions
required for the requirement to hold. This is followed by identification of the indirect
assumptions needed for the requirement to be supported. Then the violations that could
occur between services and their expected (assumed) impact is specified. This is achieved
by defining and analyzing the type of risks causing these violations along with their
violation likelihood and their severity.

5
2

r
e

q
u

i
r

e
m

e
n

t
b

a
s

e
d

t
h

r
e

a
t

a
n

a
l

y
s

i
s

Requirements
Reference

Requirement Description Priority Dependencies CIA Performance Functionality

REQ-UC-AC1 Access Control per Client High REQ-UC-KM1 C X
REQ-UC-AC2 Access control per group of

clients
High REQ-UC-KM2 C X

REQ-UC-AC3 Access control per database
cell

High REQ-UC-EQ2 C X

REQ-UC-AC4 Access control matrix model Medium C X
REQ-UC-AC5 Access grant and revoke by

administrator
Low REQ-UC-EQ3 CI X

REQ-UC-AC6 Access control enforced by
client

High REQ-UC-KM3 CI X

REQ-UC-KM1 One key per client High CI X
REQ-UC-KM2 Group key management High CI X
REQ-UC-KM3 Client key securely stored at

client only
High CI X

REQ-UC-KM4 Group keys derivable High REQ-UC-KM2 CI X
REQ-UC-EQ1 Encryption schemes High C X
REQ-UC-EQ2 Adjustable onion encryption High REQ-UC-EQ1 C X
REQ-UC-EQ3 Proxy re-encryption, Query

rewriting, Post-processing
High C X

Table 3.1.: Relationship between use-case requirements and confidentiality, integrity, availability, performance and functionality attributes with regards to
data ownership.

3.
3

r
e

q
u

i
r

e
m

e
n

t
s

a
n

a
l

y
s

i
s

5
3

Requirement
Reference

Requirement De-
scription

Direct Assumptions Indirect Assump-
tions

Violation
Likeli-
hood
(1/Low-
10/High)

Assumed Impact Threat
Severity
(1/Low-
10/High)

REQ-UC-AC1 Access Control
per Client

User Authentication 5 Basic assumption
violated

8

REQ-UC-AC2 Access control
per group of
clients

User Groups exist 3 User inconve-
nience

1

REQ-UC-AC3 Access control
per database cell

Cells are controllable 3 Exposure of
larger structures,
e.g. tables or
columns, poten-
tially resulting in
partial confiden-
tiality violation

4

REQ-UC-AC4 Access control
matrix model

Independent of time
and workflow

4 User inconve-
nience

1

REQ-UC-AC5 Access grant and
revoke by admin-
istrator

Administrator for
group maintenance
available

3 User inconve-
nience

1

REQ-UC-AC6 Access control en-
forced by client

Trusted Client 5 Confidentiality
violation for user
data

5

5
4

r
e

q
u

i
r

e
m

e
n

t
b

a
s

e
d

t
h

r
e

a
t

a
n

a
l

y
s

i
s

REQ-UC-KM1 One key per
client

Key length sufficient,
keys are renewable

Secure Storage
for Key

2 Keys guessable,
global confiden-
tiality violation

10

REQ-UC-KM2 Group key man-
agement

Group can secure key,
Key is renewable, key
length is sufficient

8 Confidentiality
violation for
group data

5

REQ-UC-KM3 Client key se-
curely stored at
client only

Secure Storage 2 Confidentiality
violation for user
data

5

REQ-UC-KM4 Group keys
derivable

Cryptographic assump-
tions hold

3 Disaster, global
confidentiality
violation

10

REQ-UC-EQ1 Encryption
schemes

Cryptographic assump-
tions hold

Key is secret (i.e.
KM1)

3 Disaster, global
confidentiality
violation

10

REQ-UC-EQ2 Adjustable onion
encryption

Set of supported
queries is sufficient,
Scalability is given

4 Performance
problems

2

REQ-UC-EQ3 Proxy re-
encryption,
Query rewriting,
Post-processing

Security enforcement is
possible for Multi user
environment

3 User has access
to data which
was supposed to
be revoked, re-
sulting in partial
confidentiality
violation

4

Table 3.2.: Use-case requirements and their direct and indirect assumptions as well as an estimated likelihood of direct assumptions being violated, assumed
impact and threat severity.

3.4 dependency analysis across requirements 55

3.4 dependency analysis across requirements

In the preceding section, the use-case requirements and risk assessment table of a UC
was specified to establish the viability of a requirements based threat analysis. However,
this process is manual and also provides no assurance on completeness. Consequently,
the intent in this section is to develop techniques to systematically conduct the process
of ascertaining and visualizing the dependencies across the UC requirements to identify
threats.

Due to these dependency relations, a security breach causing a violation of one of these
services can lead to the violation of other services. Depending on the nature of the inci-
dent, these violations can be anything from low-risk to highly critical. Consequently, an
explicit knowledge about dependencies between requirements and their threat severity is
needed to support the management of Cloud services by both entities (the Cloud provider
and/or the customer).

The dependency model specified in Chapter 2 is utilized in this chapter. The depen-
dency management and requirements structuring is performed in progressive stages, as
shown in Figure 3.1.

Figure 3.1.: Dependency management approach stages

A dependency model is created in Stage (A) to capture information about the use-case
requirements (i.e., Services) and the subsequent dependencies. Subsequently in Stage (B),
the dependency model is specified using a machine readable format to allow automated
validation for checking service conflicts and different services compatibility issues. Finally
in Stage (C), the validated services are structured using the Design Structure Matrix (DSM)
[Ste81] depicting dependencies between services as an ordered list.

Based on the analysis of the UC requirements specified before, these requirements are
modelled using a graphical mapping in a hierarchical structure, as shown in Figure 3.2.
This figure depicts UC requirements as specified in Table 3.1 respectively. We detail each
stage in the following sections:

3.4.1 Stage (A): Dependency Model Creation

A dependency model is created to cover all identified dependencies within the require-
ments. This model is based on the dependency model introduced in Section 2.3.4.

56 requirement based threat analysis

Use Case
requirements

AC
s1

AC2

EQ
s3

EQ1

Horizontal dependency
Vertical dependency

AC1

Unidirectional
Bidirectional

AC3

level1
level0

AC4

KM2KM1

KM4KM3

EQ2

KM
s2

level2

AC5 AC6

EQ3 EQ4

Figure 3.2.: Use-case requirements arranged in a hierarchy structure showing the dependencies
between requirements

3.4.2 Stage (B): Use-Case Requirements Validation

A meta-model is developed for the UC requirements (cf., Section 2.3.4) based on the
dependency definitions. This meta-model allows the description of services along with
the information on the UC requirements drafted for it.

3.4.3 Stage (C): Structuring Use-Case Requirements Using DSM

The ordering of the use-case requirements is performed using DSM. To demonstrate the
idea of DSM, the mapping of the use-case shown in Figure 3.2 into a DSM is depicted in
Table 3.3. As the dependencies of services on themselves are not considered (as specified
earlier in the dependency model constrains), there are no marks along the diagonal. For
example, by examining:

• Row 3 in the DSM mapping of UC requirements (Table 3.3) shows that KM depends
on KM1, KM2, KM3, and KM4.

After mapping the use-case requirements into a DSM, we can start reordering the DSM
rows and columns in order to transform the DSM into a lower triangular form.

Table 3.4 show the result of partitioning the DSM depicted in Table 3.3 respectively.
Bidirectional dependencies occur when the matrix cannot be reordered to have all matrix
elements sub-diagonal.

Consequently, Table 3.4 outline all possible direct and indirect dependencies across
requirements. This dependency structuring enables the customer to identify, quantify,
and address the security risks associated with his/her requirements .

3.
4

d
e

p
e

n
d

e
n

c
y

a
n

a
l

y
s

i
s

a
c

r
o

s
s

r
e

q
u

i
r

e
m

e
n

t
s

5
7

UC AC KM EQ AC1 AC2 AC3 AC4 AC5 AC6 KM1 KM2 KM3 KM4 EQ1 EQ2 EQ3 EQ4
1 UC . X X X
2 AC . X X X X X X
3 KM . X X X X
4 EQ . X X X X
5 AC1 . X
6 AC2 . X
7 AC3 . X
8 AC4 .
9 AC5 . X

10 AC6 . X
11 KM1 .
12 KM2 .
13 KM3 .
14 KM4 X .
15 EQ1 .
16 EQ2 X .
17 EQ3 .
18 EQ4 X .

Table 3.3.: DSM mapping of UC requirements shown in Figure 3.2

5
8

r
e

q
u

i
r

e
m

e
n

t
b

a
s

e
d

t
h

r
e

a
t

a
n

a
l

y
s

i
s

AC4 KM1 KM2 KM3 EQ1 EQ3 AC1 AC2 KM4 AC6 AC5 EQ2 EQ4 AC3 KM EQ AC UC
1 AC4 .
2 KM1 .
3 KM2 .
4 KM3 .
5 EQ1 .
6 EQ3 .
7 AC1 X .
8 AC2 X .
9 KM4 X .

10 AC6 X .
11 AC5 X .
12 EQ2 X .
13 EQ4 X .
14 AC3 X .
15 KM X X X X .
16 EQ X X X X .
17 AC X X X X X .
18 UC X X X .

Table 3.4.: Final DSM of UC requirements depicted in Table 3.3 after partitioning and scheduling

3.5 identifying violations 59

3.5 identifying violations

In order to understand the violations that could occur between the services, we first have
to define and measure the risks causing these violations and also their severity. Based
on the assumed impact and threat severity of the use-case as specified in Table 3.2, the
concept of risk is defined as a measure of the expected negative effect of a particular
unwanted event (i.e., Assumed Impact) [JW98]. This is expressed as the product of the
Violation Likelihood of the event and the expected damage (Threat Severity). This measure is
then used to determine if these risks are acceptable and to decide which ones to mitigate
first.

Table 3.4 outlines all possible direct and indirect dependencies across the requirements.
Furthermore, the table enumerates the service requirements as ordered by their criticality.
This DSM-based process also ensures completeness of ascertaining the dependencies to
the level of information available in the requirements by categorizing the marked X’s.
Note that, X can be replaced by any numerical number according to the measured risk.
In the following, we show an example sampling of the possible use-case violations as
identifiable from the developed DSM table corresponding to the UC.

For instance, the breach of EQ3 leads to the breach of AC5, EQ4, and EQ. For example,
this is the case if a user has access to data which was supposed to be revoked, resulting
in a partial confidentiality violation. Also, the violation of KM1 directly affects AC1 as
shown in Table 3.4 column 2. This means that if the keys are compromised and thus
one key per client requirement is violated, then the access control per client requirement
is violated as well. We also note that by violating the confidentiality of group data, an
attacker can obtain access per group of clients, and derive the group keys as depicted in
Table 3.4 column 3.

3.6 related work

Threat analysis is a well utilized approach to identify software/system threats. However,
it is typically constrained to a specific configuration and for a specific attacker profile.
The initial efforts led by Microsoft introduced a threat modeling approach called STRIDE
[HLOS06]. It is an attacker-centric approach, applicable to data flow diagrams to find
potential weaknesses and security flaws exploitable by a specific attacker. The approach
presented in [WLK+12] develops an attack tree of the Cloud and utilizes a what if analy-
sis to traverse paths in the tree to determine potential exploit(s). In [MKS13], Malik et al.
formally analyzed open source Cloud environments for assessing correctness properties.
Perez et al. [PBSL13] characterize vulnerabilities in the hypervisor by considering their
impact on the functionality of selected popular hypervisors. The security issues of hyper-
visors was also analyzed by Tsai et al [TSM+12]. Their analysis focused on security issues
over VM hopping and VM mobility. In [BNP+11], Bugiel et al. analyzed publicly available
VM images in the Amazon EC2 repository. Their analysis focused on public interfaces to
extract private information to launch attacks such as starting a botnet or launching an
impersonation attack.

60 requirement based threat analysis

3.7 summary

Overall, we have been able to: firstly, developing an analytical process that is able to
systematically capture both direct and indirect dependencies at the level of the use-case
requirements. Secondly, assessing the degree of dependencies across the requirements.
Thirdly, validating the effectiveness of a requirements based analytical process. Finally,
identifying potential threats that could occur for the ESCUDO-CLOUD UC, and specify
the critical areas where services should be protected. The developed process has also been
generalized to apply beyond the ESCUDO-CLOUD UC provided that the requirements
capture is available.

Part III

Q U A N T I TAT I V E S E C S L A VA L I D AT I O N A N D E N F O R C E M E N T

4
M O N I T O R I N G T H E C O M P L I A N C E O F C L O U D S E RV I C E S

In this chapter, a framework for secSLA compliance validation is proposed. The proposed
framework enables the Cloud customers to validate the compliance of their Cloud SLOs
to the contracted security level in the secSLA. This is first achieved by defining method-
ologies to evaluate the SLOs associated with each security property defined in a secSLA.
Then, by monitoring the compliance of the service throughout the service life-cycle, any
violations to the contracted values are detected and reported to the customer. The pro-
posed framework builds upon a novel decentralized runtime monitoring approach relying
on the Ethereum blockchain infrastructure.

4.1 motivation and contribution

Monitoring the service levels described in SLAs is a critical task. The responsibility of this
task is usually taken over by either Cloud providers or third-parties.

• Cloud provider side monitoring: The CSPs develop their own monitoring tools
and market them as part of the Cloud service package (e.g., Amazon CloudWatch
[Ama]).

• Third-party system: Usually a trusted organization that provides a monitoring
tool and takes over the responsibility of monitoring the system’s quality levels
[MJSCG04]. Examples of popular third-party monitoring tools are Nagios [Nag],
and Zabbix [DVL15].

Furthermore, most of the proposed compliance approaches have been proposed for
Cloud service performance validation and none of them address compliance management
from the customer side.

The problem of establishing security assurance can be solved by proposing mechanisms
that enable the customers to: (a) verify if the contracted security level is actually delivered
and (b) detect any violations in the secSLA during the service life-cycle. However, each
of these elements has its own challenges. Verifying that the security level of the provided
service matches the contracted level entails that the customer can assess the security level
of the service. Hence, assessing the security level of the service is constrained by finding
assessment techniques which allow the customers to evaluate the SLOs; the two security
evaluation techniques presented in Chapter 2 address this problem.

To target element (b), the security level of the service should be monitored throughout
its full life-cycle, such that any violations to the contracted service is reported. The mon-
itoring mechanism should continuously assess the security level of the service based on
the SLOs contained in the secSLA. Monitoring the security level of the service implicates
many challenges. First, the monitoring mechanism must be able to identify and detect any
violation that may occur to the values of any SLO contained in the secSLA. Further, the
monitoring mechanism must prevent CSPs or customers from misreporting for financial
gain.

Another problem facing the Cloud customers is the "manual time intensive" compensa-
tion process. The customers who experienced security breach, data loss, or outages have

63

64 monitoring the compliance of cloud services

to open a case and report the violation to the CSP’s support team. After the case is val-
idated by the CSP’s team, a refund is initiated in the form of a future usable credit for
customers. To that end, in this chapter a framework for secSLA enforcement and compli-
ance validation as well as autonomous secSLA compensation is proposed. The proposed
framework enables the Cloud customer to validate the compliance of their Cloud service
to the contracted security level in the secSLA.

The proposed framework builds upon a decentralized runtime monitoring approach re-
lying on the Ethereum blockchain infrastructure. The monitoring approach continuously
monitor the compliance of Cloud services to the contracted SLOs. The approach first de-
fines means to evaluate SLOs associated with each security property defined in a secSLA.
Our approach relies on the disruptive blockchain technology (i.e., Ethereum blockchain)
to revolutionize and automate traditional Cloud secSLAs. Ethereum blockchain is utilized
due to its turing-complete smart contract development platform [Woo14] that enabled its
wide adoption in developing decentralized apps [Sta]. Our approach digitizes the tra-
ditional Cloud secSLA by enforcing secSLA with Ethereum smart contracts. The smart
contract aggregates the monitoring logs, proves secSLA violations, and compensates the
affected customer according to the severity of the violation.

The approach aims to automate the validation process, eliminating the need for human
intervention during the measurement, monitoring and the validation processes.
Contributions. We make the following contributions:

1. Analyzing and selecting the SLOs that can be measured from the customer side. The
analysis is performed to understand each SLO and decide upon the possibility of
evaluating its value. The analyzed SLOs are proposed by different security controls
frameworks and standards.

2. Defining a measurement procedures to determine the measurable SLO values. The
measurements are used by the proposed framework to validate the SLOs compli-
ance to the contracted values in the secSLA. Furthermore, we establish a monitoring
scheme for validating the compliance of the service to the secSLA.

3. Enforcing the secSLA using smart contract deployed over the Ethereum blockchain.
The smart contract receives and aggregates the monitoring logs corresponding to
measured SLOs. The aggregation schemes are fully decentralized and are not prone
to single point of failure.

4. Implementing and evaluating the functionality and performance of the monitoring
scheme on Amazon Elastic Compute Cloud (Amazon EC2) instances [Ama17].

4.2 background

The blockchain is a novel technology that was originally invented in 2008 by Satoshi
Nakamoto [Nak08]. Blockchain is a distributed public ledger storing all cryptocurrency
transactions whether it’s Bitcoin transactions or any other digital currency. The transac-
tions are stored in blocks and these blocks are cryptographically chained together forming
the blockchain. Unlike traditional systems which require users to trust third parties for its
operation, the blockchain enables a trustless environment, where no trusted third-party
exists.

4.2 background 65

4.2.1 Consensus Algorithms

In order for the blockchain technology to enable a trustless environment, a consensus
mechanism is needed where all participating nodes in the blockchain network adhere to.
The most prominent consensus mechanism widely adopted is the proof-of-work algorithm
PoW which is introduced by Bitcoin. Ethereum uses an improved version of it, called
GHOST, which works on the same premise. The POW is a puzzle competition which
allows the first node to find a random number, called nonce, the right to propose the next
block in the blockchain. Using this nonce, the hash of the entire block becomes lower than
the current difficulty target.

