
Thesis for the degree of Doctor of Philosophy

Efficient and Reliable Communication
in Distributed Embedded Systems

VILGOT CLAESSON

Department of Computer Engineering
School of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2002

Efficient and Reliable Communication
in Distributed Embedded Systems
Vilgot Claesson
ISBN 91-7291-234-0

Copyright c© 2002 Vilgot Claesson, All Rights Reserved

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie 1916
ISSN 0346-718X

School of Computer Science and Engineering
Chalmers University of Technology
Technical report No 6D
ISSN 1651-4971

Department of Computer Engineering
Chalmers University of Technology
SE–412 96 Göteborg, Sweden
Phone: +46 (0)31–772 1000
www.ce.chalmers.se

Author email address: vilgotc@ce.chalmers.se

Vasastadens Bokbinderi
Göteborg, Sweden 2002

i

Efficient and Reliable Communication
in Distributed Embedded Systems

Vilgot Claesson
Department of Computer Engineering, Chalmers University of Technology

Abstract

The use of distributed computing elements has grown in the embedded
systems arena, consequently the use of shared communication media link-
ing these computers has garnered increasing attention. Two prominent
and contemporary media sharing approaches include variations of con-
trolled and contention based media access paradigms, with the time-
triggered (TT) and the event-triggered (ET) approaches, respectively,
being prominent manifestations of these paradigms. For these mentioned
TT and ET approaches, the thrust of this thesis is on investigating and
analyzing efficient realizations of such.

A desired attribute in embedded systems, with safety and real-time
requirements, is the basic capability to coordinate and synchronize system
time and events. This directly relates to the establishment of a predictable
communication base, which subsequently becomes the basis to provide for
predictable communication at the system level. Focusing on bus-based
communication protocols, we present a novel synchronization approach
targeting efficiency and low communication overhead as the main drivers
for TDMA environments. Existing techniques require explicit transfer
of node ID information for synchronization. In this novel approach, the
synchronization process utilizes the implicit information in each node’s
unique message length as node identifier. Furthermore, our initial startup
synchronization approach is fault-tolerant, and has a bounded startup
time. We also present a re-synchronization strategy that incorporates
recovering nodes into synchronization.

The event-triggered and the time-triggered media access paradigms,
have spawned discrete followings with much debated pros and cons re-
garding their relative flexibility, bandwidth efficiency and predictability
features. The event-triggered approach is commonly perceived as provid-
ing high flexibility. Similarly, the time-triggered approach is expected to
provide a higher degree of predictable communication access to the media.
One part of this thesis is to objectively and quantitatively assess the capa-
bilities and limitations of each of these paradigms. More importantly, we
quantify the spread of their differences, and provide system design guide-
lines for suggested best usage for each approach. The focus of this work
is on response times of the communication system, and the schedulability

ii

of the communication system in collaboration with tasks in the nodes.
Focusing on efficiency, the second component of this thesis, deals with
introducing modifications in the time-triggered approach to efficiently ac-
commodate event-triggered communication using the time-triggered op-
erations as a base. Keywords: distributed embedded systems, synchro-

nization, media access protocols, time-triggered, event-triggered

iii

iv

Acknowledgments

I consider myself very fortunate that Professor Neeraj Suri and his family
decided to move to Sweden (at least for a while) and that he agreed to be
my advisor. His support and encouragement has been invaluable for this
work and without it, I would not have come this far. He has also created a
stimulating, friendly (and mischievous ;-) environment, with lots of social
activities.
THANKS Neeraj!

I also want to thank a number of other persons and groups who in
some way or the other have contributed to this work.

The members of the DEEDS group. Ph.D. Martin Hiller, Örjan
Askerdal, Arshad Jhumka, Robert Lindström, and Andreas Johansson.
It has been a true pleasure working and socializing with you all. And
many extra thanks to Martin, Arshad and Örjan for enduring a lot of
proof reading of my material.

My friend and colleague Henrik Lönn whom especially during my first
years provided encouragement and assistance.

The members of the old ”Bilgruppen” Professor Jan Torin, Kristina
Ahlström, Örjan Askerdal, Olle Bridal, Arne Dahlberg, Lars-Åke Johans-
son, Roger Johansson, H̊akan Sivencrona and Rolf Snedsbøl,

People I have had the true pleasure of writing papers with; Lic. Eng.
Cecilia Ekelin, Dr. Stefan Poledna and Mr. Jan Söderberg.

All the people I work and worked with in the projects NextTTA,
DICOSMOS, and X-By-Wire. I especially have to mention the members
of the DICOSMOS Ph.D. Student group: Magnus Gäfvert and Martin
Sanfridsson. I will not forget all nice Thai lunches/dinners! ;-)

Rolf Snedsbøl and Arne Linde, it has been really nice working with
you, during my teaching obligations.

The students at the department for creating such a cheerful and
friendly environment. I also want to thank our support staff for their
kind reception and help, i.e., Ewa Cederheim-Wäingelin, Kerstin Ger-
mundsson, Per Waborg, Marie Carlsson. Likewise, I want to thank the
computer wizards Peter Helander and Christian Roth.

vi

My dear parents Ingrid and Carl-Eric thanks your for all support and
love. My sister Annacarin with family Henrik, Amanda, and Marcus.
I am so lucky to have you all!!!

And, Margareta THANK YOU !

vii

Projects

1. NEXT TTA - High Confidence Architecture for Distributed
Control Applications
IST-2001-32111
The objective of NEXT TTA project is to further improve the
dependability and functionality of the time-triggered architecture
(TTA).

2. SAAB Professorship, Endorsement:
Support of Research: In Dependable and Robust Real-Time Sys-
tems.

3. Volvo Research Foundation Fellowship
Project title: Communication Services for Safety-Critical Dis-
tributed Real-Time Systems. #F99/07
The author applied and received this competitive grant, for the pe-
riod 2000-2001.

4. DICOSMOS2 - Integrated Real-time Computer and Control Sys-
tem Architectures. Financed by NUTEK (the Swedish National
Board for Industrial and Technical Development) and by VOLVO.
“Projektnr. P11762-2, Dossie-Diarienr. 1K1P-99-06187”.
The author was local manager for DICOSMOS2.
The goal of the project is to combine industrial and university
knowledge of requirements and design of safety critical, real-time,
and control systems. This has been achieved using a case study.
The area has been investigated and researched with an interdisci-
plinary perspective, provided by the composition of the group, i.e.,
control theory, mecatronics, and computer engineering.

5. DICOSMOS. The predecessor of DICOSMOS2 where the focus
were on reliable distributed control by interdisciplinary work.

6. P̊albus.
The project was financed by NUTEK and by the participating in-
dustries. The objective of the PÅLBUS project [Pol99] was to eval-
uate and disseminate methods for design and evaluation of safety
and reliable communication buses, used in distributed control.

7. X-By-Wire - Safety Related Fault Tolerant Systems in Vehicles
European project: Brite-Euram III, project no. BE 95/1329.
[X-B98]

viii

The objective of this project was to achieve a framework for the in-
troduction of safety related fault tolerant electronic systems without
mechanical or hydraulic backup in vehicles.

ix

List of Papers and Reports

This thesis is primarily based on the author’s following work.

1. V. Claesson, H. Lönn, and N. Suri, “Efficient TDMA Synchroniza-
tion for Distributed Embedded Systems,” presented at 20th Sympo-
sium on Reliable Distributed Systems (SRDS), New Orleans, USA,
2001.

2. V. Claesson, H. Lönn, and N. Suri, “Efficient TDMA Synchroniza-
tion for Distributed Embedded Systems” Extended version of paper
(1) submitted to IEEE Transaction on Parallel and Distributed Sys-
tems, 2002.

3. V. Claesson, S. Poledna, and J. Söderberg, “The XBW Model for
Dependable Real-Time Systems,” presented at International Con-
ference on Parallel and Distributed Systems, Tainan, Taiwan, 1998.

4. H. Sivencrona, L-Å. Johansson, and V. Claesson, “A Novel Bit-
Oriented Communication Concept for Distributed Real-Time Sys-
tems, QRcontrol,” presented at 3rd International Conference on
Control and Diagnostics in Automotive Applications (CDAUTO01),
Sestri Levante (Genova), Italy., 2001.

5. V. Claesson and H. Lönn, “Delay based startup and message length
addressing in TDMA communication,” Chalmers University of
Technology, Department of Computer Engineering, Göteborg, Re-
port no. 00-21, 2000.

6. V. Claesson, “Cost Effective Communication Services for Applica-
tions in Distributed Time Triggered Real-Time Systems,” in Depart-
ment of Computer Engineering. Göteborg: Chalmers University of
Technology, 1999.

7. V. Claesson, “Atomic Broadcast and Membership Agreement in
Time Triggered real-time systems,” Department of Computer Engi-
neering, Chalmers University of Technology, Gothenburg 99-6, 1999.

8. V. Claesson, C. Ekelin, and N. Suri, “The Event-Triggered and
Time-Triggered Medium-Access Methods”, submitted to The 6th
IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing.

9. NEXT TTA WP2: participants, “ET & TT Requirements Docu-
ment” NEXT TTA, IST-2001-32111, WP2 Review Report.

x

10. V. Claesson, H. Lönn, and N. Suri, “An Efficient TDMA Synchro-
nization Approach for Distributed Embedded Systems,” Chalmers
University Of Technology, Department of Computer Engineering,
Göteborg, Report no. 01-06, 2001.

11. V. Claesson, M. Gäfvert, and M. Sandfridsson, “Proposal for a dis-
tributed computer control system in heavy-duty trucks.,” Computer
Engineering, Chalmers University of Technology., Göteborg, Dicos-
mos Internal Report 00-16, 2000.

12. M. Sanfridsson, V. Claesson, and M. Gäfvert, “Investigation
and Requirements of a Computer Control System in a Heavy-
Duty Truck,” Mechatronics Lab, Royal Institute of Technol-
ogy., Stockholm, Sweden. TRITA-MMK 2000:5, ISSN 1400-1179,
ISRN/MMK–00/5–SE, 2000.

13. Ö. Askerdal, V. Claesson, “Error Detection and Handling”, P̊albus
project task 10.5. 2000.

14. V. Claesson, “Prototype Implementation Using the XBW Software
Model,” presented at SNART’97, Lund, Sweden, 1997.

Reports

Related papers and reports with the author involved.

1. A. Jhumka, M. Hiller, V. Claesson and N. Suri, “On Systematic
Design of Consistent Executable Assertions for Distributed Embed-
ded Software,” in Languages, Compilers, and Tools for Embedded
Systems (LCTES), 2002.

2. A. Jhumka, M. Hiller, V. Claesson and N. Suri, “On Systematic
Design of Consistent Executable Assertions for Distributed Embed-
ded Software,” Extended version. Submission: IEEE Transactions
on Software Engineering

3. M. Gäfvert, M. Sandfridsson, and V. Claesson “Truck Model
for Yaw and Roll Dynamics Control,” Technical Report ISRN
LUTFD2/TFRT–7588–SE, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden, sept. 2000.

Contents

1 Introduction 1
1.1 System Model . 2

1.1.1 Time-Triggered System 3
1.1.2 Event-Triggered System 3
1.1.3 Event-Triggered and Time-Triggered Example Run 4
1.1.4 Fault Model . 5

1.2 Multiple Access Approaches 5
1.2.1 Control access protocols 7
1.2.2 Contention Based Protocols 9

1.3 Goals and Problem Statements 11
1.4 Activities . 12
1.5 Main Contributions . 14
1.6 Disposition . 14

2 Synchronization Approaches 17
2.1 Related Work . 18
2.2 System Models Behind the Approach 20
2.3 Initialization and Resynchronizations 22

2.3.1 The Node-Level Synchronization Operations 25
2.4 Upper Bound on Startup 28
2.5 Properties and Overhead 30
2.6 Simulations . 33

2.6.1 Normal Operation 34
2.6.2 Fault Scenarios . 35
2.6.3 Identical Message Length Scenario 41
2.6.4 Comparison . 45

3 Time- and Event-Triggered Multiple Access 51
3.1 Related Work . 52
3.2 System and Task Model 52

3.2.1 Time-Triggered Approach 53
3.2.2 Event-Triggered Approach 54

xii CONTENTS

3.3 Communication Issues . 54
3.3.1 Periodic Messages 55
3.3.2 Sporadic Messages 55

3.4 Simulation Setup . 56
3.4.1 Task and Communication Scheduling 57
3.4.2 Communication Load 60

3.5 Discussions . 67
3.6 Conclusions . 70

4 ET Channel on TT Base 71
4.1 Lower Priority Non-Periodic Messages 72

4.1.1 Pre-Scheduled Slack 72
4.1.2 A Mixed Access Method 74

4.2 High-Priority Sporadic Messages 74
4.2.1 Reset Pulse . 76
4.2.2 Minislots . 77
4.2.3 One Minislot . 77

4.3 TTP+: A New Approach 78
4.3.1 Prioritization of Sporadic Messages 80

4.4 Properties . 84
4.5 Summary . 86

5 Conclusions, Perspectives and Future Issues 89
5.1 Synchronization Issues . 89
5.2 Media Access . 90
5.3 The Best of Both Worlds 92
5.4 Future Research Issues . 93

5.4.1 Synchronization Issues 93
5.4.2 Media Access . 95
5.4.3 Composite Event-Triggered and Time-Triggered Approach 95

A Appendix A 97
A.1 Acknowledgments . 99
A.2 The Target System for the Case Study 100
A.3 System Constraints . 101
A.4 Architecture . 102

A.4.1 Control System Architecture 102
A.4.2 Computer Architecture 104

A.5 Dependability of Different Computer Configurations . . . 109
A.5.1 Assumptions . 109
A.5.2 Reliability of Total Functionality - Simplex 111
A.5.3 Reliability of Critical Functionality - Simplex . . . 114
A.5.4 Reliability of Duplex System Configurations . . . 116

CONTENTS xiii

A.6 Architecture Investigation 120
A.6.1 Assumptions . 121
A.6.2 Central Strategy 123
A.6.3 Central Control with Partially-Distributed Computer Architecure127
A.6.4 Central Control with Fully-Distributed Computer Architecture129
A.6.5 Mixed Control with Central Computer 129
A.6.6 Mixed Control with Partially-Distributed Computer 130
A.6.7 Mixed Control with Fully-Distributed Computer . 133
A.6.8 Local Control with Central Computer 133
A.6.9 Local Control with Partially-Distributed Computer 133
A.6.10 Local Control with Fully-Distributed Computer . . 133

A.7 Summary and Conclusions 136

B Appendix B 141
B.1 Abbreviations . 141
B.2 Failure Rates . 143

B.2.1 Microprocessor in a Central Node 144
B.2.2 Microprocessor in Partially-Distributed Nodes . . . 144
B.2.3 Microprocessor in Fully-Distributed Nodes 145
B.2.4 Communication Interface 145
B.2.5 Power IC . 146
B.2.6 Bus Driver . 146
B.2.7 Bus Connections 146
B.2.8 Sensors and Actuators 147
B.2.9 Sensor and Actuator Communication Interface . . 147

B.3 Reliability Calculations 149
B.3.1 Central System . 149
B.3.2 Partially-Distributed System 154
B.3.3 Distributed System 159

xiv CONTENTS

Chapter 1

Introduction

THE use of computers in embedded systems has been growing for
many years, and there is little reason to believe that this trend will

stop. On the contrary, complex computers are appearing as integrated
components and their usage spreading from provision of support services
to primary provision of safety-critical operations in systems ranging from
automotive and aerospace to e-applications. Their usage introduces new
and improved functionality where computer control is dominant, but us-
age in other areas is constantly increasing, such as infotainment, active-
sensors, and active safety systems.

Increasingly, these systems also tend to become more closely coupled,
forming large and closely interacting distributed systems. Thus, large
numbers of embedded computers in different sub-systems work together
interconnected with one or many communication systems. Consequently,
the communication media linking the computing nodes and subsystems
becomes a key ingredient in facilitating system level efficiency and reli-
ability. This translates to the importance of efficiency and reliability at
the communication media level itself.

However, most commercial embedded systems are also very cost sen-
sitive, contrary to some of the early systems with extreme requirements
on safety and reliability, and with related large budgets, e.g., nuclear and
space applications. Although, such systems have been built with suc-
cess, they are seldom adaptable to this new trend of embedded systems
where cost together with efficiency and safety requirements are the major
concerns.

The safety requirements of such distributed systems, necessitate re-
liable communication that generally requires redundancy mechanisms as
well as fast error detection and recovery. Furthermore, the hard real-
time requirements of many embedded systems introduce the additional
demand of timely response. Thus, there is a need for efficient and low

2 Introduction

cost communication solutions that can facilitate safety and reliability.
With cost-efficiency, real-time, and fault-tolerance as the main sys-

tem drivers, there are two communication paradigms of special interest
for our work, namely controlled- and contention-based media access. The
time-triggered and event-triggered approaches, respectively, are promi-
nent manifestations of these access communication paradigms and con-
stitute our interest in this thesis. We do emphasize that our discussion
of time-triggered and event-triggered approaches focuses at the commu-
nication access methodology, and not necessarily at the event-triggered
and the time-triggered system architecture concepts.

The first is the time-triggered approach, which uses Time Division
Multiple Access (TDMA) as media access method. With this method,
the media access is divided in time such that each node is assigned a time
slot periodically. This means that nodes will send information at prede-
fined times, triggered by a global time base. The use of a time-triggered
approach follows a deterministic behavior, which facilitates meeting hard
reliability requirements.

The other communication paradigm is the event-triggered approach,
which normally uses contention-based communication. This is generally
considered a more flexible communication paradigm. However, the real-
time properties are very limited in the pure form of contention-based
media access method. There are a number of methods to overcome this,
which are used in event-triggered systems, e.g., by arbitrating messages
accessing the media on the fly.

It is within this area that we have centered our attention throughout
the work in this thesis. In the next section, we further describe the
assumed system environment and operational conditions where our work
best applies.

1.1 System Model

In this section, we briefly describe the main system models, concern-
ing both time-triggered and event-triggered, that we use throughout this
thesis. In relevant chapters further details will be discussed, and some
variations will be described.

We target systems that have stipulated requirements of reliability and
real-time. In these systems, we consider n autonomous nodes that com-
municate via a broadcast media. When using such a media, all nodes
can simultaneously listen and receive information transferred on the me-
dia. However, only one node can send at a time; if more than one node
transmits concurrently, the information will be garbled.

1.1 System Model 3

1.1.1 Time-Triggered System

In the case of a time-triggered system, nodes have local counters that
are used to control the sending and receiving of messages. Furthermore,
the nodes operate in a cyclic manner where each node can send one or
more times in each TDMA communication round, as shown in Figure 1.1.
However, for ease of explanation, we will assume that nodes send exactly
once in each TDMA round, if nothing else is stated. Each node i may
send messages of different lengths denoted by tmi.

A B N

Node A sends in time-slot 1

C

B in time-slot 2 …

TDMA round 1

A B

TDMA round 2

���

Slot 1 Slot 2 Slot 3 Slot N Slot 1 Slot 2��� ���

���

Figure 1.1: A TDMA communication round.

Synchronization: We consider synchronization to be divided into
two logical levels, (1) synchronization at the frame level and (2) synchro-
nization at the communication schedule level. We assume that the frame
level synchronization is handled by a standard clock synchronization al-
gorithm controlling the progress of the local clock, for example, using
the daisy-chain clock synchronization algorithm [LS95]. Other variants
and further information of clock synchronization issues can also be found
in [SHW94]. The frame level synchronization ensures that each bit-value
is received correctly.

Synchronization at the communication schedule level synchronizes the
nodes to the same phase of the communication schedule. This ensures
that every node has the same view of the current position in the commu-
nication schedule. Together with synchronized local clocks, this global
position knowledge is sufficient for nodes to know when to send their
messages. Thus, the necessary information for a node is the global time,
which consists of fine-grained time ensuring correct bit values, and the
coarse-grained time that corresponds to the position in the communica-
tion schedule.

1.1.2 Event-Triggered System

In the case of an event-triggered system, a node will immediately send its
message if the media is free. If the media is occupied, the transmission is
delayed until the media becomes free. However, if more than one node is

4 Introduction

waiting to send when the media becomes free, a collision is likely to occur.
In our work, we have assumed that this contention can be resolved using
established contention resolution techniques such as those mentioned in
Chapter 1.2. This implies that one node will ‘win’ and the other nodes
will withdraw.

Synchronization: In an event-triggered system synchronization is
not really necessary, as nodes do not synchronize their sending with
other nodes. However, there is nothing that prevents the introduction
of synchronization in the event-triggered system. To achieve this, some
additional mechanisms are required, but solutions for this exist, such
as [LH01].

1.1.3 Event-Triggered and Time-Triggered Example Run

In this section we depict visual illustration of some properties of the event-
triggered and time-triggered communication via two figures. The first,
Figure 1.2 shows an example run of an event-triggered communication,
and similarly in Figure 1.3 we show a example run of a time-triggered sys-
tem. In both figures, the differently shaded gray bars represent message-
frames on the communication media, sent by different computer nodes
(see the legends). The x-axis depicts progression of time. The y-axis
depicts a progression of periods, T , of the periodic message transmission
by the system nodes. In Figures 1.2 and 1.3, the simulations start at time
zero, and outline the traffic of the current sending node.

A frame will contain one or more messages. In the event-triggered
case normally only one message is packed in each frame. However, in the
time-triggered case, more messages are packed as one node is normally
only allowed to send one frame per TDMA-round.

In these two simulations, we generate traffic to fill the media with
approximately one third periodic messages. The rest of the media time
has been used for sporadic messages. We can see this very easily in the
event-triggered case, Figure 1.2, where each node sends only one message
per frame. We see how the periodic messages are sent regularly. However,
we can also see that some times these periodic message are delayed by
some sporadic message. If we, for example, follow the checkered bar, i.e,
node 1, we can see that this node has a periodic message scheduled at
time 0, T, 2T etc. However, as we can see it sometimes gets disturbed by
other messages, such that it suffers slight delays. We also show this effect
by following the periodic messages form node 2, i.e., the black bars, with
a grey line, see Figure 1.2.

In the time-triggered case, Figure 1.3, we can see how each node
regularly sends a frame, containing messages. As we can see, there are

1.2 Multiple Access Approaches 5

no message delays and no conflicts among the sending nodes as they send
at predefined points in time. Sporadic messages will be packed in the
frames, in parts that are not used for periodic messages.

1.1.4 Fault Model

When considering faults, we assume, if nothing else is stated, that nodes
follow a fail-silent semantics, which, for example, prevents faulty nodes to
fail by continuously transmitting on the media. Such a failure would over-
flow the media and prevent any normal communication, including syn-
chronization traffic. The fail-silent property [CPR+92, KDK+89, Tem98]
relies on high coverage of the error detection mechanisms of the nodes.
It can be argued that sufficient coverage may be difficult to achieve and
therefore, such failure semantics is unsuitable for hard real-time system.
However, recent work indicates that using rigorous design and error de-
tection methods, a very high coverage can be achieved [Fol99].

The fail-silent semantics will reduce the number of diverse failure sce-
narios we need to consider in our system.

The Media

For the broadcast media, we assume well-accepted omission failure se-
mantics [PT86, Pow92] where messages are either received correctly and
on time or not at all. By designing nodes to be fail-silent and using
a broadcast media, we effectively exclude timing failure on the media.
Similarly, Byzantine failures are not regarded as they are considered to
be avoided by design, using a broadcast media combined with message
checksums.

1.2 Multiple Access Approaches

IN this section, we will give a background and short history to multiple-
access communication; we do not, however, claim to cover every aspect

of this subject. For further information, we direct the reader to [KSY84]
and [MZ95] which survey the area.

The demand for multiple access networks started very early when
there was a demand for communication among different computers. Us-
ing the same media, reduced the number of cables required significantly
and became an inexpensive and efficient solution. The multiple access
communication method has since been used extensively. The most well
known use of this approach is Ethernet [MB76].

6 Introduction

1

2

3

4

5

6

7

8

9
N

u
m

b
er

o
f

p
er

io
d

s

Time: one period of the periodic messages

Node 1
Node 2
Node 3
Node 4

Figure 1.2: An event-triggered communication example run. The vertical
wave-like gray line follows the periodic messages from node 2.

N
u

m
b

er
o

f
T

D
M

A
ro

u
n

d
s

Time: one period of the periodic messages

Node 1
Node 2
Node 3
Node 4

1

2

3

4

5

6
7

8

9

Figure 1.3: A time-triggered communication example run.

1.2 Multiple Access Approaches 7

One basic problem with communication using a shared media is how
nodes should avoid colliding when they start sending messages on the
shared media. Computer nodes must share the media like people share
the “air” during a conversation, there must be an understanding how to
avoid and/or resolve collisions.

There exists a number of different protocols for nodes to send on a
multiple access media, and there are many ways they can be classified.
We have divided the protocols into two major groups, contention based
and controlled access protocols, as done in [KSY84]. By controlled access
protocols, we refer to protocols that coordinate their access to the media,
such that collisions are avoided. In contention-based protocols, there is
no mechanism for avoiding collisions, instead they concentrate on sending
messages such that the probability of collision is minimized.

1.2.1 Control access protocols

Controlled access protocols coordinate the media access such that no
collision occurs. This can be done either in a static manner or dynamically
during runtime. In the static case, the computer node’s media access is
coordinated pre-runtime. Thus, each node will be assigned a time window
when the node can send messages, these time windows must be repeated
in a cyclic manner, see Figure 1.4. Thus, the access time is divided
between the nodes, such that all nodes repeatedly get access to the media.
This method is therefore called Time Division Multiple Access (TDMA),
which we have described previously.

TDMA round

node 1 node 2 node nnode 3

TDMA round

node 1 node 2

Figure 1.4: Time Division Multiple Access (TDMA) as controlled access
protocol.

In order for this access protocol to work, the computer nodes must
have a common knowledge of time, which means that they need to be
synchronized.

The other type of controlled access protocols is based on dynamic con-
trol of the media. This implies that during runtime, nodes must exchange
information for coordination of the media access. This information can
be sent explicitly or implicitly.

For example, a node can explicitly send a bit indicating the intention
to send a message , see [KS80]. The time each node sends its indication,

8 Introduction

is statically determined pre-runtime. When all nodes have indicated their
send request, these nodes send in a predefined order, e.g., according to
the node IDs. When these nodes have sent there messages, this behavior
is repeated, starting with a new period where node announce their send
intentions.

A similar approach can be achieved by using implicit information, each
node are assigned a very short and equal length time slot, i.e., a mini-slot,
see Figure 1.5. We can also view these as timeouts, i.e., small mini-slot
times. If a node wants to send, it start its message transfer within this
slot. Assume a node i is assigned mini-slot number x; after a silence on
the media for x mini-slots, the node i can access the media. However, i
sends its full message directly, occupying more than its mini-slot. After
the message is sent, nodes will continue to count mini-slots, i.e., x + 1
etc. If node i refrains from sending in its mini-slot, the next mini-slot
continues, which gives the access-right to the next mini-slot owner. A
longer timeout is used to indicate when a round is finished.

Thus, instead of using these mini time-slots for send-request, the full
message is started during these slots. This method is often called mini-
slotting or as in [KS80] Minislotted Alternating Priorities (MSAP). As
we can see in Figure 1.5, this method can achieve both cycles with fixed
length, like TDMA, and cycles with varying length. This depends on
how the nodes send there messages. Messages has to be scheduled pre-
runtime to get fixed length cycles, i.e., the same amount of data must be
transferred each cycle.

The minislotting approach can be found, for example, in the Arinc
629 protocol [ARI95] which is used in Boeing 777 [Yeh96]. Another ex-
amples is the byteflight protocol [BPG, Byt99], as well as the FlexRay
protocol [BES+01] which uses a slight variation of minislotting.

node 3 n: 5 node 6 node 1 n: 7

Cycle i Cycle i-1

Cycle i Cycle i-1

node 2 node 5 node 3 node 6Equal length
cycles

Different length
cycles

= Start cycle delay = Minislot

Minislots
node 1 node 2 node n

node X = Message node X

Figure 1.5: Controlled access by mini-slotting.

Another dynamic approach is based on passing a token among the

1.2 Multiple Access Approaches 9

nodes in a virtual ring. Only the token holder are allowed to access the
media. When a node has finished sending, it passes the token to the
next node. These are all well known protocols and often referred to as
token protocols. In these protocols, nodes are normally assigned a limited
time for which they are allowed to hold the token, i.e., a limited time for
message transfer. This ensures that all nodes are allowed to send within
certain intervals. The exception is when the token is lost. This can
happen if a message carrying the token is lost or the node holding the
token fails. It is normally quite time consuming for the system to detect
and recover a lost token, and a separate recovery protocol is required for
this purpose. This is often held against these types of protocols especially
in real-time system.

1.2.2 Contention Based Protocols

This type of media access uses no distributed protocol to avoid collision.
In its simplest form, a node transfers a message when it has information
to send. The name ‘contention-based’ originates from the fact that con-
tentions occur when two or more access the media simultaneously. That
is, without any control access method, a collision may occur at any time
during the message transfer and the collision will effectively prevent at
least two messages from being delivered correctly. Allowing nodes to ac-
cess the media without any restrictions is not very efficient, but there has
been a lot of research, improvements and variants of this branch of media
access.

A major step in this development was when nodes were provided with
functionality to sense the media, i.e., sense if the media is free or not.
After a node starts sending, no collisions will occur as nodes will de-
tect the transmission on the media. This method is called Carrier Sense
Multiple-Access (CSMA). However, when two or more nodes begin their
transmission at the same time, we still get a contention. This can also
be detected by the nodes, by listening to their own transmission. In case
of a contention, the transferred data is not the same as the received.
The colliding nodes can then back off and re-send the message. Starting
this re-send immediately will most likely lead to another collision. This
is commonly solved by a random backup time before the node tries a
retransmission.

Numerous methods have been developed to improve the contention-
based methods. One direction is focusing on minimizing the risk for
collisions when nodes start to send. For example, there is the p-persistent
CSMA, where a node detecting a free media will start to send with a
probability p. With probability 1 - p the node will wait some predefined

10 Introduction

time, before the same behavior repeats itself. Ethernet [MB76] is a special
case of the p-persistent CSMA where p=1.

Another example builds on dividing the computer nodes into a number
of sets. Only one of these sets, say set A, is allowed to send. If a collision
occurs, the nodes in set A are in turn divided such that, e.g., half remains
in A and the rest are removed from A and are not allowed to send. If
an additional collision occur, the A set is divided further and the nodes
with sending permissions is decreased. As long as collisions occurs, this is
repeated and eventually the collisions cease when only one node remains
in set A. There is a number of ways these sets can be partitioned and
divided, but we will not discuss them in detail. To give one example, time
can be used to decide these sets, as in the time window protocol, where
messages generated within a specific time window are allowed to send. If
there are more then one node in this window, a collision will occur. The
window will then be decreased to, say half the size such that the nodes
with message generated within this time frame are allowed to send. This
is repeated until only one node remains. Another way is to use the node
ID to divide the nodes into the different sets.

Another direction in contention-based protocols is avoiding collisions
by bit arbitration. Each message starts with a priority field, such that
nodes can arbitrate which node has the highest priority. This requires
nodes to send dominant and recessive bits. This allows a node a sending
a recessive bit, to sense and withdraw when a dominant bit is received.
When nodes send simultaneously, only the highest priority message will
access the media. This is an approach used in, for example, than CAN
protocol [CAN91].

In this section we have looked at some of the variations of multiple
access approaches. With the background of this section and the system
model described, we will in more detail describe the problems we have
focused on in this thesis.

1.3 Goals and Problem Statements 11

1.3 Goals and Problem Statements

With this background, overall, our goal has been the achievement of cost
and performance efficiency in the described communication systems, but
with maintained safety and reliability. More specifically we have targeted
the following problems, described in the subsequently mentioned three
problem statements [PS1, PS2 and PS3] and elaborated over the thesis
chapters:

PS1 How to achieve efficient start-up and restart synchronization of
TDMA communication? [Chapter 2].

Using TDMA in a communications system requires that all nodes
have a global opinion of time. This is necessary for a node to know
when to send its messages and when to receive messages of interest
to it. Thus, by the global time a node can both identify senders
and when to send. However, at startup there must be a method
to establish and agree on the global time. This requires that mes-
sages can be identified without a global time, and time values can
be exchanged among the nodes. Similarly, when a node wants to
reintegrate after a perturbation, this node must be able to gather
the global time from the information transferred on the communi-
cation media. Our interest has been how to efficiently establish the
global time during startup and reintegration.

PS2 What do we gain or lose by choosing the event-triggered vs. time-
triggered communication paradigms? [Chapter 3].

The event-triggered and time-triggered communication paradigms
and their media access methods have in a way been opposite poles
in the community. The prevailing opinions are that:

• The event-triggered approach provides flexibility and is effi-
cient in using the communication media.

• The time-triggered approach is more restrictive in how the me-
dia is used. Instead it provides a predictability that facilitates
reliable designs.

Our interest has been to objectively and quantitatively ascertain the
conditions and design space requirements where these statements
apply as well as how much difference in efficiency there is under
varied communication scenarios.

PS3 Can we combine the best of the event-triggered and the time-
triggered worlds? [Chapter 4].

12 Introduction

Finally, we have been interested in if, and in such cases how, we
can achieve the best of both worlds, i.e., can we combine the event-
triggered and the time-triggered paradigms and keep their best
properties. Is it possible to achieve a composite communication
system with the predictability of a time-triggered system and the
flexibility of the event-triggered system.

1.4 Activities

In this section, we will describe some of the activities performed during
the author’s time as Ph.D. student. We also present some activities not
directly figuring in the main part of the thesis, but which constitute
background and related work behind the thesis. Some of this is presented
in detail in the appendices.

This doctoral thesis is a continuation of the work presented in the
licentiate thesis [Cla99], where we followed a top-down design approach
for studying the communication between nodes. Thus, we have studied
the requirements and design tradeoffs that affect the communications
system. This provide us with a good understanding of the difficulties and
requirements of constructing a reliable communication system.

In order to get a better overview of the requirements and difficul-
ties of reliable and cost efficient communication, we have studied how to
design dependable distributed systems. As part of this work the XBW-
model [CPS98, Cla99] was developed together with the partners within
the European Brite-EuRam III project X-By-Wire [X-B98]. This concep-
tual model facilitates the development of distributed-embedded systems.
The model describes the time behavior and distribution properties of a
system in such a way that static scheduling and systematic fault tolerance
can be applied. The conceptual model also enables the definition of an
appropriate fault model. This fault model along with the XBW-model
allow efficient and systematic use of well-known software based error de-
tection methods. We also show a short example using this model base on
a Steer-By-Wire system. The X-By-Wire model highlights some of the
important factors that must be considered when developing an embedded
distributed system. The model emphasizes the importance of interfaces
between different objects, such that they have a correct interface and
prevent faults from disseminating through the system. Specifically, inter-
process communication is targeted where the communication can both be
within a node or externally using the communication media.

In distributed systems, there is an additional focus on node external
task communication as it uses the communication media for such infor-
mation transfer. The chosen communication architecture will affect the

1.4 Activities 13

system design, as it has affect on the transfer rate, response times, relia-
bility, etc. Thus, it is very important how we choose the communication
architecture. To study these effects, we have used the computer control
of a brake-by-wire system in a heavy-duty truck as a case study. From
this case study, relevant requirements have been extracted and we have
studied the efficiency using different design approaches, considering the
effect on reliability and communication. Naturally, the results from this
study are limited to this case. However, many systems have similar re-
quirements and configurations for which this investigation is informative.
As this serves as a background to the main result of the thesis, we have
appended this report in Appendix A.

