THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Automated Design of Efficient Fail-Safe

Fault Tolerance

Arshad Jhumkal!
Department of Computer Science
Technische Universitat Darmstadt

64283, Darmstadt, Germany

!This work has been supported mainly by a Saab Endowment, and a Swedish TFR

grant.

© Copyright by
Arshad Jhumka
2003

Abstract

Both the scale and the reach of computer systems and embedded devices
have been constantly increasing over the last decade. As such computer sys-
tems become pervasive, our reliance on such systems increases, resulting in
our expectation for such systems to continuously deliver services, even in the
presence of faults, that is we expect the computer systems to be dependable.
One way to ensure the continuous delivery of dependable services is repli-
cation, which however, is expensive, so we focus on the cheaper alternative,
that of software-based fault tolerance.

There are different levels of fault tolerancethat can be provided, for ex-
ample masking fault tolerance, fail-safe fault tolerance etc. In this thesis,
we focus on providing fail-safe fault tolerance. Intuitively, a fail-safe fault-
tolerant program is one where it is acceptable for such a program to “halt”
when faults occur, as long as it always remains in a “safe” state. Moreover,
we endeavor to synthesize efficient fail-safe fault tolerance. We used two
commonly-used criteria to assess the efficiency of a fail-safe fault-tolerant
program, namely (i) error detection latency — or latency for short —, i.e.,
how fast can a fail-safe fault-tolerant program detect an erroneous state,
and (ii) error detection coverage — or coverage for short, i.e., the ratio of
“harmful” errors the program can detect.

In this thesis, we present a formal framework for the design of efficient
fail-safe fault-tolerant program. The framework is based on a refined theory
of detectors, which introduces novel insights into their working principles.

We introduce the concept of a perfect detector, which allows a fail-safe fault-

ii

tolerant program to have perfect detection. This means that a program,
composed with perfect detectors, have optimal detection coverage. Optimal
in the sense that the detectors detect all of the “harmful” errors, and make
no mistakes. Then, we present the concept of fast detection, and show how
a fail-safe fault-tolerant program can have both perfect, and fast error detec-
tion. In fact, the detection latency is shown to be minimal, i.e., the error is
detected in 0-step. Based on these two basic notions, we present algorithms
that automatically add fail-safe fault tolerance with perfect detection only,
and fail-safe fault tolerance with perfect detection, and minimal detection
latency.

We further develop a theory for the design of multitolerance, which is the
ability of a program to tolerate multiple classes of faults. In the thesis, we
explain that interference can occur between different program components
when designing multitolerance, and we present a set of non-interference con-
ditions that needs to be verified. We then present two different approaches
for the design of multitolerance, and for each approach, we present two dif-
ferent algorithms that add fail-safe fault tolerance to several fault classes
with different efficiency properties.

The algorithms presented in this thesis are particularly suitable for a
class of programs termed as bounded programs. The property of bounded

programs is that they do not have any kind of unbounded looping structure.

Keywords: Distributed Systems, Embedded Systems, Formal Methods,

Fault Tolerance, Fail-Safe, Detectors, Efficiency, Multitolerance.

111

iv

To Najaat, my parents, brother, sister and in-laws

For their love, faith and support

vi

vii

Research Publications

. An Approach to Specify and Test Component-Based Dependable Soft-
ware, Arshad Jhumka, Martin Hiller, Neeraj Suri, Proceedings High
Assurance Systems Engineering (HASE), 2002

Recipient of the Young Researcher Award - Best Paper
Award

. Component-Based Synthesis of Dependable Embedded Software, Ar-
shad Jhumka, Martin Hiller, Neeraj Suri — Proceedings Formal Tech-
niques in Real-Time and Fault Tolerant (FTRTFT) Systems, 2002

. Propane: An Environment for Ezamining the Propagation of Errors
in Software, Martin Hiller, Arshad Jhumka, Neeraj Suri — Proceedings
International Symposium on Software Testing and Analysis (ISSTA),
2002

. On the Placement of Software Mechanisms for Detection of Data Er-
rors, Martin Hiller, Arshad Jhumka, Neeraj Suri — Proceedings De-
pendable Systems and Networks (DSN), 2002

. On Systematic Design of Globally Consistent Executable Assertions
for Software, Arshad Jhumka, Martin Hiller, Vilgot Claesson, Neeraj
Suri — ACM Joint Conference Languages, Compilers, and Tools for
Embedded Systems (LCTES)/Software and Compilers for Embedded
Systems (SCOPES), 2002

viii

6. Assessing Inter-Modular Error Propagation in Distributed Software,
Arshad Jhumka, Martin Hiller, Neeraj Suri — Proceedings Symposium
on Reliable Distributed Systems (SRDS), 2001

7. An Approach for Analysing the Propagation of Data Errors in Soft-
ware, Martin Hiller, Arshad Jhumka, Neeraj Suri — Proceedings De-
pendable Systems and Networks (DSN), 2001
Recipient of the WC Carter Award Paper — Best Paper
Award

Contents

1 Introduction 3
1.1 Dependability: Basic Concepts 4
1.1.1 Faults, Errors, and Failures: 4

1.1.2 Ways of Achieving Dependability 5

1.1.3 Attributes of Dependability 6

1.1.4 Design of Fault Tolerance 6

1.1.5 Verification and Validation of Fault Tolerance 8

1.2 Motivation and Research Questions 9
1.2.1 Problem Statements 11

1.3 Research Contributions 14
1.4 Thesis Structure o 16

2 Related Work 17
2.1 Design of Fault-Tolerant Programs 18
2.2 Automated Procedures 22

3 Formal Preliminaries 23
3.1 Concurrent Systems oL 23
3.2 Programs 24
3.3 Communicationo 27
3.4 Specificationso oL Lo 28
3.5 Temporal Logic 30

ix

CONTENTS

3.6 Refinement
3.7 Fault Models and Fault Tolerance

Perfect Detectors: Basis for Perfect Detection
4.1 Introduction. L.
4.2 An Overview of Detectors
4.2.1 Role of Detectors in Fail-Safe Fault Tolerance
4.3 The Transformation Problem
4.4 A Theory of Perfect Detectors
4.4.1 Transition Consistency in the Context of Safety Spec-
ificationso oo
4.4.2 Perfect Detectorso
4.4.3 Constructing Perfect Detectors
4.5 An Algorithm for Perfect Detectors
4.6 Three Case Studies oL
4.6.1 A Simple Example 00000,
4.6.2 A Majority Voter System
4.6.3 TokenRing

4.7 Chapter Summary

Fast Detectors: A Basis for Fast Error Detection

5.1 Introduction.

5.2 Fast Error Detection

5.3 The Transformation Problem for Fast and Perfect Detection .

5.4 Adding Efficient Fail-Safe Fault Tolerance

5.5 Two Case Studies.
5.5.1 A Simple Example
5.5.2 A Majority Voter System

5.6 Discussion e e e e e e

CONTENTS xi

5.7 Chapter Summary 93
6 Design of Efficient Multitolerance 95
6.1 Introduction. 98
6.2 Issues in Multitolerance Design 101
6.3 One-at-a-time Design of Multitolerance 105
6.3.1 Multitolerant Programs With Perfect Detection 105
6.3.2 A Simple Example 114
6.3.3 TokenRing, 115
6.3.4 Multitolerant Programs With Perfect Detection and
Minimal Detection Latency 119
6.3.5 A Simple Example 128
6.4 All-at-a-time Design of Multitolerance 131
6.4.1 Multitolerance with Perfect Detection 132
6.4.2 A Simple Example 0000 L. 134
6.4.3 Multitolerance with Perfect Detection and minimal
detection latency 136
6.4.4 A Simple Example, 137
6.5 Chapter Summary, 139
7 Conclusion and Future Work 141
7.1 Discussiono e e e e 142
7.2 Summary of Research Contributions 147
7.2.1 Perfect Detection, 148
7.2.2 Fast Detection 149
7.2.3 Design of One-at-a-time Multitolerance 149
7.2.4 Design of All-at-a-time Multitolerance 151
73 Impact. 151
74 Future Work Lo o o o 152

xii

CONTENTS

List of Tables

xiv

LIST OF TABLES

List of Figures

4.1
4.2
4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

6.1

6.2

Reachable states/transitions 44
An example to illustrate the concept of inconsistent transition 48
Program to illustrate the concept of S S-inconsistent transitions. 49

