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A B S T R A C T

Over the last decades the digitalization has become an integral part of daily life.
Computer systems complexity has also grown at a rapid pace. New business mod-
els have emerged to optimize utilization and maintenance cost of these complex
systems, but neglecting the introduction of new security threats. Cloud comput-
ing, for instance, has been established as an important part of the modern IT
infrastructure ignoring the potential security risks entailed in its pervasive usage.

A popular threat in the Cloud and other complex systems that are reliant on
the usage of shared resources stems from the exploitation of side channels. In
the context of co-location of mutually untrusted users on the same hardware,
the confidentiality of user data has to be guaranteed. However, the class of side-
channel and covert-channel attacks has been demonstrated to circumvent the secure
isolation between co-located users both in the Cloud and in a native environment
by exploiting hardware side effects, e.g., through timing analyses of accesses to
CPU caches. The threat related to these exploits has been known for decades, but
its relevance has grown with the increasing popularity of Cloud services. In this
context, the cache is leveraged as an illegal channel to convey information either
from one adversary to another in a covert-channel attack or to leak information
from a victim to an attacker in a side-channel attack. As cache usage does not
require any privileges, addressing the threat resulting from such an exploit turns
out to be a challenging task.

On this background, this thesis aims at enhancing systems security by con-
sidering the cache-based covert-channel and side-channel attacks. We develop a
classification of existing attacks by exploring their feasibility depending on the
execution environment context, and construct an information leakage model which
includes the CPU scheduling effect on the core-private cache exploitability. To
delve into the specifics of detecting cache exploits, we define a set of indicators
of compromise and investigate their correlation with the success of a core-private
cache exploit. To account for the effect of the hypervisor scheduling configuration
on the exploitability of the core-private cache, we empirically assess the success
of a covert-channel attack while varying hypervisor scheduling parameters. We
employ software events and performance counters to develop a reliable detection
mechanism tailored to find contemporary side-channel attacks.

The results presented in the thesis demonstrate that by utilizing deliberately
selected indicators of compromise along with a comprehensive analysis, systems
security can be significantly enhanced with respect to the cache exploitability.
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K U R Z FA S S U N G

In den letzten Jahrzehnten hat sich die Digitalisierung zu einem festen Bestandteil
des täglichen Lebens entwickelt. Die Komplexität von Computersystemen hat eben-
falls zugenommen. Neue Geschäftsmodelle sind entstanden, um die Auslastung
und die Wartungskosten zu optimieren, aber die damit verbundene Einführung
neuer Sicherheitsbedrohungen wird häufig vernachlässigt. Cloud Computing hat
sich als wichtiger Bestandteil der modernen IT-Infrastruktur etabliert trotz der po-
tenziellen Sicherheitsrisiken, die mit seiner allgegenwärtigen Nutzung verbunden
sind.

Eine verbreitete Bedrohung in der Cloud und anderen komplexen Systemen, die
auf die Verwendung gemeinsam genutzter Ressourcen angewiesen sind, resultiert
aus der Ausnutzung von Seitenkanälen. Diese Bedrohung ist seit Jahrzehnten
bekannt, aber ihre Relevanz hat mit der zunehmenden Popularität von Cloud-
Diensten zugenommen. In diesem Kontext kann der Cache als Seitenkanal genutzt
werden, um die Datenübertragung zwischen Gegnern bei einem verdeckten Ka-
nalangriff oder Datenexfiltration von einem Opfer bei einem Seitenkanalangriff
zu ermöglichen. Da für die Verwendung des Caches keine Berechtigungen erfor-
derlich sind, gestaltet sich die Bekämpfung der Bedrohung durch einen solchen
Exploit als herausfordernd.

Vor diesem Hintergrund zielt diese Dissertation darauf ab, die Systemsicherheit
zu verbessern, indem cache-basierte Seitenkanalangriffe berücksichtigt werden.
Wir entwickeln eine Klassifizierung bestehender Angriffe, indem wir ihre Durch-
führbarkeit in Abhängigkeit vom Kontext der Ausführungsumgebung untersuchen
und ein Modell erstellen, das den CPU-Schedulingeffekt auf die Ausnutzbarkeit
des Core-Private-Cache einschließt. Um die Besonderheiten der Erkennung von
Cache-Exploits zu untersuchen, definieren wir Gefährdungsindikatoren und unter-
suchen deren Korrelation mit dem Erfolg eines Core-Private-Cache-Angriff. Um
die Auswirkung der Hypervisor-Scheduling-Konfiguration auf die Ausnutzbar-
keit des Core-Private-Cache zu berücksichtigen, wird der Angriffserfolg unter
Variation der Hypervisor-Scheduling-Parameter empirisch bewertet. Mithilfe von
Software-Events und Performance Counters entwickeln wir einen zuverlässigen
Erkennungsmechanismus, der auf das Auffinden aktueller Seitenkanalangriffe
zugeschnitten ist.

Die in der Dissertation vorgestellten Ergebnisse zeigen, dass durch die Ver-
wendung bewusst ausgewählter Gefährdungsindikatoren zusammen mit einer
umfassenden Analyse die Systemsicherheit in Bezug auf die Cache-Ausnutzbarkeit
erheblich verbessert werden kann.
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1
I N T R O D U C T I O N

Security is always excessive until it
is not enough

Robbie Sinclair

Computer systems have become a significant part of our lives while evolving at
a rapid pace. Over the last decades they have continuously grown in complexity
both in terms of hardware and software. For years hardware has undergone a
considerable improvement in speed and space utilization complying with Moore’s
law [Moo00], which has predicted a doubling of the number of transistors every
second year. Although Moore’s law does not necessarily characterize the current
hardware development trend anymore [Hea18], hardware is still becoming more
complex to compensate, e.g., through massively parallel architectures. Due to this
rapid development, the existing hardware has been able to easily solve general
purpose tasks for decades now which enables the ubiquitous usage of computing
power.

As a result, almost every area of nowadays life is dependent on digitalisation
or computing. Business, administration, medical care and research are just a
few examples of domains that rely on modern computing. Consequently, more
and more personal data such as medical records or browsing history is collected
in a digital form for various purposes with or without user consent. As an
example, advertisement services have become reliant on targeting their audience
by analyzing data focused on customer interests. The increase in data gathering
practices has become so ubiquitous that legislation was introduced to rein the
collection of personal data. The European Union adopted the General Data
Protection Regulation (GDPR) [Gdp] in 2016 to regulate the gathering of personal
data related to individuals in the European Union. A similar proposal, known
as the California Consumer Privacy Act [Ccp], was enacted on the 28th of July,
2018 in California to impose new data protection requirements on companies
while granting new rights to the consumers with respect to the collection of their
personal data.

The software that enables this rapid development and the processing of huge
amounts of data also grows in size and complexity. Spinellis et al. show in their
work [SA19] that the codebase of the modern operating systems has drastically
grown. For instance, the number of lines of kernel code for Research PDP7 has
evolved from 2489 in 1970 to about 8518968 lines of kernel code in FreeBSD 11.0.0
in 2016 [SA19]. Similarly, the number of lines of code of OpenSSL [Ope] has
increased from less than 200000 in 2000 to more than 500000 in 2019. In addition,
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2 introduction

the interconnectivity of various types of devices (cars, mobile phones, etc.) has
also increased. Concepts such as Internet of Things and Artificial Intelligence
dealing with huge amounts of data, and creating sophisticated prediction models
are now well-established. The systems are getting more complex in every thinkable
dimension.

The increased usage of and reliance on the Internet and digitalization has
emphasized the need for solutions that facilitate the optimized utilization of
resources, and concepts focused on the shared usage of resources have emerged.
Cloud computing services, for instance, have gained much popularity for their
cost efficiency, high availability and on-demand up and down scaling. This is why
Cloud computing has become prevalent for numerous applications. According to
Gartner, Inc., the Cloud services industry will grow exponentially through 2022

at nearly three times the growth of overall IT services [Gar19]. Moreover, the
Healthcare Information and Management Systems Society (HIMMS) Analytics
conducted a study in 2014 [HIM14] which confirmed the increasingly wide-spread
adoption of Cloud services in critical sectors such as healthcare which deal with
highly sensitive private information. Being widely used even in critical sectors,
Cloud computing providers need to guarantee secure environments for their
customers. Relying intrinsically on shared resources, the Cloud customers have to
be securely isolated from each other without the possibility to leak information
from the co-located customers.

Along with the benefits and advantages the technological innovations brought
along, the risk of loosing control over personal data and the unpredictability of
software behavior, especially in the context of increasing system complexity and
resource sharing, has risen. The growth in software complexity leads to potential
increases in the attack surface and can open up new vulnerabilities. The National
Vulnerability Database (NVD) [Nis] maintained by the US National Institute
for Standards and Technology (NIST) contains more than 16000 vulnerabilities
(i.e., flaws in software which can be exploited by an attacker) reported in 2018
compared to less than 2000 vulnerabilities reported in 2003 and approximately
2500 vulnerabilities reported in 2004 [Nis]. The increased number of vulnerabilities
demonstrates the relevance of security nowadays in the complex IT world and
indicates the need for rigorous methods to address the existing security issues.

1.1 security in a complex it world

In the context of wide-spread data collection and sharing of resources across
security boundaries, the importance of security and in particular the confidentiality
of data only increases. Data confidentiality "deals with protecting against the
disclosure of information by ensuring that the data is limited to those authorized
or by representing the data in such a way that its semantics remain accessible
only to those who possess some critical information (e.g., a key for decrypting the
enciphered data)" according to the definition provided by NIST [Infa]. The data
confidentiality property guarantees that the data is not made available or disclosed
to unauthorized entities, individuals or processes, and the confidential information
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has to be kept securely disallowing unauthorized access. It is usually achieved by
the means of encryption.

Data confidentiality is vital to Cloud computing systems due the usage of shared
resources across security boundaries. In fact, the requirement of secure isolation
between co-located customers dates back decades. Commonly, the underlying
technology in Cloud computing is virtualization which enables the co-location
of users across security domains encapsulated in virtual machines. Among the
early requirements on virtualization, as defined by Popek [PG74], is the isolation
of a virtual machine. This property includes the requirement that the co-located
virtual machines cannot compromise the confidentiality of each other. Today, with
the increased complexity of computer systems and software, the relevance of this
requirement has increased.

Although security is a necessary property for a variety of application scenarios,
addressing security requirements can be challenging. For already well-established
legacy systems enhancing security entails an increase in terms of cost, and might
introduce performance overhead or usability issues. Depending on the system,
fixing security issues or adapting to changing threats may even require renew-
ing the standardization of the system, and performing a whole standardization
procedure from the beginning. This is, for example, often the case in critical
infrastructures such as railway systems. Such issues make system administrators
sometimes reluctant to incorporate proper security solutions into their systems
unless it is urgently necessary. Furthermore, the adoption of new security solutions
and replacing of old ones is often cumbersome and slow.

This is a wide-spread issue in cryptographic software, where legacy ciphers are
frequently supported long after their deprecation, which can lead to exploiting
security flaws. In 2016 the Sweet32 vulnerability (CVE-2016-2183 and CVE-2016-
6329) has been reported to exploit the 3DES encryption algorithm [BL16]. The
3DES algorithm has been considered a legacy cipher for quite some time, and the
reported attack emphasizes the need to retire weaker algorithms such as 3DES.
Despite this fact, according to the authors of the reported vulnerability, 3DES
had been used for about 1-2% of all HTTPS connections between mainstream
browsers and web servers. About a year after the Sweet32 vulnerability report,
in July 2017, NIST has withdrawn the approval for using 3DES in protocols such
as TLS and IPSec. NIST has declared the algorithm as officially retired in a draft
guidance published in July, 2018 [BR19]. Similarly, Microsoft announced in April
2019 that 3DES algorithm will be retired beginning of July 2019, about three years
after the Sweet32 vulnerability report [Ari19]. This example confirms that the
adoption of contemporary security solutions is commonly slow and cumbersome,
and compromised solutions might be still in use.

The human factor is often an additional reason for the slow changes related to
systems security. User frustration and lack of knowledge often pose a challenge
when incorporating security measures to existing systems. Recently, Stark et
al. [Sta+19] reported on their experience on deploying a security solution that
tackles the danger of improper certificate issuance and can provide desirable
security benefits, but its full deployment would represent a huge change to the
HTTPS ecosystem. They also studied user behavior in the cases of breakage and
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came to the conclusion that user behavior is unsafe. Another experiment based on
a cyber-physical systems game described in [Fre+17] demonstrated that even the
security experts involved in the experiment tended to neglect intelligence gathering.
Being that confident in their expertise, the security experts often skipped threat
assessment which had implications on their performance within the study. Facing
such challenges contributes to the cumbersome and slow addressing of security
requirements and issues, and despite the pervasive deployment of cryptographic
solutions to enhance system security, confidential data often remains insecure.

While addressing security issues in software and protocols is cumbersome
and slow, current architectures are intrinsically insecure, and the vulnerabilities
resulting from hardware properties are even harder to tackle. The employed
hardware optimizations have resulted in a tremendous performance upgrade over
the years, but are often related to security implications confirmed by the wide range
of covert-channel attacks and side-channel attacks. These classes of attacks with
their different manifestations are often a result of the hardware design exhibiting
side effects. The existence of such powerful attacks that can compromise system’s
confidentiality is theoretically known for more than two decades. However, the
system’s performance is often at odds with the system’s security and, in such cases,
when security comes at a price, it is often being neglected.

1.2 exploiting side channels

A side-channel attack is defined as an attack that is enabled by information
leakage stemming from a physical ecosystem [Infb]. These attacks are based on
characteristics resulting from the shared usage of or access to resources such as
timing, power consumption, acoustic and electromagnetic emissions, etc. Side-
channel attacks pose a threat to confidentiality and are hard to detect or prevent.
In a side-channel scenario, an adversary observes victim’s usage of a shared
component and can extract victim’s sensitive data based on analysis of the collected
observations.

A similar exploit represents the covert-channel attack. A covert channel, as
defined in [Infc], is a channel which is not intended or authorized for communica-
tion, but enables the information transfer between two cooperating entities. This
happens in a way that violates the system’s security policy but the involved entities
do not exceed their access authorizations. Similar to the side-channel attack, a
covert-channel attack exploits hardware side effects such as timing information.

Nowadays, top security conferences are concerned with the investigation of the
covert-channel and side-channel exploits, and devote a significant part of their
programs to the threat related to the misuse of side effects [Ccs; Spp]. At the same
time, major providers such as VMWare or Amazon provide solutions that exclude
different side-channel exploit possibilities [Ama14; VMwb]. This trend emphasizes
the relevance of the covert-channel and side-channel exploits. Side-channel and
covert-channel attacks abusing the side effects of the cache are in the focus of the
thesis and are discussed in more detail in Part I. Within the thesis, the term "side
channel" is used to denote the leakage channel in the context of both side-channel
attacks and covert-channel attacks.
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Figure 1: Occurrences of Side-Channel Vulnerabilities in the NIST National Vulnerability
Database [Nis].

Currently, the research focuses on (i) proposals of new ways to exploit varied
features of the computer architectures which emanate side effects; (ii) novel mea-
sures to combat the proposed exploits; and (iii) ways to detect them. In the course
of the last decade security gaps stemming from the abuse of side effects have been
closed, but new gaps have been opened up. This trend shows that the side-channel
problem has not been solved. The number of the officially published vulnerabilities
in NVD [Nis] emanating from side channels and exhibiting from low to critical
severity has risen over the last years, as shown in Figure 1. On this background,
what is currently clear is that side-channel and covert-channel attacks are hard to
tackle despite representing a serious threat to the complex computer world and
despite the extensive research being conducted on the topic.

The side-channel threat is basically related to all the thinkable components of a
device, ranging from a power adapter (cf., [MDS99]), monitor (cf., [Gen+19]), key-
board (cf., [GST14; SWT01]) to cache memory (e.g., [Per05; Yan+19]). Commonly,
each risky component is considered separately, and often mitigation strategies
tailored to combat specific attacks are developed and proposed. Then, new mani-
festations of, theoretically, the same attack are discovered which might focus on a
different component. A recent example for this development is the work conducted
by Yan et al. [Yan+19] which demonstrates the feasibility of side-channel attacks
on the sliced non-inclusive last-level cache of Intel Skylake-X architecture which
has been considered more secure against last-level cache-based exploits. This work
reconfirms that side-channel attacks are not an elusive threat, and research on
them is expected to continue at least at the same pace.
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1.3 research questions and contributions

This thesis investigates the research questions stated below, and extends the
field of research by making the contributions summarized under the respective
research questions. The overall goal of this work and the common line in the
research questions is the investigation of cache-based side-channel and covert-
channel attacks, referred to as cache-based exploits, and their interplay with the
execution environment. In the focus of the thesis are both the effect of the execution
environment on the cache-based exploits, and the effect of these exploits on the
execution environment, i.e., their possible traces. The thesis aims at enhancing
the security of systems relying on shared resources by providing a side-channel
attacks detection mechanism, and assessing their interaction with the execution
environment. The individual research questions are discussed below.

Research Question 1 (RQ1) Can we classify and model side-channel exploits considering
the impact of the execution environment on their feasibility?

Side-channel and covert-channel exploits have been a known threat for decades,
and they continue to grow in popularity. Such exploits are especially relevant
in Cloud scenarios where resource sharing across security boundaries is com-
monplace. It has been demonstrated that side-channel attacks can enable data
exfiltration and allow attackers to extract confidential information, such as secret
keys. Currently, there is no universal solution for coping with this threat, and
this is aggravated by the fact that the diversity of side-channel attacks continues
to grow. Still, not every reported side-channel attack is feasible under any con-
dition. While side-channel exploitation in the real-world commonly depends on
particular properties of the execution environment (e.g., scheduling), the explicit
consideration of these properties is often neglected.

Therefore, it will be beneficial to classify the side-channel attacks while con-
sidering the factors and properties which characterize the assumed execution
environment. Formal modeling of the side channels that include the execution en-
vironment’s impact is necessary to understand the risk of a particular cache-based
exploit in a specific system.

Contribution 1 (C1): A classification approach of side-channel exploits and a side-channel
attack model that take execution environment factors into account

A panoply of resources can be exploited to leak information as a side channel. To
better understand the risk associated with the exploitation of these resources, this
thesis proposes a classification approach for the side-channel exploits. Depending
on the context, these attacks can be fairly difficult to conduct in a real-world setting,
or their execution can be facilitated, e.g., due to the scheduling configuration.

We provide a classification framework that aims to describe the side-channel
attacks based on their execution context to aid the analysis and assessment of their
specific characteristics resulting in possible detection or mitigation mechanisms.
Based on the proposed classification framework, we focus on the feasibility of
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side-channel attacks that exploit cache memory in a virtualized environment. The
goal of this contribution is to facilitate the systematic reasoning in regard to the
side-channel threat along the feasibility assessment and modeling with respect to
exploits of cache side effects.

Additionally, we introduce InfoLeak, an information leakage model that ascer-
tains the essential role of the CPU scheduler for exploiting core-private caches
as side channels. InfoLeak illustrates the impact of the CPU scheduling on the
availability of the core-private cache to the adversary that exploits it as a side
channel. Our model enables security experts to consider the associated threat
stemming from the core-private cache exploits by analyzing the available schedul-
ing information. We provide an example on InfoLeak usage to demonstrate its
applicability for studying the scheduling related logs for possible information
leakage. This first contribution of the thesis is presented in Part II and is based,
partly verbatim, on material from [Vat+14a; Vat+14b; Vat+18].

Research Question 2 (RQ2): What is the relationship between execution environment
properties and the success and feasibility of side-channel attacks?

As side-channel mitigation approaches against particular attacks have been pro-
posed to reduce the information leakage by tweaking the execution environment, it
would be beneficial to analyze which of the execution environment properties affect
the feasibility of the side-channel exploits and to what extent. Although various
components can be exploited to leak information, certain classes of attacks might
exhibit the same characteristics. For example, most of the cache-based approaches
rely on timing of memory accesses to derive confidential information. Additionally,
in a variety of scenarios the adversary needs frequent access to the side channel to
be able to obtain sufficient observations of good quality or high granularity. This
is related to the synchronization between the attacker and the victim which is of
crucial importance for a number of cache-based adversary scenarios.

To this end, employing indicators or metrics which characterize the execution
environment in regard to the synchronization possibility between a potential
adversary and a victim in the context of core-private cache-based attacks is an
enabler for finding potential side-channel attack traces. It is also important to
investigate how the scheduling configuration affects the synchronization and
consequently the chance of success of a cache-based side-channel exploit.

Contribution 2 (C2): Empirical evaluation of the impact of scheduling on side-channel
attacks and their potential traces

The feasibility of side-channel attacks strongly depends on the context of the
execution environment including the availability of the exploited shared resource.
However, the characteristics of the specific attack must also be considered in order
to evaluate the exploitability of an execution environment.

We characterize the context of the execution environment by proposing three
attack indicators or metrics and study their correlation with the success of a core-
private cache-based attack post-mortem. The proposed metrics are related to the



8 introduction

means an attacker often employs to gain sufficient observations of the side channel
when exploiting the core-private cache. We also discuss the applicability of the
proposed feasibility metrics in a case study.

Additionally, we analyze the impact of the hypervisor scheduling configuration
on the exploitability of the core-private cache as a side channel in a virtualized
environment. For this purpose, we identify the relevant hypervisor scheduling
parameters and conduct an empirical study on the success of the attack depending
on different configurations. This contribution of the thesis is presented in Part III
and is based, partly verbatim, on material from [VG+19; VSM15; Vat+18].

Research Question 3 (RQ3): Can side-channel attacks be reliably detected?

Although attacks at the architectural level represent a serious threat to data con-
fidentiality, and enable information exfiltration, they are usually neglected by
techniques, such as intrusion detection, which commonly focus on high-level
network or middleware threats. This is magnified by the fact that side channels
usually fall outside the scope of any security policies or access rules. Cache-based
side channels, for instance, are accessed without any special privileges.

In this context and given the relevance of cache-based side-channel attacks,
investigating the possibilities of detecting side-channel exploits is important for the
security community. This is reinforced by the lack of a universal remedy against
the side-channel threat posed by the current vulnerable cache design.

Contribution 3 (C3): A reliable side-channel attack detection approach using performance
counters and software events

Existing approaches to mitigate or prevent covert-channel and side-channel attacks
are usually limited by performance overhead, or they are too costly. Thus, incidents
and anomalies related to the usage of the cache as a covert communication channel
need to be detected, ideally without requiring new hardware. Traditional intrusion
detection systems are not suitable for this purpose due to the lack of policies or
access rights for the usage of the side channel.

In this contribution, we focus particularly on the detection of side-channel
and covert-channel attacks that abuse the cache. We propose a side-channel
detection approach, called SpyAlarm, based on the usage of metrics that indicate
the feasibility of such attacks given the execution environment properties and
their traces. SpyAlarm leverages a combination of performance counters and
software events to reliably detect cache-based exploits while exhibiting a low false
positive rate. In this contribution, we also present the SpyAlarm architecture and
demonstrate its utility with a prototype implementation. To evaluate our approach,
we apply it in several case studies including two state-of-the-art cache-based attacks
previously unseen by the detector. Our results demonstrate the utility of SpyAlarm
as a reliable side-channel detector, which enables triggering further actions to
contain the damage caused by an attacker. This last contribution of the thesis is
presented in Part IV and is based, partly verbatim, on material from [VGCS].
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1.4 thesis outline

The rest of the thesis is structured as follows: In Part I various side-channel
exploit strategies are covered, and the system model on which this thesis relies is
presented. In Part II, the first research question is discussed, and a side-channel
attacks classification approach which focuses on the feasibility factors affecting the
attack’s success is presented. Part II also includes a leakage model that advocates
the scheduling effect on the success of the attack. In Part III the thesis continues
with the analysis of the impact of different scheduling parameters, and the footprint
cache-based exploits leave on a set of measurable system events. The third research
question, which tackles the detectability of cache-based covert-channel and side-
channel attacks, is investigated in Part IV. Finally, Part V concludes the thesis with
a summary of the contributions and key insights.





Part I

P R E L I M I N A R I E S





2
S I D E - C H A N N E L A N D C O V E RT- C H A N N E L AT TA C K S

2.1 overview

Lampson is among the first researchers to mention the term "covert channel" as
an illegal transmission channel which has not been designed to transmit informa-
tion [Lam73]. Covert channels are leveraged in covert-channel attacks that involve
two or more processes which collaborate to communicate with each other. The
communication takes place through a shared resource which can be manipulated
and measured by all the involved processes. There are various application sce-
narios for these attacks. For example, they can be used for secret transmission of
information. The hardly detectable existence of such covert communication makes
these transmission channels quite elusive. Among others, there are proposals to
leverage covert channels to bypass censorship [Fea+02] or to use them to transmit
authentication data [dAJ05].

Side-channel attacks can be seen as a variant of the covert-channel problem.
Contrary to a covert-channel attack, where the cooperation between processes
is the main goal of the collaborating attackers, a side-channel attack is a purely
adversarial problem. A side-channel attacker spies on the actions of a co-located
victim process and tries to extract secret data from the collected observations.
This is possible due to the nature of the commonly used hardware exhibiting
measurable side effects which often depend on the data or instructions being
processed in various computations.

cache-based
side	channel

encodes	data
(un)inten�onally

vic�m/sender

SCA/CCA

decodes	data
a�acker/receiver

Figure 2: Covert-Channel Attack and Side-Channel Attack – Interaction with the Channel.

As can be seen in Figure 2, common for the covert-channel and the side-channel
attacks is the usage of a shared resource as a transmission medium. If we consider
the notion introduced by Shannon in his theory on communication [Sha01], the
victim plays the role of the information source in a side-channel attack, whereas
this role is taken over by the sender in a covert-channel attack. The channel is
in both cases the shared medium. The transmitter that encode the message into
the channel is the process of the victim that leaves traces in a side-channel attack,
or it is the sender process in a covert-channel attack. The message itself can be a
secret key in a side-channel attack and some other meaningful information in a
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covert-channel attack which might be encoded, e.g., as a cache footprint. In such a
case, the cache footprint represents the signal. The attacker process, spying on the
victim, or the receiver process, trying to decode the message, is the receiver of the
communication.