As we described in PS1, achieving and maintaining a common time
view is essential in a time-triggered system as they fundamentally depend
on time-sharing of the communication media. Mechanisms for resynchro-
nization are also necessary after a perturbation has forced a node to
restart. Focusing on broadcast-media based communication protocols in
TDMA environments, we present a novel, synchronization approach with
cost efficiency and reliability as the main drivers. This approach utilizes
information about each node’s unique message length as node identifiers
over the synchronization process. Furthermore, our initial start-up syn-
chronization approach is fault-tolerant and has a bounded start-up time.
It avoids start-up collisions by postponing retries after a collision. We also
present a resynchronization strategy that incorporates recovering nodes
into synchronization.

In order to prepare for the work with PS2 and PS3, we have inves-
tigated existing multiple-access methods appropriate for hard real-time
systems.

In PS2, we described the differences amongst two contemporary
media-access methods, the time-triggered approach and the event-
triggered approach. As part of this work, we have compared these two
methods to see how they behave under different conditions. The inten-
tion is to help system designers determine how these two approaches
differ under varied operational scenarios. This has been accomplished
by two types of simulations where we have studied the behavior of these
approaches. The first simulation type used a system with varied task
and communication mix. In the second type, we studied the system by
looking exclusively at the communication media. The work does not aim
to to establish the basic properties of the basic communication proto-
cols and approaches, as they are well known. Instead, we have focused
on quantifying these differences and establishing the specific operational
conditions where each technique works best. The intent is to provide the
system designer with information about the preferred operational profiles

14 Introduction

for each TT or ET schema to be able to conduct quantifiable trade-offs
during system design.

We have developed our perspectives from the investigation of existing
media access methods, as well as the study of the event-triggered and
time-triggered paradigms. On this basis, We have developed efficient ap-
proaches to provide for composite event-triggered and time-triggered ser-
vices within a common time-triggered paradigm such that we can achieve
both the predictability and the flexibility inherent in time-triggered and
event-triggered systems, respectively.

1.5 Main Contributions

We briefly state our main contributions presented in this thesis. Focus-
ing on the composite provisioning of efficient fault-tolerant and real-time
requirements, the contribution of this thesis is the development of novel
communication approaches via the development and investigation of:

1. A novel synchronization approach for broadcast-media based com-
munication with high reliability and efficiency, which is intended for
TDMA environments. Unlike virtually all existing techniques, this
method does not require explicit transfer of node id’s.

2. Investigation of different multiple-access methods appropriate for
hard real-time, followed by:

• A quantitative assessment of the basic capabilities and limi-
tations of the time-triggered and event-triggered approaches
under different working scenarios. This study is intended as a
basis for design decisions for communication systems combin-
ing issues in schedulability/predictability and efficiency.

• Proposed new solutions for composite provisioning of the
event-triggered and time-triggered paradigms, such that we
maintain the flexibility and determinism emanating from the
event-triggered and time-triggered approach, respectively.

1.6 Disposition

The disposition of this thesis is as follows: Chapter 2 presents our novel
synchronization approach for initial startup as well as re-synchronization
of a TDMA system. Chapter 3 presents a more in-depth analysis of the
behavior of two common media access methods for embedded real-time
systems, where we study the efficiency of time triggered communication

1.6 Disposition 15

compared to event-triggered communication. The final contribution is
presented in Chapter 4, describing solutions how to send event-triggered
information on a time triggered channel, both based on existing technolo-
gies and new approaches. In Appendix A, which follows, we have some
background material, which consists of an investigation of communication
architectures, and their impact on bandwidth and reliability. It also treats
how to map control algorithms to fit with these different communication
architectures, based on [CGS00].

16 Introduction

Chapter 2

Synchronization Approaches
in Time-Triggered
Environments

IN this chapter we have developed low-cost and fault-tolerant synchro-
nization strategies for Time Division Multiple Access (TDMA) environ-

ments, see Section 1.1.1. Specifically, highly efficient, and fault-tolerant
communication primitives for safety-critical systems with hard real-time
requirements.

Virtually all existing synchronization techniques define and utilize ex-
plicit bits for node ID, which are used in the synchronization algorithm.
In this work, we remove the explicit bits in messages-frames used for node
ID; instead we use each node’s unique message lengths as node identifier.
The communication primitives are intended for communication protocols
where the access method is TDMA. The primary primitives of interest
address the start-up behavior of a protocol in a TDMA environment. We
investigate how to effectively use the information about messages lengths
(ML) as a form of message identifiers upon which a synchronization ap-
proach can be built – we term this the ML-approach. A solution for
avoiding start up collisions is also discussed using a similar method.

In this chapter we have assumed a broadcast bus as the communica-
tion media. Bus systems are prolifically used in many systems today on
account of the simplicity and low cost. In computer control, many differ-
ent protocols utilize a communication bus, for example, CAN [CAN91].
However, with a communication bus a number of different media access
strategies exist on how a node can potentially access the bus. The most
common way to solve this is by contention resolution, more specifically
Carrier Sense Multiple Access (CSMA), where each node senses the bus

18 Synchronization Approaches

for activity and may send when none is detected. This has the draw-
back that if two nodes send at the same time, the messages will collide.
Therefore, it is often combined with Collision Detection where the col-
liding nodes withdraw if they sense a collision; this is called CSMA/CD
and is used in, for example, Ethernet. Although used with great success
in Ethernet, the CSMA/CD method is not appropriate for hard real-
time systems due to the lack of determinism. With CSMA/CD, it is not
deterministically possible to avoid repeated collisions, which effectively
constrains estimating worst-case communication times.

To avoid the limitations of CSMA/CD for real-time systems, collisions
can be avoided using bit arbitration. With bit-arbitration, messages sent
simultaneously are arbitrated using the bit sequence in the beginning of
each message. This implies a priority order among messages. Nodes are
not allowed to send messages with the same arbitration bit sequence. Us-
ing the priority order among messages, a worst-case communication time
can be calculated for each message [TB94]. Using bit arbitration, the bus
propagation time implies a minimum length in time of the communication
bit. Furthermore, bit pulses must be fairly well formed for the arbitration
to work. These two facts limit the possible bit communication speed, and
it becomes dependent on the cable length.

Token bus (IEEE 802.4) and mini-slotting [ARI95] are other funda-
mentally different medium access schemes. However, token bus is sen-
sitive to loss of the token and mini-slotting is limited in bandwidth as
it is based on the concept of delays. In this chapter, we focus on the
TDMA media access method where nodes are pre-assigned time-slots in
a repeating schedule. TDMA communication provides a deterministic
behavior where, for example, arrival times and worst case delays can be
easily calculated. Although TDMA communication has been criticized
for its static properties and its consequent lack of flexibility, the proper-
ties inherited from the determinism of TDMA communication are very
useful, for example, evident timing, composability, easy fault detection,
and testing [Kop93].

Furthermore, most computer control systems have real-time require-
ments where these properties are particularly important, especially when
combined with the safety requirements, i.e., hard real-time system, where
the consequences are catastrophic if deadlines are missed.

2.1 Related Work

Several solutions to TDMA system start-up exist at present, though most
deal with systems of limited size where the propagation delay is easily
bounded. One possible approach is to use a known bit-pattern at the

2.1 Related Work 19

beginning of each frame or TDMA cycle [KU95, Sta91]. If a unique bit
pattern is used (technique 1), synchronization is obtained when this pat-
tern is detected. If it is not unique (technique 2), the node can search
the transmitted bits for maximum correlation with the known pattern
and, eventually, obtain synchronization. Both of these cases have delay-
related drawbacks for time-critical safety-related applications. Also, if a
unique bit-pattern is used, bit-stuffing or similar techniques are necessary
to avoid this bit pattern within ordinary messages; in embedded systems
for control applications, messages are typically short and in the 100 bits
range. Thus, any additional bits results in large overheads. The second
technique dictates that maximum correlation must be found, which is
complex and adds time overhead. Instead of a bit-pattern, a unique sig-
nal level can be used, e.g., a third signal level, other than 0 or 1. However,
the extra hardware necessary would probably be more efficiently used to
improve the bit encoding. Also, if a faulty node repeatedly issues the
resynchronization signal, such a failure would be more severe and diffi-
cult to mask than other failure modes that result in invalid transmissions.
If, instead, the synchronization information was embedded in a regular
message, a message (and a correct checksum) would have to be trans-
mitted successfully in order to achieve synchronization. This is unlikely
unless the node is correct.

In the TDMA protocol TTP [KG94], a node is reset and transits to
a start-up mode on initialization or when a system-wide communication
blackout has occurred. On entering this mode, each node has a unique
delay until its first message is transmitted. The unique delay reduces the
risk of collisions, but it also means that we cannot continue sending ac-
cording to the original bus schedule. Instead, the bus clock must be reset
when initialization mode is entered. Moreover, if collisions are detected
while in this mode, all nodes must reset their clocks [KKH+96]. In the
Lightning architecture [DPC+96], the lock-step method is used. During
start-up, a node is not allowed to send until its predecessor has trans-
mitted, except for a dedicated ”first” node. A time-out is used to detect
node failures and allow nodes to start sending even if their predecessor
has failed.

The TTP protocol is one of the most well known completely time-
triggered approaches. It is a full communication solution, thus, the
startup and restart mechanisms we use for comparison is only one part
of the TTP protocol. For example, TTP contains services for member-
ship handling and changing operational modes of the communication.
However, it should be clear that we, in our approach, only cover startup
and resynchronization and have not addressed the membership and op-
erational mode parts. There is nothing preventing this synchronization

20 Synchronization Approaches

approach to be combined with other communication services, and even
TTP’s approach for operational modes and membership handling.

In the next section we will recall the system model from the intro-
duction, Section 1.1, and include some additional details special for this
chapter.

2.2 System, Communication, and Fault Models
Behind the Approach

The System Model: Here we uses the TDMA part of the system model,
described in the introduction, and give some more specific details. Recall
that, we assume a safety-critical system with real-time requirements and
there are n autonomous nodes that communicate via a broadcast bus.
The nodes have local counters that are used to control the sending and
receiving of messages. Furthermore, the nodes operate in a cyclic manner,
where each node sends exactly once, when nothing else is stated, in each
TDMA communication round, as shown in Figure 2.1. We also assume,
that different nodes may use different message lengths, i.e., a node i sends
a message of length tmi.

A B N

Node A sends in time-slot 1

C

B in time-slot 2 …

TDMA round 1

A B

TDMA round 2

���

Slot 1 Slot 2 Slot 3 Slot N Slot 1 Slot 2��� ���

���

Figure 2.1: A TDMA communication round.

Communication Model: We assume two levels of synchronization,
(1) synchronization at frame level and (2) synchronization at the commu-
nication schedule level. This work assume that an existing approach is
used to achieve the frame level synchronization, which ensures that each
bit-value is received correctly.

Instead we focus on the communication schedule level, which synchro-
nizes the nodes to the same phase of the communication schedule. That
is, to ensure that all nodes agree on the current position of the communi-
cation schedule. To achieve this, it is necessary to make nodes exchange
time information such that they can agree on a global time. The global
time is a coarse-grained time that basically corresponds to the position
in the communication schedule.

Each node must store the communication schedule, which will contain

2.2 System Models Behind the Approach 21

the information of when and what a node should send. The storage
requirement for this information is normally relatively small, typically a
few kilobits, since we deal with embedded systems with a limited number
of nodes, especially when we consider the evolution of today’s computers
and memory.

The global time-base can be used to synchronize distributed tasks
and minimize delay and jitter by relating execution times of tasks to the
TDMA rounds, as has been established by [KG94, KKH+96]. This eases
the scheduling of periodic tasks.

The intended area for these communication primitives is hard real-
time systems that also need to be cost-efficient. The intent is to maintain
as low complexity of the primitives as possible. Communication band-
width for embedded system is sparse and has developed very slowly when
compared to the growth in processing efficiency. Thus, it is important to
have efficient protocols with limited communication overhead.

The Fault Model: The initial synchronization algorithm requires
a majority of nodes to synchronize such that different smaller groups do
not form disparate cliques. This puts a limit on the number of tolerated
faulty nodes to �(n−1)/2�, where n is the number of nodes in the system.
We assume that nodes follow fail-silent semantics, as discussed in the
introduction.

For the bus, we assumed omission failure semantics where messages
are either received correctly and on time or not at all. Recall that this
design, (fail-silent nodes and a bus system) efficiently exclude timing fail-
ure on the bus. Similarly, Byzantine failures are not considered as they
are avoided by design, using a bus combined with message checksums.

Thus, the initial synchronization will tolerate �(n − 1)/2� node fail-
ures and message omissions. The number of message omissions may affect
the synchronization time, which will be discussed in Section 2.5. A node
recovering from a failure will need resynchronization in order to send
messages. A node using our ML-approach for synchronization will imme-
diately regain synchronization after the first correct message reception,
since it can then determine the sender of the message and thus where in
the communication schedule the system is. Thus, assuming normal op-
eration, message omissions will only affect the time for resynchronization
of the node.

In the next section we discuss our approach along with current ap-
proaches on initial synchronization and resynchronization, highlighting
properties and shortcomings, in order to put our approach in perspec-
tive.

22 Synchronization Approaches

2.3 Initialization and Resynchronizations: Out-
lining the Basic Approach

The initialization problem of TDMA communication is that nodes can
only be synchronized by sending messages on the broadcast bus. How-
ever, to be able to send messages on the bus such that collisions are
avoided, the nodes must be synchronized in the first place. This leads
to a situation where, similar to CSMA/CD, no upper bound can be put
on the initialization. For real-time systems and especially hard real-time
systems, a bound on the startup time is desirable.

Current Approaches: The usual way to exchange time and thus
the position in the communication schedule is to send the time of local
clocks explicitly in messages. An algorithm can then be used to agree on
the global time. We advocate an approach where the message arrivals are
clocked and these time values are used for synchronization. This can be
done since messages are pre-scheduled and these time values will reflect
the local time of the corresponding sender. That is, we can extract the
sender’s opinion of time, as it sends the message according to its local
clock. To succeed with the extraction we must first have a method of
identifying the sender of the message. Then the static schedule unam-
biguously provides the send time. The difference from the scheduled send
time and the local time when the message was received, is used to create
a correction of the receivers’ clock.

A message identifier is usually included in the beginning of messages,
as id-fields. When using static scheduled messages, the reception time
of the message can serve as the id, thus making the id field of messages
unnecessary under normal operation. This assumes that nodes have syn-
chronized their local clocks, i.e., the nodes have agreed on the position
in the communication schedule. Thus, before the nodes are synchronized
or when nodes lose synchrony, explicit message ids are necessary. Thus,
nodes need to send explicit message id’s until nodes are synchronized.

To handle initial synchronization and resynchronization we can send
the message-id in all messages, as done in DACAPO [RLST95]. Another
way of achieve synchronization is to send special initial messages, as done
in TTP [KG94]. Sending the id in all messages will add extra overhead,
which is only useful at startup and at synchronization. Thus, sending
special messages at startup appears as a good idea, but then we increase
the complexity by adding an extra communication mode at startup. Fur-
thermore, resynchronization of nodes is not handled, i.e., reintegration
of a node that has lost synchronization. In such a case a membership
service must be introduced. A third alternative is to let a node send
periodic messages with resynchronization information. If the node that

2.3 Initialization and Resynchronizations 23

sends such a message fails, nodes that have lost synchronization will not
be able to reintegrate. Therefore, additional nodes have to send messages
with resynchronization information to tolerate failures. The disadvan-
tage is the requirement of an extra mode and the additional overhead at
runtime.

Proposed Approach: Our solution takes advantage of information
that is inherent in statically scheduled communication. Instead of includ-
ing the message id in each message, we use the length of messages as
the id. This implies that messages have different lengths and that the
lengths of the time-slots correspond to these message lengths. With a
static schedule and the length information, a message receiver immedi-
ately knows who the sender is. However, this requires that each node has
a list of the length of messages and to which node they correspond. The
unique message lengths of nodes are chosen according to the amount data
each node need to transfer, i.e., the node with most data to transfer (per
time unit) will have the largest message. When nodes require the same
message length we can break the symmetry by differentiating the mes-
sage length of these nodes. We can also ensure that there will be unique
sequences of message lengths to synchronize on, which we will come back
to later in this Chapter and in Section 2.6.3.

This approach is very useful both during start-up and resynchroniza-
tion, as a node will require only one message receipt to be able to achieve
system level synchronization.

Using this approach, nodes will know the position of the commu-
nication schedule as soon as one message has been received correctly.
However, using different message lengths will not prevent messages from
colliding. Making a new retry one TDMA cycle later can lead to a new
collision and, in the worst case, lead to an infinite sequence of collisions.
The usual work-around for this is to wait a random delay before resend-
ing, usually called exponential back-off1. This usually works but for hard
real-time systems, a bounded time on startup and resynchronization is
required.

To achieve a bounded start-up when messages collide, each node will
delay its retry by a short but unique time period. We will show that, by
using time periods that are short compared to the cycle time, the worst-
case start-up time is bounded. This worst case scenario is extremely
unlikely and we will therefore show the average startup times of this
approach, using simulations.

In most systems, the nodes are likely to have different requirements on

1The exponential back-off strategies used in CSMA do not provide a guaranteed
bounded time to bus access. Predictable bounded times are essentially required for
safety critical applications.

24 Synchronization Approaches

TDMA round

1 3 5 972 4 6 8 10

X Messages with the same message length.

X Messages with the same message length.

X: Sending node id.

Figure 2.2: A TDMA communication round. Nodes with odd id numbers
having unique message length. Nodes with even id numbers all have the
same message length.

bandwidth, thus the requirement of unique message lengths is normally
not a limitation. It offers more flexibility than a system using messages
of the same length. The requirement of unique message lengths can even
be relaxed if some nodes need to send the same amount of data. Nodes
can then use messages with the same length by adding simple constraints
on sending at the initial synchronization. Such a constraint could, for
example, be that only messages longer than previously sent messages
are allowed to be sent. This simple algorithm will allow many messages
with the same message length. Although it is easy to come up with
communication schedules for which the suggested algorithm would not
work, there are in most cases other modifications of the algorithms that
will work. The simplest solution to solve the problem is however to make
a message slightly longer, i.e., add padded bits.

In a situation where we have many short messages requiring similar
amount of sent data, it might be difficult to choose different lengths for
each node. This situation can easily be handled with two adaptations:
(1) at startup, only nodes with uniquely identifiable messages lengths are
allowed to send. This means that during startup the received messages
must be identifiable, such that nodes can synchronize with them. In
Figure 2.2, we show an example where only nodes with odd id numbers
are allowed to send. (2) During resynchronizations, at least a unique
sequence of lengths is sufficient as it can be used to locate the position
in the TDMA cycle. For reintegration, it is also sufficient with a unique
sequence of message lengths. In Figure 2.2, a resynchronizing node can
be synchronized as soon as a message from a node with odd id is received.
Thus, for startup, only nodes with unique message lengths can send, such
that the startup is fast.

2.3 Initialization and Resynchronizations 25

2.3.1 The Node-Level Synchronization Operations

On this background, we now detail the node synchronization process.
Nodes work in three different modes depending on the level of synchro-
nization achieved, see Figure 3. In Mode (1) normal operation a node is
synchronized and sends according to the preassigned schedule. Mode (2)
resynchronization mode is entered when a node has lost synchronization
or messages from less than half of the nodes are received. Mode (3) is
the recovery mode that a node enters at startup and after a disturbance
preventing message reception for the duration of a full TDMA cycle. The
rules are based on those described in [Lön99a]. We first provide some rel-
evant definitions that are used in the synchronization protocol description
in Section 2.3.1.

Definitions

n is the number of nodes in the system.

tmi The time it takes for a node i to send its message Mi, i.e., this time is
proportional to the message length.

INCi Each node i is alloted a unique time period INCi used to delay the nodes
transmission after a collision.

tmmax The time it takes for the node with the longest message Mmax to send
its message, i.e., the time it takes to send the longest message.

TCi The time counter for node i, keeps track of the current time in the schedule.
With this pointer each node will know when to send.

STi The send time of node i.

MRvec Message Receive Vector, containing information on whether the lat-
est n messages were received correctly or not. In a system with eight
node’s (n = 8) where a node’s MRvec contains three 0’s and five 1’s,
{0,1,0,0,1,1,1,1} means that this node has received five messages correctly
and three incorrectly or not at all. MRvec is a FIFO list where a new
message is inserted and the oldest are shifted out. In case of an incorrect
message or no message is received a 0’s is inserted into the vector, other-
wise, if a correct message is received a 1 is put in the vector. We denote
the number of 1’s in MRvec with ones(MRvec).

SCi The silence counter for node i, timing the period from last bus event or
disturbance. The silence counter is reset every time any messages/traffic
is sensed on the bus.

Having introduced the definitions, we now present the synchronization
protocol, with the operational modes and their corresponding operation.

26 Synchronization Approaches

Synchronization protocol, modes and operation

Each of the following operations is performed at each node. A node will
also treat message receptions from itself in the same way as other nodes,
e.g., updating the MRvec.

Normal mode: When nodes are synchronized and messages are re-
ceived from more than half of the system nodes.

1. For each correctly received message Ms sent by node s, the receiving node
r updates the time counter TCr by adding the time tms corresponding to
the received message Ms. Thus TCr = TCr + tms. The received message
vector MRvec is updated and a 1 is inserted into the vector.

2. If an incorrect or no message was received by a node r, the time counter
TCr of node r is incremented with the duration of message i, tmi of the
expected message. The received message vector MRvec is updated and a
0 is inserted into the vector.

3. Enter Resynchronization mode if messages from less than half of the nodes
have been received correctly, i.e., the number of ones in MRvec is less than
half of the number of nodes, ones(MRvec) ≤ �n/2�.

4. A node i will send its message when the time counter is equal to the send
time, TCi = TSi.

Resynchronization mode: Having sent a message in recovery
mode, a node enters resynchronization mode and waits for reception of
messages from half of the nodes. (Note: No message transmission is made
in Resynchronization mode).

1. When a correct message Ms is received by node r, set the time counter
TCr according to the end time of this message, TCr = STs + tms. The
received message vector MRvec is updated and a 1 is inserted into the
vector.

2. If an incorrect or no message was received by a node r, the time counter
TCr of node r is incremented with the sending time tmi of the expected
message. The received message vector MRvec is updated and a 0 is in-
serted into the vector.

3. Enter Normal mode when messages from a majority of nodes have been
received correctly.

ones(MRvec) > �n/2� (2.1)

4. If the bus has been completely silent for one communication cycle (silence
counter is greater then the time period, SC >= T) enter recovery mode.

2.3 Initialization and Resynchronizations 27

Recovery mode: The start mode, where nodes enter at initial-
startup. A Node starts by listening to the bus for one communication
cycle; if no message was received it will send its message. Nodes also
return to this mode in case of complete loss of synchronization.

1. A node i is allowed to send a message if the following condition is fulfilled:
The local time counter TCi indicates that it is node i’s turn to send, we
refer to this time as STi.

2. When a correct message Ms is received by node r, set the time counter
TCr according to the end time of this message, TCr = STs + tms. The
received message vector MRvec is updated and a 1 is inserted into the
vector.

3. If an incorrect or no message was received by a node r, the time counter
TCr of node r is incremented with the duration tmi of the expected mes-
sage. The received message vector MRvec is updated and a 0 is inserted
into the vector.

4. If a collision was detected by node i when sending its message, it will
immediately stop sending and postpone its retry with INCi time units,
i.e., next transmit time is INCi + T , where T is the period time.

5. When one message has been successfully sent, enter Resynchronization
mode.

6. Enter Normal mode when messages from a majority of the nodes have
been received correctly in MRvec, i.e., (ones(MRvec > �n/2�).

Normal
Resynchronization

Recovery

-Send Msg. If TC
i
= ST

i

� �2/)Ones(MRvec n�

� �2/)Ones(MRvec n�

Not allowed to send

-Send Msg. If TC
i
= ST

i

-Collision: withdraw, retry at T+INC
i

T�silentBus
� �2/)Ones(MRvec n�

Msg. Successfully

sent

Figure 2.3: Communication controller states

To reach normal mode (Fig. 2.3), we require message receipt from a
majority of the nodes, thus we tolerate �(n − 1)/2� faulty nodes. The
effect of failure during start-up and resynchronization is a delay in the
startup time.

It is important to avoid repeated collisions of messages which would
prevent the system from synchronizing. This is handled in the recovery

28 Synchronization Approaches

mode above. Each node i is assigned a time increment INCi, significantly
shorter than the period time T. If a collision occurs, colliding nodes will
postpone their next retry with a time equal to the increment INCi. Thus,
the next send time tk+1 for node i will be one period plus the time incre-
ment, i.e., tk+1 = tk +T + INCi. This will postpone the resending of the
message with the time period INCi.

If further collisions occur, a node will keep adding its unique time
period INCi to its time counter. After a deterministic time interval as
detailed in Section 2.4, Equation (2.3), at least one message will not col-
lide. All nodes will receive this message and synchronize to it, which will
prevent further collisions. Thereby, the initial synchronization completes.

In the worst case scenario the number of collisions will be �n/2�, where
n is the number of nodes in the system. In Section 2.4 we will derive this
figure and show its correctness.

2.4 Upper Bound on Startup

In this section we establish the upper bound on subsequent collisions,
which is �n/2�. In an initial start-up scenario, a node will start in the
Recovery mode. In this mode, a node will synchronize with the first
received message. Thus, we need to show that the nodes, in a bounded
time, will receive an uncorrupted message to synchronize with.

To prove this upper bound on the initialization we use the following
assumption:

INC1 < INC2 < · · · < INCn << T (2.2)

where n is the index of the last node. Thus, node n will use the longest
delay after a collision. The minimum time unit must be at least one
propagation delay, τ , of the media. Thus, the shortest INC must be at
least τ , and the following must differ with at least τ .

The goal is to prevent that an infinite sequence of collisions occur on
the bus. This is done by postponing a node i’s next send retry with INCi

after a collision, preventing the same nodes from colliding at their next
retries. Using these assumptions, we can draw the following conclusions:

1. The worst case number of collisions occurs when all nodes collide
but only in pairs. That is, the first two nodes collide then the next
two etc. In this worst case scenario, all nodes will collide again at
the next retry, but in different pairs.

2. For such a worst case scenario to occur, nodes with the longest INC
delay must collide first followed by collisions of pair of nodes with

2.4 Upper Bound on Startup 29

decreasing INC delays, i.e., node Nn, with INCn, will collide with
node Nn−1, with INCn−1, and then node Nn−2 with Nn−3 and so
on. If the two nodes with the shortest delays (INC1 and INC2)
collide first they will not collide again. Furthermore, they will not
collide with any other nodes as other nodes delay their retries even
further. Thus the collisions would end at their next retry.

For each collision, the “fast” node will move forward a step and must
collide with a node that has a lower INC delay. To explain the idea we
give a short example with 10 nodes where these possible collisions give
a worst case scenario. In each row, (Ni,Nj) indicates that nodes Ni and
Nj have collided and K indicates the collision number:

30 Synchronization Approaches

K = 1 (N10, N9)(N8, N7)(N6, N5)(N4, N3)(N2, N1)

K = 2 (N9, N7)(N10, N5)(N8, N3)(N6, N1)(N4, N2)

K = 3 (N7, N5)(N9, N3)(N10, N1)(N8, N2)(N6, N4)

K = 4 (N5, N3)(N7, N1)(N9, N2)(N10, N4)(N8, N6)

K = 5 (N3, N1)(N5, N2)(N7, N4)(N9, N6)(N10, N8)

Based on this idea of postponing the retries with a unique delay, we
prevent infinite sequences of collisions. Thus, for n nodes, we will get a
maximum of �n/2� collisions. An odd number of nodes will only require
that we have a number of triple collisions to get a worst case, and this
reduces the probability of collisions.

The longest delay before a message is sent without collision is then:

tstartup = (�n/2� + 1)(T + INCn) (2.3)

where T is the TDMA round time and INCn the largest increment
among the nodes.

2.5 Properties and Overhead

In this section, we discuss and show the properties of this synchroniza-
tion approach. The overhead of synchronization can be manifested in
three ways, namely (1) communication overhead, (2) synchronization
time overhead and (3) computation/memory overhead. The communi-
cation overhead relates to additional data that must be transferred in
order to achieve synchronization. The time overhead relates to the ad-
ditional timeouts, retransmissions etc. Finally the computation/memory
overhead is related to processing and memory storage which is required
in order to accomplish resynchronization.

This synchronization approach is efficient in the sense that it has
low overhead. However, there is invariably some overhead related to
communication services like synchronization. In safety-critical real-time
systems, the synchronization overhead and communication overhead are
normally most critical. Computation time and memory is relatively cheap
in comparison. Therefore, we favor a solution that may have a larger
computation overhead but smaller time and communication overhead.
The following list summarizes the main overhead contributors in this
approach:

2.5 Properties and Overhead 31

Communication: No additional messages are sent and no extra in-
formation bits are needed to achieve synchronization, except in the rare
cases when we need to add extra bits to get unique message lengths.

Time: Synchronization is accomplished as soon as a message is re-
ceived. It may be delayed by collisions and faulty nodes, bounded as
given in Equation (2.3), Section 2.4.

Computation/Memory:

• Each node carries a list of “n”, i.e., one for each node in the system,
entries containing all message lengths and the corresponding nodes,
it also include the knowledge about the time slot it should be sent
out in.

• A counter which keeps track of local time, i.e., the point of the
communication schedule the system has currently reached.

• A vector with the n last received/expected messages, with only
one bit necessary for each node, indicating received or not received
messages.

To analyze the proposed Message Length (ML) approach, we compare
it with two existing approaches for initial synchronization and resynchro-
nization. The approach used in DACAPO [RLST95] (D-approach) uses
fixed length messages where one or two special nodes change its send
time in order to resolve collisions. The second approach is based on the
one used in TTP [KG94, TTP99], the (T-approach), see also Section 2.6.3
where nodes send special start frames and each node uses dedicated back-
off times. Finally, we include an approach that behaves as ML except
that it uses exponential back-off instead of time increments to resolve
collisions. This approach will be referred to as MLexp. The exponen-
tial back-off uses a random delay before retry, and additional collisions
exponentially increase the time range from which the random delay is cho-
sen. The exponential back-off is used in, for example, the Ethernet. This
method would require a random number generator in each node instead of
our increment value calculated and stored pre-runtime. Although slightly
more complex in implementation, MLexp is independent of system size.

In Table 2.1, the main differences in overhead for these start-up sce-
narios are summarized. The main categories we have compared are (a)
communication bandwidth overhead (in number of bits), (b) storage over-
head, (c) bounded/unbounded startup time and (d) maximum time for
a node to resynchronize. In our ML approach and MLexp, there are no
communication overheads, since information is transferred using message
lengths. The required storage is proportional to the number of nodes n
such that a message can be identified by the message length. The major

32 Synchronization Approaches

difference between these two is that ML has a bounded startup time, see
Section 2.4.

For the resynchronization approach, the time to resynchronize a recov-
ered node is totally dependent on the time of reception of a first message.
The time to send messages from node i, i.e., the duration that message
occupies the bus, is tmi and we assume that we index the nodes such
that the send duration for node i is shorter than for node i + 1, i.e.,
tm1 < tm2 < · · · < tmi < tmi+1 < · · · < tmn. Thus, the worst case
resynchronization time, i.e., the longest time it can take for a node to
receive a message, would be:

tresync = tmn−1 + tmn (2.4)

In case of f faults, i.e., message omissions or node crashes, we have:

tresync = tmn−1−f + · · · + tmn−1 + tmn (2.5)

As we see in Equation (2.5), tresync will increase for each extra fault. As a
pessimistic approximation, we can write (f +1) · tmmax if f is the number
of tolerated faults and tmmax is the longest message length.

The TTP approach requires special initialization messages to be sent
that include information about the sender. A node is synchronized when
it has received an initialization message; this is equally true for a resyn-
chronizing node. Thus, initialization messages must be sent during nor-
mal operation to allow a recovering node to resynchronize. Furthermore,
to tolerate failure of the initialization message sender, (f +1) nodes must
send this types of message. The number of bits required in initializa-
tion messages is (f + 1)log2(n), where log2(n) bits are needed to identify
the sender and such a message must be sent (f + 1) times to tolerate f
failures.

Method Comm.(bits) Memory (bits) Startup Resynch. (secs)

Message Length
(ML)

0 ∝ n B (f + 1) · tmmax

D-Approach log2(n) · n log2(n) B (f + 1) · tm
T-Approach log2(n) · (f + 1) log2(n) B f · td + tmim

MLexp. back-off 0 ∝ n U (f + 1) · tm

Table 2.1: Properties of startup/resynchronization approaches.
B=Bounded and U=Unbounded.

The start-up time for this approach is normally bounded, since all
nodes should listen to the bus and reset their local clock at this time.
After such a reset, nodes will wait for a node-specific time, based on the

2.6 Simulations 33

requirement, to send their message. For this to work and to be sure of
avoiding additional collisions, all nodes must have sensed the collision. By
increasing the time between two successive initialization messages, reduce
the overhead stemming from initialization messages. This will however
increase the worst-case time for resynchronization of a recovering node.
The worst-case resynchronization time depends on the time between and
length of initialization messages, f · td + tmim, where td is the largest time
between initialization messages and tmim is the length of those messages.

In the D-approach, the sender ID is always included in the message
and will result in a communication overhead of nlog2(n) per TDMA cy-
cle. There is no extra storage needed for either the D-approach or T-
approach for the startup. This should not be confused with the fact that
TTP-controllers already store total information about the communica-
tion schedule, including messages lengths. This extra overhead is used
for other purposes than the startup synchronization and resynchroniza-
tion.

Table 2.1 shows that the ML-approach combines a bounded start-up
time with low communication overhead and fast resynchronization.

2.6 Simulations

To show the normal start-up behavior of our approach, we have simulated
the initial startup synchronization and measured the time for all nodes
to reach the Normal mode. This has been done in a number of scenarios,
such as under normal fault free condition as well as with faulty nodes
during the startup.

We have assumed that we have a bus system where the bus is no longer
than 40 m. The propagation delay for a 40 m cable is approximately 0.2
µs, and we have chosen our communication bits to twice this time. This
affects the startup times but as we have used the same for all simulated
protocols it does not affect the relative comparison between protocols.
In these simulations, the basic time-units are 0.4 µs, i.e., the basic bit
transmission time.

The message lengths are unique and chosen as a multiple of the basic
time unit, of 0.4 µs. For the time increments (INCi) it is important that
they are longer than the propagation time. Furthermore, they should
differ by more than one propagation time-unit each, such that after a
collision between two nodes, these nodes will not collide again. In our
simulations, INCi is chosen starting with one time unit, i.e., two times
the propagation time, and for each additional node we add two time units,
e.g., INCi = 1, 3, . . . , (1 + 2 · i) for i = 1 to n where n is the number of
nodes.

34 Synchronization Approaches

T 2T 3T 4T

Local clock values at simulation time 0 are
evenly distributed within the TDMA schedule.
Thus ranging from 0 to T time units.

0

End time, all nodes
in Normal mode.

Figure 2.4: Startup initialization.

The start times of the local clocks, i.e., the time counter TC, have
been evenly distributed in the time interval (0,T) where T is the TDMA
round time, see Figure 2.4.

2.6.1 Normal Operation

We have started our simulations by finding the startup times under con-
ditions when all nodes work correctly. The message lengths have been
chosen randomly from 24 bits and up, such that the Cycle Time (CT) of
a communication round is equal to a certain chosen period. The selected
periods are between 0.2 and 1.6 ms. The size of the system varies between
6–24 nodes.

For each CT (cycle time), 50 sets of messages with randomly gener-
ated lengths were used. We have initially chosen to randomly generate
messages between 24 bits and CT/(n/2), where n is the number of nodes.
The 24 bits is not a limit but has been chosen as it is reasonable to assume
that smaller messages than that are seldom used. However, if messages of
equal length were generated they were separated by decreasing the length
of one of them. Therefore, a few messages may have been separated such
that their length are below the 24 bits.