The blockchain difficulty target is used to adjust the average time spent by miner nodes
to provide the proof of work solution. The average time needed by a miner node in the
bitcoin blockchain is approximately 10 mins, while for Ethereum (cf., Section 4.2.3) is
approximately 15 seconds. Once a miner node succeeds in finding the right nonce, the
node broadcasts the block to the blockchain network where every node checks the validity
of the block.

Despite the fact that PoW algorithm is widely adopted, it still suffer from energy inef-
ficiency. The miners are incentivized by cryptocurrency rewards, when they successfully
solve the complex proof of work computations. However these computations consume
huge amounts of electrical energy, that even considered more than some countries energy
consumption [Ene].

4.2.2 Types of Blockchains

4.2.2.1 Public Blockchains

A public blockchain allows anyone to participate in the blockchain through sending and
reading valid transactions or even in the consensus mechanism by adding new blocks to
the public blockchain. Public blockchains are usually called permissionless blockchains,
as every participant has the same access rights. Public blockchains are also considered to
be fully decentralized [Blo] as there is no specific entity managing the participants.

4.2.2.2 Federated Blockchains or Consortium Blockchains

Consortium blockchains can be interesting for a group of organizations that need to
share information while enjoying the data immutability feature of the blockchain. These
blockchains are usually considered partially decentralized as they operate under the lead-
ership of a group [Blo]. Consortium blockchains do not allow any person with access to
the internet to participate in the process of verifying transactions.

A real example on consortium blockchains is the EU federated Cloud project, in which
11 different organizations, such as IBM,PWC, University of Southampton, cooperate to-
gether. Access control management and other key requirements in this project are handled
through a consortium blockchain [SSNM16].

4.2.2.3 Private Blockchains

The consensus mechanism is controlled by only one entity. This means that all the write
permissions on the blockchain are actually centralized to that entity [Blo]. Read permis-
sions may be public or restricted to an arbitrary extent.

66 monitoring the compliance of cloud services

4.2.3 Ethereum Blockchain

Ethereum was founded by Vitalik Buterin, a cryptocurrency researcher and programmer.
Unlike Bitcoin which is utilized only as digital decentralized currency, Ethereum is a dis-
tributed computing platform. Using the computing platform turing-complete program-
ming language, Ethereum enables complex computations to be executed in the blockchain
[Woo14]. Ethereum has its own cryptocurrency called ether ETH. One ether can be di-
vided into smaller units of currency, where one ether corresponds to 103 finney, 106 szabo,
and 1018 wei. Ethereum allows developers to develop smart contracts and decentralized
applications "Dapps" [Eth]. The following sections present the most important aspects of
the Ethereum blockchain.

4.2.3.1 Ethereum Accounts

There are two main types of accounts in Ethereum:

• Externally Owned Account (EOA): This account is held by external actors, in other
words, it’s controlled by private keys of the account’s creator and hence transac-
tions must be signed with the corresponding private key before being stored in the
blockchain.

• Contract Account: Is an ccount controlled by the source code of the smart contract
which defines its behaviour. When this account receives a transaction, it starts to exe-
cute the corresponding snippet of code and hence changes its state after a successful
execution. This type of accounts can also interact with another contract account or
an EOA.

4.2.3.2 Ethereum Virtual Machine

Ethereum Virtual Machine "EVM" is the runtime environment for Ethereum smart con-
tracts. The EVM executes the smart contracts in an isolated fashion, in other words, the
execution has no access to network, file-system or other processes [Evm]. This makes
the execution results deterministic and any malicious node trying to alter the execution
results can be easily detected. Computations in the EVM are done via a stack-based
bytcode language similar to traditional assembly languages, where the programs are com-
posed of operational codes (opcodes). Each opocode has a predefined execution cost in a
unit called "Gas", where gas is the internal pricing for running a transaction or contract in
Ethereum.

4.2.3.3 Smart Contracts

Smart contracts are basically the programs that reside in the Ethereum blockchain network
and are executed by miner nodes. Any smart contract has set of functions that define its
behaviour and data that defines its state [Sma]. For every smart contract created and
deployed over the Ethereum blockchain, there exists a contract account. Each contract
account has an address which allows users to interact with the contract by invoking its
functions.

Fortunately, smart contracts are not directly written in the EVM language but actually
are written in high level language such as Solidity. The code is then compiled into byte-
code to be deployed over the blockchain and gets executed by the miner nodes EVM.

4.3 secsla compliance monitoring framework 67

4.2.3.4 How to Interact with Smart Contracts

The first step towards interacting with a smart contract is running an Ethereum node
connected to the public Ethereum blockchain. Geth is the official Ethereum node imple-
mentation that can be installed in order to connect to the public Ethereum blockchain
[Get]. There are two main components that are crucial to interact with the smart contracts
deployed over the blockchain, namely the Web3 API and oracles.

• Web3 API: The Web3 API is the most widely used API by decentralized applications,
it offers the Ethereum nodes to interact smoothly with the blockchain.

• Oracles: By design the smart contracts are passive when it comes to the interaction
with the outside world "outside the blockchain". This means smart contracts are
not allowed to fetch data from external sources and need trustworthy data feeders
to feed them with the required data. An oracle is basically a data feeder that col-
lects real-world data and send it to the smart contract, hence it plays the role of an
intermediary between the outside world and the blockchain. Oracles are currently
provided by third-party trusted services that collect various data types such as tem-
perature, stock market prices, etc. Oracles can utilize the web3 API in order to be
able to interact with the smart contracts deployed on the blockchain [Ora].

4.3 secsla compliance monitoring framework

After finding the best matching CSP in Chapter 2, the SLOs associated with the secSLA
are negotiated between the CSP and the customer during the secSLA negotiation phase
(i.e., the negotiation phase is not covered in this dissertation). At the end of the negoti-
ation phase, the CSP commits to deliver the agreed-on SLOs in the secSLA. Afterwards,
the customer utilizes the proposed monitoring approach to validate the agreed-on SLOs
compliance (shown in Figure 4.1).

4.3.1 Monitoring Approach Architecture

The proposed approach is composed of the following three progressive stages.

Satge (1) The agreed-on SLOs’ values are extracted from the secSLA and the measurement
technique for each SLO is defined. The defined measurement techniques are formu-
lated as "tests" to be executed during the monitoring scheme. These tests are used
to determine the real-time values of the SLOs. Both the contracted SLOs and tests
are developed in the smart contract. The smart contract is deployed and executed in
the blockchain.

Satge (2) The CSP services/SLOs are monitored over a certain period of time using customer
data oracle as shown in Figure 4.1.

Satge (3) The monitoring logs measured in Stage (2) along with the measurement techniques
defined in Stage (1) are used to validate the contacted SLOs; whereas the contracted
values from the secSLA are used as the validation reference.

Before detailing each of the three monitoring stages, we explain the main components
of our model as depicted in Figure 4.1:

68 monitoring the compliance of cloud services

Monitoring Framework

CSP

VM VM VM

Virtualization layer

Customer

Service

2 - Smart
Contract

1- Ethereum Blockchain

Interacts
with

Interacts
with

3 – Customer
Cancelation

Oracle

3 – Customer
Data Oracle

3 –
LogsRetriveal
Data Oracle

3 – CSP
Cancelation

Oracle

secSLA
SLOs

measurement
repository

Load
tests

Load
SLOs

Figure 4.1.: Monitoring system architecture

1. Ethereum private blockchain is the underlying infrastructure of our system. It serves
as a decentralized trustless computing platform, where our smart contract is exe-
cuted in a decentralized manner. The execution results are verified and stored by
every blockchain node.

2. The smart contract is the key component of our proposed approach. The smart
contract includes the contacted secSLA SLOs and the measurement techniques of
each SLO. Furthermore, the smart contract is responsible of:

- Interacting with different oracles (e.g., receiving the monitoring logs from data
oracles).

- Aggregating the monitoring logs using the defined measurement techniques
(where each SLO value is validated against its contracted SLO value).

- Autonomous compensation in case of secSLA violation.

- Offering both time-based and on demand secSLA cancellation.

3. Oracles which represent the implemented off-chain software, which depends heav-
ily on the Ethereum web3 API and certainly can only interact with the blockchain
through a valid Ethereum EOA account. In the proposed approach, there are two
types of oracles (a) data oracles, and (b) cancellation oracles. The customer data
oracle (shown in Figure 4.1) is responsible for:

- Executing the monitoring tests according to a predefined monitoring frequency
to report the values of the SLOs.

- Preprocessing and batching the monitored logs to be understandable by the
deployed smart contract.

- Sending the preprocessed batched logs along with the secSLA compliance ses-
sion parameters to the smart contract (e.g., number of batches, oracleID)

4.3 secsla compliance monitoring framework 69

The log-retrieval data oracle (shown in Figure 4.1) is responsible of retrieving back
the batched logs based on transaction ID from the blockchain.The cancellation or-
acles is used in the smart contract cancellation mechanism. Note that, oracles can
only interact with the blockchain through a valid Ethereum EOA account.

We do mention that, both the CSP and the Cloud customer are running nodes in the
same Ethereum blockchain and can interact with the deployed smart contract via their
corresponding oracles as depicted in Figure 4.1. No other entity has access to the smart
contract’s functions as our developed smart contract only accepts transactions originating
from either the CSP address or the customer’s address. Both the CSP and the customer
must agree on all the used oracles and their responsibilities beforehand. Each monitoring
stage is detailed in the following sections.

4.3.2 Stage (1): Measurement Definitions

The SLOs contacted in the secSLA have to be monitored throughout the full service life
cycle in order to assess the compliance of the CSP to the security level of these contracted
SLOs. In this stage, the process of defining SLO measurement techniques is specified.
The description as well as the metric of each SLO are studied to define an appropriate
measurement to determine the SLO’s value. The measurement definition describes the
process used to determine the value of each SLO from the customer side. 142 SLOs
were examined (provided by NIST [NIS08], Center of Internet and Security (CIS) [Cis],
EC CUMULUS [PHK+13], EC A4Cloud [NG14] and EC SPECS [Pro14]). Out of all the
examined SLOs, 9.4% can be measured from the customer side. The measurement can
yield exact values which can be directly compared to the values provided by the CSP. The
small number of the SLOs which can be measured is due to the limited visibility and
control of the customer on the Cloud model. The majority of the proposed SLOs requires
access to the Cloud platform. We used three different SLOs in our evaluation and vali-
dation experiments, namely percentage of uptime, percentage of processed requests, and
secure cookies forced. We explain each of these SLOs and their measurement techniques
as follows:

4.3.2.1 Percentage of Uptime

It is the percentage of time slots in which the service is considered available. Accordingly,
the measurement period is divided into timeslots of fixed length slotSize. A slot is consid-
ered available if the percentage of failed requests within a timeslot is less than a defined
percentage timeslotFailThreshold.
Measurement. To monitor the availability of the service throughout the full life cycle,
requests are sent periodically to the service with a predefined frequency and the response
of the CSP is verified. The status of the requests are used to calculate the percentage of
uptime using Equation 4.1.

P
Available slotsP

Slots
(4.1)

70 monitoring the compliance of cloud services

4.3.2.2 Percentage of Processed Requests

A request is considered successful, if the service was delivered without an error and
within a predefined time frame.
Measurement To measure this SLO, service requests are generated at a predefined fre-
quency and the percentage of successful requests is calculated over the measurement
period.

P
Successful requestsP

Requests
(4.2)

4.3.2.3 Secure Cookies Forced

Secure cookies forced SLO [Pro14] reports whether the service enforces the usage of secure
cookies or not. This SLO is used to serve sensitive data protection, for protecting data in
transmission. The secure attribute is set for a cookie to restrict sending it over secure
channels only (HTTPS connections) [Bar11].
Measurement. By sending HTTP GET request to the service and examining the Set-
Cookie header in the responses, one can check if the secure attribute is set to true in order
to validate the usage of secure cookies.

As previously mentioned, the measurement for each SLO is formulated as tests and
developed in the smart contract.

4.3.3 Stage (2): Monitoring Approach

In this stage we introduce the Cloud monitoring approach that enables customers to val-
idate the compliance of a running Cloud service to its secSLA as depicted in Figure 4.2.
The monitoring and validation processes comprise the following phases:

• Phase 0

– Private Ethereum blockchain is created and both the CSP and the customer
exchange their Ethereum addresses.

– The CSP deploys the smart contract with an ether deposit value equals to the
customer subscription’s value and includes the customer’s address.

– The smart contract’s constructor function is autonomously called on successful
deployment to set its balance to the received ether and to mark the start time
of the secSLA.

– After a successful deployment, the CSP shares the smart contract’s address with
the corresponding Cloud customer.

– The smart contract contains the contracted SLO values as well as each SLO
measurement technique defined in Section 4.3.2.

• Phase 1

– The customer initiates a validation session by sending a validation request to
his/her data oracle. The request includes some information about the CSP (e.g.,
IP address or host-name) and the SLO(s) required to be validated.

4.3 secsla compliance monitoring framework 71

Figure 4.2.: System workflow phases - sequence diagram

– The customer’s data oracle is responsible of: (a) executing the tests according to
a predefined monitoring frequency to report the values of the measured SLO(s),
and (b) batching the monitoring logs and then preprocessing the batched logs
to match data formats that can be manipulated by the smart contract.

– The customer’s data oracle interacts with the corresponding function of the
smart contract (e.g., set_uptimeAvailability_sessionParams()) by sending the to-
tal number of batches and its oracle ID.

– The smart contract grants the customer’s data oracle access to the correspond-
ing receiving logs function (e.g., receive_uptimeAvailabiltyLogs()) only if there
is no other oracle already interacting with the same function. This feature
behaves exactly like a mutex and synchronizes the access of the distributed
customer data oracles to the different smart contract’s receiving logs functions.

– The smart contract receives the batches from the customer’s oracle and once
all the agreed on batches (e.g., 30 batches for one month monitoring logs) have
been received, the contract starts the validation phase (Phase 2).

• Phase 2

– The smart contract starts "aggregating" the received batches that constitute the
whole monitoring logs session (e.g., one month). Smart contract aggregates the

72 monitoring the compliance of cloud services

received monitoring logs according to the measurement technique of each SLO
in order to obtain the SLO measurement value. This value is validated against
the corresponding contracted SLO value developed in the smart contract in the
initial phase.

– The smart contract performs an SLO compliance by validating the aggregated
values against the SLO values from the secSLA.

– In case of a detected violation, the smart contract compensates the customer
based on the severity of the violation. The equivalent compensation value in
ether is automatically sent to the customer address.

– If the aggregated values are in adherence to the agreed on SLOs, the smart
contract records the incidence as compliant logs.

– Phase 1 and Phase 2 are repeated until, the contract’s end date arrives or the
smart contract receives an early contract cancellation from both parties (the CSP
and the customer).

The proposed monitoring framework enables the customer to adjust the monitoring con-
figuration (e.g., monitoring frequency, monitoring duration, validation period) according
to his/her required monitoring coverage. All the processes performed by the framework
are automated.

4.3.4 Stage (3): Monitoring System Processes

The smart contract executes two main processes which are:

4.3.4.1 Aggregation and Compensation Processes

1. The smart contract starts a secSLA enforcement session only when the authorized
customer1 sends to the smart contract the session parameters.

2. Before setting the session parameters, the smart contract checks first whether the cor-
responding aggregation function is free (in case the customer is running distributed
oracles as will be explained in Section 4.3.5).

3. To verify the logs freshness, the smart contract examines the session ID, which is
a unique value which represents the secSLA enforcement session and relates to the
monitoring logs. If the session ID has not been recogonized (not stored in the ses-
sionIDs contract’s storage), this means the logs are fresh and eligible for an secSLA
enforcement session.

4. The smart contract keeps on receiving the logs batches and once the number of
batches received are equal to the contracted number of batches (e.g., thirty batches
for one month logs), it starts aggregating the received batches using the correspond-
ing measurement formula and stores the aggregated result.

5. The aggregated result is validated by the smart contract against its corresponding
SLO. If the aggregated result is not compliant to its contracted SLO, the customer is
compensated via Ethereum blockchain transaction originating from the smart con-
tract (deducted from the CSP’s deposit paid on deployment).

1 The customer’s Ethereum address matches the Cloud customer’s address stored in the smart contract

4.4 security vulnerabilities of ethereum smart contracts 73

4.3.4.2 Cancellation Process

We propose an on-demand synchronized cancellation mechanism for the CSP and the
customer, in case they both decided to cancel the secSLA enforcement smart contract
before its intended termination date. Cancellation function entails two main steps: (a)
receives from the CSP/customer their request to cancel the contract, and (b) sends the
deposit back to the CSP (or the remainder) and then deactivate permanently the smart
contract. The cancellation function only enforces the cancellation, when it receives from
both the CSP and the customer a cancellation request.

Apart from the on-demand cancellation, the proposed approach also implements a
time-based cancellation mechanism to adhere to the traditional agreements that define
start/end date. We utilize the block timestamp, in which the smart contract was mined at,
in order to mark the start date of the contract. Beside that, we rely on the date data-type
in the solidity programming language to set beforehand the termination date of the smart
contract.

4.3.5 Distributed Customer’s Data Oracles

Despite the fact that, the blockchain technology provides a decentralization execution
platform which is resilient against single point of failure. However, the customer data
oracle proposed is actually prone to single point of failure, as it is considered to be a
centralized entity. Thus, we propose a distributed customer data oracles scheme, where
the customer can interact with the smart contract through several data oracles to increase
the system’s robustness.

To ensure the execution correctness of the aggregation mechanisms in case of dis-
tributed data oracles, a synchronization mechanism is required. The synchronization
is implemented in the smart contract and it’s based on the concept of mutual exclusion
(mutex) where the functions responsible for receiving and aggregating the correspond-
ing logs are considered as critical sections in which no simultaneous access of oracles is
granted. This ensures correct execution of the different aggregation sessions, for instance
if the first oracle has already started sending uptime-availability SLO logs to the "receive-
uptime-and-aggregate" smart contract function. Other oracles are blocked to this function
and can only interact with other functions (i.e., other SLOs aggregating functions). The
sequence flow diagram in Figure 4.3 depicts how the distributed customer data oracles
scheme works in practice. As depicted in Figure 4.3, the first oracle sends the SLO logs
and thus already blocked the corresponding SLO aggregation function. Accordingly, the
second oracle started to interact with the second SLO aggregate function (i.e., SLO2 func-
tion) and the third with the third SLO function.