A major distinction between a side-channel attack and a covert-channel attacker
lies in the fact that the side-channel attacker has to conduct a thorough analysis of
the gathered data which is more complicated than the analysis a covert-channel
attacker has to conduct. The covert-channel adversary decrypts a message that
has been sent to him/her over the shared resource intentionally by a collaborating
attacker. Commonly, the covert-channel receivers are reliant on a predefined shared
usage pattern of the shared resource with the sender.

To avoid confusion, the shared resource which can be exploited as a covert or
side channel is in both cases referred to as a side channel from now on in the thesis.
It has been demonstrated already that the cache can be exploited as a side channel
also in complex systems such as the Cloud. As it is easily accessible without
the need of any special privileges in various execution environments, the cache
represents a powerful and convenient side channel.

2.2 the cache as a side channel

As already discussed, the processors used to become faster complying with Moore’s
law. However, the memory speed, though increasing, did not develop at the same
pace. To close the performance gap between the processors and the memory, caches
were introduced as an important optimization, deployed universally. Depending
on the applied caching algorithm, recently or frequently used data or instructions
are fetched from the main memory into the cache and can be accessed much faster
if they are needed repeatedly. If the requested data is already in the cache, a cache
hit takes place and the latency for accessing the data is low. The smaller the cache
containing the data, the faster the access to the requested data is. If the data is
not in the cache, a cache miss takes place and the data has to be fetched into the
cache from the main memory. This is, logically, associated with a longer latency
and accessing the data takes more time than in the case of a cache hit.

Most computer architectures organize the caches in a hierarchical manner. Typi-
cally, there are two or three cache levels. The core-private caches, i.e., level 1 caches
(L1), are faster and smaller and are located closer to the CPU. L1 cache is private
per core and is usually divided into L1 instruction cache which stores instructions
and L1 data cache which stores data. The last-level cache (LLC) is commonly
shared among all cores and is unified, i.e., it stores both instructions and data.

Within the cache, the data is stored into units called cache lines or cache blocks.
They are organized into cache sets. Each cache set consists of w cache lines, where
w is referred to as cache associativity. A part of the memory address, often called
set index, usually determines the cache set a cache line is mapped to.

In addition to that, the LLC of most modern Intel processors is further divided
into slices mainly to reduce congestion [Int]. A hash function is applied to de-
termine the slice of a cache line, but this hash function has not been published
officially by the time of writing this thesis. Yarom et al. developed a technique to
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reverse-engineer the hash function for certain architectures and published their
work in [Yar+15].

Furthermore, modern LLCs are often inclusive which means that they contain a
strict superset of the contents of the data contained in the lower cache levels [Int].

The access times to the different cache levels and the memory are measurable
and, practically, almost each process running on a system can collect observations
on the access times to the cache. This variance in the access times to the caches
depending on whether a cache hit or a cache miss takes place, is a hardware side
effect which can be abused by an attacker and enables powerful side-channel and
covert-channel attacks.

2.3 strategies to exploit the cache as a side channel

The cache was introduced to close the performance gap between the processors
and the memory by overcoming the high latency of the memory. These univer-
sally deployed optimizations can be exploited by an attacker to leak confidential
information from a process using the same cache.

On this background, there exist different strategies to abuse the cache to leak
information. The existing attack strategies can be basically divided into attacks
relying on the usage of shared memory between the attacker and the victim, and
approaches that do not require shared memory. Among the well-known side-
channel attack strategies are Evict+Time and Prime+Probe, described, e.g., [Liu+15;
OST06; Per05], Flush+Reload demonstrated in [YF14], and Flush+Flush proposed
in [Gru+16].

2.3.1 Side-channel Attack Strategies which do not Require Shared Memory

Unlike other strategies, Evict+Time and Prime+Probe do not rely on shared mem-
ory. They are characterized by a lower bandwidth compared to the approaches
leveraging shared memory, but are still considered more powerful, as they do not
depend on restrictions such as shared memory and therefore, can be applied on
more systems.

2.3.1.1 Evict+Time.

Among the first strategies to exploit the cache as a side channel is Evict+Time,
proposed by Osvik et al. [OST06]. Evict+Time assumes the ability to trigger an
encryption of known plaintext p on victim’s side and to be able to determine
when the encryption starts and when the encryption process ends. Before the
encryption, the adversary manipulates the cache state. Then, the attacker lets the
victim encrypt the plaintext. After the encryption, the attacker accesses selectively
chosen addresses to evict specific cache lines. Then, the adversary triggers another
encryption of the same plaintext p on the victim’s side and measures the time the
encryption takes. Longer encryption times indicate that the selectively evicted
cache lines had to be fetched from the main memory suggesting that the victim
has accessed these specific cache lines. The collected timing data is analyzed to
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extract secret data. Bernstein applied a similar approach to extract an AES key, as
described in [Ber05]. The main steps of the approach are summarized below.

1. Trigger encryption of plaintext p.

2. Evict specific cache lines by accessing appropriate addresses.

3. Trigger another encryption of plaintext p and measure the time the encryption
takes.

Evict+Time is a time-driven side-channel attack which is reliant on measuring
the overall execution time of victim’s code. Evict+Time attackers typically observe
the aggregated number of cache hits and cache misses which might result in coarse
observation granularity. Despite that this approach still represents a security threat
and was recently applied by Gras et al to demonstrate the insecurity of the Address
space layout randomisation (ASLR) in [Gra+17].

2.3.1.2 Prime and Probe.

Another approach exploiting the cache as a side channel, called Prime+Probe, was
described by both Osvik et al. in [OST06] and by Percival in [Per05]. Prime+Probe
comprises three main steps. In the first step, the entire cache is filled with attacker’s
data. This step is often referred to as priming the cache. Then, in the second step,
the victim encrypts some plaintext p which causes partial eviction of the data the
adversary has filled in the cache with. In the third step, the adversary analyzes
which cache parts have been evicted by the victim’s encryption by measuring its
own access times to the respective cache parts. This measurement step is called
a "probe" step. To conduct the timing measurements the attacker reloads the
same data into the cache as in the first step, but carefully observes how much
time it takes. Analogously to Evict+Time, longer access times indicate cache
evictions whereas shorter access times suggest that the victim has not touched
the corresponding cache parts. Having collected the cache access time data, the
attacker correlates them to cryptographic algorithms structure and tries to extract
confidential information.

Prime+Probe comprises three main steps, as summarized below.

1. Attacker primes parts of the cache.

2. Victim process accesses or does not access the respective cache parts.

3. Attacker probes the same parts of the cache and measures the time for
retrieving the data.

Prime+Probe was originally leveraged to abuse the core-private cache to leak
confidential information, but in the last decade also approaches targeting at
exploiting the LLC were proposed ,e.g., [Liu+15]. These approaches significantly
increase the relevance of Prime+Probe, as they enable the cross-core exploits which
makes their success less dependent of the CPU scheduling.
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2.3.2 Shared Memory and Side-Channel Attack Approaches

Another class of cache-based side-channel attacks relies on the usage of memory
pages shared between the attacker and the victim. Although such a requirement
is restricting the applicability of these attacks, it is often fulfilled. The operating
systems and virtual machine monitors strive for efficient memory management,
and apply different optimization techniques. Among them is memory deduplica-
tion, also referred to as content-based page sharing, which is applied to reduce
the overall memory footprint. This is achieved by merging memory pages with
identical content within the same physical machine or across virtual machines. For
example, virtual machines running on the same physical host might use identical
operating system and/or libraries which increases their potential for memory
deduplication. This technique has the potential to achieve significant memory
optimization. Gupta et al., for instance, built an extension for the Xen virtual
machine monitor to make use of different memory deduplication mechanisms and
reported substantial memory savings in [Gup+08].

Due to its potential for optimization, memory deduplication is applied by a
number of hypervisors and operating systems. For instance, Linux leveraged a
module called KSM to find equal pages in the system [AEW09]. This module
allows for sharing pages across different processes and KVM virtual machines.
VMWare also applied a set of techniques to eliminate redundancy in memory
and reduce the copying overheads [Wal02]. Due to its advantages most known
operating systems and hypervisors make use of deduplicating memory.

However, along with the benefits it provides, page sharing among mutually
untrusted processes exposes the involved processes to security risks and reveals
new security threats [Bos+16; Suz+11]. Thus, it creates just another trade-off
between memory optimization and security. Moreover, according to an empirical
study conducted by Chang et al. and described in [CWL11], memory deduplication
provides much less optimizations as previously reported. Chang et al. argue
that the absolute sharing levels (which exclude zero pages) typically remain
under 15%. At the same time, the memory sharing poses a serious security
threat to the systems. Bosman et al. conducted a powerful attack against the
Microsoft Edge browser [Bos+16], which was reported as a vulnerability CVE-
2016-3272, and addressed by Microsoft by changing the defaults regarding the
memory deduplication usage. VMWare also reacted to the security threat related to
memory deduplication and changed the default settings for Transparent Memory
Sharing [VMwb]. Among the strategies that exploit page sharing are Flush+Reload
and Flush+Flush.

2.3.2.1 Flush+Reload.

Flush+Reload is an attack strategy proposed by Yarom et al. [YF14] in which an
adversary exploits the ability to monitor victim’s accesses to shared memory pages,
which can be applied in a virtualized environment. The attack targets at the LLC
cache which makes it a powerful mechanism to leak information cross-cores, i.e., it
is independent of the co-location of the attacker and the victim on the same CPU
core.
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Flush+Reload is based on the observation that whenever a process accesses a
shared page in memory, the accessed data is cached. Once the data has been
cached, the attacker evicts deliberately chosen and monitored memory locations
from the cache using the flush instruction (e.g., clflush). By repeatedly reloading
the same data and measuring the time it takes for accessing them, the attacker
infers whether the victim has accessed it in the meanwhile or not.

The abstract steps involved in a Flush+Reload attack are summarized below.

1. The adversary flushes a deliberately chosen memory location.

2. The victim performs operations.

3. The adversary access the same memory location again and measures the
time.

The applicability of the attack proposed by Yarom et al. to the LLC increases its
significance, as it enables an attacker to monitor the victim from another CPU core.

2.3.2.2 Flush+Flush.

Flush+Flush, proposed by Gruss et al. in [Gru+16], is an extension of the
Flush+Reload attack, but it leverages only the timing variation of the flush instruc-
tion itself and is not reliant on the memory accesses.

Hence, Flush+Flush attacks are harder to detect by mechanisms analyzing the
memory accesses and are considered more robust against detection mechanisms.

2.4 system and attacker models

This section details the system model that underlies this thesis. The presented
system model is an abstraction of the system models applied in the individual
contributions of the thesis. All of the contributions are focused on the cache as a
side channel and consist of a hardware part comprising the CPU cores along with
the different cache levels. It includes the core-private cache (i.e., L1 cache) and
shared caches (e.g., LLC).

Depending on the contribution, either a hypervisor, called also virtual machine
monitor (VMM), or an operating system (OS) runs on top of the hardware. The
hypervisor is a software layer, which is a part of each virtualization solution and
enables the multiplexing of tenants or users encapsulated in virtual machines
on the same physical machine. A virtualized environment is characterized by
providing a low-level abstraction from the hardware state. Both in the cases of
an underlying hypervisor or OS, a secure isolation between the running virtual
machines (in the case of a hypervisor) or between the processes (in the case of an
OS) is presumed. The abstract system model is depicted in Figure 3.

Any attacker processes considered in this thesis is assumed to have control
over non-privileged processes or virtual machines running on the system. The
attacker(s) can indirectly manipulate the cache in the way any user-land process
can do by accessing data or instructions. Attackers with privileged access to
the system, such as the one described in [Bra+17], which can manipulate the
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Figure 3: Abstract System Model.

performance counters, but cannot read victim’s memory directly, are out of the
scope of the thesis.
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T O WA R D S T H E S Y S T E M AT I C R E A S O N I N G A B O U T
S I D E - C H A N N E L AT TA C K S

Millen defined four major research areas considering the side channels: (i) explain-
ing, (ii) finding, (iii) measuring and (iv) mitigating side channels in [Mil99]. The
objective of this chapter is to enable systematic reasoning about the side-channel
attacks considering their execution environment which covers the explanation field,
but is also connected to the rest of the defined research areas. The content of this
chapter is, partly verbatim, based on material from [Vat+14a; Vat+14b] and tackles
the first contribution of the thesis (cf., Section 1.3).

This chapter is organized as follows. Section 3.1 presents the motivation for this
contribution. Section 3.2 gives an overview on a proposed generic classification
approach. Section 3.3 focuses on feasibility factors that affect the exploits of the
cache side effects in a virtualized environment. The related work is presented in
Section 3.4, and the concluding remarks are given in Section 3.5.

3.1 classification and feasibility endeavours

The term side channel denotes a communication channel that stems from the
usage of shared resources and can be exploited, e.g., through manipulations or
observations. As the traditional intrusion detection systems are not tailored to
protect from such exploits, mainly due to the nature of the side channels, side-
channel attacks are considered a serious threat for compromising the confidentiality
within diverse execution environments. At the same time, with the advent of
Cloud computing, the side-channel attacks relevance has even increased due to
the intrinsic sharing of resources across security boundaries, which has led to a
higher number of reported side-channel attacks (cf., Figure 1).

While these attacks represent a real threat to the security of any system, almost
each manifestation of the attacks is commonly only successful given certain pre-
requisites or fulfilling certain assumptions. To better understand the side-channel
threat and the feasibility of a specific attack, given the huge number of existing
side-channel exploits, a generic classification that takes into account the specifity
of the execution environment and the attack assumptions is needed. The lack of
a generic side-channel attacks classification approach that encompasses both the
type of exploit and the execution environment factors affecting its success impedes
the systematic analysis of the side-channel attacks threat and the assessment of
their feasibility. Such a classification approach has to take into account not only
native, but also virtualized environments.

23
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The term virtualization has been present in the IT community for a long time
starting from the late sixties [PG74] until now, and has undergone periods of less
popularity to gain significance again during the last decades [FDF05]. Despite the
presumed strong logical isolation that virtualization provides, virtualized envi-
ronments and systems offering shared resources or relying on virtualization (e.g.,
the Cloud) are vulnerable to side-channel exploits due to the inherent resource
sharing among mutually untrusted customers. To address the security concerns
regarding the side-channel attack threat, VMWare changed their hypervisor de-
fault settings following the demonstration of side-channel attacks which exploit
memory deduplication [VMwb]. Amazon EC2 Dedicated Instances model also
provides services dedicated explicitly to a single customer [Ama14]. This strongly
emphasizes the efforts of not only the academic, but also the industrial world to
address the concerns related to the side-channel attacks, especially in virtualized
environments.

However, the security provided by such solutions comes at a price. Not using
memory deduplication or using dedicated instances for a single customer po-
tentially results in a worse utilization of resources which can increase the price
of the services for the end users. Therefore, it would be beneficial to assess the
feasibility of side-channel attacks by considering the specific execution context
of a virtualized environment. Such an environment, multiplexing users on the
same resource, exhibits characteristics specific to the virtualization technology.
Hence, the side-channel exploits feasibility in a virtualized environment does
not necessarily overlap with their feasibility in a native environment. Therefore,
considering feasibility aspects in a virtualized environment is needed, as it can aid
research on the virtualization isolation strength, and the actual countermeasures
to mitigate specific side-channel attacks based on the execution environment and
their assumptions.

Among the objectives of the thesis is to investigate the side-channel attack types
and to determine the conditions under which these exploits are feasible considering
the specific execution environment. For this purpose, we propose a generic
classification to serve as a basis for the comparison and analysis of side-channel
attacks (SCAs) with respect to diverse characteristics. An extensive classification
approach comprising various attack aspects can facilitate the easier identification of
mitigation paths for a specific context and of protection mechanisms which can be
applied to decrease the probability of such an exploit. This extends the research on
side-channel attacks classifications which typically does not focus on the execution
environment impact and does not investigate under which conditions a specific
attack can be conducted and is feasible.

The feasibility of a certain attack always depends on the adopted means,and
we do not claim to provide absolute statements about attacks feasibility, but we
aim to provide information regarding the conditions under which specific types of
attacks are more or less probable. For this purpose, a selection of demonstrated
side-channel exploits in a virtualized environment is considered.
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3.2 side-channel attacks classification approach

We classify existing side-channel attacks to facilitate the assessment of the security-
related properties of the execution environment in which these exploits can be
conducted. For this, we define three main categories to characterize an attack
according to the: (i) approach, (ii) effect and (iii) limitations. An overview on the
proposed classification is given in Figure 4, and the subsequent paragraphs provide
a detailed explanation regarding the different classes. In this section, we argue that
attack’s important characteristics are derived from the way it is conducted with
a focus on the effect it has on the exploited system and its potential for success.
However, the contextual limitations of the attack in terms of assumptions and
challenges may not be neglected to truly excel in studying the details of the exploit.

SCAs

Approach Limita�onsEffect

Figure 4: Overview of the Classification Approach.

3.2.1 Approach

The approach category describes the adversary strategy, i.e., the way the adversary
compromises the security of a system by exploiting a side channel. We differentiate
the side-channel attacks further depending on the leakage source or the shared
medium being used for conducting the attack, on the intrusiveness of the attack,
on the type of the collected and analyzed measurements and the method applied
for analyzing the gathered data. This categorization is shown in Figure 5.
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Intrusiveness

Intrussive Non-intrusive
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Figure 5: Detailed Overview of "Approach".
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Figure 6: Detailed Overview of "Effect".

3.2.1.1 Leakage source

We further refine the classification by categorizing the side-channel attacks into
physical attacks and architectural attacks in terms of the leakage medium or leakage
source that has been leveraged for conducting the attack. The architectural side-
channel attacks make use of an architectural system component. Such examples
include the L1 cache, exploited as a side channel [Zha+12], the L2 cache [Xu+11],
the L3 cache [YF14], virtual memory paging [Per05], etc. The physical side-channel
attacks, in turn, exploit device components to conduct the attack, e.g., keyboard,
monitor, power supply unit, etc. Examples of attacks that leverage the power
supply unit are given in [Hla+11; MDS99].

3.2.1.2 Collected data

Depending on the type of the collected data, we distinguish between exploits
leveraging physical device aspects, exploits measuring timing information and
exploits relying on the characteristics of the access patterns to the side channel.

physical device aspects . This category encompasses attacks observing
physical device aspects, such as power consumption, needed for the conduct of
the attacks [Hla+11; MDS99], electromagnetic emanations, used for the attacks
[Agr+03; Car+04], acoustic emanations, analyzed for the attacks in [GST14; SWT01].
These device characteristics are monitored and collected while the respective
physical device performs a sensitive operation, for instance during cryptographic
encryption.

timing information. Timing information provides the basis for conducting
attacks known as time-driven attacks. Sometimes, time-driven attacks have coarse
granularity of the observations and are more successful if the time needed for
the sensitive operation of attacker’s interest (e.g., encryption process) is known
in advance. To enable the statistical inference of information, the measurements
might have to be conducted repeatedly. An attack relying on timing information is
described in [Koc96].

access pattern. Information regarding the accesses to the side channel is
leveraged to conduct access-driven attacks. A representative example for this
kind of attacks are exploits leveraging the cache as a side channel, but the access
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patterns also to other shared architectural assets can be used to leak information.
Very often this attack type involves collecting time measurements, but they are only
used to deduce the access pattern to the observed shared resource. Depending
on the specific attack, the involved timing measurements might not necessarily
be of very high granularity. Examples of this category are the attacks described
in [Per05; Ris+09; WXW12; Xu+11; YF14; Zha+12].

3.2.1.3 Intrusiveness

Another important characteristic of the side-channel exploits is their intrusiveness.
We differentiate between intrusive and non-intrusive attacks.

intrusive . A prerequisite for the intrusive side-channel attacks is the direct
access to the internal components of the observed device. Adversaries performing
intrusive side-channel attacks intervene with device operation.

non-intrusive . The non-intrusive side-channel attacks, on the contrary, are
passive attacks and only monitor the device operation without intervening with it.
Only externally available information, which has not been intentionally leaked, is
leveraged in this case. Representative examples for this type of attacks are given in
[Agr+03; GST14; Koc96; Ris+09; SWT01; YF14].

3.2.2 Offline analysis

The way the collected data is analyzed after the measurements have been conducted
(i.e., offline), is used to further refine the proposed classification. We differentiate
between advanced side-channel attacks and simple side-channel attacks, as already
proposed in [ZD05].

advanced. Commonly, the advanced side-channel attacks are characterized
by offline analysis that involves a series of measurements, and sometimes the
application of statistical methods to derive information. The offline analysis is also
commonly dependent on the attacker capabilities. An example for this category is
given in [Xu+11].

simple . For conducting simple side-channel attacks, it usually suffices to have
a single trace to obtain the targeted information (e.g., to extract a secret key). Such
an attack is usually easier to deploy in systems characterized by lower noise levels.

3.2.3 Effect

Another high-level classification of the side-channel exploits we propose is based
on their effect on the system. For this, we focus on the security property that can be
violated through the exploit and the asset under attack. To this end, we differentiate
the side-channel exploits in terms of the exfiltrated information and the security
property, as shown in Figure 6 and detailed in the following paragraphs.
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3.2.3.1 Exfiltrated information

The exfiltrated information class refers to the assets under attack or to the granu-
larity of the information an adversary is able to compromise. We focus on whether
the adversary can gain fine-grained data such as a secret key or, coarse-grained in-
formation. For example, Ristenpart et al. managed to obtain coarse-grained data re-
garding activity spikes in a real Cloud scenario, as reported in their work [Ris+09].
Zhang et al, on the other hand, demonstrated a successful side-channel attack
which managed to exfiltrate fine-grained information [Zha+12]. Through their
attack Zhang et al. deduced an ElGamal secret key, as described in [Zha+12].
The border between fine-grained and coarse-grained information can be hard to
establish. We consider fine-grained information data that enables direct access to
confidential assets such as a secret key. Coarse-grained information, on the other
hand, is data which can be used to conduct a subsequent attack. Such information
is typically not very specific. Examples include probable virtual machine location,
activity spikes of a specific machine, etc.

3.2.3.2 Security property

This category takes into consideration the security property being violated by the
side-channel adversary.

confidentiality. Side-channel attacks primary goal is to compromise the
confidentiality of a system. In this case the adversary exfiltrates information
regarding the victim such as a secret key.

availability. Availability can be indirectly affected when conducting a typical
side-channel attack which aims at leaking confidential information. The attack
proposed by Zhang et al. and described in [Zha+12] is an example for that, as
resources such as CPU time are frequently taken away from the victim to conduct
the attack.

3.2.4 Limitations

The limitations class encompasses factors that might restrict the applicability of
a side-channel attack to certain scenarios. Such factors include the assumption
regarding the execution environment or other prerequisites of the attack which
have to be fulfilled. Hereby, we classify side-channel attacks depending on the
assumptions regarding the environment and the challenges that have to be con-
sidered when executing the attack. This classification can assist security experts
in estimating the potential for success of a specific attack considering its details
and specifity. The limitations class is consists of the assumptions and challenges
subclasses. The following paragraphs elaborate more on the Limitations class,
represented in more detail in Figure 7.
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Figure 7: Detailed Overview of "Limitations".
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3.2.4.1 Assumptions

Although many of the side-channel exploits are quite powerful and pose a serious
threat to the confidentiality of the system under attack, they commonly proceed
on certain assumptions regarding the underlying system or architecture. The
classification of such assumptions can be beneficial for the better analysis of the
attack and its applicability in a real-world or realistic scenario.

access level to shared resources . A common precondition for conduct-
ing side-channel attacks is the usage or access to a shared resource between the
victim and the attacker. This shared resource can be the power supply unit, the
cache, etc. This shared medium should be present providing the link between the
victim and the attacker. Depending on the access to this resource, we differentiate
between the attacks relying on physical access to the shared medium, attacks
requiring only proximity to the physical device and attacks requiring access to
architectural components.

• Physical access - for conducting certain side-channel attacks having physical
access to (parts of) the device hosting the victim is a prerequisite. This access
enables measuring different physical aspects of the system which are needed
for conducting the attack. A representative example for this category is the
attack described in [MDS99] in which the power dissipated by a smart card
is monitored. This takes place at the ground pin of the smart card and the
attacker has to attach a resistor to the device to conduct the measurements.

• Proximity to the physical device - for conducting other side-channel attacks
it suffices for the attacker to be in physical proximity to the device without
accessing it directly. Examples for this category include attacks measuring the
electromagnetic emanations as the one reported in [Agr+03]. A prerequisite
for conducting this attack is to place probes as close as possible to the physical
device in order to measure the induced emanations. Another example for
this category is described in [GST14]. The attack reported by Shamir et al.
in [GST14] requires placing a microphone near the physical device while
performing cryptographic operations and recording the acoustic emanations.

• Remote - for conducting certain attacks it might be sufficient that the attacker
has a remote access to the device, e.g., by accessing some architectural
component. Such a scenario is given when a victim and an attacker use the
same CPU for their computations in the Cloud. Examples for this category
are presented in [Ris+09; Xu+11; YF14; Zha+12] and exploit the architectural
access to shared components.

knowledge . Knowledge about the system under attack is often a precondition
for conducting a successful side-channel attack.

• Extended - to conduct a successful side-channel attack, the adversary often
has to be acquainted with the system under attack and to be aware of its
characteristics to take them into consideration when implementing the exploit.
Additionally, the attacker might need a series of measurements including
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the availability of training data (e.g., as described in [Zha+12]). Shamir et al.
also reported in [GST14] that previously gathered information is needed to
map an acoustic pattern to the bits of the private key to successfully deploy a
side-channel attack based on the recorded acoustic emanations of a computer.
Although having training data is usually a natural step when conducting a
side-channel exploit, acquiring such data might be challenging.