The sum of all n messages Sr should be CT, therefore each randomly
generated message length mlri was adapted according to Equation (2.6).
The used message length mli is then:

mli = (mlri − 24) · Sr − 24 · n
CT − 24 · n + 24 (2.6)

This ensures that messages are randomly generated starting from 24
bits and the total sum is CT . The message length distributions for the
6-node and 24-node system are shown in Figure 2.5 and Figure 2.6.

We use the 24-node case to show the operational capability of our
approach for a relatively large system size as well. The system size of 6

2.6 Simulations 35

and 24 nodes will also be used for the simulation of the fault scenarios.
For each of these 50 message sets 1 000 startups were run, such that

in total 50 000 startups were run for each CT-case. In Figures 2.7–
2.10 we see the average, maximum and minimum startup times for these
simulation runs.

As seen in Figures 2.7 – 2.14 the startup time increases linearly with
increasing Cycle Time (CT). This means that the startup time increases
when the average message length increases while using the same system
size. This also applies to the maximum and minimum startup times.

The average startup time is dependent on the CT. The startup time
is basically a fixed factor of the CT. In the 6-node case the startup time
is close to 1.8 times the CT and slightly less for the 24 node case where
it is 1.6 times the CT.

2.6.2 Fault Scenarios

In this section we will see how a system startup behaves when one or
more nodes fail during startup. A number of failure scenarios can occur
during the startup of the system.

The main failure scenario we have to consider is when a node falls
silent before or during the startup. Since this will affect the startup be-
havior we have simulated when faulty nodes are silent during the startup.
The main effect on the startup is that the average startup times for the
working nodes increase, as can be seen in Table 2.2. It also shows the
relatively small standard deviation on the average startup for the three
cases and the increasing minimum and maximum startup times, due to
faulty nodes, during the simulations. To further show how the startup
is affected, we show in Figure 2.15 the relative frequency of the startup
times for the different simulation runs.

0 1 2
Mean 0,73 0,78 0,86
Std. Dev. 0,067 0,076 0,083
Min 0,40 0,58 0,57
Max 1,07 1,18 1,21

No. of faulty nodes
Startup time (ms)

Table 2.2: Simulation result using a 6-node system with 0, 1, and 2 nodes
faulty during the startup, the cycle time is 0.2 ms

In order to show how the failure behavior changes for larger system
sizes we show in Figure 2.16 the relative frequency of the startup times
for a 24-node system. The maximum startup time also increases in the
24-node case and in our simulations the maximum startup time increased

36 Synchronization Approaches

0

5

10

15

20

25

30

24 122 219 317 414 512 610 707 805 902 1000

Message Lengths in number of bit

Re
la

ti
ve

 F
re

q
u

en
cy

CT=0,2ms

CT=0,4ms

CT=0,6ms

CT=0,8ms

CT=1ms

CT=1,2ms

CT=1,4ms

CT=1,6ms

Figure 2.5: Message length distribution with the ML approach for a 6-
node system

0

10

20

30

40

50

60

70

80

90

100

22 65 108 150 193 236 279 322 364 407 450

Message Lengths in number of bits

R
el

at
iv

e
Fr

eq
ue

nc
y

CT=0,62ms

CT=0,82ms

CT=1,02ms

CT=1,22ms

CT=1,42ms

CT=1,62ms

CT=1,82ms

CT=2,02ms

Figure 2.6: Message length distribution with the ML approach for a 24-
node system

2.6 Simulations 37

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

Cycle Time (ms)

St
ar

tu
p

T
im

e
(m

s)

Max

Average

Min

Figure 2.7: Average, Max and Min startup time of 6-node system.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6

Cycle Time (ms)

St
ar

tu
p

T
im

e
(m

s)

Min

Average

Max

Figure 2.8: Average, Max and Min startup time of 12-node system.

38 Synchronization Approaches

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

Cycle Time (ms)

St
ar

tu
p

T
im

e
(m

s)

Min

Average

Max

Figure 2.9: Average, Max and Min startup time of 18-node system.

0,8

1,3

1,8

2,3

2,8

3,3

3,8

4,3

0,6 0,8 1,0 1,2 1,4 1,6 1,8 2,0

Cycle Time (ms)

St
ar

tu
p

T
im

e
(m

s)

Min
Average
Max

Figure 2.10: Average, Max and Min startup time of 24-node system.

2.6 Simulations 39

0

2000

4000

6000

8000

10000

12000

0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9 3,1 3,3 3,5 3,7 3,9 4,1

Startup times in ms

R
el

at
iv

e
fr

eq
ue

nc
y

CT=0,2ms
CT=0,4ms
CT=0,6ms
CT=0,8ms
CT=1ms
CT=1,2ms
CT=1,4ms
CT=1,6ms

Figure 2.11: The relative frequency of the startup times, in a 6-node
system. Each curve corresponds to a Cycle Time, where the leftmost
curve has the shortest Cycle Time.

0

5000

10000

15000

20000

0,32 0,62 0,92 1,22 1,52 1,82 2,12 2,42 2,72 3,02 3,32 3,62

Startup times in ms

R
el

at
iv

e
fr

eq
ue

nc
y

CT=0,21ms

CT=0,41ms

CT=0,61ms

CT=0,81ms

CT=1,01ms

CT=1,21ms

CT=1,41ms

CT=1,61ms

Figure 2.12: The relative frequency of the startup times, in a 12-node
system. Each curve corresponds to a Cycle Time, where the leftmost
curve has the shortest Cycle Time.

40 Synchronization Approaches

0

2000

4000

6000

8000

10000

12000

14000

16000

0,58 0,98 1,38 1,78 2,18 2,58 2,98 3,38 3,78

Startup times in ms

R
el

at
iv

e
fr

eq
ue

nc
y

CT=0,41ms
CT=0,61ms
CT=0,81ms
CT=1,01ms
CT=1,21ms
CT=1,41ms
CT=1,61ms
CT=1,81ms

Figure 2.13: The relative frequency of the startup times, in a 18-node
system. Each curve corresponds to a Cycle Time, where the leftmost
curve has the shortest Cycle Time.

0

2000

4000

6000

8000

10000

12000

0,8 1,2 1,6 2 2,4 2,8 3,2 3,6

Startup times in ms

R
el

at
iv

e
fr

eq
ue

nc
y

CT=0,62ms
CT=0,82ms
CT=1,02ms
CT=1,22ms
CT=1,42ms
CT=1,62ms
CT=1,82ms
CT=2,02ms

Figure 2.14: The relative frequency of the startup times, in a 24-node
system. Each curve corresponds to a Cycle Time, where the leftmost
curve has the shortest Cycle Time.

2.6 Simulations 41

from 1.60 ms, for the case with zero faulty nodes, to 1.87 ms for the case
with seven faulty nodes.

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

1400,0

1600,0

0,3 0,7 1,1 1,5 1,9 2,3 2,7 3,1 3,5 3,9

Startup Time (ms)

R
el

at
iv

e
F

re
qu

en
cy

Number of faulty nodes0

Number of faulty nodes1

Number of faulty nodes2

Figure 2.15: The relative frequency of the startup times, in a 6-node
system. The cycle time is 0.2 ms. The curves correspond to startup cases
were the number of faulty nodes are 0, 1, and 2.

2.6.3 Identical Message Length Scenario

An argument against this method is that with larger system size, i.e.,
with increasing number of nodes and messages, it is difficult to assign
unique message lengths. Data transferred in most system are also often
multiples of bytes which makes it even more likely that different nodes
requires the same message lengths. However, this works with unique
sequences of message lengths as well as unique messages. There exist
methods of getting unique message lengths and ensuring unique message
patterns.

In real-time systems, data exchange often consists of control values,
e.g., actuator set-points etc., such data typically needs around 8 to 32
bits per message. These values are packed in messages and transferred
on the communication media. Normally, a number of these data values
are combined into a message, which controls the message lengths. Each
data could however be sent separately, but that would obstruct our main
objective, to decrease the overhead, as each message impose an overhead,
e.g., for checksums etc. Thus, better message response may come at the
expense of decreasing bandwidth efficiency.

42 Synchronization Approaches

20

40

0,0

1200,0

140

180

2000,0

, , , ,5 , , , , ,

Sta up T

Num s 0

Figure 2.16: The relative frequency of the startup times in a 24-node
system. The cycle-time is 0.82 ms. The curves corresponds to a startup
cases were the number of fault nodes are varied between 0 and 7.

As larger systems are considered, which increase the number of mes-
sages, we may be forced to use messages with equal length. However, a
unique sequence of messages can also be used to decide the systems cur-
rent position of the communication schedule. When using a sequence, a
time penalty follows as more than one received message may be necessary
to resolve the position in the schedule. We will in Section 2.6.3 show how
this time can be reduced under certain conditions.

The sequences of message lengths we need to avoid are identical se-
quences that are repeated, which makes it impossible to distinguish the
exact position of the schedule. Assume that a number of nodes send
messages with length x, and another set of nodes sends messages with
length y and similarly there are nodes using message length z. Thus x,
y and z are non-unique message lengths, i.e., they do not provide unam-
biguous information of the position in the schedule. In Figure 2.17, we
show a few examples on unique and non-unique sequences. The difference
among unique sequences is the worst case time to unambiguously decide
the position in the communication schedule.

Note that we must use at least one more node with non-equal message
length than the number of faulty nodes that are to be tolerated.

2.6 Simulations 43

Unique sequences:

xyyzzzxz:xyyzzzxz:xyyzzzxz:xyyzzzxz
xxxxxxxy:xxxxxxxy:xxxxxxxy:xxxxxxxy

Not unique sequences:

xyzxxyzx:xyzxxyzx:xyzxxyzx:xyzxxyzx
etc

Figure 2.17: Unique and not unique sequences of message received from
a bus. Each TDMA-cycle is 8 messages and they are separated with
semicolon (:).

Optimizations

In this section we will describe how we can minimize delays emanating
from messages with same length. A sender with a non-unique message
length, say node b, will be pre-selected if a node receives a message with
the length of node b, i.e., nodes will assume b was the sender independent
who actually sent it. This pre-selected node, b, will be determined before
runtime. When receiving a non-unique message all nodes will assume b as
the sender and thereby the system nodes can be synchronized using any of
the messages with that length. For example, if we have a 6-node system
with nodes labeled “a” through “f”, a, b, c, d, e, f , sending in alphabetical
order. We assume nodes a and b to have the same message length. Then,
if the other nodes receive a message from node a or b in the startup phase,
they will always assume that b was the sender, regardless of the actual
sender. All nodes will synchronize to this message and they assume c is
the next message to be received.

The drawback of this method is that the message content cannot
be used when the first received message is not unique, as the sender is
uncertain. This is not a problem during an initial startup or system
resynchronization as nodes are synchronized after the first message is
received, thus the contents of following messages can be used. We argue
that this is reasonable since the primary issue is to get nodes synchronized
and it is only one message where the data contents cannot be used, due
to an unknown sender. Thus, the only negative effect of this in the initial
startup is that the first message cannot be used.

This optimized approach cannot be used for resynchronization of a
recovering node, i.e., only in recover mode. A resynchronizing node will
have to wait until a unique pattern/message has been received in order
to be sure of the current position in the communication schedule.

44 Synchronization Approaches

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 1,1 1,2 1,3 1,4 1,5 1,6

Startup times in ms

R
el

at
iv

e
fr

eq
ue

nc
y

0 nodes same ML
3 nodes same ML
6 nodes same ML
9 nodes same ML

Figure 2.18: The relative frequency of the startup times in a 24-node
system using 3, 6 and 9 messages with the same length respectively. The
Cycle Time is 0,82 ms

With this optimized method there will be a limited effect on the av-
erage startup times. To give an example of this, we have run simulations
with a 24-node system and a relatively small cycle time, see Figure 2.18.
We have used this as an example, since messages of the same size are
more likely needed when using a system with many nodes and relatively
short message, such that varying the message lengths is hard. All mes-
sage lengths have been chosen randomly as described in Section 2.6.1, one
message length is then used for a number of nodes. In our simulations
we have used the 24-node system with 3, 6 and 9 messages with equal
length. The simulation results are shown in Figure 2.18. As the figure
shows, there is a limited effect of using the same message lengths when
we use this optimized approach. The main difference when the number of
messages with equal lengths increases, there is a slightly larger dispersal
between the startup times. For comparison we have also included the
case with no identical messages.

Without optimization, we have assumed that the receiving nodes will
ignore a message with a non-unique message length. This will make the
system behave as if nodes with equal messages length have failed, i.e., they
are silent. However, in this case they will still send messages and thus
increase the probability for collisions. We have not done any simulations
for this case since it is very similar to simulations in Section 2.6.2.

We have shown that we get a small impact on the startup times using
the optimized method. However, there is still a question of the applica-
bility of this method in reality. How often do we get schedules where we
cannot use our method at all, i.e., without using some manual interven-

2.6 Simulations 45

tion like adding bits to get unique messages. It is hard to find typical
real-time application data, for example, industry can seldom provide typ-
ical real-time system schedules or information about the amount of data
they send. In order to get an indication of how often schedules occur
that prohibit our approach, we have randomly generated a large num-
ber of schedules. We have then studied this data to see how often our
approach can be used and how the maximum delays are imposed due to
re-occurring message sequences.

To handle data values that are multiples of bytes, many communica-
tion protocols use messages lengths with multiples of bytes as well. We
use the same principle and use only messages with multiples of bytes.
This naturally reduces the number of possible message lengths in the sys-
tem. Messages in real-time systems are approximately 24 to 240 bits long
excluding overhead, this gives us 28 different message lengths. However,
to stay on the pessimistic side with our figures, we will assume message
lengths between 56 and 200 bits, which gives us only 19 different message
lengths to choose from.

We have generated TDMA schedules, consisting of randomly gen-
erated messages that are evenly distributed among these 19 message
lengths. These simulations have been done for different system sizes,
i.e., with 10, 15, 20, 25, 30, 35 and 40 messages per TDMA-round. We
have measured the longest non-unique sequences of messages in each sim-
ulation and studied the effect of increasing number of messages. The
result is shown in Table 2.3, where we generated 100 000 schedules per
system size. The columns show the occurrences of the longest sequence of
messages that must be received before the sender’s ID can be established.
For each system size the occurrences of all the generated schedules are
shown, such that the sum in each row is 100 000. In column 1, we see the
occurrences where only one message must be received before the senders
ID can be established. In column 2, the longest sequence that exists in a
schedule before the sender’s ID can be established is 2, etc. For each sys-
tem size we show in the Table the distribution of the longest non-unique
sequence. We found that even in quite difficult circumstances, all gener-
ated schedules could use our approach. However, with increasing number
of nodes it becomes more frequent with repeated sequences of message
lengths.

2.6.4 Comparison

In this chapter we will compare the simulations of our startup ap-
proach with the popular TDMA communication approach TTP/C [KG94,
TTP99]. We will also compare with one of our earlier approaches, used

46 Synchronization Approaches

Longest non-unique sequence, in # of messages.
System size 1 2 3 4 5 6 7
10 nodes 55532 41742 2585 141 0 0 0
15 nodes 5233 82935 11177 624 30 1 0
20 nodes 21 74573 23872 1463 66 4 1
25 nodes 0 58843 38501 2511 132 13 0
30 nodes 0 42861 52780 4127 223 9 0
35 nodes 0 28957 64719 5982 330 10 2
40 nodes 0 18239 73271 7963 508 19 0
45 nodes 0 10669 78410 10320 573 27 1

Table 2.3: Distribution of non-unique sequences divided by the different
systems sizes. The sequences are measured in the number of nodes re-
quired before they can be resolved. For each system size 100 000 schedules
has been measured.

in the DACAPO [RLST95] system.
TTP/C is a time-triggered protocol for distributed real-time systems.

It focuses on safety-critical systems and is designed to tolerate faults.
To get nodes synchronized, TTP/C sends special messages with infor-

mation about the time and the other C-state information. These messages
are called Initialization frames (I-frames) and are sent at startup and reg-
ularly under normal operation such that nodes can resynchronize after a
transient failure.

The basic TTP/C startup behavior can under normal conditions be
described in three steps as follows [TTP99]:

1. When the nodes are turned on they enter an Init mode. In the Init mode
the nodes run the initialization code.

2. After a node has initialized itself, it enters the Listen State where it starts
a listen-timeout and waits for an initialization message, i.e., the I-frame. If
a node receives an I-frame before the timeout it can synchronize itself to
the sending node. After the reception of the I-frame a node transfers to the
Active State, via the Ready State. In the Active State nodes send normal
messages, i.e., messages with data information.

3. If a node does not receive the I-frame before the listen-timeout ends, it will
send its own I-frame. After sending this I-frame message the node will wait
until it receives a new I-frame message with the same C-state. If such a
message is received before the end of the Cold Start Timeout, this node will
transfer into the Active state.

Thus, the node that times out first from the Listen Timeout will send
the first message, which is an I-frame. Other nodes receiving this message,
will set its C-State accordingly and can then change to normal operation

2.6 Simulations 47

phase where normal messages can be exchanged, i.e., messages with data
information.

The basic startup behavior is in reality a bit more complex, for ex-
ample, TTP/C has a dual communication channel. Such a dual link will
affect the startup behavior but in order to compare these startup meth-
ods, we will compare with a single channel version. In this comparison
we are mainly interested in the average startup times of the protocol, but
also the max startup times. However, TTP/C has one extremely unlikely
startup case where all nodes enter the cold start mode simultaneously.
This will generate a very long startup time, but it occurs with very small
probability. We have chosen not to simulate such a case, as it is so very
unlikely and it would affect the average time startup very little. If such
a case occurred, several TDMA-rounds would be added to the startup
time.

In this simulation, we have assumed that the TTP/C nodes are started
approximately at the same time and then they run their initialization
code. As a consequence, the Listen Timeouts of the nodes are started
at different times. In this simulation we have therefore assumed that
nodes starts their individual Listen Timeouts at different times, evenly
distributed between time zero and a cycle time, e.g., for a six node system
between 0 and 0.2 ms.

The startup time and behavior of the TTP/C protocol is mainly de-
cided by the startup timeouts τ startup

i , shown in Figure 2.19, which is
unique to each node.

���Slot 1 Slot 2 Slot N Slot 1 Slot 2��� Slot i ���

� i

startup

�round

Figure 2.19: The startup timeout.

Together with the TDMA round time τ round, they build the Cold Start
Timeout and the Listen Timeout as follows.

τ coldstart
i = τ round + τ startup

i (2.7)

τ listen
i = 2 · τ round + τ startup

i (2.8)

In Table 2.4 we can see the average startup times with their stan-
dard deviation as well as the Max startup times for the TTP/C protocol
compared to the presented ML- approach.

48 Synchronization Approaches

Average
Std. Dev.
Max

Average
Std. Dev.
Max

Average
Std. Dev.
Max

Average
Std. Dev.
Max

Table 2.4: Average startup times for TTP/C protocol compared to the
presented Message Length (ML) approach.

As can be seen from Table 2.4 our ML approach compares well with
existing techniques. It should also be emphasized that the ML-approach
does not require any special messages to be synchronized, i.e., it uses
normal messages. This means that the communication is established very
fast using the ML-approach. When the nodes in the ML-approach reach
the Normal state (when we have stopped measuring the time of this ap-
proach), half of these nodes have already sent messages with data. This
is not the case for the TTP/C protocol, which we stopped the time mea-
suring after the first correctly sent message, i.e., the first I-frame.

The DACAPO protocol [RLST95] is a TDMA protocol where all mes-
sages have static and equal lengths, otherwise it is similar to our ap-
proach. We will compare the Max startup times of our ML-approach, with
the Max startup times of two startup algorithms developed in [Lön99a].
In our comparison with the startup algorithms from the DACAPO-
protocol, we have used data from [Lön99a]. Furthermore, we will compare
our approach with another existing method, the Lock-step (LS) algo-
rithm [DPC+96], using data from the same source.

We will not go into details of these algorithms, instead we refer
to [Lön99a] and [Lön99c]. The two DACAPO startup algorithms are the
Zero First (ZF) and Increment/Decrement (I/D) methods and they are
developed for safety-critical application. Especially, the I/D algorithm is
robust against transient faults. The LS algorithm is highly sensitive to
transient faults.

In order to translate those results to our configuration we have
adapted the message length to be 1/6 of the cycle time. We have com-
pared our case with 6 nodes and a cycle time of 204.8 µs. This means that
we have adapted the results from [RLST95] to use a message length of 83

2.6 Simulations 49

Startup Method Max (ms)
ML 0,55
ZF 2,28
I/D 1,80
LS 0,54

Table 2.5: Max startup times for ZF, I/D and LS startup methods (fault-
free cases) compared to the presented Message Length (ML) approach.

bits and inter-frame gaps of 2 bits, which results in a slightly smaller cycle
time of 204.0 µs. The results can be studied in Table 2.5. We have only
been interested in comparing the max startup times to see whether our
new approach is an improvement over our first generation startup meth-
ods. As we can see there is a significant improvement, except compared
to the LS method. However, this method is highly sensitive to failures
and not suitable for safety-critical systems.

In this chapter, we have presented a unique synchronization approach
for synchronization in distributed real-time systems targeting safety-
critical systems. In the next chapter, we will continue with the time-
triggered media access approach and compare its relative performance
with the contention based event-triggered media access approach.

50 Synchronization Approaches

Chapter 3

Time- and Event-Triggered
Multiple Access

THE access to a shared communication media using the event-
triggered and time-triggered approaches has garnered its share of

strong opinions in the community. Comments such as “event-triggered
systems are more flexible and use the bandwidth very efficiently” versus
the time-triggered approach which is considered to be more predictable
and uses less message overhead. These are generally accepted high-level
statements that are taken at face value. However, our interest in compar-
ing the two is to quantitatively assess the actual difference across these
paradigms, with the specific objectives being:

• Can we estimate what we lose in flexibility by choosing the time-
triggered approach over the event-triggered one?

• How much do we suffer from the loss of determinism by choosing
an event-triggered approach?

The effects of choosing one design approach over another are not obvi-
ous, especially in a complex system where efficiency, predictability, flex-
ibility, dependability are various dimensions of a design decision. For
example, when choosing the event-triggered system we might be prohib-
ited from using the full bandwidth in order to ensure critical message
transfers even in an eventful situation, leading to a low utilization of the
media.

As we previously have established, time-triggered and event-triggered
systems must use some procedures in order to avoid media access con-
tention when sending data. In time-triggered systems, nodes use Time
Division Multiple Access (TDMA). For event-triggered communication,
the most common technique in use is probably collision avoidance by bit

52 Time- and Event-Triggered Multiple Access

arbitration, as used in, e.g., CAN [CAN91]. In bit arbitration, a unique
identifier is sent in the beginning of each message and determines the
priority of each message. Thus, if more than one node sends at the same
time the node/message with the highest priority will continue to send
while other lower priority nodes defer their transmissions. Bit arbitration
limits the possible speed of the bus communication since the bits sent on
the bus must be distinct such that a bit collision can easily be detected.

Thus, our specific objectives are:

• We quantitatively establish the conditions under which event-
triggered and time-triggered systems are more appropriate to use
concerning the amount of transferred data and the response time
characteristics.

• We establish schedulability strengths and limitations of each ap-
proach.

• Based on the above two facets, we outline suggested domains of
strength and weakness for each paradigm along with suggested en-
velopes of operation.

3.1 Related Work

In [TBW95] the authors analyze delays using schedulability analysis re-
sulting from two access methods, timed token passing and real-time pri-
ority broadcast bus.

Another similar investigation, [LA99], considers fixed priority schedul-
ing and static-cyclic scheduling on processors and the communication bus.
A control application is used as an example where one node reads and
prepares sensor data and then sends a message, according to one of the
scheduling techniques. This message is sent to other nodes that use the
received information to calculate the actuator data. They also study the
effect of using a global time. With this setup, the minimum and maximum
delays and jitters have been calculated for the two scheduling techniques.
In this study, we focus more on the average delay of messages due to
the communications system. Also, how the average delay differs under
different working conditions.

3.2 System and Task Model

In this section we will describe the system and task model used in this
chapter. We use the basic system model described in Chapter 1.1, con-
cerning both the time-triggered and event-triggered approach. In this

3.2 System and Task Model 53

section we will give some further details that are specific and important
for the simulations in this chapter.

It is assumed that communication takes place between two tasks τi

and τj . The message mi,j has length ei,j . The message size is measured in
bytes (1 byte=8 bits). The tasks are periodic and must execute within the
time interval given by the period. The communicating tasks are assumed
to be located on different nodes so the communication will take place over
the communication media. In the schedule, it is assumed that a message
must be sent after the completion of τi and be received before the start
of τj . These messages are called periodic messages and their arrivals are
known beforehand. There can also be sporadic messages (which do not
have sender and receiver tasks) whose arrivals are unknown. Periodic
messages must always be handled (on time) whereas sporadic messages
are handled when possible. Periodic messages do not have explicit dead-
lines but must be delivered in time for the receiver task to be able to
meet its deadline. Message transmission is always non-preemptive. In
addition, the message transmission must comply with the media access
method.

3.2.1 Time-Triggered Approach

In order for the system to synchronize or a node to resynchronize, mes-
sages must be identifiable to find the current position in the communi-
cation schedule. Thus, the overhead associated with time-triggered com-
munication concerns the identification of the sending node. We therefore
assume, a node ID-field of one byte , i.e., the size of a message will be
ei,j +1. Sporadic messages must be sent in a slot that belongs to the node
where the (fictive) sender process executes. For a periodic message, the
sending task must finish before the node’s send-slot and the receiving task
can start after receiving the data sent in that slot. This is a natural way
of sending periodic messages but is limited in flexibility when it comes to
sporadic messages.

In this work, we use a simple and natural way of sending sporadic
messages in the time-triggered architecture (TTA). One frame, i.e., mes-
sage data including overhead, is sent in each time slot. Frames are used as
containers for both periodic and sporadic messages, they have one static
part assigned for periodic messages transfer, i.e., the same message data
is transferred periodically in that part. Then we use the second part of
the frame for sporadic message transfer. As we do not know the arrival
times for sporadic messages, we use a node local queue where all new
sporadic data is queued when arriving. Messages are queued based on
priorities. When its time to send a frame, as many messages as possible

54 Time- and Event-Triggered Multiple Access

are packed in the sporadic part of the frame.

3.2.2 Event-Triggered Approach

In our Event-Triggered Architecture (ETA), we assume that nodes can
resolve potential collisions by the inclusion of priorities in the message-
frames. Thus, if two nodes start to send at the same time the node
with the highest priority message-frame will send and the other node will
withdraw.

We have assumed that periodic messages have the highest priority
and sporadic messages have lower priority. Compared to a time-triggered
protocol, the communication overhead now also includes identification of
a message. Therefore, in our investigation the size of a message will be
ei,j + 2, where one byte is for message ID and one byte for node ID.

3.3 Communication Issues

The system we assume consists of a system input value s, e.g., a sensor
value, received by a node na. This input value is prepared by a control
task at node na for transport to a receiving node nb. This node will
contain a task that will make some final calculations on the message/value
and will finally provide the output device, e.g., an actuator, with its value.

Most control applications are periodically sampled, thus this task
chain is activated periodically. We assume that the tasks are activated
by the OS, starting with the first task in the chain at node na. The task
activations have a small jitter, where jitter is the difference in time be-
tween start or finish time of different invocations of a task, see Figure 3.1.
A number of reasons can cause this, for example, clock drift or different
delays in interrupt routines. This jitter is normally very small compared
to difference in the execution times of the tasks, which then contributes
more to task jitter. If this task sends a message on the media, it will be
queued with the same kind of jitter. The jitter can be smoothened by
sending the message at a time when the task has finished with a high
probability. However, this smoothening comes at a cost of an increased
delay, as on average the wait is longer to send the message. To sum-
marize, the following factors are considered as the main contributors to
delay and jitter.

• Task activations

• Task execution time

• Message output queue

3.3 Communication Issues 55

Period (i)

T1
i

T1
i+1

Period (i+1)

Period
Jitter

Figure 3.1: Jitter of task finish.

• Message transfer

• Message input queue

In real-time control systems, it is important to have small delays and
jitter. In this chapter, we have focused on the message output queue, as
this is where the communication access method has its main impact.

3.3.1 Periodic Messages

Periodic messages are often used in computer control application. Most
such applications are sensitive to delays and variations in delay, i.e., jitter.
In this section we will shortly describe the upcome of delay and jitter in
our two communication architectures.

Delay in TTA: Delay is fixed, as long as messages are generated
periodically and in synchrony with the communication system.

Delay in ETA: To get fixed delays here we need to ensure that the
sending node gets access to the media at periodic times. Delay occurs
when a message has to wait for higher priority messages to be transferred.
Delays can also occur while waiting for a lower priority sporadic message
to finish its transfer.

Jitter in TTA: Normally TTA prevents jitter from occurring, as
messages are transferred at fixed times.

Jitter in ETA: Jitter is the difference in delay between instances of
a periodic message.

3.3.2 Sporadic Messages

Jitter is not applicable to sporadic messages, by definition, as they do not
have an explicit expected arrival time.

Sporadic Messages in TTA: In our approach, we pack sporadic
messages in the same frames as the periodic messages, thus they are sent
in the same slots. The delays for sporadic messages in a time-triggered
architecture are dependent on a number of factors: the time until the next
send slot, how sporadic data is transferred using the broadcast media, and
amount of bandwidth allocated to sporadic messages.

56 Time- and Event-Triggered Multiple Access

The minimum time it takes to access the media, occurs when a mes-
sage is generated just before the sending node should send its sporadic
traffic. The maximum delay occurs when a message is generated just
after the send point of the sporadic data. As the message was generated
after this point, it has to wait an additional TDMA-round.

Sporadic Messages in ETA: A sporadic message can immediately
access a media, if the media is free and no higher priority message tries
to send simultaneously. However, there is no theoretic upper bound on
the access time, as higher priority messages can continuously prevent a
message from media-access.

Due to the strong interdependencies of the messages and their dis-
tributions, we have not at this time derived an analytical expression of
the average delay for message transfer. At this point, we want to get an
understanding of the behavior of these systems which is easier to obtain
with simulations. The simulations also provide important insights into
the factors that affect the performance.

3.4 Simulation Setup

To do this comparison, we have made two investigations. One where we
check the behavior of time-triggered and event-triggered communication
under different communication loads. In the second, we have checked how
an event-triggered and time-triggered system handles different task sets,
i.e., how easy it is to schedule different tasks and messages using these
different approaches.

In order to get synthetic task-sets and sets of sporadic messages, we
generated those randomly using a uniform distribution. These tasks and
sporadic messages were generated in two steps: (1) a period was ran-
domly generated and (2) within each period an activation time of the
task/message was randomly generated.

Thus, the generated periods control the basic rate of sporadic mes-
sages and tasks. These sporadic messages together with the length and
period of each message, provide us with the bandwidth these messages
are likely to occupy, provided they get access to the media. Furthermore,
each message and task were assigned a priority that is used to prioritize
between messages accessing the media and released tasks. Thus, each
message and task are assigned three properties (1) a period (2) a length
and (3) a priority, i.e., a triple < period, length, priority > that repre-
sent the characteristics.

The system is run with different communication loads in order to
compare the time-triggered and event-triggered approach. The generated
communication load, consists of both periodic and sporadic messages. Pe-

3.4 Simulation Setup 57

riodic messages are generated at a constant rate, while sporadic messages
are generated with a varied rate. Thus, the amount of periodic mes-
sages is fixed and the communication load is determined by the amount
of sporadic messages. That is, the generated sporadic traffic is randomly
generated to achieve a certain load. The load is controlled by the message
length, number of messages and the basic period of messages. Specifically,
we have defined load as:

Load =
Generated sporadic traffic

Available sporadic bandwidth

The available bandwidth is the amount of data that can be transferred
per time unit on our media. Thus, the Available sporadic bandwidth is
what is left after the sporadic traffic has reserved its bandwidth share.

3.4.1 Task and Communication Scheduling

We start by investigating the schedulability of tasks and messages for
the different communication paradigms. The scheduling considers the
tasks in the system as well as the communication amongst them. This
is a difficult problem in itself and there is a multitude of research in
this area, e.g., see [PSA97, TBW92]. The purpose of this investigation
is to find out how the scheduling is affected by the communication and
which communication parameters are sensitive for the schedulability of
the system.

In a TTA, periodic messages (and tasks) follow a predefined schedule
and sporadic messages are included when there is slack available. Hence,
sporadic messages will not affect the pre-scheduled tasks and messages or
cause them to miss deadlines.

In a ETA, the scheduling of tasks and messages is performed on-line.
Tasks are normally preemptive, but messages sent on the media are not
preemptive and can delay a higher priority message, which may lead to a
missed message deadline or task deadline.

Scheduling

We will here investigate how the communication scheduling affects the
ability to handle a mix of periodic and sporadic messages. In such an
investigation, it is important to know how the tasks in the system are
scheduled, since this also affects the communication. In general, the
choice of media-access method reflects the intended use of the system.
That is, a time-triggered approach is focused on predictability whereas
the event-triggered approach offers flexibility. It would then seem natural
that the motivation for choosing a particular communication approach is

58 Time- and Event-Triggered Multiple Access

also applicable for how the tasks should execute, i.e., how to perform task
scheduling. Hence, when using time-triggered communication, the task
schedule constitutes a static time-table dictating the start times for the
tasks which are not affected by any sporadic messages. Similarly, the task
schedule for the event-triggered architecture is generated dynamically by
considering tasks priorities. (The priority of a task equals the priority of
its message.) This also means that tasks and periodic messages may fail
to meet their deadlines due to interference of sporadic messages.

Experimental Setup

The purpose is to investigate how the sporadic messages affect the peri-
odic messages and in turn the tasks, when using the TTA and the ETA
respectively. This is done by generating synthetic task sets consisting of
both periodic and sporadic messages. For TTA, a task set is then exam-
ined by (i) finding an off-line schedule for the tasks and periodic messages
(ii) simulating the arrival of the sporadic messages and measure the num-
ber of sporadics that fail to be sent on time. For ETA, tasks and messages
(both periodic and sporadic) are handled in the same step by simulating
an on-line fixed-priority scheduling algorithm. Hence, the quality measure
also includes the number of deadlines missed by the tasks and periodic
messages. For this part of the simulations we have used a constraint
programming framework that were previously developed [EJ01].

We generated three studies representing systems with 6, 12 and 18
nodes. In each study we generated task sets with varying sporadic com-
munication load, see Table 3.1. The variation was obtained by succes-
sively increasing the message sizes while the number of messages remained
constant.

The deadline for a task equals its period. Communication between
tasks take place in pairs and all sender/receiver tasks on a node commu-
nicate with tasks on the same node. To get the load evenly distributed
in the schedule, the tasks also have randomly generated activation times.
For each experiment, 20 task sets were generated.

Experimental Results

In the first experiment, we have investigated how well the ETA and the
TTA can handle sporadic messages. If a sporadic message cannot be
sent in such a way that it is received before its deadline, it is regarded
as missed. The same concept applies for periodic messages as well as
task executions. Figure 3.2 shows the number of missed messages for
the TTA and the ETA. As can be seen in the figure, the ETA is able
to accommodate a larger proportion of sporadic messages than the TTA.

3.4 Simulation Setup 59

Number of nodes 6 12 18

Cycle length 960 1920 2880

Number of tasks per
node

8 8 8

Number of sporadic mes-
sages per node

4 4 4

Period of sporadic mes-
sages

240 480 720

Task execution times 20–60 60–100 100–140

Periodic message sizes
(bytes)

8–16 8–16 8–16

Sporadic message sizes
(bytes)

1–20 1–20 1–20

Slot size (bytes) 32 32 32

Table 3.1: Configuration parameters for the task sets. The time unit, is
the time it takes to transfer one byte.