4.4 security vulnerabilities of ethereum smart contracts

Software vulnerabilities are very destructive in the context of smart contracts, as they
can result in losing control of customers’ digital wallets containing ether. This section
discusses a duplicate compensation scenario. Duplicate compensation is the process of
compensating a customer more than once based on the same monitoring session. Thus,
the deployed smart contract has to keep track of the successfully aggregated monitoring
sessions to prevent duplicate compensations.

74 monitoring the compliance of cloud services

Figure 4.3.: Distributed oracles scheme workflow - single point of failure avoidance

To avoid this, the proposed system includes a unique session ID attribute which is
basically used to uniquely identify the different monitoring sessions by the customer’s
data oracle. The session ID is sent to the smart contract along with the monitoring logs.
The session ID is used by the smart contract for the aggregation, compliance tests and
compensation processes.

There are three session types in the proposed approach which are related to the three
used SLOs. Each session has its own session ID variable declared in the smart contract.
The smart contract assigns its session ID variables to the corresponding received IDs and
marks the session ID as a successfully aggregated session only when the whole batches
are received and the aggregation process along with the compliance and the compensation
processes are successfully executed.

4.5 implementation and evaluation

The proposed approach is evaluated by conducting two experiments. In the first experi-
ment, we evaluate the functionality of the approach on Amazon EC2. The second experi-
ment measures and compares the overall gas consumed by the oracle (with different batch
sizes).

In these experiments, a machine with the following specifications is used: 4 GB RAM,
Intel Core i5-3337U CPU 1.80 GHz x4, Ubuntu 16.04 LTS, OS-type 64 bit, disk 60 GB.

4.5 implementation and evaluation 75

4.5.1 Setting-up Ethereum blockchain

Due to the need of high storage requirements to run a geth Ethereum node and connect
to a public test-network2 as well the intensive computational power needed for mining,
we execute our evaluation and analysis using the testrpc Ethereum blockchain network
simulation. TestRPC is a node.js implementation of the Ethereum protocol which offers
web3 API for the interaction with the blockchain. However, it only simulates the min-
ing process which requires high computational resources. Testrpc provides ten external
Ethereum accounts each one with a hundred ether.

We implement three different aggregation mechanisms according to the SLOs specified
in Section 4.3.2 (i.e., uptime-availability, percentage of processed requests, and secure
cookies forced). Further, we develop a synchronization mechanism for the interleaving
oracles. The on-demand and the time-based cancellation is also assured through the
smart contract. Finally, we develop a compensation mechanism. The developed smart
contract functions as well as the smart contract deployment process are presented in the
following subsections.

4.5.1.1 Smart Contract Functions

The deployed smart contract is composed of the following functions:

1. SecSLA enforcement smart contract constructor, the smart contract constructor is
called automatically when the contract is successfully deployed.

2. SLO related functions, which are implemented to receive the SLOs’ logs from the
customer data oracle, and also synchronize the access to these functions in case of
interacting with multiple oracles.

3. On-demand cancellation function, which deactivates permanently the deployed smart
contract.

4.5.2 Cloud Customer Data Oracle

The Cloud customer data oracle is implemented in python programming language. To
monitor the service provider, firstly the information about the service to be monitored
must be provided, including the IP address of the service and the hostname of the web
based management interface. Secondly, the customer specifies the duration of the moni-
toring session, that is the duration over which the service is validated. In addition, the
frequency at which the measurements of the SLO are conducted during the monitoring
session is specified. The higher the chosen frequency the more fine grained is the mea-
surement.

Using these specification, as well as the SLOs’ values, the monitoring session is initiated.
Using the frequency specified by the customer, the monitoring framework measures the
value of the SLOs’ by continuously monitoring the provided service. Then, the monitoring
logs (of the three SLOs) are batched according to both the slot and batch sizes. These
batches’ feed the smart contract using a smart contract handler class. The constructor

2 Examples of public Ethereum test-networks are ropsten [Rop] (so far more than 2.7 million blocks with
almost 16 million transactions) and rinkeby [Rin] (so far almost 2 million blocks with more than 4 million
transactions)

76 monitoring the compliance of cloud services

function of this class is responsible for: (a) creating a web3 API object that connects to
the customer’s Ethereum node, (b) instantiate the deployed contract via its application
binary interface (ABI JSON file) and the contract’s Ethereum address, and (c) allows the
customer’s address to run the oracle. Using the monitoring logs and the measurement
mechanisms specified in Section 4.3.2, the smart contract aggregates and validates the
values of the SLOs with the built in contacted SLOs.

Finally, a batch retrieval script is developed to be used by either the CSP or the Cloud
customer, in order to read back the batches stored on the blockchain by the smart con-
tract’s aggregation functions. It can be used, for instance, by the CSP to make sure that
the batches sent by the customer to the blockchain are exactly the same as the logs the
CSP provided.

4.5.3 Experiment 1: Evaluating the Functionality of the Approach on Amazon EC2

Three EC2 instances each in a different region, along with their web based management
interfaces (Amazon management console) were monitored. The configurations for the
instances are shown in Table 4.1.

US_EC2 FRA_EC2 TYK_EC2
Region US East(N. Virginia) EU(Frankfurt) Asia Pacific(Tokyo)

Instance type t2.nano

Amazon M/C Im-
age

Amazon Linux AMI 2016.09.0 (HVM) [Ama17]

Network Default

Availability
zone

us-east-1d eu-central-1b ap-northeast-1a

Tenancy Shared

Table 4.1.: Instances configurations

The SLA defined by Amazon for EC2 only includes service availability. For Amazon
EC2, unavailable means that all of your running instances have no external connectivity.
The value committed in the SLA for this SLO is a lower bound of 99.95%.

The oracle frequently sends Internet Control Message Protocol (ICMP) echo requests to
check if the service is available. With the aim to detect the shortest possible change and
thereby achieve maximal coverage of changes in the monitored SLO values. For availabil-
ity, the shortest possible change was assumed to be the reboot time of an instance during
which the instance is unavailable. The reboot time of an instance has been experimentally
assessed to be 5 seconds. Hence, the monitoring frequency is set to one test every 5 sec-
onds. For the other security properties of the management subsystem, a lower monitoring
frequency was used, since changes in the configuration of the web server hosting the con-
sole are expected to occur less frequently. Moreover, automated access to the console at
high rates might be considered malicious and thus, the requests might get blocked by the
CSP. Accordingly, the monitoring frequency for the consoles was configured as 6 times
per hour.

4.5 implementation and evaluation 77

The experiment was run for a month with slot size of one hour for both the uptime-
availability and the percentage of processed requests service level indicators, and a slot
size of 10 minutes for the secure cookies forced.

Table 4.2 shows the measured values of the SLOs for all three instances. According to
the results, the instance deployed in the US East (New Virginia) offered the least percentage
of uptime with a percentage still greater than 99%. The lowest percentage of processed requests
is reported for the instance located in Asia Pacific (Tokyo).

We analyzed the collected data to investigate the frequencies and duration of the out-
ages during the measurement period. The shortest observed outage is the failure of a
single request, i.e., an outage duration of less than 10 seconds. The longest outage dura-
tion extracted from the results of all instances is 255 seconds experienced in the US_EC2

instance. Finally, all the consoles enabled secure cookies.

US_EC2 FRA_EC2 TKY_EC2
% of Uptime 99.0915% 100% 99.9303%

% of Processed
Requests

99.8088% 99.9930% 99.7571%

Table 4.2.: Amazon EC2 instances results

4.5.4 Experiment 2: Consumed Gas (Cost) Evaluation

In this experiment, we compare the overall gas consumed by our approach according
to different batch sizes. As already mentioned, the SLOs’ monitoring logs are batched
according to the slot size as well as the batch size and then feed to the smart contract.
We evaluate our approach based on sending (a) daily monitoring logs (one day batch), (b)
three days batch, and (c) five days batch, to the smart contract.

A python script is developed to calculate the total consumed gas by the secSLA compli-
ance validation and compensation for one month raw logs as depicted in Table 4.3. The
total gas consumed by the approach is depicted in Table 4.3. These results are calculated
based on the current estimated gas price which is(10-9) ether at the ether current market
value3 (1 ether is 531$). It is worth noting that, the cost of the secure cookies enforcement
session cost for the five days batch scenario cannot be measured, due to the huge trans-
action size which exceeds the block limit (6721975 gas). This huge size comes from the
fact that the secure cookies logs were collected at a higher frequency (10 minutes slots).
The number of slots comprising a one day of secure cookies logs is 6 times larger than the
uptime-availability and the processed requests.

Furthermore, we calculate the amount of gas consumed by every transaction sent from
the customer’s oracle to the smart contract. Table 4.4 shows the average cost per trans-
action for each SLO’s batch sizes. The web3 estimate transaction gas function is used to
estimate the cost of one transaction holding 5 days of raw secure cookies logs.

3 https://ethereumprice.org/

78 monitoring the compliance of cloud services

Batch size Total Gas Consumed Equivalent in Ether USD Equivalent
1 day 58848167 0.0588 31.2$

3 days 57360993 0.0573 30.4$

5 days 58283227 0.05828 approx. 29.2$

Table 4.3.: Total gas consumed by the validation and compensation processes based on one month
logs with different batch sizes

Average cost per transaction

Service Level Indicator 1 day of
logs per Tx

3 days of
logs per Tx

5 days of
logs per Tx

Uptime-Availability 337705 951055 1661498

Percentage of pro-
cessed requests

348743 989013 1725654

Secure-cookies forced 1275156 3796030 >6721975

Table 4.4.: The consumed Gas of the validation and compensation processes per SLO

4.6 related work

Multiple approaches have been proposed to validate the compliance of the service to the
SLA, by verifying the enforcement of the contracted properties. Haq et al. [HBS10] pro-
posed a framework to manage SLA validation by defining rules to map high-level SLOs to
low-level metrics that the CSP can monitor throughout the service life-cycle. Furthermore,
Rak et al. [RVEE+11] and Liu et al. [LKL13] proposes Cloud application monitoring tools
that detect SLA violations. Although these approaches provide effective techniques to
detect SLA violations, they are only focused on (as well as most other existing monitor-
ing techniques, such as Rana et al. [RWQ+08] and Zhang et al. [ZLLL14]) monitoring
performance properties rather than security properties.

Few approaches that are concerned with monitoring security properties of Cloud ser-
vices have been proposed in the literature. Ullah et al. [UA14] proposed an SLA man-
agement solution that installs monitoring agents on the Cloud service to measure service
security properties. Ullah et al. [UAY13] and Majumdar et al. [MMW+15] proposed tools
to be used by the CSP to audit the compliance of their services to some security properties
by depending on log analysis. Nevertheless, all of the previously mentioned approaches
address CSP side validation by proposing solutions managed/deployed by/at the CSP or
require cooperation from the CSP. Hence, customers cannot validate the effectiveness of
these approaches or guarantee transparency of the reported results.

Few approaches have been proposed to utilize the blockchain technology in Cloud com-
puting. Margheri et al. [MFYS17] proposed a design and implementation of a governance
approach for the Federated Cloud as-a-Service (FaaS) European union project (sunfish)
[SSNM16]. Their proposed approach utilizes the blockchain technology as an infras-
tructure to ensure a distributed and democratic governance. Gaetani et al. [GAB+17]
proposed an approach for tackling the database integrity challenges in the Cloud envi-
ronment through utilizing the blockchain technology. Shafagh et al. [SBHD17] proposed
a new paradigm for managing IoT data in the Cloud. Liu et al. [LYC+17] proposed a

4.7 summary 79

blockchain based approach to replace the data integrity services provided by the Cloud
service providers on the IoT data. Ferdous et al. [FMP+17] proposed a decentralized
approach for runtime access control systems in Cloud federations. Lee et al. [Lee18] pro-
posed a new approach for identity and authentication management as-a-service (IDaaS)
offered by Cloud providers to their customers.

4.7 summary

In this chapter, the compliance validation framework is presented. A decentralized mon-
itoring framework relying on Ethereum block chain to validate the compliance of the ser-
vice to the measurable SLOs is proposed. The measurements for the SLOs were defined.
Each measurement proposes the complete process to be carried out to obtain the value of
the SLO. The defined measurements were used in the framework to test the compliance of
the service to the contracted values of the SLOs in real-time. The framework enforces the
secSLA using Ethereum smart contact and validates the compliance of services through-
out its full life-cycle. The framework autonomously compensate customers upon services
violation. The design of the framework and the role of each component in the validation
process were presented. Moreover, the implementation details of the components in the
framework as well as the evaluation experiments were discussed.

Part IV

U S E - C A S E

5
Q R E S : Q U A N T I TAT I V E R E A S O N I N G O N E N C RY P T E D S E C U R I T Y
S L A S

Despite of the benefits of enclosing security-related information in the secSLAs, as dis-
cussed in the previous chapters, CSPs do not release sensitive information for security
and/or commercial reasons. Publicly detailing sensitive commercial information or dis-
closing detailed information regarding the CSPs security posture can increase the rate
of security breaches and hence, lead to financial losses stemming from reputation dam-
ages. Security posture is defined as the CSP’s level of security based on the implemented
security controls.

In this chapter, we present the first step towards providing security assurance and trans-
parency between Cloud customers and CSPs, while at the same time ensuring the confi-
dentiality of the CSPs detailed information regarding their security posture. In other
words, we propose QRES (Quantitative Reasoning on Encrypted Security SLAs) system,
that enables: (a) CSPs to disclose information regarding their security posture in their sec-
SLAs and encrypt their secSLAs to ensure data confidentiality, and (b) customers to search
for their requirements over the CSPs’ encrypted secSLAs and find the best matching CSP
according to their requirements.

5.1 motivation and contribution

In order to design and build such a system (QRES), several challenges need to be ad-
dressed:

1. The Customers’ cannot search over the encrypted secSLAs unless their requirements
are also encrypted with the same secret key used by each CSP to encrypt its secSLA.
Consequently, the system should uphold the privacy of all parties by allowing cus-
tomers to search/match their requirements without neither the CSPs learning the
customers’ queries, nor customer obtaining the CSP’s secret key.

2. The system should prevent malicious customers to ascertain information about each
CSP offered services (i.e., by performing several searching iterations, each iteration
with different requirements or by performing frequency analysis). Furthermore,
prevent malicious CSPs from deliberately providing false information to match the
customer requirements.

To tackle these problems, QRES utilizes a two-party privacy preserving query over an
encrypted data scheme (named QeSe). QeSe is based on a privacy preserving computation
(i.e., Yao garbled circuit [Yao86; LP09]) to allow CSPs to encrypt the customers’ search
queries without learning them. Accordingly, customers can find the best matching CSP’s
secSLA without knowing the CSP’s encryption key. Furthermore, the protocol supports
a new security property by enhancing the security setting of the traditional two-party
privacy preserving computation (Yao garbled circuit evaluation). This is achieved by vali-
dating the participants’ inputs before computation.
Contributions. In this chapter the following contributions are proposed:

83

84 qres : quantitative reasoning on encrypted security slas

1. QRES, the first system which enables CSPs to publicly disclose detailed information
about their offered services in encrypted secSLAs and customers to assess the CSPs’
offered security services and find those satisfying their requirements. QRES is im-
plemented and benchmarked using Amazon AWS DynamoDB [Ama12]. We show
that the system’s performance is practical for the presented use-case. We utilize
real-world CSPs’ secSLAs found on the public STAR repository.

2. A two-party privacy preserving query over encrypted data scheme (named QeSe),
used as a basis for QRES. The protocol enhances the security setting of the traditional
two-party privacy preserving computation (Yao garbled circuit evaluation).

3. Formal proof of the system’s correctness by firstly defining the needed security prop-
erties. Then conducting a formal security analysis of the proposed system using
ProVerif [Bla01], an automated cryptographic protocol verifier, establishing the de-
fined properties against a strong adversarial model (i.e., Dolev-Yao adversary model
[DY83]).

5.2 background

This section briefly explains the basic concepts and cryptographic notations used in this
chapter.

5.2.1 Format of secSLAs

The secSLA shown in Figure 2.1 can be specified using a machine readable format such
as an XML structure as depicted in Listing 5.1.

Listing 5.1: Excerpt of the SLA depicted in Figure 2.1

< SLA slaid=" sla1 ">
<service id="S1" name =" Identity and Access Management" category="IAM" pre="1">
<control id="S1 .1 " name ="Information Security Incident Management" category="IAM-09"

pre="2">
<slo id="S1 .1 .1 " name ="Percentage of timely incident reports " value=" level3 " pre="3"

></slo>
<slo id="S1 .1 .2 " name ="Recovery time" value=" level2 " pre="4" ’></slo>
</control></service></ SLA>

The XML data values can be captured using the pre-fields shown in Listing 5.1 (named
"pre"), which are sequence numbers that count the open tags in an XML. An example
of how the pre-fields are computed is depicted in Table 5.1. Each pre-field is used as a
service identifier as each service/SLO has a unique pre-field in the secSLA.

5.2.2 Searching Over Encrypted Data

We define the problem of searching over encrypted data using the following example.
Assume a customer who encrypts his/her documents and stores those at the CSP’s storage
server. However, by encrypting these documents, the customer can not search for certain
keywords anymore and thus, content retrieving is very inefficient. The basic approach for
retrieving the required data related to a certain keyword would require the customer to

5.2 background 85

XML structure pre-field

< S
1

> 1

< S
1.1 > 2

< S
1.1.1 value=level

3

> 3

< S
1.1.2 value=level

2

> 4

< /S
1.1 >

Table 5.1.: Excerpt of a secSLA XML structure with the calculation of pre-fields

download all stored encrypted documents, and then decrypt them to perform the keyword
search. However, this solution is time consuming and impractical. In addition, retrieving
all files incurs unnecessary network traffic, which is undesirable in the pay-as-you-use
Cloud paradigm used today.