• Basic - attacks requiring basic knowledge, on the other hand, are typically
easy to deploy without knowing complex cryptographic structures and
details about the system architecture.

3.2.4.2 Challenges

Although successful side-channel exploits are reported quite often lately, the re-
searchers commonly need to overcome challenges to deploy the attack. Depending
on the involved obstacles, we differentiate between environmental challenges,
employed preventive mechanisms or challenges related to the detectability of the
exploit. The subsequent paragraphs detail the proposed categories.

environmental The environmental challenges are related to the execution
environment. Such challenges can be associated with the architecture of the system
and affect the channel. They are intrinsic and not intentionally created. We
distinguish between challenges that affect the noise in the channel, and challenges
that affect the availability of the channel.

• Noise - A variety of factors that affect the noise in the channel exist. The noise
levels can vary depending on the scheduling policy, the interference with
other processes for the shared resources, core migration in an SMP system
when exploiting the core-private cache, etc. Such attacks have been described
in [MKS12; Per05; Ris+09; WXW12; Xu+11; YF14; Zha+12]. The problem of
having noise in the channel has been recognized in the community. Kocher,
for example, defines the noise in the context of the attack proposed in [Koc96]
as "timing variations due to unknown exponent bits". Examples for noise
sources are given also in [GST14], including acoustic emanations stemming
from other machines close to the microphone or, emanations stemming from
the device under attack, but representing operations that are not of interest.

• Channel unavailability - another environmental challenge that the attackers
exploiting side-channel attacks can face is related to the availability of the side
channel. Mowery et al. report in their work [MKS12] that core pinning, which
resulted in unavailability of the targeted side channel, is one of the reasons
for the lack of success of their attack. In the attack presented in [GST14], the
channel can become unavailable if, for example, the recording microphone is
removed or gets broken. A core-private cache-based side channel is also not
necessarily at disposal of an adversary residing on a distinct CPU core than
the targeted the victim.

detectability level . The detectability level characterizes the chances for
an adversary to be detected. Some attacks might require preempting the victim
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frequently to conduct the needed measurements. Such an example is given in
[Zha+12]. Keeping preemption rate low might be beneficial for the detectability of
the attack and is classified into low and high.

preventive mechanisms . Different preventive mechanisms can be applied
and can affect the success of specific side-channel attacks. Commonly, the preven-
tive measures are tailored for preventing particular attacks. Such measures can
harden or even make specific attacks infeasible.

• Hardware-based - special hardware can be employed for securing the system.
Examples of such hardware include tamper-resistant crypto modules, acous-
tic shielding, etc. A hardware-based mitigation mechanism characterizes
the context of the exploit described in [MKS12]. Other potential preventive
measures are detailed in [RWB04; Tir+05].

• Algorithm-specific - Side-channel attacks against the victim’s confidentiality
often target at compromising cryptographic keys and rely on the structure of
the employed cryptographic algorithm to leak information. Unless vulnerable
algorithms leaking information are employed, the attack will be infeasible.
To this end, certain side-channel attack can be hardened if algorithm-specific
preventive measures are in use. Such measures can affect the performance of
the algorithm apart from enhancing system security.

• Architectural - Preventive mechanisms can be applied to protect from side-
channel attacks exploiting specific architectural components, e.g., the cache.
An example of such a mechanism is given in [KPMR12]. This work describes
how to prevent cache-based side-channel exploits by managing a set of locked
cache lines per core. These lines never get evicted from the cache. In such a
way a virtual machine can hide the involved memory access patterns.

3.3 feasibility of scas

The subsequent feasibility analysis focuses on the side-channel attacks exploiting
the cache in a virtualized environment. We argue that the specific context can affect
the success of the exploit by hardening it or by facilitating it. A L1 cache-based
attack, for example, is harder to deploy in a multicore environment as the victim
or the adversary might be frequently migrated among the CPU cores. On the
other hand, if the simultaneous multithreading is enabled, it can lead to an easier
deployment of exploiting the cache as a side channel.

The feasibility analysis is conducted with respect to the state-of-the-art works
describing side-channel attacks exploiting the cache. The category "Challenges"
from the presented classification in Section 3.2 is leveraged as a basis for the
feasibility analysis. A set of feasibility factors that have impact on different
cache-based side-channel attacks in a virtualized environment are detailed in the
subsequent section.
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3.3.1 Feasibility factors

The classification, proposed in Section 3.2 based on the challenges a side-channel
adversary can face underlies the conducted feasibility analysis. We identify diverse
factors which can turn a specific attack into a more or less feasible with respect
to the given execution environment. Based on the context in which the side-
channel are conducted, factors related to the environmental challenges, preventive
mechanisms or the detectability of a potential exploit are derived and described
below.

3.3.1.1 Environmental challenges

With respect to the environmental challenges, we differentiate between challenges
with an impact on the noise in the channel and challenges with an impact on the
channel availability.

noise . In this chapter we consider noise as measurements which the adversary
collects through the cache, but these measurements result from data or instructions
of no interest to the attacker. Possible noise sources are discussed below.

• Noise stemming from hardware features - examples for such hardware fea-
tures are hardware prefetching or CPU power saving. Hardware prefetchers
are designed and leveraged to increase system performance by speculating
about future memory accesses. Modern hardware prefetchers are often com-
plex and might be poorly documented, which makes filtering out the noise
cause by prefetching a rather challenging task.

• Noise stemming from core migration - this is especially relevant for core-
private cache side-channel attacks. The virtual CPUs of victim or adversary
virtual machine might be floated among the available physical CPU cores. In
such a scenario, the attacker is not necessarily aware of the core migration
and might continue observing the cache by sampling only noisy data.

• Noise stemming from synchronization - typically, the side channel in a noise-
free environment is alternately used by the victim and the attacker. Unless
the victim and the attacker are properly synchronized, the measured noise
in the channel might increase tremendously, as the attacker will acquire
measurements that might result from attacker own cache accesses or might
include only parts of the data the victim unintentionally encodes in the cache.
A proper synchronization might turn out to be challenging and depends on
the implementation of the attack and the capabilities and knowledge of the
attacker.

• Noise stemming from the CPU scheduling - noise stemming from the schedul-
ing has relation to the noise cause by the synchronization, but it depends
more on the hypervisor’s configuration and the used scheduling policies
rather than on the knowledge and the capabilities of the attacker.
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• Noise stemming from the interference with other virtual machines - in
a virtual environment it is probable that third parties (e.g., other virtual
machines) are accessing the same cache as the victim and the attacker. These
third-party accesses cause noise in the channel and the adversary has to sort
out which measurements stem from the victim and which measurements are
caused by third parties. The levels of noise caused in this case depend highly
on the number of involved co-located virtual machines and on the workload
running on them. Filtering out such noise might be extremely challenging.

• Noise stemming from victim workload - the attacker might be interested
in a part of victim’s operations, but there is no guarantee that the acquired
measurements are not related to other operations that the victim is conducting
which are not of interest to the attacker. In such a case the noise in the channel
will be increased.

channel availability. The cache-based side channel we consider, is avail-
able if the attacker can observe and measure victim’s interactions with the cache at
least for some limited time. Factors affecting channels availability are discussed
below.

• Shared memory - specific side-channel attacks exploiting the cache are only
possible if shared memory is available between the attacker and the victim.
This is often given in systems using memory deduplication to optimize the
memory footprint by deduplicating, e.g., shared libraries or the operating
system or hypervisor. Examples of such attacks are reported in [Gru+16;
YF14].

• Inclusive caches - most of the LLC attacks rely on the inclusiveness property
of the caches. These attacks become infeasible if this property is not given.
Such attacks are described in [Liu+15]. Intel proposed an architecture based
on the Skylake-X processor in which the LLC is not inclusive and thus, not
prone to this specific type of side-channel attacks. This, however, does not
mean that modifications of these or other attacks are impossible, as shown in
[Yan+19].

• CPU core - In the case of core-private side-channel attacks, channel avail-
ability is determined by the execution of the victim and attacker virtual
machine on the same CPU core. Diverse factors can affect channel availabil-
ity such as scheduling policies (including core pinning vs. load balancing;
work-conserving vs. non work-conserving scheduling, etc.), the number of
available CPU cores (e.g., multicore vs. single core architectures), as well as
the frequency and type of allowed interrupts (e.g., inter-processor interrupts).

• Simultaneous multithreading - certain side-channel attacks rely explicitly on
the simultaneous multithreading (SMT) feature. The processor resources,
including the caches, are shared between threads if SMT is enabled. An
attack which fits into this category is described in [Ald+19].



3.4 related work 35

3.3.1.2 Detectability level

Assessing the detectability level requires a comprehensive analysis of each of
the known attacks. It can be differentiated between detectability considering the
hypervisor’s perspective or the victim perspective. Detecting side-channel exploits
is a hard task, but still some attacks leave certain traces. The frequency of victim’s
preemptions (preemption rate), for instance, can be leveraged as a hint for attacker
existence although taking into account such traces is definitely not a trivial task.

3.3.1.3 Preventive mechanisms

When assessing the feasibility of a certain side-channel attack, we again distinguish
between hardware-based preventive measures, algorithm-specific measures and
architectural protection mechanisms, as defined in the classification approach.

hardware-based. It should be considered whether the system employs special
hardware as a mitigation strategy against the relevant type of attack. For example,
tamper-resistant crypto modules can be employed to enhance the system security
against a side-channel attack targeting at breaking the AES encryption.

algorithm-specific . Another important aspect which has to be taken into
consideration is the vulnerability of the deployed cryptographic algorithms. If
specific measures are applied to protect, for instance, the encryption algorithm
from side-channel exploits - e.g., move AES instructions out of the cache or use
algorithms that do not leak timing information, certain attacks might become
infeasible.

architectural . Additionally, it has to be taken into consideration whether
certain architectural preventive measures are employed. It might be the case that
the cache implementation provides some mechanisms for protection against side-
channel attacks, for example frequent cache flushing or cache coloring techniques.

3.4 related work

The ways of exploiting side channels to exfiltrate sensitive information and compro-
mise data confidentiality is an actively researched area [Gru+16; KPMR12; LGR13;
Ste+13]. Much effort has been devoted to propose a number of sophisticated side-
channel attacks which are exploitable in virtualized environments and multi-tenant
scenarios such as the Cloud [Hla+11; Ris+09; WXW12; Xu+11; Zha+12]. With
this context, this section gives an overview on the existing side-channel attack
classification approaches.

3.4.1 Classification of Side-Channel Exploits

There exists a number of classification proposals for side-channel attacks. One of
the initial works is done by Kemmemer and published in [Kem02]. In [Kem02],
Kemmemer investigates communicating through illegitimate channels not intended



36 towards the systematic reasoning about side-channel attacks

for communication. He proposes a methodology to increase the security assurance
of a system by finding all possible information leakage covert channels through
a Shared Resource Matrix. The proposed approach identifies and investigates all
shared resources along with their attributes (rows of the matrix), as well as all
system primitives e.g., Write-File (columns of the matrix). Criteria are proposed for
identifying both storage and timing channels considering the constructed matrix.
The bandwidth of the channel is also mentioned as an important characteristic,
but Kemmemer’s work focuses neither on the ways to calculate it, nor on an
information theoretical analysis of the channels.

A variety of research papers focuses on the classification of side-channel attacks
targeting cryptographic modules. Commonly, the approaches are divided into
simple side-channel attacks (SSCA) and advanced or differential side-channel
attacks depending on the analysis involved in the evaluation of the collected
data, as described in [Bau+13; Cla+10; ZD05]. Clavier et al. further refines this
categorization by distinguishing between horizontal and vertical side-channel
analysis in [Cla+10] and considers whether a single power curve is analyzed, or
the analysis is conducted in terms of different execution curves.

In [Bau+13], Bauer et al. describe their extensive study on side-channel analysis
and propose a side-channel attack taxonomy comprising three classification cate-
gories. The first category distinguishes between simple and advanced side-channel
attacks. The second category considers the leakage type. Information regarding
whether an attack is profiled or not is included as a third category.

These classification approaches cover extensively certain attack aspects such
as the methods for processing and analyzing the collected data, but are mainly
focused on power and electromagnetic analysis attacks on cryptographic modules.
Additionally they do not consider the execution environmental context which
limits their applicability for the classification of side-channel attacks in virtualized
environment with focus on attack feasibility.

A classification for attacks on cryptographic processors is proposed by Anderson
et al. in [And+06]. This work does not explicitly focus on side-channel attacks, but
most of the adversary scenarios that the authors give as examples for the classifica-
tion fall into this category. In addition to the categories proposed by Anderson et
al., the traditional classification of side-channel attacks existing in the literature
divides them into the classes active and passive [ZD05]. A distinction between
trace-driven, access-driven and time-driven side-channel attacks is proposed by
Zhang et al. in [Zha+12], whereas the work described in [KPMR12] by Kim et al.,
considers only trace-driven and time-driven attack categories and further divides
them into active and passive.

All the mentioned categorizations and taxonomies contribute to the side-channel
attacks research field, however, they do not consider the execution environment
characteristics or under which conditions a specific attack can be performed and
the limitations therein. On this background, our work extends the state-of-the-art
in the field by proposing a classification that is general enough to include the
existing approaches and to address their limitations.
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3.4.2 Feasibility Assessment of Cache-Based Side-Channel Attacks.

Mowery et al. express their doubts regarding the feasibility of AES cache timing
attacks on the x86 architectures in their work [MKS12]. The authors conducted
an unsuccessful attempt to compromise the confidentiality of a system based on
the x86 architecture through the cache as a side channel. Therefore, they argue
that due to the existing preventive measures they faced on the x86 architecture it is
impossible to conduct their attack. Their experiments are based on a type of attack
that targets at compromising the AES encryption and doubt the feasibility of this
approach.

In [Xu+11], Xu et al. point out that depending on the achieved bit rate, the exploit
of the side channel can be considered harmless, relying on information provided in
[Dep85]. They also specify a number of factors that can have an impact on the side-
channel bandwidth such as employed workloads in co-located virtual machines,
hardware specification, hypervisor configuration, etc. As their conclusions are
important, our work aims to continue their investigation by demonstrating that a
variety of factors of the system impact the feasibility of the exploits of the cache as
a side channel by modeling the execution environment.

Zhou et al. focus on providing a feasibility evaluation in regard to the side-
channel exploits in [ZD05]. However, their evaluation includes rather generic
aspects which are not concrete enough to take into consideration the characteristics
of the execution environment.

3.5 conclusion

Considering the threat posed by the numerous side-channel attacks requires a
comprehensive analysis of the underlying system and an extended knowledge
regarding the existing side-channel exploits. Although these exploits represent
a serious security threat to virtually every system, their feasibility is affected by
the execution environment. To reflect on this observation, this chapter proposes a
generic side-channel attack classification approach, which includes the assump-
tions and challenges an attacker has to cope with when deploying a particular
attack in a given execution environment context. This approach facilitates system-
atic reasoning about particular side-channel exploits and the assessment of their
feasibility in a given context.

Such attacks pose a threat to the confidentiality within a virtualized environment
which increases their relevance. The isolation between processes or virtual ma-
chines sharing the same physical resources is endangered due to the existence of
side-channel and covert-channel attacks. Nonetheless, their exploitability also de-
pends on the execution environement context. For instance, specific configuration
of the hypervisor can enable a side-channel attack which is commonly not possible
in other systems. Therefore, we show how to apply the proposed classification
approach to enable the analysis of the feasibility of cache-based attacks in the
context of a virtualized environment.
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M O D E L I N G O F C A C H E - B A S E D E X P L O I T S

A side channel fundamentally deals with information, therefore, developing ac-
curate information leakage models is of practical relevance, as such models can
assist security experts when analyzing the robustness of their systems against
side-channel exploits. Chapter 3 discussed the feasibility factors that affect the
cache-based exploits, including the role of the scheduling. This chapter focuses on
the development of an information leakage model that can explicitly consider the
scheduling effect. The content of this chapter is, partly verbatim, based on material
from [Vat+18] and addresses the second contribution of the thesis (cf., Section 1.3).

The chapter is organized as follows. Section 4.1 gives an overview on the
tackled problem. Section 4.2 and Section 4.3 present the developed information
leakage model, called InfoLeak along with a possible application scenario and an
example on its usage. An overview on the related work is provided in Section 4.4.
Section 4.5 concludes the chapter.

4.1 on the modeling of cache-based exploits

The area of information leakage modeling can assist security experts to analyze the
chances of a side-channel exploit and to conduct feasibility analysis for a particular
system. Much work has been devoted to investigating the area of formal mod-
eling for side-channel attacks and a variety of formal models for covert-channel
attacks [Gra93; Hun+15; Mil89] and side-channel attacks [KB07; TV05] exist in liter-
ature. Such models are primarily concerned with the way the information is leaked
for a given attacker scenario and with the achievable bandwidth. However, the
execution environment properties, including, e.g., availability of shared memory,
scheduling, etc., often remain neglected by these models, although such properties
influence the feasibility of the attacks. This impedes the systematic analysis on the
cache-based exploits and the threat related to them with respect to a particular
system.

Of special interest is the role of the scheduling, as a fundamental resource
allocation schema and its impact on the core-private cache usage. The CPU
scheduling approach affects directly the synchronization for the accesses to the
core-private cache and its availability to the adversary as a side channel. It has
been demonstrated already that proper synchronization is a prerequisite for a
successful side-channel exploit, by having an effect on the feasibility and the
bandwidth of the transmission channel, as shown in [Hu92a; VRS14]. Therefore,
the lack of an information leakage model that explicitly considers the scheduling
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effect exacerbates performing a thorough system security analysis regarding the
side-channel threat.

We develop an information leakage model, called InfoLeak. InfoLeak considers
the effect of CPU scheduling on the feasibility of core-private cache exploits.
The proposed model facilitates the systematic reasoning regarding potential side-
channel threats and builds up the basis for using the scheduling information to
conduct post-mortem analysis in regard to the side-channel threat. The CPU
scheduling can cause lack of synchronization regarding the accesses to the side
channel and make its exploitation impossible. Therefore, studying its influence is a
key attribute behind the side-channel security analysis. As the direct integration of
the scheduling schema into the analysis is impeded and not straightforward due
to the involved non-determinism, InfoLeak enables security analysis by discerning
the correlation between the CPU scheduling traces and the success of an exploit of
the core-private cache as a side channel.

InfoLeak can assist to reveal the potential for security breaches related to the
exploitation of the core-private cache as a side channel by using the CPU scheduling
information. The model can be used as an indicator for the possible presence of
an attacker exploiting the core-private cache without neglecting the noise induced
by other processes in the system. A threshold can be leveraged as a feasibility
measure for the amount of possibly transmitted or eavesdropped information,
and can be used to raise an alert in case of a higher probability for an attacker.
InfoLeak can be a beneficial enabler for conducting a post-mortem analysis of a
system potentially under attack.

4.2 modeling the side-channel with infoleak

This section details our information leakage model, called InfoLeak. InfoLeak
formally describes how the core-private cache is exploited as a side channel, and
how its exploitation is influenced by the employed CPU scheduling. We adopt
the well-established definition of a side channel, as a communication channel that
results from the usage of shared resources and is not intended to be used for
communication or for illegitimate data transmission. In the context of the thesis,
the side channel can be used without special privileges. The following paragraphs
define the side-channel users, their roles and their interaction with the channel.

4.2.1 Channel Users

InfoLeak defines channel users as system processes that interact with the core-
private cache, and the core-private cache represents the channel. In this context,
there exist three user categories, called the sender, the receiver and other processes,
abbreviated respectively S, R and O. The core-private cache can be accessed by each
of the user categories and therefore, each user can change its state. While R accesses
the channel on purpose to monitor and analyze the information available in the
channel, S sends information through its accesses to the cache. R plays the role of
the receiver in a covert-channel attack or the adversary in a side-channel attack.
The role of S might be taken over by the sender in a covert-channel attack or by
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the victim in a side-channel attack. In the first case the actions of S are intentional
whereas in the case of a side-channel attack S sends data unintentionally. O uses
the channel, but is not necessarily aware of its usage for illegal data transmission
and encodes only noise into it. Similarly, R also encodes noise into the channel
through its actions to analyze the sent data.

4.2.2 Channel States

Within InfoLeak, the channel state is defined through the cache footprint the
user leave or the user cache access pattern. Through their operations, i.e., their
cache accesses, the users change deliberately or non-deliberately the channel state.
Therefore, we distinguish between the cache states Oi, which refer to observationi,
and a state U for undefined. The states Oi stand for to cache access patterns which
correspond to meaningful information to R from the perspective of a successful
data transmission through the channel. U is basically the channel state that
result from noise perturbations. Noise perturbations occur if O, for example, has
overwritten the information S had encoded into the channel. before R has been
able to decode it. This example denotes a case where S and R are not synchronized
properly, possibly as a result of the CPU scheduling policy.

The channel states that are involved in a covert-channel attack, for instance, can
be characterized by two predefined cache footprints to represent the bits 0 and 1.
These cache footprints that stand for 0 and 1 are then mapped to the states O1 and
O2 of InfoLeak. The undefined state U is also a part of the model by representing
the noisy state in this example.

4.2.3 Channel Interactions

To model the interplay of S, R and O with the channel, we employ a non-
deterministic finite automaton (NFA) A. The channel states are represented as
states in A while the user interactions with the channel trigger transitions in A.
These is formally described below.

A = (Q, Σ, ∆, q0, F) is comprised of:

• a finite set of states Q = Ob ∪ {U}, where Ob = ∪i=1
N {Oi} for N ∈N;

• a finite set of input symbols Σ = {s, r, o};

• an initial state q0 = U;

• a set of accepted states F = {U};

• a transition function ∆ : (Q× Σ)→ 2Q, defined in Table 1.

The set of input symbols Σ defines the labels for InfoLeak transitions. Each
symbol is chosen in correspondence to the user triggering the transition. More
precisely, S, R and O trigger transitions s, r, and o, respectively. The assumption
behind InfoLeak is that S always encodes meaningful information into the cache.
Therefore, each transition, that is triggered by S always changes the state of the
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Table 1: Transition Function of NFA A.

Input Symbol

s r o

State
Oi Ob {U} {U}
U Ob {U} {U}

channel to Oi, as shown in the NFA in Figure 8. These transitions are denoted with
label s and we refer to them as the s-transitions. As an example, in a covert-channel
attack S sends one bit of information to R at a time by leaving a distinguishable
cache footprint which stands for bit 0 or bit 1.

Figure 8 illustrates also the channel state changes caused by R referred to as
r-transitions. These transitions reflect the objective of R to decode the encoded
data. In case of a proper synchronization between S and R, R induces a transition
between the states Oi and U. This transition denotes the situation when R receives
information and produces noise through its decoding operations. The state U is,
therefore, a part of the accepted states F, as the operation of receiving information
after the r-transition is successful. Since R always produces noise in the channel,
the r-transitions always lead to the undefined state U, as depicted in the NFA in
Figure 8.

s s

r,o r,o

r,o

U

s
s
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r,o

s
s

O1s ONO2
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1 r, o → ro
r, r → rr
r, Z → rZ
o, o → oo
o, r → or
o, Z → oZ

2 r, s → ε
o, s→ os

3 s, o → so
s, r → sr
s, Z → sZ

4 s, s→ so

Figure 8: NFA A (left) and P’s Stack (right).

It is noticeable that the transitions triggered by O (cf, Figure 8), called o-
transitions, are the same as the ones triggered by R. Both R and O interactions
with the channel result in noise perturbations and thus, their transitions lead to
state U. Nonetheless, for the further analysis, we distinguish between O and R
due to R’s intentional usage of the channel in contrast to O’s unintentional channel
interaction.

For brevity and to avoid complicating the model unnecessarily, the cache is
assumed to be in the undefined state U before the attack. Hence, U is the initial
state of A.
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4.3 modeling the scheduling effect

the synchronization between S and R is a prerequisite for the success of the
core-private cache exploits. As this synchronization is mostly determined by the
CPU scheduling, we model the scheduling effect by extending the NFA A to a
non-deterministic pushdown automaton (PDA) with a stack.

As there are variations regarding the PDA terminology, we specify the notion
used in this section. In InfoLeak, ε is used to describe the situation when the stack
is popped. In this case, the element at the top of the stack is popped and no new
element is pushed onto the stack. In InfoLeak , an input symbol is read with each
move. With each transition, the element at the stack top is read and popped and
a string that consists of the popped element and a new element (or ε if the stack
is popped) is pushed onto the stack. Then, the new element is the new stack top
element.

To model the scheduling effect on the core-private cache exploits, we use PDA
P = (Q, Σ, Γ, δ, q0, Z, F). Therefore, we define an initial stack symbol, a stack
alphabet and a new transition function, as follows.

• a stack alphabet Γ = {Z} ∪ {s, r, o};

• a transition function δ : (Q× Σ× Γε)→ 2Q×Γε , detailed in Table 2;

• an initial stack symbol Z;

Table 2: Transition Function of PDA P.

Trans.# Transition

1 δ(U, s, Z) = ∪i=1
N {(Oi, sZ)}

2 δ(Oi, s, s) = ∪i=1
N {(Oi, so)}

3 δ(U, s, r) = ∪i=1
N {(Oi, sr)}

4 δ(U, s, o) = ∪i=1
N {(Oi, so)}

5 δ(U, r, Z) = {(U, rZ)}
6 δ(Oi, r, s) = {(U, ε)}
7 δ(U, r, r) = {(U, rr)}
8 δ(U, r, o) = {(U, ro)}
9 δ(U, o, Z) = {(U, oZ)}
10 δ(Oi, o, s) = {(U, os)}
11 δ(U, o, r) = {(U, or)}
12 δ(U, o, o) = {(U, oo)}

The finite set of states Q remains the same as defined in A and is detailed in
Section 4.2.2.