However, as the load increases, the gap between ETA and TTA decreases.
The explanation for this transition is that at low load, the ETA has the
flexibility to use the slack for any node. This is not the case for the TTA,
thus the number of missed messages grows almost linear with the load.
In contrast, when the load increases, ETA still tries to accommodate all
messages before their deadline. However low priority message can now
easily be delayed by messages from all nodes, such that they miss their
deadline. This is an effect which increases with load. This problem occurs
because in the ETA the communication queue is global. In the TTA this
effect is limited since the communication queue is local and thus fewer
messages are affected. Hence, the TTA avoids the “domino-effect” of
missed deadlines found in the ETA. As seen in Figure 3.2, the transition
occurs at a load of approx. 0.6–0.7. However, this can be explained by
the fact that the task executions constrain when the (periodic) messages
may be transmitted which makes it harder to fully utilize the media.

For the TTA, note that in our experiments the sizes of the messages
are rather large compared to the size of the slots. This means that spo-
radic bandwidth may be wasted due to that many messages will not fit
into the remainder of the designated slot. Hence, if we had varied the load
by increasing the number of messages instead of increasing the message
size, the performance of the TTA would probably improve.

We have assumed small frame overhead for addressing in both ETA
and TTA, i.e., approximately 1 and 2 bytes for TTA and ETA, respec-
tively. If we should include other overhead, e.g., for checksums etc., we
would likely effect the ETA negatively. With n nodes, and assuming a
frame overhead of hTT for TTA and hET for ETA. The total overhead,

60 Time- and Event-Triggered Multiple Access

H, for TTA during a TDMA cycle is:

HTT = n · hTT

We assume similar condition for the ETA and assume one periodic frame
per node. In addition, we send k sporadic frames, during an equivalent
time of an TDMA round in the TTA. The total overhead in the ETA is
then:

HET = (n + k) · hET

Thus the more sporadic frames that are sent, the more the efficiency of
the ETA will decrease compared to TTA. This effect can naturally be
decreased by combining more messages in each frame, as done in the
TTA, although that could reduce the flexibility.

In the ETA we get the additional information about the number of
missed periodic messages and task deadlines. Recall that for the TTA
there will be no such misses but for the ETA a substantial amount of
deadlines and periodics are missed. For instance, in Figure 3.2 the amount
of missed messages in the ETA curves that corresponds to periodic mes-
sages, ranges between 5% and 15%. Recall that a missed periodic message
also means a missed (receiver) task deadline.

3.4.2 Communication Load

In this section we present an investigation of the average delay for a mes-
sage, from its release time until it is actually transferred. It is important
for all communication systems to achieve good response times and to be
able to work in a real-time environment. Compared to the previous in-
vestigation, we have removed the impact of tasks, and we now only look
at the effects of communication. The result is equivalent to assuming
tasks with very short execution times, thus the system is only limited
by the communication. In these simulations we have used Matlab as the
simulation tool.

In the following sections, we present simulations of the event trig-
gered and time-triggered system. The simulations has been conducted
in three basic steps: (1) In each simulation we have randomly gen-
erated a message set, that is, for each message in this set the triple
< period, length, priority > is generated as described in Section 3.4.
These messages have been generated such that we get the desired mes-
sage load. Furthermore, messages are distributed among the nodes such
that they all have approximately the same average load on the media. In
step (2), the release instances of the messages are generated. This will
determine at which points in time all sporadic messages are sent. The

3.4 Simulation Setup 61

0

2
0

4
0

6
0

8
0

1
0
0 0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

1
1
.
1

1
.
2

Number of missed sporadic messages

L
o
a
d

T
T

f
o
r

6
,

1
2

a
n
d

1
8

n
o
d
e
s

6
1
2
1
8

0

2
0

4
0

6
0

8
0

1
0
0 0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

1
1
.
1

1
.
2

Number of missed messages

L
o
a
d

E
T

f
o
r

6
,

1
2

a
n
d

1
8

n
o
d
e
s

6
1
2

1
8

F
ig

ur
e

3.
2:

E
ve

nt
-T

ri
gg

er
ed

an
d

T
im

e-
T
ri

gg
er

ed
(3

0%
pe

ri
od

ic
s,

30
%

ta
sk

ut
ili

za
ti

on
).

62 Time- and Event-Triggered Multiple Access

release times for the sporadic messages are randomly generated using the
triple < period, length, priority >. The send times for periodic messages
are already fixed by their periods. In the final step (3), the simulation is
run and simulation data is collected, the nodes will send their messages
at the times calculated in previous steps and will be sent using the active
access method, i.e., the event-triggered or the time-triggered approach.

Simulation Time

As there is no natural termination point in this type of simulation, we
want to determine a point in time where the behavior of the system has
stabilized. We have therefore started by investigating the effect of the
simulation-time, i.e., the period of time the simulation is run. A system
with six nodes were used, and we run this system for different time-
periods and compared the result. This is shown in Figure 3.3 where we
have run the same six nodes system for event-triggered and time-triggered
communication but varied the number of runs per simulation. As we can
see in Figure 3.3, there is little difference between the event-triggered
curves similarly there is little difference between curves from the time-
triggered system. Thus, the system is well stabilized after 100 rounds, in
the sense that the average delay of messages is not affected even if the
system is run for a longer period of time.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 w
ai

t t
im

e.
 F

ro
m

 q
ue

ui
ng

 to
 s

en
d.

(n
um

be
r

of
 p

er
io

ds
)

Event Triggered and Time Triggered System

Load: Rate of generated sporadic messages as a ratio of the availabel bandwidth
for ET traffic, that is (Generate ET traffic)/(Available ET Bandwidth)

TT sys. 300 runs.
TT sys. 200 runs.
TT sys. 100 runs.
ET sys. 300 runs.
ET sys. 200 runs.
ET sys. 100 runs.

Figure 3.3: Changes in average message delays when increasing time from
100 to 300 rounds.

3.4 Simulation Setup 63

A First Comparison

In this section we present the behavior of the time-triggered and event-
triggered approach in our simulations. In Figure 3.4, we can see the
results after simulations with six nodes and where the bandwidth is di-
vided equally between periodic and sporadic messages. There are two sets
of curves, corresponding to right and left axes respectively. The curves
belonging to the left side axis show the average delay of messages. That
is, from the time they are released until they are sent on the media. This
time corresponds to the time in the output buffer. The right axis show
the amount of messages not sent. That is, a message ai, i.e., instance i of
message a, is deleted if the next instance, ai+1 arrives before ai gets access
to the media. Each deleted message instance is counted. To be indepen-
dent of the simulation run time we divide this number by the number of
simulation rounds, for the periodic messages. The result is presented as
“not sent messages”. This is a good measure of how a particular approach
manages to transfer messages at a given load. If no messages are deleted,
all generated messages are transferred.

It is important to note that in the time-triggered case, periodic mes-
sages will not contribute to the average delay, as periodic messages are
sent in predetermined time slots resulting in no delays. Furthermore,
they will never be deleted in the TTA approach as they have their pre-
assigned slots. This can happen in the ETA approach, but with low
probability. When comparing these results, note that periodic messages
will be delayed in the ETA. Low priority sporadic messages, cannot be
interrupted even by higher priority messages and high priority messages
can be delayed by low priority messages.

In Figure 3.4, the average wait time for the time-triggered case starts
at half of the period time of the periodic messages, i.e., corresponding to
the TDMA round. However, when the loads have increased to around 0.6–
0.7, there is a point where the delay starts to accelerate. This increase,
is temporary and the delay levels already after a load of 1.

The reason for this behavior is that most sporadic messages are sent
with a relatively short delay or completely miss their opportunity to be
sent, i.e., the messages are deleted. Deleted messages will not increase
the average delays, thus for the TTA the average delays continue to be
rather low even when the load is increasing. Instead of a large increase
in delay, we pay in an increasing amount of deleted messages as the load
goes up.

ETA has a very low average wait time especially at lower loads (ap-
prox. < 0.6), where messages seldom have to wait to access the media.
Although a slight increase, it continues with a low average delay. This

64 Time- and Event-Triggered Multiple Access

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

A
ve

ra
ge

 w
ai

t t
im

e.
 F

ro
m

 q
ue

ui
ng

 to
 s

en
d.

(N
um

be
r

of
 p

er
io

ds
)

Load: Rate of generated sporadic messages as a ratio of the availabel bandwidth
for ET traffic, that is (Generate ET traffic)/(Available ET Bandwidth)

0

2

4

6

8

10

12

14

16

18

20

of

 m
es

sa
ge

s
no

t s
en

t p
er

 p
er

io
d

not sent. TT sys. Right axis.

not sent. ET sys. Right axis.

TT system with 6 nodes
ET system with 6 nodes

Figure 3.4: The average send delay of the messages. Note that, in the
time-triggered case, periodic messages never contribute to this delay.

emphasize the flexibility of the ETA approach where any node can use
the media when it is free.

We can however see, that the number of deleted messages starts to
grow earlier than in the time-triggered case (approx. < 0.6). We can ba-
sically see lost messages as messages which missed their deadline, and we
saw a similar phenomenon in the simulation with tasks. The main reason
for this is that the lowest priority starves from bus access in combination
with the ETA has a higher message overhead.

In Figure 3.5 we show the standard deviation of message delays, and
both event-triggered and time-triggered have a similar form. There are
small variations for limited loads but these increases with increasing load
for both the systems. We can note that this increase starts earlier then
in Figure 3.4. Also in this case we can see that the ETA increases first
followed by the TTA.

Summary with comparative pros and cons: The Event-Triggered
approach has very short average delays with small variations at low load.
Almost all the generated messages get sent under a load of approx. 0.6.
However, we should note that high-priority messages can be delayed,
even by lower priority messages. The delays increase at higher load (ap-
prox. > 0.6) but stays short for all messages that are sent. The variation
of the delay grows earlier, around a load of 0.5. Lowest priority messages,
never get access to the media at a higher load.

The Time-Triggered approach has no delay of higher priority mes-
sages, i.e., periodic messages. However, the average delay is approxi-

3.4 Simulation Setup 65

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

St
an

da
rd

 d
ev

ia
tio

n
of

 a
ve

ra
ge

 w
ai

t t
im

e
(N

um
be

r
of

 p
er

io
ds

)

Event Triggered and Time Triggered System

Load: Rate of generated sporadic messages as a ratio of the availabel bandwidth
for ET traffic, that is (Generate ET traffic)/(Available ET Bandwidth)

TT system with 6 nodes
ET system with 6 nodes

Figure 3.5: The standard deviation of the send delay for the messages.

mately half of a TDMA round, already from the beginning. There is only
a small increase in the average delay at high load. In the TTA there is a
equalizing effect, as all nodes have a preassigned part for sporadic data in
frames. Thus, even lower priority sporadic data gets access to the media.

Number of Nodes

In this section we have varied the number of nodes in the system and
studied changes on the average message delay. We have changed the
number of nodes between 6, 12, and 18. Thus in Figure 3.6 we show the
trends when we increase the system size, both for time-triggered system
and in an event-triggered system.

In Figure 3.6 we can see that the trend scales with the system size.
The only parameter we have changed is the number of nodes. However,
we use a fixed average size on messages and this will affect the period for
sporadic messages. In the time-triggered case this implies also the size of
the TDMA-period.

The time-triggered system will in this case get larger delay as the sys-
tem size increase. This is natural as the average delay is mainly dependent
on the TDMA period.

The event-triggered system has still low average delay as long as the
load is low. The delays will however grow earlier and at high load the
average delays are still low for messages accessing the media.

The amount of missed messages is not affected by the system size.

66 Time- and Event-Triggered Multiple Access

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Average wait time. From queuing to send.
(number of bits)

L
oad: R

ate of generated sporadic m
essages as a ratio of the availabel bandw

idth
for E

T
 traffic, that is (G

enerate E
T

 traffic)/(A
vailable E

T
 B

andw
idth)

0 10 20 30 40 50 60 70

of messages not sent per period

T
T

 system
 w

ith 18 nodes
T

T
 system

 w
ith 12 nodes

T
T

 system
 w

ith 6 nodes

R
ight axis curves

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Average wait time. From queuing to send.
(number of bits)

L
oad: R

ate of generated sporadic m
essages as a ratio of the availabel bandw

idth
for E

T
 traffic, that is (G

enerate E
T

 traffic)/(A
vailable E

T
 B

andw
idth)

0 10 20 30 40 50 60 70

of messages not sent per period

E
T

 system
 w

ith 18 nodes
E

T
 system

 w
ith 12 nodes

E
T

 system
 w

ith 6 nodes

R
ight axis curves

F
igure

3.6:
T

he
num

ber
of

nodes
in

the
system

is
changed

from
6,

12
and

18
nodes.

3.5 Discussions 67

Preassigned Share of Periodic Messages

In this section we investigate how the system behaves and how the re-
sponse times change when the share of periodic and sporadic messages are
changed. We have varied the amount of bandwidth that is preassigned
for periodic messages, the remaining bandwidth is free for use by sporadic
messages. The periodic part has been 30, 50 and 70 percent of the total
TDMA round. The random generation of sporadic messages has been
adapted to the bandwidth situation. For example, when 70 percent of
the TDMA round is assigned to periodic messages, it limits the amount
of large messages that can be sent. In Figure 3.7 we show the result from
varying the amount of preassigned periodic traffic.

3.5 Discussions

In this section follows a discussion about the results. We should first
note that these results are based on simulations with randomly generated
load. These results are naturally not adaptable to any real-life situation,
in fact it is easy to create system scenarios favorable for either of these
approaches. However, the basic properties of the generated load can be
found in many real-time systems. For example, systems with high pri-
ority control loops generating high priority periodic messages and where
other system parts generates sporadic messages, e.g., with diagnostics
and status information.

We argue below that the results point toward certain design decisions,
which means that these approaches have certain inherent qualities which
make them good in a certain context. However, we do not argue that it
is impossible to design a system without following these results.

We also want to note that we intentionally have tried to make extreme
cases of the ETA and the TTA. For example, we could easily design a
event-triggered media access method, based on frames with fixed size and
assign priorities to these frames such that it would be very similar to a
TTA. Naturally, the result of simulating such a system would provide
little additional information as it would basically behave as the TTA.
• In this work we have confirmed that ETAs provides a flexible way of
transferring messages and that it has short average delay for sending
messages. The delays are low for all messages that are actually sent.
However, the number of missed/deleted messages increases when the load
is greater than (approx. 0.7), as the lowest priority messages never get
access to the media. We have a similar situation when considering tasks
and messages with their deadlines. Then, there is a noticeable amount
of missed deadlines already at a load of 0.6–0.7. This is also confirmed

68 Time- and Event-Triggered Multiple Access

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
0

0.2

0.4

0.6

0.8

1.0

Average wait time. From queuing to send.
(number of periods)

T
im

e T
riggered System

L
oad: R

ate of generated sporadic m
essages as a ratio of the availabel bandw

idth
for E

T
 traffic, that is (G

enerate E
T

 traffic)/(A
vailable E

T
 B

andw
idth)

 0 5 10 15 20 25 30

of messages not sent per period

70%
 periodic traffic

50%
 periodic traffic

30%
 periodic traffic

R
ight axis curves

0.2
0.4

0.6
0.8

1
1.2

1.4
1.6

1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

Average wait time. From queuing to send.
(number of periods)

E
vent T

riggered

L
oad: R

ate of generated sporadic m
essages as a ratio of the availabel bandw

idth
for E

T
 traffic, that is (G

enerate E
T

 traffic)/(A
vailable E

T
 B

andw
idth)

 0 5 10 15 20 25 30

of messages not sent per period

70%
 periodic traffic

50%
 periodic traffic

30%
 periodic traffic

R
ight axis curves

F
igure

3.7:
V

arying
the

am
ount

of
preassigned

periodic
bandw

idth
in

an
event-triggered

and
tim

e-triggered
system

.

3.5 Discussions 69

by the pure communication investigation as the standard deviation starts
to increase around the same load. Thus, the fact that there is a global
queue together with big variations in delay, larger message overhead and
more messages cause a lot of missed deadlines in the ETA.

• For the TTA, the average delay is approximately half a TDMA-round,
which is large compared to the ETA. Note, that periodic messages in TTA
systems have zero delay and only sporadic messages contribute to the av-
erage delay. There is also a higher amount of lost messages compared to
the ETA when tasks are involved, i.e., when short deadlines are used for
the sporadic messages. In the pure communication case, short deadlines
are not used and we can see that fewer messages are missed for the TTA,
at higher load, than the ETA. Thus, short deadlines on sporadic mes-
sages effects a TTA negatively. With not so short deadlines of sporadic
messages, it is noticeable that this very basic approach of transferring
sporadic messages still handles sporadic traffic surprisingly efficient, in
the sense that few messages are missed/deleted.

Thus, the predictability of a TTA comes at a cost of longer delays,
but with less variation in these delays. However, when sporadic messages
deadlines are relatively long, there is a smaller loss in bandwidth efficiency
compared to the ETA.

This basic approach of sending sporadic messages works with very
small or no changes in any TTA. In our future work we will look at more
efficient ways of transferring sporadic and event-driven data using TTA.

• As long as a system runs with a load below 0.6–0.7, there is basically no
reason for choosing TTA. The ETA imply short message delays and that
basically all messages are transferred. Even variations between delays
are small and the number of missed deadlines few below this threshold.
The only reason for choosing a TTA is if we have high requirements on
predictability, e.g., dependability.

The capacity of a ETA to handle sporadic traffic is one of the main
contributing facts to why ETA is considered flexible. However, the TTA
can also handle sporadic messages well, as it is not so sensitive to traffic
bursts and benefits from the fact that it has less overhead than the ETA.
As we have seen in the figures, both TTA and ETA have similar amount
of lost messages. Thus, when considering flexibility of the ETA we would
rather point to the ease of integrating new nodes etc.

• In the case of varying load/bursts traffic or high load, i.e., the load is
often above 0.6–0.7, a TTA should be considered, especially for real-time
systems. However, based on our result we can also state that the only
reason for choosing the ETA below the 0.6 threshold is if there is need
for small average delays of sporadic messages.

70 Time- and Event-Triggered Multiple Access

3.6 Conclusions

In this chapter we have studied two contemporary media-access methods,
the time-triggered approach and the event-triggered approach. In the
first simulation, we studied a system where we considered both tasks
and communication. In the second, we studied the system by looking
exclusively at the communication media. To conclude the main results:

• Event-Triggered Architecture
This is a very beneficial approach if short delays are important and
the load is kept below approximately 0.6–0.7. The main properties
are:

+ Short average delays for sent messages.

– High-priority (periodic) messages are delayed. Starvation of low
priority messages at higher load. The variation in delays grows
early around a load of 0.5.

• Time-Triggered Architecture
This is a good approach for all tested loads, as long as the require-
ments on delays for sporadic messages are not very high. In such
a case, the TTA is preferable only for loads above approximately
0.6–0.7. Main properties:

+ No delays of high priority (periodic) messages. Few missed spo-
radic messages.

– Sensitive to short deadlines of sporadic messages. High average
delay for sporadic messages, (half a TDMA-round).

In this chapter we have tried to give a system designer more knowledge
how the choice of event-triggered or time-triggered as basic media access
affects the communication. More specifically, how it affects the average
delays and transfer capabilities. In the next chapter, assume that we
are really not prepared to trade the predictability of the time-triggered
approach. At the same time we desire the fast handling of the sporadic
messages, that the event-triggered approach provides. Thus, in the next
our goal is to combine the chapter

Chapter 4

Event-Triggered Channel on
Time-Triggered Base

IN the previous chapter, we studied the differences between event-
triggered and time-triggered communication with regard to average

delay and schedulability. It is clear that the event-triggered approach has
short delays for sporadic messages compared to the time-triggered ap-
proach. However, the time-triggered approach still manages to transport
a comparable amount of traffic under the condition that few deadlines of
such sporadic messages are shorter than half a TDMA-round. We also
assumed a very basic mechanism for transferring sporadic messages via a
time-triggered channel.

In this chapter, we will assume that for reliability and safety reasons
we require the predictability provided by time-triggered communication.
However, we want to improve the handling of sporadic messages that
is currently limited in the time-triggered approach. We argue that the
best way of maintaining the predictability attribute is to start with a
time-triggered base and build the necessary event-triggered channels on
top. Therefore, we investigate and introduce methods for combining the
benefits of both time-triggered and event-triggered communication.

We emphasize that our primary driver is to ensure that none of the
essential properties of the time-triggered paradigm, such as predictability,
are in any way compromised over the process of adding handling of spo-
radic traffic. Time-triggered communication has established properties
for provision of safety-critical services and we consider these as inviolable
over our process of extending and modifying TT services to handle ET
traffic. In this chapter, we suggest a variety of methods based on the
time-triggered communication base, on which we add functionality for
improved handling of sporadic messages.

This chapter consists of two parts. The first suggests approaches

72 ET Channel on TT Base

for improved handling of sporadic messages, both high-priority and low-
priority messages. We assume a basic Time Division Multiple Access
(TDMA) system as described in the introduction, Section 1.1.2, but we
adapt the system model where necessary, to achieve our goals. In the
second part, we have limited ourselves to a specific communication pro-
tocol, the TTP/C protocol [KG94, TTP99]. Our goal is to derive an
adaptation to the protocol that improves the efficiency of sporadic mes-
sage transfer. It is important to achieve this without any disruption of
the time-triggered traffic or the underlying periodic behavior. As this
protocol is directed towards safety-critical systems, much effort and work
has been expended in ensuring its correct behavior. Thus, our solution
must work with very limited changes to the protocol specification so as
to minimize any subsequent re-verifications. We especially try to mod-
ify only those aspects within TTP/C that do not change any behavioral
characteristics of TTP/C. For example, if an existing TTP/C frame is uti-
lized for handling sporadic messages in place of periodic traffic, from the
TTP/C protocol viewpoint, there is no change to the frame specification
of the protocol.

4.1 Lower Priority Non-Periodic Messages

In this section, we study scenarios where we have low-priority sporadic
traffic that must be scheduled “over” the time-triggered traffic. The in-
tention is to make as many sporadic messages meet their (soft) deadlines
as possible.

4.1.1 Pre-Scheduled Slack

This is the method used in Chapter 3, where each node schedules some
slack at pre-runtime, which is pre-destined for sporadic/event triggered
traffic from that node, see Figure 4.1. Thus, a node fills a pre-defined part
of the message-frame with periodic data, and when a node has sporadic
messages to send, it will pack as many as possible in the remaining part
of the frame. The size of the periodic part is determined pre-runtime, as
the frame sizes are fixed. Thus, the size available for sporadic messages
is also fixed. The properties that follow this method include:

• The sporadic data normally needs addressing information, such that
the nodes can distinguish between different sporadic messages from
a node, i.e., if there they receive several from the same node. Thus,
each data entity must include an address or ID. Please note that
for periodic data, address information is implicit as this data is
statically scheduled.

4.1 Lower Priority Non-Periodic Messages 73

• The length of a message-frame is constant and the same as the slot-
length. A node cannot adaptively change the amount of data it
sends. Furthermore, a node cannot increase or decrease the amount
of “event data” to send, as the slack is statically scheduled for each
node.

• A node cannot utilize unused slack of other nodes. This implies that
there is no global priority on sporadic data. The priorities among
the sporadic messages are handled internally in each node, i.e., each
node handles its own slack.

TDMA roundTDMA round

1 1n32

=Periodic data =Sporadic data

Figure 4.1: The TDMA approach, with slack, for event-
triggered/sporadic traffic.

The drawback of this approach is that message-frames are fixed, both
in position and length. This prevents a node from adapting to differ-
ences in the need for transferring sporadic data, a node cannot share the
unutilized portion of the media-access time that is pre-assigned to it.

Improvement suggestions

Is there any way of reducing the described limitation, i.e., the inability
to dynamically adapt to different bandwidth requirement? As the frame
sizes are fixed, only node-internal measures can be taken. However, one
possibility is to permit a flexible assignment of the frame size for periodic
and sporadic messages. This would, however, necessitate that a periodic
message at some occasions would be delayed/skipped to make way for
a sporadic message. Naturally, this only applies to situations where the
system is expected to perform such prioritizing among the messages, and
must be decided by the system designer.

For example, consider the case where a node b encounters a situation
where a sporadic data s has higher priority than one of its scheduled
periodic messages, p. If s does not fit within the normally scheduled
“slack”, node b can then decrease the amount of periodic data by delaying
or skipping p, such that the important sporadic data, s, will fit. The cost
of this improvement is increased complexity for handling varying shares

74 ET Channel on TT Base

of periodic and sporadic data. Furthermore, there is an overhead of one
or more bits for indicating the current load of a message-frame.

4.1.2 A Mixed Access Method

In this method periodic data is scheduled first and no slack is used in
individual nodes. The TDMA-round is divided in two parts, one where
nodes access the bus by TDMA and a second part for sporadic data, using
an alternate media access method. Thus, in each TDMA-round there will
be a certain free time not occupied by statically scheduled data, which is
free for sporadic traffic. The drawback with this method is that it needs
a special bus access procedure for the sporadic messages. Examples of
possible bus access methods include:

• Minislotting. The combination of TDMA and minislotting is, for
example, used in Arinc 629 [ARI95].

• The use of bit arbitration.

• The use of tokens.

• A Media Master who sends the schedule in the periodic message.
For example, each node asks/requests a message slot in the “spo-
radic area” in the periodic message, the last node who sends in the
periodic area is a “master” and decides when and how much band-
width each node is assigned. This would require that all nodes send
a message in each TDMA-round such that they can demand a piece
of the “sporadic message area”.

This method can have variants where a TDMA-round is divided into a
number of periods, with periodic and sporadic areas that alternate. Each
periodic area would end with a node functioning as a “master” in the
following sporadic area, which will be partitioned among the nodes, by
the master node.

4.2 High-Priority Sporadic Messages

In this section, we will assume that we have sporadic messages with
high-priority, i.e., higher than the periodic messages sent with the time-
triggered channel. We describe how the normal periodic schedule can
be interrupted by higher priority messages. Thus, if we have a normal
TDMA system running and we suddenly want to interrupt this schedule
with a very high-priority message, how can this be accomplished?

Ultimately, we would desire the following from such an interrupt func-
tion:

4.2 High-Priority Sporadic Messages 75

• Interrupt the normal TDMA-round at any time.

• Continue with the TDMA-round after the high-priority message has
been sent.

We basically have two ways of transferring an interrupt request, either
explicitly by sending on the channel, or implicitly by not sending, i.e.,
using delays like the minislotting approach. Furthermore, we can choose
to always interrupt after a message or, in case of haste, interrupt the
sending message, in which case we must garble the sending message such
that the sender withdraws.

After a TDMA-round has been interrupted by a high-priority message,
the normal TDMA communication must resume. There are three main
candidate approaches for implementing this:

1. Maintain the timing of the normal TDMA schedule, see Alt a in
Figure 4.2. This means that after the high-priority message the
next message in time to send according to the global schedule will
be sent. This method does not introduce any jitter, i.e., varying
delays of the periodic messages in the TDMA-schedule. However,
one or two messages may be lost while the high-priority message is
sent.

2. The interrupted node can continue, i.e., re-send its interrupted mes-
sage, see Alt. b in Figure 4.2. With this approach we do not miss
any messages, but all messages will be delayed.

3. In this approach the TDMA schedule is restarted, see Alt. c in
Figure 4.2.

There must be an understanding among nodes when they should start
after a high-priority message. Not only which node should continue, but
also at what point in time. This can be important for the synchroniza-
tion of nodes and local clocks. We also assume that the length of high-
priority messages-frames are fixed. Hence, there is a fixed time after all
high-priority messages transfers before the normal TDMA-schedule can
progress, (according to one of the approaches in Figure 4.2). In such a
case, all nodes will know when to expect the normal communication to
continue.

Another approach would be that the node next in line to send would
listen to the media and start sending as soon as the high-priority mes-
sage finishes. However, this would introduce an uncertainty of when the
communication continues, i.e., a varying delay of regular messages when
higher priority messages are sent.

76 ET Channel on TT Base

P =Disturbence followed by a Priority pulse
HPM = High Priority Message

Alt. a

Alt. b

Alt. c A B C HPMP EA B C FD

A B C AHPM E F G HDP

A B C A BHPM F G HP

EA B C F G H A BD

H A

Figure 4.2: A node with high-priority messages interrupts the normal
TDMA-round by a reset pulse. Alt. a, keep timing undisturbed; Alt b,
interrupted message is re-sent; and Alt. c, restart the TDMA-round.

4.2.1 Reset Pulse

In our first suggested method, a reset pulse is used to interrupt the
TDMA-round. This reset pulse consists of two parts; one part with the
main purpose of disturbing the current sender, such that it stops sending.
The second part consists of a very short message indicating that the inter-
rupt was an intentional interrupt, due to a high-priority request, and not
just a disturbance. After the interrupt we assume that the high-priority
message is transferred, i.e., HPM in Figure 4.2, and finally the normal
TDMA communication resumes, using one of the approaches Alt. (a, b,
or c), shown in Figure 4.2.

An example of a protocol using a similar method is the QWIK pro-
tocol [kSkJC01, kSkJC01]. The QWIK protocol starts and restarts its
TDMA-round with a reset-pulse. However, if a reset pulse is sent, the
schedule immediately starts from the beginning. This means that if we
want to interrupt a TDMA-round for a high-priority message, this mes-
sage must already be scheduled in the TDMA-round.

The reset method increases the complexity of the communication pro-
tocol, and may have reliability implications, e.g., some of the deterministic
behavior is lost and the times when a node accesses the bus is no longer
fixed.

Using this method we must design the system such that a reset pulse
is used very infrequently, otherwise we have to consider collisions when
starting to send after the reset pulse. However, in most cases we would
still need some media access method to ensure that two high-priority mes-
sages do not collide. One of the alternatives to avoid collisions would be

4.2 High-Priority Sporadic Messages 77

minislotting, see Section 1.2.1, our use of this approach will be described
in the next section.

4.2.2 Minislots

In this approach we use minislots to arbitrate among nodes that are
allowed to send higher priority messages. In Figure 4.3, we show how
message-frames are separated with a number of minislots, i.e., short slots
of media silences. Thus, after each periodic message a minislotting period
is used to make it possible for high-priority messages to be sent. The
length of this minislotting period, i.e., the number of minislots, depends
on the number of nodes that are allowed to send high-priority messages.
In Figure 4.3, we can also see how a node with a high-priority message
starts to send its high-priority message, after it is assigned the minislot
period.

EA B C F GD

HPM = High Priority Message

Minislott

A B

EA B F GDHPM

Figure 4.3: Interrupt the TDMA-round by minislots between, pre-
scheduled messages.

4.2.3 One Minislot

In this approach we use only one minislot, i.e., a slot of the length of
the channel end-to-end propagation delay. In this slot the transfer of
a high-priority message can be initiated. We assume that these high
priority messages occur rarely, otherwise they should be scheduled as
normal messages in the normal TDMA schedule. The probability for
collision among these high-priority messages should be low. However, if
a collision occurs the following steps will be used. Note that the colliding
nodes are not aware of the identity of the other node(s) in the collision.

1. The colliding nodes withdraw.

2. Higher priority messages are divided in two sets according to their
priorities. For example, assume 1 is the highest priority followed

78 ET Channel on TT Base

by priority 2 etc. A message with priority i is denoted mi. As-
sume we have 9 high-priority messages and the detected collision
occurred between messages mx and my, where mx has the higher
priority (x < y). Messages are divided into two sets according to
their priority, i.e., 1,2,3,4 and 5,6,7,8,9. Note that this is a dis-
tributed activity where the division-behavior is static and decided
pre-runtime.

3. We now allow the high-priority set to send immediately after the
collision.

4. If only mx was in this set, no collision will occur and the highest
priority message is sent.

5. If both mx and my are sent and cause yet another collision, the
high-priority set is divided into two new sets 1,2 and 3,4 and we
return to step 3.

6. If none of mx or my are sent, there will be silence on the media for
one minislot, and we know that mx and my are in the lower priority
set. This set is divided into 5,6 and 7,8,9 and we we go back to
step 3.

When message mx has been sent, the procedure will be repeated for
message my. This can be handled in two ways, (a) retry sending my di-
rectly after mx or (b) after one message from the normal TDMA-schedule.
In both these cases, the minislotting behavior must be repeated to avoid
collisions with newly arrived high-priority messages. Method (a) is nat-
urally faster which is important for high priority messages. However,
the synchronization aspect could benefit from using method (b), as syn-
chronization is normally based on the periodic arrival of pre-scheduled
messages.

4.3 TTP+: An New Approach based on TTP/C

In this section we present a new approach for sending event-triggered data
on a time-triggered channel. We develop a modified version of the existing
TTP/C protocol [TTP99, KG94] as the base protocol. Our modification
is labeled as TTP+. Our intention is to permit as few changes as possible
to the TTP/C protocol so as to maintain its predictability feature, and
also not to impose any additional complexity. As stated in the previous
section, there will be no “preemption” of the normal time-triggered com-
munication in order to send higher priority messages. Instead we have

4.3 TTP+: A New Approach 79

restricted this case to low-priority event-triggered channels, where the
focus is on robustness and short access times.

To facilitate sporadic data transfer with TTP/C, our approach in-
troduces two new concepts, (1) the Sporadic Information Transfer (SIT)
bits, and (2) free-frames. The SIT bits consist of one or more bits, in-
cluded in the normal data frames. The purpose with the SIT bits is to
either directly send sporadic data or requesting some additional slots for
sporadic data. After such a request a node will normally be assigned a
slot, i.e., a free-frame in which it can send its sporadic data. In Fig-
ure 4.4 a normal communication frame is shown with an additional SIT
bit. This normal data frame makes it possible to implement the required
functionality without any major changes.

Conceptually, the free-frames are empty slots reserved for
sporadic/event-triggered data. These newly introduced free-frames are
part of the communication schedule, as they are statically scheduled.
However, any node is allowed to send sporadic data in these free-frames,
see Figure 4.5. This will require a method for avoiding collisions in these
slots, and we will come back to how this is handled in Section 4.3.1.

Header Application Data CRC

I/N Frame Mode Change Bits 1/3 SIT bit(s)

Figure 4.4: A TTP/C normal frame with the addition of a SIT bit.

The free-frames are used when considerable amounts of sporadic data
is needed. In such cases, the introduced SIT bits will be used as indicators
that a node wants to use the ”free-frames”. If data is sent directly using
the SIT bits we get a low bandwidth solution and, using the free-frames,
we get a higher bandwidth solution. Thus, depending on the amount
of sporadic data a node wants to transfer, we use the SIT bits in two
different ways: (1) in case of small amount of sporadic data, the SITs
bits are used to transfer data, or (2) in case of larger amounts, the SIT
bit can work as requests for free-frames.

The decision to use only a single or several (yet very few) SIT bits
is based on limiting the overhead for introducing a sporadic channel.
However, using only a single bit has some implications, e.g., we have to
decide how to use this SIT bit pre-runtime. When transferring data via
the SIT bits, we call it a Low Bandwidth (LB) solution. The available
bandwidth for sporadic messages at run time is static in such a case. If

80 ET Channel on TT Base

TDMA roundTDMA round

= Free Frames

A B C D FF FF FF FF A B C

Real Time
FF

Figure 4.5: A TDMA-round with event-triggered channels in form of
free-frames located in the end of the TDMA-round.

a node uses LB, it needs a local priority queue for sporadic messages. In
case of more than one receiver we have to handle addressing, start and
stop of messages, etc.

By using the SIT bits for message transfer we have created a low
bandwidth channel for event-triggered communication over a time trig-
gered system. The advantage of this method is the low complexity which
facilitates the design of a robust system. However, it offers limited band-
width and that bandwidth can not be used by any other node when
nothing is sent.