Program containing two concurrent processes with a tran-
sition that is both SS-inconsistent and not SS-inconsistent

w.r.t. two different computations. 51

Algorithm to synthesize fail-safe fault-tolerant program with

perfect detection. L. 64
Example program p in the presence of faults 67
Fail-safe fault-tolerant program p’ obtained by removing ss . 68
Algorithm to add efficient fail-safe fault-tolerance. 85

An example to illustrate how algorithm add-efficient-fail-safe

works . . . L e e 88

Fail-safe fault-tolerant program resulting from applying algo-

rithm add-efficient-fail-safe 89

The first step in the design of multitolerant programs with

perfect detection. L. 107

The second step in the design of multitolerant programs with

perfect detection. Lo 108

XV

xvi

6.3

6.4

6.5

6.6
6.7

6.8

6.9

6.10

6.11

6.12

6.13
6.14

6.15

6.16

6.17

LIST OF FIGURES

The k' step in the design of multitolerant programs with

perfect detection. L L L. 111

The algorithm adds fail-safe fault tolerance to n fault classes,

with perfect detection to every fault class 113

Fault-intolerant program in the presence of F; — first iteration

of the algorithm 114
Resulting fail-safe fault-tolerant program p; to Fy 115
Resulting fail-safe fault-tolerant program p; in presence of F5 115

Resulting fail-safe multitolerant program ps to F; and F5 with

perfect detection to both fault classes. 116

The first step in the design of multitolerant programs with

perfect detection and minimal latency. 121

The second step in the design of multitolerant programs with

perfect detection and minimal latency 123

Algorithm add-efficient-fail-safe-multitolerance adds fail-safe
fault tolerance to n fault classes, with perfect detection, and

minimal detection latency to every fault class 128

Resulting fail-safe fault-tolerant program with perfect detec-

tion, and minimal detection latency to Fy 129
Program p; in presence of Foo 130
Resulting fail-safe fault-tolerant program po in presence of F5 131

Algorithm add-perfect-fail-safe-multitolerance-all adds fail-
safe fault tolerance to n fault classes, with perfect detection

to every fault class by considering all fault classes at the same

Fault-intolerant program in presence of Fy 135

Fault-intolerant program in presence of F, 135

LIST OF FIGURES xvii

6.18 Resulting fail-safe multitolerant program ps to F; and F with
perfect detection to both fault classes. 136
6.19 Algorithm add-efficient-fail-safe-multitolerance-all adds fail-
safe fault tolerance to n fault classes, with perfect detection,

and minimal detection latency to every fault class by consid-

ering all fault classes at the same time. 137
6.20 Fault-intolerant program in presence of Fy 138
6.21 Fault-intolerant program in presence of F» 138

6.22 Resulting fail-safe multitolerant program ps to F; and F5 with
perfect detection and minimal detection latency to both fault

classes when considering all fault classes at the same time. . . 139

xviii LIST OF FIGURES

LIST OF FIGURES

LIST OF FIGURES

Chapter 1

Introduction

The design of reliable computers has been a challenge ever since computers
first appeared in the middle of the 20" century. In those days, computers
were built out of unreliable components, such as vacuum tubes, relays, and
so on. Later generations of computers were more reliable as they were
built from more reliable components, such as semiconductor components,
and other components from more advanced technology. Computers were
expensive, and were used mainly for computation-extensive tasks, research,
and defense. Nowadays, with the ever-increasing circuit density, computers
are no longer expensive commodities. In fact, they are becoming more and
more pervasive. They are being used in every walks of life, from safety-
critical systems, such as nuclear plants control, airplanes etc, to consumer-
oriented products, such as automobiles, refrigerators etc. As these computer
systems pervade our lives, our expectation on their delivery of services, in

spite of faults, increases. We need these computer systems to be dependable.

In this chapter, first, we will first briefly survey the fundamentals of de-
pendability (Section 1.1), where we provide an overview of the main steps
involved in the design of fault-tolerant systems. We then explain the moti-
vations behind the work presented in this thesis (Section 1.2). We will then

present the problem statements, and pertinent research questions that arise

4 CHAPTER 1. INTRODUCTION

and explain our research contributions.

1.1 Dependability: Basic Concepts

In this section, we explain how dependable (fault-tolerant) programs are
designed in general. First, we explain the fault/error/failure classification,
and then we explain how dependability can be achieved. Given our focus
on fault tolerance, we then briefly survey the main steps in achieving fault
tolerance. Lastly, we explain how the resulting system can be validated.
The term dependability is defined as “the trustworthiness of a sys-
tem such that reliance can justifiably be placed on the service it pro-
vides” [Lap92]. This means that the services provided by such a system
are always correct, according to the system’s specification, whether the en-

vironment in which it is deployed is ideal, or less than ideal (faulty).

1.1.1 Faults, Errors, and Failures:

During the construction or operation of a computer system, events may
occur that can threaten the computer system’s ability to deliver correct
services. For example, developers of the system may have inadvertedly in-
troduced defects (or bugs) during the construction phase. Another factor
that can affect a computer system’s ability to deliver correct services is the
ageing of components, though its relevance may be less in software. Another
example of an event that can jeopardize the computer system’s operations
is its deployment in noisy environments that generate unexpected events.
Factors that can affect the proper functioning of a computer system, such
as noise, bugs etc, are commonly referred to as faults.

An error is said to exist in a computer system when a corresponding
fault is activated. Specifically, a fault in itself may not threaten the proper

functioning of the system, for example, if a fault occurs in an area of memory

1.1. DEPENDABILITY: BASIC CONCEPTS)

that is not accessed, then the fault has no ability to influence any computa-
tion. However, when a fault is activated, for example a computation reaches
the fault-affected area in memory, and the faulty value used during the com-
putation, if no corrective action is taken, there is the risk of the computer
system to violate its specification, i.e., do not deliver the required service.
When a faulty value is used in some computation, error is said to propagate,
i.e., there is error propagation. When the error propagates to the “output”
of the computer system, a failure is said to happen, i.e., the behaviour of
the system has deviated from what is prescribed by its specification.

Thus, to be able to develop a fault-tolerant system, one needs to un-
derstand the faults that can potentially affect the system, i.e., one needs to

develop a fault model.

1.1.2 Ways of Achieving Dependability

Once a fault model has been developed, there are various ways of dealing
with it, i.e., there are different ways of achieving dependability, when de-

signing a dependable system, namely:

e Fault Prevention: As the name suggests, this approach tries to
prevent faults from occurring in the first place. Examples of fault
prevention approaches are use of sound development methodologies or

use of radiation-hardened hardware.

e Fault Tolerance: This is the ability of a system to deliver desired
level of functionality in the presence of faults, i.e., instead of preventing
faults from occurring, one tries to tolerate their effects. To achieve
this, the system should be able to detect and/or correct errors in the

system.

e Fault Removal: This process deals with removal of faults, and is

6 CHAPTER 1. INTRODUCTION

commonly referred to as debugging (for software).

e Fault Forecasting: This process helps in evaluating the conse-

quences of faults when they occur.

1.1.3 Attributes of Dependability

Once a dependable system has been designed, one needs to measure its “de-
pendability”. There are different attributes that characterize dependability,

for example:

e Reliability — This attribute defines the probability of a system to pro-

vide correct service over a finite period of time.

o Awailability — This attribute defines the probability of a system to be

correct at any given time.

e Safety — This attribute captures the extent to which a service provided

by a system is safe.

Other attributes such as confidentiality and integrity are also attributes
of dependability, but are more related to security issues, and we do not

discuss them any further.

1.1.4 Design of Fault Tolerance

As we explained earlier (Section 1.1.2), there are various ways of achieving
dependability. In this thesis, we focus mainly on fault tolerance. Fault
tolerance is the ability of a system to provide a desired level of functionality
in presence of faults. Fault tolerance is closely coupled to the fault model
assumed, i.e., a fault-tolerant system may be able to tolerate one class of

faults, and still not able to tolerate another types of faults.

1.1. DEPENDABILITY: BASIC CONCEPTS 7

For a system (program) to be fault-tolerant, it needs to be able to per-
form some important steps whenever errors (effects of faults) appear. In

general, provision of fault tolerance can be divided into four stages [LA90]:

1. Error Detection: This step is concerned with the ability of the
system to detect that some erroneous state has been reached, and that
the system is in some “unsafe” state. Error detection is important,

since the system is then prevented from performing unsafe actions.