The transition function of P, defined in Table 2, takes as input: (i) a state; (ii) an
input symbol (excluding ε-transitions); and (iii) a stack symbol (which can be ε and
denotes the element on the top of the stack). The input tripple is then mapped to a
set of states and a set of stack symbols where the first element denotes the stack
top element. For example, s in sZ is the top stack element. Figure 8 illustrates the
changes in the states along with the respective stack operations.
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The following paragraphs describe the transitions presented in the table on the
right side in Figure 8 in more detail. The first shown transition, r, o → ro, indicate
that r is the input element and o is the current topmost stack element. With this
transition, the new topmost element in the stack becomes r while the state U
remains unchanged, as shown in the NFA on the left side in Figure 8. Table 2 also
defines this behavior (cf., Transition 8).

The successful transmission of information is given by the transition r, s→ ε (cf.,
first row of Transition 2 in Figure 8 or Transition 6 in Table 2). Similarly to the
NFA A, a transition from Oi to U takes place. With this transition, as R interacts
with the channel directly after S, the stack is popped. The symbol s is read and
popped and no new element is pushed onto the stack.

In the case of two subsequent s, as described in Transition 2 Table 2 or if an
o follows an s, as shown in Transition 10 in Table 2, the sent information is
overwritten. This happens, as the cache footprint is changed before the receiver
has managed to receive and analyze it. To reflect this issue, if an s is the topmost
element of the stack, and another s comes, the first s is popped and substituted by
an so. This behavior is defined by Transition 2 in Table 2.

The states proposed in InfoLeak reflect on the view on the core-private cache
from an observer’s perspective. As the objective of InfoLeak is to incorporate the
order of accesses to the channel into the model, a change in the channel state is
triggered with each user interaction. InfoLeak abstracts from defining specific
cache footprints and mapping them to the channel states. This allow for encoding
information of different granularity through the definition of the abstract states
Oi. The encoded information is primarily in the form of cache footprints, but
InfoLeak abstracts from details such as specific footprints. This makes the model
applicable to both side-channel and covert-channel scenarios. For instance, it can
be generalized to include cases where symbols instead of single bits are transmitted
in a covert-channel attack, e.g., by adding a new state Oi in the NFA for each
additional symbol. In such cases, the undefined state U remains unchanged.

By using InfoLeak, an estimate of the achieved covert-channel attack bandwidth
can be inferred. For this purpose, we need to keep track of the number of
successive times the stack has been popped over a predefined time period. A stack
of a large size, indicates that either there have been too many other processes
interacting with the cache over the monitored period of time or that S and R have
not been synchronized properly. An empty stack suggests the successful receipt
of the transmitted data and no contention in the channel with other processes. A
threshold can be defined for the number of successive times the stack has been
popped and can be used as a measure for the feasibility of the covert-channel
transmission.

4.3.1 Discussion and Possible Extensions

In our model we consider the side channel as a discrete memoryless channel similar
to [MM94; WL05], which has an impact on the proposed model. As a result of this
consideration, InfoLeak models the channel as a medium where each send, receive
or other operation interacting with the core-private cache erases the previously
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stored data. Hence, in InfoLeak, older states do not influence the capacity of the
channel. This assumption is valid, as the core-private caches are relatively small.
To confirm that, we conducted experiments considering successive scheduling of
sender and receiver in correlation to the success of the exploit of the core-private
cache (cf., Part III).

Table 3: PDA P Transition Function – Extended Model.

Trans.# Transition

6.1 δ(O_i, r, sn) = {(U, ε)}
13 δ(O_i, o, s) = {(O_i, sn)}
14 δ(O_i, o, sn) = {(U, osn)}
15 δ(O_i, s, sn) = {(O_i, so)}

Apart from that, InfoLeak is an extensible model which can also address channels
with memory. For this purpose, we have to define the length of the history which
should be considered. On an example we consider a history of one operation,
and add an additional symbol sn (n stands for noise) to the stack alphabet (i.e.,
Γ = {Z} ∪ {s, sn, r, o}). This denotes a sending operation perturbed by noise.
The additional symbol models the scenario in which after an S, another process O
causing noise has interacted with the channel, but the sent bit can still be decoded
if R interacts with the core-private cache directly after O. To address such scenarios,
the transitions given in Table 2 need to be extended as demonstrated in Table 3.

Additionally, it has to be noted that InfoLeak models the core-private cache as
a transmission medium, but do not incorporate the possible adversary actions
once the transmitted data has been obtained, e.g., employing error correction or
detection mechanisms.

4.3.2 On the Application of InfoLeak

We apply InfoLeak to a synthetic example, which resembles a well-know side-
channel attack. Additionally, we discuss on how InfoLeak can be leveraged for
a post-mortem analysis to investigate covert-channel communication’s feasibility
when using the core-private cache.

4.3.2.1 InfoLeak Utility Example

As an example, we simulate the side-channel attack proposed by Zhang et al.
in [Zha+12] and model the leakage with InfoLeak. Zhang et al. [Zha+12] demon-
strate a side-channel attack in a virtualized environment, in which the adversary
abuses the scheduler to interrupt the victim frequently enough. The adversary
exploits the core-private cache and therefore preempts the victim to be able to
collect sufficient number of observations on victim’s cache accesses.

In the described attack, the adversary monitors victim’s cache footprint and
creates vectors of 64 values each. These vectors represent the access times to
the 64 cache sets. The adversary maps the collected timing values to the Square
(Sq), Multiply (M) or ModReduce (MR) operations of the square-and-multiply
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algorithm used for fast exponentiation. Based on these observations and further
analysis, the adversary can extract victim’s confidential information (i.e., the secret
key). By modeling the described attack using InfoLeak, we consider the Sq, M and
MR as the states Oi in the NFA P, as described in Section 4.2. The cache access
pattern or cache footprint that represents a squaring operation is mapped to the
state Sq. Analogously, the states M and MR represent a multiply and modular
reduction operations, respectively. Figure 9 shows the resulting NFA.
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Figure 9: InfoLeak Utility Example.

In the presented example, two successive observations on the channel reveal one
secret key bit, in the case of bit 0. On the other hand, four successive observations
directly after the victim are needed to extract a bit 1. Therefore, in case of a
uniform distribution of the secret key bits, the adversary will need on average
three successive observations to extract a single bit. In InfoLeak this results in a
sequence s-r-s-r-s-r or the stack is popped three successive times.

The scheduling information can be analyzed for the successive scheduling with
respect to any pair of processes. The frequent interrupts caused by the adversary,
in the case of the described attack, are visible in the scheduling traces and can be
leveraged as an indication that an attack has been feasible or not. It is important to
note that even few bits might lead to extracting a private key if the side-channel
attack is combined with a consequent attack. Nonetheless, it would be more
beneficial for an adversary if the extracted bits are successive. This observation
can be used to adjust a feasibility threshold in terms of possibly leaked successive
bits of information.

4.3.2.2 Post-Analysis of Scheduling Information

By leveraging InfoLeak’s idea, we can analyze the scheduling information, e.g.,
the logs provided by the operating system, and investigate them for suspicious
covert communication. If we identify suspicious processes, they can be represented
as S and R, whereas the rest of the processes are represented as O’s. Then, we
can build up the transitions of InfoLeak using the scheduling log and can build a
stack of s- r- and o-transitions. By taking into account the number of successively
popped s’s over a predefined period time, we can give an estimate of the feasibility
of information leakage happening. Although the information provided when
applying InfoLeak to the system logs is valuable, InfoLeak’s applicability is only
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feasible if suspicious processes have already been identified. Chapter 5 investigates
further this problem.

4.4 related work

This section reviews the area of information leakage modeling in the context of
cache-based exploits.

4.4.1 Information Leakage Modeling

Information leakage through covert channels has been considered initially by
Lampson in [Lam73]. In his work, Lampson characterizes informally information
leakage possibilities for a confined program. His work [Lam73] lists a number
of possible leakage sources and classifies the leakage channels as storage-based,
legitimate and covert. In [Lam73] Lampson derives also confinement rules to
prevent information leakage, e.g., by applying masking and enforcement to block
covert channels. Despite the importance of this work from information theoretical
perspective, the proposed confinement rules are restrictive to apply in practice
nowadays.

The communication through illegitimate channels is also explored by Kem-
memer [Kem02]. Kemmemer proposes the Shared Resource Matrix as a system
to find all possible information leakage covert channels. The proposed approach
models all shared resources along with their attributes and with criteria to identify
all the possible storage and timing channels through the resource matrix. Given
the large number of the possible leakage sources, the proposed approach, though
valuable, is not efficient to be applied in practise.

In his work [Wra91], Wray considers a covert channel as a channel with storage
and timing attributes. Based on that, a timing channel is defined as a channel
in which information is conveyed by the relative timings of two clocks or event
sequences visible by the observer. For this purpose, Wray defines a clock as being
characterized by sequences of events which can be distinguished by one another.
The work described in [Wra91] proposes also a way to identify covert channels
through the construction of a matrix. The matrix’ rows list clocks modulated in
the channel exploitation and its columns list clocks used as reference clocks in
the exploitation. Such an approach, despite being essential from theoretical point
of view, requires the exhaustive enumeration of all clocks or shared resources to
detect all the possible covert channels, which is not practically feasible.

Another important work considering covert-channel information leakage is
presented by Hu in [Hu92b]. Hu proposed a method for decreasing the capacity of
the covert-channel tremendously by using fuzzy time system clocks. This approach
disables proper synchronization between the communicating parties to affect the
capacity of the information leakage channel. Hu demonstrates experimentally
that the capacity of the channel is reduced, but does not provide any information-
theoretic capacity analysis of the bus contention-channel used under fuzzy time.

In [Gra91], Gray focuses on modeling system and environmental probabilistic
behavior independently and expressing channel capacity in information theoretical
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terms. It considers a system as a finite set of states and a set of communication
channels providing only interface to the external environment. Gray does not
consider explicitly the scheduling role in [Gra91], but the distinction between
system under consideration and the environment in which the system is executing
is very important for the covert-channel and side-channel analysis.

A mathematical model for microarchitectural information channels, called the
Bucket model is described in [Hun+15]. The Bucket model considers a third party
eavesdropping the communication in the covert channel and in such a scenario, the
model facilitates the detection of intelligent attackers. However, the represented
attacker model is different than the commonly used one. Our work considers the
well-established side-channel and covert-channel attacker models.

4.5 conclusion

To reflect on the investigated feasibility aspects, we constructed an information
leakage model, called InfoLeak, which accounts for the scheduling effect on
the core-private cache exploitability in a side-channel or a covert-channel attack.
Through the model, we elaborate on how the exploits of the core-private cache
can be impaired by the CPU scheduling of the involved sender and the receiver
processes, and integrated the impact of the CPU scheduling into the analysis of the
cache-based exploits. Moreover, the proposed information leakage model can assist
in investigating a system with regard to a possible information leakage through the
core-private cache post-mortem. The proposed information leakage model beg the
question of assessing the exploitability of the caches systematically by considering
the context of their execution environment.
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C O V E RT- C H A N N E L AT TA C K S A N D T H E I R T R A C E S

Years of profound research activities and intense work mark the area of side-
channel attacks. Part II discussed the role of the CPU scheduling when conducting
covert-channel attacks exploiting the core-private cache. In this chapter, we further
investigate the scheduling effect by conducting an empirical study in a native
system and derive potential indicators for the existence of a side-channel adversary.
The contributions presented in this chapter are, partly verbatim, based on the
material presented in [Vat+18] and [VG+19].

This chapter is structured as follows. Section 5.1 gives an overview on the
problem. Section 5.2 focuses on a set of possible attack indicators in the context of
core-private cache exploits. Section 5.3 presents the experiments and the obtained
results, and discusses their implications. Section 5.4 gives an overview on the
related work, and Section 5.5 concludes the chapter.

5.1 on the indicators of cache-based exploits

It has been demonstrated that properties of the execution environment can affect
the side-channel exploits and can prevent certain attacks [Zha+12]. With our focus
in this part on core-private caches, among these execution environment properties
is the CPU scheduling. The CPU scheduling can allow for fine-grained observations
on victim’s cache usage [Hu92a; VRS14; Zha+12] or can make observing the cache
at the right time impossible for the attacker. Certain side-channel attacks even rely
on abusing the scheduler as a prerequisite for a successful side-channel exploit.
Inter-processor interrupts (IPIs) can be used to achieve frequent victim preemptions.
For instance, Zhang et al. leverage IPIs in their attack [Zha+12] to be able to collect
fine-grained data on victim’s cache accesses.

On this background, we explore the correlation between the success of the core-
private cache exploits and the scheduling of the attacker directly after the victim,
referred to as successive scheduling within this chapter. As analyzing the effect of
the scheduling algorithms on the side-channel attacks directly turns out to be less
feasible due to the involved non-determinism, we study the available scheduling
traces. Thereby, we try to obtain information regarding traces of a potential
confidentiality compromise. While contemporary research often considers side-
channel attacks relying on shared memory [Ira+14; YF14], their exploitability is
partly limited, as it depends on the usage of features such as memory deduplication
which can be disabled by the providers, e.g., [VMwa; VMwb]. Therefore, in this
chapter, we focus on Prime+Probe attacks exploiting the core-private cache.
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Our proposal is to monitor three scheduling-related metrics, called attack indica-
tors, to try to infer information on the feasibility of side-channel or a covert-channel
exploit in the given execution environment. Among the proposed attack indicators
are the frequency of inter-processor interrupts, the busy waitings issued by a pro-
cess and the number of successive scheduling cases of two processes on the same
CPU core. We suggest the usage of scheduling traces for post-mortem analysis
or feasibility assessment of side-channel or covert-channel attacks exploiting the
core-private cache. Our experimental analysis is based on a case study in which
we consider the success and feasibility of a L1 covert-channel attack.

To this end, the contributions of this chapter encompass: (i) the definition of
potential indicators for cache-based attacks, based on IPIs, busy waiting and suc-
cessive scheduling and (ii) the assessment of the correlation between the proposed
indicators and the success of a core-private cache-based covert-channel attack in a
case study.

Our empirical results demonstrate that the proposed indicators represent a step
towards establishing the link between the execution environment and the success
of a side-channel or a covert-channel exploit. This amplifies the expectation that
the characteristics of the environment play a crucial role in the feasibility of these
attacks using the core-private cache and can be leveraged to derive indicators of
compromise for the cache-based exploits.

5.2 cpu scheduling and attack traces

This section discusses the possible traces an attacker exploiting the core-private
cache might leave on the system and the role the CPU scheduling plays.

5.2.1 Scheduling-Related Considerations

The investigated attack indicators or attack traces are related to the scheduling of
the attacker process(es). Hence, the next paragraphs discuss the scheduling issues
relevant for the attack deployment and detail what can be taken into consideration
when investigating attack indicators.

5.2.1.1 Abusing the Scheduling Approach

In [Zha+12], Zhang et al. describe a side-channel attack in a Cloud scenario that
exploits the core-private cache. For the success of the described attack, the authors
leverage an additional third-party virtual machine that issues IPIs, to facilitate
the frequent observations of the attacker on the core-private cache. The goal is
that the attacker can be scheduled frequently enough directly after the victim, and
can collect fine-grained observations over victim’s cache usage. Such an approach
enables the usage of the core-private cache as a side channel, but is, however, only
possible if the third-party process can preempt the process of the victim frequently
enough. To this end, non-preemptive scheduling approaches appear to pose a
hurdle on conducting core-private cache attacks across virtual machines, as they
cannot be abused through frequent interrupts. However, due to their possible
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performance implications, these approaches are almost obsolete in user space of
the modern operating systems today. Furthermore, the attacker process can try to
influence the choice of CPU core it is scheduled to run on by adjusting its priority
(e.g., by trying to set the scheduling affinity) or the scheduling scheme [Ker13].
Such features are beneficial from a performance and usability point of view, but
they can increase the risk of abusing the scheduler.

5.2.1.2 Operations Atomicity and Synchronization.

Under synchronization we refer to the ability of the attacker to observe victim’s
usage of the core-private cache directly after it has taken place for the required
period of time. As already discussed in Chapter 4, a proper synchronization
between the attacker and the victim is crucial for the core-private cache exploits. In
the context of a covert-channel attack exploiting the core-private cache, the receiver
has to be scheduled directly after the sender. In addition, in such an attack the
atomicity of operations has to be retained. This means that the receiver has to be
scheduled after the sender has completed its sending operation. If the sender is
interrupted in the middle of the sending process, the receiver will not be able to
decode the original data. The same applies if the sender leverages the core-private
cache for a long time while performing more than one sending operations. In
such a case, the receiver is not able to gather all the transmitted data, as they have
been overwritten by newer data. For optimal attack results, the scheduling of the
attacker should consider the execution times of the involved sending and receiving
operations.

5.2.2 Attack Indicators Selection

Considering he scheduling impact on the success and feasibility of core-private
cache-based side-channel exploits, we propose to investigate the traces an attacker
leaves on the system related to scheduling. For this purpose, we identify three
possible attack indicators which are briefly discussed below.

5.2.2.1 Successive scheduling

The successive scheduling (SS) refers to the number of times the receiver process
has been scheduled to run on the CPU directly after the sender process and
determines the synchronization over the usage of the core-private cache. SS of an
adversary process and a victim process or of sender and receiver processes can
facilitate the exploits of the core-private cache as a side channel. Therefore, we
apply it as a possible indicator for such an exploit. To monitor the SS, a process or
a pair of processes with suspicious behavior should be identified first to observe
and analyze the SS cases with respect to the suspect processes.

5.2.2.2 Busy waiting

In attacks exploiting the cache as a side channel, the already mentioned synchro-
nization is often done through the adversary by explicitly yielding the CPU to let
the process of interest run, e.g., victim or sender process. Commonly, after each
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measurement, i.e., after performing a complete operation, the adversary process
yields the CPU and ideally, while the attacker is waiting, the victim is scheduled
to run. We suggest to explore the frequency of a process voluntary "releasing"
the CPU, referred to as busy waiting (BS) for the rest of the chapter. BW can
be used not only as a general attack indicator, but also to identify the processes
with suspicious behavior for which the SS indicator should be investigated by
considering processes characterized by an increased number of BWs.

5.2.2.3 Inter-processor interrupts

As already mentioned, through IPIs the adversary can abuse the scheduling
approach to grant frequent access to the core-private cache across virtual machines.
Hence, the number of IPIs over a predefined time span can be considered and
monitored as a potential attack indicator.

5.3 experimental setup and results

To empirically validate the utility of the proposed attack indicators we study the
correlation between the successive scheduling of two adversary processes in the
context of a covert-channel attack through the core-private cache and the attack
success. Furthermore, we consider the busy waiting triggered by the attacker
processes in both adversarial scenario and in a non-attacked system. We basically
perform post-mortem analysis of the logs provided by the operating system that
contain scheduling related events and system calls. This section details the setup
for the experiments, the implementation details, and concludes with a presentation
and discussion of the results.

5.3.1 Setup

We conducted two sets of experiments considering SS and BW separately on a
Debian Stretch in both noiseless and noisy environments. The experiments include
executing a covert-channel attack 100 times to transmit messages from the sender
to the receiver. Simultaneously with the execution of the attack, we logged the CPU
scheduling information. For this purpose, we make use of the tracing options in
Debian through /sys/kernel/debug/tracing by enabling the tracing of the context switch
event. The collected logs are parsed, and are correlated to the attack’s success. For
the experiments, we leveraged a system, as the one depicted in Figure 10.

5.3.2 Implementation Details

For both the SS and BW the experiments, we employed covert-channel attacks
that adhere to the Prime+Probe attack strategy, described in [Per05]. Each covert-
channel attack consists of a sender and a receiver adversary processes which
communicate through indirectly accessing the core-private L1 cache. The two
adversary processes have agreed on the meaning of cache footprints to represent
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Figure 10: System Model Underlying the Assessment of the Traces of Core-Private Cache
Exploits.

bits 0 and 1 and each of them allocates memory of the size of the L1 cache (32KB)
to encode and decode the predefined cache footprints.

In our implementations, the sender encodes a single bit of information at a time
(per sending operation) and, to do that the sender process accesses deliberately
chosen parts of the allocated memory. The data accessed by the sender is copied
into the cache sets representing either bit 0 or bit 1. Thereby, the sender evicts
receiver data that had been stored in these parts of the cache, and fetches other data
from the main memory or from the higher cache levels to the core-private cache.
Analogously to the sender, the receiver accesses the cache through its allocated
memory and to receive the message, the receiver process measures the time for
accessing specific parts of the cache. Depending on the access times, the receiver
can determine which cache parts have been evicted by the sender, and derives the
cache footprint the sender has left. Then, the cache footprint is mapped to either
bit 0 or bit 1 or no bit can be due to noise interference.

As a promising time reference, we sample the timestamp counter hardware
register TSC to obtain the number of the elapsed clock cycles during an operation.

However, obtaining precise time measurements comes along with certain chal-
lenges. For instance, we have to ensure that by the moment the receiver samples
TSC, the instructions that come before the sampling instruction (RDTSC), have
already been executed. Additionally, the time has to be sampled before the execu-
tion of the instructions that come after the TSC sampling instruction in the source
code of the receiver process. To ensure that the compiler and the processor respect
the original order of instructions with respect to the TSC instruction, we make use
of volatile as a memory barrier and the CPUID instruction for serialization.

Additionally, conducting a covert-channel attack is complicated through the dis-
tinction between physical and virtual memory addresses, as described in [OST06].
Our adversary processes do not have privileged access rights and have a view
on the virtual addresses of their allocated memory blocks only. This complicates
accessing predefined cache parts, but as we use the L1 cache, it is still possible to
access specific cache sets by conducting operations on deliberately chosen parts of
the allocated memory blocks.

In our setup the measurements are done in a C application, leveraging inline
assembly instructions, and the decoding is conducted offline by scripts once the
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access times have been collected, so that operations of the receiver do not interfere
with or invalidate the measurements, as the L1 cache is very sensible to noise.

5.3.3 Successive Scheduling Experiments and Results

For these experiments, the sender sends messages of length 1200 bits in different
setups with varied levels of noise to assess the correlation of the successfully
transmitted bits with the successive scheduling between sender and receiver. The
length of the messages and the number of experiments are chosen to ensure
statistically significant coverage and therefore represent 120000 sent bits. Within
one experiment, the receiver process is executed 1200 times to receive the sent
data and the sender performs 1200 sending operations. Simultaneously with the
conduct of the attack, we log the context switch events provided by the tracing
options in Debian through /sys/kernel/debug/tracing, and study the log for successive
scheduling cases with respect to the sender and the receiver processes.

To assess the correlation between the number of successfully transmitted bits
and the successive scheduling between the sender and the receiver statistically, we
employ Pearson’s correlation coefficients. For this purpose, we use the successive
scheduling, i.e., the number of times the receiver is scheduled directly after the
sender and the number of successfully transmitted bits (ST) over the channel per
experiment, respectively. We deploy the experiments in three scenarios with varied
noise levels.

5.3.3.1 Noiseless environment.

In the noiseless setup, we conducted 100 experiments whereas 11 bits on average
per experiment (out of 1200 bits sent) have not been properly decoded. The mean
value for ST in the noiseless setup is 1189 with a standard deviation of 4.151. The
mean value for SS within the same experiments is 1199 with a standard deviation
of 0.89. Table 4 summarizes the results, and Figure 11 visualizes the relationship
between the number of successive scheduling cases and the number of successfully
transmitted bits. The x-axis depicts the experiment number and the y-axis depicts
both the number of successfully transmitted bits per experiment (cf., blue plot)
and the number of successive scheduling cases per experiment (cf., purple plot),
whereas each point in the depicted linechart corresponds to one experiment.

Due to the low noise level in the transmission channel and the lack of contention
with other processes for the channel, in the conducted experiments the receiver
has been scheduled directly after the sender in almost all of the possible cases.
The number of successfully transmitted bits is also high mainly due to the lack of
contention for the channel. There is a small discrepancy in the values shown in the
two linecharts in Figure 11 in which the sent bits were not successfully transmitted
despite beneficial scheduling. This can be due to a violation in the atomicity of
the sending and receiving operations. In fact, the sender and the receiver were
scheduled 1201 and 1202 times on average, respectively, instead of 1200 times.
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Table 4: Successive Scheduling Experiments – Noiseless Setup.
Conducted experiments 100
Receiver operations (avg) 1200
Sender operations (avg) 1200
Receiver actually scheduled (avg) 1202
Sender actually scheduled (avg) 1201
Successive scheduling cases SS (avg) 1199
Standard deviation for SS 0.89
Successful transmissions ST (in bits on avg) 1189
Standard deviation for ST 4.151
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Figure 11: Noiseless Setup. Relationship Between SS and ST.

5.3.3.2 Noisy environment.

To investigate the traces an attacker leaves in a more realistic scenario, we con-
ducted 200 experiments in a noisy environment. To simulate load on the system,
we leverage the stressing tool stress-ng [Kin19]. We performed 100 experiments
with background load level of 40% and 100 experiments with background level of
80%. The load is considered per CPU core.

Considering the load of 40%, for the 100 experiments 934 bits on average are
successfully transmitted. The cases describing the successive scheduling between
the sender and the receiver are 1138 on average. The standard deviation for the
successful bit transmissions is 225, whereas for the successive scheduling it is 134.

In the other set of experiments characterized by a more noisy environment
with load of 80%, 535 bits are successfully transmitted on average with standard
deviation of 200, whereas the mean value of the successive scheduling cases is
905. The standard deviation in the latter case is 266. Table 5 gives a summary of
the results along with the respective minimal and maximal values for successful
transmission and successive scheduling cases.

The relationship between the number of successful transmissions measured in
bits and the number of successive scheduling cases for the two sets of experiments
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Figure 12: Load 40%. Correlation Between SS and ST.