In the second option, we used the SIT bits as requests for further
sporadic bandwidth, i.e., requests for free-frames. This makes it possible
to share the free-frames among all nodes, i.e., all nodes can use this
bandwidth. This approach implements a High Bandwidth (HB) event-
triggered channel for nodes that have a lot of sporadic data to send. This
also has implications on the working of the protocol. Specifically, we
have to decide how the sporadic bandwidth is divided among requesting
nodes. There is a number of options which we will discuss in Section 4.3.1.
Finally, a node can use a combination of the above such that the node
has a LB channel and a HB channel.

In the following sections we will describe and investigate how a num-
ber of variants on assigning free-frames affect the event-triggered channel.
Another parameter that is investigated is when the free-frames are sched-
uled, e.g., composed at the end of a TDMA-round or scattered over the
whole TDMA-round.

4.3.1 Prioritization of Sporadic Messages

In this section we discuss alternate solutions for controlling the free-frame
access among nodes; and also across messages within a node. The goal is
to obtain short access times and high throughput for the sporadic data.

We only consider how nodes will share the free-frames, as commu-
nication via the SIT bits is strictly handled node internally. Locally, a

4.3 TTP+: A New Approach 81

node must handle sporadic messages such that they get queued in a node
internal queue according to their priority. This is independent of whether
the data will be sent via the SIT bits or free-frames. To transfer sporadic
messages we need to handle extra information, compared to the periodic
data, as the sporadic traffic is not static:

• Start and stop information of sporadic data.

– Start and stop bits, indicating the start and stop of a message.

– Messages can be sent starting with a specified offset from the
start of, for example, the cluster cycle, i.e., a number of re-
peated TDMA-rounds, or TDMA-round. When using sporadic
messages with predefined length, they can be synchronized to
the clusters cycles.

• Destination address or message ID serving as address. This is neces-
sary to transfer in order for receivers to know two whom the message
is directed. However, sender address is not necessary as the node
from which the frame arrived is known.

As discussed earlier, the free-frames approach requires a media access
method to avoid collisions when sending (using) the free frames. We have
investigated two approaches for avoiding collisions, one central and one
distributed approach, described in the next two sections.

Central Prioritization

In this approach, one node will make a central/global decision about
which node is allowed to send in a specific free-frame. The nodes sending
in the static area can request bandwidth for sporadic data in the form
of free-frames. The last node in the static part of the TDMA-round,
i.e., node ie, will prioritize and decide which of the requesting nodes are
allowed to send, and at what time. Node ie will then include the schedule
of the sporadic event-triggered data in its message, see Figure 4.6.

Using this method, we get extra overhead for explicitly sending the
schedule for the event-triggered traffic. If we assume that we indicate
whether a node should send or not, we use n bits followed by n times the
maximum number of free-frames that are sent per node, assuming x bits
we get a total overhead (H) of:

H = n + n · x

One consequence of using this approach is that the schedule is explic-
itly sent on the bus. It is a low complexity solution, but only one node

82 ET Channel on TT Base

A B C D FF 1 FF 2 FF 4 A

Indicating which nodes
should send in the Free Frames

Set if Node A
should send

of FF:s
assigned toA

FF 3

Figure 4.6: A central node decides which nodes are allowed to send in the
event-triggered channel, formed by the free-frames.

controls the schedule, which can potentially introduce a single point of
failure. However, normally the safety-critical information is transferred
via the more predictable time-triggered channels. Only when using one
central unit for prioritization of the event-triggered messages can the im-
plementation be easily changed without having to make changes at all
nodes. Nodes that do not receive this message are considered to observe
silence semantics.

Distributed Prioritization

The previous method has the disadvantage of introducing a single point
of failure (if the central node fails the event-triggered channel will col-
lapse). A more attractive solution, with fault tolerance aspects, is to
use a distributed approach when deciding the allocation of free-frames to
nodes. In this solution, each participating node makes a decision based
on received information, which makes it very important that all nodes
receive the same information. Thus, the nodes make a distributed deci-
sion about which nodes can access the free-frames. Our method has the
purpose of achieving low overhead, small delay, and uniform bandwidth
among requesting nodes. However, this basic method can easily be mod-
ified to give one node higher priority. Although, in the following we only
describe the basic method where all nodes will be able to send and where
we focus on short media access times.

The sporadic transfer efficiency is dependent on the number and po-
sitions of the free-frames in the TDMA-rounds. This approach basically
gives priority to the node with the earliest request. For example, assume
nodes a, b, and c send (in that order) their time-triggered frames, just
before a free-frame is scheduled. If all request a free-frame, then node a
will get the highest priority followed by b and then c. If there were other
nodes in the queue before a, b, and c that could make there requests, they

4.3 TTP+: A New Approach 83

will be put in the queue after the new nodes, i.e., node a, b, and c. This
means that nodes might not get access to the event-triggered channel if
there are more nodes than free-frames in the system.

We also note that in order to minimize the access time to the event-
triggered channel, there should be a free-frame in every second frame, see
Figure 4.7.

Real Time

TDMA roundTDMA round

A FF B FF C

= Free FrameFF

D FF E FF A FF BFF

Figure 4.7: Distributed method where the free-frames are scattered
throughout the TDMA-round in order to minimize the buss access time
for sporadic data.

If a node fails to receive a message with a request for a free-frame it
will get an inconsistent view of the global free-frame queue. In such cases
there must be a mechanism that makes it possible for a node to regain this
global queue information, such that a node can reintegrate in the transfer
of sporadic messages via free-frames. This is done by limiting the size
of the global queue and enforcing nodes to re-queue their requests, each
TDMA-round. Thus, when it is a node’s turn to send, say node a’s, a
is removed from the queue, independently on whether a was assigned a
free-frame or not. If node a still has sporadic data to send in the local
queue, it must request a free-frame again. Thus, after one TDMA-round
the global queue is renewed.

The event-triggered channel works by a combination of the global
queue and a node’s local queue which is strictly priority based. Thus, a
sporadic message m is put in the local queue of a node a, according to the
message priority. Node a requests a free-frame to send this message in.
This request is queued in the distributed global queue and a is assigned
a free-frame accordingly.

Optimizations

The method of queuing requesting nodes described above can easily be
adapted to a system using global priorities. This can be achieved if each
node in addition to the free-frame request includes the priority of the
message. Then nodes can use the priority when queuing the requests in
the distributed global queue. This will naturally cost more in overhead

84 ET Channel on TT Base

as the priority of a requesting node’s message is transferred on the media
as well. However, in this type of system, where a lot of parameters can
be set before runtime, there is a possibility to minimize the number of
priorities in the system. This can minimize the number of bits necessary
to transfer the requests and corresponding priority.

When half the frames are free-frames, each node will have the possibil-
ity to send in a free-frame each TDMA-round. If there are less free-frames
and all nodes want to send, the lowest prioritized nodes will not have the
chance to send. Thus, the will be subjects to starvation if they never can
access any free-frames. However, this could be handled by circulating the
priorities among nodes during different TDMA-rounds.

During times when no nodes request event-triggered data transfer, the
free-frames can be statically assigned to specific nodes. This serves two
purposes:

• A nodes’ response times can be reduced by assigning default desig-
nations to free-frames. Thus, all free-frames will be preassigned to
a node. If a node notices that its designated free-frame is not re-
served, i.e., requested, it is free to use that free-frame. If this node
has data to transmit, and did not have the opportunity to request
a free-frame, it is free to send in that free-frame. This can, during
low load situations, lower the access time for nodes.

• Nodes that normally do not send every TDMA-round, can be as-
signed a free-frame which gives such nodes access to those TDMA
rounds under low load situations, i.e., those nodes have the possi-
bility to send in rounds when they are normally not sending any
time-triggered frames.

With the described method, a node may be assigned more than one
free-frame. However, if one free-frame suffices for the node, it would
occupy more free-frames than necessary. As we use the same message-
frames both for time-triggered and event-triggered messages, we can use
the SIT bits to indicate when a node has no more sporadic data to send.
Thus, if a node is assigned two or more free-frames but only needs one,
it can indicate “no more sporadic data” using the SIT bits in the free-
frame. This will improve the utilization of the media, as no free-frame is
assigned to a node with no more data to send.

4.4 Properties

In this section we briefly describe some of the properties of our adaptation
of the existing TTP/C protocol and some preliminary simulation results

4.4 Properties 85

where the intent is chiefly to confirm that the TTP/C behavior has not
been perturbed. We defer detailed simulations as a future refinement to
the approach. We have focused on our approach using distributed prior-
itization, from Section 4.3.1, where every second slot is a free-frame, see
Figure 4.7. We have also assumed that all time-triggered message-frames
have the same length, and all free-frames have the same length. How-
ever, time-triggered message-frames and free-frames do not necessarily
have the same length.

We emphasize that our main focus has been to achieve flexible han-
dling of sporadic messages without disturbing the time-triggered base. In
Table 4.1 we compare a few important properties of our modified TTP-
protocol, termed as TTP+, with the classic TTP and the CAN [CAN91]
protocols. For the TTP protocol we assume that sporadic messages are
handled using preassigned slack as described in Section 4.1.1. In Ta-
ble 4.1 we show the (1) worst-case (WC) delay of a sporadic-message, (2)
the overhead corresponding to sporadic message handling, and (3) how
much sporadic data can be assigned to a single node, under the condition
that they all have the same amount of data and the same period T of
periodic messages.

In the first column we have the WC delay where our TTP+ and TTP
have the same WC delay, i.e., one period T. The CAN protocol has a very
short WC delay, which is when the longest message must finish sending
before the next may access the bus.

In the Overhead-column of Table 4.1, the overhead related to the
sporadic message transfer is shown. In our TTP+ the overhead is related
to the SIT bits, one for each node, assuming n nodes. For TTP using
pre-assigned slack we have no extra overhead. For the CAN protocol, the
ID-field is used to resolve priorities accessing the media, and thus it has
more functionality than just sporadic messages. Thus, it should be noted
that comparing these may be a bit favorable for the TTP protocols.

Finally, the last column indicates how much media access can be as-
signed a single node, in the best case. For our TTP+ we can basically
assign all free-frames to one single node, i.e., T/2. For the standard TTP
we cannot change the pre-scheduled slack, and assuming each node is
assigned the same amount of slack for sporadic messages, one node gets
the size of approximately one free-frame (FF). In this column we can see
the major improvement of our TTP+ approach which allows a node to
utilize more than one free-frame. This significantly improves the transfer
rate, when a single node has a lot of data to transfer.

One question naturally arises as to how the average delays are af-
fected. In the following simulation our goal has been to present some
preliminary validations of the expected behavior of the TTP+. In future

86 ET Channel on TT Base

Comm. approach WC delay Overhead Max trans
TTP+ T n bits T/2
TTP T 0 bits approx. 1 FF
CAN Max ML n · ID-field T/2

Table 4.1: Properties of different communication approaches

work, we plan to conduct more detailed simulations using varying param-
eters of TTP+ and simulation parameters. In Figure 4.8, we observe that
although we have introduced a more flexible handling of sporadic mes-
sages in the TTP protocol with TTP+, we still maintain, at least, the
same average delay of sporadic messages. At low load we even manage to
improve the average delay, although the only optimization, described in
Section 4.3, implemented is simply that the free-frames have preassigned
nodes. We believe that refined optimizations will help improve the av-
erage delay characteristics even further. In Figure 4.9, we have verified
that this behavior is still valid if we increase or decrease the size of the
free-frames compared to the normal time-triggered message-frames.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

A
ve

ra
ge

 w
ai

t t
im

e.
 F

ro
m

 q
ue

ui
ng

 to
 s

en
d.

(N
um

be
r

of
 p

er
io

ds
)

Load: Rate of generated sporadic messages as a ratio of the availabel bandwidth
for ET traffic, that is (Generate ET traffic)/(Available ET Bandwidth)

0

2

4

6

8

10

12

14

16

18

20

of

 m
es

sa
ge

s
no

t s
en

t p
er

 p
er

io
d

not sent. TT sys. Right axis.# not sent. TT sys. Right axis.Pure TT system
TT system using FF

Figure 4.8: A comparison of our TTP+ and a basic TTP using pre-
assigned slack.

4.5 Summary

In this chapter we have studied and presented different approaches for
transferring sporadic messages using a communication system based on

4.5 Summary 87

0.
2

0.
4

0.
6

0.
8

1
1.

2
1.

4
1.

6
1.

8
01

Average wait time. From queuing to send.
(number of periods)

M
od

. T
T

P
sy

st
em

L
oa

d:
 R

at
e

of
 g

en
er

at
ed

 s
po

ra
di

c
m

es
sa

ge
s

as
 a

 r
at

io
 o

f
th

e
av

ai
la

be
l b

an
dw

id
th

fo
r

E
T

 tr
af

fi
c,

 th
at

 is
 (

G
en

er
at

e
E

T
 tr

af
fi

c)
/(

A
va

ila
bl

e
E

T
 B

an
dw

id
th

)

 051015202530

of messages not sent per period

70
%

 p
er

io
di

c
tr

af
fi

c
50

%
 p

er
io

di
c

tr
af

fi
c

30
%

 p
er

io
di

c
tr

af
fi

c

0.
2

0.
4

0.
6

0.
8

1
1.

2
1.

4
1.

6
1.

8
0

0.
2

0.
4

0.
6

0.
8

1.
0

Average wait time. From queuing to send.
(number of periods)

B
as

ic
 T

T
P

lik
e

Sy
st

em

L
oa

d:
 R

at
e

of
 g

en
er

at
ed

 s
po

ra
di

c
m

es
sa

ge
s

as
 a

 r
at

io
 o

f
th

e
av

ai
la

be
l b

an
dw

id
th

fo
r

E
T

 tr
af

fi
c,

 th
at

 is
 (

G
en

er
at

e
E

T
 tr

af
fi

c)
/(

A
va

ila
bl

e
E

T
 B

an
dw

id
th

)

 051015202530

of messages not sent per period

70
%

 p
er

io
di

c
tr

af
fi

c
50

%
 p

er
io

di
c

tr
af

fi
c

30
%

 p
er

io
di

c
tr

af
fi

c

F
ig

ur
e

4.
9:

T
he

se
fig

ur
es

sh
ow

s
th

e
ba

si
c

T
T

P
an

d
th

e
T

T
P

+
ha

ve
ve

ry
si

m
ila

r,
be

ha
vi

or
w

he
n

ch
an

gi
ng

th
e

am
ou

nt
of

th
e

ti
m

e-
tr

ig
ge

re
d

pa
rt

.

88 ET Channel on TT Base

the time-triggered paradigm. We have studied both how priorities higher
and lower than the normal time-triggered traffic can be handled. It is,
however, clear that transferring high-priority messages by interrupting
the normal time-triggered communication has a significant impact on the
a time-triggered protocol. Naturally, it is more difficult to maintain the
reliability aspects as it affects the predictability of the time-triggered
communication paradigm.

For low-priority sporadic messages the situation is a bit different. We
have shown some basic methods of how such messages can be transferred
using a time-triggered base. And more importantly, we have presented
a new method based on the TTP/C protocol for transferring sporadic
messages in a more flexible way. Our main focus has been to provide
for enhanced flexibility in communication without disrupting the funda-
mental predictability of the TTP/C protocol. This has been achieved
with a minor change in normal message-frames. Using our new approach,
nodes share free-frames on a request basis. This is a significant improve-
ment, compared to using preassigned slack, as one node can utilize many
free-frames when another node has no sporadic messages to send. Our
preliminary simulation results show that, without disturbing our time-
triggered traffic, we have maintained the average delay times compared
to a time-triggered approach using pre-assigned slack. At low load we
have even improved the average access times. We have also shown with
the preliminary simulations that there is no indication that these results
are affected by the size of the free-frames compared to the normal time-
triggered frames.

Chapter 5

Conclusions, Perspectives
and Future Issues

THIS chapter summarizes the main results achieved in this thesis.
Alongside, we mention future research areas that we foresee from

the perspective of the work conducted here.
This thesis has concentrated on the development and investigation

of communication approaches in the area of multiple-access media. The
assumed working environment for these communication systems is dis-
tributed embedded systems with reliability requirements. We expect such
computing systems to rapidly grow within the mass-market arena, where
efficiency and cost are salient factors alongside performance and reliabil-
ity. This has motivated us to use efficiency and cost as the main design
drivers. In the following sections, more specific details of the contribu-
tions of this thesis are presented.

5.1 Synchronization Issues

In Chapter 2, we presented a unique synchronization approach that pro-
vides for low-cost fault-tolerant synchronization in distributed real-time
systems, targeting safety-critical systems for the mass-market. The pro-
posed TDMA (Time-Division Multiple Access) communication approach
uses the static information of the different message lengths to obtain
information about sender id. This simple approach provides for low com-
plexity and high efficiency start-up synchronization and subsequent re-
synchronization to integrate new/recovering nodes. Fundamentally, our
approach makes the following contributions:

• Provision of guaranteed and time-bounded start-up synchroniza-
tion.

90 Conclusions, Perspectives and Future Issues

• Short average start-up synchronization bound, with small standard
deviation.

• Low communication overhead compared to existing TDMA-based
approaches.

• Fast re-integration of recovering nodes.

• High robustness in tolerating faults with only a limited synchro-
nization and resynchronization time penalty.

Thus, the synchronization approach appears well suited for real-time
systems, due to its guaranteed temporal upper bound on start-up. Its low
complexity, combined with its simplicity, makes it useful for cost-sensitive
safety-critical systems as well.

5.2 Media Access

In Chapter 3, we have studied two contemporary media-access meth-
ods, the time-triggered approach and the event-triggered approaches. We
have compared these two methods to assess their behavior under different
operational conditions. This chapter intends to help system designers de-
termine the range of behavioral differences these two approaches provide
in varied scenarios.

The work in this chapter has been conducted using two types of simu-
lations where we have studied the behavior of these approaches. The first
simulation type used a system with a mix of tasks and communication at-
tributes. In the second type, we studied the system by looking exclusively
at the communication media. The intent is not to re-establish the basic
properties of these communication approaches, as they are well-known in
the community. Instead, the focus has been on quantifying attributes, as
well as the quantitative spread of differences across the approaches, and
also under which conditions their behaviors best matches the system and
communication requirements. Considering the trade-offs during system
design, it is important to know the relative gains of choosing one ap-
proach over another, and also ascertaining the operational profiles where
each approach fits best. In this work, we clarified some communication
protocol aspects. Naturally, a system designer must take into considera-
tion other aspects of these approaches, for example, the predictability of
the time-triggered approach. Other facets target issues such as scalability
of the approach to varied system sizes, along with issues such as stability
and design aspects like composability.

5.2 Media Access 91

Here we describe the main conclusions of the work of Chapter 3, under
the operation conditions described there.

The Event-Triggered Architecture (ETA) is beneficial when short
delays are important and the load is kept below approximately 0.6–0.7.
As detailed in Chapter 3.4, the load is defined as:

Load =
Generated sporadic traffic

Available sporadic bandwidth

The main properties supporting the ETA include:

+ This approach provides for short average delays for messages
that access the media. Even when the load increases above
(approx. > 0.6), there is only a slight increase in the average delay
for the high-priority messages that get access to the media.

– The use of event-triggered communication unfortunately also delays
high-priority (periodic) messages. These delays originate from the
fact that sending messages cannot be interrupted, thus they also
cause varying delays, i.e., jitter. High-load situations may lead to
starvation of low priority messages, i.e., there are messages which
are prohibited from accessing the media due to higher-priority mes-
sages constantly accessing the media. The variation in delays grows
early around a load of 0.5.

Comparatively, the Time-Triggered Architecture (TTA) supports
the system requirements sufficiently for all tested loads, as long as the
requirements on delays for sporadic messages are not very high. In such
a case, the TTA is preferable only for loads above approximately 0.6–0.7.
The main properties of the TTA are:

+ Naturally, and perhaps the most important fact to highlight about
the TTA is that there are no delays of high priority (periodic) mes-
sages. When most deadlines for sporadic messages provide for two
or more tries, i.e., a delay in the order of a few TDMA-rounds, there
is actually few missed sporadic messages. In such cases, it even cre-
ates an equalizing effect providing for more low priority messages,
naturally at a cost of higher average delays.

– However, when we have short deadlines for sporadic messages, most
sporadic messages only get one chance to send a message. This
corresponds to situations where most deadlines have slightly more
than a TDMA-round to send, see Figure 3.2. The average delay
starts with as much as a half TDMA-round, and increases slightly
as the load increases.

92 Conclusions, Perspectives and Future Issues

It is important to re-emphasize that the terms ”flexibility” and ”pre-
dictability” of existing event-triggered and time-triggered schemes are
subjective. There is a tendency to demonstrate the strength of their fea-
tures in system models and operational situations that tend to favor the
stated approach. Thus, the intent of our work has been to choose a com-
mon system and communication model, and conformal definitions of load,
as we quantify the properties of each approach. As we mentioned earlier
in Chapter 3, these results are based on simulations with randomly gen-
erated loads. It could be argued that more “real” loads should be used.
However, considering the lack of publically available and published task
schedules from industry using those as a base could easily benefit one or
the other approach. We have therefore chosen the approach of using ran-
dom generated communication loads such that there would be no doubt
that they favor none of the approaches.

It should be pointed out that these results are not directly adapt-
able to real-life situations. The intent is that the basic properties of the
generated load can be found in many real-time systems. For example,
systems with high-priority control loops generating high-priority periodic
messages and other system parts generating sporadic messages, e.g., with
diagnostics and status information can be found in many application ar-
eas.

Therefore, we believe that our quantification provides a system de-
signer with meaningful profiles for both the approaches. Of course, the
designer will make the changes specific to the actual system requirements
driving any development - profiles such as the ones developed in Chap-
ter 3, help the designer to understand operational regions where each
technique offers strengths.

5.3 The Best of Both Worlds

In Chapter 4 our goal was to develop methods for combining the favor-
able properties of predictability and flexibility, respectively, of the time-
triggered and event-triggered communication.

As our focus is on real-time and reliable embedded systems, we con-
sider the predictability of the time-triggered approach as a key factor
for the provision of safety-critical services. Hence, the time-triggered ap-
proach is used as a base, upon which we present new methods as well as
modifications of existing methods for efficient handling of event-triggered
traffic and sporadic message handling. We emphasized in Chapter 4 that
although we desire composite time- and event-triggered handling, a pri-
mary constraint we impose for ourselves is to minimize any disruption of
the predictability established by the time-triggered base.

5.4 Future Research Issues 93

Overall, we have presented three main approaches for the integration
of event-triggered and time-triggered communication:

1. In the first type of integration, we present a number of fundamen-
tal approaches for transferring low-priority sporadic messages via a
time-triggered channel. With low-priority, we mean lower priority
than the regular periodic messages.

2. Here we consider high-priority sporadic messages. This has a higher
impact on the regular time-triggered traffic, as we must interrupt
the TDMA-round to achieve better message delivery times.

3. The final step in this work has been to improve the sporadic message
handling of an existing communication protocol, the TTP/C proto-
col [TTP99]. This has been done with very limited changes to the
original protocol specification. Thus, there is no disruption of the
normal time-triggered traffic and minimalistic specification changes
in order to not disrupt the behavior of an already well-verified and
tested protocol. It is worth pointing out that our proposed changes
do not change any operational specification of the TTP/C protocol
that is required over its property verification.

5.4 Future Research Issues

Following the presentation of the main contributions of this thesis, we dis-
cuss some future research issues that are of interests. We have structured
these along the same topic lines as used in the thesis.

5.4.1 Synchronization Issues

The term ”synchronization” in distributed systems has varied connota-
tions and also spans a very wide area, see [SHW94]. The restrictions
imposed by commercial embedded systems - cost issues and physical dis-
tribution of nodes - have made bus-based communication the significant
media on which to develop synchronization and other services.

In our work, we have focused on providing cost-effective and efficient
initial synchronization for TDMA-communication. At the same time,
synchronization is a basic system service on which more complex services,
such as group membership, etc., are developed.

• What are the scalability issues for TDMA-based techniques? In
Chapter 2.6.3 we demonstrated that our approach with unique
message-length identifiers scales even when a large number of nodes

94 Conclusions, Perspectives and Future Issues

is used. However, the effect was a slight increase in start-up time. Is
it possible to use other techniques to enhance the scalability without
degradation in average and bounded start-up times? Furthermore,
is the fault model of a node that ends up mimicking the unique
message lengths of another node a concern? We have considered
this as a minimal risk as messages are protected with checksums
which will limit this considerably. However, a more thorough inves-
tigation would be interesting, especially as we extend our approach
to consider safety-critical areas. Finally, it would be interesting to
investigate for which bit encoding approach this synchronization
approach would fit best, e.g., Manchester encoding or NRZ.

• The work within this thesis has focused on synchronization and
media access methods, especially, the time-triggered and event-
triggered paradigms. However, systems can be divided according
to the synchrony among constituting components and their per-
ception of time. As one extreme we have systems with no explicit
notion of time, i.e., asynchronous systems. As the other extreme we
have synchronous systems where nodes utilize an explicit consider-
ation of time for event ordering, e.g., using local/global clocks, and
a bounded time on executing a step. In synchronous systems, mes-
sages are also received within a bounded time window. The system
nodes may furthermore be synchronized with each other.

Independent from the media access method, a system designer can
choose to use a synchronous or an asynchronous system approach.
However, using a strict TDMA system already requires a common
view of global time amongst the nodes of the system. This enforces
some minimum synchrony amongst the nodes and the system is
not strictly asynchronous. Although it might seem natural to take
advantage of this synchrony when implementing the distributed ap-
plications, there might be reasons for not doing so. For example,
the system designer may want to reuse code or make the code in-
dependent of the underlying communication system.

Other media access methods generally use little synchrony informa-
tion in their manner of operation. This might seem a more natural
approach if one is using an asynchronous system model. However,
nothing prevents implementation of additional synchrony in the dis-
tributed media access protocols

In this area we would like to further investigate these more general
concepts of system time, and expand on their implications of the
time-triggered approach and the event-triggered approach.

5.4 Future Research Issues 95

5.4.2 Media Access

In Chapter 3, we investigated the relative behavior of two well-known
media access approaches, i.e., the time-triggered approach and the event-
triggered approach. Although it serves the purpose of showing a system
designer their behavior under similar working conditions; however, there
are a few directions in which we would like to enlarge our investigation.

We would further like to run experiments where the load includes
situations where we media bursts, i.e., gets overloaded. The intention is to
verify results from our current investigation, where the load is randomly
generated but more evenly distributed throughout the run. We have
conducted different runs with a wide range of loads, which we believe also
covers bursty situations as we have run simulations with very high loads.
However, it would still be interesting to see whether this is confirmed or
if the fact that alternating between short periods of very high load and
of very low load favors one or the other approach.

The work in Chapter 3 is naturally closely related to Chapter 4, where
we study more efficient solutions of transferring sporadic data using a
time-triggered base. It will be a natural extension to the work done
in both Chapter 3 and Chapter 4 to extend these simulations with our
new approaches for sporadic message handling to evaluate there behav-
ior. Furthermore, we can investigate the limits of adding event-triggered
traffic, and are there any circumstances when one or the other will start
suffering?

5.4.3 Composite Event-Triggered and Time-Triggered Ap-
proach

The work of integrating event-triggered communication over a time-
triggered channel has resulted in some new and interesting approaches.
However, although these approaches look promising, some further investi-
gations are necessary. For example: Is there any issue of ET-specific and
TT-specific fault modes that may be of concern? Can we utilize any spe-
cific architectural support, e.g., from the time-triggered base, to ensure
separation of event-triggered and time-triggered message handling, i.e.,
separating non-safety-critical and safety-critical messages? Similarly, can
we use specific architectural support to increase the efficiency of sporadic
message handling?

Using active star couplers is one proposed way to overcome the dif-
ficulty of achieving a broadcast channel with fiber-optics, especially im-
plementing a fiber-optic bus. This also provides us with a central way
of ensuring that no node, can monopolize the bus due to a fault, i.e.,
we can avoid babbling idiots. Furthermore, this also provides us with an

96 Conclusions, Perspectives and Future Issues

additional way of arbitrating the channel. This can be done by putting
logic in the active star coupler such that it can decide which node is the
next to be allowed to send, but it could also detect high-priority messages
and give them priority. However, this would naturally change the system
environment. This might give new possibilities for how to efficiently in-
tegrate event-triggered and time-triggered communication, but can also
impose limitations.

Appendix A

Appendix A

Proposal for a distributed
computer control system
architecture in heavy duty trucks

Vilgot Claesson
Department of Computer Engineering, Chalmers University

Magnus Gäfvert
Department of Automatic Control, Lund University

Martin Sanfridson
Mechatronics Lab, Royal Institute of Technology

Technical report no. 00-16
Department of Computer Engineering
Chalmers University of Technology

98 Appendix A

The aim of this work is to perform a design of a safety critical dis-
tributed control system by applying and combining methods within the
areas of dependable computer systems and control theory. Many such
systems with interesting requirements and constraints regarding perfor-
mance, dependability, and cost, etc. are found in the area of automotive
engineering. We have chosen to work with a brake system on a heavy
truck-trailer combination vehicle, with certain additional functionality.
This system is a distributed safety-critical control system by nature, and
constitutes an excellent case study for this purpose.

It is our belief that there is a great potential in combining theory
from the areas of computer engineering and control theory in the con-
struction and design of dependable distributed control systems. There
exist many methods and paradigms in computer engineering on how to
build dependable distributed computer systems. The results are often in-
dependent of the application. It is assumed that all failure handling and
avoidance is taken care of by the computer system. It is assumed that
failure to fulfill the requirements at any instance leads to system failure.
If the computer system hosts an implementation of a control system, this
is not necessarily true. It may be possible for the control algorithms to
take care of a failure (transient or permanent) in the computer system,
and continue to run the system in a safe, possibly restricted, mode. This
opens the door for possibilities to relax the requirements on the com-
puter system, thus making it possible to decrease the complexity and the
cost. In control theory, on the other hand, there are many results that
deals with design of robust distributed control systems. In this context
the underlying hardware; the computer system and the network, is often
treated in a highly abstract manner. It may be regarded as the source of
stochastic network delays, a possibility of lost samples, a finite resource
for computation time or bandwidth, etc. In a certain application it is
necessary to know the properties of the computer system with respect to
these and possibly other characteristics. The computer system is often
taken for granted, in the sense that is it regarded as a fixed prerequisite
in the control system design.

The motivation for this work thus is the possibility of better and more
effective system designs if the combination of the computer system and
the control system is regarded at an early stage. This can be reached by
ensuring that the computer system has certain properties from the con-
trol engineers point of view, and vice versa, by ensuring that the control
system has certain properties from the computer engineers point of view.
Therefore it is necessary to specify the requirements of these systems with
respect to each other in a detailed and systematic way. This can, for ex-
ample, include what services the computer system and communications

A.1 Acknowledgments 99

network should provide, what bandwidth requirements they should fulfill,
etc. For the control system this may be specifications that the control
algorithms should be able to handle network delays of certain character-
istics, transient failures such as lost sensor data for a certain time period,
mode switches to safe limp-home modes, etc. To successfully carry out
codesign of the computer system, the communications network, and the
control system it is necessary to specify interfaces between these systems
in the design process and in the implementation. In the design process
these interfaces consist of requirements and specifications, and in the im-
plementation they may consist of certain functionalities, such as software
services or functions.

In this work specific focus is placed on the choice of distribution level
of the computer system, i.e., the computational power, and the control
system. The distribution levels of these systems are orthogonal in the
sense that they can be chosen independently for each system, and then be
combined to a complete system. Though in practice not all combinations
are useful. The combination is performed by mapping specific control
system architecture on a computer and communications architecture. To
explore these combinations we regard three different distribution levels
on the control system and computer and communications system, respec-
tively. These combinations will be investigated regarding dependability
and required information exchange. The dependability of the computer
architecture will be investigated both with and without redundancy. Fur-
thermore, a short discussion of the effects of fault will be presented.

The distribution levels of the control and computer architectures will
be presented in the following sections. The combinations of these will be
analyzed and discussed, resulting in a proposal on a system architecture
with respect to distribution levels.

A.1 Acknowledgments

We want to express our gratitude towards Mats Andersson, at Volvo
Technological Development for his support during our visits to Volvo. We
would also like to include Olle Bridal, Jacob Axelsson and Olof Lindgrde,
from the same company, in our gratitude for fruitful discussions. Fur-
thermore, we want to thank our supervisors, Bjrn Wittenmark, Neeraj
Suri, and especially Martin Trngren, for helpful comments. The project
is financed by NUTEK under project P11762-2.

100 Appendix A

A.2 The Target System for the Case Study

The target system in the case study is a truck and semi-trailer combina-
tion. The functionality of this case study implementation is the control
system for normal braking, ABS, and yaw-control, for abbreviations see
Appendix B.1. The purpose of yaw control is to prevent rollover and skid-
ding. For this system an appropriate distributed computer architecture
will be proposed and the co-design of control and distributed computer
system will be investigated. The communication system of the truck will
be investigated, however, the communication network of the semi-trailer
will not be treated. To be more detailed, the distributed functionalities
involved are: ABS, TRC, AYC, and ARC. A common name for these is
VDC (Vehicle Dynamic Control), which is implemented in an Electronic
stability program (ESP). As far as possible the environment of the VDC
functions will be included in architectural considerations, for example,
functions that interface this control function.

The dynamics of the vehicle combination is treated in [GSC00].

A.3 System Constraints 101

A.3 System Constraints

The system is built upon a bidirectional broadcast bus. To the bus one
or more computer nodes are connected. If only one node is connected,
we consider it to be a central computer architecture, sometimes referred
to as a distributed I/O system. Sensors and actuators are in this case
connected directly to the bus. Two types of system will be studied: a
simplex system and a redundant system. In the redundant system critical
functionality will be duplicated, and we will refer to it as a duplex system.
The basic requirement of the critical parts of the system is to tolerate a
single component failure. However, due to very hard requirements on low
cost we assume that only limited redundancy are possible. Therefore, our
study has been limited to duplicated components, and solutions using
more redundancy, such as Triple Modular Redundancy, have not been
consider for cost reasons. Using a duplicated system voting is not possible,
we will instead assume that nodes are fail-silent, i.e., they produce the
correct result or no result at all.

When replication is used the replication strategy is active redundancy.
This means that both components of a replica run at the same time and
consume and produce the same data. Active redundancy is used since it
is assumed that the startup time for initiating a new unit is too long.

No assumptions are done about the communication protocol except
that it uses a broadcast bus.

102 Appendix A

A.4 Architecture

This project strives to give a good interface between the control applica-
tions and the computer architecture, in such a way that they fulfil their
mutual requirement on each other. Therefore, the architecture of the con-
trol application and computer system will be discussed in this section. It
is important to choose a computer architecture that supports the control
applications in the best possible way. However, it is also beneficial if the
control architecture can be chosen in such a way that the complexity and
cost of the computer architecture can be reduced.

To reduce the problem we have chosen three different approaches of
both computer and control architecture. These different approaches will
be combined into nine cases. The reliability aspects of the computer archi-
tectures will be then be investigated. Furthermore, for each combination,
the information flow requirements will be investigated. Furthermore, ad-
vantages and disadvantages for fault handling will be discussed. In the
following two sections the different architectures will be described.

A.4.1 Control System Architecture

A distributed control system consists of a plant to control, and several
sensors, actuators, and controllers that are connected by means of a com-
munications network. The controlled plant usually is of a Multi Input
Multi Output (MIMO) character. In a distributed control system the
sensors and actuators are usually physically constrained to certain spatial
positions. This may be denoted the physical distribution of the system.
On another level we have the computational decomposition, which deter-
mine how the computational power is distributed. That is equivalent to
the computer and communications system distribution, which is treated
in the next section. On yet another level we have the algorithmic decom-
position. This reflects the possible partition of the control problem into
smaller subproblems. An example of this is the cascade control structure
that is used in many control systems. In the brake system application it
can be reasonable to design dedicated brake-force control to each wheel
individually, and then use the controlled wheels in the design of a control
for the complete vehicle, rather than attacking full vehicle control problem
with the uncontrolled wheels directly. The control system architecture in
this section refers to the algorithmic architecture rather than the spatial
or computational architecture. The algorithmic architectures regarded
here are parameterized in the decomposition level. One extreme is the
centralized control strategy and the other extreme a strategy consisting
of communicating local controllers.