2. Damage Assessment: After an error has been detected, one needs to
determine the extent to which damage has been caused to the system.
In particular, one needs to determine the extent to which error has

propagated through the system.

3. Error Processing: Once damage assessment is done, error processing
is initiated that tries to revert the system back to a non-erroneous
state, i.e., a safe state. The combined actions of damage assessment,

and error processing is commonly known as error recovery.

4. Fault Treatment: This step is concerned with preventing the same

faults from getting activated again, and is generally performed offline.

Overall, a fault-tolerant program should be able to first detect errors,
and then to recover from them. To design fault tolerance, Arora and Kulka-
rni observed in [AK98c, AK98a, AK95, Kul99] that two components, which
they termed as detectors, and correctors, underpin the design of fault tol-
erance. A detector is a program component that is added to a program to
detect errors in the program. Examples of detectors are executable asser-
tions [Sai78, MAMS84, Hil00], error detecting codes, snapshot procedures,
comparators and so on. A corrector, on the other hand, is a program com-

ponent that is added to recover from errors. Arora and Kulkarni have shown

8 CHAPTER 1. INTRODUCTION

that, by using either detectors, correctors or both of them, different classes
of fault-tolerant programs can be obtained, namely fail-safe fault-tolerant
programs, non-masking fault-tolerant programs, and masking fault-tolerant
programs. Each class of fault-tolerant programs provides a specified level of
fault tolerance.

In this thesis, we focus on the design of fail-safe fault-tolerant programs.
It was shown in [AK98c] that, to make a program fail-safe fault-tolerant, it
is both necessary and sufficient to add detectors to that program. In this
thesis, the approach we will present allows a program to have both perfect
error detection and minimal detection latency. This in turn has the effect of
constraining error propagation, hence limiting the amount of damage done
in the system. Thus, by design, the damage done in presence of faults is
minimal. The implication of this is that the error processing phase needs

not be very complicated (sophisticated).

1.1.5 Verification and Validation of Fault Tolerance

In the design of fault-tolerant systems, one needs to verify the correctness
of the system. To do this, formal methods [CW96] has often been used.
The first step is to specify the properties that the system should have. The
specification is usually done in some logical formalism, usually temporal
logic, which can assert how the behavior of the system evolves over time.
The second step is to construct a formal model for the system. In order to be
suitable for verification, the model should capture those properties that must
be considered to establish correctness. During the verification process, the
properties that establish correctness are verified. In the dependability area,
formal methods have been used to verify correctness of distributed and/or
real-time protocols [KRS99, SS99b]. It has also been observed that a proper

decomposition of a fault-tolerant program into its components helps in in

1.2. MOTIVATION AND RESEARCH QUESTIONS 9

its mechanical verification [KRS99].

Once the system has been implemented and fault tolerance mechanisms,
such as detectors and correctors, have been added, the resulting “fault-
tolerant” system needs to be validated. Two commonly used methods for
validation are testing, and fault injection. In testing, the system is subjected
to a number of test cases to ascertain that there are no bugs (faults) in
the system. Bugs are suspected present when the system deviates from
its specified behavior under any test case. The problem is usually to find
suitable test cases which can uncover those bugs. In [SS99b], the authors
adopt a formal-based approach whereby verification information is reused
to drive test-case generation.

To validate the fault tolerance mechanisms, fault injection [AAAT90,
IT96] is often used. In fault injection experiments, faults are artificially
injected in the system to create conditions that will activate those fault
tolerance mechanisms. Fault injection suffers from the same problem as
testing for having to find suitable test cases, as well as determining which

types of faults to inject.

1.2 Motivation and Research Questions

On this background, in this section, we will discuss the motivations that
underpin the work presented in this thesis. Our overall goal is to develop
a framework that allows systematic development of efficient fail-safe fault-
tolerant programs.

The motivation behind the work presented in this thesis is multifold.
First, it is well-known that the design of fault-tolerant systems is inherently
complex. Thus, there is a need for well-defined and sound development
methodologies that can guide the software designer in the design of efficient

and complex dependable systems.

10 CHAPTER 1. INTRODUCTION

Also, it is often the case that addition of fault tolerance mechanisms (i.e.,
detectors and correctors) interfere with the performance of the system. For
example, some error detection mechanisms may be added that trigger a lot of
false alarms in the system. This has the effect of affecting the performance of
the system. More importantly, it has also been noted that design of efficient
fault tolerance mechanisms is very often reliant on the experience of the
programmers. This again points to a need for sound methodologies that can

guide the programmers in the design of efficient fault tolerance mechanisms.

Further, in the start phase of the design, the software designer may not
be fully aware of all the fault classes that the system will be subjected to.
As the system evolves, and the system designer becomes more aware of more
fault classes, additional fault tolerance mechanisms may need to be added
to handle these faults. However, each time fault tolerance mechanisms are
added, a complete verification of the new program is needed, which is expen-
sive. Also, non-interference across the different fault tolerance mechanisms
need to be ascertained. Thus, the ability to “add” new tolerance mecha-
nisms without having to perform a complete verification of the program is

crucial.

Overall, we endeavor to develop a framework that (i) enables the design
of efficient fault tolerance mechanisms (more specifically, detectors), and
(ii) enables compositional design of fault tolerance. Combined together,
we provide a framework that enables systematic (compositional) design of

efficient fault-tolerant programs.

Focus: 1In this thesis, we focus on the design of a particular class
of fault tolerance, namely fail-safe fault tolerance. Informally, a program
is fail-safe fault-tolerant if it always remains in a safe state, even in the
presence of faults (We will formally define the term fail-safe fault tolerance in

Chapter 3). The reason for focusing on fail-safe fault tolerance is multifold.

1.2. MOTIVATION AND RESEARCH QUESTIONS 11

First, fail-safe fault tolerance is often needed in critical applications, such
as nuclear plants, train control systems and so on. Very often, detection
is the only objective, and once an error is detected, a mechanical backup
system takes over. Second, it was shown by Arora and Kulkarni in [AK98b)]
that to design masking fault tolerance (which is the ideal fault tolerance),
one can first design a program to be fail-safe fault-tolerant and then later
extended with correctors to make the program masking fault-tolerant. Thus,
our approach tackles one step in the design of masking fault tolerance.

Given our focus on the design of fail-safe fault tolerance, it was shown
by Arora and Kulkarni [AK98c] that it is both necessary and sufficient to
compose a program with detectors to make it fail-safe fault-tolerant. There-
fore, when designing such fail-safe fault-tolerant programs, we also focus on
the design of detectors, i.e., program components that detect errors.

On this background, we formulate the problem statements that have

driven the research presented in this thesis.

1.2.1 Problem Statements

The main goal of the work presented in this thesis has been to develop
a framework that can help in the design of efficient fail-safe fault-tolerant
programs.

While addressing the above problem, we tackled some of the following
research questions:

Research Question: How can one assess the efficiency of a fail-safe
fault-tolerant program? What are the common metrics for such an assess-
ment?

When designing fault-tolerant programs, error detection is crucial. Very
often, to validate the detectors, fault injection experiments are performed to

assess the efficiency of the detectors, and common factors used for such as-

12 CHAPTER 1. INTRODUCTION

sessment are (i) detection coverage, and (ii) detection latency. In this thesis,
we thus focus on those two properties of fail-safe fault-tolerant programs,

namely coverage, and detection latency.

Research Question: What are the main properties of a detector that

allow characterization of its efficiency? Can such properties be formalized?

In Chapter 4, we develop a theory of detectors, and identify completeness
and accuracy as two important properties of a detector that characterize its
efficiency. We then formalize these properties and identify an important
class of efficient detectors, namely perfect detectors. We explain that such
a detector allows for perfect error detection, and we further explain its role
in fail-safe fault tolerance. Thus, perfect detectors can be shown to have

“perfect” coverage.

Research Question: Upon the occurrence of faults, how can error
propagation be limited?. How can the detection latency of a program be
minimized?. Is it possible to design a fail-safe fault-tolerant program such
that its detection latency is minimal?. Do the detectors included have any

impact on the underlying program?.

To tackle this question, in Chapter 5, we develop a theory of fast detec-
tors, and explain how fail-safe fault-tolerant programs with minimal detec-
tion latency be designed. In fact, the approach we propose allows a fail-safe
fault-tolerant program to have both perfect detection, and minimal detec-

tion latency.