From the above problems, the need arises for an efficient data retrieval scheme which
enables the customer to search directly over encrypted data. A solution to these problems
is what is widely known as searchable encryption (SE). SE allows a customer to encrypt
data in such a way that he/she can later generate search tokens to send queries to the CSP.
Given these tokens, the CSP can search over the encrypted data and retrieve the required
encrypted files. As specified in [KPR12], a SE scheme is secure if: (i) the ciphertext alone
reveal no information about the encrypted data, (ii) the encrypted data together with a
search token (i.e., queries) reveals at most the result of the search, and (iii) search tokens
can only be generated using the same encryption key used to encrypt the data.

There exists a large number of SE schemes [SWP00; BCOP04; BBO07; KPR12] which
are either deterministic or randomized. Deterministic schemes [BBO07] encrypt the same
message to the same ciphertext. However, it does not protect against frequency analysis
attacks. On the other hand, randomized schemes [SWP00; KPR12] prevent frequency
analysis by salting ciphertexts and thus providing stronger security guarantees. However,
the usage of salt in these schemes requires combining each token with each salt, resulting
in a processing time linear in the number of salts for each token. In [SLPR15] Sherry et al.,
introduced an encryption scheme which achieves both the detection speed of deterministic
encryption and the security of randomized encryption.

5.2.3 Privacy Preserving Computations

Secure two party computation. The aim of secure two-party computation is to enable
both parties to carry out computing tasks without revealing information of any kind
about private data to the participants. Assume two parties, A and B have some private
information. They want to learn the result of some function using both of their inputs,
while each party would learn nothing about the other’s input. To achieve this, Yao’s
protocol based on garbled circuit (named Yao garbled circuit) [Yao86; LP09] is used. Yao’s
protocol allows two parties to exchange a garbled circuit and garbled inputs for a function,
which can be used to compute an output without leaking information about their inputs.

A garbled circuit is a circuit that consists of garbled gates and their decryption tables.
In a garbled gate, two random bits have been selected for every input wire to the gate, rep-
resenting 0 and 1. Those bits garble the gate, making it impossible to compute the output

86 qres : quantitative reasoning on encrypted security slas

unless someone has access to the garbled computation table. The garbled computation
table maps essentially the random inputs to the output of the gate, which is also random.

We illustrate the basic idea of how Yao’s garbled circuit can be used, assume two parties
A and B that have secret inputs, x and y respectively. Both of them want to compute F(x,y)
without revealing their private inputs to each other (x to B and y to A).

To achieve this, one party (for instance A) prepares a garbled version of the computing
function F (named GarF). Basically, GarF produces the same output as F(x,y), if given the
corresponding encoding of each bit of both inputs x and y.

Garbling the inputs is performed by producing a pair of labels for each input bit of F
(G0,G1, that is one label corresponds to bit 0 and the other to 1). Next, A sends GarF along
with the encoding of x to B, which only needs the encoding of y from A to compute the
GarF without learning any intermediate values. For this task, both parties use oblivious
transfer [Rab05; NP99; ALSZ13].

Oblivious transfer (OT). OT is a crucial component of the garbled circuit approach,
as it enables party B to obtain the encoding of the b bit from A, without (i) A knowing b

and (ii) B learning the encoding scheme. In this way, party B can request from A the keys
that he can use for his input encoding without i) A learning B’ input and ii) B exploiting
the protocol by having access to the encoding scheme and computing much more than
allowed.

5.3 requirements analysis

In this section, the system model is described, the system requirements are presented, and
the threat and trust models are defined.

5.3.1 System Overview

Finding the best matching CSP (according to the customer’s security requirements) is the
objective of the proposed system. Our system model (depicted in Figure 5.1) involves
m CSPs1, a customer CSC, and a broker B. The customer CSC is a company or an
individual who is searching for the best provider that satisfies his/her requirements. The
CSPs are Cloud providers that disclose information about the offered security posture in
their secSLAs. CSPs are encrypting their secSLAs before sending them to the broker. The
broker B2 is an entity that performs the searching of the customer requirements over the
CSPs’ encrypted secSLAs on behalf of the customer. Hence, B ranks and manages the
selection of the best matching CSP.

In our system (Figure 5.1), CSPs’ encrypted secSLAs are certified and digitally signed
by a trusted certification authority (i.e., auditor). The trust assumption relies on the fact
that the CSPs’ certificates are valid and trusted and thus, their encrypted secSLAs are ver-
ified and digitally signed by the auditor. After a successful authorization, every provider
possesses a digital signature on their encrypted secSLA. The CSPs send their signed, en-
crypted secSLAs to an intermediate broker afterwards. After the broker verifies the audi-
tor’s signature, it stores each encrypted secSLA in a database.

Furthermore, customers send their requirements to the broker which tries to match the
customer’s requirements against the stored encrypted data in order to find the best match-

1 Throughout this chapter, we explain our model and queries searching scheme using only one CSP. Neverthe-
less, the same model applies for all CSPs.

2 We assume the case of a novice or basic customer who can not search for his/her over encrypted data

5.3 requirements analysis 87

ing CSP’s secSLA. During this phase, neither the broker can learn the CSP’s encryption
key nor the CSP’s can learn the customer’s requirements. Finally, the broker sends the
customer the CSPs ranking according to the customer requirements.

II

Curious about:
CSP s secSLA

II

Customer
(C)Cloud

Provider
(CSP)

Broker
(B)

Encrypted CSP s secSLA
Customer

Requirements

Auditor

Au
th

or
iza

tio
n

1

3
2

Ranked
providers

Curious about:
Customer

Requirements

III

Registration

Figure 5.1.: QRES System Model

5.3.2 Threat Model

Security literature distinguishes between two adversarial model for secure computation;
participants can be either semi-honest or malicious. We consider a semi-honest (also
known as honest-but-curious) threat model in our system. This is a commonly used se-
curity model for secure computation (we refer the reader to Goldreich [Gol09] for details)
where the semi-honest participants correctly follow the introduced protocol but attempt
to obtain additional information about the other participants. By considering the semi-
honest model, a dishonest participant observing the system’s network should not be able
to alter or recover stored data.

The semi-honest setting is relevant, as all entities, the CSP, B, and CSC, would like to
continue the protocol; acquire the best matching CSP according to CSC’s requirements.
However, each entity can attempt to obtain additional information about the other entity’s
input as depicted in Table 5.2.

5.3.3 Trust Model

Customers can only trust the result of an assessment if the information taken as an input
is reliable. In other words, in order to guarantee the validity of the proposed system, the
encrypted secSLAs provided by the participating CSPs are required to be certified from a
trusted certification authority (the auditor). For example, an auditor certifying the CSP’s
security posture as reflected by its secSLA (e.g., based on an ISO 27001 certificate [Clo17c]).
The trust assumption relies on the fact that the CSPs’ certificates are valid and trusted and
thus, their encrypted secSLAs are verified and digitally signed. Such signing scheme

88 qres : quantitative reasoning on encrypted security slas

Customer CSC Tries to learn the CSP’s private key k in order
to learn the CSP’s secSLA

Cloud Provider CSP Tries to learn CSC’s requirements. or sends
a faulty secSLA; faulty secSLAs are secSLAs
which contain service levels the CSP does not
offer, and could not fulfil, in order to match the
customer requirements.

Broker B Tries to (a) alter CSC’s requirements in order
to match a colluded CSP, or (b) collude with
CSC to learn the CSPs’ secSLAs.

Table 5.2.: The semi-honest threat model of our system

should provide a proving statement without revealing the secSLA input. For simplicity,
we assume that the participating CSP’s encrypted secSLAs are to be verified and digitally
signed. We summarize the initial knowledge of each entity in Table 5.3.

Parameter
Each entity’s knowledge

CSC CSP B Auditor

CSP’s secSLA ⇥
CSP’s Encryption Key ⇥
CSP’s Certificate/ID ⇥ ⇥
CSC’s Requirements ⇥ ⇥

Table 5.3.: Every participating entity’s initial knowledge

5.3.4 System Requirements

In order to provide the privacy and correctness guarantees, the presented system must
ensure:

1. Input Validation: The CSPs’ encrypted secSLAs provided by the participating CSPs
are digitally signed by an auditor.

2. Data Integrity: The system must mitigate any attempt to alter the customer’s re-
quirements. This attempt can be performed by a CSP to modify the requirements
according to its secSLA.

3. Data Confidentiality: The encrypted CSP’s secSLA can only be decrypted using its
CSP’s private key k. Further, the broker B should only learn the output of the search-
ing queries (i.e., the search queries represent the customer requirements). Moreover,
the CSP should not have access to CSC’s requirements to avoid changing its secSLA
specifications according to those.

Note that, B or CSC can ensure the secSLA compliance by monitoring and verifying
the offered service levels by (i) using appropriate log samples provided by the CSP,
and/or (ii) adding alerts and triggers based on the service key measurable param-

5.4 qres architecture 89

eters [HD12] as explained in Chapter 4. In this chapter we only focus on the CSPs
evaluation and services assessment.

Tokens

Customer
requirementsProvider

SLA

Customer
(C)

2

3

 T
ok

en
iza

tio
n

Encryption

Encrypted
tokens

Query search
(QeSe)

6

Broker (B)

Keywords

2
 Tokenization

1

3
2

Ranked
providers

7

Ev
al

ua
tio

n

Keywords transfer

Cloud Provider
(CSP)

4
5

AuditorRegistration

1

DB

Figure 5.2.: QRES System Architecture

5.4 qres architecture

In this section, we detail each of QRES progressive stages as depicted in Figure 5.2.
As an initial phase the customers register and are verified by the broker B before
paying the broker for the offered assessment service. Furthermore, we assume that
the broker’s certificate (certB) is validated by the auditor and is sent by the auditor
to the CSPs.

Stage 1: Providers Authorization.

Every CSP is registered and verified by a trusted auditor. The auditor verifies the
CSPs certificate and then signs the encrypted secSLA. The broker B can verify the
validity of the encrypted secSLAs by verifying the auditor’s signature.

Stage 2: Tokenization.

After CSC creates his/her set of requirements using the same secSLA-XML structure
used by the CSPs to define their provided services, both the CSP and CSC tokenize
their secSLA-XML data specifications such that:

• Each CSP splits its specified services (in the secSLA) into substrings. For every
substring, it creates a fixed length token (8 bytes per token). The generated
tokens are denoted as "tCSP", such that TCSP = t1CSP, . . . , tnCSP; where TCSP spec-
ifies the set of services offered by the CSP in its secSLA and n is the number of
tokens.

• Similarly, CSC splits his/her requirements into substrings and then generates
a fixed 8 bytes token for every substring. The customer’s generated tokens are
named "keywords" and denoted as "wCSC" so that WCSC = w1

CSC, . . . ,wn

CSC;
where WCSC is the set of customer requirements.

90 qres : quantitative reasoning on encrypted security slas

Both the customer and the CSP use the same secSLA template with the same ser-
vices/SLOs where each of them specify different SLO values. Tokens are generated
for each SLO, by searching for the SLO id and extracting only its value and pre-
field of the specified SLO (i.e., each SLO in a secSLA XML has a unique pre-field
as specified earlier and depicted in Table 5.1). For example, the tokens generated
from Listing 5.1 are: "level3||3" and "level2||4". Therefore, for each secSLA no similar
tokens can be generated as no equal pre-fields exist. Even if the CSP is offering two
values for a specific SLO, both tokens would be different because of the different
values.

Stage 3: Tokens Encryption.

QRES utilizes a deterministic encryption scheme Enc(k, x), such that the encryption
of the CSP token (tCSP) is denoted by Enc(k, tCSP). For instance, in order to check
if the CSP’s token (tCSP) is matching the customer keyword (wCSC), we can simply
check if Enc(k, tCSP) is equal to Enc(k,wCSC). Unfortunately, deterministic encryp-
tion schemes, which are rather fast, cannot be used in every case, as every occurrence
of tCSP will result to the same ciphertext. However, encryption randomization is not
required in our system as every generated token tCSP is unique and occurs only
once in the CSP’s secSLA (as every token contains different pre-field). This makes
the occurrence of the same token (tCSP) more than once not possible.

We utilize AES - CBC encryption scheme to encrypt each CSP’s generated token
AESk(tCSP). We use a typical instantiation of a hash function, which is SHA256, to
compute IV. We detail and analyze the QRES system implementation in Section 5.5.

Stage 4: Tokens Transfer.

Both the CSP and the customer, send their tokens to the broker. B verifies the
auditor’s signature and then saves the CSP’s encrypted tokens in a database. For m
CSPs, B saves m different lists with encrypted tokens.

Stage 5: Keywords Transfer.

In this stage, B receives CSC’s requirements (i.e., keywords) securely via an en-
crypted channel (e.g., SSL). Once B receives CSC’s messages, it saves the messages
and starts a secure two-party computation with each CSP in order to find the best
matching CSP according to CSC’s security requirements in the next stage.

Stage 6: Query Search (QeSe).

QeSe is based on two-party privacy preserving computation (i.e., Yao garbled circuit
[Yao86; LP09]) to allow CSPs to encrypt the customers’ search queries without learn-
ing them. For simplicity, we explain this stage using one CSP and B. The broker
B has already stored each CSP encrypted tokens (Enc(k, tCSP)) (from the previous

5.4 qres architecture 91

Provider(CSP) Broker(B)

knowledge : knowledge :

skCSP, pkCSP, pkB, kauth
CSP, t1CSP, . . . , tnCSP skB, pkB, kauth

CSP,w1

CSC, . . . ,wn

CSC

[1] kGar $ KGen(1n)

[2] GarEnck Enc(k, kGar)

[3] Using OT: [3] Using OT:

Verify(pkB, Sig(skB,w1

CSC)) valid? Sig(skB,w1

CSC) w1

CSC := w1

0

. . . w1

n

[4] Gw

1

CSC w1

CSC

where Gw

1

CSC := Gw

1

0 . . . Gw

1

n

GarEnck

Gw

1

CSC

[5] cG
w

1

CSC $ GarEnck(G
w

1

CSC)

cG
w

1

CSC := Enc(k,w1

CSC)

[6] d $ Search(cw
1

CSC , ct
1

CSP . . . ct
n

CSP)

Figure 5.3.: Secure computation protocol between a CSP and the broker (QeSe).

stage) in a database. Furthermore, B has already received the customer keywords. In
order to find the encrypted tokens matching the customer keywords, the customer
keywords have to be encrypted by the same encryption key used by CSP to encrypt
its tokens. In other words, B has to compute Enc(k,wCSC) for every wCSC using the
same encryption key used by the CSP. The main challenge here is for B to obtain the
encrypted wCSC without knowing the CSP’s secret key k and without allowing the
CSP to learn wCSC.

QeSe allows all parties to jointly achieve their purpose by running a secure two-party
computation between the CSP and the broker. We enhance the security setting of
the traditional two-party privacy preserving computation by allowing the garbled
circuit to check the validity of both the encrypted tokens and the broker’s digital sig-
nature of the customer’s requirements. In case there is a problem with the validation
our protocol quits.

The CSP provides B with a "garble" of the encryption function with the key k hard-
coded in it, as depicted in Figure 5.3 (line 2) and Figure 5.4 (we denote this garbled
function by GarEnck). This garbling hides the CSP’s secret key k. GarEnck(x) pro-
duces the same output of Enc(k, x) if given the corresponding encoding of each bit
of input x (i.e., Gx). Thus, B can run this garbled function on each keyword wCSC
in order to obtain the Enc(k,wCSC) only if it is able to acquire from the CSP an
encoding for the wCSC (GwCSC) as depicted in line 4 in Figure 5.3. For this task,
both parties (CSP and B) use an oblivious transfer protocol, where B receives an
encoding of wCSC from the CSP without revealing wCSC. The encoding of keywords

w1

CSC, . . . ,wn

CSC is denoted as G
w

1

CSC
1

, . . . ,Gw

n

CSC
n

. Note that, on input Sig(skB,wCSC),
GarEnck first checks if Sig(skB,wCSC) is a valid signature of wCSC using B’s public

92 qres : quantitative reasoning on encrypted security slas

key (pkB). If it is valid, wCSC is garbled as shown in line 4 in 5.3. It is important
for the security of the protocol to mention that, a garbled circuit is no longer secure
if B receives more than one encoding for the same circuit. Thus, B obtains a fresh,
re-encrypted garbled circuit GarEnck for every wCSC. At the end of this process, B
gets the Enc(k,wCSC) for every wCSC. Afterwards, B searches for an exact matching
of Enc(k,wCSC) over all CSPs encrypted tokens (as depicted in line 6 in Figure 5.3).
Each successful matching result is saved in a list at B using an index d. The process
is repeated for all CSPs. Hence, for m CSPs, B creates m lists. Each of these lists
contains the number of encrypted tokens matching CSC’s keywords.

Cloud Provider
(P)

Broker
(B)

Garbled Enc
(GarEnc)

Garbled Enc
(GarEnc)

Oblivious
Transfer

R1 R2 R3

Figure 5.4.: Illustration of the secure computation protocol between the CSP and the broker (QeSe).

Stage 7: CSPs Ranking.

As a last step, the CSPs are evaluated and ranked according to the number of to-
kens matching the customer requirements. The CSP with the highest number of
encrypted tokens matching the customer keywords, is given the highest score and
selected as the best matching provider.

5.5 implementation and evaluation

Implementation. QRES is implemented in Java, using Apache-Tomcat 9.0 and
Amazon DynamoDB [Ama12] database, which is a NoSQL database service. The
DynamoDB supports both string and key value store models which we used to
store the encrypted tokens (B side). We used Tomcat web server on our Ubuntu
machine to transmit the encrypted data to Amazon DynamoDB (the CSP side). We
implement the hash functions using HMAC based on SHA-256. The symmetric
encryption scheme is implemented based on AES 128. Moreover, we use � = 128

for nonces and 8 bytes per token. Furthermore, we modified Yao’s garbled circuit
coding [Bre11] to fit our encryption scheme. Finally, we implemented two Java
Server Page (JSP) files to send the tokens and to search for the keywords. The
complete source code along with a detailed explanation of setting up and using the
QRES can be found at [QRE17].

5.5 implementation and evaluation 93

10 20 50 150

0

10

20

30

Number of SLOs offered by one CSP

Ti
m

e
in

se
co

nd
s

5 10 20 50

Figure 5.5.: Time used by a customer to search for her/his different keywords over varied number
of SLOs offered by one CSP.