A.4 Architecture 103

Centralized Control Strategy

The centralized control strategy, see Figure A.1, may be regarded as a
monolithic algorithm that collects data from all sensors, and computes
outputs to all actuators. In control literature this is the common way
to treat the control of MIMO systems. The sensors and actuators are
typically read and written frequently. An advantage of this approach is
that the control algorithm has all information of the system available
when taking decisions on each actuator input. The availability of all
sensor data enables the use of state observers. A possible drawback with
a large monolithic algorithm is the difficulty to adapt it to changes in
the controlled plant. Changes in a small part of the plant may require
redesign of the full controller.

Central Controller

S A S A S A S A S A S A

Figure A.1: A centralized control architecture.

Mixed Control Strategy

Between the extremes there are mixed strategies, see Figure A.2, consist-
ing of a central controller that may provide control of top level function-
ality, and autonomous subcontrollers that control certain aspects of the
controlled plant. The central controller may provide the subcontrollers
with setpoints and mode switching commands etc. The subcontrollers
are responsible for reading sensor data and computing acuator inputs,
although the central controller also may handle some of this. Typically
the amount of communication required between the central controller and
the subcontrollers is lower than for the sensor readings and acuator in-
puts. To use this approach it is necessary that it is possible to partition
the controlled plant into smaller subprocesses with distinct sets of inputs
and outputs, which can be controlled more or less independently. Since
the resulting controller is of cascade type it is reasonable to design the
local control loops to be faster than the central loops. This simplifies
the design of the central control loops. A possible advantage of this is
simpler adaptation to changes in the controlled plant. It may be so that
the necessary changes in the controller are isolated to one subcontroller.

104 Appendix A

Central Controller

Local
Cont.

Local
Cont.

Local
Cont.

Local
Cont.

Local
Cont.

Local
Cont.

S A S A S A S A S A S A

Figure A.2: A mixed control architecture.

Local Control Strategy

The local control strategy, see Figure A.3, consists of a non-hierarchical
set of local controllers that communicates. The communication necessary
between the controllers are typically low. Here it is necessary that the
controlled plant can be partitioned into smaller subprocesses that can be
controlled almost independently.

Local
Cont.

Local
Cont.

Local
Cont.

Local
Cont.

Local
Cont.

Local
Cont.

S A S A S A S A S A S A

Figure A.3: An local control architecture.

A.4.2 Computer Architecture

In automotive system such as cars and trucks the amount of cabling is a
problem. In order to reduce cabling a multiplexed system is very useful.
However, multiplexing does not determine whether the data processing
is distributed as well. The data processing may still be centralized, or
it may be fully-distributed. Therefore the impact of distributing the
computational resources of the computer architecture will be discussed.
We concentrate on three levels of distribution, a centralized system, a
partially-distributed and a fully-distributed. These three levels will be
described below. There exist of course other solutions, however, they will
most likely be combinations of those described. Therefore, the discussions

A.4 Architecture 105

will be concentrated on these three levels and their qualities. Most likely,
this will indicate the result we may achieve when using combinations of
these solutions.

Centralized System

In the centralized system only one computer node is used. Sensors and
actuators are connected via a buss to the central node. We assume here
that a central node with a separate cable to each sensor and actuator will
be too costly, both in cabling and space. Therefore, we assume that all
sensors and actuators are connected to the central node via a buss, se
figure A.4. The sensors and actuators will send and receive data from the
bus, respectively. All functionality is located in one computer node, which
may be beneficial for maintenance. Furthermore, without redundancy,
there are no consistency problems with such a solution, since the central
node makes all calculations.

S

A

SensorActuatorA

S
A

S

A
S

A

S

A

S

Communication bus

Computer

node

Figure A.4: A centralized computer architecture.

There are a number of specific qualities that can be deduced from the
fact that the system is a centralized.

• A centralized system is easier to manage, for example, there will be
less problem with consistency with only one central node.

• Less hardware is required, although the system might need a fast
processor since all processing is done on one single node.

106 Appendix A

• Since there is only one master node that will control the communi-
cation on the bus. It will be easier to verify that sufficient commu-
nication bandwidth exist.

• Maintenance is easier since there is only one node that is placed on
a single location.

Despite many good properties, a centralized system may produce a
high bus communication load, since all control loops are closed over the
communication bus. If the fast inner loops are possible to distribute,
i.e., calculations are done at a node with actuators and sensors connected
locally, the communication bandwidth can be reduced, see e.g., [TL94]

Partially-Distributed System

The next level of distribution, which we have distinguished, is when sen-
sors and actuators become more “intelligent,” such that some computa-
tions are possible at the sensors and actuators. However, the control and
computational power will still be handled at a main computer node. Such
a system can be viewed in figure A.5, where the sensors and actuators are
connected to a simple computer node. The sensor and actuator computer
can make simple calculations on sensor values before they are transmit-
ted throughout the system. They may also have the possibility to handle
local (inner) control loops. This solution will relieve the main computer
node from some of its tasks.

Some of the benefits of making the system partially-distributed is
described below.

• When developing the system, it is possible to decompose the system
into smaller function units which may be developed in parallel.

• The system will be easier to test since every unit can be tested sepa-
rately and only an assembly test is required with all units together.

• Smaller units will reduce software complexity. And less complex
hardware may be used.

The support for fault tolerance may be more complex, for example,
since nodes must know which other nodes are functioning. However,
similar requirement may exist on the centralized system, where knowledge
are required on which sensors and actuator are alive.

A.4 Architecture 107

S SensorActuatorA

Communication bus

Main

Computer

node

S
A

C
o
m

p
u
te

r
n
o
d
e

S
A

C
o
m

p
u
te

r
n
o
d
e

S
AC

o
m

p
u
te

r

n
o
d
e

S
A

C
o
m

p
ut

e
r

no
d
e

S
A

C
o
m

p
ute

r

no
d
e

S
A

C
o

m
p

u
te

r

n
o

d
e

Figure A.5: A partially-distributed computer architecture.

Fully-Distributed System

The third level of distribution we have identified is the fully distributed.
In such a system no computer node has any unique position like the cen-
tral node in the partially-distributed and central system. All calculations
and logic are distributed on computer nodes, see figure A.6, with local
sensors and actuators. They have to co-operate with each other in such
away that necessary data is provided to all nodes. Thus, no node will
have as high load as when using a single centralized node. Although
the complexity might increase there are more possibilities to include new
functionality.

The benefits of making the system fully-distributed is described below
and are similar to the partially-distributed system but more refined. In
this case the “modularity” will increase even more since the functional
decomposition it stricter.

• When developing the system it is natural to decompose the system
into smaller function units which may be developed in parallel.

• These units can then be tested separately and an assembly test is
required to ensure correct interfacing among units.

• Smaller units will reduce software complexity. And less complex
hardware may be used.

• A node failure will most likely only disable part of the system com-
pared to the other systems where the central node makes them more

108 Appendix A

sensitive.

S SensorActuatorA

Communication bus

S
A

C
o
m

p
u
te

r
n
o
d
e

S
A

C
o
m

p
u
te

r
n
o
d
e

S
AC

o
m

p
u
te

r

n
o
d
e

S
A

C
o
m

p
ut

e
r

no
d
e

S
A

C
o
m

p
ute

r

no
d
e

S
A

C
o

m
p

u
te

r

n
o

d
e

Figure A.6: A full-distributed computer architecture.

A.5 Dependability of Different Computer Configurations 109

A.5 Dependability of Different Computer Con-
figurations

In this section we will investigate the reliability of the different computer
architecture hardware-configurations. This will be done by comparing
the described computer architectures with each other.

Three different configurations will be discussed for each computer ar-
chitecture type. Those are two simplex configurations and one duplex.
The first simplex configuration will include all functionality and give the
reliability for the total yaw-control system. The other simplex configura-
tion will only include the critical functionality, i.e., functionality necessary
for basic braking. The third configuration we study is a duplex system
for total functionality.

When making reliability calculations it is difficult to find reliable es-
timations of the failure rates. One of the most common source is the
United States Department of Defence (USDOD) “Military handbook re-
liability prediction of electronic equipment, MIL-HDBK-217F” [MIL92].
Although it is common to use failure rates from this handbook, this
method is criticized for not being trustworthy. The absolute figures gen-
erated from this handbook can therefore be questioned. However, the
results achieved will only be used for comparing the different solutions,
for which purpose the figures from the MIL-HDBK-217 are appropri-
ate [SS92].

In the normal-life portion of the electronic components that we con-
sider, the failure rate λ is constant. The reliability expression will then be
of the form R(t) = e−λt, i.e., exponential. In the reliability calculations we
use combinatorial methods such as series/parallel system, markov mod-
els are also used and further information on reliability calculations using
these methods can be found in for example [Pra95] or [Joh89]. Specific
assumptions of each configuration will be described under corresponding
section. The failure rates used in this report and assumptions needed are
described in Appendix B.2. The reliability analysis is based on our case
study system, i.e., yaw-control, ABS and EBS. A similar system study
has been conducted on an electrical flight control system in [ATJ99].

A.5.1 Assumptions

The first configuration is a simplex system where we calculate the relia-
bility for the yaw-control functionality, i.e., all considered functionality.
All components must work in the system in order to provide the total
functionality of the yaw-control system.

The yaw-control system is safety-critical. However, there exists a fail-

110 Appendix A

safe state, which is when the yaw-control functionality is shut down and
only normal brakes are accessible. Thus when a fault is detected that
affects the yaw-control functionality, the yaw-control is shut down and
the truck runs in a degraded mode. This degraded mode only has the
basic brake functionality.

In the continuation of this document we will refer the full yaw control
functionality as the “total functionality” or “yaw-control functionality”
in contrast to a degraded mode where parts of the yaw-control are inac-
cessible.

This leads us to the next configuration, where the reliability of crit-
ical functionality is calculated. The critical functionality is considered a
basic brake function, where at least one wheel on each side of the truck
is working. Thus, the minimum of components needed, for the critical
functionality, is the pedal sensor, some basic computational power, and,
at least one brake pressure actuator at each side of the truck. Thus when
discussing reliability of this critical configuration where at least the basic
brakes is functioning, we will use the term “critical functionality”.

For the duplex system, we assume that only the critical functionality
will be duplicated. Therefore, we only consider and calculate the prob-
ability of loss of critical functionality. Inherent redundancy will be used
if possible for the reliability analysis of critical functionality, for exam-
ple, when considering that more than one wheel per side can be used for
braking.

In dependable systems, adding redundant software and hardware of-
ten increases the complexity of the system. This redundancy must be
handled and sometimes reconfigured in case of failures. There exists a
number of techniques for redundancy management. Although only using
a duplex system we can still use different solutions for the redundancy
handling, i.e., active or passive redundancy as discussed in [SCG00]. The
complexity of a duplex system will increase independently of the redun-
dancy management technique. For example, with two redundant nodes
both the active and passive redundancy requires fail silent nodes. There-
fore, a lot of effort must be spent to ensure the fail silent property with
sufficient probability. Furthermore, a membership agreement protocol is
required with a passive redundancy strategy, and with active redundancy,
the redundant node must produce the same output. To reduce the com-
plexity of our investigation, the redundancy methods requiring the most
resources are used for the duplex system. The active redundancy strat-
egy generally requires more resources than a passive system, since then
redundant components are executing simultaneously. Furthermore, com-
putation should be deterministic to ensure identical output from replicas.

A special comment on the bus failure rate, λBcon, is necessary. The

A.5 Dependability of Different Computer Configurations 111

bus failure rate has been divided in two parts. The first is a failure mode
with failure rate λ1, which is considered by far the most probable. This
failure occurs when a node cannot communicate any more with other
components connected to the bus. The second, is when a buss connector
prohibits any component from communication on the bus. This scenario
is considered a far less probable case, with failure rate λBof , but a more
serious one. Further bus failure modes, like partitioning of the bus, have
not been considered specifically but are considered part of λBof . This is
a bit conservative since the system may still work.

The calculations in Appendix B.2 use data from the MIL-
HANDBK [MIL92]. Since, this handbook does not cover sensors and
actuators. Therefore, rates for sensors and actuators has been estimated
to be between 10−6 − 10−4 failures per hour. In this section a failure rate
of 15×10−6 will be used in the discussions if nothing else is stated, in order
to give directly comparable results. For further details see Appendix B.3.

The theories for the calculations here and in Appendix B.2 can be
found in [Joh89].

A.5.2 Reliability of Total Functionality - Simplex

The reliability of the total functionality gives an indication of the systems
availability, i.e., the availability of the yaw-control, ABS, and brake sys-
tem. With this case we compare the different architectures considering
the reliability of the total functionality. We assume that if any compo-
nent fails, it will affect the system such that the yaw-control will cease to
work properly.

For the central system we use the configuration shown in Figure A.7.
The picture shows the nodes, sensors and actuators connected to the
buss. The basic components, of node and sensors/actuators, that are
considered in the reliability analysis are also shown in the figure, see also
Appendix B.2. The system consists of a central computer node where all
the calculations are done. The sensors in the system are the same in all
configurations and consist of the pedal sensor, a steering wheel sensor,
a yaw rate sensor, a lateral acceleration sensor, and one wheel velocity
sensor per wheel (6 wheels). Finally, we have brake pressure actuators
at each wheel, which also are the same for all configurations. In the
centralized system, sensors and actuators are more complex since they
need functionality and hardware for the bus connection, which affects the
failure rate.

For the partially-distributed and fully-distributed system the config-
urations are shown in Figure A.8. These systems have the same set of
sensors and actuators. The main difference is the central node which is

112 Appendix A

Yaw
Rate

Sensor

Lateral
Acc.

Sensor

Pedal
Pressure
Sensor

Steering
Wheel
Sensor

6 x (One per Wheel)

Brake
Pressure
Actuator

Wheel
Velocity
Sensor

S
Sensor

Interface
Buss AActuator

Interface
Buss

Central
Node

Internal Sensor and
Actuator Structure

Internal
Central node

structure

Bus interface

Power

µp with
memory

Bus Driver

Figure A.7: A simplex centralized computer architecture.

only used in the partially-distributed system. Another difference is the
complexity of the distributed nodes, which are more complex in the fully-
distributed system. These differences also affect the failure rate of the
system.

Peda
l

Pres
sure

Sens
or

SteeringW heelSensor

6 x (One perW heel)

Brak
e

Pres
sure

Actu
ator

W heelVelocitySensor

Yaw

Rate

Sens
or

LateralAcc.Sensor

Central
node

Peda
l

Pres
sure

Sens
or

SteeringW heelSensor

6 x (One perW heel)

Brak
e

Pres
sure

Actu
ator

W heelVelocitySensor

Yaw

Rate

Sens
or

LateralAcc.Sensor

Partially-
Distributed
System

Fully-
Distributed
System

Cabin
Node

Engin
Node

W heel
Node

Cabin
Node

Engin
Node

W heel
Node

Figure A.8: partially-distributed and fully-distributed architectures.

In Appendix B.3 the probability of loss of yaw-control functionality,
i.e., the total functionality, has been calculated for one hour. This proba-
bility is presented in Table A.1 for the different configurations. It should
be noted, that the difference between the architectures are mainly due
to: the hardware complexity of the different computer nodes, complexity
of sensors and actuators, how sensors and actuators are connected, and,
the number of connections to the bus. Due to the difficulties of finding
reliable values for failure rates of sensors and actuators they have been
varied between 10−6 and 40 × 10−6. However, for the purpose of com-
parison, the values presented in Table A.1 have been calculated with the

A.5 Dependability of Different Computer Configurations 113

failure rate λs = λa = 15 × 10 − 6.

Cent. Sys. Part. Dist. Sys. Dist. Sys.
3.3 × 10−4 3.5 × 10−4 3.5 × 10−4

Table A.1: Probability of loss of the yaw-control functionality, in one hour

These figures are in the same order of magnitude. Any specific prefer-
able solution cannot be identified. In Figure A.9, the same probabilities
are shown when the failure rate of the sensors and actuators are varied
between 10−6 and 40 × 10−6. In this figure, we see how close these con-
figurations are. The continuous line, of the centralized system, is the line
with lowest probability of failure, followed by the partially-distributed
and fully-distributed systems which are superposed.

0 10 20 30 40
Λs�Λa � 10�6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
�
1
0

�
3

Full Functionality

Half distributed

Central

Distributed

Figure A.9: Probability of losing the yaw-control functionality for the
different configurations.

To analyze the effects of the complexity of nodes, we have compared
the different configurations while changing the ratio between the com-
plexity of the processors in the nodes. In Appendix B.2, we have used
the MIL-HANDBK [MIL92] and the estimated workload on the nodes
to get the failure rate of processors. The workload will set the required
complexity of a node, i.e., the performance, to handle the required work-
load. Uncertainty of the complexity relation between nodes originates
from the processing requirements of the different node types, i.e., central
node, partially-distributed nodes, and distributed nodes. The complex-
ity directly influence the failure rate of the processor. To investigate the
effect of this complexity ratio we have varied the distributed nodes fail-
ure rate while the failure rate of the central node has been fixed. The

114 Appendix A

complexity of fully-distributed and partially-distributed node processors
have been changed between 20-100% of the central node. In Figure A.10
we see how the reliability of the fully-distributed and partially-distributed
configuration decrease when the complexity increases. In our calculations
in Appendix B.3 we have assumed that the failure rate ratio between the
processors in the partially-distributed nodes and the central nodes are
30%. Between the processors in the distributed nodes and the central the
ratio is 50%. Figure A.10 shows the reliability of each processor, where
the failure rates of the sensors and actuators are varied. The figure shows
that if the complexity of the partially-distributed and fully-distributed
nodes is small enough, the system reliability will be close to that of the
centralized system. If the complexity of the fully-distributed nodes are
very low they become similar to simple “intelligent” sensor and actuator
nodes used in the central configuration. As the complexity of the fully-
distributed nodes increase, the reliability is decreasing compared to the
central system.

Full functionality

0,9994

0,9995

0,9996

0,9997

0,9998

0,9999

20% 40% 60% 80% 100%

Complexity percentage of central

node

R
e
li
a
b

il
it

y

Central (100%) (1)

Half-Distributed (1)

Distributed (1)

Central (100%) (2)

Half-Distributed (2)

Distributed (2)

Central (100%) (3)

Half-Distributed (3)

Distributed (3)

Sensor and actuator failure rate is (1)=5E-6 (2)=1,5E-5 (3)=2,5E-5

Figure A.10: The reliability of different configurations when varying
the complexity relation of the partially-distributed and fully-distributed
nodes to the central node.

A.5.3 Reliability of Critical Functionality - Simplex

In this section the reliability of the critical system parts will be discussed.
The basic brake functionality is here considered the critical part of the
system. It is assumed that the absolute minimum allowed braking func-
tionality is brake force on two wheels, i.e., braking on one wheel on each
side. This implies that the required functionality is “one brake pressure
actuator on each side of the vehicle”. Since there are three wheels on
each side, there is an inherent redundancy in the system. The critical

A.5 Dependability of Different Computer Configurations 115

components needed for basic braking are the pedal sensor, some basic
computational power, and one brake pressure actuator on each side.

For the central system, the central node must provide the computa-
tional power. However, in the partially-distributed system, the computa-
tional power in the distributed nodes is considered sufficient for the basic
processing needed. The minimum system parts needed for the different
systems configurations are shown in Figure A.11.

Pedal

Pressure

Sensor

1 of 3 Per Side

Brake

Pressure

Actuator

Dist.

Node

Dist.

Node

Partially-Distributed
System and Fully-
Distributed System

Pedal
Pressure
Sensor

Brake
Pressure
Actuator

Central
Node

1 of 3 Per Side

Central
System

Figure A.11: Minimum system parts needed to achieve critical function-
ality.

The probability of loss of the critical functionality will naturally be
less than in the case with total functionality. In Table A.2, values for the
total yaw control functionality and the critical functionality are shown
for comparison.

Cent. Sys. Part Dist. Sys. Dist. Sys.
Full Func. 3.3 × 10−4 3.5 × 10−4 3.5 × 10−4

Critical Func. 4.3 × 10−5 2.7 × 10−5 3.0×10−5

Table A.2: Probability of loss of critical functionality in one hour for the
different configurations.

The probabilities of loss of critical functionality is about a factor of
ten better than for the total functionality. In Figure A.12 the probability
of loss of critical functionality is shown when the failure rate for sensors
and actuators is varied.

The central system has a noticeable higher probability of critical fail-
ures, the continuous line in the figure. This because, the central node
must be present and the central node has a higher failure rate than the

116 Appendix A

0 10 20 30 40
Λs�Λa � 10�6

20

30

40

50

60

Q
�
1
0

�
6

Critical Functionality

Half distributed

Central

Distributed

Figure A.12: Probability of loss of critical functionality with the different
configurations as a function of sensor/actuator failure rate.

nodes in the partially-distributed and fully-distributed system. Further-
more, the central node has more bus connections, which increases the
failure rates of the bus in the central system.

The partially-distributed and fully-distributed systems have similar
probability for critical failure. They have very similar configurations in
this case. The small difference is due to the difference in complexity of
the nodes. Since the fully-distributed systems nodes are more complex,
they also have the higher probability of failure.

In the complexity comparison we use a fixed failure rate for the
central node while varying the failure rate for the fully-distributed and
partially-distributed architectures. The processor complexity of the fully-
distributed and partially-distributed nodes have been varied between 20-
100% of the central node processor. In Figure A.13 we see the value of
using low complexity nodes for critical functionality. Only the central and
partially-distributed system have been included in this figure since the
partially-distributed and fully-distributed system follow the same trend
and would be very close.

A.5.4 Reliability of Duplex System Configurations

The duplex configurations have been chosen to increase the reliability.
However, to keep the cost as low as possible only the parts needed for
the critical functionality will be duplicated, i.e., the parts needed for a
minimum of brake functionality. Furthermore, parts that can benefit
from the inherent redundancy in the system have not been duplicated.
The brake pressure actuators will therefore not be duplicated; neither will
the nodes that the actuators are attached to. However, the brake pedal

A.5 Dependability of Different Computer Configurations 117

Critical functionality

0,999945

0,999950

0,999955

0,999960

0,999965

0,999970

0,999975

0,999980

0,999985

0,999990

20% 40% 60% 80% 100%

Complexity percentage of central

node

R
e
li
a
b

il
it

y

Central (100%) (1)

Half-Distributed (1)

Central (100%) (2)

Half-Distributed (2)

Central (100%) (3)

Half-Distributed (3)

Sensor and actuator failur rate is (1)=5E-6 (2)=1,5E-5 (3)=2,5E-5

Figure A.13: The reliability of critical functionality for the different
configurations when varying the complexity relation of the partially-
distributed to the central node.

sensor will need special treatment, since it has been considered to be
an especially critical part. To ensure brake-pedal input from the driver,
redundancy will be used with the brake-pedal sensor. The brake-pedal
sensor is not assumed to be fail silent and is therefore triplicated, thus
one faulty sensor is allowed.

For the central system, the central node and the bus will be dupli-
cated. Three redundant pedal sensors will be connected to the bus. The
partially-distributed and fully-distributed system will use three pedal sen-
sors connected to a duplicated node. The difference is again the complex-
ity of the nodes. In Figure A.14 the duplex configurations are shown for
the three different architectures.

The duplicated nodes may fail in two ways, (1) a node fails but do
not disturb the operation of fault free parts of the system. (2) The node
fails in such a way that it affects other parts of the system and the re-
quired functionality can not be upheld. Scenario (2) is naturally very
important to avoid, and considerable efforts should be spent ensuring
that faults do not spread through out the system. This is done by in-
troducing containment regions, which should be designed such that no
faults can escape such a region. One related property in this situation is
fail silence, see [SCG00], where a component either produces the correct
result or no result at all. To achieve fault containment, e.g., fail-silence,
the system must be able to detect and handle faults. For a fail-silent
system this means to stop producing and sending results. The coverage
of the error detection mechanisms is important and will affect the system
reliability. However, to be able to conduct the reliability calculations the
coverage must be estimated. In Appendix B.3, the coverage has been

118 Appendix A

Cabin
Node

Pedal
Pressure
Sensor

Pedal
Pressure
Sensor

Pedal
Pressure
Sensor

Pedal
Pressure
Sensor

1 of 3 Per Side

Brake

Pressure

Actuator Partially-Distributed
System and

Fully-Distributed
System

Brake
Pressure
Actuator

1 of 3 Per Side

Central
System

Pedal
Pressure
Sensor

Pedal
Pressure
Sensor

Central
NodeCentral

Node

Pedal
Pressure
Sensor

Cabin
Node

Wheel
Node

Figure A.14: System parts for duplex configurations where critical parts
are duplicated. The wheel nodes and brake pressure actuator use the
inherent redundancy; three wheels on each side of the truck.

between 0.99 and 0.999. This is a high coverage but indications that
a very high coverage may be attained is given in, for example, [Fol99].
Furthermore, we assume that all efforts are spent ensuring this coverage,
both in the system and application level of the design. In the table below
the importance of the coverage will be shown.

When adding redundancy to these system configurations the reliabil-
ity increases significantly. In Table A.3 the probability of loss of the crit-
ical functionality for the duplex system configurations are shown. Values
for total functionality and critical functionality in the simplex configura-
tions are shown for comparison. The failure rate for sensors and actuators
is as earlier λs = λa = 15 × 10−6.

Cent. Sys. Part. Dist. Sys. Dist. Sys.
Full Func. (simplex) 3.3 × 10−4 3.5 × 10−4 3.5 × 10−4

Critical Func. (simplex) 4.3 × 10−5 2.7 × 10−5 3.0 × 10−5

Duplex (C=0.99) 3.7 × 10−7 2.2 × 10−7 2.7 × 10−7

Duplex (C=0.995) 1.8 × 10−7 1.1 × 10−7 1.4 × 10−7

Duplex (C=0.999) 3.8 × 10−8 2.2 × 10−8 2.7 × 10−8

Table A.3: Probability of loss of critical functionality in duplex configu-
rations. The probabilities are calculated using coverage, C, of 0.99, 0.95,
and 0.999. Probabilities for full functionality and critical functionality
are included for comparison.

A.5 Dependability of Different Computer Configurations 119

The differences between the three architectures are basically due to
the same reason as for the simplex case with only critical functionality,
the differences of node complexity and the bus. However, especially in-
teresting is the importance of achieving a high coverage during system
design.

The probability of loss of critical functionality is about a factor of
100 to 1000 better with the duplex system compared to the simplex. In
Figure A.15 the probability of loss of critical functionality is shown, when
the failure rate for sensors and actuators is varied.

0 10 20 30 40
Λs�Λa � 10�6

1.2�10-7

1.4�10-7

1.6�10-7

1.8�10-7

Q

Duplex System, C�0.995

Half distributed

Central

Distributed

Figure A.15: Probability of loss of functionality with the different duplex
configurations.

The results from the sensitivity analysis is shown in Figure A.16. In
this figure we see a considerable change in reliability when the complexity
ratio of the nodes changes. We see here that the effect of complexity is
even larger when considering a duplex system, i.e., we gain even more
in reliability if the complexity is kept low for nodes in a duplex system.
The fully-distributed system is not included since the difference between
the fully-distributed and partially-distributed system is very small in this
comparison.

120 Appendix A

Critical functionality with duplex nodes

0,99999980

0,99999982

0,99999984

0,99999986

0,99999988

0,99999990

0,99999992

20% 40% 60% 80% 100%

Complexity percentage of central node

R
e
li

a
b

il
it

y
Central (100%) (1)

Partially-Distributed (1)

Central (100%) (2)

Partially-Distributed (2)

Central (100%) (3)

Partially-Distributed (3)

Sensor and actuator failur rate is (1)=5E-6 (2)=1,5E-5 (3)=2,5E-5

Figure A.16: The reliability of critical functionality with duplex nodes,
i.e., with redundancy. The partially-distributed configuration are com-
pared with the centralized by varying the complexity of the nodes in the
partially-distributed system between 20-100% of the complexity of the
node in the centralized system.

A.6 Architecture Investigation

In the following sections we will compare the different combinations of
computer and control architectures. We will discuss the effect on the
worst case bandwidth requirements as well as the dependability, when
combining the different control architectures with the different computer
architectures. Worst case communication bandwidth is required when a
system runs with full-functionality, thus we will not consider the crit-
ical functionality when studying bandwidth requirements. There were
three computer architectures described in section A.4, with different dis-
tribution levels, and similarly a description of three control architectures.
The different combinations can be viewed in a 3x3 matrix, as shown in
Table A.4. The table consists of references to the section where corre-
sponding combination are treated. All architectural combinations are not
reasonable and will thus only be treated briefly stating why they are not
appropriate.

A.6 Architecture Investigation 121

Centralalized partially-distributed Distributed

Cent. control A.6.2 A.6.3 A.6.4

Mixed control A.6.5 A.6.6 A.6.7

Local control A.6.8 A.6.9 A.6.10

Table A.4: Control and architecture matrix with section references.

A.6.1 Assumptions

To make a reasonable comparison between these architectures we need a
realistic workload and environment. In the companion report “Investiga-
tion and Requirements of a Computer Control System in a Heavy-Duty
Truck” [SCG00] we have investigated an existing truck solution. In this
report we have presented an appropriate communication workload based
on the existing system. The computer control systems discussed in this
report are intended for future computer controlled trucks. Therefore, we
have included functions that we predicted likely to be used in futures
systems. The characteristics of these applications have been estimated
based on the investigation in [SCG00], such as, bandwidth, sensors, sen-
sor location, etc. Thus, when estimating the bandwidth in the sections
below, we have tried to predict data that will be sent on the bus in future
systems. In order to get a realistic bus load more components has been
considered compared to what has been discussed in the dependability
analysis of section A.5. Specifically, additional sensors and actuators are
used.

In Table A.5 and A.6, sensors which we have assumed to be connected
to the distributed computer system in the heavy-duty truck are listed,
these are taken from Appendix A and B in [SCG00] where corresponding
messages are listed. The first list includes all single sensors and the second
list includes sensors which are located at each wheel.

Some flags, like ABS active flag in the Appendix A & B in [SCG00],
are assumed to be part of messages shown in Table A.6. Actuators present
in the system are listed in Table A.7.

The retarder works on the gear box by hydraulic or electro magnetic
forces. The electro magnetic retarder can also be placed between the
gearbox and the rear axle. The engine brake basically works by restraining
the exhaust in the cylinders.

In this communication bandwidth study we have assumed that the
communication bandwidth is a limited resource. This will probably be
true in the foreseeable future, at least in this type of applications. How-
ever, other aspects exists and should not be overlooked, for example:

• Sending all control data on the bus should not only be seen as an

122 Appendix A

Sensor Type Rep/Min [ms] Size [bits]

Sensor for lateral acceleration P 100 16
Steering wheel sensor P 50 16
Yaw rate sensor P 100 16
Articulation angle P 100 16
Engine Torque sensor P 10 16
Engine rpm sensor P 10 16
Vehicle speed, (Virtual sensor) P 20 16
Accelerator pedal sensor P 50 16
Brake pedal sensor P 50 16
Gear selection sensor S 100 8
Trailer brake pressure sensor* P 20 16

Table A.5: Sensors connected to a vehicle dynamic computer system in
a heavy-duty truck. P = produce Periodic messages, next column the
Repetition, and S = produce Sporadic messages, next column is Min
interarrival time. The Articulation angle measures the angle between
truck and trailer, in the horizontal plane

Sensor Type Rep/Min [ms] Size [bits]
Wheel speed sensor P 20 16

Table A.6: Sensors connected to a vehicle dynamics computer system in
a heavy-duty truck and which exist for each road wheel. P = produce
Periodic messages, next column the Repetition.

Actuators Type Rep/Min
[ms]

Size
[bits]

Engine torque actuator p 10 16
Brake pressure actuator, one
per wheel

p 10 16

Retarder actuator (Hy-
draulic)

p 10 16

Retarder actuator (Electro
magnetic)

p 10 16

Engine brake actuator. p 10 16
Trailer brake pressure actua-
tor

p 10 16

Rear wheel steering actuator p 50 16

Table A.7: Actuators used in the vehicle dynamics computer system in
a heavy-duty truck. P = consume Periodic messages, next column the
Repetition.

A.6 Architecture Investigation 123

disadvantage. It gives one significant advantage since it simplifies
monitoring of a system.

• It is also more future proof, in the sense that all data already exists
on the bus for new functionality to use.

In the following sections we will look at the different combinations
and identify which data is sent.

Two communication bandwidth calculations will be done for each of
the relevant combinations of control and computer architectures. For
each of them we will study the communication in a simplex system and a
duplex system. In the simplex case no redundancy is assumed and for the
duplex case critical parts are redundant. This simplex case corresponds to
the simplex configuration with total functionality which was considered
in our dependability calculations earlier. The second case with critical
functionality will be duplicated, corresponds to the duplex configurations
earlier.

An additional node has been added, a sensor node, which was not
included in the reliability study. This has been done since the uncertainty
to which node these sensors would be connected to in a real system. This
node has been added in all configurations, except the centralized, such
that all configurations have the same prerequisites.

A.6.2 Central Strategy

With a combination of the centralized control strategy and the central-
ized computer architecture we have a natural centralized system. This
has traditionally been a common solution with one node handling all
functionality. All sensors and actuators are connected to this node and
often with separate cables. However, one useful way of reducing cabling
is to use multiplexing on a single communication bus. The bus reduces
cabling at the cost of some extra complexity at each sensor and actuator.
All control execution and system monitoring are executed at the single
central node. With this system, bandwidth requirements will be studied
for our case study application.

We also note that for this configuration all sensor and actuator data
are sent on the communication bus and are available to, for example,
diagnostic units listening on the bus.

Simplex System

Using this strategy all sensor and actuator data are sent on the bus.
Table A.17 describes the assumed bandwidth requirement excluding all
overhead.

124 Appendix A

Sensors bits # Tot. Hz Bits/sec

Sensor for lateral acceleration 16 1 16 10 160

Steering wheel sensor 16 1 16 20 320

Yaw rate sensors 16 1 16 10 160

Articulation angle 16 1 16 10 160

Engine Torque sensor 16 1 16 100 1600

Engine rpm sensor 16 1 16 100 1600

Vehicle speed, (Virtual sensor) 16 1 16 50 800

Accelerator pedal sensor 16 1 16 20 320

Brake pedal sensor 16 1 16 100 1600

Gear selection sensor 8 1 8 10 80

Trailer brake pressure sensor* 16 1 16 50 800

Wheel speed sensors X 6 16 6 96 50 4800

Total number of bits per second 12400

Actuators bits # Tot. Hz Bits/sec

Engine torque actuator 16 1 16 100 1600

Brake pressure actuator, one per wheel x 6 16 1 16 100 1600

Retarder actuator (Hydraulic) 16 1 16 100 1600

Retarder actuator (Electro magnetic) 16 1 16 100 1600

Engine brake actuator 16 1 16 100 1600

Trailer brake pressure actuator 16 1 16 100 1600

Rear Wheel steering actuator x 4 (four RW) 16 4 64 20 1280

Total number of bits per second 10880

Total required bandwidth 23280

Max frequency 100

Figure A.17: Bandwidth requirement for a central strategy

In Table A.17 the “bits” column indicates the number of message
bits. The “#” column, shows the number of messages sent for each spe-
cific sensor or actuator. All sensors and actuators values are transmitted
periodically, except the gear selection sensor, which is aperiodic. In the
case of the gear selection sensor, we find in the “Hz” column the minimum
inter arrival time allowed for the gear selection value.