Research Question: Can efficient detectors be designed for several
fault classes? How can their non-interference be guaranteed? Is there any
methodology that can be used such that verification needs not be performed

from scratch each time new detectors for new fault classes are added?.

The motivation behind this research issue is that, during periods of per-

turbation, a system is subjected to faults from various sources, such as

1.2. MOTIVATION AND RESEARCH QUESTIONS 13

network overloads, message losses, transients, crashes and so on. It is very
difficult to design a (fail-safe) fault-tolerant program to these fault classes.
So, the idea is to consider one fault class at a time, and design the fault
tolerance mechanisms to the fault class considered. The obvious problem
is whether the fault tolerance mechanisms for different fault classes can be
composed, i.e., one needs to ascertain that fault tolerance mechanisms (de-
tectors) to a given fault class do not interfere with those of another fault
class. Further, the problem is also to develop efficient fault tolerance mecha-
nisms to several fault classes. Specifically, it would be detrimental if efficient
fault tolerance mechanisms are designed to tolerate one fault class, but the
tolerance mechanisms for another fault class is not efficient, resulting in an
inefficient multitolerant system/program. Thus, our theory not only shows
non-interference across different detectors (in terms of their behavior) for
different fault classes, but our theory also shows that “composing” differ-
ent perfect detectors for different fault classes preserve the efficiency of the

resulting program.

Thus, in Chapter 6, we develop a theory for the design of efficient multi-
tolerant programs. Building upon the theory of perfect detectors (Chapter 4)
and the theory of fast detectors (Chapter 5, we develop a theory for the de-
sign of efficient multitolerant programs, and develop the requisite steps to

show ascertain non-interference across different detectors.

Research Question: Can the design of efficient fail-safe fault-tolerant

programs be automated?

To tackle this question, we have developed algorithms of polynomial-time
complexity that automatically synthesizes a fail-safe fault-tolerant program,
starting from a corresponding fault-intolerant program. We have developed
examples showing how these algorithms can be used for such automatic

synthesis.

14 CHAPTER 1. INTRODUCTION

Research Question: Can we reuse the fault-intolerant program to syn-
thesize the fault-tolerant program?

There are two possible ways of synthesizing a fail-safe fault-tolerant pro-
gram. First, one can start with a specification of the program, and then
use refinement steps to first synthesize a fault-intolerant program, and then
perform a fault tolerance transformation to obtain a fail-safe fault-tolerant
program. The second option is to start directly with the fault-intolerant
program and then transform it into a fail-safe fault-tolerant program by
composing it with fault tolerance mechanisms. In this thesis, we adopt
the second methodology, and, starting from a fault-intolerant program, we
transform it into a fail-safe fault-tolerant program by composing it with fault

tolerance components (more specifically, with detectors).

1.3 Research Contributions

Towards addressing all these research issues, we have developed a theory of
detectors, and identified and formalized some important properties of these
program components. We have identified a class of detectors called per-
fect detectors that allows design of efficient fail-safe fault-tolerant program.
Specifically, we will show how to design fail-safe fault-tolerant programs with
perfect error detection, and minimal error detection latency. Based on the
theory, we also develop polynomial-time algorithms that permit automatic
synthesis of efficient fail-safe fault-tolerant programs.

Further, we develop a theory that underpins the design of multitolerant
programs. We show that the class of perfect detectors allows for “non-
interfering composition”, i.e., perfect detectors for each fault class do not
interfere with each other. Specifically, perfect detectors for different fault
classes do not interfere with each other’s “behavior”, and they do not inter-

fere with the efficiency of the program.

1.3. RESEARCH CONTRIBUTIONS 15
Overall, in this thesis, we make the following research contributions:

1. We first present a novel theory of detectors, formalize some important
properties of detectors, and identify an important class of detectors,
namely perfect detectors, that underpins design of efficient fail-safe
fault-tolerant programs. We further explain their role in the design of
fail-safe fault tolerance. We also provide an algorithm that automati-

cally yields fail-safe fault-tolerant programs, with perfect detection.

2. Next, we present a novel theory of fast error detection, and building
upon the theory of perfect detection, we develop an algorithm that
generates fail-safe fault-tolerant programs with both perfect error de-

tection and with minimal error detection latency.

3. We explain that, in the context of multitolerance design, some non-
interference conditions need to be verified. We further explain that
non-interference across detectors with respect to their behavior is not
sufficient when designing efficient multitolerant programs. We there-
fore present a set of non-interference conditions that encompass both
behavioral and performance aspects. As such, we develop a suite of
algorithms that systematically adds “efficient” fail-safe multitolerance
to a program. Overall, this contribution allows compositional design
of efficient fail-safe fault-tolerant programs, i.e., efficient fail-safe fault-

tolerant can be systematically designed.

Our contributions are in the area of fault tolerance, specifically in the
field of error detection. We have shown how to design efficient detectors
such that the fail-safe fault-tolerant programs have perfect error detection
and minimal detection latency for different fault classes.

To summarize, our main contribution is an approach that transforms a

fault-intolerant program into a fail-safe fault-tolerant program with perfect

16 CHAPTER 1. INTRODUCTION

error detection, and minimal detection latency, i.e., efficient fail-safe fault-

tolerant program.

1.4 Thesis Structure

The thesis is structured as follows:

Chapter 2 surveys results in the areas design of fault tolerance, auto-
mated design, program transformation, and multitolerance. We also try to
put our contributions into context.

Chapter 3 introduces the formal foundations for our work and presents
the terminologies used in this thesis. We also present the system model and
fault model used.

Chapter 4 introduces a theory of perfect detectors, and develops a
sound and complete algorithm that yields fail-safe fault-tolerant programs
with perfect detection.

Chapter 5 introduces a theory of fast detectors, and develops a sound
and complete algorithm that yields fail-safe fault-tolerant programs with
perfect detection, and minimal detection latency.

Chapter 6 explains the concept of multitolerance. It develops a se-
ries of non-interference conditions that need to be satisfied when designing
multitolerance. Several algorithms are developed that yield fail-safe multi-
tolerant programs with varied optimal properties, as well as guaranteeing
non-interference.

Chapter 7 summarizes the contributions of this thesis, and assesses
their impact. We conclude by providing some pointers regarding future

work.

Chapter 2

Related Work

In this chapter, we present a survey of previous work and results that are
closely related to the problems addressed in this thesis. Specifically, the
areas of most closely related are design of fault-tolerant programs, design
of effective detectors, automated procedures, error propagation analysis, and

software implemented fault tolerance.

17

18 CHAPTER 2. RELATED WORK

2.1 Design of Fault-Tolerant Programs

One common way to implement fault-tolerant programs is to use N-Version
programing [Avi85], which is however an expensive approach. Another ap-
proach has been to use Recovery Blocks [Ran75]. But the effectiveness of
recovery blocks is heavily reliant on the effectiveness of the acceptance tests
included. Unfortunately, little work has been done that can guide a software
designer towards designing effective acceptance tests (detectors).

Leveson et.al presented the results of a large scale experiment to deter-
mine the effectiveness of software checks and voting in software in [LCKS90].
They explained that the effectiveness of detectors depends very much on the
individual ability of the programmers to design effective detectors. Again,
as in the case of Recovery Blocks, little work has been done to guide the
programmers in designing effective detectors. However, to ease the use of
executable assertions (which is an instance of a detector), Saib extended
the FORTRAN and PASCAL languages with a software construct (called
Assert) that helps in the implementation of executable assertions [Sai78].
Another approach for facilitating the use of assertions is the use of the
Annotation PreProcessor tool of Rosenblum [Ros95]. A similar approach is
described by Yin and Bieman [YB94]. The problem with these approaches is
they do not provide guidelines pertaining to the design of effecive detectors,
which is difficult, since very often, these assertions tend to be application-
specific. In this work, we provide algorithms that can automatically gen-
erate perfect detectors, hence the problem of designing application-specific
detectors can be effectively taken away from programmers, once the fault-

intolerant program is available.

2.1. DESIGN OF FAULT-TOLERANT PROGRAMS 19

To conquer the design complexity, Arora and Kulkarni proposed a trans-
formational approach whereby a fault-intolerant program (a program which
satisfies its specification in the absence of faults), and that satisfies at least
its safety specification in presence of faults) is transformed into a fault-
tolerant program (either fail-safe, non-masking or masking) through the
addition of detectors and/or correctors. Using this approach, they have pre-
sented fault-tolerant solutions for several problems such as distributed re-
set [KA98], mutual exclusion [AK98b], network management [KA97a], data
transfer [AK98b], and Byzantine agreement [KA97b].