Performance Evaluation. We evaluate the performance of the QeSe protocol run-
ning between the CSP and the B using two use-cases. First, we use QRES with one
CSP which is offering various tokens (SLOs) in its secSLA . Note that, the CSP is
offering one service level for each SLO in its secSLA. Each token (8 bytes) is encrypted
and sent to Amazon DynamoDB. Figure 5.5 shows the amount of time spent by a
broker to search for the customer keywords (i.e. 5,10, 20 and 50 keywords) over
10, 20, 50 and 150 SLOs provided by one CSP. The use-case shows that the time to
search for the customer’s different keywords over various number of SLOs is almost
the same despite the number of the offered SLOs. This is expected as the most time
consuming part of the computation of the circuits is the same despite the amount of
offered SLOs.

Further, we explore the case in which a customer compares various CSPs based on
their advertised secSLAs. Figure 5.6 shows the amount of time a broker spends to
search for the customer requirements (keywords) over 1, 10 and 30 CSPs’ secSLAs
where each secSLA consists of 150 SLOs. For each CSP’s secSLA, we extracted 150

tokens (8 bytes each) which are then encrypted and sent to Amazon DynamoDB
(in our current implementation we saved each CSP token in a different table). The
use-case shows a linear time progression as the broker searches for more keywords
in each CSP’s table.

The SLOs are extracted from the public STAR repository [Clo17d]. The rationale
for using STAR repository is that (i) to the best of our knowledge no other Cloud
secSLA repositories are publicly available and (ii) major CSPs are still in the process
of restructuring their SLAs by leveraging the recently published ISO/IEC 19086.
Currently, the STAR contains reports with CSP’s answers to Consensus Assessments
Initiative Questionnaire [Clo17b] with yes/no answers. Furthermore, we utilized
other requirements defined in multiple research projects such as A4cloud [NG14],
CUMULUS [PHK+13], and SPECS [Pro14].

94 qres : quantitative reasoning on encrypted security slas

1 10 30
100

500

1,000

1,500

2,000

Number of CSPs’ secSLAs each with150 SLOs

Ti
m

e
in

se
co

nd
s

20 keywords
50 keywords
150 keywords

Figure 5.6.: Time used by the customers to search for their different keywords over 150 SLOs of-
fered by varied CSPs.

5.6 security analysis

In this section we formally analyse and verify the security considerations of the sys-
tem architecture described in Section 5.4, with respect to the security requirements
defined in Section 5.3.4.

5.6.1 Formal Analysis

Formal methods can be used to model a cryptographic protocol and its security
properties against an adversarial model, together with an efficient procedure to de-
termine whether a model satisfies those properties.

In this section, we analyse the security of the proposed system protocols with respect
to the security objectives outlined in Section 5.3.4 using ProVerif [Bla01]. ProVerif
is an automated verification tool that can handle an unbounded number of protocol
sessions. It is used to model cryptographic protocols and their security properties
against a strong adversarial model. In contrast to other state-of-the-art tools (e.g.,
the Avispa tools [ABB+05] and Scyther [Cre08]), ProVerif provides a larger feature
set [CLN09]. Furthermore, it allows the modelling of cryptographic primitives using
equational theory which is used to model the Yao’s garbled circuit protocol.

In order to verify a system’s security, first we define a list of security properties.
Then, the context in which the system functions are created. The system’s con-
text consists of assumptions about the environment and the adversarial model. We
model the formal specification of the QeSe protocol, the security objectives and the
adversary model using applied pi-calculus [Bla01]. The applied pi-calculus mod-
elling is used as an input to the ProVerif tool. ProVerif then proves if the claimed
security properties are fulfilled. The formal specification includes the following com-
ponents:

1. Agent model. Agents represent the protocol parties which execute the roles of
the protocol. For instance, we have the sender and the receiver roles in the proto-

5.6 security analysis 95

col. Therefore, in each protocol, each agent performs one or more roles. The agent
model is based on a "closed world assumption", which means that honest agents
show no behaviour other than the one described in the protocol specification (this
model corresponds to honest-but-curious threat model in Section 5.3.2).

2. Communication channel. The communication model describes how the messages
are exchanged between the agents. The channel can be private or public according
to the threat model. In our scenario the channel is public.

3. Threat model. Adversaries are modelled as agents that aim to violate the security
objectives. ProVerif uses the standard Dolev-Yao adversary model [DY83]. In this
model the adversary has complete control over the public communication network.

4. Protocol specification. The protocol specification describes the behaviour of each
of the roles in the protocol. The system does not execute the actual protocol but it
executes the protocol roles performed by the agents.

To model QeSe protocol, we model Yao’s garbled circuit protocol to verify Data con-
fidentiality and Data Integrity. Two agents are used to model our protocol in the
applied pi-calculus (i.e., one CSP and one broker B). Based on Yao’s circuit two al-
gorithms are defined (namely garble Gar and evaluate Eval). Gar takes an input
function with n bits and outputs a garbled function and a pair of labels for each
input bit of the function. Eval takes the garbled function and garbled inputs and
returns the required function output.

We model the CSP’s encryption function as a public parameter represented by a free
variables z

f

(i.e., free variable is similar to global scope in programming languages;
that is, free names are globally known). The private parameters of the CSP and
B are the protocol inputs (the encryption key and the keyword, respectively). The
CSP’s and B’s private parameters are represented as free variables xCSP and yB,
respectively.

The goal of B is to obtain the encryption of its keyword using the CSP’s key. To
achieve this we use the protocol specification shown in Figures 5.3. The garbling
function is modelled using a generated random key, named as the garbling key
Gar(., kGar). The garbling key is used to securely garble the circuit at each protocol
run (as stated earlier, to ensure the garbled circuit security, B receives a fresh, re-
encrypted garbled circuit for each input Gar(yB, kGar).

To model the oblivious transfer, the Broker B generates a commitment of each key-
word with a fresh generated nonce. The commitment of each keyword cannot be
modified and is hidden using the nonce. The commitment is used to request a gar-
bling of the keyword from the CSP without disclosing the keyword to the CSP. We
do model the encryption output as Eval(z

f

, xCSP,yB), where both CSP and B want
to find the keyword encryption output without disclosing xCSP to B and yB to CSP.

5. Security properties. These properties specify the security requirements of the
protocol defined in Section 5.3.4.

a) Data Confidentiality: Modelling strong secrecy to verify the encrypted SLA’s
confidentiality is straightforward and modelled easily in ProVerif (adversary

96 qres : quantitative reasoning on encrypted security slas

learns nothing about the SLA). However, to prove the confidentiality property
in QeSe, we have to prove that the only leakage about the input of the two
parties (CSP and B) should come from the result of the evaluated function.
In other words, if a party obtained the output of the evaluated function, no
leakage should occur about the two parties’ inputs.

This is proved using the indistinguishability property (the notion of indistin-
guishability is generally named observational equivalence in the formal model
[Bla01]). Intuitively, two processes P

1

and P
2

are observationally equivalent
(i.e., written P

1

⇡ P
2

), when an attacker cannot distinguish between the two.
Formal definitions of the indistinguishability property can be found in [AF01;
BAF08]. For example, the privacy property of an electronic voting protocol is
expressed as [Bla01]:

P(sk
A

, v
1

)|P(sk
B

, v
2

) ⇡ P(sk
A

, v
2

)|P(sk
B

, v
1

)

P is the voting process, and an attacker cannot distinguish between the two
situations; i) in which A votes for v

1

and B votes for v
2

from ii) that A votes for
v
2

and B for v
1

, where v
1

and v
2

are the candidates for whom A and B vote.

To prove the data confidentiality, we model two processes that are replicated
an unbounded number of time and executed in parallel. In the first process P

1

,
CSP and B sends two inputs, represented as free variables x0CSP and y0

B, respec-
tively. While in the second process P

2

, the CSP and B sends free variables x1CSP
and y1

B, respectively. If the two defined processes are observationally equiva-
lent (P

1

⇡ P
2

), then we say that the attacker cannot distinguish between the
two process input.

Theorem 1: Data confidentiality is preserved in the system if P
1

and P
2

are ob-
servationally equivalent (P

1

⇡ P
2

). In our protocol this is proven using ProVerif.

b) Result Integrity: In QeSe, data output integrity is preserved if the final re-
sult obtained by both parties CSP (sender) and B (receiver) after a secured
computation is consistent. This means that for the same inputs and the same
function, both CSP and B find the same result. This can be proved using the
ProVerif’s correspondence property [Bla02]. An example of the correspondence
property is, e(M

1

, . . . ,M
j

) =) e 0(N
1

, . . . ,N
k

) , where for any trace of the pro-
tocol for each occurrence of event e(M

1

, . . . ,M
j

), there is a previous occurrence
of e 0(N

1

, . . . ,N
k

).

Therefore, we define the the integrity property as follows:

CSPterm(z
f

, xCSP,yB, r) =)
yB = com(y

1

,n)^ r = Eval(z
f

, xCSP,y
1

) and
Bterm(z

f

, xCSP,yB, r 0) =)
xCSP = Gar(x

1

, kGar)^ r 0 = Eval(z
f

, x
1

,yB) (5.1)

Note that, the CSP’s and B’s private parameters are represented using free vari-
ables xCSP and yB as stated earlier. The property in equation 5.1 states that the
CSP with arguments z

f

, xCSP,yB, r terminates a protocol run with B after (i) CSP

5.6 security analysis 97

receives a commitment of B’s input with a random value n (yB = com(y
1

,n))
and (ii) finding the result r of the of the function z

f

on inputs xCSP and y
1

.
Similarly, B terminates the protocol run with the CSP after receiving the CSP’s
garbled input xCSP and finding the result r 0 of the garbling function z

f

on in-
puts x

1

,yB. Using the correspondence property defined in equation 5.1, the
process !(CSP(z

f

, xCSP))|!(B(zf,yB)), which models the two agents processes
and can be executed any number of sessions.

Theorem 2: Data integirity of all possible executions of sessions of honest parties
in process P is preserved if the correspondence property defined in equation
5.1 is true. For our protocol this is proved using Proverif.

5.6.2 Further Security Considerations

Our system and its protocol are designed and verified against honest but curious enti-
ties. However, with minor protocol modifications our system mitigate against malicious
parties.

• Malicious CSP: In the case of a malicious CSP, it might send (i) an incorrect garbling
function to broker B, and/or (ii) a faulty encrypted secSLA. To prevent the first form
of attack (i), B can prove that the garbling is correct by using the "cut-and-choose"
technique [LP07; HKE13]. Under this technique, a CSP constructs n versions of the
circuit, each structured identically but garbled differently so that the keys for each
gate in each circuit is unique. Additionally, the CSP generates a commitment for
each of its garbled inputs. The CSP then sends each of the garbled circuits with its
garbled inputs to B. Further, B selects n- 1 versions of the circuit to verify. The CSP
de-garbles each of the n- 1 selected circuits, so that B can verify that each of the
revealed circuits are constructed correctly and as expected.

B checks whether the CSP’s garbled inputs match their corresponding (previously
sent commitments). If everything is correct, B evaluates the rest of the circuits and
derives the output from them. Thus, if a malicious CSP constructs the circuits incor-
rectly, B will detect this with high probability. Regarding faulty SLA’s, as explained
earlier, an auditor (whose reputation depends on its trustworthiness) first ensures
the validity of the CSP’s input and thus prevents any CSP from providing faulty
encrypted SLAs.

• Malicious customer: A single customer or a group of colluded customers can try
to use the QRES system to find each CSPs security posture. Each of the colluded
entities can specify different requirements and at the end, each customer gets the
best matching CSP’s secSLA according to her/his requirements. To better illustrate
this kind of attack, we show an empirical validation of the proposed system through
the secSLA information used in the implementation section; a secSLA with 50 SLOs,
where each SLO is composed of four service levels. The number of possible SLA combi-
nations is "450" (i.e., generally xy, where x is the number of service levels and y is
the number of SLOs). Each customer keyword takes on average "0.52" seconds to
search over one CSP’s encrypted secSLA with 50 SLOs with 1 level each (i.e., we

98 qres : quantitative reasoning on encrypted security slas

demonstrate the system evaluation and performance in Section 5.5; as depicted in
Figure 5.5). Thus to find all the possible combinations, it takes 2 ⇤ 1022 years to learn
a CSP encrypted secSLA. Hence, this type of attack is not feasible in our system. In
addition, countermeasures with specific time between sequential queries could be
implemented in the either the broker or the CSP.

• Malicious broker: A theoretical attack that a broker could perform would be to
attempt and alter CSC’s keywords. However, such an attack would be immediately
detected by the customer as at the end they get to know the security details they
‘negotiated’ with the Cloud provider.

System Changes: The QRES system should prevent malicious customers to ascertain
information about each CSP offered services (i.e., by performing several searching iter-
ations, each iteration with different requirements or by performing frequency analysis).
To prevent malicious customers from learning information about CSPs SLAs, QRES al-
lows the customers to search for their requirements over "anonymous" CSPs encrypted
secSLAs. The CSPs anonymity mitigates the malicious customers attacks as customers
learn the result of the searching queries and nothing else.

In order for QRES to provide anonymity for the CSPs, the auditor should first generate
a unique authentication secret for each CSP during their registration phase. This secret
then is send to the broker. Every communication between the broker and the CSP runs
over onion routing [RSG98] anonymity network to ensure anonymity of CSPs. In addition,
the CSP generates an authentication challenge using the hash of a nonce and their unique
authentication secrets. The challenge together with the nonce are send to the broker.
The broker stores the nonces and the challenges alongside with every CSP’s secSLA, but
cannot tell the real identities of the CSPs. After finding the best matching CSP, the selected
CSP’s authentication secret is sent to the auditor by the broker in order to identify the
CSP’s identity. Next, the auditor sends the selected CSP’s identity to B to manage the
agreement between both the CSP and the customer.

Verifying Anonymity: In order to verify the anonymity property of this modification of
the QRES system, we use the ProVerif tool. We model two processes that are replicated an
unbounded number of time and executed in parallel. In each process two CSPs participate
by sending their tokens. First, each CSP constructs an OR circuit and sends the onion
data (CSP

1

$ N
1

$ N
2

$ N
3

) and (CSP
2

$ N
1

$ N
2

$ N
3

). Then, each of the
intermediate nodes (N

1

and N
2

) removes one layer of encryption and at the end forwards
the onion to N

3

. Finally, once the exit node N
3

receives the two onions from the two CSPs,
it removes the last layer and sends the messages to B.

In the first process P
1

, CSP
1

and CSP
2

sends two tokens t
1

and t
2

, respectively. Once
the exit node N

3

removes the last onion layer, it sends the message to B on a public channel
(t

1

||t
2

). In the second process P
2

, the two tokens are swapped; such that CSP
1

and CSP
2

sends t
2

and t
1

, respectively. Similarly, N
3

publishes the message on a public channel
(t

2

||t
1

). The CSPs anonymity is preserved if an attacker cannot distinguish between the
two messages and hence, cannot learn which token is sent by which CSP. Nodes transfer
messages to each other using a public channel.

If the two defined processes are observationally equivalent P
1

(t
1

, t
2

) ⇡ P
2

(t
2

, t
1

), we
say that the attacker cannot distinguish between t

1

and t
2

, which means the attacker is
unable to distinguish when the message changes. Hence, the attacker is not able to link

5.7 related work 99

two communication streams of the same CSP, and thus cannot learn which message is
sent by which CSP.

Theorem 3: The observational equivalence of P
1

and P
2

holds (P
1

⇡ P
2

).

5.7 related work

There exists a large number of searchable encryption schemes. For example, fully homo-
morphic encryption (FHE) [Gen09] and other general functional encryption schemes, such
as Garg et al. [GGH+16], can be used to compute functions over encrypted data. Some re-
cent systems such as CryptDB [PRZB11] and Mylar [PSH+14] support secure computation
efficiently. However, some of them do not address all of our desired security properties.
In [SLPR15], Sherry et al. utilize secure computation on encrypted data for deep packet
inspection. Sherry et al. obfuscates the encryption algorithm using Yao garbled circuit
[Yao86; LP09] and oblivious transfer [ALSZ13]. Garbled circuits have been studied over
the years: for example, Faust et al. [FRR+10], Huanf et al. [HEKM11], Kreuter et al.
[KSS12], Songhori et al. [SHS+15; SZD+16] and Dziembowski et al. [DFS16]. Further-
more, Asharov et al. [ALSZ15; ALSZ17] present an oblivious transfer extension protocol
with respect to efficient malicious adversaries.

Additionally, privacy protection algorithms for different applications have been studied.
For example, the use of trusted third parties to anonymize consumption data in a smart
grid has been proposed by Efthymiou et al. [EK10]. In [BBBK17], Buescher et al. present
a study of how many household readings need to be aggregated in order to protect pri-
vacy of individual profiles in a smart grid. Furthermore, privacy-preserving evaluation
techniques in genetic tests have been increasingly presented over the recent years such
as: Mclaren et al. [MRA+16], Dugan et al. [DZ17], Hubaux et al.[HKM17], Sousa et al.
[SLH+17] and Raisar et al. [RTH+17]

5.8 summary

In this chapter we proposed a system called QRES. The proposed system enables CSPs to
create security SLAs and publish them encrypted. With the help of an intermediate node,
customers can find the best matching Cloud provider by contrasting their requirements
against the encrypted secSLAs. Our system is utilizing QeSe protocol, a searchable encryp-
tion scheme protected by secure two party computation. The inputs of every party remain
private while the output is only learned by the broker and consequently the customer.

We implement QRES and formally verify its security and privacy properties using
ProVerif. In our real word tests, using existing standardized SLAs by the latest industrial
standard, the system proved to be fast for the required use case. In our measurements, it
requires less than 30 seconds to privately search for 50 customer keywords at a CSP.

6
C O N C L U S I O N

Choosing a Cloud provider that satisfies the security requirements of the customer has
become challenging. Quantification and evaluation offer powerful tools for choosing be-
tween different CSPs. While the initial results of such techniques are promising, tackling
the dependency relations that span across customer requirements is still not considered.
Most of these methodologies do not account for information about dependencies between
services. It is important to provide customers with comprehensive support which enables
(a) automated conflict detection and explanation dedicated to the dependent relations,
(b) the assessment and benchmarking of CSPs according to customer fuzzy and subjec-
tive requirements, and (c) threat analysis for estimating the risks based on the customer
requirements.