Table 5: Successive Scheduling Experiments – Noisy Setup.
40% 80%

Conducted experiments 100 100
Receiver operations (avg) 1200 1200
Sender operations (avg) 1200 1200
Successive scheduling cases SS (avg) 1138 905
Standard deviation for SS 134 266
Min SS (over all experiments) 534 255
Max SS (over all experiments) 1201 1201
Successful transmissions ST (in bits on avg) 934 534
Standard deviation for ST 225 200
Min ST (over all experiments) 289 194
Max ST (over all experiments) 1194 1030
Pearson correlation coefficient 0.8 0.44

in a noisy setup is shown in Figure 12 and Figure 13. Each point in the linecharts
corresponds to a single experiment where a single experiment comprises 1200
receiver operations. Analogously to the noiseless case, the x-axis depicts the
experiment number and the y-axis depicts the successful transmissions and the
successive scheduling cases.

The blue linecharts in the figures show the number of successive scheduling
cases for each of the 100 experiments per linechart. The purple linecharts show
the number of successful transmissions per experiment. As can be seen from the
figures, there is a similarity in the trends of the blue and purple linecharts. This is
also confirmed by the positive correlation between the scheduling and the success
of the attack. By applying Pearson’s correlation coefficient, we obtain a correlation
of 0.8, and a correlation of 0.44 for the 40% load and the 80% load, respectively.

As shown by the results given in Table 5, the correlation between the success-
ful transmissions and the successive scheduling cases decreases in a more noisy
environment. This relies on the violated atomicity of sender and receivers opera-
tions. In the setup with 80% load, the sender has been scheduled only 982 times
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Figure 13: Load 80%. Correlation Between SS and ST.

on average, and the receiver has been scheduled 1178 times on average. Ideally,
both the sender and the receiver should perform 1200 atomic operations (sending
a bit and receiving a bit, respectively). This means that in the ideal case their
processes should be scheduled exactly 1200 times each which increases the chances
for atomic operations. As this is not the case in the noisy setup, the atomicity of
operations is not always given, and this affects both the successful transmission,
and the correlation with the successive scheduling.

5.3.4 Busy Waiting Experiments and Results

For the busy waiting experiments, the employed Prime+Probe attack consisting
of a sender and a receiver processes. The employed attack resembles the attack
described in [Mau+15], but the sender and receiver processes communicate with
each other through the cache footprints left on the L1 cache instead of the LLC,
as in [Mau+15]. The transmitted data is wrapped up by a header and a footer. In
that way the receiver is able to identify the start and the end of the actual message.
Per experiment we transmitted messages of length 5000 sent over the L1 cache as
packets consisting of 1000 bits payload and 500 bits header and footer each.

Altogether, we have five settings for five different scenarios considering cases
in the presence of an attacker and scenarios without an attack running. To simu-
late varied noise levels in the five setups, we leveraged the stressing tool stress-
ng [Kin19], and employed background load levels of 0%, 40% and 80% per CPU
core in the cases with a running attack. For the non-attacked system cases, we
employed background noise levels of 40% and 80% per CPU. In each of the exper-
iments the number of busy waiting events (BW) is logged simultaneously with
the conduct of the attack. Such events are the issued sleeps, nanosleeps and waits
provided by the operating system.
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The results summarized in Table 6 demonstrate a significantly lower number of
busy waiting events in a non-attacked system compared to the number of busy
waiting events in an attacked system. The huge difference in the values is also
visible from Figure 14 demonstrating the tremendous BW increase in an attacked
system compared to a non-attacked system. This huge difference confirms that
BW can be considered as a possible indicator for the presence of a suspicious
process exploiting the core-private cache. Therefore, BW is a particularly suitable
indicator for initiating further investigation due to the minimal overhead related to
its measurement. A high BW value suggests also that investigating the successive
scheduling with respect to the respective process can be beneficial.

As expected and similar to the results presented in Section 5.3.3, with the load
increase, the number of successful transmissions decreases due to more contention
for the cache. The number of BWs remains relatively stable in regard to all the
scenarios in the presence of an attacker. This is expected, as the large number of
BW is a characteristics of the attack implementation and not of the noise levels.
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Figure 14: BWs in a Non-Attacked and in an Attacked System.

Table 6: Results in an Attacked and Non-Attacked System with Varied Background Noise
Levels.

Attack employed No attack
0% 40% 80% 40% 80%

# Experiments 100 100 100 100 100
BW (overall) 2024152 2005113 2016318 4 16
BW (average per exp.) 20241.52 20051.13 20163.18 0.04 0.16
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5.4 related work

The security community has recognized the relevance of exploiting the cache
as a side channel to compromise data confidentiality and the applicability of
these exploits to the virtualized environment [Ris+09; WXW12; Xu+11; Zha+12].
Profound research in the area is still ongoing.

This section details the related work in regard to the role of the synchronization
between the involved processes for the success of side-channel and covert-channel
exploits.

5.4.1 Synchronization and the Exploits of the Cache as a Side Channel

The synchronization effect in the context of side-channel exploits has been studied
already. In [Hu92b], Hu proposes a way to reduce the channel’s capacity by lever-
aging fuzzy time system clocks as a measure to disable the proper synchronization
for the adversary. Hu demonstrates experimentally that the channel capacity
can be reduced in that way, and the proposed approach is promising in terms
of enhancing the system security, however, it is impractical due to the involved
restrictions on the execution environment for other benign processes.

In [Gra93], Gray considers the synchronization possibilities between the sending
and receiving end in a covert-channel communication and estimates an upper
bound about the capacity of the covert channel under fuzzy time in information
theoretical terms, as introduced by Hu in [Hu92b]. The varied factors that impact
the feasibility of cache-based exploits including the synchronization of the covert
communication are also discussed in [Mau+17] by Maurice et al. Considering the
possible synchronization issues, the authors defined three types of errors in the
covert channel distinguishing between deletion, insertion and substitution errors.

Despite the threat posed by the side-channel exploits, the context of the execution
environment often affects the performance of the different attack strategies. In
[MKS12], Mowery et al. express doubts regarding the feasibility of side-channel
attacks on certain architectures due to the applied preventive measures after an
attempt to exploit the cache as a side channel, which turned out to be unsuccessful.
Among the reasons for the lack of success, Mowery et al. point out core pinning
which affects the synchronization between the attacker and the victim.

The vital role of proper synchronization over the accesses to the side channel
for the successful data exfiltration has been mentioned in a variety of works that
discuss different cache-based exploits. Among them are the ones described in
[VRS14; Zha+12].

In this work, by considering the existing research in regard to the synchro-
nization’s role for the successful exploit of the cache, we focus on the traces or
indicators a side-channel adversary leaves related to the required synchronization
over the channel usage.
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5.5 attack indicators – summary and discussion

The conducted experiments focus on the traces or possible indicators for the
presence of an adversary that exploits the core-private cache for covert communi-
cation. As synchronization indicators we considered the number of issued "sleeps",
"nanosleeps" and "waits" in the available system logs provided by the operating
system. The results show that in the absence of an attacker the number of these
events is almost negligible, whereas the employed attack has led to a tremendous
increase in the values indicating synchronization attempts. The obtained results are
independent of the tested noise levels but dependent on the presence of an attacker.
This result demonstrates that the synchronization indicators can be used post-
mortem to identify suspicious processes which can be involved into a side-channel
attack or a covert-channel attack considering specific attack implementations.

In regard to the experiments investigating the successive scheduling cases of the
receiver and the sender in the context of a covert-channel attack, we studied the
correlation between the beneficial scheduling of the sender and receiver processes
and the success of the conducted covert-channel attack. Our results demonstrate
a correlation of 0.44 between the scheduling and the success of the attack in the
most noisy employed setup characterized by a background noise level of 80%. In
the setup characterized by 40% load, the Pearson’s correlation coefficient contends
a correlation of 0.8. These results are expected, as the employed covert-channel
attack exploits the core-private cache which is relatively small in size, and any
process inbetween the execution of the sender and the receiver can affect the
communication by erasing the cache footprint left by the sender process. In this
case, the more noisier environment weakens the correlation between the successive
scheduling cases and the number of successful transmissions. This relies on the
violation of the atomicity of the sending and receiving operations.

The analysis of the SS by using the system logs shows a correlation between the
number of SS and the success of the attack. However, this analysis is infeasible
unless a suspicious process has been identified in advance due to the overhead
related to the analysis of all the processes running on the system. Therefore,
it can be only applied post-mortem if a suspicious process has been identified,
e.g., through analyzing the BW of the involved processes. Although SS and BW
cannot be applied directly for detecting of side-channel attacks, the experiments
demonstrate that there are characteristics specific to the side-channel exploits
which can be leveraged to enable their detection.



6
T H E E F F E C T O F T H E H Y P E RV I S O R S C H E D U L I N G
C O N F I G U R AT I O N

The role of the CPU scheduling for the success of the cache-based exploits has
been discussed in Part II. In this chapter, we further investigate the relationship
between the execution environment and the exploitability of the core-private cache
in the context of a covert-channel attack. For this purpose, we study the effect
of the hypervisor scheduling parameters on attack feasibility in a virtualized
environment. The contributions presented in this chapter are, partly verbatim,
based on the material presented in [VSM15].

This chapter is structured as follows. Section 6.1 gives an overview on the
addressed problem and the respective contributions. Section 6.2 presents the
underlying system model. Section 6.3 details the scheduling approach employed
at the hypervisor level along with the available scheduling parameters, whereas
Section 6.4 presents the setup for the conducted experimental study and the
implementation details. Section 6.5 reports on the experimental results regarding
the impact of the hypervisor’s scheduling configuration on the covert-channel
attack. Section 6.6 investigates the state-of-the-art in the area, and Section 6.7
concludes the chapter.

6.1 overview

There exist numerous execution environment properties which can impact the
success of a side-channel or covert-channel attack. Among them is the employed
CPU scheduling approach and configuration. Certain cache-based exploits are
reliant on tricking the scheduler into specific behavior which enables frequent
observations of the cache [Zha+12]. This is especially important when exploiting
the core-private cache, which is in the focus of this chapter. The CPU scheduling,
enabling proper synchronization upon the usage of the core-private cache, is a
cornerstone for the success of such attacks mainly due to the limited size of the
core-private caches.

The virtualized environment is even more endangered by the side-channel threat,
as it relies primarily on the usage of shared resources across security boundaries.
In such an environment, the hypervisor is responsible for decoupling the operating
system from the hardware state of the underlying machine and for providing
secure isolation between the co-located virtual machines. Hypervisor’s scheduler,
on the other hand, is responsible for scheduling the virtual CPUs (VCPUs) on the
physical CPU cores and with that, it has a direct influence on the exploitability
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of the core-private cache as a side channel. The results presented in [VRS14] by
Varadarajan et al. reinforce the expectation that the scheduling configuration has an
influence on the exploitability of the cache as a side channel. The work presented
in [VRS14] studies the impact of a single hypervisor scheduling parameter and
proposes a defense mechanism against a particular side-channel attack. On this
background, it would be beneficial to comprehensively study the effect of the rest
of the hypervisor scheduling parameters on the feasibility of cache-based exploits.

To further explore the relationship between the execution environment and the
exploitability of the core-private caches, we study the impact of the hypervisor
scheduling configuration including diverse parameters on the feasibility of a covert-
channel exploit. Hence, we consider a set of scheduling parameters employed in
the the scheduling decisions. We investigate how the changes in the parameters’
values can affect the success of the covert communication between a sender process
and a receiver process through the core-private cache in a virtualized environment.
We ascertain the effect of the scheduling parameters on the exploit’s feasibility
empirically by deploying a cache-based exploit in a controlled lab setup. We
conduct experiments with different hypervisor scheduler configurations to assess
the effect of the configuration on the feasibility of the performed attack. Our results
suggest that the scheduling configuration plays a role in the success of core-private
cache-based exploits and show that for the employed attack implementation and
our controlled virtualized environment, certain configurations tend to be more
secure in regard to the covert-channel attack feasibility. Nonetheless, the exact
feasibility of the side-channel attacks highly depends on the particular attack
implementation, and the acquired results apply to the specific implementation and
setup.

6.2 system model

This chapter focuses on the virtualized environment. Therefore, the system model,
shown in Figure 15, comprises the hypervisor, along with the hypervisor sched-
uler. In our experiments, the abused hardware resource is the core-private cache.
Therefore, the core-private caches and the respective CPU cores are also a part
of the system model. The core-private cache or L1 cache is the smallest and also
the fastest cache. Out system model has also a level 2 cache and a LLC, which is
larger and slower than the L1 and L2 caches, but is faster than the main memory.
Whenever some data is requested, it is searched in the core-private cache first.
After that the higher levels of cache are considered and if the data cannot be found
there, it is fetched from the main memory into the cache. Logically, if the data has
not been found in the cache (referred to as a cache miss), it takes longer to access
it, as it has to be fetched from the main memory first. If the data has been found
in the cache (referred to as a cache hit), accessing it is faster.

In the focus of this contribution are covert-channel attacks exploiting the core-
private cache, which are characterized by cooperating attackers (i.e., a sender and
a receiver), which communicate covertly through the core-private cache. As a part
of the system and attacker models, we consider two distinct co-located virtual
machines, referred to as Virtual Machine0 and Virtual Machine1. In the first one,
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Figure 15: System Model – Virtualized Environment.

the processes of the sender are running, whereas in the second one, the processes
of the receiver are running.

These two virtual machines can be co-located with further virtual machines,
whereas we assume that the attackers have taken over at least the virtual machines
Virtual Machine0 and Virtual Machine1. The attacker does not have control over
the hypervisor. Through their actions, the attacker processes violate the presumed
secure isolation between the separate virtual machines and the confidentiality in
the system and can indirectly access data beyond the logical boundaries of their
virtual machines.

For the empirical study presented in this chapter we rely on two distinct attacker
models. In the first case, we assume a stronger attacker model characterized by the
ability of the attackers to sustain better synchronization over their operations. The
second attacker model is weaker and the synchronization over the involved sending
and receiving operations between the sender and the receiver is not guaranteed.

6.3 hypervisor scheduler

The hypervisor scheduler is responsible for assigning the virtual CPUs, called
VCPUs, to the physical CPUs of the underlying machine. A number of scheduling
approaches are applied in hypervisors, e.g., Simple Earliest Deadline First (SEDF)
[Sch], Completely Fair Scheduler (CFS) [KA14; M. 09], Borrowed Virtual Time
(BVT) [DC99], etc.

Our goal is to study the impact of the scheduling configuration on the feasibility
of exploiting the core-private cache in a covert-channel attack in a virtualized
environment. For this purpose, we consider fair-share schedulers which are used
in various hypervisors such as Xen [Xen] and KVM [KA14]. We focus on the Credit
scheduler used in Xen [Sch; Xen], as it leverages most of the relevant scheduling
parameters used also in other virtualized environments. It is worth noticing that
scheduling parameters having the same conceptual function might be known
under different names when used in other schedulers. We aim at investigating how
the configuration of the hypervisor scheduler affects the feasibility of the employed
cache-based exploit and study how changes in the scheduling parameters values
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affect the transmission of bits through the core-private cache as a communication
channel between a sender and a receiver processes.

6.3.1 Credit Scheduler

The Credit scheduler implemented in Xen is a proportional fair-share CPU sched-
uler. The approach of the Credit scheduler aims at achieving fairness in respect to
the resource allocation and assigns each VCPU a certain number of credits [CGV07;
Zho+11]. The assigned credits are consumed and reduced with the consumption
of CPU time. Each VCPU is associated with a priority which denotes whether the
VCPU has used up all of its credits (i.e., the priority is "over"), or the VCPU has not
exceeded its credits (i.e., priority is "under"). The scheduler keeps track of whether
the VCPU has run out of credits. Thereby, the absolute value of the available
credits is less important than the fact whether the credits have been exceeded.
VCPUs of priority "under" can be scheduled until their credits are depleted. The
VCPUs are assigned new credits periodically, and the number of their available
credits is periodically updated, as well.

Table 7: Hypervisor Scheduling Parameters.
Parameter Function Default value

Load balancing Determines whether automatic load balancing is used automatic

Weight Determines the relative CPU allocation among the
VCPU

256

Cap Imposes an absolute limit on max amount of CPU a
VCPU can consume

0

Timeslice Determines max time period a VCPU is allowed to run 30 ms

Rate limiting Guarantees min amount of time a virtual machine is
allowed run without being preempted

1000µs

6.3.2 Hypervisor Scheduling Parameters

The hypervisor scheduling parameters in the focus of this work are load balancing,
cap, weight, time slice and rate limiting. These parameters are a part of the Xen
Credit scheduler, but are relevant for other scheduling approaches, too, though
they might be known under different names. An overview of the hypervisor
scheduling parameters functions and their default values is given in Table 7.

load balancing . The system load can be automatically balanced among the
available CPUs by the Credit scheduler. For this purpose, the scheduler sustains
a scheduling runqueue considering the active VCPUs priorities (i.e., "under" or
"over"). Each of the running VCPUs is charged credits per clock tick. Commonly,
the scheduler assigns the next local VCPU of priority "under" to run. If there is
no such local VCPU, then a remote VCPU of priority "under" is scheduled to run.
Otherwise, a local VCPU of priority "over" is scheduled and only then a remote
VCPU of priority "under" can be scheduled.
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The system administrator has the possibility to manually balance the load by
assigning certain VCPUs to particular CPUs. This is known as CPU pinning or
fixing the CPU affinity, and is used as a restriction to limit the CPU cores a VCPU
can run on. The load balancing or CPU pinning is specified per VCPU.

weight. The weight, referred to as shares in other systems, is assigned per
domain, and represents the significance of a VCPU in regard to the rest of the
VCPUs. It indicates the relative CPU allocation time of a domain with respect to
the other domains. A domain with a weight twice as high as the weight of another
domain receives twice as much CPU time as the other. The scheduler involves
the weight value for the calculation of the credits that a VCPU is assigned to. The
acceptable weight values in the Credit scheduler are in the range from 1 to 65535
whereas 256 is used as a default value.

cap. Through the cap parameter, also referred to as limit, the Credit scheduler
supports work-conserving and non-work-conserving modes. This parameter
imposes a limit on the maximum amount of CPU a domain is allowed to consume.
If the cap is set to a non-zero value, the scheduler is in a non-work-conserving
mode. In this case, the cap limits the consumption of CPU cycles for the VCPUs
even if more processing resources are available. This can lead to an increase in
the time for a task completion. A domain with a cap of 0 is not capped which
corresponds to scheduler work-conserving mode. In this case, the CPU is idle only
if no VCPU is waiting to be scheduled. The cap value is expressed in percentage
per domain, where a cap of 100 means one physical CPU, a cap of 50 means half a
CPU, etc. Similarly to the weight, the cap is also involved in the computation of
the credits.

timeslice . The timeslice, also referred to as quantum in other contexts, deter-
mines the maximum period of time a VCPU is allowed to run. Once this period
has elapsed, the VCPU is de-scheduled by the scheduler, and another VCPU is
scheduled to execute on the CPU. Such a preemption takes place if the execution
time of the VCPU exceeds the timeslice. It has to be noted that the timeslice defines
the maximum time a VCPU is allowed to run, but it does not guarantee that a
VCPU will run without being preempted for the whole timeslice period. The
timeslice value is the same for all the domains, and it can have performance impli-
cations. For example, for latency-sensitive workloads having a long timeslice can
be devastating, while a long timeslice can have a positive effect on computationally
intensive workloads.

context-switch rate limiting . The rate limiting parameter determines
the minimum amount of time a virtual machine is allowed to run without being
preempted if it is set to a value different than zero. The rate limiting value is given
in microseconds. The default value of this parameter in the Credit scheduler is
set to 1000 microseconds, where the rate limiting can be disabled by setting its
value to 0. Similar to the timeslice, the rate limiting value can have performance
implications depending on the workload requirements.
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6.4 hypervisor scheduling evaluation

This section presents the experimental setup and the implementation details
involved in our study.

6.4.1 Experimental Setup

We employ two distinct experimental setups. In both cases, our experiments
are conducted on commodity hardware. The used systems are equipped with
Intel Quad Core i7-4770 CPU@3.4GHz and Intel Skylake processors. On the first
system, we run experiments that involve a stronger attacker model, as mentioned in
Section 6.2. In the scenario, the attackers (i.e., a sender and a receiver processes) are
presumed to have control over the synchronization of their sending and receiving
operations. This is not a realistic scenario, but we leverage it to be able to study the
effect of the scheduling with respect to the other co-located processes on the attack
success independently of the issues that stem from the violation of operations
synchronization. For this setup, we use Xen 4.3 hypervisor [Xen] as a virtualization
solution equipped with an administrative guest domain with special privileges,
called Dom-0. Dom-0 is leveraged to create or destroy other virtual machines,
referred to as guests or to adjust various parameters, including the scheduling
configuration.

The other experimental setup runs on Intel Skylake processor on which we
use Xen 4.9 as a virtualization solution. For the conduct of these experiments,
we do not rely on a guaranteed synchronization over the sending and receiving
operations.

In both cases, we perform a covert-channel attack which is based on the
Prime+Probe strategy and leverages the core-private cache for covert data trans-
mission. For this purpose, we use two physically co-located virtual machines that
reside on the hypervisor. The receiver processes are running in one of the virtual
machines and the sender processes are running in the other virtual machine. The
goal of the sender and receiver processes is to communicate via the core-private
cache by the means of predefined cache access patterns.

To analyze the effect of the scheduling configuration on the exploitability of the
core-private cache in this context, we vary the values of the scheduling parameters
introduced in Section 6.3 while performing a covert-channel attack. We measure
the error rate with respect to the received data to assess the the success of the
attack. The error rate is determined by the ratio of the number of incorrectly
decoded bits (including also the bits which cannot be decoded) to the number of
all the sent bits. For practical reasons, we consider deliberately chosen values for
the scheduling parameters that are expected to result in different levels of noise on
the system.

6.4.2 Implementation Details

In the context of the employed covert-channel attack, the sender and the receiver
processes try to communicate with each other secretly through the core-private (i.e.,
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L1 data) cache. As they cannot access the cache directly, both processes allocate
buffers as bit as the L1 cache. The allocated buffers are aligned by the cache line
size. The processes adhere to the Prime+Protocol (cf., Part I) where the sender
accesses parts of the cache to encode one bit of information by evicting receiver
data from the cache. The receiver times its accesses to the respective cache parts
to obtain the data. In the first experimental scenario the adversaries synchronize
explicitly by means of POSIX sockets. In this scenario, the receiver does not start
any receiving operation unless the receiver has received a confirmation from the
sender regarding the completion of the sending operation. Analogously, the sender
sends a new bit only if it has obtained a confirmation about the receiver that the
receiving operation has been completed. In the second setup, the attacker model is
weaker. The attackers try to synchronize with each other, but do not use sockets.
Instead, they yield the CPU upon each completion of their operations.

Similarly to the attack described in Section 5.3, also here, we have to cope
with challenges such as prefetching and addressing uncertainty. Nonetheless,
as the employed cache is the core-private cache, accessing specific cache parts
based on data from the virtual addresses, is possible. In addition, we do not take
into account the access times to a single cache line, as it is nearly infeasible to
differentiate between cache hits and cache misses in a virtualized environment
in the context of a covert-channel exploit. Therefore, we consider accumulated
values to increase the measurable difference when sending bits 0 and 1. With
one sending operation, the sender transmits one bit of information and with one
receiving operation, the receiver tries to decode one bit of information. Ideally, the
receiver tries to decode the bit of information directly after the sender has encoded
it into the cache. Otherwise, another process can overwrite the cache access pattern
meanwhile.

To accurately measure the access times to the cache, we make use of the RDTSC
assembly instruction. We address the issues stemming from potential out-of-order
execution in regard to the sending and receiving operations, by making use of
the CPUID instruction to serialize instruction execution and volatile as a memory
barrier.

Both experimental setups are not exposed to additional load. The system is not
stressed, and no additional workloads except for the basic load are running on the
system.

6.5 the role of scheduling parameters – results

This section presents the results of our experimental study on the impact of the
scheduling configuration on the feasibility of a covert-channel attack that abuses
the core-private cache. The results are presented per scheduling parameter. Per
experiment, we vary a single parameter, and the rest of the parameters are set to
the default values.

6.5.0.1 Load balancing

To assess the effect of the load balancing on the attack success, we consider four
different configurations involving the two virtual machines of the sender and the
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receiver (referred to "sender" and "receiver" for brevity from now on) and the
administrative guest Dom-0. Dom-0 also competes for resources along with the
sender and the receiver. The tested hypervisor scheduling configurations are listed
below.

• LB1: The sender and receiver are pinned to an identical CPU core whereas
Dom-0 is pinned to another CPU core

• LB2: The sender and receiver are automatically load balanced and Dom-0 is
pinned to a particular CPU core

• LB3: The sender, receiver and Dom-0 are pinned to an identical CPU core

• LB4: The sender and receiver are pinned to distinct cores

Through the load balancing, the hypervisor practically controls the availability
of the core-private cache as a side channel or as a communication channel between
the sender and the receiver in our experiments. Therefore, our speculation is that
the configuration LB1 is the most beneficial one from attacker perspective, as in this
case, the core-private cache is at disposal to the adversaries as a communication
channel. Moreover, in this case Dom-0 does not compete for the same resources
as the sender and receiver. This logical observation is also substantiated by our
experimental results. We obtain the lowest error rate compared to the rest of
the configurations which is of 38% for the stronger attacker model. The error
rate increases and reaches 67% for the experimental setup with a weaker attacker
model. This deterioration in the results is expected, as the atomicity of the send
and receive operations is not guaranteed in such a scenario.