The premise is that a fault-tolerant program is a composition of a fault-
intolerant program with fault tolerance components, such as detectors and
correctors. The authors argue that such an approach allows for separation
of concerns. Specifically, it is possible for a software designer to first focus
on designing the fault-intolerant program, and then focus on adding fault

tolerance to it.

In [AK98a], Arora and Kulkarni presented an stepwise approach for ad-
dition of multitolerance, i.e., the ability of being fault-tolerant to multiple
classes of faults. They also argued that non-interference between differ-
ent program components needs to be verified, and presented a set of non-
interference conditions for that matter. In this present work, we extend the
current set to include non-interference with other program properties (apart
from fault tolerance) , such as perfect detection, and minimal detection

latency.

Another transformational appraoch has been proposed by Joseph and
Liu [Liu91, LJ92, LJ93, LJ94, LJ95]. They show how a program constructed
for a fault-free system can be transformed into a fault-tolerant program for
execution in faulty environments. Specifically, the addition of fault toler-

ance to a program is modeled by a fault-tolerant transformation that adds

20 CHAPTER 2. RELATED WORK

the necessary redundancy to the program so that the faults can be toler-
ated. A fault-tolerant program can be further refined using fault-tolerant
refinement that preserves both the functional, and fault-tolerant properties

of the program.

The fault tolerance mechanisms used are very much dependent on the
fault model used. For example, in data transfer, time outs may be used
to detect message losses, rather than, say, executable assertions. However,
the problem of knowing in advance all the classes of faults the software can
be subjected to may be difficult to solve. For example, continuing with
the example on data transder, if the system designer assumes only the case
where messages can be lost during data transfer, he can have an imple-
mentation such that the sending node can retry sending the loss message
after a timeout. But if a fault occurs that arbitrarily corrupt the state
of the program, such retry actions may not be sufficient, and safety may
be compromised. Hence, weak fault models are sometimes assumed, such
as Byzantine faults. In such cases, self stabilization [Dij74] has been ad-
vocated, and is getting more and more attention in the community. For
example, Gouda and Multari proposed some self-stabilizing communica-
tion protocols in [GM91]. Self-stabilizing protocols have been proposed
in [APSV91, DIM93, DW95, AD97, Dol97, BDDT98, Dol00] among oth-
ers. However, the problem with self-stabilization is that safety may be
temporarily violated. One interesting class of self-stabilization, called snap-
stabilization, has been proposed by Cournier et.al [CDPV01] that solves this
problem. A snap-stabilizing protocol is a self-stabilizing protocol meaning
that starting from an arbitrary state (in response to an arbitrary perturba-
tion modifying the memory state) it is guaranteed to behave according to

its specification.

Another line of approach for design of fault tolerance, where the goal is

2.1. DESIGN OF FAULT-TOLERANT PROGRAMS 21

for “scalable fault tolerance”, has been investigated by Arora et.al [ADKO1].
To achieve self stabilization, one needs to make use of system implementa-
tion. However, the authors argue that this approach does not scale very
well. Hence, they propose to implement stabilization based on system spec-
ification, such that the stabilization property is guaranteed irrespective of

the implementation.

The effectiveness of detectors is also affected by their placement in
the software, as indicated by Hiller et.alin [HJS01], and the authors also
demonstrate the sensitivity of the location set to the underlying fault model
in [HJS02]. Once the fault-tolerant software is obtained, fault-injection
experiments are conducted to evaluate the resulting dependability of the
program [IT96]. However, such work do not reveal the weak spots in the
software, for example, how errors propagate in the software, what are the
vulnerable signals/variables. Initial work focusing on these aspects ap-
pear in [HJS01, JHSO1]. To conduct these validation experiments, effec-
tive test cases are needed. Sinha and Suri investigated the applicability
of formal methods in driving generation of test cases in [SS98, SS99a).
Specifically, the authors reused verification information to drive test case
generation. In [JHS02b], Jhumka et.al proposed a formal approach for de-
signing component-based dependable software and in [JHS02a], the authors
presented a formal approach for test case generation, whereby they reuse

detector design information to drive test case generation.

General surveys in the area of dependability can be found in [Cri9l,
Gae99a], while Gaertner presented a survey of transformational approaches

in [Gae99b]

292 CHAPTER 2. RELATED WORK
2.2 Automated Procedures

In an earlier work, Kulkarni and Arora [KA00] presented an algorithm
that automates the addition of fail-safe fault tolerance to an initially fault-
intolerant program. This algorithm is based on an analysis of the state
transition representation of the program in the presence of faults. The al-
gorithm is sound and complete meaning that (i) the transformed program
is in fact a fail-safe fault-tolerant version of the original program, and (ii)
if a fail-safe fault-tolerant version of the program exists, then the algorithm
will find it. The complexity of the algorithm is polynomial in the state of
the fault-intolerant program. Put in context with the work presented in this
thesis, the algorithm in [KAQO] always adds fail-safe fault tolerance with
perfect detection. But, the algorithm can sometimes add fail-safe fault tol-
erance with perfect detection, and minimal detection latency to some classes
of programs. By way of contrast, our work presents algorithms that always
add both perfect detection, and minimal detection latency to a wider set of
programs. The algorithms have polynomial complexity in the state space of

the fault-intolerant program.

Chapter 3

Formal Preliminaries

In this chapter, we recall the standard formal definitions of programs, faults,
fault tolerance (in particular, fail-safe fault-tolerance), and of specifica-
tions [AK98c, Kul99]. Intuitively, a program is represented as a transition
system, since programs written in any imperative language can be repre-
sented as such. This chapter provides all the requisite formal basis upon

which the work presented in this thesis is based.

3.1 Concurrent Systems

A concurrent system consists of a set of components executing together.
They are usually associated with a form of communication among them.
The mode of execution, and that of communication may differ from system

to system. There are two main modes of execution:

1. Asynchronous or interleaved execution, where only one component

makes a step at any time.

2. Synchronous execution, where all components make a step at the same

time.

As for the communication part, we present two of the possibilities,

namely

23

24 CHAPTER 3. FORMAL PRELIMINARIES
1. Shared Variables (we provide more details in Section 3.2).

2. Message Passing, where components communicate with each other by

sending messages.

The work assumes an interleaved semantics of execution, together with

the shared variable communication paradigm.

3.2 Programs

Definition 1 (Program) A program p consists of a set of variables V),
and a finite set of processes. Each process contains a finite set of actions,
and a finite set of variables. Fach variable stores a value from a predefined
nonempty, finite domain and is associated with a predefined set of initial

values. An action has the form
(name) :: (guard) — (statement)

in which the guard is a boolean expression over the program variables and
the statement is either the empty statement or an instantaneous assignment

to one or more variables. The name is a unique identifier of that action.

Definition 2 (State and State Space) We define a state s of program
p as a possible value assignment to all variables in p. We also define the
state space), of a program p as the set of all possible assignments of values

to variables.

Definition 3 (State Predicate) A state predicate of p is a boolean ez-

pression over the state space of p.

Definition 4 (Initial States) The set of initial states I, is defined by the

set of all possible assignments of initial values to variables.

3.2. PROGRAMS 25

Definition 5 (Enabled) An action ac of p is enabled in a state s if the

guard of ac evaluates to “true” in s.

Definition 6 (Action) An action ac of program p is represented by a set

of state pairs {(s,t) : s,t € Sp}.

We assume that actions are deterministic, i.e., Vs,s',s"” : (s,¢') €
ac A\ (s,8") € ac = s’ = s". Note that programs are permitted to be
non-deterministic since multiple actions can be enabled in the same state.
In particular, each non-deterministic action can be converted into a set of

deterministic actions with an identical state transition relation.

Definition 7 (Program Computation) A computation of program p is
a weakly fair (finite or infinite) sequence of states sg, s1, ... such that so € I,
and for each j > 0, sji1 results from s; by executing the assignment of a

single action which is enabled in s;.

We require that weak fairness implies that if a program action ac is
continuously enabled, ac is eventually chosen to be executed. Weak fairness
implies that a computation is maximal with respect to program actions, i.e.,
if the computation is finite, then no program action is enabled in the final

state.

Definition 8 (Concatenation) If « is a finite computation and [is a
computation of p, we denote with « - 8 the concatenation of both computa-

tions.