In this dissertation, we have extended two state-of-the-art security evaluation techniques
(namely QHP and fuzzy-QHP) to quantitatively assess the security level provided by
Cloud secSLAs. The proposed extensions were designed based on the specifics of secSLAs
as defined by state-of-the-art works and standardisation bodies. Specifically, fuzzy-QHP
implements advanced security metrics/Cloud secSLA notions e.g., uncertainty. The two
techniques rely on a dependency model to detect any conflicts caused by inconsistent cus-
tomer requirements. Furthermore, explanations of the detected conflicts are generated to
identify problematic customer requirements. Using our proposed techniques, we evalu-
ated different CSPs based on varied security specifications with respect to the customer
security requirements. Additionally, we addressed different assignments of security lev-
els and weights enabling customers to compare the security levels offered by different
CSPs and find the best CSP satisfying their requirements. Both techniques were empiri-
cally validated through a couple of case studies using real-world CSP data obtained from
the Cloud Security Alliance. Both techniques show the same rankings for customer cer-
tain/specific requirements, but with different scales. Only fuzzy-QHP technique is capa-
ble of modelling the customer uncertain requirements. Furthermore, a sensitivity analysis
is performed to ascertain the security benefits of improving one or more SLOs. The sensi-
tivity analysis helps CSPs to determine which parameter most affects the overall security
level (according to the customer’s requirements). To identify threats whose impact results
in violation of security requirements, a requirement based threat analysis is presented.
The presented analysis relies on a novel methodology that can systematically enumerate
the dependencies across the service requirements.

Because secSLAs are concrete mechanisms to improve security assurance and trans-
parency in Cloud systems, their quantitative assessment provides a critical element to
drive the development of tools aimed to empower customers during the whole Cloud
service life-cycle (from procurement to termination). From a CSP perspective, techniques
like QHP and fuzzy-QHP trigger on the one hand the adoption of advanced secSLA capa-
bilities (e.g., automation and continuous monitoring), and on the other hand compliance
with relevant standards in this field. However, the mechanisms required to validate the
enforcement of these specifications throughout the life cycle of the service are still needed.
Although many approaches help CSPs to monitor their compliance to the secSLA to take
corrective actions in case of violation, existing approaches do not allow customers to man-

101

102 conclusion

age the compliance validation process themselves, consequently, limiting their ability to
assess whether contracted security levels are actually provided. In this dissertation, a de-
centralized customer side monitoring approach to monitor and detect secSLA violations
and autonomously compensate customers is proposed. The proposed approach monitors
the compliance of Cloud services to the contracted properties in secSLAs. The approach
relies on Ethereum blockchain as a decentralized platform to securely store monitoring
logs and incorporate secSLAs as smart contracts. The deployed smart contract integrate
and aggregate measurable SLOs and check continuously the compliance of Cloud services
to contracted SLOs. Furthermore, autonomously compensate the customer on violation.
The proposed monitoring approach has been evaluated on commercial IaaS Cloud service.
The results have proven our approach suitable for measuring the values of the SLOs and
identifying violations of contracted SLO values.

Despite the benefits of adding the security controls to the secSLA, the inclusion of se-
curity implementations information is risky as it would enable malicious entities to better
orchestrate their attacks and easier discover vulnerabilities. To tackle this problem, a sys-
tem called QRES is proposed. The proposed system enables CSPs to create secSLAs and
publish them in an encrypted form. With the help of an intermediate node, customers
can find the CSP better matching their security needs by contrasting their requirements
against the encrypted secSLAs. Our system is utilizing a searchable encryption scheme
protected by secure two-party computation. We implement QRES and formally verify
its security and privacy properties using ProVerif. In our real-world tests, using existing
standardized secSLAs by the latest industrial standard, the system proved to be fast for
the required use case. In our measurements, it requires less than 30 seconds to privately
search for 50 customer keywords at a CSP. QRES is the first step towards providing secu-
rity assurance and transparency between Cloud customers and CSPs, while at the same
time ensures the confidentiality of the CSPs sensitive information.

To summarize, contributions presented in this dissertation were included in six publi-
cations [TTLS14; TMT+16; TTLS17; LTTS17; AWT+17; TBL+18].

Part V

A P P E N D I X

A
F U Z Z Y N O TAT I O N S

a.1 crisp and fuzzy sets

A crisp set A is defined as a set in the universal set U (which provides the set of all
possible values for a variable) A ✓ U. For example, let U be the set of all cars and A is the
set of all cars having six cylinders. In a crisp set, an element x is either a member of the
set or not. This is defined using a characteristic function called a membership function
µ
A

such that:

µ
A

(x) =

8
<

:
1, if x 2 A

0, if x /2 A

On the other hand, a fuzzy set F allow elements to be partially in a set. Each element is
given a degree of membership in a set. This is done using a membership function µ

F

which maps each element in F to real numbers in the interval [0, 1] (where [0, 1] means
real numbers between 0 and 1, including 0 and 1) so that µ

F

: U) [0, 1].
For example as introduced in [Men95], let U be the set of all cars. Assume that cars can
be viewed as “domestic" or “foreign" where each car can be viewed as “domestic" if it
carries the name of a Germany auto manufacturer; otherwise it is “foreign". There is
nothing fuzzy about this; however, many of the components for what we consider to be
domestic cars are produced outside of Germany. Additionally, some “foreign" cars are
manufactured in Germany. Consequently, one could think of the membership functions
for domestic and foreign cars looking like µ

D

and µ
F

depicted in Figure A.1. Thus, if
our car has 75% of its parts made in Germany, then µ

D

(75%) = 0.9 and µ
F

(75%) = 0.25
[Men95].

1

0 25

X (Percentage of
parts made in

Germany)

µ(x)

50 75 100

0.5

µF(x) µD(x)

Figure A.1.: Membership functions for domestic and foreign cars, based on the percentage of parts
in the car made in Germany [Men95]

It is clear that if one only allowed the extreme membership values of 0 and 1, fuzzy sets
would actually be equivalent to crisp sets.

105

106 fuzzy notations

a.2 triangular fuzzy number

A fuzzy number M̃ on the set of real number R (R ! [0, 1]) is defined as a TFN if its
membership function µ

M̃

(x), whereas x is any positive real number, is equal to (as shown
in Figure 2.7):

µ
M̃

(x) =

8
>>><

>>>:

x-l

m-l

, if l 6 x 6 m

u-x

u-m

, if m 6 x 6 u

0, otherwise

This means a fuzzy set is specified as a TFN if: (i) there exists only one element that the
membership function µ

M̃

(x) = 1 (at x = m) and (ii) µ
M̃

(x) is a continuous function.
For example, let “height" be interpreted as a linguistic variable. It can mean different
things to different people and it can be decomposed into the following set of terms:
T(height) = { short, medium, tall}. Each term in T(height) is characterized by a fuzzy set
in the universe of discourse U = [1.2m, 2.2m]. We might interpret short as men height
close to 1.4m, medium as men height close to 1.7m, and tall as men height close to 2m.
These terms can be characterized as fuzzy sets whose membership functions are shown in
Figure A.2. So for example, x = 1.52 resides in the fuzzy set short and medium, to different
degrees of similarity. Clearly, this illustrates the fact that membership functions could be
chosen by the user arbitrarily, based on the user’s experience or could be designed using
optimization procedures (e.g., [HFU92; HSW89]). The number of membership functions
is up to the user definition. Greater resolution is achieved by using more membership
functions at the price of greater computational complexity. Membership functions don’t
have to overlap; but, one of the great strengths is that membership functions can be made
to overlap [Men95].

1

0 1.2 1.4
Height

µH(x):men

Short

1.61.5 1.7 2 2.2

Medium Tall

1.8 in
meters

De
gre

e o
f M

em
be

rsh
ip

Figure A.2.: Membership functions for T(height).

a.3 operations of tfn - approximation of division

The approximated value of any two TFNs division Ã(/)B̃ is equal to
(l

1

,m
1

,u
1

)

(l
2

,m
2

,u
2

)
such

that(
l
1

u
2

,
m

1

m
2

,
u
1

l
2

). We explain how to get this approximated value using an example.

A.3 operations of tfn - approximation of division 107

1

0 1 x

µ(x)

2 3 4 5 6

Figure A.3.: Approximation of TFN division example.

Example 1. Consider two TFNs Ã and B̃ with values (1, 2, 4) and (2, 4, 6) respectively as
depicted in Figure A.3, such that:

µ
Ã

(x) =

8
>>><

>>>:

x-1

2-1

, if 1 6 x 6 2

4-x

4-2

, if 2 6 x 6 4

0, otherwise

µ
B̃

(x) =

8
>>><

>>>:

x-2

4-2

, if2 6 x 6 4

6-x

6-4

, if4 6 x 6 6

0, otherwise

First, ↵-cuts of the two fuzzy numbers are:

Ã
↵

= [(2- 1)↵+ 1,-(4- 2)↵+ 4]

= [↵+ 1,-2↵+ 4]

B̃
↵

= [(4- 2)↵+ 2,-(6- 4)↵+ 6]

= [2↵+ 2,-2↵+ 6]

For all ↵ 2 [0, 1], divide interval Ã
↵

by B̃
↵

. Since the element in each interval has positive
number, we get:

Ã
↵

(/)B̃
↵

= [
↵+ 1

2↵+ 2
^

↵+ 1

-2↵+ 6
^

-2↵+ 4

2↵+ 2
^

-2↵+ 4

-2↵+ 6
,

↵+ 1

2↵+ 2
_

↵+ 1

-2↵+ 6
_

-2↵+ 4

2↵+ 2
_

-2↵+ 4

-2↵+ 6
]

= [min(
↵+ 1

2↵+ 2
,

↵+ 1

-2↵+ 6
,
-2↵+ 4

2↵+ 2
,
-2↵+ 4

-2↵+ 6
),

max(
↵+ 1

2↵+ 2
,

↵+ 1

-2↵+ 6
,
-2↵+ 4

2↵+ 2
,
-2↵+ 4

-2↵+ 6
)]

108 fuzzy notations

Thus,

Ã
↵

(/)B̃
↵

= [
↵+ 1

-2↵+ 6
,
-2↵+ 4

2↵+ 2
]

When ↵ = 0, Ã
0

(/)B̃
0

= [
1

6
,
4

2
]

When ↵ = 1, Ã
1

(/)B̃
1

= [
(1+ 1)

(-2+ 6)
,
(-2+ 4)

(2+ 2)
]

= [
2

4
,
2

4
]

=
1

2

So the approximated value of Ã(/)B̃ is (
1

6
,
1

2
, 2) which is (

l
1

u
2

,
m

1

m
2

,
u
1

l
2

). Therefore, any

two TFNs division Ã(/)B̃ equals to:
(l

1

,m
1

,u
1

)

(l
2

,m
2

,u
2

)
= (

l
1

u
2

,
m

1

m
2

,
u
1

l
2

).

B
O P E R AT I O N A L S E M A N T I C S

The rules that define the operational semantics of applied pi-calculus and ProVerif are
adapted from [Bla09]. The identifiers a, b, c, k and similar ones range over names, and
x, y and z range over variables. As detailed in [Bla09], set of symbols is also assumed for
constructors and destructors such that f for a constructor and g for a destructor. Construc-
tors are used to build terms. Therefore, the terms are variables, names, and constructor
applications of the form f(M

1

, . . . ,M
n

).
We use the constructors and destructors defined in [Bla09] as an initial step to represent

the cryptographic operations as depicted in Figure B.1. We added other different construc-
tors/destructors which are used to define our protocol. Constructors and destructors can
be public or private. The public ones can be used by the adversary, which is the case when
not stated otherwise. The private ones can be used only by honest participants.

Symmetric enc/dec:
Constructor: encryption of x with the shared secret key k, senc(x, k)
Destructor: decryption sdec(senc(x, k), k)! x
Asymmetric enc/dec:
Constructor: encryption of x with the public key generation from a secret key k, pk(k),
aenc(x, pk(k))
Destructor: decryption adec(aenc(x, pk(k)), k)! x
Signatures:
Constructors: signature of x with the secret key k, sign(x, k)
Destructors: signature verification using he public key generation from a secret key
k, pk(k), verify(sign(x, k), pk(k))! x
One-way garbling function:
Constructors: garbling of x with the key k, garble(x, k)
Evaluation function:
Constructors: evaluation function of garbling of variables x, y, and z with the key k,
evaluate(garble(x, k), garble(y, k), garble(z, k))
Commitment:
Constructors: committing x with a fresh nonce n k, commit(x, n)

Figure B.1.: Constructors and destructors

The operational semantics used are presented in Figure B.2. A semantic configuration is
a pair E,P where the E is a finite set of names and P is a finite multiset of closed processes.
The semantics of the calculus is defined by a reduction relation ! on semantic configu-
rations as shown in Figure B.2. The process event(M).P executes the event event(M) and
then executes P. The input process in(M, x).P inputs a message, with x bound to it, on
channel M, and executes P. The output process out(M,N).P outputs the message N on
the channel M and then executes P. The nil process 0 does nothing. The process P|Q is
the parallel composition of P and Q. The replication !P represents an unbounded num-
ber of copies of P in parallel. (newa)P creates a new name a and then executes P. The

109

110 operational semantics

(Nill) E,P[{0}! E,P
(Repl) E,P[{!P}! E,P[{P, !P}
(Par) E,P[{P|Q}! E,P[{P, Q}

(Par) E,P[{P|Q}! E,P[{P, Q}

(New) E,P[{(newa)P}! E[{a 0},P[{P{a 0/a}} where a 0 /2 E

(I/O) E,P[{out(c,M).Q, in(c, x).P}! E,P[{Q, P{M/x}}
(Cond1) E,P[{if M = N then P else Q}! E,P[{P} if M = N

(Cond2) E,P[{if M = N then P else Q}! E,P[{Q} if M 6= N

(Let) E,P[{let x = g(M
1

, . . . ,M
n

) in P else Q}! E,P[{P{M 0/x}}
if g(M

1

, . . . ,M
n

)!M 0

Figure B.2.: Operational semantics [BAF08]

conditional if M = N then P else Q executes P if M and N reduce to the same term at
runtime; otherwise, it executes Q. Finally, let x = M in P as syntactic for P{M/x} which
is the process obtained from P by replacing every occurrence of x with M. As usual, we
may omit an else clause when it consists of 0.

b.1 protocol modelling and properties verification

In this section we model the Qese protocol depicted in Figures 5.3, then verify the result
integrity property.

-PB(skB,pkB,mB) =!in(c,m).(newb)

event(e
1

(commit(mB,b))).
out(c, commit(mB,b)).in(c,m 00).let((xB, x

f

, xCSP,m
x

) =

adec(m 00, skB))inifmx

= commit(mB,b)then
event(eB(commit(mB,b), xB, x

f

, xCSP, evaluate(xB, x
f

, xCSP))).
out(c, evaluate(xB, x

f

, xCSP))

-PCSP(pkB,m
f

,mCSP) = in(c,m 0).let((yB = garble(m 0, k))|
(y

f

= garble(m
f

, k))|(yCSP = garble(mCSP, k)))in
event(e

2

(m 0, yB, y
f

, yCSP)).
out(c, (senc((yB, y

f

, yCSP,m 0), skCSP))

.in(c,m 000)

ifm 000 = evaluate(yB, y
f

, yCSP)then

event(eCSP(m
0, yB, y

f

, yCSP,m 000))

-P(newm
f

)(newmCSP)(newmB)(newskB)letpkB = pk
skBin

out(c,pkB).PB(skB,pkB,mB)|PCSP(pkB,m
f

,mCSP)

The channel c is public so that the adversary can send, replay and get any messages
sent over it. We use a single public channel and not two or more channels because the
adversary could take a message from one channel and relay it on another channel, thus
removing any difference between the channels. The process P begins with the creation of
the secret and public keys of B, and the creation of messages m

f

,mCSP,mB The public key
is output on channel c to model that the adversary has it in its initial knowledge. Then

B.1 protocol modelling and properties verification 111

the protocol itself starts: PB represents B, PCSP represents the CSP. Both principals can
run an unbounded number of sessions, so PB and PCSP start with replications.

We consider that B first inputs a message containing the encrypted tokens and then
starts the protocol run by choosing a nonce b, and executing the event e

1

(commit(mB,b)),
where mB is initially added to the B knowledge. Intuitively, this event records that B
sent Message

1

of the protocol. Event e
1

is placed before the actual output of Message
1

;
this is necessary for the desired correspondences to hold: if event e

1

followed the output
of Message

1

, we would not be able to prove that event e
1

must have been executed,
even though Message

1

must have been sent, because Message
1

could be sent without
executing event e

1

, as stated in [Bla09]. The situation is similar for events e
2

, eB and eCSP.
Next, B receives the garbling of CSP’s inputs as well as the garbling of the committed

messages encrypted with its public key. B decrypts the message using its secret key
skB. If decryption succeeds B checks if the message has the right form using the pattern-
matching construct let((xB, x

f

, xCSP,= mB) = adec(m 00, skB))in. Then B executes the event
eB(commit(mB,b), xB, x

f

, xCSP,
evaluate(xB, x

f

, xCSP)), to record that it has received Message
2

and sent Message
3

of the
protocol. Finally, B sends the last message of the protocol evaluate(xB, x

f

, xCSP).
After sending this message, B executes some actions needed only for specifying prop-

erties of the protocol. When the received message m
x

= commit(mB,b), that is, when the
session is between B and CSP, B executes the event eB(commit(mB,b), xB, x

f

, xCSP,
evaluate(xB, x

f

, xCSP)), to record that B ended a session of the protocol, with the participant
(CSP), which is authenticated using the authentication key. B also outputs the evaluation
function output evaluate(xB, x

f

, xCSP).
The process PCSP proceeds similarly: it executes the protocol, with the additional event

e
2

(m 0, yB, y
f

, yCSP) to record that Message
1

has been received and Message
2

has been
sent by CSP, in a session with the participant of public key pkB and the received message
m 0. After finishing the protocol itself, when m 000 = evaluate(yB, y

f

, yCSP), that is, when
the session is between B and CSP, PCSP executes the event eCSP(m

0, yB, y
f

, yCSP,m 000), to
record that CSP finished the protocol, and outputs m 000.