As expected, the worst case controlled through the load balancing from attacker
perspective is LB4. In this case, the channel is not available for covert communica-
tion, as the sender and receiver processes are scheduled to run on distinct CPU
cores and do not share the the core-private cache. In this case, the stronger attacker
model exhibits an error rate of almost 99%. This is the worst configuration case
also in regard to the weaker attacker model. Similar results are obtained for LB2,
when the sender and the receiver are automatically load balanced. This results in
an error rate almost as high as the error rate in LB4. The stronger attacker model
exhibits an error rate of 97% in this case. The obtained error rate in LB3 is worse
than the error rate measured for LB1, but better than the values measured in LB2

and LB4. For the attacker model with guarantees regarding the synchronization
over the sending and receiving operations, the error rate reaches 72%.

To ensure the availability of the core-private cache as a communication channel
for the rest of the experiments, we use LB1 configuration with regard to the load
balancing of the virtual machines.

6.5.0.2 Weight

To assess the impact of the weight values on the feasibility of the deployed covert-
channel attack with respect to both attacker models, we distinguish three schedul-
ing configurations involving the weight parameter.
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• W1: Both weights are set to their default value 256

• W2: Sender weight is set to 512 and receiver weight remains 256

• W3: Receiver weight is set to 512 and sender weight remains 256

Our results demonstrate that the three chosen weight configurations do not affect
the error rate significantly considering both attacker models. The configuration W1

actually overlaps LB1, as the receiver and sender weight values are set to the default
values of 256. In this case, the error rate is 38% for the stronger attacker model. The
obtained results show an error rate of 42% and 44% for W2 and W3, respectively.
The weight parameters controls the CPU time a virtual machine is assigned to with
respect to the other co-located virtual machines. In the implementation with regard
to the stronger attacker model, after the sender has finished a sending operation,
the receiver is informed upon its completion. Only then, the receiver starts the
receive operation. Analogously, the sender waits for the receiver to complete the
receive operation. Therefore, even if the receiver of the sender are assigned more
CPU time, this does not have a significant influence on the success of the attack.

6.5.0.3 Cap

To investigate the effect of the cap parameter on the success of the attack, we
consider three values.

• C1: The sender and receiver are not capped (cap is set to 0)

• C2: The sender and the receiver caps are set to 40

• C3: The sender cap is 1 and the receiver cap is 0

In the tested configuration, we consider also the cap default values in C1 which
overlaps with configuration LB1. The influence of the cap parameter highly
depends on the employed implementation. It will have an effect on the attack, if
the sender or receiver run long and have to be interrupted in the middle of their
operations. This can lead to a violation of the atomicity of the sending or receiving
operations. However, as our stronger attacker model ensures the synchronization
over the operations of the receiver and the sender, this is not expected to have an
effect on the error rate of the attack. If the sender and the receiver are capped
at 40%, we exhibit almost the same error rate for C2 (41%) as in the best case
C1 (error rate of 38%).

In the case of a weaker attacker, if the sender is preempted in the middle of a
send operation, the error rate increases. This is demonstrated also by the obtained
results. For C3, we obtain an error rate of 78% compared to an error rate of 67%
for C1. In this case the employed time slice is 30ms and the sender uses 1% CPU.
This can lead to frequent preemptions of the send operation and affect the success
of the attack. C2 does not affect the error rate significantly, as a cap of 40% is
sufficient for both the sender and receiver processes to complete the send and
receive operations before the time has elapsed.
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6.5.0.4 Time slice

The time slice limits the maximum time a virtual machine is allowed to run. Once
the time slice has elapsed, the virtual machine is de-scheduled. To be able to study
the effect of the time slice parameter, we employ the attacker model which relies on
a weaker (and more realistic) assumption regarding the synchronization between
the sender and the receiver and does not ensure atomicity of the send and receive
operations. In this context, we have tested three values of the time slice parameter.

• T1: The time slice is set to 1ms

• T2: The time slice is set to the default value of 30ms

• T3: The time slice is set to 1000ms

Configuration T2 corresponds to configuration LB1 (30 is the default value of
the time slice) and exhibits logically the same error rate of 67%. Our results do
not demonstrate a significant impact of the time slice on the error rate which
characterizes the covert-channel communication. A reason for that is that the time
slice limits the CPU time a virtual machine is allowed to run, but does not impose
that a virtual machine has to run that long. As also in the weaker attacker model,
the adversaries try to synchronize with each other, they voluntary yield the CPU
after the completion of a send or receive operation. Therefore, a long time slice
does not result in an error rate deterioration. The shortest time slice period, on the
other hand, is 1ms which is sufficient for the sender and the receiver to complete a
send or a receive operation before being interrupted. Therefore, the effect of the
time slice parameter on the error rate is minimal. Nonetheless, with the decrease
of the time slice, the error rate increases slightly. The error rate values are 68% ,
67% and 66% for T1, T2 and T3, respectively.

6.5.0.5 Rate limit

Also in this case, we employ the weaker attacker model to analyze the impact of
the rate limit on the success of the covert-channel attack. We consider the following
three configurations.

• RL1: The lowest possible value - 100

• RL2: The default value - 1000

• RL3: The highest possible value - 500000

To study the effect of configuration RL3, we set the time slice parameter to 500ms,
as the rate limit may not exceed the time slice period. For the default configuration
(i.e., RL2), the error rate is 67%. An increase in the rate limit parameter and in
the time slice parameter result in a slightly increased error rate (69% for RL3),
but in this case two of the hypervisor scheduling parameters are changed which
makes the comparison of the effect of the rate limit with the other cases harder. A
decrease in the rate limit parameter increases the error rate to 73% (cf., RL1). In
this case, the minimum runtime guarantee for the sender and the receiver is set
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to 0.1ms. This does not mean that the sender and the receiver will necessarily be
interrupted after 0.1ms , but increases the chance for frequent preemptions which
can lead to violation of the atomicity of the operations. This case is analogous to
C3, in which the sender is preempted frequently during the send operation, as it is
capped at 1%.

The presented results indicate that certain hypervisor scheduling parameters
affect the feasibility of the deployed covert-channel exploit. They show that the
parameter which affects the channel at most is the load balancing. The results in
our both experimental setup employing a weaker and a stronger attacker models
confirm that the channel can become unavailable due to the pinning of the sender
and receiver to distinct cores. On the contrary, if the adversaries are pinned to
the same core, the associated error rate is lower than when they are automatically
load balanced among the CPU cores. Moreover, the automatic load balancing of
the sender and receiver pose a challenge to the adversaries, as the availability of
the channel is affected. Very low values of time slice and cap can also affect the
covert-channel communication. Nonetheless, this depends on the implementation
of the attack (the execution times of the receiver and the sender), the employed
attacker model and the underlying hardware.

6.6 related work

Side-channel attacks have been a known threat for a long time. However, due
to the prevalence of complex systems such as the Cloud which offer shared
resources to their customers, these attacks became even more popular during
the last decade [Ris+09; Zha+12]. Such complex systems are often reliant on
virtualization solutions to multiplex the available hardware resources among their
customers. This chapter overviews the research of the security community on the
scheduling effect within the virtualization environment on the exploitability of the
cache as a side channel.

6.6.1 The Scheduling Effect

There exist a number of factors characterizing the execution environment including
the scheduling policies which impact the feasibility of side-channel attacks. Such
factors have been employed to enhance the systems security against side-channel
attacks in diverse approaches [KPMR12; LGR13; MDS12; Shi+11; Ste+13], but many
of them are commonly targeting at a specific attack type. In some attack strategies,
the scheduling policy controls the granularity of observations an adversary can
obtain or affect the synchronization between the cooperating attackers in a covert-
channel attack.

In [Hu92a], Hu emphasizes on the major role the scheduling policy plays in the
hardware timing covert-channels exploits stemming from the shared CPU usage. To
address this threat, Hu proposes a scheduling scheme [Hu92a] for the VAX security
kernel. Hu’s idea is to eliminate the covert channel by changing the processes
execution order. In the proposed approach, the execution order of the processes is
not based on their readiness to be executed. Instead, the initial execution order
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and the CPU allocation are determined through a time slot list. This limits the
alternating execution of the malicious processes in a covert-channel attack which
is often a prerequisite for the success of the covert communication. Although the
focus of Hu’s work is on the VAX security kernel, it demonstrated the relationship
between the scheduling scheme and the hardware timing covert-channel exploits.

In [VRS14], Varadarajan et al. addresses the threat related to the side-channel
exploits by modifying the value of one of hypervisor parameters in a virtualized
environment. The authors assess the impact of the change both on the system
performance and the exploitability of the cache as a side channel. To affect the
granularity of the observations on the cache an attacker can achieve, Varadarajan
et al. adjust the rate limit parameter to provide the VMs with a minimum runtime
guarantee. This approach restricts the ability of an adversary to frequently preempt
victim’s VM which is a core element of the attack, described in [Zha+12]. On this
background, the work presented in [VRS14] proposes a change in the hypervisor
scheduling configuration as a measure against a specific side-channel. Our goal
is to assess the impact of the spectrum of hypervisor scheduling parameters
considering an exploit of the core-private cache.

To eliminate the threat stemming from the usage of cache-based side channels,
Stefan et al. [Ste+13] propose an instruction-based scheduling approach. Their
work does not address virtualized environments, but the derived conclusion that
the scheduling approach can be used as a preventive mechanism against cache-
based exploits raises awareness regarding the role the scheduler plays in security.
Stefan et al. highlight that deterministic information flow control systems are
vulnerable to cache-based timing channels especially if time-based scheduling is
used.

Zhou et al. [Zho+11] report on a hypervisor scheduling vulnerability which
can be exploited by an adversary to obtain more CPU time for its VM. This
work, despite being only indirectly related to the feasibility of cache exploits,
demonstrates that the choice of the scheduling approach and its parameters is
crucial not only from performance but also from security perspective.

6.7 conclusion and summary

This chapter focuses on the impact of the hypervisor scheduling parameters
on the success of covert-channel attacks exploiting the core-private cache. It
experimentally analyzes the role of the scheduling configuration and how the
scheduling parameters affect the covert communication in our controlled setup
considering two distinct attacker models. Our results show that the configuration
of the hypervisor scheduling parameters has an impact on the feasibility of covert-
channel attacks for the considered experimental setup.

The conducted empirical study demonstrates that the load balancing is the
parameter that affects the communication over the side channel at most. This is
logical, as this parameter basically controls the availability of the communication
channel. The most beneficial configuration from attacker’s perspective is when both
sender and receiver processes are pinned to the same CPU core and any additional
workload is deployed to the other cores. The results in our setup demonstrate
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that the automatic load balancing also affects the communication conducted in
the employed covert-channel exploit. Very low values for the cap and the time
slice parameters can also have a negative effect on the covert communication
through the core-private cache in our empirical study by increasing the associated
error rate. Based on our results, for a more secure virtualized environment, we
recommend using the hypervisor’s automatic load balancing feature. The choice
of an adequately low value for the cap and the time slice parameters is also
recommended, but potential performance degradation and its implications should
be taken into consideration.
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S P YA L A R M – A R E L I A B L E C A C H E - B A S E D E X P L O I T S
D E T E C T O R

In Chapter 5, we identified potential indicators of compromise which is a step
towards the post-mortem analysis of cache-based exploits. Nonetheless, the detec-
tion of side-channel and covert-channel attacks leaking information through the
cache still constitutes a challenge for the security community due to the lack of
definite traces suggesting an ongoing cache exploit. In this chapter, we come to the
last thesis contribution focused on the runtime detection of cache-based exploits.
The contributions presented in this chapter are, partly verbatim, based on material
from [VGCS].

The remainder of the chapter is structured as follows. First, we give an overview
of the problem in Section 7.1. Then, we present the system and attacker models
underlying the chapter in Section 7.2. We describe the proposed approach and
architecture in Section 7.3 and Section 7.4, respectively. Then, we detail our setup
in Section 7.5 and the experimental results in Section 7.6 and discuss the challenges
related to detecting exploits of the cache in Section 7.7. Section 7.8 gives an
overview on the related work. Finally, we present the concluding remarks in
Section 7.9.

7.1 the need to spy the spy

In recent years Cloud computing has become nearly ubiquitous due to its ad-
vantages of scalability, cost efficiency and high availability. However, the flexible
sharing of resources that is one of the causes for these properties has security im-
plications. Therefore, despite its benefits, Cloud computing can also be considered
as a business risk [Gar18], in part due to the existence of cache-based side-channel
and covert-channel attacks. Hence, this chapter focuses on attacks that use the
cache as a side channel to leak information.

Exploiting the cache as a side channel can be a quite powerful mechanism to
leak information, as such leakage is challenging to detect mainly due to the lack of
definite traces a side-channel adversary leaves. The traces left when a side-channel
attack is performed are hardly distinguishable from the normal operation of the
system or its benign processes. Moreover, the cache is a component which can be
accessed without privileged access rights and is usually not a subject to special
security policies. Thus, intrusion detection systems that rely on access rights are
commonly limited to the detection of other types of attacks and turn out to be
unsuitable to detect cache-based side-channel exploits.

79
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To enhance the security of systems that offer shared resources across security
boundaries, such as the Cloud, a reliable detection mechanism that can spot the
usage of the cache as a side channel is required. Theoretically, such cache-based
exploits are almost always possible. However, as already discussed in the previous
parts of the thesis, various properties of the execution environment affect the cache
exploitability. Moreover, certain attack implementations leave traces on the system
which can be investigated post-mortem to be considered as indicators for an attack.
On this background, the traces that the side-channel adversaries leave should
be systematically studied and their applicability as an enabler to uncover side-
channel exploits should be investigated. A robust side-channel and covert-channel
attack detection mechanism can significantly improve the security of any system,
including the Cloud, given the numerous side-channel attack approaches proposed
over the last years.

The objective of this thesis contribution is to address the lack of a reliable detec-
tion that uncovers covert-channel and side-channel attacks. Therefore, we propose
SpyAlarm, a robust detection mechanism, which reliably identifies cache-based ex-
ploits by leveraging a combination of hardware performance counters and software
events. SpyAlarm is tailored to detect side-channel and covert-channel attacks ex-
ploiting the cache at runtime. The contributions in this chapter include a detection
approach which comprises two phases: definition and detection. In the definition
phase, we derive a model from covert-channel attack implementations relying
on the Flush+Flush (cf., [Gru+16]), Flush+Reload (cf., [YF14]) and Prime+Probe
attack strategies, whereas in the detection phase, the actual runtime detection
takes place. Based on the approach, we define an architecture which relies on
continuous monitoring of the system for the attack detection and can be integrated
and applied in both non-virtualized and virtualized environments.

To evaluate the reliability and applicability of SpyAlarm, we implement it as a
stand-alone application to monitor the side channel. We employ different sampling
configurations and training parameters to achieve a high detection accuracy and
low false positive and false negative rates. Our empirical results demonstrate that
SpyAlarm can reliably detect two state-of-the-art side-channel attacks unseen by
the detector while exhibiting a low false positive rate.

7.2 system and attacker models

In this section, we detail the system and attacker models underlying SpyAlarm.
Additionally, we discuss the application restrictions of the presented detection
approach.

SpyAlarm is tailored to detect side-channel and covert-channel attacks exploiting
the cache. The proposed approach is applicable to both virtualized and non-
virtualized environments, but as the validation of the approach is conducted in
a non-virtualized environment, we narrow down the system model presented
in Figure 3 (cf., Section 2.4) to the non-virtualized environment, as presented in
Figure 16. As the proposed approach leverages system monitoring components
which are not accessible from user-land, SpyAlarm has to be granted privileged
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access to the necessary data, including logs of performance counters and software
events.

The focus of this work is the cache as a side channel. Therefore, the hierarchy of
caches along with the CPU are part of the system model representing the means
of possible covert communication or side-channel exploit. Thus, our system model
includes the core-private data and instruction caches which are typically separated
at level 1, and LLC which is shared among the CPU cores and unified containing
both data and instructions. The core-private cache is fast and small in contrast to
the big and slower LLC.

Hardware

Opera�ng	
System

CPU	Core0

core-private	caches

shared	caches

CPU	Coren-1

core-private	caches

.  .  .

Process0 Process1 Processn-1

Figure 16: SpyAlarm System Model.

The employed adversaries should be able to time their accesses to the cache,
but as sampling the TSC does not require special privileges, the attacker can be
any arbitrary process. However, to deploy a LLC cache attack, huge pages are
needed and are therefore enabled on the system. We consider both side-channel
attacks, characterized by a victim and an attacker that spies on the victim cache
usage, and covert-channel attacks, characterized by two cooperating attackers that
communicate via the cache. Both attack scenarios are detailed in Part I.

SpyAlarm itself requires root access. Moreover, our detection approach assumes
that the attacker controls one or more non-privileged processed running on the
system, but excludes adversaries with privileged access to the system, as the one
described in [Bra+17].

7.3 approach

This chapter describes our detection approach, called SpyAlarm. SpyAlarm com-
prises two main phases, referred to as a Definition phase and a Detection phase.

7.3.1 Definition Phase

The Definition phase establishes the distinction between the normal and. abnormal
system behavior. It consists of the steps: (i) indicators selection, (ii) training
data acquisition, and (iii) signatures derivation. The steps of the approach are
represented in Figure 17 and detailed in the following paragraphs.
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indicators selection. In the indicators selection step, the existing known
attacks are investigated and their specific characteristics are defined. This analytical
step establishes the basis to define adversarial behavior in the system and is
essential for the presented approach, as the quality of the selected indicators reflect
on the detection of the attack. The chosen indicators have to be representative for
the exploits and have to be able to characterize attacker behavior. An improper
selection can result in a high false positives rate or undiscovered attacks. The
union of attack indicators which have to be studied and continuously monitored is
the outcome of this analytical phase.

The attack indicators are divided into three groups: (i) usage, (ii) synchronization,
and (iii) measurements. Each of the categories comprises different measurable
events of the system. More details on the individual categories are given below.

• usage - this category refers to events that describe the indirect effect of an
attacker process on the system. Such usage effect could be, for instance, an
increased cache miss ratio which is a characteristic of the Prime+Probe attack
strategy.

• synchronization - this category refers to the effects of the synchronization
over the usage of the cache as a side channel. To obtain fain-grained ob-
servations, many side-channel and covert-channel attack implementations
leverage explicit synchronization. This often results in an increased number
of sleeps, for example. Other attack indicators typical for this category are
an increased number of context switches or an increased number of inter-
processor interrupts. These attack indicators have been also discussed in
Part III.

• measurements - this category refers to the effect of the conducted measure-
ments required for the execution of the attack. A side-channel attacker
exploiting the cache, for instance, often times its various operations with the
cache. Thus, frequent samples of the RDTSC can be considered as a possible
attack indicator.

training data acquisition. SpyAlarm relies on the acquisition of training
data in regard to the defined indicators of compromise. The defined attack
indicators are monitored and logged for diverse scenarios including both cases
in the presence and absence of an attacker and various noise levels. The larger
the diversity of scenarios and workloads are, the better the chances for good
predictions results are, as this would result in a larger training set for the applied
training algorithm. Therefore, the availability of numerous implementations of
existing cache-based exploits is vital for this step and represents a foundation for
good prediction results.

signatures derivation. The training data collected in the previous step is
used for the training of the detector. The values of the indicators of the compro-
mise gathered for both malicious (i.e., attacker) and benign (i.e., non-malicious)
processes are leveraged as structured data which is used for the training. The
attack indicators represent the feature set applied in the training algorithm and
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Figure 17: Detection Approach.

the y set corresponds to the categories "attack" or "no attack". The outcome of
this step is a model which is trained to distinguish signatures of cache-based
exploits discerning benign and malicious processes given a vector of indicators of
compromise as input.

7.3.2 Detection Phase

Given the constraints on the normal and abnormal behavior of the system defined
in the previous phase, in this phase the system is monitored and the attack
indicators are collected, analyzed and evaluated. Based on the evaluation, a
decision is taken in regard to the presence or absence of an attacker exploiting
the cache. The Detection phase comprises a continuous monitoring step and a
decision making step, which are further detailed in the next paragraphs.

continuous monitoring . As the name suggests, in this step the system is
being continuously monitored. The indicators of compromise, including the ones
defined in Chapter 5, are collected at runtime for each of the processes which run
on the system.

decision making . In this step, the continuously monitored indicators of
compromise are periodically assessed and a decision is taken in respect to each
process regarding being malicious or not. As soon as a process is considered being
compromised, the process is descheduled and an indication is created, consisting
of the identification of the suspected process and a list of the processes, running
along with the suspected one.

7.4 architectural overview and implementation

This section details the proposed SpyAlarm architecture and our implementation
of the detector.
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7.4.1 Architecture

The architecture of SpyAlarm consists of six major components: Indicators of
Compromise, Data Collector, Preprocessor, Trainer, Monitoring Agent and Attack
Detector. The components are detailed in the following paragraphs and are shown
in Figure 18. The components depicted in blue color in the figure require privileged
access to the system.

OS/Hypervisor
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Indicators
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Trainer

	SpyAlarm

A�ack	
Signatures

A�ack	
Detector

Data	Collector

Preprocessor

Monitoring	
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Process1/
					VM1

Processn/
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Figure 18: Overview of the Architecture.

7.4.1.1 Indicators of Compromise Descriptor

The Indicators of Compromise Descriptor is a file containing the analytically
derived indicators of compromise. These indicators are used to derive attack signa-
tures as well as for the actual attack detection. For each attack a set of indicators is
specified and included along with the measurable events describing the exploit and
the corresponding indicators. Certain indicators can apply to various attacks, there-
fore a single occurrence of each measurable event is considered. The indicators
collection can be extended anytime a new attack is defined, and measurable events
can be derived. The currently included attack indicators fit into the categories
discussed in Section 7.3.

7.4.1.2 Data Collector

This component is leveraged to collect a sufficient number of training samples of
the indicators of compromise in both attacked and non-attacked scenarios. For
the collection of training data, the Data Collector needs privileged access to the
performance counters and the software events logs, as visible from Figure 18.
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7.4.1.3 Preprocessor

As its name suggests, this component is employed to preprocess the data gathered
by the Data Collector, so that it can be easily processed in the next steps of the
approach.

7.4.1.4 Trainer

The trainer leverages a supervised learning algorithm to derive constraints or
signatures indicating an attack by creating a model. For that, the algorithm
uses the preprocessed training data and extracts features vectors along with their
mapping to one of the classes "benign" or "malicious".

7.4.1.5 Monitoring Agent

The continuous data acquisition in the system takes place in a component, called
monitoring agent. The monitoring agent monitors the attack indicators during
runtime and forwards their values to the Attack Detector.

7.4.1.6 Attack Detector

The actual attack detection happens at a component, called Attack Detector. It
takes as input the data collected from the Monitoring agent along with the data
provided by the Trainer. The latter provides a model for evaluation of the obtained
values to check for adversaries. Based on the input, the Attack Detector decides on
whether there is an ongoing attack or not. The logic of the Attack Detector does
not have to be implemented at the hypervisor or OS level, but can be encapsulated
in a dedicated virtual machine or as a process with privileged access.

7.4.2 SpyAlarm Implementation Details and Parameters Consideration

SpyAlarm is implemented in Python as a stand-alone tool.

7.4.2.1 Indicators of Compromise Descriptor, Data Collector and Preprocessor

The analytically derived Indicators of Compromise are software events and perfor-
mance counters that have to be collected or monitored both during the Definition
and Detection phases. For this purpose, we sample various events using the
kernel perf subsystem including context switches, sleeping and waiting events
Table 8 gives an overview on the full list of currently employed software events and
performance counters in SpyAlarm. They constitute the structured training data
set collected during the Definition phase by the Data Collector and are used by the
supervised learning algorithm to train a prediction model. During the Detection
phase, these events and counters are continuously monitored and based on their
values and the created prediction model, the detection of ongoing attacks takes
place.

The Data Collector is a shell script which uses the perf tool for data gathering
(leveraging the perf record option) and to prepare the data for further analysis
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Table 8: Monitored Software Events and Performance Counters.
Indicators of Compromise Type Perf Measurable Event

Usage Effect offcore_response.other.any_responses
Usage Effect cache-misses
Usage Effect cache-references
Usage Effect LLC-stores
Usage Effect instructions
Usage Effect branch-instructions
Measurements msr:write_msr
Synchronization Effect syscalls:sys_enter_sched_yield
Usage Effect task-clock
Measurements msr:read_msr
Measurements msr:rdpmc
Synchronization Effect cs
Usage Effect tlb:tlb_flush
Usage Effect cpu-cycles

(using the perf report option). The collected data is stored in data files and given
as input to the Preprocessor. The Preprocessor is a script which takes as input
the collected software events and performance counters and preprocesses them
to the right format which is then fed into the Trainer. For this, the Preprocessor
parses the data obtained from the Data Collector, extracts the feature vectors, maps
them to the classes malicious or benign and removes the unnecessary information.
The output of the Preprocessor consists essentially of the feature vectors and the
corresponding value representing the attacker class.

7.4.2.2 Trainer

We implemented the Trainer in Python, and leveraged the TensorFlow frame-
work [Aba+15] for the supervised learning on the training data set. To select an
accurate prediction model, we employed two distinct supervised learning algo-
rithms on our training data set consisting of 14 features. Each of the employed
algorithms classifies the data into one of the classes malicious or benign. To assess
the prediction accuracy of the applied algorithms before employing them in the
runtime detector SpyAlarm, we consider a training data set and a validation set,
called dev-set. The validation set is a dedicated data set collected during the
training data acquisition, but it has not been used for training the model so that the
data in this set remains unseen by the model. We measure the detection accuracy of
the respective algorithm against these two data sets. The two supervised learning
algorithms are briefly discussed in the next paragraph.