Definition 9 (Occurs) A state s occurs in a computation s, s1, . . . of pro-
gram p iff there exists an i such that s = s;. Similarly, a transition (s, s)
occurs in a computation sg, S1, . . . of program p iff there exists an i such that

s=s; and s’ = s;41.

26 CHAPTER 3. FORMAL PRELIMINARIES

In the context of this thesis, programs are equivalently represented as
state machines, i.e., a program p is a tuple p = (Sp, I, §,) where S, is the
state space of p, I, C S}, is the set of initial states. The state transition
relation §, C S, x S is defined by the set of actions as follows : Every
action ac implicitly defines a set of transitions which is added to d,. A
transition (s,s’) € 8, iff ac is enabled in state s and computation of the
statement ac results in state s’. We say that ac induces these transitions.

State s is called the start state and s’ is called the end state of the transition.

Definition 10 (Step) A transition from one state to another state is called

a step.

Definition 11 (Stuttering Step) If (s;, si+1) is a step, and s; = 841,

then this step is a stuttering step.

A stuttering step is an important concept in program refinement, in the
sense that transitions at a lower level of abstraction appear as stuttering

steps at a higher level.

Definition 12 (Computation Equivalence) Two computations a; and

ag are said to be equivalent if they contain identical sequence of states.

Definition 13 (Stuttering Equivalence) Two computations a1 and s
are equivalent under stuttering if a1 and as are equivalent after removing

stuttering steps from both computations.

Definition 14 (Property) A property is a set of computations which is
closed under stuttering, i.e., if a given computation c is in property P, then

all computations that are stuttering-equivalent to c are in P.

3.3. COMMUNICATION 27
3.3 Communication

Two processes p, and p,, of a program p communicate as follows: for each
pair of processes p, and p,, there exists a set of “shared” variables V. Both
processes can read the contents of any variable in Vi, but only p,, can update
these variables. This defines the information flow between two processes.
The set Vi represents the interface between processes p,, and p,.

There exists a set of special variables, denoted by V,, that are shared
by some processes (that write to the variables), and the environment that
reads them. These special variables are commonly referred to as the output
variables. There exists also a special set of variables, denoted by V;, where
each of the variables is written to by the environment, and read by a process
in p. Such variables are known as input variables. Input and output variables
represent the interface of the program p with its environment.

Such program model reflects the system assumptions of distributed em-
bedded applications (like sensors and actuators), for which part of our formal
framework is targeted. Multiple initial states reflect the fact that a program
p may initially read external inputs before executing. In such cases, we
additionally assume a set of special variables called the output variables of
p in which the program should finally write the results of a computation.
This model is suitable for the domain of embedded applications (like sensors
and actuators). Program actions can be partitioned into two categories: (i)
critical actions, and (ii) non-critical actions [AK98b]. Program actions that
write output variables are critical actions. Other examples of critical ac-
tions are (i) actions that commit to a database, or (ii) actions that control
progress in a nuclear control plant. Critical actions are those actions whose

execution in the presence of faults can cause violation of safety.

Definition 15 (Critical and non-critical actions) An action ac of pro-

gram p with safety specification SS is said to be critical iff there exists a

28 CHAPTER 3. FORMAL PRELIMINARIES

transition (s,t) induced by ac and (s,t) is a bad transition (Proposition 2)
that is reachable (Definition 32) in presence of faults. An action is non-

critical iff it is not critical.

3.4 Specifications

A specification for a program p is a set of computations of p that is fusion-

closed.

Definition 16 (Fusion Closure) A specification S is fusion-closed iff the
following holds for finite computations a7y, a state s and computations 8, 0:

Ifa-s-Bandy-s-§ are in S, then so are a-s-0 and y-s- .

We will discuss the consequences of demanding fusion-closed specifica-

tions in Section 4.2.1.

Definition 17 (Satisfies) A computation ¢, of p satisfies a specification

S iffc, € S.

Definition 18 (Violates) A computation ¢, of p violates a specification

S iff ¢, does not satisfy S.

Definition 19 (Correctness) A program p satisfies a specification S iff

all possible computations of p satisfy S.

Definition 20 (Maintains) Let p be a program, S be a specification and
a be a finite computation of p. We say that o maintains S iff there exists a

sequence of states B such that o.- € S.

Definition 21 (Safety specification) A specification S of a program p
is a safety specification iff the following condition holds : For every com-
putation o that violates S, there exists a prefix a of o such that for all

computations B, « - B violates S.

3.4. SPECIFICATIONS 29

Using a practical system of rail crossing where trains will need to share
a common track, a safety specification can be “no two trains will use the

track at the same time”.

Proposition 1 A specification S is a safety specification iff for all o & S

there exists a prefic o of o such that o does not maintain S.

Proof. Follows from the Definitions 20 and 21. O

Informally, the safety specification of a program states that “something
bad never happens”. Formally, it defines a set of “bad” finite computation
prefixes that should not be found in any computation. Alpern and Schneider
[AS85] have shown that every specification can be written as the intersection

of a safety specification and a liveness specification.

Definition 22 (Liveness) A liveness specification is a set of state se-
quences that meets the following condition : for each finite state sequence a,

there exists a state sequence 3 such that « - B is in that set.

A example of liveness specification, following from our previous example
of rail crossing, can be “eventually all trains will be able to use the track”.
Informally, a liveness specification determines what types of events must
eventually happen, i.e., it says that “something good eventually happens”.

For the work presented in this thesis, we will focus on safety specification.
However, liveness issues are important since any safety specification can be
satisfied by the empty program, i.e., the program that does nothing, and,
thus, liveness specification helps rule out trivial implementations.

In general, if a property is finitely refutable, then it is a safety property.
This means that the safety property can be refuted by inspecting only a
finite prefix of a computation. On the other hand, a liveness property is not
finitely refutable, i.e., it cannot be refuted by inspecting a finite prefix of a

computation, rather it is refuted by inspecting infinite state sequences.

30 CHAPTER 3. FORMAL PRELIMINARIES
3.5 Temporal Logic

In a sequential system, the input-output semantics is adequate for analyzing
the system, but is however inadequate for concurrent systems. For example,
the input-output semantics cannot adequately capture specifications such as
“eventually (x =2)” or “never (y =3) ”.

Temporal Logic is a formalism for describing sequences of transitions
between states in a reactive systems. In temporal logic, a specification is a
logical formula that describes a set of computations. In the work presented
in this thesis, a semantic view is adopted, we reason about properties of
a program in terms of its transitions, rather than expressing them in any

specification language.

3.6 Refinement

A program can be viewed as a special type of specification. A lower level
specification differs from a higher-level specification in that it contains more
implementation details. Thus, we want lower-level transitions to appear as
stuttering steps (Def. 11) in the higher level specification.

This can be modelled through the concept of projection.

Definition 23 (State Projection) The projection of a state s of (a lower-
level specification) p on (a higher-level specification) p' is the state obtained

by considering only the variable of p'.

Definition 24 (Computation Projection) The projection of a compu-
tation ¢ of (a lower-level specification) p on (a higher-level specification) p’

is obtained by taking the projection of each state of ¢ (of p) on p'.

To model this, we introduce a projection function, 7, from a lower-level

specification p to a higher-level specification p’. Given a state s of program

3.7. FAULT MODELS AND FAULT TOLERANCE 31

p, 7(s) refers to the variables of p’. We abuse the notation by defining ()
for a projection of a computation . Thus, 7 partitions the set of variables
of p, V), into a set of internal variables (V;) and a set of external variables
(Ve). Therefore, changes to variables in V; appears as stuttering steps in
().

This leads to the concept of refinement [AL91]. When we substitute p’
for a specification S, when we say that a computation c satisfies S' (Defs. 17),
we really meant that the projection of that computation 7(c) satisfies S (i.e.,
m(c) € S).

Refinement from a specification represents a useful way to constructing
programs. Using refinement, a low-level program can be constructed from
a given specification through the application of correctness-preserving re-
finements. With each refinement step, a lower-level program p is obtained
from a higher-level program p’through the addition of more implementation

details. Tt is those implementation details that are hidden by .

3.7 Fault Models and Fault Tolerance

The faults that a program is subjected to can be systematically represented
by actions whose execution perturbs the state of the program. Such repre-
sentation is possible regardless of the type of faults (stuck-at, crash, Byzan-
tine etc), nature of the faults (permanent, intermittent or transient), or the
ability to observe the effects of the faults (detectable or not).

First, we define the term fault class.