The events will be used in order to formalize result integrity. For example, we formalize
that, if CSP ends a session of the protocol eCSP(m

0, yB, y
f

, yCSP,m 000), then (a) B has started
a session of the protocol by committing mB with the nonce nB, and (b) CSP outputs the
evaluation function evaluate(yB, y

f

, yCSP). Furthermore, B ends a session of the protocol,
then (a) CSP has already garbled the B’s committed input message, and (b) B outputs the
evaluation function evaluate(xB, x

f

, xCSP).
Next, we formally define the correspondences in order to verify the result integrity

property. We prove correspondences in the form of if an event e has been executed, then events
e
1

, . . . , e
m

have been executed. These events may include arguments, which allows one to
relate the values of variables at the various events. We can prove that each execution of e
corresponds to a distinct execution of some events, and that the events have been executed
in a certain order. We assume that the protocol is executed in the presence of an adversary
that can listen to all messages, compute, and send all messages it has, following the so-
called Dolev-Yao model [DY83]. Thus, an adversary can be represented by any process
that has a set of public names Init in its initial knowledge and that does not contain
events.

As presented in system model, the correspondence event eCSP(x1,
x
2

, x
3

, x
4

, x
5

) e
1

(x
1

) ^ e
2

(x
1

, x
2

, x
3

, x
4

) ^ eB(x1, x
2

, x
3

, x
4

, x
5

) means that, if the event

112 operational semantics

eCSP(x1, x
2

, x
3

, x
4

, x
5

) has been executed, then the events e
1

(x
1

), e
2

(x
1

, x
2

, x
3

, x
4

) and
eB(x1, x

2

, x
3

, x
4

, x
5

) have been executed, with the same value of the arguments x
1

, x
2

, x
3

, x
4

, x
5

.

B I B L I O G R A P H Y

[ABB+05] Alessandro Armando, David Basin, Yohan Boichut, et al. “The AVISPA tool
for the automated validation of internet security protocols and applications.”
In: Proc. of CAV. 2005, pp. 281–285.

[AF01] Martín Abadi and Cédric Fournet. “Mobile values, new names, and secure
communication.” In: Sigplan Notices 36.3 (2001), pp. 104–115.

[AGI11] Mohamed Almorsy, John Grundy, and Amani Ibrahim. “Collaboration-Based
Cloud Computing Security Management Framework.” In: Proc. of Cloud
Computing. 2011, pp. 364–371.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
“More efficient oblivious transfer and extensions for faster secure computa-
tion.” In: Proc. of CCS. 2013, pp. 535–548.

[ALSZ15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
“More efficient oblivious transfer extensions with security for malicious ad-
versaries.” In: Proc. of EUROCRYPT. Springer. 2015, pp. 673–701.

[ALSZ17] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner.
“More efficient oblivious transfer extensions.” In: Journal of Cryptology 30.3
(2017), pp. 805–858.

[AM13] Hamzeh Alabool and Ahmad Mahmood. “Trust-based service selection in
public cloud computing using fuzzy modified VIKOR method.” In: Aus-
tralian Journal of Basic and Applied Sciences (2013), pp. 211–220.

[Ama] Amazon CloudWatch. https://aws.amazon.com/cloudwatch/. [Online; accessed
25-Feb-2018].

[AWT+17] Soha Alboghdady, Stefan Winter, Ahmed Taha, et al. “C’Mon: Monitoring
the Compliance of Cloud Services to Contracted Properties.” In: Proc. of
ARES. 2017, p. 36.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. “Automated verifica-
tion of selected equivalences for security protocols.” In: Journal of Logic and
Algebraic Programming 75.1 (2008), pp. 3–51.

[Bar11] A. Barth. RFC 6265 HTTP State Management Mechanism. [Online; accessed 22-
March-2018]. 2011. url: https://tools.ietf.org/html/rfc6265\#section-
4.1.2.5.

[BBBK17] Niklas Buescher, Spyros Boukoros, Stefan Bauregger, and Stefan Katzen-
beisser. “Two Is Not Enough: Privacy Assessment of Aggregation Schemes
in Smart Metering.” In: Privacy Enhancing Technologies 2017.4 (2017), pp. 198–
214.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. “Deterministic and
efficiently searchable encryption.” In: Proc. of CRYPTO. 2007, pp. 535–552.

[BCOP04] Dan Boneh, Giovanni Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.
“Public key encryption with keyword search.” In: Proc. of EUROCRYPT. 2004,
pp. 506–522.

113

114 Bibliography

[Bla01] Bruno Blanchet. “An Efficient Cryptographic Protocol Verifier Based on Pro-
log Rules.” In: Proc. of CSFW. 2001, pp. 82–96.

[Bla02] Bruno Blanchet. “From secrecy to authenticity in security protocols.” In:
Proc. of SAS. 2002, pp. 342–359.

[Bla09] Bruno Blanchet. “Automatic verification of correspondences for security pro-
tocols.” In: Journal of Computer Security 17.4 (2009), pp. 363–434.

[Blo] blockchain network types. [Online; accessed 27-Feb-2018]. url: https://blog.
ethereum.org/2015/08/07/on-public-and-private-blockchains/.

[BNP+11] Sven Bugiel, Stefan Nürnberger, Thomas Pöppelmann, et al. “AmazonIA:
when elasticity snaps back.” In: Proc. of CCS. 2011, pp. 389–400.

[Bre11] Michael Brenner. Yao’s Garbled Circuits implementation. 2011. url: https://
github.com/hcrypt-project/yao.

[Bro01] Tyson Browning. “Applying the design structure matrix to system decom-
position and integration problems: a review and new directions.” In: Trans-
action on Engg. Management 48.3 (2001), pp. 292–306.

[Cha96] Da Chang. “Applications of the extent analysis method on fuzzy AHP.” In:
European journal of operational research 95.3 (1996), pp. 649–655.

[Cis] The CIS Security Metrics v1.1.0. Tech. rep. National Institute of Standards
and Technology, 2010. url: https://benchmarks.cisecurity.org/tools2/
metrics/CIS_Security_Metrics_v1.1.0.pdf.

[CLN09] Cas Cremers, Pascal Lafourcade, and Philippe Nadeau. “Comparing state
spaces in automatic security protocol analysis.” In: Proc. of Formal to Practical
Security. 2009, pp. 70–94.

[CMMR06] Valentina Casola, Antonino Mazzeo, Nicola Mazzocca, and Massimiliano
Rak. “A SLA evaluation methodology in Service Oriented Architectures.”
In: Quality of Protection (2006), pp. 119 –130.

[Cre08] Cas Cremers. “The Scyther Tool: Verification, falsification, and analysis of
security protocols.” In: Proc. of CAV. 2008, pp. 414–418.

[Csi] Cloud Service Level Agreement Standardisation Guidelines. Tech. rep. C-SIG SLA
2014. European Commission, C-SIG SLA, 2014.

[CWL10] Shirlei Chaves, Carlos Westphall, and Flavio Lamin. “SLA perspective in
security management for cloud computing.” In: Proc. of Networking and Ser-
vices. 2010, pp. 212–217.

[CYZ+12] Chunqing Chen, Shixing Yan, Guopeng Zhao, et al. “A systematic frame-
work enabling automatic conflict detection and explanation in cloud service
selection for enterprises.” In: Proc. of Cloud Computing (2012), pp. 883–890.

[DFS16] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. “Pri-
vate circuits III: Hardware Trojan-Resilience via testing amplification.” In:
Proc. of CCS. 2016, pp. 142–153.

[DIR02] Nicole Dunlop, Jadwiga Indulska, and Kerry Raymond. “Dynamic conflict
detection in policy-based management systems.” In: Proc. of the Enterprise
Distributed Object Computing Conference (2002), pp. 15–26.

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://github.com/hcrypt-project/yao
https://github.com/hcrypt-project/yao

Bibliography 115

[DVL15] Andrea Dalle Vacche and Stefano Kewan Lee. Zabbix network monitoring es-
sentials. Packt Publishing Ltd, 2015.

[DY83] Danny Dolev and Andrew Yao. “On the security of public key protocols.”
In: Transactions on information theory 29.2 (1983), pp. 198–208.

[DZ17] Tamara Dugan and Xukai Zou. “Privacy-preserving evaluation techniques
and their application in genetic tests.” In: Smart Health 1 (2017), pp. 2–17.

[EK01] Christian Ensel and Alexander Keller. “Managing application service depen-
dencies with xml and the resource description framework.” In: Proc. of the
Integrated Network Management Proceedings (2001), pp. 661–674.

[EK10] Costas Efthymiou and Georgios Kalogridis. “Smart grid privacy via anonymiza-
tion of smart metering data.” In: Proc. of SmartGridComm. 2010, pp. 238–243.

[Ene] Bitcoin Mining Now Consuming More Electricity. [Online; accessed 27-Feb-
2018]. url: https://powercompare.co.uk/bitcoin.

[Eth] Ethereum White Paper. [Online; accessed 27-Feb-2018]. url: https://github.
com/ethereum/wiki/wiki/White-Paper.

[Evm] Ethereum Virtual Machine. [Online; accessed 22-Feb-2018]. url: http://solidity.
readthedocs.io/en/latest/introduction-to-smart-contracts.html\

#index-6.

[FMP+17] Md Sadek Ferdous, Andrea Margheri, Federica Paci, et al. “Decentralised
runtime monitoring for access control systems in cloud federations.” In:
Proc. of ICDCS. 2017, pp. 2632–2633.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, et al. “Protecting circuits from
leakage: the computationally-bounded and noisy cases.” In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2010, pp. 135–156.

[FY07] Ganna Frankova and Artsiom Yautsiukhin. “Service and protection level
agreements for business processes.” In: Proc. of ICSOC. 2007, pp. 38 –43.

[GAB+17] Edoardo Gaetani, Leonardo Aniello, Roberto Baldoni, et al. “Blockchain-
based database to ensure data integrity in cloud computing environments.”
In: ITA Security (2017).

[GE91] David Gebala and Steven Eppinger. “Methods for Analyzing Design Proce-
dures.” In: Proc. of Design Theory and Methodology (1991), pp. 227–233.

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices.” In: Proc.
of STOC. 2009, pp. 169–178.

[Get] GO Implementation of Ethereum Node. [Online; accessed 21-Feb-2018]. url:
https://github.com/ethereum/go-ethereum/wiki/geth.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, et al. “Candidate indistinguishabil-
ity obfuscation and functional encryption for all circuits.” In: SICOMP 45.3
(2016), pp. 882–929.

[Gol09] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

[GVB13] Saurabh Kumar Garg, Steve Versteeg, and Rajkumar Buyya. “A framework
for comparing and ranking cloud services.” In: Journal of Future Generation
Computer Systems (2013), pp. 1012–1023.

https://powercompare.co.uk/bitcoin
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/go-ethereum/wiki/geth

116 Bibliography

[HBS10] Irfan Haq, Ivona Brandic, and Erich Schikuta. “Sla validation in layered
cloud infrastructures.” In: Proc. of GECON. 2010, pp. 153–164.

[HD12] Giles Hogben and Marnix Dekker. Procure Secure: A guide to monitoring of se-
curity service levels in cloud contracts. Tech. rep. 2012. url: https://www.enisa.
europa.eu/publications/procure-secure-a-guide-to-monitoring-of-

security-service-levels-in-cloud-contracts.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. “Faster Secure
Two-Party Computation Using Garbled Circuits.” In: USENIX Security Sym-
posium. Vol. 201. 1. 2011, pp. 331–335.

[Hen99] Ronda Henning. “Security SLAs: quantifiable security for the enterprise?”
In: Proc. of Workshop New Sec Paradigms. 1999, pp. 54–60.

[HFU92] Shin Horikawa, Takeshi Furuhashi, and Yoshiki Uchikawa. “On fuzzy mod-
eling using fuzzy neural networks with the back-propagation algorithm.”
In: IEEE transactions on Neural Networks 3.5 (1992), pp. 801–806.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. “Efficient secure two-party
computation using symmetric cut-and-choose.” In: Proc. of CRYPTO. 2013,
pp. 18–35.

[HKM17] Jean-Pierre Hubaux, Stefan Katzenbeisser, and Bradley Malin. “Genomic
Data Privacy and Security: Where We Stand and Where We Are Heading.”
In: IEEE Security & Privacy 5 (2017), pp. 10–12.

[HLOS06] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. “Threat
modeling-uncover security design flaws using the stride approach.” In: MSDN
Magazine-Louisville (2006), pp. 68–75.

[HRM11] Sheikh Habib, Sebastian Ries, and Max Muhlhauser. “Towards a trust man-
agement system for cloud computing.” In: Proc. of TrustCom (2011), pp. 933–
939.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators.” In: Neural networks 2.5 (1989),
pp. 359–366.

[IL01] Cynthia Irvine and Timothy Levin. “Quality of security service.” In: Proc. of
workshop on New security paradigms. 2001, pp. 91–99.

[JW98] George Jelen and Jeffrey Williams. “A practical approach to measuring as-
surance.” In: Pro. of Computer Security Applications. 1998, pp. 333–343.

[KH11] Golam Kabir and M Hasin. “Comparative analysis Of AHP and fuzzy AHP
models for multicriteria inventory classification.” In: Journal of Fuzzy Logic
Systems (2011), pp. 1–16.

[KMY11] Leanid Krautsevich, Fabio Martinelli, and Artsiom Yautsiukhin. “A General
Method for Assessment of Security in Complex Services.” In: Proc. of Euro-
pean Conference on a Service-Based Internet. 2011, pp. 153–164.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. “Dynamic search-
able symmetric encryption.” In: Proc. of CCS. 2012, pp. 965–976.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. “Billion-Gate Secure
Computation with Malicious Adversaries.” In: USENIX Security Symposium.
Vol. 12. 2012, pp. 285–300.

https://www.enisa.europa.eu/publications/procure-secure-a-guide-to-monitoring-of-security-service-levels-in-cloud-contracts
https://www.enisa.europa.eu/publications/procure-secure-a-guide-to-monitoring-of-security-service-levels-in-cloud-contracts
https://www.enisa.europa.eu/publications/procure-secure-a-guide-to-monitoring-of-security-service-levels-in-cloud-contracts

Bibliography 117

[Lee18] Jong-Hyouk Lee. “BIDaaS: Blockchain based ID as a Service.” In: IEEE Ac-
cess (2018).

[LF08] André Ludwig and Bogdan Franczyk. “COSMA–an approach for managing
sLAs in composite services.” In: Proc. of Service-Oriented Computing (2008),
pp. 626–632.

[LGLS12] Jesus Luna Garcia, Robert Langenberg, and Neeraj Suri. “Benchmarking
cloud security level agreements using quantitative policy trees.” In: (2012),
pp. 103–112.

[Lin05] Stefan Lindskog. Modeling and tuning security from a quality of service perspec-
tive. Chalmers University of Technology, 2005.

[LKL13] Duo Liu, Utkarsh Kanabar, and Chung Lung. “A light weight SLA manage-
ment infrastructure for cloud computing.” In: Proc. of CCECE. 2013, pp. 1–
4.

[LP07] Yehuda Lindell and Benny Pinkas. “An efficient protocol for secure two-
party computation in the presence of malicious adversaries.” In: Proc. of
EUROCRYPT. 2007, pp. 52–78.

[LP09] Yehuda Lindell and Benny Pinkas. “A proof of security of Yao’s protocol for
two-party computation.” In: Journal of Cryptology 22.2 (2009), pp. 161–188.

[LTTS17] Jesus Luna, Ahmed Taha, Ruben Trapero, and Neeraj Suri. “Quantitative
Reasoning about Cloud Security Using Service Level Agreements.” In: IEEE
Transactions on Cloud Computing 5.3 (2017), pp. 457–471.

[LYC+17] Bin Liu, Xiao Liang Yu, Shiping Chen, et al. “Blockchain Based Data In-
tegrity Service Framework for IoT Data.” In: Proc. of Web Services. 2017,
pp. 468–475.

[LYKZ10] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. “CloudCmp:
comparing public cloud providers.” In: Proc. of SIGCOMM (2010), pp. 1–14.

[Men95] Jerry Mendel. “Fuzzy logic systems for engineering: a tutorial.” In: Proc. of
IEEE 83.3 (1995), pp. 345–377.

[Mes06] Mandy Messenger. Cyber-security: Why would I tell you? Tech. rep. 3. Research
briefing report by Mandy Messenger, 2006. url: https://archive.nyu.edu/
bitstream/2451/15007/2/Infosec_ISR_Messenger.pdf.

[MFYS17] Andrea Margheri, Md Sadek Ferdous, Mu Yang, and Vladimiro Sassone.
“A distributed infrastructure for democratic cloud federations.” In: Proc. of
CLOUD. 2017, pp. 688–691.

[MJSCG04] Carlos Molina-Jimenez, Santosh Shrivastava, Jon Crowcroft, and Panos Gevros.
“On the monitoring of contractual service level agreements.” In: Proc. of Elec-
tronic Contracting. 2004, pp. 1–8.

[MKS13] Saif Malik, Samee Khan, and Sudarshan Srinivasan. “Modeling and anal-
ysis of state-of-the-art VM-based cloud management platforms.” In: IEEE
Transactions on Cloud Computing 1.1 (2013), pp. 1–1.

[MM87] David Marca and Clement McGowan. “SADT: structured analysis and de-
sign technique.” In: McGraw-Hill (1987).

https://archive.nyu.edu/bitstream/2451/15007/2/Infosec_ISR_Messenger.pdf
https://archive.nyu.edu/bitstream/2451/15007/2/Infosec_ISR_Messenger.pdf

118 Bibliography

[MMW+15] Suryadipta Majumdar, Taous Madi, Yushun Wang, et al. “Security Compli-
ance Auditing of Identity and Access Management in the Cloud: Applica-
tion to OpenStack.” In: Proc. of CloudCom. 2015, pp. 58–65.