As a binary classifier, which predicts whether a cache exploit is ongoing or not,
we leverage simple Logistic Regression (LR) with sigmoid activation. Additionally,
we employ a distinct deep learning algorithm by implement a neural network to
achieve better validation accuracy compared to the LR-approach and refer to the
more complex model as 1HL. The neural network in 1HL consists of an input
layer of 14 neurons, a hidden layer with 10 neurons and an output layer of a single
neuron. It uses the Gradient Descent algorithm.
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7.4.2.3 Monitoring Agent and Attack Detector

The Monitoring Agent, as its name suggests, is a component which performs the
continuous monitoring of the system. It comprises a parser and a monitoring
module. First, the parser extracts the Indicators of Compromise to obtain the
software events and performance counters that have to be monitored, and feed
them to the monitoring module. Then, the monitoring module accesses the
operating system or the hypervisor to obtain the required values and to create the
current features vector required by the Attack Detector. For that the Monitoring
Agent, similar to the Data Collector, requires privileged access to the system and
uses the perf tool for sampling the required events and counters. The gathered
data is periodically sent to the Attack Detector.

The Attack Detector leverages the model created in the Definition phase and
applies it to the current data provided by the Monitoring Agent. If an attack is
detected, the Attack Detector can return the process identifier (pid) of the suspect
process along with the pids of the processes that have been running simultaneously
with the suspect one.

7.4.2.4 Attacks implementation

We employ distinct implementations of side-channel and covert-channel attacks
in both the Definition and the Detection phases. For the Definition Phase, we use
implementations of covert-channel attacks that employ Flush+Flush, Flush+Reload
and Prime+Probe as attack strategies. These implementations are used for the
training of the supervised learning algorithm.

For the Detection Phase and to evaluate the reliability of the proposed detection
approach, we leveraged two publicly available side-channel attack implementa-
tions1,2 based on [Gru+16; YF14]. These attacks are unseen by SpyAlarm. We
log the pids of all the involved processes which enables the de-scheduling of the
suspected process.

7.5 spyalarm evaluation

In this chapter, we first cover the setup used in our evaluation, and focus on the
conducted experiments. Then, the obtained results are presented.

7.5.1 Experimental Setup

To evaluate our detection approach, we conducted experiments on a system
equipped with an Intel Skylake processor which runs Debian buster/sid operating
system. As SpyAlarm is based on sampling hardware and software events, we vary
the employed sampling frequency and interval to enhance the detection accuracy
of SpyAlarm through deliberately choosing the sampling configuration.

To compare the detection accuracy of SpyAlarm, we consider six distinct sam-
pling configurations. The employed sampling frequencies, controlled by F in perf

1 https://github.com/IAIK/flush_flush
2 https://github.com/defuse/flush-reload-attacks/tree/master/flush-reload
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are: (i) 1000, (ii) default (4000 for most of the sampled events), and (iii) 8000. The
sampling frequency denotes the average sampling rate per second. Naturally, the
higher the employed frequency, the larger the number of the collected samples.
At the same time, a higher sampling rate is also related to a higher performance
overhead.

We also vary the sampling interval which is controlled by perf sleep, and employ
sampling interval values of 0.5, 1, 2 and 3. The six sampling configurations are:
(i) default frequency, sleep 0.5 (ii) default frequency, sleep 1 (iii) default frequency,
sleep 2 (iv) default frequency, sleep 3 (v) frequency 8000, sleep 2, and (vi) frequency
1000, sleep 2.

The experiments follow the presented approach which consists of a Definition
and a Detection phase. To cover the Definition phase, we collect training data
and apply a supervised learning algorithm on this data. The supervised learning
algorithm creates a model to predict the presence of an attacker. The employed
algorithm leverages different training parameters which are tuned during the ex-
periments to find the parameters configuration which leads to accurate predictions.

The training data is collected in both attacked and non-attacked environments.
Moreover, we have employed two distinct supervised learning algorithms to choose
the best prediction model for SpyAlarm. The reliability of SpyAlarm detection is
assessed through experiments which measure SpyAlarm detection accuracy and
time-to-detect. Our experiment system is a subject to diverse and representative
workloads simulated using the PARSEC benchmark suite [Bie11] and the stress-ng
tool [Kin19] to create a realistic scenario for the experiments.

7.5.1.1 Towards the Selection of Training Model and Parameters

To choose the model which allows for better predictions on unseen data, and use it
for SpyAlarm, we assess how well the two implemented algorithms, LR and 1HL,
described in Section 7.4.2.2, generalize from the training data set to the dev-set.
As already mentioned, the dev-set is a dedicated data set, acquired during the
training data acquisition but not used for the definition of the prediction model.
We measure the achieved prediction accuracy of the algorithm both with respect
to the training data set (i.e., training accuracy), and the accuracy of the training
algorithm with respect to the dev-set (i.e., validation accuracy). For the selection of
an adequate parameters configuration, we consider also the courses of the training
and validation loss functions.

To ensure that we prevent the model from overfitting, we conduct experiments
with dropout as a regularization technique. Overfitting occurs when the model
learns the training data too well to the extent that the model ability to generalize
is reduced which affects its performance on new data. In this case, the training
accuracy is high, but the testing accuracy is poor. To avoid such issues, we employ
dropout as a hyperparameter to train the model and conduct experiments to tune
its value. The dropout is an effective regularization method which randomly
ignores certain layer outputs during training to simulate a diversity of employed
neural network architectures. Moreover, we leverage minibatches to prevent the
algorithms from learning the links between the training data set, and experiment
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with minibatches of different sizes. We conduct experiments varying the training
epochs length and the learning rate employed in the models.

As discussed in Section 7.5.1, we employ six distinct sampling configurations
and collect a new training data set per each sampling configuration. Thereby,
for each configuration we measure the training loss (i.e., the cost function with
respect to the training data set) and the validation loss (i.e., the cost function with
respect to the dev-set). Furthermore, we log the elapsed time and the training and
validation accuracies.

With the LR-algorithm, we conducted experiments to test altogether 25 distinct
parameters configurations. For none of the employed configurations the achieved
training and validation accuracies turned out to be satisfactory. Therefore, the
further experiments and SpyAlarm, we leverage the 1HL-algorithm.

Table 9 reveals the selected training parameters configurations per sampling
configuration. The table shows also the overall number of the tested parameter
configurations per sampling setting. The results presented in the table consist of
the time spent on training the model in each of the cases, the achieved validation
and training accuracies and the training and validation loss function values. The
chosen parameter configurations encompass the number of employed training
epochs, the minibatch size and the learning rate, which are discussed in the
following paragraphs. In all the tested cases, it turned out that no regularization is
required, as varying the dropout rates did not result in an increase of the accuracies
or affected the loss functions. Therefore, the keep probability is set to 1.0 for all
the chosen configurations.

Table 9: Selected Training Parameters Configurations.
Sampling config. #Param.

config.
Chosen config. Train.

acc.
Valid.
acc.

Train.
loss

Valid.
loss

Time
(sec.)

freq. interval epochs MS LR

default 0.5 69 650 24 0.0001 0.981 0.994 0.615 0.59 343.76

default 1 41 50 24 0.0001 0.994 0.923 0.680 0.58 439.78
default 2 53 450 32 0.0001 0.955 0.955 0.609 0.62 512.9
default 3 63 650 24 0.0001 0.969 0.991 0.562 0.55 783.76

8000 2 63 450 24 0.001 0.978 0.981 0.517 0.51 617.68
1000 2 32 250 24 0.1 0.994 0.997 0.506 0.50 304.63

Although we log the time spent on training, we do not consider it when choosing
the appropriate parameters configuration, as the training is conducted only once,
and obtaining a high detection accuracy has a higher priority over the elapsed time.
Commonly, we have chosen the parameters configuration for which the difference
in the values of the training and the validation loss functions are relatively small,
and the achieved validation and training accuracies are high.

The minibatch sizes we employed during the training phase are 24, 32, 64 and
128. For almost all of the sampling settings, we have chosen minibatch size of 24 for
the further experiments. Only in the cases where the experiments are conducted
by sampling at default rate with a sampling interval of 2, the employed minibatch
size is 32, as it resulted in higher validation and training accuracies than when
employing a minibatch size of 24. Increasing the minibatch size to 128 resulted in
a decrease in the accuracies for all of the tested configurations.
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Figure 19: Epochs Tuning.

To determine the number of training epochs SpyAlarm needs, we conducted
experiments by considering training epoch values between 10 and 1000. Figure 19

depicts the validation loss and the training loss functions in terms of the number
of epochs for the cases when the sampling frequency remains unchanged (i.e.,
default), while the employed sampling interval is set to either 2 or 3 and the cases
when the sampling frequency is set to 1000 and 8000, while the sampling interval
is set to 2.

As visible from the plot at top left in the figure, for the chosen parameters
configuration employing 450 epochs results in a small difference in the values
of the validation and the loss functions of only 0.2. Furthermore, in this case,
both the validation and the training accuracies are high (ca. 95%). Employing a
higher number of epochs (650 and 800) with minibatch size of 24 and learning
rate of 0.0001 does not result in training and testing accuracies higher than 95%.
Therefore, for the sampling configuration shown at top left in Figure 19, the model
used for the further experiments and the runtime detection is trained using 450
epochs.

The tuning of the number of training epochs when sampling at default rate for 3
seconds per iteration, demonstrates that by employing 650 training iterations, the
values of the training and validation loss are almost equal, and the training and
validation accuracies are both very high, being above 96% (cf., Table 9). The trends
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of the validation and training loss functions in this case are shown at top right in
Figure 19.

When sampling at frequency of 1000 for 2 seconds per iteration, the chosen
number of epochs is 250, whereas when the employed sampling rate is 8000, the
number of epochs for the further experiments and the runtime detection is set to
450. The courses of the validation and training loss functions for these cases are
shown at bottom left and bottom right in Figure 19, respectively.

To determine the learning rate during the training of the model, we conducted
experiments by employing learning rates from the set of values 0.9, 0.7, 0.4, 0.1,
0.01, 0.001 and 0.0001. Figure 20 depicts the validation and the loss functions
courses along with the achieved validation accuracy when sampling at frequency
of 1000 (top), and at frequency of 8000 (bottom). In these cases, the learning rates
are set to 0.1 and to 0.001, respectively. As shown in Figure 20, the chosen learning
rate configurations are characterized by high validation accuracies and minima
for the validation loss functions. Moreover, the difference in the values between
the training and validation loss functions is very low when sampling at rate of
1000 and the two functions are even equal when the learning rate is set to 0.001
for the other sampling configuration (cf., bottom in Figure 20). For the rest of the
tested sampling configurations, the obtained results demonstrated that setting the
learning rate to 0.0001 is a reasonable choice (cf., Table 9).
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Figure 20: Learning Rate Tuning.
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Altogether, we conducted experiments testing 321 parameter configurations by
varying different training parameters. There were both cases of underfitting when
the achieved training accuracy was too low and overfitting, when the achieved
training accuracy was much higher than the validation accuracy. In some cases, the
training accuracy was even less 50%. By considering the training and validation loss
functions and the achieved training and validation accuracies, we were able to select
adequate parameters configurations for each of the six sampling configurations.

7.5.1.2 Accuracy Evaluation Setup

To evaluate the accuracy provided by SpyAlarm, we computed the false positives,
false negatives, true positives and true negatives the detector exhibits. A true
positive is the outcome if the employed model correctly identifies an ongoing
attack as such. A false positive occurs when an attack is detected in a non-attacked
system. In this case, the detector has incorrectly suspected a benign process as an
attacker. A false negative denotes the case when an attack has not been detected,
whereas a true negative corresponds to the case when a process is correctly
identified as non-malicious. In addition to the accuracy of the attack detection,
the time-to-detect is measured and analyzed. We run experiments considering
different sampling intervals by setting the sleep value of perf to 0.5, 1, 2 and 3, and
leveraging a default frequency and frequencies of 1000 and 8000, as mentioned in
the previous sections.

Our experiments are conducted on a dedicated testing set consisting of diverse
non-attacker processes and two implementations of side-channel attacks that are
publicly available on the Internet3,4 and unseen by SpyAlarm. For the rest of the
chapter, the attack which uses Flush+Flush as attack strategy is referred to as FF
attack and the attack which uses Flush+Reload as attack strategy is referred to as FR
attack. For simulating workload, we used PARSEC dedup and blackscholes [Bie11],
and stress-ng [Kin19] with 60% load per core. Overall, we consider six distinct
workloads per sampling configuration, as shown in Table 10. For each of the six
experimental setups, the main workload (dedup, blackscholes, stress-ng) or the
involved attack is started at least 50 times. Additionally to the main workload,
basic load including instant messaging application, browsers runs on the system.
The gathering of the testing data and the detection take place at runtime.

Table 10: Employed Workload.
attack workload

FF basic load
FR basic load
none blackscholes + basic load
none dedup + basic load
FF stress-ng + basic load
FR stress-ng + basic load

3 https://github.com/IAIK/flush_flush
4 https://github.com/defuse/flush-reload-attacks/tree/master/flush-reload
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7.6 detection results

In this section, we present SpyAlarm detection results to analyze empirically the
utility of the proposed side-channel attack detection approach.

7.6.1 SpyAlarm Detection Accuracy

Table 11 summarizes the evaluation results for the considered sampling configura-
tion setups presenting the false positives, false negatives, true positives and true
negatives for each of the employed workloads defined in Table 10. As visible from
the table, the optimal results are obtained when the sampling frequency remains
unchanged (i.e., default) for all of the sampled events, and the sleep value is set to
either 1 or 2 seconds.

Table 11: Evaluation Results – SpyAlarm Detection Accuracy.
Sampling config. Attack setup false

pos.
false
neg.

true
pos.

true
neg.

interval freq. attack workload

0.5 s default

FF basic 1 1 101 1441
FR basic 0 104 0 1602
none blackscholes + basic 6 0 0 3471
none dedup + basic 1 0 0 3054
FF stress-ng + basic 2 3 111 1968
FR stress-ng + basic 3 101 0 1931

1 s default

FF basic 194 0 119 2483
FR basic 161 2 105 3346
none blackscholes + basic 296 0 0 2723
none dedup + basic 276 0 0 5904
FF stress-ng + basic 194 0 113 2707
FR stress-ng + basic 161 1 104 3807

2 s default

FF basic 294 2 150 7516
FR basic 264 6 138 9091
none blackscholes + basic 423 0 0 11712
none dedup + basic 799 0 0 14525
FF stress-ng + basic 324 5 166 8089
FR stress-ng + basic 428 8 198 9604

3 s default

FF basic 79 3 172 9445
FR basic 151 119 195 12370
none blackscholes + basic 203 0 0 18689
none dedup + basic 322 0 0 17041
FF stress-ng + basic 137 28 216 11301
FR stress-ng + basic 132 111 163 12605

2 s 8000

FF basic 395 180 128 8577
FR basic 315 4 128 8380
none blackscholes + basic 797 0 0 12634
none dedup + basic 898 0 0 13260
FF stress-ng + basic 470 216 6 9183
FR stress-ng + basic 423 5 172 8801

2 s 1000

FF basic 87 3 114 5339
FR basic 99 110 0 5069
none blackscholes + basic 294 0 0 9923
none dedup + basic 316 0 0 9706
FF stress-ng + basic 99 8 109 5719
FR stress-ng + basic 214 228 0 12126

The results shown in Table 11 demonstrate that the leveraged FF and FR attacks
are reliably detected when sampling at default frequency for 1 second per detection
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iteration. Both the false positive and false negative rates remain low in this case
for all the workloads. Table 12 represents the confusion matrix for this sampling
configuration which takes into account the results of all the workload settings.
As can be noticed from the confusion matrix, the false positive rate is 5.8%, and
the false negatives rate is almost 0%. This case demonstrates a good prediction
accuracy and high detection reliability of SpyAlarm while exhibiting a relatively
low false positive rate.

Table 12: Confusion Matrix. Sampling Interval 1 and Default Frequency.
predicted
(positive)

predicted
(negative)

actual
(positive) TPR=0.9999 FNR=0.0001

actual
(negative) FPR=0.058 TNR=0.942

By increasing the sampling interval from 1 to 2, the false positive rate slightly
decreases, but also the false negative rate slightly increases, as visible from the
confusion matrix shown in Table 13. In this case, the false positive rate drops to
4%, and the false negative rate is 3%. The detection of the attacks remains mostly
reliable, but has slightly deteriorated compared to the case when the value of the
sampling interval is set to 1. As shown in Table 11, overall 7 FF attacks out of
316 have not been identified as such and 14 FR attacks out of 336 have not been
detected.

Table 13: Confusion Matrix. Sampling Interval 2 and Default Frequency.
predicted
(positive)

predicted
(negative)

actual
(positive) TPR=0.97 FNR=0.03

actual
(negative) FPR=0.04 TNR=0.96

By changing the frequency from default to 8000, the FF attack is not reliably
detected anymore exhibiting a false negative rate of almost 98%. Thus, such
sampling configuration is not suitable and is therefore not employed for the
detection approach. The same applies to the case when the frequency is set to
1000. In this case, the other attack which leverages Flush+Reload attack strategy,
is not detected at all exhibiting a false negative rate of 100%. In both cases the
false positive rates are also higher compared to the false positive rates of the
experimental setups with default sampling rate. It has to be noted, that the default
sampling rate is 4000 samples per second for most of the events, but nonetheless
for some of the events the sampling period is set to 1 instead, whereas when
changing the default frequency, the new frequency is set for all the sampled events.

An increase or decrease of the sampling interval from 2 to 3 or from 1 to 0.5 also
has a negative impact on the detection reliability and accuracy. As can be seen
from Table 11, in the case of sampling interval of 3 none of the attacks is reliably
detected, whereas in the case of sampling interval of 0.5 the FR attack remains
uncovered for approximately half of its occurrences. Therefore, these sampling
configurations are not suitable for SpyAlarm.
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in our experiments, in addition to the measurements of the false positives and
negatives of the detection approach, we measure also the time to the first detection
of the FF attacks involved in the experimental setups with both basic load and with
load caused by stress-ng (cf., Table 10). For this, we consider the configurations
with sampling intervals of 1 and 2 and sample at default sampling frequency.

In our experimental setup, the attacks are not immediately killed after they
have been detected, although SpyAlarm enables that through the process id of
the detected attack. Therefore, the experimental results encompass attacks that
have been detected more than once, as they have continued to run after their
first detection. The time-to-detect measurements, however, consider only the first
occurrence of the attack. Figure 21 depicts the time to the first detection of the FF
attacks for the scenarios with basic load and load created through stress-ng and
the scenarios with only basic load. The considered sampling interval values in the
figure are 1 and 2.
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Figure 21: FF Time-to-Detect with Different Sampling Intervals and Different Load Levels.

Table 14 summarizes the obtained results. If only basic load is running on the
system and the sampling interval is set to 1, the time-to-detect of the attack is
7.61 on average. The average FF detection delay is 8.45 for the same sampling
configuration, but in a stressed system.

Table 14: SpyAlarm Mean-Time-To-Detect Results.
Sampling interval (s) Load Mean-Time-to-Detect (s)

1 basic load 7.61
1 basic load + stress-ng 8.45
2 basic load 12.3
2 basic load+ stress-ng 12.5

Logically, Figure 21 and Table 14 reveal that the detection takes longer if the
sampling interval is increased to 2. This is due to the fact that each detection
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iteration takes place only after the runtime data has been collected by sampling
the involved events and hardware performance counters. The longer the sampling
interval is, the longer the respective detection iteration is delayed. If the system
is under load, the FF attack is detected 12.5 seconds after it has been started on
average under this sampling configuration. When the system is subject to basic
load only, the mean-time-to-detect is 12.3 seconds with sampling interval of 2.

It is interesting to note that the longer the sampling interval is, the smaller the
influence of the load on the detection delay is. The difference in the detection
delay between the stressed system and the system with only basic load is almost 1
second when the sampling interval is set to 1, whereas it is ca. 0.2 seconds when
the sampling interval is set to 2.

As seen from the presented results, the detection accuracy of the approach is
high, given that the sampling rate and interval are properly chosen. The results
confirm that the detection is reliable with a low false positive rate. Nonetheless,
due to the sampling of hardware events, attacks might remain unrevealed if they
are scheduled during a context switch of the sampling process. In our evaluation,
we detect such cases, as we log the timestamps of the start of the attacker processes.
We have not detected any discrepancy between the number of started attacker
processes and the detection results. The few false negative cases are due to the
failure to detect attacks that have been started, have been detected at least once,
but have not been detected during some of the subsequent detection iterations.

7.7 challenges and discussion

This section overviews the challenges and limitations related to SpyAlarm usage.

7.7.1 Limited Resources and Non-determinism

A constraint in the approach is the limited number of registers that are available for
monitoring the hardware performance counters. Our experiments are conducted
on an Intel Skylake-based architecture, which provides 8 performance monitoring
counters and 3 fixed-function performance counters. Due to the limited number
of resources for the performance counters, we consider a trade-off between the
number of utilized performance counters and the accuracy of the detection, consid-
ering the guidelines described in [IK]. Additionally, our indicators of compromise
combine software events with hardware events to provide a reliable detection
mechanism despite the limited resources. As demonstrated by the results, the
selected hardware and software events enable the reliable detection of cache-based
exploits, and overcome the limited resources problem.

As discussed in [Das+19], the usage of hardware performance counters is often
related to non-determinism and might result in inaccuracy of the results of up to
30%. We investigate this issue, as we maintain a log of all the started attacks during
the experiments along with their respective timestamps. The results obtained in
our experimental setup do not comply with this statement, as for the two cases in
which the cache-based exploits are reliably detected (i.e., when sampling at default
frequency for 1 or 2 seconds), all the started attacks have been detected. The few
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false negatives that occur result from cases in which attacks have been detected
once, but have not been detected during subsequent detection iterations. This issue
has not been investigated further for the rest of the sampling configurations, as we
cannot distinguish whether the obtained false negatives are due to the sampling
configuration and the non-determinism or due to the prediction model itself.

Nonetheless, to ensure that we minimize the possible impact of this issue, we
sample at different frequencies to find the optimal sampling configuration. Apart
from that, with the introduction of hardware support, precise sampling is enabled
on some architectures, and can assist in reducing the non-determinism stemming
from the out-of-order execution (cf., [Wea16]) if needed. Another source of non-
determinism is referred to as skid which denotes the offset between the instruction
that has been captured as causing an interrupt and the instruction that actually
had caused the interrupt. By using PEBS, the number of interrupts is reduced
which results in a constant skid of one instruction which also reduces the non-
determinism involved in the detection approach. In our experimental setup, we
have not noticed issues due to skid and therefore, have not used this technique.

7.7.2 Choice of Events

The selection of Indicators of Compromise is crucial for the success of the detection
mechanism. Initially, we conducted experiments with another set of 14 events
which did not result in a reliable detection mechanism. Generally, due to the limited
resources, the number of monitored hardware performance counters should not
exceed the number of available monitoring registers. However, the number of
software events can be increased, as there exist no limitation on their usage, as
long as there are available file descriptors which perf can leverage per event.

In our experiments, we have noticed that the selection of software events is
very important for the detection of the cache-based exploits. As discussed in
Chapter 5, the attackers of such exploits often employ explicit synchronization
mechanisms using nanosleeps, or yielding the CPU after their execution. Except for
that, the exploits are reliant on precise timing information. Therefore, employing a
combination of software and hardware events is a good strategy for the detection of
cache-based side-channel and covert-channel attacks and can enable the detection
of attacks such as FF which are reported to be robust against detection approaches
which rely on analysis of the cache usage.

Figure 22 confirms this observation. It visualizes the median value for each of
the employed events (hardware and software) for both the malicious and benign
processes. The statistics are derived from the testing data obtained during the
runtime detection of the FF attack under basic load without additional stressing
of the system. As visible from Figure 22 (bottom right), there is a discrepancy
between the number of write_msr, read_msr and rdpmc events for malicious and
benign processes in the cases for which the attack has been detected and the cases
when the attack remains unrevealed (i.e., the sampling frequency is set to 8000).

For these experiments, we have set the frequency to 8000 for all the events in-
cluding write_msr, read_msr and rdpmc, whereas for the cases when the frequency
remains unchanged, it has not been set to the default 4000 for these three events.



98 spyalarm – a reliable cache-based exploits detector

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0.0

0.5

1.0

1.5

2.0

#E
ve

nt
 o

cc
ur

re
nc

es

1e5
freq=default
sleep=0.5

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0.0

0.5

1.0

1.5

2.0

#E
ve

nt
 o

cc
ur

re
nc

es

1e5
freq=default
sleep=1

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

#E
ve

nt
 o

cc
ur

re
nc

es

1e5
freq=default
sleep=2

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#E
ve

nt
 o

cc
ur

re
nc

es

1e4
freq=8000
sleep=2

malicious benign

Figure 22: Events Occurrences for FF Attacker Processes and Benign Processes – Median.

Instead, by default perf sets the sample_period to 1 for the events write_msr,
read_msr, syscalls:sys_enter_sched_yield, tlb:tlb_flush and rdpmc, which are all
the monitored tracepoint events. The sample period denotes the number of the
occurrences of an event.

Figure 23 and Figure 24 depict the median values and the mean values of the
monitored events employed in the detection of the FR attack under basic load,
respectively. In the case when the sampling interval is relatively small, set to
0.5 seconds (cf., Figure 23 top left and Figure 24 top left), the attack remains
unrevealed possibly due to the insufficient collected samples. However, a slight
difference between the statistics of the detected and not detected attacks is not
obviously visible in the figures.

Table 16 gives an overview on the mean, max, median and standard deviation
values for the separate events for the testing data set containing the FR attack. The
Event IDs used in Table 16 are defined in Table 15. The table presents the values
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Figure 23: Events Occurrences for FR Attacker Processes and Benign Processes – Median.

for the case when the attack has not been reliably detected (sampling interval 0.5)
and the values for the case when the attack has been detected (sampling interval 2).
The only obvious differences in the average and median values are for the events
write_msr, read_msr, rdpmc and cpu-cycles. When sampling for a shorter period
of time per detection interval, the malicious processes tend to exhibit higher mean
and median values for the respective events compared to the longer sampling
period.