The total bandwidth requirement of this approach is 23,3 kbit/s. How-
ever, this is pure data and all protocol overhead will normally increase
this figure significantly. This is the case for all the configurations. Fur-
thermore, only data used in the VDC-system is included in the table.

Duplex System

For a duplex system, data transfer will increase for replica management
reasons. Here we consider the extra data necessary for keeping duplex
nodes replica deterministic. As shown in Figure A.14 the central node is
duplicated and the pedal pressure sensor is triplicated. To ensure replica
deterministic behavior of the central node, the replicas will exchange sen-
sor values. This means that, first all sensor data will be sent; thereafter

A.6 Architecture Investigation 125

each replica will send their view of the sensor values. Thus, sensor values
will be sent three times, and the bandwidth will increase accordingly. The
additional, i.e., extra, sends will ensure that the replicas have the same
set of data and that they agree on the same pedal sensor value.

The design decision, to exchange all data between both the replica
nodes, may seem as a drastic measure when only the pedal sensor has
previously been considered critical. However, to ensure that the replicated
nodes produce the same result, it is very important that they work on the
same input. If not all sensor data was exchanged, and one node looses
some data, this node would have to be silent. This would be necessary
to ensure the fail-silent property.

Sensors bits # Tot. Hz Bits/sec

Sensor for lateral acceleration 16 1 16 10 160

Steering wheel sensor 16 1 16 20 320

Yaw rate sensors 16 1 16 10 160

Articulation angle 16 1 16 10 160

Engine Torque sensor 16 1 16 100 1600

Engine rpm sensor 16 1 16 100 1600

Vehicle speed, (Virtual sensor) 16 1 16 50 800

Accelerator pedal sensor 16 1 16 20 320

Brake pedal sensor 16 3 48 100 4800

Gear selection sensor 8 1 8 10 80

Trailer brake pressure sensor* 16 1 16 50 800

Wheel speed sensors X 6 16 6 96 50 4800

Total number of sensor data 15600

Total number of sensor data x 3 46800

Actuators bits # Tot. Hz Bits/sec

Engine torque actuator 16 1 16 100 1600

Brake pressure actuator, one per wheel x 6 16 1 16 100 1600

Retarder actuator (Hydraulic) 16 1 16 100 1600

Retarder actuator (Electro magnetic) 16 1 16 100 1600

Engine brake actuator 16 1 16 100 1600

Trailer brake pressure actuator 16 1 16 100 1600

Rear Wheel steering actuator x 4 (four RW) 16 4 64 20 1280

Total number of acturator data 10880

Total required bandwidth 57680

Max frequency 100

Figure A.18: Bandwidth requirement for a central strategy with redun-
dancy

In Table A.18 the worst case bandwidth requirements for the cen-
tral strategy with redundancy is shown, i.e., worst case implies with full
functionality running. This combination is resulting in a required bus
bandwidth of 57.7 kbit/s. This is more than double the amount than in
the simplex case. It indicates the high overhead that replication may lead

126 Appendix A

to.

Fault Scenarios

In this section we will have a short discussion about effects of faults in
this type of a system. Only the redundant system will be discussed,
since, in the simplex case, all functionality will be lost if the central node
fails. When subject to a transient fault, less critical parts may of course
use restart. However, for this report we have consider the outage time
following from a restart as unacceptable for the critical brake system.

If there is a fault in one of the redundant nodes it is very important
to prohibit the fault from propagating. It has to be obvious for the
actuators, i.e., the receivers, which node sends correct values. For this
purpose the fail-silent property is beneficial and has been assumed. In
section A.5.4, the importance of high coverage on the fail-silent property
has been shown.

In case of transient faults, we are confronted with another challenge,
how to handle re-integration of a node that detects an internal fault. If
this fault has not caused the node state to change, the node can continue
its operation. If the fault has caused different states in two replicas ,
the re-integrating node has to obtain the correct state information from
its replica. Even though the nodes exchange state information during
normal operation, e.g., by exchanging sensor values, a central node will
need additional state information to get the same state as its replica. This
can be a considerable amount of information which must be exchanged.
This is a drawback, since the necessary communication bandwidth for
the state transfer must be scheduled such that, independent on other
communication the transfer will be possible within a limited time. If this
is not done re-integration of nodes will not be possible.

In case of a sensor or actuator failure it is very important that the
faults are detected. This because a faulty sensor, e.g., the yaw rate sensor,
may produce faulty data which potentially puts the vehicle in a dangerous
situation. Similarly, if an actuator fails it is very important for the system
to detect this. Then the error can be compensated for, especially in the
case of a brake pressure actuator. Thus, faults should be detected and
appropriate measures should be taken, e.g., reconfiguration or shutting
down functionality. This will require some group membership handling
or control system diagnosis, in order for the central node to keep track of
which sensors and actuators are alive. Unfortunately, this will increase the
requirement on sensor and actuator functionality and thus the complexity.
This would increase the failure rate of sensors and actuators, which would
make them closer in complexity to the distributed nodes in the partially-

A.6 Architecture Investigation 127

distributed system.

A.6.3 Central Control with Partially-Distributed Com-
puter Architecure

This is not an obvious design solution since the distributed nodes are used
for very little. The main difference is that we assume that the duplicated
node may handle a situation where the central node fails. The duplicated
node is the cabin node, see Figure A.14. Therefore, it is not necessary
to make the central node duplicated. If the central node fail, the cabin
node has to reconfigure itself to handle the critical functionality, i.e., the
basic brake functionality.

In this system we still have the advantage that comes from that all
sensor and actuator data are sent on the bus, see section A.6.2.

Simplex System

This configuration will still use the central node for all control computa-
tions since it uses the central control strategy, see Figure A.1. Therefore,
all sensor and actuator data has to be sent on the bus. This makes the
amount of bus communication for the simplex case identical to the one
in the previous section, see Table A.17.

Duplex System

In the duplex case the cabin node is replicated, see Figure A.14. This
means that the replicas of the cabin node will agree on which sensor
values to use. The replicas will therefore send their sensor values twice.
One time to get agreement with its replica and the other time to send
the agreed value. Table A.19 shows the bandwidth required for this case.
Messages in the table are sorted under the node which sends it.

The agreement messages sent by the cabin node are referred to as
Replica Deterministic (RD) messages. The cabin node sends each message
once for agreement and once the agreed message. This is done for each
replica. Thus in total each message is sent four times, which also is
indicated in the table.

As can be seen the bandwidth is considerably less than for the cen-
tralized scenario.

Fault Scenarios

In this case the central node is not redundant, therefore, functionality
running on this node will be lost in case of a permanent central node

128 Appendix A

Sensors bits # Tot. Hz Bits/sec

Central node

Brake pressure actuator 16 1 16 100 1600

Engine torque actuator 16 1 16 100 1600

Retarder actuator (Hydraulic) 16 1 16 100 1600

Retarder actuator (Electro magnetic) 16 1 16 100 1600

Engine brake actuator 16 1 16 100 1600

Rear Wheel steering actuator x 4 (four RW) 16 4 64 20 1280

Trailer brake pressure actuator x 1 16 1 16 100 1600

Total number bits 10880

Cabin node x 2 (RD messages)

Brake pedal sensor 16 4 64 100 6400

Steering wheel sensor 16 4 64 20 1280

Accelerator pedal sensor 16 4 64 20 1280

Gear selection sensor 8 4 32 10 320

Total number bits 9280

Sensor node

Sensor for lateral acceleration 16 1 16 10 160

Yaw rate sensors 16 1 16 10 160

Articulation angle 16 1 16 10 160

Total number bits 480

Engin node

Engine Torque sensor 16 1 16 100 1600

Engine rpm sensor 16 1 16 100 1600

Total number of sensor data 3200

Wheel nodes x 6

Wheel speed sensors 16 6 96 50 4800

Trailer brake pressure sensor* 16 1 16 50 800

Total number of sensor data 5600

Total required bandwidth 29440

Max frequency 100

Figure A.19: Bandwidth requirement for a central control and partially-
distributed architecture with redundancy.

failure. However, we assume that the distributed nodes have the pos-
sibility to reconfigure, if the central node stops in such a way that the
critical functionality will continue working. What we achieve with this
is a higher reliability for critical functionality. However, we add software
complexity for the reconfiguration. This reconfiguration requires fast de-
tection of central node failure, in order to make the reconfiguration fast.
This requires a group membership service for the cabin and the central
node. The allowed outage time for the critical functionality, i.e., the time
the system can manage without new sensor information, will decide if
reconfiguration is possible.

The cabin node will however be vital both for critical and full func-
tionality since it hosts the pedal sensors. For the reasons above we can
see that the reliability of the system will increase considerably by making

A.6 Architecture Investigation 129

the cabin node a duplex node, i.e., consisting of two replicas. By doubling
the bus, we eliminate a single point of failure in the critical functionality.

For the duplex system we only assume that the cabin node is dupli-
cated. This gives good reliability since we do not have to rely on the
complex central node. However, since the central node is not duplicated,
the availability of the total functionality is less than the system with cen-
tralized control and centralized computer architecture in Section A.6.2.

The necessary state information exchange between replicas after a
transient fault, is very small for this configuration. The centralized control
ensures that no or very little functionally is run on the replicas.

The importance of distinguishing between correct and incorrect repli-
cas is still high. When using a duplicated cabin node those replicas must
be fail-silent in order for the other nodes to choose correct sensor data.
Nodes that are not duplicated must fail in a safe manner. For example, a
wheel node is not allowed to apply an arbitrary brake force. The recovery
after a transient fault will be fast compared to the duplex nodes since no
transfer of system states is necessary.

A.6.4 Central Control with Fully-Distributed Computer
Architecture

This combination is not considered here for two reasons. First, as we dis-
cussed in the reliability analysis the distributed nodes are not as powerful,
thus all control functionality might not be scheduled in the distributed
computer nodes. Second, the conceptual difference between this configu-
ration and the local control together with the distributed system is small
or none, and bandwidth requirements are the same, see section A.6.10.
With the development of microprocessors of today, computational power
of processors are unlikely to be a limiting factor.

A.6.5 Mixed Control with Central Computer

This combination is not considered, since all computation must be in the
central node. Therefore, it is no noticeable difference, for our bandwidth
investigation, compared with the central control together with the central
computer architecture. The difference is how the control architecture is
constructed. The difference of the control structure will be considered in
the continuation of this project.

130 Appendix A

A.6.6 Mixed Control with Partially-Distributed Com-
puter

This is a natural combination were the mixed control, Figure A.2, and
the partially-distributed computer architecture, Figure A.5, match. With
this combination the calculations for the local control loops are made at
the distributed nodes and relieve the central node of computation.

The cabin node is assumed to handle the case were the central node
fails, as in section A.6.3. This is done by reconfiguration and handling
of the critical functionality, i.e., the basic brake functionality, where the
brake pressure actuators shall be provided with set values from the cabin
node instead of the central node.

In this system all information is no longer available on the bus. How-
ever, some messages are assumed to be needed by other nodes. These
messages have been indicated with “node ext.”. This combination also
introduce a new set of messages. They arise since the control is divided
into a central controller and a number of local controllers. The data in
the interface between them is sent via the bus, see Figure A.2. From
the central controller, data are sent as set points for the local controllers
located in the distributed nodes. In the other direction, necessary sensor
data are sent.

Simplex System

In Table A.20 the bandwidth for the simplex system is calculated. Node
internal data are indicated with a zero in the “bandwidth” column.

In this table can we see that data sent between the central controller
and the local controllers are similar to the central strategy case in Ta-
ble A.17.

Duplex System

In the duplex system only the cabin node with the pedal sensors are
duplicated since it will handle the critical functionality if the central node
fails. In order to keep the duplicated nodes in the same state and ensure
that they send the same data to nodes they will agree on transmitted
information. This is handled the same way as with the central control
together with a partially-distributed architecture, see section A.6.3.

In Table A.21 the bandwidth for the duplex system is calculated. The
bandwidth requirements for most nodes are similar to the simplex case
and therefore only changes are specified.

In this duplex configuration, we have a considerable increase in re-
quired data exchange compared to the simplex case, due to the duplex

A.6 Architecture Investigation 131

Sensors bits # Tot. Hz Bits/sec

Central node

Vehicle speed, (Virtual sensor) 16 1 16 50 800

Engine torque setpoint 16 1 16 20 320

Retarder setpoint 16 1 16 20 320

Engine brake setpoint 16 1 16 100 1600

Brake pressure setpoint x 6 16 6 96 100 9600

Rear wheel steering setpoint 16 6 96 20 1920

Total number bits 14560

Cabin node

Brake pedal sensor 16 1 16 100 1600

Steering wheel sensor 16 1 16 20 320

Accelerator pedal sensor 16 1 16 20 320

Gear selection sensor 8 1 8 10 80

Total number bits 2320

Sensor node

Sensor for lateral acceleration 16 1 16 10 160

Yaw rate sensors 16 1 16 10 160

Articulation angle 16 1 16 10 160

Total number bits 480

Engine node

Engine Torque sensor (node int.) 16 1 16 100 0

Engine Torque sensor (node ext.) 16 1 16 10 160

Engine rpm sensor (node int.) 16 1 16 100 0

Engine rpm sensor (node ext.) 16 1 16 10 160

Engine torque actuator 16 1 16 100 0

Retarder actuator (Hydraulic) 16 1 16 100 0

Retarder actuator (Electro magnetic) 16 1 16 100 0

Engine brake actuator 16 1 16 100 0

Total number of sensor data 320

Wheel nodes x 6

Wheel speed sensors 16 6 96 50 4800

Brake pressure actuator 16 1 16 100 0

Rear Wheel steering actuator x 4 (four RW) 16 4 64 20 0

Trailer brake pressure sensor* 16 1 16 50 800

Trailer brake pressure actuator x 1 16 1 16 100 0

Total number of sensor data 5600

Total required bandwidth 23280

Max frequency 100

Figure A.20: Bandwidth requirement configuration with Mixed Control
and Partially-Distributer computer architecture

cabin node and the consistency requirement among the replicas of the
cabin node. It is though considerably less than for the redundant central
system A.6.2. For this configuration the effects of the duplex nodes and
consistency requirements are not as big since there are not that much
data that must be agreed upon.

132 Appendix A

Sensors bits # Tot. Hz Bits/sec

Cabin node x 2 (RD messages)

Brake pedal sensor 16 4 64 100 6400

Steering wheel sensor 16 4 64 20 1280

Accelerator pedal sensor 16 4 64 20 1280

Gear selection sensor 8 4 32 10 320

Total number bits 9280

Central node 14560

Sensor node 480

Engine node 320

Wheel nodes x 6 5600

Total required bandwidth 30240

Max frequency 100

Figure A.21: Bandwidth requirement, configuration with Mixed Control
and Partially-Distributer computer architecture and redundancy.

Fault Scenarios

With this situation we have a similar situation as with the configuration
with central control and a partially-distributed architecture A.6.3. The
cabin node will have the possibility to reconfigure and run critical func-
tionality in case of a failure of the central node. However, the design
complexity for achieving this will be less compared to the central con-
trol case (with partially distributed computers), since the mixed control
already have distributed some functionality that can be “reused”. The
complexity of the software part of the system can thereby be reduced com-
pared to the configuration with central control and a partially-distributed
architecture. The outage time requirement will not be changed. This will
require the same fast error detection of a failed central node.

Considering the duplex configuration, we have lower availability of the
total functionality compared to a central configuration with duplicated
nodes, since the central node is simplex in this configuration. Further-
more, we have the same requirement as with the central-control/partially-
distributed configurations considering fail-silent cabin-nodes, and that the
other nodes should be fail-safe.

The reintegration cost of state exchange between replicas in the duplex
system is assumed to be less than the centralized-control/central archi-
tecture configuration. The necessary information exchange between the
replicas is the state information for the local loops of the mixed control.

It is likely that a mixed-control solution will provide the system with a
higher robustness to transient failures. When the local loops are spread to
the distributed-nodes, the local loops have a better possibility to handle
situations, such as lost samples, compared to a central system. This can

A.6 Architecture Investigation 133

be done by estimating the lost sample based on the application knowledge.
This functionality is normally included in the local loops at control design.
Similar behavior could be used in a system with central control, but addi-
tional complexity would be needed at the “intelligent” sensors/actuators.
This is also an area for further studies.

A.6.7 Mixed Control with Fully-Distributed Computer

This combination may be interesting. With this solution we assume that
the central controller is distributed to all nodes. This means that each
node runs an own copy of the central controller in addition to the local
controller. The least necessary information transfer will be the same as
for a configuration with mixed-control/partially-distributed architecture.
Since this configuration has no central node, it would require one of the
distributed nodes to send the required set-points.

The big advantage of this solution would be if each node distributes
its copy of the set points for the local controllers. This results in a high
degree of redundancy but will increase the bandwidth significantly. This
is also the solution chosen in [ATJ99]. However, compared to a Flight
Control system, a truck is a fairly flexible system where additional nodes
should be possible to add. This combined with the increased bandwidth
required, makes us consider this combination unsuitable for our purposes.

A.6.8 Local Control with Central Computer

This combination is not meaningful, since the concept of one central com-
puter node dose not fit the concept of a number of local controllers.

A.6.9 Local Control with Partially-Distributed Computer

See section A.6.8.

A.6.10 Local Control with Fully-Distributed Computer

In the last combination we have a number of local controllers running
on a number of distributed nodes. The local controllers only exchange
necessary information. In this case there is no central node. The cabin
node is the critical node and thus duplicated, since it has the pedal sensors
connected.

Simplex System

In Table A.22 the bandwidth for the simplex system is calculated. Node
internal data are indicated with a zero in the “bandwidth” column. The

134 Appendix A

table shows that the bandwidth required is considerably less compared
to the central-control/centralized-computer combination. In this config-
uration a number of sensor values are not necessary to be transmitted. A
number of sensor values have been divided into node internal and node ex-
ternal. Node internal data are used for fast internal loops. Node external
data can be transferred with a lower frequency. The bandwidth difference
between this configuration and the mixed-control/partially-distributed
configuration comes from the fact that in the later configuration set-point
values are sent from the central-node/mixed-controller.

Sensors bits # Tot. Hz Bits/sec

Cabin node

Brake pedal sensor 16 1 16 100 1600

Steering wheel sensor 16 1 16 20 320

Accelerator pedal sensor 16 1 16 20 320

Gear selection sensor 8 1 8 10 80

Total number bits 2320

Sensor node

Sensor for lateral acceleration 16 1 16 10 160

Yaw rate sensors 16 1 16 10 160

Articulation angle 16 1 16 10 160

Total number bits 480

Engin node

Engine Torque sensor (node int.) 16 1 16 100 0

Engine Torque sensor (node ext.) 16 1 16 10 160

Engine rpm sensor (node int.) 16 1 16 100 0

Engine rpm sensor (node ext.) 16 1 16 10 160

Engine torque actuator 16 1 16 100 0

Retarder actuator (Hydraulic) 16 1 16 100 0

Retarder actuator (Electro magnetic) 16 1 16 100 0

Engine brake actuator 16 1 16 100 0

Total number of sensor data 320

Wheel nodes x 6

Wheel speed sensors 16 6 96 50 4800

Brake pressure actuator 16 1 16 100 0

Rear Wheel steering actuator x 4 (four RW) 16 4 64 20 0

Trailer brake pressure sensor* 16 1 16 50 800

Trailer brake pressure actuator x 1 16 1 16 100 0

Total number of sensor data 5600

Total required bandwidth 8720

Max frequency 100

Figure A.22: Bandwidth requirement, simplex configuration with Local
Control together with a Fully-Distributed computer architecture.

A.6 Architecture Investigation 135

Duplex System

In Table A.23 the bandwidth is calculated for the configuration with
local control and a fully-distributed architecture. In the table we see
that this configuration has a very low bandwidth requirement since a
minimal amount of data must be transmitted. The information exchange
needed to ensure consistency also becomes low for the same reason. As in
the simplex case, the bandwidth difference between this configuration and
the mixed-control/partially-distributed configuration comes from the fact
that in the later configuration set-point values are sent from the central-
node/mixed-controller.

Sensors bits # Hz Bits/sec

Cabin node x 2 (RD messages)

Brake pedal sensor 16 4 100 6400

Steering wheel sensor 16 4 20 1280

Accelerator pedal sensor 16 4 20 1280

Gear selection sensor 8 4 10 320

Total number bits 9280

Sensor node 480

Engin node 320

Wheel nodes x 6 5600

Total required bandwidth 15200

Max frequency 100

Figure A.23: Bandwidth requirement, configuration with Local Control
together with a Distributer computer architecture and a duplex node.

Fault Scenarios

This configuration has no central node. Thus, the total functionality can
be more robust, since the loss of one node might only affect a limited part
of the total functionality. In a simplex configuration the cabin node is
vital for the critical functionality, since it has the pedal sensor. To avoid
this single point of failure, it is recommendable to use a duplicated cabin
node. Together with a duplex bus this will avoid a single point of error.

This solution will not need any reconfiguration in case of a failure. The
working nodes will continue as normal. This requires that the receivers
of data from the duplicated node, i.e., the replicas, can distinguish data
from correct and faulty replicas. This reintroduces the requirement of
fail-silence on the replicas of the cabin node. The requirement, on the
other nodes, of fail safe behavior is still valid.

We have reduced the complexity of system software considerably when
reconfiguration can be removed. For reconfiguration we need at least two

136 Appendix A

software parts: The first when working under normal conditions and the
other after the reconfiguration. The reconfiguration is critical since it
comes in a situation where something already has gone wrong. Consider-
able efforts must be spent to ensure that the reconfiguration “always” will
work, and similarly with the software that run after a reconfiguration. It
is therefore beneficial to avoid reconfigurations and to run only a single
well verified program.

The local-controllers will most probably be more complex than con-
trollers based on centralized or mixed control architecture. This is how-
ever a question for further investigation.

The handling of transient errors is robust as for the system with mixed
control. With local control each node has a greater “knowledge” of the
system behavior, which can be used for better estimation of for example
lost samples.

A.7 Summary and Conclusions

In this chapter we will summarize and conclude our reliability analysis
and bandwidth study. We start by giving a short summary of the different
configurations and their main features in Table A.8.

In Table A.3 a summary of the reliability results can be seen. Here
we can conclude that we have a small difference in the reliability con-
cerning the total yaw rate control function. The centralized system has
a little higher reliability of the total functionality. The advantage of the
central architecture comes from the fact that it only has one complex
node and a number very simple “sensor nodes”. If the complexity of the
distributed nodes is decreased the differences between the central and the
fully-distributed solutions will decrease.

When only considering the critical functionality the partially-
distributed architecture has the highest reliability. The gap to the fully
distributed architecture is however not big. The difference comes from
the higher complexity of the nodes in a fully-distributed system. In the
central system the complexity of the central node is the reason for its less
reliable behavior.

From the sensitivity analysis, we can note the value of keeping the
node complexity low, especially nodes that are critical and will be dupli-
cated. This is an incentive to keep complexity low on nodes that will be
redundant.

Another important factor to consider, is the effect of the error de-
tection coverage. With a high coverage there is a small probability that
one replica of a redundant node will fail in such a way that it brings the
system down. This can happen if, e.g, the fail silent property is violated

A.7 Summary and Conclusions 137

C
on

tr
ol

C
en

tr
al

iz
ed

P
ar

ti
al

ly
-D

is
t.

F
u
ll
y
-D

is
t.

C
en

tr
al

L
ow

re
lia

bi
lit

y.
Se

ns
or

an
d

ac
tu

at
or

da
ta

se
nt

on
bu

s.
H

ig
h

co
m

m
un

ic
at

io
n

ba
nd

-
w

id
th

.

L
ow

re
lia

bi
lit

y.
A

di
s-

tr
ib

ut
ed

no
de

ca
n

ha
nd

le
cr

it
ic

al
fu

nc
ti

on
al

it
y

af
te

r
re

co
nfi

gu
ra

ti
on

.
M

ed
iu

m
co

m
m

un
ic

at
io

n
re

qu
ir

e-
m

en
t.

N
ot

co
ns

id
er

ed
,
si

nc
e

cl
os

e
co

nc
ep

tu
al

ly
to

lo
ca

l-
co

nt
ro

l/
fu

lly
-D

is
tr

ib
ut

ed
co

nfi
gu

ra
ti

on
.

M
ix

ed
N

ot
co

ns
id

er
ed

.
O

nl
y

no
de

in
te

rn
al

di
ffe

re
nc

e
fr

om
ce

nt
ra

l-
co

nt
ro

l/
ce

nt
ra

liz
ed

co
nfi

g.

L
ow

re
lia

bi
lit

y.
M

ed
iu

m
co

m
m

un
ic

at
io

n
re

qu
ir

e-
m

en
t.

N
ot

co
ns

id
er

ed
.

L
o
ca

l
N

ot
co

ns
id

er
ed

.
N

ot
co

ns
id

er
ed

.
M

ed
iu

m
re

lia
bi

lit
y.

L
ow

co
m

m
un

ic
at

io
n

re
qu

ir
e-

m
en

t.
N

o
re

co
nfi

gu
ra

ti
on

ne
ce

ss
ar

y.

T
ab

le
A

.8
:

Sh
or

t
su

m
m

ar
y

of
co

nfi
gu

ra
ti

on
s.

138 Appendix A

and faulty data is propagating throughout the system. Table A.3 clearly
show the effect and importance of the coverage for the duplex system.

The bandwidth requirements are summarized in Figure A.24. The
combination with local control and a fully-distributed architecture clearly
has the lowest communication bandwidth requirements, both for a sim-
plex and duplex system. Indication of low bandwidth requirements for a
fully-distributed solution can be found in other reports, such as for ex-
ample [Lön99b]. This combination clearly minimizes the necessary infor-
mation exchange and most likely also the overhead to ensure consistency.
The reason for this is the local control that can handle all local loops and
at the same time minimize sensor value exchange between nodes.

The configuration with central control and a central architecture is the
combination which require most information exchange. The central ar-
chitecture requires all sensor and actuator data to be transferred to/from
the computer node, see Figure A.7.

Combination Simplex Duplex

Central Control with a Central Arch. 23280 57680

Central Control with Half Dist. Arch. 23280 29440

Mixed Control with Half Dist. Arch. 23280 30240

Autonomous Control with a Dist. Arch . 8720 15680

Figure A.24: Bandwidth requirement, for the different configurations.

A short discussion about fault scenarios for the different configura-
tions is included in this report. They will not be summarized here, but
a few important comments will be made. There is a cost associated with
the re-integration of a replica in a duplex configuration. This will affect
the possibility to schedule the communication since “integration state”
data must be sent within a reasonable time. The communication sched-
ule must consider this and reserve enough communication bandwidth such
that re-integration is possible. The necessary state information transfer is
dependent on the application. Most probably the necessary state trans-
fer is related to the complexity of the applications running on a node,
a central control with a central architecture will require a lot of infor-
mation exchange at reintegration. This will further add to this config-
urations high communication bandwidth. The partially-distributed and
distributed systems will have the lower communication overhead for re-
integration for each node since they will contain smaller state. Since
the nodes that are duplicated in the partially-distributed and distributed
systems contains a smaller state (they are less complex) compared to the
central node they will require a smaller state transfer in case of reinte-

A.7 Summary and Conclusions 139

gration. This do not include the configuration with central control and
a partially-distributed architecture where almost no work is done at the
“distributed” nodes.

The membership agreement service has been discussed and is neces-
sary in for example the partially-distributed system. However, this service
will probably be required by the control application, e.g., to adapt to the
loss of wheel brake actuator. This is an area of further research, and will
be investigated in the control-system report.

One drawback with the partially-distributed architecture is the recon-
figuration, which is necessary if the central node fails. This adds to the
complexity both during runtime and during scheduling. This reconfig-
uration complexity could be traded with an duplex central node, which
instead would increase hardware and communication cost.

The robustness to transient faults is an important issue and may
be affected by the control strategy. The distributed nodes of a mixed-
control/partially-distributed architecture have more application informa-
tion. This knowledge can be used when a transient error occur, to tolerate
or estimate the correct state. One example can be a lost sample which can
be estimated and thus tolerated. The local control/distributed architec-
ture has even more application information to use. How good this could
be will need further investigation, and will to some extent be studied
within the continuation of the project.

Considering all the facts so far, we have two configurations that
we consider very applicable in this type of distributed control, (1)
a duplex system with a configuration with local-control and a fully-
distributed computer architecture, and (2) a duplex configuration with
mixed-control and a partially-distributed computer architecture. Even
though the communication bandwidth is considerable less in local-
control/fully-distributed, the final implementation may benefit the mixed-
control/partially-distributed configuration. The intention is to further
evaluate these configuration when the control design is finished and can
be put in these environments. Below follows a summary of the main
benefits and reasons to choose these configurations:

Duplex A duplicated system will be necessary to achieve sufficient relia-
bility and to avoid single point of failures. Even though we can not
trust the exact figures of the reliability analysis, they give a strong
hint that a simplex system is not enough. Furthermore, a single
point of error is hardly tolerated.

local-control/fully-distributed 1. This combination has the lowest
bandwidth by far of all duplex systems.

140 Appendix A

2. The fully-distributed architecture does not require reconfigu-
ration after a fault and it has only slightly lower reliability
than the partially-distributed architecture. Furthermore, each
node have application knowledge which can be used to tolerate
transient faults, e.g., lost samples.

mixed-control/partially-distributed 1. This configuration has the
highest reliability figures.

2. The development of mixed-control is closer to existing and well
known control development methods used today, which results
in better chances of reuse of both control applications and
development methods.

These configurations will be further investigated and evaluated within
this project when more is known about the control solution.

Appendix B

Appendix B

B.1 Abbreviations

• AYC - Active yaw-control.

• ARC - Active roll-control.

• ABS - Anti-locking brake system.

• TRC - Traction control, other existing abbreviations are ATC and
TCS.

• VDC - Vehicle dynamics control, consists of AYC, ARC, ABS, and
TRC.

• RWS - Rear wheel steering.

• EBS - Electronic brake system, consists of electronically controlled
ABS and TRC.

• ESP - Electronic stability program, relies on EBS, and implements
VDC. Please note the difference in our interpretation of VDC and
ESP.

• EMS - Electronic engine system.

• ECS - Electronic air cushion system. Controls the heigth of the
vehicle.

• TCE - Trailer control ECU. A gateway to the semi-trailer.

• ROP - Roll over protection.

• VECE - Main vehicle computer.

142 Appendix B

• Total functionality - Refers to a fully functioning yaw-control sys-
tem.

• Critical functionality - Refers to a degraded mode where at least
the basic brakes are working.

B.2 Failure Rates 143

B.2 Failure Rates

In this part the failure rates of the different components are derived from
the MIL-HDBK-217 standard. The different components are listed and
data used to extract the failure rate for each specific component are de-
scribed. Below follows a short description of the different components in
the failure rate calculations. Further information can be found in MIL-
HNDBK [MIL92].

A computer node will consist of the components in fig B.1, which are
the integrated circuits for power supply, bus interface, bus driver and the
microprocessor. This picture also describes the internal components of
sensors and actuators connected directly to the bus.

Internal
Central node

structure

S
Sensor

Interface
Buss

Internal Sensor and
Actuator Structure

AActuator

Interface
Buss

Bus interface

Power

µp with
memory

Bus Driver

Figure B.1: The internal components of computer nodes and sensors and
actuators connected to the bus.

The microprocessors will be a bit different depending on the computer
architecture selected. A central node handling all calculations must be
more powerful than a node in a distributed system where computations
are spread among a number of nodes. Thus we have three different mi-
croprocessors for which we calculate the failure-rate. The difference will
be the complexity of the chip.

This list will give a short description of the constants which will be
used in the failure rate calculation.

C1 is a complexity factor, dependent on complexity of the integrated
circuit.

πT is a temperature factor, dependent on semiconductor process and
working temperature. It also dependent of the maximum junction
temperature Tj .

144 Appendix B

C2 is a complexity factor dependent on the complexity of the packaging.

πE is a environmental factor dependent on the components working en-
vironment.

πQ is the quality factor, and is dependent on the amount of testing done
on the component after production, i.e., the screening level.

πL is the learning factor, indicates the confidence in the manufacturing
process. Components from new and unproven manufacturing pro-
cesses are given low confides, i.e., πL = 10, otherwise πL = 1. We
assume that components used in these type of application will use
standard components, which have been in production for a while.
Thus πL = 1 are assumed.

B.2.1 Microprocessor in a Central Node

The failure rate is derived from the formula:

λµP = (C1 πT + C2 πe) πL πQ × 10−6 = 1.0 × 10−5failures/hour (B.1)

The following values on the constants have been used.

C1 = 0.56 (a 32 bits Mos processor)

πT = 1.1 (Digital, Mos, Tj = 90
◦

C)

C2 = 0.097 (for 224 pins, hermetic DIPs)

πE = 4.0 (Environmental factor, GM (Ground mobile))

πQ = 10 (Other commercial or unknown screening levels)

πL = 1 (Learning factor)

B.2.2 Microprocessor in Partially-Distributed Nodes

The failure rate is derived from the formula:

λµP2 = (C1 πT + C2 πe) πL πQ × 10−6 = 2.82 × 10−6failures/hour
(B.2)

The following values on the constants have been used.

C1 = 0.14 (16 bits, Mos processor)

πT = 1.1 (Digital, Mos, Tj = 90
◦

C)

C2 = 0.032 (for 80 pins, hermetic DIPs)

B.2 Failure Rates 145

πE = 4.0 (Environmental factor, GM (Ground mobile))

πQ = 10 (Other commercial or unknown screening levels)

πL = 1 (Learning factor)

B.2.3 Microprocessor in Fully-Distributed Nodes

The failure rate is derived from the formula:

λµP3 = (C1 πT + C2 πe) πL πQ×10−6 = 5.2×10−6failures/hour (B.3)

The following values on the constants have been used.

C1 = 0.28 (a 16 bits Mos processor)

πT = 1.1 (Digital, Mos, Tj = 90
◦

C)

C2 = 0.053 (for 128 pins, hermetic DIPs)

πE = 4.0 (Environmental factor, GM (Ground mobile))

πQ = 10 (Other commercial or unknown screening levels)

πL = 1 (Learning factor)

B.2.4 Communication Interface

The failure rate is derived from the formula:

λCI = (C1 πT + C2 πe) πL πQ×10−6 = 3.48×10−6failures/hour (B.4)

The following values on the constants have been used.

C1 = 0.2 (Mos, 30 000 gates, Digital)

πT = 1.1 (Digital, Mos, Tj = 90
◦

C)

C2 = 0.032 (for 80 pins, hermetic DIPs)

πE = 4.0 (Environmental factor, GM (Ground mobile))

πQ = 10 (Other commercial or unknown screening levels)

πL = 1 (Learning factor)

146 Appendix B

B.2.5 Power IC

The failure rate is derived from the formula:

λPIC = (C1 πT + C2 πe) πL πQ × 10−6 = 2.21 × 10−6failures/hour
(B.5)

The following values on the constants have been used.

C1 = 0.02 (Mos, 300 gates, Linear)

πT = 9.3 (Linear, Mos, Tj = 90
◦

C)

C2 = 0.0087 (for 24 pins, hermetic DIPs)

πE = 4.0 (Environmental factor, GM (Ground mobile))

πQ = 10 (Other commercial or unknown screening levels)

πL = 1 (Learning factor)

B.2.6 Bus Driver

The failure rate is derived from the formula:

λBD = (C1 πT + C2 πe) πL πQ × 10−6 = 1.1× 10−6failures/hour (B.6)

The following values on the constants have been used.