[MRA+16] Paul McLaren, Jean Raisaro, Manel Aouri, et al. “Privacy-preserving ge-
nomic testing in the clinic: a model using HIV treatment.” In: Genetics in
medicine 18.8 (2016), p. 814.

[MTS16] Salman Manzoor, Ahmed Taha, and Neeraj Suri. “Trust Validation of Cloud
IaaS: A Customer-centric Approach.” In: Proc. of TrustCom. 2016, pp. 97–104.

[MTT+16] Jolanda Modic, Ruben Trapero, Ahmed Taha, et al. “Novel efficient tech-
niques for real-time cloud security assessment.” In: Computers & Security 62

(2016), pp. 1–18.

[Nag] Nagios Monitoring Tool. https://www.nagios.org/. [Online; accessed 25-Feb-
2018].

[Nak08] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system.” In: (2008).

[NG14] David Nunez and Carmen Gago. D:C-5.2 Validation of the Accountability Met-
rics. Tech. rep. Accountability For Cloud and Other Future Internet Ser-
vices (A4Cloud), 2014. url: http://www.cloudaccountability.eu/sites/
default / files / D35 . 2 % 20Validation % 20of % 20the % 20accountability %

20metrics.pdf.

[NP99] Moni Naor and Benny Pinkas. “Oblivious transfer with adaptive queries.”
In: Proc. of CRYPTO. 1999, pp. 573–590.

[NS11] Talal Noor and Quan Sheng. “Trust as a service: a framework for trust man-
agement in cloud environments.” In: Proc. of Web Information System Engi-
neering (2011), pp. 314–321.

[Ora] Oracles in Blockchain Context. https://blockchainhub.net/blockchain-oracles/.
[Online; accessed 21-Feb-2018].

[PBSL13] Diego Perez-Botero, Jakub Szefer, and Ruby Lee. “Characterizing hypervi-
sor vulnerabilities in cloud computing servers.” In: Proc. of Security in cloud
computing. 2013, pp. 3–10.

[PHK+13] Alain Pannetrat, Giles Hogben, Spyros Katopodis, et al. D2.1 Security-Aware
SLA Specification Language and Cloud Security Dependency model. Tech. rep.
2013.

[Pro14] SPECS Project. Report on requirements for Cloud SLA negotiation - Final. Tech.
rep. Deliverable 2.1.2. 2014. url: http://www.specs-project.eu/publications/
public-deliverables/d2-1-2/.

[Pro17] ESCUDO Project. Report on Requirement-Based Threat Analysis. Tech. rep. De-
liverable 2.4. 2017. url: http://www.escudocloud.eu/public-del/D2.4.
pdf.

[PRZB11] Raluca Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrish-
nan. “CryptDB: protecting confidentiality with encrypted query process-
ing.” In: Proc. of SOSP. 2011, pp. 85–100.

[PSH+14] Raluca Popa, Emily Stark, Jonas Helfer, et al. “Building Web Applications
on Top of Encrypted Data Using Mylar.” In: Proc. of NSDI. 2014, pp. 157–172.

http://www.cloudaccountability.eu/sites/default/files/D35.2%20Validation%20of%20the%20accountability%20metrics.pdf
http://www.cloudaccountability.eu/sites/default/files/D35.2%20Validation%20of%20the%20accountability%20metrics.pdf
http://www.cloudaccountability.eu/sites/default/files/D35.2%20Validation%20of%20the%20accountability%20metrics.pdf
http://www.specs-project.eu/publications/public-deliverables/d2-1-2/
http://www.specs-project.eu/publications/public-deliverables/d2-1-2/
http://www.escudocloud.eu/public-del/D2.4.pdf
http://www.escudocloud.eu/public-del/D2.4.pdf

Bibliography 119

[PSK08] Witold Pedrycz, Andrzej Skowron, and Vladik Kreinovich. Handbook of gran-
ular computing. John Wiley & Sons, 2008.

[Rab05] Michael Rabin. “How To Exchange Secrets with Oblivious Transfer.” In: Proc.
of IACR Cryptology ePrint Archive. Vol. 2005. 2005, p. 187.

[Rin] Rinkeby - Ethereum Testnet. url: https://rinkeby.etherscan.io/.

[Rop] Ropsten- Ethereum Testnet. url: https://ropsten.etherscan.io/.

[Ros77] Douglas Ross. “Structured analysis (SA): A language for communicating
ideas.” In: Software Engineering 1 (1977), pp. 16–34.

[RSG98] Michael Reed, Paul Syverson, and David Goldschlag. “Anonymous connec-
tions and onion routing.” In: Selected areas in Communications 16.4 (1998),
pp. 482–494.

[RTH+17] Jean Raisaro, Carmela Troncoso, Mathias Humbert, et al. GenoShare: Support-
ing Privacy-Informed Decisions for Sharing Exact Genomic Data. Tech. rep. EPFL
infoscience, 2017.

[RVEE+11] Massimiliano Rak, Salvatore Venticinque, Gorka Echevarria, Gorka Esnal,
et al. “Cloud application monitoring: The mosaic approach.” In: Proc. of
CloudCom. 2011, pp. 758–763.

[RWQ+08] Omer Rana, Martijn Warnier, Thomas Quillinan, et al. “Managing viola-
tions in service level agreements.” In: Proc. of Grid Middleware and Services.
Springer, 2008, pp. 349–358.

[Saa90] Thomas Saaty. “How to make a decision: the analytic hierarchy process.” In:
European journal of operational research 48.1 (1990), pp. 9–26.

[SBHD17] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon Duquen-
noy. “Towards Blockchain-based Auditable Storage and Sharing of IoT Data.”
In: Proc. of Cloud Computing Security Workshop. 2017, pp. 45–50.

[SHS+15] Ebrahim Songhori, Siam Hussain, Ahmad-Reza Sadeghi, et al. “Tinygarble:
Highly compressed and scalable sequential garbled circuits.” In: Proc. of
Security and Privacy. 2015, pp. 411–428.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. “Using depen-
dency models to manage complex software architecture.” In: Sigplan Notices
40.10 (2005), pp. 167–176.

[SLH+17] João Sá Sousa, Cédric Lefebvre, Zhicong Huang, et al. “Efficient and secure
outsourcing of genomic data storage.” In: BMC medical genomics 10.2 (2017),
p. 46.

[SLPR15] Justine Sherry, Chang Lan, Raluca Popa, and Sylvia Ratnasamy. “Blindbox:
Deep packet inspection over encrypted traffic.” In: In SIGCOMM 45.4 (2015),
pp. 213–226.

[Sma] Smart-Contracts. [Online; accessed 22-Feb-2018]. url: http://ethdocs.org/
en/latest/contracts-and-transactions/contracts.html.

[SP12] Jane Siegel and Jeff Perdue. “Cloud services measures for global use: the
Service Measurement Index.” In: Proc. of SRII Conf (2012), pp. 411–415.

[SSNM16] Francesco Paolo Schiavo, Vladimiro Sassone, Luca Nicoletti, and Andrea
Margheri. “Faas: Federation-as-a-service.” In: arXiv preprint arXiv:1612.03937
(2016).

https://rinkeby.etherscan.io/
https://ropsten.etherscan.io/
http://ethdocs.org/en/latest/contracts-and-transactions/contracts.html
http://ethdocs.org/en/latest/contracts-and-transactions/contracts.html

120 Bibliography

[Sta] State of The Dapps. https://www.stateofthedapps.com/. [Online; accessed
27-Feb-2018].

[Sta13] International Organization for Standardization. Information Technology, Secu-
rity Techniques, Code of Practice for Information Security Management. Tech. rep.
ISO/IEC 27002:2013. 2013.

[Ste81] Donald Steward. “The design structure system: a method for managing the
design of complex systems.” In: Trans. on Engg. Management 3 (1981), pp. 71–
74.

[Sup+12] M Supriya et al. “Estimating trust value for cloud service providers using
fuzzy logic.” In: International Journal of Computer Applications (2012), pp. 28–
34.

[SWP00] Xiaoding Song, David Wagner, and Adrian Perrig. “Practical techniques for
searches on encrypted data.” In: Proc. of S&P. 2000, pp. 44–55.

[SZD+16] Ebrahim M Songhori, Shaza Zeitouni, Ghada Dessouky, et al. “GarbledCPU:
a MIPS processor for secure computation in hardware.” In: Proc. of Annual
Design Automation Conference. 2016, p. 73.

[TBL+18] Ahmed Taha, Spyros Boukoros, Jesus Luna, et al. “QRES: Quantitative Rea-
soning on Encrypted Security SLAs.” In: Privacy Enhancing Technologies (2018).
[Submitted].

[TMS+17] Ruben Trapero, Jolanda Modic, Miha Stopar, et al. “A novel approach to
manage cloud security SLA incidents.” In: Future Generation Computer Sys-
tems 72 (2017), pp. 193–205.

[TMS17] Ahmed Taha, Salman Manzoor, and Neeraj Suri. “SLA-Based Service Se-
lection for Multi-Cloud Environments.” In: Proc. of Edge Computing. 2017,
pp. 65–72.

[TMT+16] Ahmed Taha, Patrick Metzler, Ruben Trapero, et al. “Identifying and Uti-
lizing Dependencies Across Cloud Security Services.” In: Proc. of AsiaCCS.
2016, pp. 329–340.

[TSM+12] Hsin-Yi Tsai, Melanie Siebenhaar, Andre Miede, et al. “Threat as a service?:
Virtualization’s impact on cloud security.” In: IT professional 14.1 (2012),
pp. 32–37.

[TTLS14] Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj Suri. “Ahp-based
quantitative approach for assessing and comparing cloud security.” In: Proc.
of TrustCom. 2014, pp. 284–291.

[TTLS17] Ahmed Taha, Ruben Trapero, Jesus Luna, and Neeraj Suri. “A Framework
for Ranking Cloud Security Services.” In: Proc. of IEEE Services Computing.
2017, pp. 322–329.

[UA14] Kazi Ullah and Abu Ahmed. “Demo paper: Automatic provisioning, deploy
and monitoring of virtual machines based on security service level agree-
ment in the cloud.” In: Proc. of CCGrid. 2014, pp. 536–537.

[UAY13] Kazi Ullah, Abu Ahmed, and Jukka Ylitalo. “Towards building an auto-
mated security compliance tool for the cloud.” In: Proc. of TrustCom. 2013,
pp. 1587–1593.

Bibliography 121

[Wan09] Ping Wang. “QoS-aware web services selection with intuitionistic fuzzy set
under consumer’s vague perception.” In: Expert Systems with Applications
36.3 (2009), pp. 4460–4466.

[WL77] Jerome Wiest and Ferdinand Levy. “A management guide to PERT/CPM.”
In: Prentice-Hall (1977).

[WLK+12] Ping Wang, Wen-Hui Lin, Pu-Tsun Kuo, et al. “Threat risk analysis for cloud
security based on Attack-Defense Trees.” In: Computing Technology and Infor-
mation Management (ICCM), 2012 8th International Conference on. Vol. 1. 2012,
pp. 106–111.

[Woo14] Gavin Wood. “Ethereum: A secure decentralised generalised transaction
ledger.” In: Ethereum Project Yellow Paper 151 (2014), pp. 1–32.

[WS09] Matthias Winkler and Alexander Schill. “Towards Dependency Manage-
ment in Service Compositions.” In: Proc. of e-Business (2009), pp. 79–84.

[WSS10] Matthias Winkler, Thomas Springer, and Alexander Schill. “Automating
composite SLA management tasks by exploiting service dependency infor-
mation.” In: Proc. of Web Services (2010), pp. 59–66.

[Yao86] Andrew Yao. “How to generate and exchange secrets.” In: Proc. of Sympo-
sium on IEEE. 1986, pp. 162–167.

[ZC73] Milan Zeleny and James Cochrane. “Multiple criteria decision making.” In:
University of South Carolina Press (1973).

[Zel82] M Zeleny. Multiple Criteria Decision Making. McGraw Hill, 1982.

[ZLLL14] Zhenling Zhang, Lejian Liao, Hai Liu, and Guoqiang Li. “Policy-based adap-
tive service level agreement management for cloud services.” In: Proc. of
ICSESS. 2014, pp. 496–499.

[Ama12] Amazon Web Services, Inc. Amazon DynamoDB. [Online; accessed 15-December-
2017]. 2012. url: https://aws.amazon.com/dynamodb/.

[Ama17] Amazon. Amazon web services. http://aws.amazon.com/ec2/. 2017. (Visited
on 03/17/2017).

[Clo17a] Cloud Security Alliance. In: Cloud Controls Matrix v3.0.1 (2017). url: https:
//cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-

1/.

[Clo17b] Cloud Security Alliance. The Consensus Assessments Initiative Questionnaire
v3.0.1. 2017. url: https://cloudsecurityalliance.org/download/consensus-
assessments-initiative-questionnaire-v3-0-1/.

[Clo17c] Cloud Security Alliance. “The Open Certification Framework.” In: (2017).
url: https://cloudsecurityalliance.org/group/open-certification/#_
overview.

[Clo17d] Cloud Security Alliance. “The Security, Trust & Assurance Registry (STAR).”
In: (2017). url: https://cloudsecurityalliance.org/star/#_overview.

[Int14] International Organization for Standardization. Information Technology - Cloud
Computing - Service Level Agreement (SLA) Framework and Terminology. Tech.
rep. ISO/IEC 19086. 2014.

https://aws.amazon.com/dynamodb/
http://aws.amazon.com/ec2/
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
https://cloudsecurityalliance.org/download/consensus-assessments-initiative-questionnaire-v3-0-1/
https://cloudsecurityalliance.org/download/consensus-assessments-initiative-questionnaire-v3-0-1/
https://cloudsecurityalliance.org/group/open-certification/#_overview
https://cloudsecurityalliance.org/group/open-certification/#_overview
https://cloudsecurityalliance.org/star/#_overview

122 Bibliography

[NIS08] NIST Cloud Computing Reference Architecture and Taxonomy Working
Group. “Performance and Measurements Guide for Information Technol-
ogy.” In: NIST 800-55 Revision 1 (2008). url: http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nistspecialpublication800-55r1.pdf.

[Nat13] National Institute of Standards and Technology. Security Controls for Federal
Information Systems. Tech. rep. NIST SP-800-53. 2013.

[QRE17] QRES. Quantitative Reasoning on Encrypted Security SLAs. 2017. url: https:
//github.com/Anonymous12-34/QRESProject.

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-55r1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-55r1.pdf
https://github.com/Anonymous12-34/QRESProject
https://github.com/Anonymous12-34/QRESProject

	Erklärung zur Abschlussarbeit
	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Research Questions and Scientific Contributions
	1.2 Dissertation Outline

	Quantitative Reasoning on Security SLAs
	2 Quantitative Framework for Assessing Cloud Security
	2.1 Motivation and Contribution
	2.2 Background
	2.2.1 Security Service Level Agreements
	2.2.2 Service Dependencies

	2.3 Quantitative Reasoning System Architecture
	2.3.1 Trust Model
	2.3.2 Stage (A): Security Requirements Definition
	2.3.3 Stage (B): Requirements Quantification
	2.3.4 Stage (C): Dependency Management Approach
	2.3.5 Stage (D): Structuring SecSLA Services
	2.3.6 Stage (E): CSPs Evaluation

	2.4 Case Study: Security evaluation of CSP's secSLAs
	2.4.1 The Customer Perspective: Security Comparison of CSPs
	2.4.2 The CSP Perspective: Maximising Offered Security Levels

	2.5 Related Work
	2.6 Summary

	Threat Analysis
	3 Requirement Based Threat Analysis
	3.1 Motivation and Contribution
	3.2 Requirement Based Threat Analysis (RBTA) Process
	3.3 Requirements Analysis
	3.3.1 Requirements Analysis from ESCUDO Use-Case
	3.3.2 Adapted Requirements Catalogue
	3.3.3 Risk Assessment

	3.4 Dependency Analysis Across Requirements
	3.4.1 Stage (A): Dependency Model Creation
	3.4.2 Stage (B): Use-Case Requirements Validation
	3.4.3 Stage (C): Structuring Use-Case Requirements Using DSM

	3.5 Identifying Violations
	3.6 Related Work
	3.7 Summary

	Quantitative SecSLA Validation and Enforcement
	4 Monitoring the Compliance of Cloud Services
	4.1 Motivation and Contribution
	4.2 Background
	4.2.1 Consensus Algorithms
	4.2.2 Types of Blockchains
	4.2.3 Ethereum Blockchain

	4.3 SecSLA Compliance Monitoring Framework
	4.3.1 Monitoring Approach Architecture
	4.3.2 Stage (1): Measurement Definitions
	4.3.3 Stage (2): Monitoring Approach
	4.3.4 Stage (3): Monitoring System Processes
	4.3.5 Distributed Customer's Data Oracles

	4.4 Security Vulnerabilities of Ethereum Smart Contracts
	4.5 Implementation and Evaluation
	4.5.1 Setting-up Ethereum blockchain
	4.5.2 Cloud Customer Data Oracle
	4.5.3 Experiment 1: Evaluating the Functionality of the Approach on Amazon EC2
	4.5.4 Experiment 2: Consumed Gas (Cost) Evaluation

	4.6 Related Work
	4.7 Summary

	Use-Case
	5 QRES: Quantitative Reasoning on Encrypted Security SLAs
	5.1 Motivation and Contribution
	5.2 Background
	5.2.1 Format of secSLAs
	5.2.2 Searching Over Encrypted Data
	5.2.3 Privacy Preserving Computations

	5.3 Requirements Analysis
	5.3.1 System Overview
	5.3.2 Threat Model
	5.3.3 Trust Model
	5.3.4 System Requirements

	5.4 QRES Architecture
	5.5 Implementation and Evaluation
	5.6 Security Analysis
	5.6.1 Formal Analysis
	5.6.2 Further Security Considerations

	5.7 Related Work
	5.8 Summary

	6 Conclusion

	Appendix
	A Fuzzy Notations
	A.1 Crisp and Fuzzy Sets
	A.2 Triangular Fuzzy Number
	A.3 Operations of TFN - Approximation of Division

	B Operational semantics
	B.1 Protocol modelling and properties verification

	Bibliography