Nonetheless, it is hard or even close to infeasible to derive rules in regard to the
Indicators of Compromise for an attack by considering accumulated or average
values, as the involved non-malicious processes are diverse and some of them
are characterized by large cache footprint whereas others are not. A one-to-one
comparison between each benign process and the attack might enable deriving
rules, but it is a challenging and cumbersome task due to the large set of benign
processes which have to be considered.



100 spyalarm – a reliable cache-based exploits detector

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0

1

2

3

4

5

#E
ve

nt
 o

cc
ur

re
nc

es

1e4
freq=default
sleep=0.5

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0.0

0.2

0.4

0.6

0.8

1.0

#E
ve

nt
 o

cc
ur

re
nc

es

1e5
freq=default
sleep=1

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

#E
ve

nt
 o

cc
ur

re
nc

es

1e5
freq=default
sleep=2

off
c.-

res
p.

c.-
miss

es
c.-

ref
s.

LLC
-st

.
ins

tr.

br.
-in

str
.

write
_m

sr

sch
._y

ield

tas
k-c

loc
k

rea
d_m

sr
rdp

mc cs

tlb
_flu

sh

cpu
-cy

cle
s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#E
ve

nt
 o

cc
ur

re
nc

es

1e4
freq=8000
sleep=2

malicious benign

Figure 24: Events Occurrences for FR Attacker Processes and Benign Processes – Average.

Table 15: Mapping of Event ID to Event Name.
Event ID Event name

1 offcore_response.other.any_response
2 cache-misses
3 cache-references
4 LLC-stores
5 instructions
6 branch-instructions
7 msr:write_msr
8 syscalls:sys_enter_sched_yield
9 task-clock
10 msr:read_msr
11 msr:rdpmc
12 cs
13 tlb:tlb_flush
14 cpu-cycles
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Table 16: Events Usage of FR Malicious Processes and Benign Processes.
Event

ID Process sleep 0.5, freq default sleep 2, freq default
Median Mean Max Std. Dev. Median Mean Max Std. Dev.

1 malicious 77 74 84 13.99 347 329.04 355 50.4738
1 benign 108 110 218 22.27 933 898.24 1059 165.244

2 malicious 1150 1103 1265 208.11 4769 4559.69 4947 680.199
2 benign 1399 1462 2625 229.17 12679 12390.3 15805 2244.87

3 malicious 1269 2115 1465 231.86 5244 5038.75 5681 800.672
3 benign 2249 2392 4371 424.14 13987 14020.5 17079 1583.38

4 malicious 3682 3482 3724 704.82 9590 8697.98 14650 3326.84
4 benign 1353 1461 3767 426.50 7968 8173.45 10706 1021.32

5 malicious 1880 1812 2107 343.70 7474 7146.02 7910 1131.58
5 benign 2070 2193 4061 383.13 15004 14734.4 17887 1928.48

6 malicious 1246 1211 1402 231.15 4787 4514.43 5065 1131.58
6 benign 2085 2204 4154 394.62 14940 14640 17686 1850.42

7 malicious 57502 54993 59823 10536 209610 198583 228845 34506.8
7 benign 51233 54050 89745 8073.9 348202 345444 420341 41314.1

8 malicious 0 0 0 0 0 0 0 0
8 benign 0 0 0 0 0 0 0 0

9 malicious 4007 3835 4008 722.56 15774 15097.5 16009 2285.73
9 benign 4007 4171 7912 712.94 16223 16914.8 32025 2287.39

10 malicious 26422 25265 27550 4847.4 95702 90622.6 105294 16023.6
10 benign 23252 24504 40085 3475.6 163335 161600 197908 20693.7

11 malicious 14839 14187 15448 2717.55 53888 51043.1 58938 8901.61
11 benign 13140 13909 25414 2429.27 87751 87232.3 106096 10222.5

12 malicious 2 1 6 1.65 33 43.76 143 25.859
12 benign 34 53 121 17.75 266 376.02 591 85.0547

13 malicious 2 5 47 12 418 405.26 746 164.718
13 benign 479 584 1666 267.19 3166 3301.18 4386 356.564

14 malicious 4017 3835 4022 722 15722 15069.8 15944 2275.83
14 benign 2364 2506 4965 465.80 16099 16013.3 19091 1870.65

An accumulated number of event occurrences for all the test cases with basic
load for both attacks along with the number of involved processes are given in
Table 17. As visible from the table, the metrics syscalls:sys_enter_sched_yield and
msr:read_msr occur more often in malicious processes than in benign processes
even though the number of sampled FF malicious processes is only 9273 compared
to 93597 sampled non-malicious processes. This confirms that not only hardware,
but also software events can be applied as an indication for a side-channel exploit.

7.7.3 Supervised Learning Algorithm and Training Data

As our training data is structured and consists of a relatively small features vector
of 14 performance counters and events, the question that arises is whether applying
a relatively complex neural network is required for the success of SpyAlarm or the
low false positive rate and very low false negative rate can be achieved without
leveraging a neural network with hidden layers. To address this question, we
conducted experiments using simply logistic regression without employing any
hidden layers. We tested altogether 25 distinct training parameters configurations,
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Table 17: Event Occurrences in Malicious and Benign Processes – Accumulated Values
from the Testing Data Set. Sampling Interval 2 and Default Frequency.

Event name
FF testing data set FR testing data set

#Occurr.
attacks

#Occurr.
benign proc.

#Occurr.
attacks

#Occurr.
benign proc.

cpu-cycles 773449 812725 768562 816677
instructions 772141 775150 364447 751450
branch-instructions 772636 772034 230236 746639
cache-misses 521830 512552 232544 631905
cache-references 666591 708477 256976 715046
LLC-stores 715976 547199 443597 416846
msr:write_msr 17770309 17713049 10127746 17617656
syscalls:sys_enter_sched_yield 257817286 2794214 0 0
task-clock 773100 841322 769974 862655
msr:read_msr 8424648 8310927 4621753 8241607
msr:rdpmc 4514193 4475542 2603198 4448845
cs 1283 13632 2232 19177
tlb:tlb_flush 46421 149016 20668 168360
offcore_response.other.any_resp. 396 31010 16781 45810

#total processes 152 7810 144 9355

but the highest training accuracy that we achieved is less than 80% and the highest
validation accuracy is 71% which is considerably lower than the training and
validation accuracies of over 95% achieved when employing a neural network with
one hidden layer.

It is also important to note that the quality of the training data set is significant
for the detection success. A highly imbalanced training data set can deteriorate
the process of proper training parameters selection by providing misleading high
training accuracy if the algorithm falsely classifies everything to the larger class.
Moreover, the employed training samples should be representative for all the
involved classes. Only then, the foundation for an accurate and reliable detection
mechanism is given.

7.8 related work

This chapter briefly reviews the approaches for conducting and mitigating exploits
using the cache as a side channel, and then discusses the state-of-the-art research
related to their detection.

7.8.1 Covert-Channel and Side-Channel Attacks and their Mitigation

Numerous attack approaches have been proposed that exploit the cache as a side
channel, e.g., in [Liu+15; Xu+11]. These exploits have been demonstrated also in
Cloud scenarios [Ris+09; Zha+12] which makes them extremely relevant nowadays.
As a result, performance optimization features such as memory deduplication are
often considered as a threat to systems security and major providers change their
services to address that threat. For example, some providers change the default
settings by disabling memory deduplication [VMwa; VMwb], to eradicate specific
attack scenarios such as Flush+Flush attacks.
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Because of its high relevance, there are plenty of proposals on how to mitigate
these attacks. Among the proposed mitigation strategies are works that suggest
to eliminate the cache access patterns observation possibility of the applications
so that an attacker cannot monitor them, e.g., through new secure cache designs
(cf., [Dom+12; LL14; WL08]). Other mitigation approaches propose partitioning of
the cache among the users using dynamic page coloring techniques which would
reduce the degree of resource sharing, as described, e.g., in [Shi+11]. Among the
proposals are also new prefetching schemes that add randomness to the cache
access patterns [FL15] or endeavours that propose to disable the usage of fine-
grained timers for certain applications such as [Hu92b; LGR17]. Static analysis
techniques are also proposed to cope with the side-channel exploits, but they do
not solve the security issues related to the side channels, as they are not a universal
remedy and have to be applied separately to each third-party software.

Despite their merits, these various proposals either require additional or com-
pletely new hardware or add complexity and performance overhead to the existing
software. Therefore, the community focuses also on proposals tailored for detecting
exploits of the cache as a side channel to address the side-channel threat.

7.8.2 Detection and Attestation Approaches

Chen et al. proposed a framework for covert-channel attack detection termed CC-
Hunter which is detailed in [CV14]. The idea behind the proposed approach is to
dynamically track conflict patterns on shared processor hardware by employing an
additional hardware unit. Through the proposed hardware extension, the authors
of the approach study the conflicts related to the usage of a shared resource.
Similarly to the approach proposed by Chen et al., we make use of the information
provided by the performance counters and analyze the occurrence of specific
events as an indicator for an ongoing attack, but we do not leverage any additional
hardware extensions support.

Chiappetta et al. also focused on detecting side-channel attacks and proposed
three distinct detection approaches described in [CSY16]. The work detailed in
[CSY16] does not require changes in the operating system and detect still ongoing
attacks. This approach is promising, but its application relevance is limited, as it
detects explicitly attacks that leverage the Flush+Reload attack strategy which are
only possible if features such as memory deduplication are in place, which is often
not the case [VMwb].

Zhang et al. developed a combined signature-based and anomaly-based ap-
proach to detect side-channel attacks in [ZZL16], called CloudRadar. It leverages
performance counter monitoring, similarly to the CCHunter framework proposed
in [CV14], but unlike CCHunter CloudRadar correlates the cryptographic appli-
cations execution in one virtual machine with the monitoring of another virtual
machine which might be performing adversarial actions to spy on the ongoing
cryptographic operations in the co-located virtual machine. To detect the ongo-
ing cryptographic operations during runtime, Zhang et al. employ a signature-
based approach. The attack detection takes place once an ongoing cryptographic
application has been detected. Then, an anomaly-based approach is triggered
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which analyzes the cache miss and hits ratios. As an indicator for an ongo-
ing Flush+Reload-based attack the authors consider the increased cache hit rate,
and the increased cache miss rate is considered as an indication for an ongoing
Prime+Probe attack. The idea behind the proposed side-channel attacks detection
approach CloudRadar is that it can be implemented as a Security-on-Demand
solution to enhance the virtual machine security of the customers who would pay
more for security guarantees.

The goal of our work is to detect not only side-channel attacks, but to uncover
also covert-channel attacks. Therefore, our approach cannot rely on establishing
the link between the execution of cryptographic operations and possible ongoing
adversarial operations. In addition, the employed signature-based approach in
[ZZL16] requires keeping up-to-date signatures database and updating it whenever
a new cryptographic application which requires the interaction with the user of
the application to provide the necessary data. Still, we consider this work as a base
line for our research.

An architecture for security monitoring and attestation of virtual machines
in a Cloud scenario is also developed by Zhang et al. and described in [ZL15].
The proposed approach enables Cloud customers to request the monitoring and
attestation in regard to certain security properties of their virtual machines. The
monitoring and attestation can be done periodically or upon request and the
proposed architecture is flexible to include different security properties. Unlike the
proposed approach, our goal is not to provide security attestation, but to uncover
exploits of the cache as a side channel and to enable respective reactions at the
operation system or the hypervisor level.

Zhang et al. proposed an auditing approach, called HomeAlone in [Zha+11].
HomeAlone’s goal is to ensure the absence of co-resident virtual machines in the
Cloud scenario. The approach targets at customers of dedicated instances in the
Cloud which are commonly offered at a higher price. The proposed approach
enables the customers to verify the physical isolation of their virtual machines on
the dedicated instances. For this purpose, Zhang et al. leverage a side channel in
an unconventional way to detect the activity of a co-resident virtual machine. Our
approach does not provide security assurance but aims to enhance the systems
security with regard to the side-channel exploits by providing a reliable detection
mechanism.

The Bucket model was proposed by Hunger et al. in [Hun+15]. It provides a
mathematical abstraction of the microarchitectural covert channels and leverages
information theory to estimate the capacity of contention-based channels. The
authors of the proposed model ascertain that the covert channels can achieve much
higher capacity than previously suggested given an optimized clocks alignment
between the receiver and the sender processes. The ultimate goal of the work
described in [Hun+15] is to detect intelligent adversaries, and suggest a different
attacker model than the commonly established covert-channel exploits. Our work
sticks to the well-established and well-working attacker models exploiting the
cache as a side channel.
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7.9 conclusion

The threat related to exploiting the cache as a side channel poses a security risk
to current systems, which cannot be eradicated easily. To address this threat by
providing means to mitigate such attacks is an absolute necessity in the security
community. However, this is a challenging, non-trivial task, as the possible
leakage stems from side effects of the currently leveraged hardware. Therefore, the
computer architecture community strives for proposing solutions that cannot leak
sensitive data through side channels. Nonetheless, such measures will not prevent
the existing hardware from being insecure and leaky. Apart from that, despite
their merits, novel secure hardware solutions will not necessarily be adopted by
the hardware vendors in the near future, as such solutions have to be performant
except for secure. Defenses at the software level are also possible, but they are
typically limited to the specifity of a single manifestation of the cache-based
exploits and usually can be tweaked after becoming public.

Applying SpyAlarm or similar approaches will not eradicate the threat posed by
the side-channel exploits, but can enhance system security in regard to the side-
channel attacks. SpyAlarm is a detection mechanism tailored to detect cache-based
side-channel and covert-channel attacks. SpyAlarm can be applied as an addition to
the typical intrusion detection systems to uncover explicitly side-channel exploits.
Our empirical results demonstrate SpyAlarm as a reliable runtime side-channel
attacks detector. As SpyAlarm is based on a combination of hardware and software
events, we explore different events sampling configurations to increase the achieved
detection accuracy. The empirical evaluation presented in this chapter shows that
SpyAlarm achieves a high detection accuracy, and detects reliably two side-channel
attacks which have not been seen by the detector while exhibiting a low false
positives rate of about 5%.

The success of SpyAlarm in the detection of side-channel attacks is reliant on
the fact that side-channel attacks often share common characteristics, and leave
footprints in terms of their usage of software and hardware events. SpyAlarm
can be potentially overwhelmed as a detection measure if the side-channel attacks
adapt, but the detection approaches can adapt as well to address the new threat.
For this purpose, the security researcher proposing novel attack approaches should
provide the details on the newly explored attacks so that approaches such as
SpyAlarm can be kept up-to-date.

The area of side-channel attacks is actively researched lately. Despite that the
mitigation of such attacks turns out to be an unsolved challenging task. Ideally,
this security threat has to be addressed and eradicated. Complementary to such
endeavours, applying detection approaches until that time comes, will not hurt
and can only enhance the security of the system. The usage of a combination of
hardware and software events for the analysis of cache-based exploits is promising
and has potential to enhance system security if further investigated and approaches
such as SpyAlarm are kept up-to-date.
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S U M M A RY A N D C O N C L U S I O N

Side-channel and covert-channel attacks with their numerous manifestations pose
a serious threat to today’s computer systems, and particularly to the confidentiality
of their users’ data. They make use of diverse side effects of the hardware or
software to derive sensitive information and compromise data confidentiality.
Since the term "covert channel has been mentioned by Lampson in [Lam73] in 1973,
these attacks have been in the focus of research. They have overcome periods of
less popularity to reach the top of the heap today. Throughout all these years, the
threat associated with side-channel exploits has been present, but during the last
decade the interest in these exploits has increased tremendously mainly due to the
emergence of business models offering shared resources to their customers, e.g.,
the Cloud. Such models presume secure isolation between the mutually untrusted
users that rely on the same resources, making side-channel and covert-channel
attacks more relevant. In the co-location context, side-channel exploits can break
the presumed isolation and lead to a violation of customers’ confidentiality. A
number of attacks leaking information through different system components by
involving analysis of hardware side effects have been published and have become
quite popular, also in the Cloud context.

In the focus of this thesis are the side-channel and covert-channel attacks, which
leak secret data by exploiting the side effects of the cache memory. The cache
has been present as a convenient and powerful leakage channel throughout all
the years since the first mention of the term "covert channel". The main reason
for this development is that the cache organization, which is the root cause for
emanating side effects, has not changed rapidly over the past 20 years and the
side-channel problem, though being known, has not been tackled. The existence
of cache-based side-channel exploits in the context of systems offering shared
resources to their users calls for rigorous methods to cope with this confidentiality
threat. Only then, the trust of the customers in the secure isolation of their data
in the context of shared resource usage can be justified. Whether eradicating the
cache-based exploits by the computer architecture community in the course of
the last two decades has been impossible due to cost or performance overhead,
or this community has proposed solutions which turned out to be impractical for
the vendors, and therefore have not been applied in practice, remains an open
question.

Nowadays, both the security and computer architecture communities strive to
find practical solutions against the side-channel and covert-channel attacks, but
this is a challenging task. Mitigation approaches at the software level are proposed
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to cope with the problem, but they commonly tackle a specific implementation, and
are not resistant against new versions of attacks, or introduce high performance
penalties. Moreover, until recently, the lack of different publicly available attack
implementations has impeded the development of more abstract or general pre-
ventive measures. Fortunately, the last five years have seen a positive development
in this regard, and publicly available versions of the cache-based attacks can be
accessed and used. This is a necessity when trying to tackle the problem, and is an
important improvement in the security community.

This thesis aims to provide a basis for enhancing system’s security, by exploring
the relationship between the execution environment and the exploitability of the
cache. The target is to investigate the issues related to the cache-based exploits
from three points of view: First, the thesis studies the basis for establishing the
relationship between the execution environment and the cache-based exploits
from a theoretical perspective. Second, certain characteristics of the execution
environment and their relationship to the success of the side-channel and covert-
channel cache-based attacks are analyzed empirically. Then, the thesis focuses
on applying the acquired information to develop a detection strategy tailored
to uncover adversaries exploiting the cache as a leakage channel. In summary,
this thesis investigated the following research questions along with the resulting
contributions.

Research Question 1 (RQ1): Can we classify and model side-channel exploits considering
the impact of the execution environment on their feasibility?

The diversity of side channels along with their numerous manifestations pose a
challenge to their analysis, and make it infeasible to cope with the security threat
stemming from their exploitation. In fact, there is no generic solution which can
preclude an adversary from exploiting certain side effects of the underlying system.
This is aggravated by the variety of side-channel exploits, which are not necessarily
well-documented, making it hard to consider all the details involved in an attack
and derive solutions to combat the problem. This fact reinforces the necessity of a
classification that points out the differences and the similarities between the diverse
side-channel exploits, and encompasses the relationship between the exploits and
the execution environment in which they are deployed. Such a classification can
enable the feasibility analysis by providing the means to consider the effect of the
execution environment on the exploitation of a specific side channel.

Considering the effect of the properties of the execution environment on the
individual attacks can also enhance awareness regarding the feasibility of the
attacks in a given context. In fact, not all the reported side-channel attacks are
feasible under any conditions. Properties of the execution environment such as
CPU scheduling can affect the success of the attack, and, therefore, these properties
should be investigated. The lack of models that consider not only the way the
adversary uses the measurable side effects, but also the interplay between the
execution environment and the adversary should be considered.
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Contribution 1 (C1): A classification approach of side-channel exploits and a side-channel
attack model including execution environment factors

To enable systematic reasoning in regard to the large variety of side-channel ex-
ploits, this thesis proposed an extensive classification approach which incorporates
the interplay between the execution environment and the individual strategies
exploiting measurable side effects. The proposed classification approach focuses on
the assumptions and limitations of the approaches which can affect the feasibility
and deployment of the exploits under different conditions.

In addition, the thesis discusses the feasibility factors that are specific to the
virtualized environment which is among the underlying and enabling technolo-
gies for the Cloud computing model and is especially threatened by adversaries
exploiting the side effects of the cache.

Among the factors affecting the feasibility of these exploits is the CPU scheduling.
Its influence is especially relevant for core-based side-channel and covert-channel
exploits. Therefore, the thesis proposes an information leakage model, called
InfoLeak, which incorporates the effect of the CPU scheduling on the exploits of
the core-private cache. The first contribution of the thesis facilitates systematic
reasoning about cache-based exploits, and enables the assessment of their feasibility
given the execution environment properties.

Research Question 2 (RQ2): What is the relationship between execution environment
properties and the success and feasibility of side-channel attacks?

Among the approaches that have been proposed in the security community to com-
bat side-channel attacks are approaches that consider properties of the execution
environment. The scheduling of the adversary processes, in particular, also has an
impact on the attack’s success.

The impact of the scheduling approach itself is hard to measure because of the
involved non-determinism. However, the adversaries abusing the core-private
caches often rely on a specific scheduling configuration, or certain scheduling
decisions, to be able to collect sufficient observations on the cache usage of the
victim in the context of a side-channel attack or on the cooperating attacker in the
context of a covert-channel attack, and be able to derive sensitive information out
of the collected data. Therefore, the relationship between the employed scheduling
configuration and its effect on the success of the core-private cache exploits should
be studied. Moreover, the scheduling-related traces an adversary can leave when
striving for collecting fine-grained observations over the cache usage have to be
investigated.

Contribution 2 (C2): Empirical evaluation of the effect of the scheduling on the side-channel
attacks and their possible traces

As the first contribution of the thesis points out, the context of the execution
environment plays a significant role in the success of the side-channel attacks. Of
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special interest is the CPU scheduling which affects in particular the core-private
cache exploits mainly due to the small size of the core-private cache.

To assess the exploitability of the execution environment in terms of the schedul-
ing configuration, this thesis presented an empirical study in a virtualized envi-
ronment that investigates the relationship between the scheduling configuration
and the success of a core-private cache exploit. For this purpose, a variety of hy-
pervisor scheduling parameters has been considered. Although, this relationship
depends on the characteristics of the employed attack, and the means the adversary
leverages, the results demonstrate that certain scheduling parameters are vital to
core-private cache exploits.

In addition, the thesis focused on possible indicators of side-channel and covert-
channel adversaries, and proposed metrics which can be used post-mortem to
investigate the available logs of the operating system for side-channel attack
indications. The conducted experiments demonstrated that there is a correlation
between the successful transmission of information in the context of a covert-
channel attack exploiting the core-private cache and the proposed indicators.
However, due to the involved overhead, applying these indicators at runtime is not
feasible, and they cannot provide definite statements regarding ongoing attacks.
Nevertheless, the conducted experiments demonstrate that there are characteristics
of the cache-based exploits which can be explored to enable their detection.

Research Question 3 (RQ3): Can side-channel attacks be reliably detected?

As side-channel and covert-channel attacks do not leave any definite traces on the
system, and fall out of the scope of the traditional intrusion detection systems
relying on security policies and access rights, these attacks are hard to uncover.
However, the results presented as the second contribution of the thesis suggest
that the information contained in the system logs can be investigated post-mortem
for indicators for side-channel exploits. Although the presented results are not
sufficient on their own for building a detection mechanism, they suggest the
possibility to search for traces of cache-based exploits in the system logs.

Currently, the eradication of cache-based side-channel attacks seems to be an
infeasible task. However, given the relevance of these exploits as a real-world
threat to the data confidentiality, the need for a reliable detection mechanism
of cache-based exploits only increases. Ideally, the existing approaches have to
be complemented with novel proposals, developed to encounter particularly the
side-channel issues.

Contribution 3 (C3): A reliable side-channel attack detection approach using performance
counters and software events

As a third contribution, the thesis proposed SpyAlarm, a reliable detection mech-
anism which is tailored to detect cache-based covert-channel and side-channel
attacks at runtime. The evaluation results demonstrate that the proposed approach
which is based on the usage of a combination of performance counter and software
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events can reliably detect cache-based attacks while exhibiting a low false positives
rate.

SpyAlarm leverages both hardware and software events to overcome the limited
monitoring resources and to enhance the detection accuracy of the approach. As
part of this contribution, the architecture of SpyAlarm is defined. The approach
is evaluated by leveraging a prototype implementation and testing it against
two publicly available attacks, unseen by the detector. As SpyAlarm leverages
hardware and software events, the sampling frequency and interval are tuned
to obtain accurate detection results. In addition to that, two supervised learning
algorithms are considered and a number of training parameters are tuned to
achieve prediction results characterized by low false positives and false negatives
rates. Approaches such as SpyAlarm will not eradicate the side-channel threat, but
can enhance the security of systems against this threat, and can enable triggering
further actions to contain the damage caused by an attacker.

This thesis confirms that side-channel attacks abusing the cache side effects are
hard to combat. They have been a known threat for a long time, and there is no
clear indication that these exploits will be eradicated soon, although they pose a
serious threat to many widely deployed and used systems. Moreover, side-channel
attacks exhibit specific characteristics not comparable with the characteristics of
other attack types, as they abuse components such as the cache which do not
obey to particular access rights or policies. In addition, cache-based exploits are
partly caused by important optimization solutions which have resulted in a more
performant hardware. Therefore, coping with these exploits remains a challenging
task despite the endeavours of the security community. Moreover, it is likely that
further such vulnerabilities will be discovered, as well as new and novel side
channels to leak information will be proposed.

However, despite the anticipation that these attacks will remain present for the
near future, there are positive developments in the community which, although
very slowly, move forward towards solving the problem. Among them is the
serious and sustained research that focus on mitigation strategies. Also, more
and more researchers publish diverse implementations of side-channel attacks.
Possibly, an up-to-date database with attack’s implementations can be beneficial
for approaches such as SpyAlarm which study the details of these attacks to be able
to detect them. Keeping a detection approach up-to-date with the new attacks will
definitely improve system’s security until the underlying architectural issues are
fixed to be both secure and performant. The contributions presented in this thesis
constitute mechanisms to alleviate the side-channel problem until it is solved, and
aid the development of new solutions to enhance the security of current systems.
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