Definition 25 (Simple Fault Class) A simple fault class for a given pro-
gram p over a wvariable v; in p is a set of transitions (actions) over the

variable v;.

32 CHAPTER 3. FORMAL PRELIMINARIES

Definition 26 (Fault Class) A fault class F for a program p over vari-

ables v1...v, in p is a set of simple fault classes for p over vy ...vy,.

In this thesis, we focus on the subset of fault models that can potentially
be tolerated: We disallow faults to violate the safety specification directly.
For example, if a safety specification constrains the output variables of a
program, the fault model prevents the fault actions of F to modify the
output variables in such way that the fault itself results in a safety violation.
However, fault actions can change the program state such that subsequent
program actions violate the safety specification.

The reason for choosing such a failure model is that we target tolerable
fault models. If a fault can directly violate safety, for example, by corrupting
the output variables in such a way that safety can be violated, then no fail-
safe fault-tolerant program exists. To see this, observe that if from state s,
a fault can cause safety violation, then this program should not visit state
s. If such faults can occur in every state, then all such states need to be
made unreachable, i.e., the invariant of the program is an empty set. Thus,
no fail-safe fault-tolerant program exists, hence our focus on tolerable fault

models.

Definition 27 (Fault model) A fault model F for program p and safety
specification SS is a fault class F for program p over its variables that do
not violate SS, i.e., if transition (sj,s;41) is in F and sg, S1,...,5; is in

SS, then so, s1,...,55,8j41 is in SS.

Definition 28 (Computation in the presence of faults) A computa-
tion of p in the presence of F' is a weakly p-fair sequence of states sy, s1,. ..
such that sg is an initial state of p and for each j > 0, s;jy1 results from
sj by executing a program action from p or a fault action from F and there
exists mo program action ac such that ac is permanently enabled but never

executed.

3.7. FAULT MODELS AND FAULT TOLERANCE 33

Weakly p-fair means that only the actions of p are treated weakly fair
(fault actions must not eventually occur if they are continuously enabled).
We say that a fault occurs if a fault action is executed.

Rephrased in the transition system view, a fault model adds a set of
transitions to the transition relation of p. We denote the modified transition
relation by 55 . Since fault actions are not treated fairly, their occurrence
is not mandatory. Note that we do not rule out faults that occur infinitely

often (as long as they do not directly violate the safety property).

Fault Tolerance Specifications In the absence of faults, a program p
should refine its problem specification. In the presence of faulty actions, p
may not refine its specifications, but can, on the other hand, refine some
weaker “tolerance specification”. In this thesis, we focused on fail-safe fault

tolerance.

Definition 29 (Fail-safe fault-tolerance) Let S be a specification and
SS be the smallest safety specification including S, and fault class F. A
program p s said to be fail-safe F-tolerant for specification S iff all compu-

tations of p in the presence of faults F' satisfy SS.

If F is a fault model and SS is a safety specification, we say that a
program p is F-intolerant for SS iff p satisfies SS in the absence of faults
F but violates SS in the presence of faults F'. For brevity, we will write
fault-intolerant instead of F'-intolerant for SS if F' and SS are clear from
the context.

A note on critical actions introduced in 3.2: Critical actions are exactly
those program actions whose execution in the presence of faults can lead to
violation of safety. As such, in embedded applications such as those of plant
controllers etc, the program actions that control progress while maintaining

safety are critical actions.

34

CHAPTER 3. FORMAL PRELIMINARIES

Chapter 4

Perfect Detectors: Basis for
Perfect Detection

Nowadays, there are computer systems all around us that control our every-
day lives, from being present in safety-critical systems such as airplanes, to
being present in consumer-oriented products, such as automobiles, washing
machines etc. Especially for the consumer-oriented products, cost-effective
solutions for the provision of dependability are of paramount importance,

leading to the fact that software-based fault tolerance is being provided.

In this thesis, we are interested in providing efficient fail-safe fault tol-
erance, i.e., it is acceptable for a fail-safe fault-tolerant program to halt, as
long as it remains in a safe state. The idea is to be able to detect when the
program is about to violate its safety specification, and halt at that time.
Thus, for the detection part, the program needs to be “upgraded” with a
program component, called a detector. Intuitively, the detector component
helps the program in detecting when “something bad” is about to happen,
such that the program halts to avoid doing the “bad” thing, i.e., violate
safety.

However, the design of efficient detectors is problematic. Leveson et
al. [LCKS90] conducted a large experiment on the effectiveness of self checks,

which are instances of a detector, in software. They pointed out in [LCKS90]

35

36CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

that, among others, (i) some detectors (self-checks) detect non-existent er-
rors, i.e., there are many false alarms (i.e., false detections), and (ii) many
detectors that were designed were ineffective, i.e., they do not signal any
error, when there is one in the system. In the first case, the efficiency of
the system may decrease, since the system may halt prematurely, while in
the second case, the safety of the system may be violated. So, we need a
methodology for the design of efficient detectors.

In this chapter, we first provide a formal overview of detectors [Kul99],
and explain their role in fail-safe fault-tolerant program. Qur main con-
tribution is the development of a novel theory of detectors, that is centered
around the notion of an inconsistent transition. We further identify a special
class of detectors, called perfect detectors, and explain its role in the design
of fail-safe fault tolerance. Specifically, we show that composing critical ac-
tions of a program p with perfect detectors is sufficient in transforming p
into a fail-safe fault-tolerant program. We then present an algorithm, based
upon the theory, that, given a fault-intolerant program p with safety speci-
fication S5, and a fault class F', generates a fail-safe fault-tolerant program
p’, which is the fail-safe fault-tolerant version of p. The main property of
perfect detectors is that they detect errors if and only if these errors may
lead to violation of safety. Thus, perfect detectors can be shown to address
the two problems identified by Leveson et al.

In [JHCS02, JHS02b, JHS02a], a set of perfect detectors was initially
referred to as SS-globally consistent detectors. A SS-consistent detector
is one that detects an error if and only if the error can lead to violation
of safety. A set of such SS-consistent detectors is said to be SS-globally

consistent.

4.1. INTRODUCTION 37

4.1 Introduction

Safety-critical applications need to satisfy stringent dependability require-
ments in their provision of services. Unless sound design methods are used
to synthesize such applications, the process of designing safety-critical ap-
plications is likely to be a complex one. To reduce the complexity of de-
signing such applications, Arora and Kulkarni [AK98a] have proposed a
transformational approach, whereby an initially fault-intolerant program is
systematically transformed into a fault-tolerant one. The main step involved
in designing a fault-tolerant program is composing the corresponding fault-
intolerant program with components that (i) detect and/or (ii) correct errors
that arise as a result of faults, depending on the level of fault-tolerance to
be achieved. The class of programs that achieves the first goal is termed
detectors while the class of programs that achieves the second goal is called

correctors [AK98c].

We restrict our attention to designing fail-safe fault-tolerance. Intu-
itively this means that it is acceptable that the program “halts” if faults
occur as long as it always remains in a “safe” state. This type of fault-
tolerance is often used in (nuclear) power plants or train control systems
where safety (avoidance of catastrophic events) is more important that con-
tinuous provision of service. In the context of the Arora/Kulkarni approach,
fail-safe fault-tolerance can be achieved by merely employing detectors.

Generally, detectors can be regarded as an abstraction of many different
existing fault-tolerance mechanisms. For example, a common way to achieve
fault-tolerance is to replicate a critical task and schedule it on different
processors. The outputs of these tasks are brought together in a voter which
outputs a consistent value. The voter contains a comparator which is an
instance of a detector. Another (maybe more obvious) example of a detector

is the use of error detecting codes. Other error handling mechanisms like

38CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

acceptance tests or executable assertions can also be formulated as detectors
in the sense of Arora and Kulkarni [AK98c]. Hence, reasoning on the level of

detectors makes an approach applicable to many different practical settings.

In this chapter, we present a sound, and complete algorithm for trans-
forming an initially fault-intolerant program p into an efficient fail-safe fault-
tolerant program p’. The algorithm being sound and complete, meaning that
(i) the transformed program p’ is in fact a fail-safe fault-tolerant version of
the original program p (soundness), and (ii) if a fail-safe fault-tolerant ver-
sion of the program exists, then the algorithm will find it (completeness). By
efficient, we mean that the fail-safe fault-tolerant detect errors if and only
if errors lead to violation of safety, thus addressing some of the problems
identified by Leveson et al in [LCKS90], i.e., p’ has perfect error detection.
Overall, our approach is applicable to a class of programs, called bounded
programs. The property of bounded programs is that there is no unbounded
loop within or across processes. Embedded applications are often instances
of bounded programs. Distributed algorithms such as mutual exclusion,

byzantine agreement etc. are also instances of bounded programs.