C1 = 0.01 (Mos,Linear)

πT = 9.3 (Linear, Mos, Tj = 90
◦

C)

C2 = 0.0041 (for 24 pins, hermetic DIPs)

πE = 4.0 (Environmental factor, GM (Ground mobile))

πQ = 10 (Other commercial or unknown screening levels)

πL = 1 (Learning factor)

B.2.7 Bus Connections

For the failure rate of the bus connection, the least expensive materials
are assumed. Insert Material D, ambient temperature 90

◦
C for (λb). Ma-

tining/unmating factor 0 to 0.05 per 1000h (for λk). Aktive pinfactor is
6 (for πp) Environmental factor is GM (for ground vehicles), not military
standard (for πE).

λb = 0.033

B.2 Failure Rates 147

λk = 1.0

πp = 2.0

πE = 21

λcon = πe πp λb λk × 10−6 = 1.39 × 10−6 (B.7)

Normally a failure in the bus connection only affects the one node,
i.e., the node where the failed bus connector is attached. However, in rare
cases it may affect the whole bus in which case it will make the bus useless
for all nodes. MIL-HNDBK does not give any figures for this but it has
been estimated that the failure rate is a factor 10 less than the normal bus
connection failure rate a. This is probably a pessimistic estimate. This
means that the failure rate for a bus is related to the existent number of
connection to the bus. This gives us for a system with n nodes:

λbus =
n λcon

10

B.2.8 Sensors and Actuators

The MIL-HNDBK does not cover failure rates for sensors and actua-
tors since they are too specific in nature. Thus, we have been forced to
make assumptions about the failure rate for the sensors and actuators.
However, in order to see the impact of these failure rate most of the cal-
culations have been made with failure rates from as low as 10−6 to very
high 100 × 10−6.

The failure rate for sensors λs are assumed to be the same as the
failure rate for the actuators λa through out this report, i.e., λs = λa

B.2.9 Sensor and Actuator Communication Interface

The failure rate are derived from the formula:

λbCI = (C1 πT + C2 πe) πL πQ × 10−6 = 1.48 × 10−6 (B.8)

The following values on the constants have been used.

C1 = 0.08 (Mos, 10 000 gates, Digital)

πT = 1.1 (Digital, Mos, Tj = 90
◦

C)

C2 = 0.015 (for 40 pins, hermetic DIPs)

πE = 4.0 (Environmental factor, GM (Ground mobile))

148 Appendix B

πQ = 10 (Other commercial or unknown screening levels)

πL = 1 (Learning factor)

B.3 Reliability Calculations 149

B.3 Reliability Calculations

B.3.1 Central System

Simplex Configuration

The Central node
The failure rate and reliability for the computer node in the central

system is shown in (B.9) and (B.10), where the different values can be
found in Appendix B.2. The configuration of the node is shown in Fig-
ure B.1, it consist of a microprocessor, power unit, bus interface and a
bus driver.

λsimplexnode = λBD + λCI + λPIC + λµP + λcon = 1.82 × 10−5 (B.9)

RCnode = e−t(λBD+λCI+λPIC+λµP +λcon) (B.10)

The reliability will be calculated for an hour throughout this report.
Then we get the reliability of the Central node to:

RCnode = 0.999982

This reliability also considers bus failures. However, it does not in-
clude bus failures that affect other node’s possibility to communicate on
the bus. Failures that eliminate bus communication will be treated in the
next section.

The Bus

In this part we will estimate reliability of the bus connections. More
specifically we consider failure mode that affect the whole bus. For ex-
ample short circuit of the bus, which prohibits any bus communication.
Since the unreliability originates from the bus connection, the reliability
will be dependent on the number of connections on the bus.

The MIL-HNDBK does not support this division of the reliability
of connectors. Therefor, the failure rate of connections that affects the
whole bus will be estimated. λcon is the failure rate of one connection.
The failure rate of the part affecting the whole bus, λbus, is estimated to
one tenth of λcon. See also section B.2.7.

The bus will have 17 units connected to it. Further more we assume
that in this system an additional number of nodes will be connected to the
same bus increasing the number of connection points to 40, i.e., additional

150 Appendix B

23 connections. This will give us the number of bus connections n = 40.
This will result in failure rate of:

λbus =
n λcon

10

The reliability for the bus in the central system is Rbus:

Rbus = e−λbus = 0.9999945

Sensors and Actuators

The failure rate for sensors and actuators is the same for all nodes and
is obtained from the sum of the failure rate from the sensor/actuator
and the bus connector. The failure fate and reliability of a sensor or an
actuator is thus:

λsens = λs + λbCI + λcon + λBD (B.11)

Rs = Ra = e−λsens (B.12)

Probability of System Failure for the Total Functionality of the
Central System

The probability of a system function with one central node, ten sensors
and six actuators is calculated here. These parts can be considered as a
series system, and we get the reliability as:

Rcs = RCnode Rbus R10
s R6

a = 0.999976 × e−(6.3× 10−5+16 λs)

The probability of loss of any system functionality is thus:

QCS = 1 − RCS

In Figure B.2 the probability of losing functionality in our yaw-control
system is plotted. The variable is the failure-rate of the sensors and
actuators, i.e., λs and λa the failure

Probability of System Failure for the Critical Functionality

Here the probability of loss critical parts of the system function will be
calculated. The critical parts that are required are the central node and
brake pedal sensors and two brake actuators. One brake actuator on each
side of the truck must be functional for the system to be considered work-
ing, i.e., have at least minimal braking performance. Thus the reliability

B.3 Reliability Calculations 151

0 10 20 30 40
Λs�Λa � 10�6

0

1

2

3

4

5

6

7

Q
C
S
�
1
0

�
4

Central System, Full Functionality

Figure B.2: The probability for losing any functionality of the central
system.

of brake nodes one side is, i.e., the probability that one of three brake
actuator is working:

Roneside = 1 − (1 − Ra)
3 (B.13)

Ra is the brake actuator (see equation (B.12) for explanation). Then
the reliability for the critical parts of the system can be calculated. The
critical parts are the central node, bus, brake pedal sensor, and at least
one actuator node at each side. Thus we get the reliability RCs, and the
probability of critical failure QCcs .

RCcs = RCnode Rbus Rs (Roneside)
2

QCcs = 1 − RCcs = 1 − 0.999972 × eλs

((
1 − 0.999996 × eλs

)3 − 1
)2

In Figure B.3 the probability of losing critical functionality per hour
is plotted. As variable the failure rate for sensors and actuators are varied
from 10−6 to 40 × 10−6.

Redundant System

By study the reliability of “one brake on each side working” we find
that we get a very high reliability for that part, e.g., 5 × 10−15 for
λs = 10 × 10−6. Then we can conclude that the brake pressure actu-
ators have little impact on the system unreliability, since they have an
inherent redundancy. However, we can easily improve the system reli-
ability by duplication of the central node, the bus and the brake-pedal
sensor. For the central node we have to consider what will happen if one

152 Appendix B

0 10 20 30 40
Λs�Λa �10�6

30

40

50

60

Q
C
c
s
�
1
0

�
6

Central System, Critical Functionality

Figure B.3: The probability of losing the critical functionality of the
central system.

node fails. A node is considered to fail in two ways, (1) the node fails
but will not disturb the operation of the fault free part of the system.
(2) The nod fails in such a way that required functionality is not upheld.
To achieve Fault containment or Fail-Silence the system must be able to
detect and handle the faults, e.g., be silent in the case of a fault. The
coverage of the necessary error detection mechanisms is important and
will affect the system reliability. In this system we assume that we have a
coverage (C) between 0.99 and 0.999. This is high but we will by varying
C to see the importance of the coverage C. Considerable efforts must be
used to ensure a high coverage.

By Markov modeling we get the following result. P2 (t) the probability
for being in a state where both nodes work. P1 (t) is the probability
of being in a state where one node is faulty and finally PF (t) is the
probability of a system failure. C is the coverage.

P ′
2(t) = −2 λ P2(t)

P ′
1(t) = 2 C λ P2(t) − (λ P1(t))

P ′
F (t) = λ P1(t) + 2 (1 − C)λP2(t)

Thus, the equation system in (B.14) follows.

P ′
2(t)

P ′
1(t)

P ′
F (t)

 =

−2 λ 0 0
2 C λ −λ 0

2 (1 − C)λ λ 0

 ·

P2(t)
P1(t)
PF (t)

 (B.14)

To solve this differential equation system we Laplace transform the
equation system. After which we get

B.3 Reliability Calculations 153

P2(s)
P1(s)
PF (s)

 =

1
s+2 λ

2 C
s+λ − 2 C

s+2 λ
1
s − 2 C

s+λ + 2 C−1
s+2 λ

 (B.15)

Inverse transform of (B.15) gives:

P2(t)
P1(t)
PF (t)

 =

e−2 t λ

−2 C e−2 t λ + 2 C e−t λ

1 + (2 C − 1) e−2 t λ + 2 C e−t λ

 (B.16)

Thus the probability for loss of the central node is PF (t). Which we
get using λsimplexnode from equation (B.9). This gives a reliability of the
central nodes for one hour of RdupCnode = 1+PF (1). Then the reliability
is:

RdupCnode = 0.999963 + C 3.64 × 10−5

Where C is the coverage of the fault detection.
We will here assume that we use three pedal sensors. For these three

sensors we assume that they do not fail in a way that affect the other
sensors. However, we assume that we need two of the three sensors for
correct operation. The reliability of a 2 - of - 3 system is (with indepen-
dent components with the same reliability R) 3R3 −2 R2. For one sensor
the failure rate was calculated in (B.11), that is λsens and the reliability
from (B.12). Then we get the reliability of the Pedal in equation

RdupPS = 3 R3 − 2 R2 = 2.999983 e−2 λs − 1.999983 ∗ e3 λs (B.17)

The reliability of the double bus is:

RdupBus = 1 − (1 − Rbus)
2

The reliability for the brake pressure nodes, where one of three node
on each side is required to work, is:

RdupBP =
(
1 − (1 − Ra)

3
)2

For the brake pressure actuators we have the same as in equation
(B.13), that is λ2

oneside. Then the reliability for the central system, the
pedal sensors, the double bus, and the brake pressure actuators are used
to calculate the reliability of the critical part of the system.

RdupC = RdupCnode RdupPS RRdupBus RdupBP (B.18)

154 Appendix B

The probability for system faulure per hour is thus:

Qdup = 1 − RdupC =
(
0.999966 + 3.47 × 10−5 C

)
(
3 e−5.73×10−6−2 λs − 2 e−8.60×10−6−3 λs

)
(

1 −
(
1 − e−2.87×10−6−λs

)3
)2

(B.19)

Where λs is the failure rate for the sensors and actuators and C is the
coverage. By varying λs and C we get the following 3D graph.

0.00001
0.00002

0.00003

0.00004

Λs failure rate
0.99

0.992

0.994

0.996

0.998

C, coverage

0
1�10-7
2�10-7
3�10-7

.00001
0.00002

0.00003ailure rate

Figure B.4: The probability for losing the critical functionality of the
central duplex system.

B.3.2 Partially-Distributed System

Simplex

In Figure B.5 we can the system configuration for the partially-distributed
system.

B.3 Reliability Calculations 155

In this system the Central Node has the same reliability as in the
central system, see equation (B.10).

Pedal

Pressure

Sensor

SteeringWheelSensor

6 x (One per Wheel)

Brake

Pressure

Actuator

WheelVelocitySensor

Yaw

Rate

Sensor

LateralAcc.Sensor

Dist.

Node

Dist.

Node

Dist.

Node

Central
node

Figure B.5: The partially-distributed system configuration.

The bus will have fewer connections since the sensors and actuators
are not connected directly to the node. In the partially-distributed system
we assume that additional sensors and actuators are connected to existing
distributed nodes or possibly the central node. Thus we will have a total
of 9 bus connections, i.e., n = 9.

λHDbus =
n λcon

10
RHDbus = e−λHDbus = 0.9999988

The distributed nodes, i.e., nodes with sensors and actuators con-
nected are the following. Two nodes with two sensors connected. Which
have the following failure rate, the node with yaw rate and lateral veloc-
ity sensors and the node with steering wheel sensor and brake pedal has
λHDylv and λHDswbp per hour. Which are.

λHDylv = λHDswbp = λµP2 + λPIC + λCI + λBD + λcon + 2 λs

For the six wheel nodes with a wheel velocity sensor and a brake pressure
actuator connected λHDwvbp as failure rate.

λHDwvbp = λµP2 + λPIC + λCI + λBD + λcon + 2 λs

The we can get the System reliability for the total functionality
from these components in a series system.

Rhd = RCnode RHDbus e−λHDylv e−λHDswbp

(
e−λHDwvbp

)6
=

0.999893 × e−16 λs

156 Appendix B

The probability of loss of functionality per hour is thus:

Qhd = 1 − Rhd

In Figure B.6 we see the probability of loss of functionality when the
failure rate for sensors and actuators, i.e., λs and λa, is ranging 10−6 to
40 × 10−6.

Critical Functionality

0 10 20 30 40
Λs�10�6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q
h
d
�
1
0

�
3

Half Dist. system, full functionality

Figure B.6: The probability of losing any functionality in the partially-
distributed system

When calculating the probability of loss of Critical functionality we
only need the brake pedal sensor and one brake pressure actuator on each
side of the vehicle, the processing power for only the brake functionality
is sufficient in the distributed nodes and will not requre the Central node.
For the pedal sensor node, we have a failure rate and a reliability of (HDC
= Partially-Distributed Critical System):

λHDCpedal = λµP2 + λPIC + λCI + λBD + λcon + λs

RHDCpedal = e−λHDCpedal

For the wheel nodes with brake presssure actuator:

λHDCbrake = λµP2 + λPIC + λCI + λBD + λcon + λa

RHDCbrake = e−λHDCbrake

B.3 Reliability Calculations 157

We have a parallel system on each side where at least one of the
actuator node must be functional for acceptable behavior. Thus, the
reliability that at least one brake node at one side is working is RHDCside.

RHDCside = 1 − (1 − RHDCbrake)
3

The total reliability for the critical functionality is (serie system with
bus, pedal node, 2*brake pressure act.):

RHDC = RHDbus RHDCpedal R
2
HDCside

The probability for system failure is QCHD:

QHDC = 1−RHDC = 1−0.999986×e−λs

((
1 − 0.999987 × e−λs

)3 − 1
)2

The probability of losing critical functionality when λa and λs is 10−6

to 40 × 10−6.

0 10 20 30 40
Λs�10�6

20

30

40

50

Q
C
h
d
�
1
0

�
6

Half Dist. system, Critical functionality

Figure B.7: The probability of losing critical functionality in the partially-
distributed system

Partially-Distributed, Duplex

Only the critical part of the partially-distributed system will be dupli-
cated when we increase the dependability of this system. The system
part that will be duplex is the bus, the node with the pedal sensors con-
nected and the brake actuator nodes we will take advantage of the fact
that there already is an inherent redundancy for those nodes. For this
node we will have these same Markov model as for the central node in

158 Appendix B

the central system. Thus we have a coverage C for detecting failures in
this case also. The probability of failure per hour is for the pedal node:

PF (t) = 1 + (2C − 1) e−2 t λ + 2 C e−t λ (B.20)

The failure rate of the pedal node is:

λpedalHDD = λµP2 + λPIC + λCI + λBD + λcon

Reliability for pedal node in the Partially-Distributed Duplex (HDD)
system RpedalHDD = 1 − PF (1) with λ in equation (B.20) as λpedalHDD.

We will again assume that we have three pedal sensors. These sen-
sors are connected to both pedal nodes. They do not fail in a way that
affect the other sensors. However, we assume that we need two of three
sensors for correct operation. The reliability of a 2-of-3 system is (with
independent components with the same reliability R) 3R2 − 2 R3.

RSensorsHDD = 3 e−2 λs − 2 e−3 λs

For the duplex bus we have:

RBusHDD = 1 − (1 − RHDbus)
2

Finally for the brake pressure actuators we have the same as with the
central system:

RBrakeActHDD = R2
oneside

The reliability for the system is finally a serie system of: the pedal
sensors - the pedal node - the bus - the actuators.

RHDD = RsensorsHDD RpedalHDD RBusHDD RBrakeHDD

The probability for system failure per hour is thus:

QHDD = 1 − RHDD = 1 −
(
0.999975 + 2.51 × 10−5

)
(
3 e−2 λs − 2 e−3 λs

)
(

1 −
(
1 − e−2.966×10−6−λs

)3
)2

In Figure B.8 the probability of system failure is shown when varying
λs and C,

B.3 Reliability Calculations 159

0.00001
0.00002

0.00003

0.00004

Λs failure rate
0.99

0.992

0.994

0.996

0.998

C, coverage
0

5�10-8
1�10-7

1.5�10-7
2�10-7

QHDD

.00001
0.00002

0.00003ilure rate

Figure B.8: The probability for losing the critical functionality of the
partially-distributed duplex system.

B.3.3 Distributed System

Simplex

In Figure B.9 we show the system configuration for the fully-distributed
system. In this system there is no Central Node.

The bus will almost have the same amount of connections as the
partially-distributed system, except the Central node. In the distribute
system we assume that additional sensors and actuators are connected to
existing distributed nodes. Thus we will have a total of 8 bus connections,
i.e., n = 8.

λDSbus =
n λcon

10

RDSbus = e−λDSbus = 0.9999989

The distributed nodes, i.e., nodes with sensors and actuators con-
nected are the following. Two nodes with two sensors connected. They

160 Appendix B

Pedal

Pressure

Sensor

SteeringWheelSensor

6 x (One per Wheel)

Brake

Pressure

Actuator

WheelVelocitySensor

Yaw

Rate

Sensor

LateralAcc.Sensor

Dist.

Node

Dist.

Node

Dist.

Node

Figure B.9: The fully-distributed system configuration.

have the following failure rate, the node with yaw rate and lateral veloc-
ity sensors and the node with steering wheel sensor and brake pedal has
λDSylv and λDSswbp, respectively, (per hour).

λDSylv = λDSswbp = λµP3 + λPIC + λCI + λBD + λcon + 2 λs

For the six wheel nodes with a wheel velocity sensor and a brake
pressure actuator connected λDSwvbp as failure rate.

λDSwvbp = λµP3 + λPIC + λCI + λBD + λcon + λs + λa

The we can get the System reliability for the total functionality
from these components in a series system.

RDS = RDSbus e−λDSylv e−λDSswbp

(
e−λDSwvbp

)6
= 0.999934 × e−16 λs

The probability of loss of functionality per hour is thus:

QDS = 1 − RDS

And in Figure B.10 we see the probability of loss of functionality when
the failure rate for sensors and actuators, i.e., λs and λa, is ranging 10−6

to 40 × 10−6.

Critical Functionality

Here we assume that the system only need the brake pedal sensor and
one brake pressure actuator on each side of the vehicle. For the pedal
sensor node in the Distributed Critical System (DCSpedal) we have:

λDCSpedal = λµP3 + λPIC + λCI + λBD + λcon + λs

B.3 Reliability Calculations 161

0 20 40 60 80 100
Λs�10�6

0

0.25

0.5

0.75

1

1.25

1.5

Q
d
�
1
0

�
3

Distributd system, full functionality

Figure B.10: The probability of losing any functionality in the fully-
distributed system

RDCSpedal = e−λDCSpedal

For the wheel nodes with brake presssure actuator:

λDCSbrake = λµP3 + λPIC + λCI + λBD + λcon + λa

RDCSbrake = e−λDCSbrake

We have a parallel system on each side where at least one of the
actuator node must be functional for accepteble behavior. Thus, the
reliability that at least one brake node at one side is working is RDCSside.

RDCSside = 1 − (1 − RDCSbrake)
3

The total reliability for the critical functionality is (serie system with
bus, pedal node, 2*brake pressure act.):

RDCS = RDCbus RDCSpedal R
2
DCSside

The probability for system failure is QDCS :

QDCS = 1−RDCS = 1−0.999982×e−λs

((
1 − 0.999984 × e−λs

)3 − 1
)2

The probability of losing critical functionality when λaλs is 10−6 to
40 × 10−6 is shown in Figure B.11.

162 Appendix B

0 10 20 30 40
Λs�10�6

20

30

40

50

Q
C
h
d
�
1
0

�
6

Distributd system, Critical functionality

Figure B.11: The probability of losing critical functionality in the
partially-distributed system

Distributed, Duplex

With the duplex partially-distributed system we assume that we only
duplicate the critical part of the system. For the duplex system, which
will be very similar to the partially-distributed duplex case. Thus, it will
contain the bus and the node with the pedal sensors connected and at
least one actuator node at each side of the vehicle. For this node we
will have the same Markov model as for the central node in the central
system. Thus we have a coverage C for detecting failures in this case also.

For one hour we get the probability of failure for the pedal node of:

PF (t) = 1 + (2C − 1) e−2 t λ + 2 C e−t λ (B.21)

The failure rate of the pedal node is:

λpedalDDS = λµP3 + λPIC + λCI + λBD + λcon

Reliability for pedal node in the fully-Distributed Duplex System
(DDS) RpedalDDS = 1 − PF (1) with λ in equation (B.21) as λpedalDDS .

We will again assume that we have three pedal sensors. These sen-
sors are connected to both pedal nodes. They do not fail in a way that
affect the other sensors. However, we assume that we need two of three
sensors for correct operation. The reliability of a 2-of-3 system is (with
independent components with the same reliability R) 3R2 − 2 R3.

RSensorsDDS = 3 e−2 λs − 2 e−3 λs

For the duplex bus we have:

RBusDDS = 1 − (1 − RDSbus)
2

B.3 Reliability Calculations 163

Finally for the brake pressure actuators we have the same as with the
central system:

RBrakeActDDS = R2
oneside

The reliability for the system is finally a serie system of: the pedal
sensors - the pedal node - the bus - the actuators.

RDDS = RsensorsDDS × RpedalDDS × RBusDDS × RBrakeDDS

The probability for system failure per hour is thus:

QDDS = 1 − RDDS =

1 −
(
0.999967 + 3.29 × 10−5

) (
3 e−2 λs − 2 e−3 λs

)
(

1 −
(
1 − e−2.866×10−6−λs

)3
)2

In Figure B.12 the probability of system failure is shown when varying
λs and C.

0.00001
0.00002

0.00003

0.00004

Λs failure rate
0.99

0.992

0.994

0.996

0.998

C, coverage

0

1�10-7
2�10-7QDDS

.00001
0.00002

0.00003ailure rate

Figure B.12: The probability for losing the critical functionality of the
Fully-Distributed duplex system.

164 Appendix B

Bibliography

[ARI95] Aeronautical Radio, Inc. Multi-Transmitter Data Bus, Part
1, Technical Description, Dec. 1995. 8, 18, 74

[ATJ99] Kristina Ahlström, Jan Torin, and Rikard Johansson. Future
electrical flight control systems, analysis of distributed archi-
tectures. Technical Report 99-25, Department of Computer
Engineering, Chalmers University of Technology, 1999. 109,
133

[BES+01] Josef Berwanger, Christian Ebner, Anton Schedl, Ralf
Belschner, Sven Fluhrer, Peter Lohrmann, Emmerich Fuchs,
Dietmar Millinger, Michael Sprachmann, Florian Bogen-
berger, Gary Hay, Andreas Krüger, Mathias Rausch, Wolf-
gang O. Budde, Peter Fuhrmann, and Robert Mores. FlexRay
- the communication system for advanced automotive control
systems. In SAE 2001 World Congress, SAE TECHNICAL
PAPER SERIES, Detroit, Michigan, 2001. 8

[BPG] Josef Berwanger, Martin Peller, and Robert Griessbach. Byte-
flight - a new high-performance data bus system for safety-
related applications. http://www.byteflight.com/. 8

[Byt99] Byteflight specification, ver. 0,5. http://www.byteflight.com/,
29.10.1999 1999. 8

[CAN91] Robert Bosch GmbH. CAN Specification Version 2.0, 1991.
10, 17, 52, 85

[CGS00] Vilgot Claesson, Magnus Gäfvert, and Martin Sanfridsson.
Proposal for a distributed computer control system in heavy-
duty trucks. Dicosmos Internal Report 00-16, Computer En-
gineering, Chalmers University of Technology., 2000. 15

[Cla99] Vilgot Claesson. Cost Effective Communication Services for
Applications in Distributed Time Triggered Real-Time Sys-

166 BIBLIOGRAPHY

tems. Thesis for the degree of licentiate of engineering,
Chalmers University of Technology, 1999. 12

[CPR+92] M. Chrque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron.
Active replication in delta-4. In IEEE Workshop on Fault-
Tolerant Parallel and Distributed Systems, pages 28 –37, 1992.
5

[CPS98] Vilgot Claesson, Stefan Poledna, and Jan Söderberg. The
XBW model for dependable real-time systems. In Interna-
tional Conference on Parallel and Distributed Systems, pages
130–138, Tainan, Taiwan, 1998. 12

[DPC+96] P. Dowd, J. Perreault, J. Chu, D.C. Hoffmeister, R. Minnich,
D. Burns, F. Hady, Y.J. Chen, M. Dagenais, and D. Stone.
LIGHTNING network and systems architecture. IEEE/OSA
Journal Of Lightwave Technology, 14(6):1371–1387, 1996. 19,
48

[EJ01] Cecilia Ekelin and Jan Jonsson. Evaluation of search heuris-
tics for embedded system scheduling problems. In Proc. of
the International Conference on Principles and Practice of
Constraint Programming, pages 640–654, Paphos, Cyprus,
November 16–December 1, 2001. 58

[Fol99] Peter Folkesson. Assessment and Comparison of Physical
Fault Injection Techniques. PhD thesis, Chalmers University
of Technology, 1999. 5, 118

[GSC00] Magnus Gäfvert, Martin Sanfridsson, and Vilgot Claesson.
Truck model for yaw and roll dynamics control. Technical
Report ISRN LUTFD2/TFRT–7588–SE, Department of Au-
tomatic Control, Lund Institute of Technology, Sweden, Sep
2000. 100

[Joh89] Barry W. Johnson. Design and analysis of fault-tolerant digi-
tal systems. Addison-Wesley series in electrical and computer
engineering. Addison-Wesley, cop., 1989. 109, 111

[KDK+89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl,
C. Senft, and R. Zainlinger. Distributed fault-tolerant real-
time systems: The MARS approach. IEEE Micro, 9(1):25–40,
1989. 5

BIBLIOGRAPHY 167

[KG94] H. Kopetz and G. Grunsteidl. TTP- a protocol for fault-
tolerant real-time systems. IEEE Computer, 27(1):14–23,
1994. 19, 21, 22, 31, 45, 72, 78

[KKH+96] H. Kopetz, A. Krüger, R. Hexel, D. Millinger, R. Nossal,
R. Pallierer, and C. Temple. Redundancy management in the
time-triggered protocol. Technical Report 4/1996, Technical
University of Vienna, 1996. 19, 21

[Kop93] H. Kopetz. Should responsive systems be event-triggered or
time triggered? IEICE Trans. on Information and systems,
E76D(11):1325–1332, 1993. 18

[KS80] L. Kleinrock and M. O. Scholl. Packet switching in radio chan-
nels: New conflict-free multiple access schemes. IEEE Trans-
action Communication, COM-28(7):1015–1029, 1980. 7, 8

[kSkJC01] H̊akan Sivencrona, Lars-Åke Johansson, and Vilgot Claesson.
A novel bit-oriented communication concept for distributed
real-time systems, qrcontrol. In 3rd International Confer-
ence on Control and Diagnostics in Automotive Applications
(CDAUTO01), Sestri Levante (Genova), Italy., 2001. 76

[KSY84] James F. Kurose, Mischa Schwartz, and Yechiam Yemini.
Multiple-access protocols and time-constrained communica-
tion. Cumputing Surveys, 16(1):43–70, 1984. 5, 7

[KU95] P. J Koopman and B. P. Upender. Time division multiple
access without a bus master. Technical Report RR-9500470,
United Technologies Research Center, USA, 1995. 19

[LA99] Henrik Lönn and Jakob Axelsson. A comparison of fixed-
priority and static cyclic scheduling for distributed automotive
control applications. In 1th Euromicro Conference on Real-
Time Systems, pages 142–149, York, 1999. 52

[LH01] G. Leen and D. Heffernan. Time-triggered controller area
network. IEE Computing & Control Engineering Journal,
12(6):245–256, December 2001. 4

[Lön99a] Henrik Lönn. Initial synchronization of TDMA communi-
cation in distributed real-time system. In 19th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS’99), Austin, TX, USA, pages 370–379, 1999. 25,
48

168 BIBLIOGRAPHY

[Lön99b] Henrik Lönn. A simulation model of the DACAPO protocol.
Technical Report 99-1, Department of Computer Engineering,
Chalmers University, 1999. 138

[Lön99c] Henrik Lönn. Synchronization and Communication Results
in Safety-Critical Real-Time Systems. Ph.d thesis, Chalmers
University of Technology, 1999. 48

[LS95] H. Lönn and R. Snedsbøl. Synchronisation in safety-critical
distributed control systems. In IEEE International Confer-
ence on Algorithms and Architectures for Parallel Processing,
ICA3PP, volume 2, pages 891–899, Brisbane, Australia, 1995.
3

[MB76] Robert M. Metcalfe and David R. Boggs. Ethernet: dis-
tributed packet switching for local computer networks. Com-
munications of the ACM, 19(7):395 – 404, 1976. 5, 10

[MIL92] Military handbook: reliability prediction of electronic equip-
ment, MIL-HDBK-217F, 1992. 109, 111, 113, 143

[MZ95] Nicholas Malcolm and Wei Zhao. Hard real-time communica-
tion in multiple-access networks. Real Time Systems, 9(1):75–
107, 1995. 5

[Pol99] Projektbeskrivning p̊albus - utvärdering av p̊alitliga dis-
tribuerade styrsystem. SP Swedish National Testing and Re-
search Institute, Bor̊as, Sweden, Technical notes (”Arbetsrap-
port”) SP-AR 1999:31,, 1999. vii

[Pow92] D. Powell. Failure mode assumptions and assumption cov-
erage. In Twenty-Second International Symposium on Fault-
Tolerant Computing, FTCS-22., pages 386–395, 1992. 5

[Pra95] Dhiraj K. Pradhan. Fault-Tolerant Computer System Design.
Prentice-Hall, Inc., 1995. 109

[PSA97] D. Peng, K. G. Shin, and T. Abdelzaher. Assignment and
scheduling of communicating periodic tasks in distributed
real-time systems. IEEE Trans. on Software Engineering,
23(12):745–758, December 1997. 57

[PT86] K.J. Perry and S. Toueg. Distributed agreement in the pres-
ence of processor and communication faults. IEEE Transac-
tions on Software Engineering, 12(3):477–482, 1986. 5

BIBLIOGRAPHY 169

[RLST95] Babak Rostamzadeh, Henrik Lönn, Rolf Snedsbøl, and Jan
Torin. DACAPO: a distributed computer architecture for
safety-critical control applications. In Intelligent Vehicles
Symposium, pages 376 – 381, Detroit, MI, USA, 1995. 22,
31, 46, 48

[SCG00] Martin Sandfridsson, Vilgot Claesson, and Magnus Gäfvert.
Investigation and requirements of a computer control sys-
tem in a heavy-duty truck. Technical Report TRITA-MMK
2000:5, ISSN 1400-1179, ISRN/MMK–00/5–SE, Mechatronics
Lab, Royal Institute of Technology., 2000. 110, 117, 121

[SHW94] Neeraj Suri, Michelle M. Hugue, and Chris J. Walter. Syn-
chronization issues in real-time systems. Proceedings of the
IEEE, 82(1):41–54, 1994. 3, 93

[SS92] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer
Systems, design and evaluation. Digital Press, second edition,
1992. 109

[Sta91] W. Stallings. Data and Computer Communications. Macmil-
lan Publishing Company, New York, 1991. 19

[TB94] K. Tindell and A. Burns. Guaranteed message latencies for
distributed safety-critical hard real-time control net. Techni-
cal Report YCS 229, Department of computer science, real-
time systems research group, University of York, 1994. 18

[TBW92] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard
real-time tasks: An NP-hard problem made easy. Real-Time
Systems, 4(2):145–165, June 1992. 57

[TBW95] Ken Tindell, Alan Burns, and Andy J. Wellings. Analy-
sis of hard real-time communications. Real-Time Systems,
9(2):147–171, 1995. 52

[Tem98] C. Temple. Avoiding the babbling-idiot failure in a time-
triggered communication system. In Twenty-Eighth Annual
International Symposium on Fault-Tolerant Computing, pages
218 – 227, 1998. 5

[TL94] Martin Törngren and Hans Lind. On decentralization of con-
trol functions for distributed real-time motion control. In In-
ternational Symposium on Robotics and Manufacturing, IS-
RAM’94, 1994. 106

170 BIBLIOGRAPHY

[TTP99] Time-Triggered Technology, TTTech Computertechnik
GmbH, www.tttech.com. TTP/C protocol, Specification of
the Basic TTP/C protocol, 1.0 edition, Jul 1999. 31, 45, 46,
72, 78, 93

[X-B98] X-By-Wire Team. X-By-Wire - safety related fault tolerant
systems in vehicles, final report, Nov. 1998. vii, 12

[Yeh96] Y.C. Yeh. Triple-triple redundant 777 primary flight com-
puter. In Aerospace Applications Conference, volume 1, pages
293 –307, 1996. 8

	Introduction
	System Model
	Time-Triggered System
	Event-Triggered System
	Event-Triggered and Time-Triggered Example Run
	Fault Model

	Multiple Access Approaches
	Control access protocols
	Contention Based Protocols

	Goals and Problem Statements
	Activities
	Main Contributions
	Disposition

	Synchronization Approaches
	Related Work
	System Models Behind the Approach
	Initialization and Resynchronizations
	The Node-Level Synchronization Operations

	Upper Bound on Startup
	Properties and Overhead
	Simulations
	Normal Operation
	Fault Scenarios
	Identical Message Length Scenario
	Comparison

	Time- and Event-Triggered Multiple Access
	Related Work
	System and Task Model
	Time-Triggered Approach
	Event-Triggered Approach

	Communication Issues
	Periodic Messages
	Sporadic Messages

	Simulation Setup
	Task and Communication Scheduling
	Communication Load

	Discussions
	Conclusions

	ET Channel on TT Base
	Lower Priority Non-Periodic Messages
	Pre-Scheduled Slack
	A Mixed Access Method

	High-Priority Sporadic Messages
	Reset Pulse
	Minislots
	One Minislot

	TTP+: A New Approach
	Prioritization of Sporadic Messages

	Properties
	Summary

	Conclusions, Perspectives and Future Issues
	Synchronization Issues
	Media Access
	The Best of Both Worlds
	Future Research Issues
	Synchronization Issues
	Media Access
	Composite Event-Triggered and Time-Triggered Approach

	Appendix A
	Acknowledgments
	The Target System for the Case Study
	System Constraints
	Architecture
	Control System Architecture
	Computer Architecture

	Dependability of Different Computer Configurations
	Assumptions
	Reliability of Total Functionality - Simplex
	Reliability of Critical Functionality - Simplex
	Reliability of Duplex System Configurations

	Architecture Investigation
	Assumptions
	Central Strategy
	Central Control with Partially-Distributed Computer Architecure
	Central Control with Fully-Distributed Computer Architecture
	Mixed Control with Central Computer
	Mixed Control with Partially-Distributed Computer
	Mixed Control with Fully-Distributed Computer
	Local Control with Central Computer
	Local Control with Partially-Distributed Computer
	Local Control with Fully-Distributed Computer

	Summary and Conclusions

	Appendix B
	Abbreviations
	Failure Rates
	Microprocessor in a Central Node
	Microprocessor in Partially-Distributed Nodes
	Microprocessor in Fully-Distributed Nodes
	Communication Interface
	Power IC
	Bus Driver
	Bus Connections
	Sensors and Actuators
	Sensor and Actuator Communication Interface

	Reliability Calculations
	Central System
	Partially-Distributed System
	Distributed System