Our algorithm is derived out of a refined theory of detectors. This theory
develops a terminology which captures and explains the working principles
of detectors better than before. The basic building block of the theory is the
notion of a transition which is inconsistent with respect to a safety specifi-
cation [Lam77]. This can be understood as follows: Executing a transition
inconsistent with respect to the safety specification can lead to a violation

of the safety specification if no countermeasures are taken.

Building upon this concept, we develop a theory of accurate, complete,
and perfect detectors together with the necessary correctness theorems. In-
tuitively, a detector is accurate if it “preserves” correct behaviors of the

system in the presence of faults. A detector is complete if it “rejects” incor-

4.2. AN OVERVIEW OF DETECTORS 39

rect behaviors in the presence of fault. A detector is perfect if it is accurate
and complete.

In this chapter, we make the following contributions:

e We first present a novel theory of detectors which accurately captures

the working principles of detectors.

e We identify a class of detectors, called perfect detectors, and explain

their role, and importance in fail-safe fault-tolerance.

e Based on this theory, we provide an algorithm that systematically
transforms a fault-intolerant program into a fail-safe fault-tolerant pro-

gram with perfect detection.

The chapter is structured as follows: Section 4.2 provides an overview of
detectors and their role in establishing fail-safe fault tolerance. Section 4.3
defines the problem of adding fail-safe fault-tolerance using detectors. Sec-
tion 4.4 develops the theory of perfect detectors. In Section 4.5, we present
the algorithm that automatically generates a fail-safe fault-tolerant program
from the corresponding fault-intolerant program with perfect detection ca-
pabilities. Some examples are presented in Section 4.6. We conclude the

paper in Section 4.7.

4.2 An Overview of Detectors

In this section, we present a brief introduction of a detector component. For
a complete formalization, we refer the reader to Kulkarni [Kul99].

A detector module d is a program component that is used to check
whether its detection predicate D is “True”, where D is a state predicate.

Specifically, a detector d can be of the form

-ZND — Z :=True.

40CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

It means that if the detection predicate D is “True”, then Z, the witness
predicate, becomes “True”. The detector component needs to satisfy three

properties:
1. Safeness,
2. Progress, and
3. Stability

By safeness, we mean that the detector never allows Z to witness D
incorrectly. Progress means that if D is continuously “True”, Z will even-
tually be become “True”. Stability means that once Z becomes “True”, it
continues to be unless D becomes “False”. Examples of detectors in the lit-
erature abound, such as error detection codes, executable assertions [Hil00],
comparators, and so on. However, if the detection predicate is such that
it is not related to the safety specification of the program, then the error
detection process will not be efficient. Hence, to design “relevant” detectors,
they need to relate to the specification of the program. In the next section,

we explain their role in fail-safe fault tolerance and relate it to their design.

4.2.1 Role of Detectors in Fail-Safe Fault Tolerance

We adopt the view of Arora and Kulkarni [AK98c| that a fault-tolerant
program is the composition of a corresponding fault-intolerant program with
fault tolerance components. Using the same system model as used in this
work, Arora and Kulkarni proved that detectors are necessary and sufficient
to establish fail-safe fault tolerance. Intuitively, a detector detects whether
a given state (detection) predicate is satisfied in a given state. Instances
of detectors can be executable assertions, error detection codes, self checks,

and comparators.

4.2. AN OVERVIEW OF DETECTORS 41

Given our focus on fail-safe fault tolerance, we review the result of
Arora and Kulkarni [AK98c] stating that detectors are mecessary and suf-
ficient to build fail-safe fault-tolerant applications. The main idea of the
result is to use detectors to simply “halt” the program in a state where it
is about to violate the safety specification. An important prerequisite for
the Arora/Kulkarni sufficiency result is that specifications are fusion-closed.
Fusion-closed specifications (Def. 16) allow to characterize a safety specifi-
cation as a set of disallowed “bad” transitions (instead of a set of disallowed

computation prefixes).

Proposition 2 Let SS be a safety specification, p an F-intolerant program
for 8§ for fault class F'. If p violates SS then there erists a transition t € J,

such that for all computations o of p holds: If t occurs in o then o & SS.

Proof. Since p violates SS, there exists a computation ¢ which is not in
SS. The fact that SS is a safety property implies that ¢ contains a minimal
prefix, written a:- s-s’, which does not maintain SS (i.e., which prevents the
computation from being in SS). This prefix has at least length 2 because
all initial states of p maintain SS. We must now show that if (s,s’) occurs

in any other computation p of p, then p € SS:

1. For a contradiction, assume p = & - s - s - B € SS. We will show that
« - s - s’ maintains SS.

2. Since SS is a safety property and p € SS (step 1), all prefixes of p
maintain SS.

3. From step 2 and because it is a prefix of p, computation & - s - s’
maintains SS.

4. From step 3 and definition of maintains: 36 : & -s-s' -6 € SS.

5. From assumption « - s maintains SS, so from definition of maintains

we have: 30 : a-s5-0 € SS.

42CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

6. Because of fusion-closure of SS and the steps 4 and 5 construct: a-s-
s'-0€88S.
7. Step 6 means that « - s- s’ maintains SS, which is a contradiction to

the fact that « - s - s’ does not maintain SS.

O

We call the transitions identified in Proposition 2 bad transitions. In-
tuitively, to maintain a safety specification now requires to keep track of
the current computation and take precautions not to run into one of the
bad transitions which are disallowed by the safety specification. The safety
specification of a program can thus be concisely represented as a set of bad
transitions. Note that, in this work, we assume that the safety specification
is provided as such, i.e., the smallest specification that contains the speci-
fication. If this is not the case, and if the specification of the program is
expressed as a formula in temporal logic, the set of bad transitions can be
obtained in polynomial time, by considering all transitions (s,t) : s, € Sp.
From our restrictions of the fault model (Chapter 3, Section 3.7) (fault
transitions cannot directly violate safety) we know that bad transitions must
be program transitions (also from Proposition 2). A detector refines the
guard of the corresponding action in such a way that the action is never
executed whenever the computation could result in taking a bad transition.
Formally, a detector for an action implements a state predicate d which is
“True” iff execution of the action starting in d maintains the specification.
In the programming notation, given an action g — st, a detector for this
action refines the guard to g A d. Arora and Kulkarni formulate this fact in

their original work as follows [AK98a, Theorem 4.3]:

Theorem 1 (Sufficiency of detectors) For each action ac of p there ez-

ists a predicate d such that execution of ac in a state where d holds maintains

SS.

4.2. AN OVERVIEW OF DETECTORS 43

Definition 30 (Detector for an action) Let SS be a safety specification.
An SS-detector d monitoring program action ac of p is a state predicate of

p which is guaranteed to exist according to Theorem 1.

We will simply talk about detectors instead of SS-detectors if the relevant
safety specification is clear from the context. Taken together, Theorem 1
and Definition 30 state that it is sufficient to compose a given action with
a relevant detector, which is guaranteed to exist, to ensure that the action
executes safely.

Consider the transition system view of a program p again. We define the
notions of reachable/unreachable states/transitions in the presence/absence

of faults [GV00, GVO01].

Definition 31 (Reachable state) We say that a state s is reachable by p
iff starting from an initial state of p it is possible to construct a computation

which contains s using only transitions from 0,. Otherwise s is unreachable.

Definition 32 (Reachable transition) A transition (s,t) of p is reach-

able iff state s is reachable by p. Otherwise it is unreachable.

Definition 33 (Reachable state in the presence of faults) We say
that a state s is reachable by p in the presence of faults F' iff starting from
an initial state of p it is possible to construct a computation which contains

s using only transitions from 55 . Otherwise s is unreachable in the presence

of faults.

Definition 34 (Reachable transition in the presence of faults) We
say that a transition (s,t) is reachable by p in the presence of faults iff s is
reachable by p in the presence of faults. Otherwise, (s,t) is unreachable in

the presence of faults.

44CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

Bad transition syified by the safety specification
- _ _ _ __, program transition in absence of faults
B) (reachable transition)
9 9 _ _» program transition in presence of faults
@@@@ @ (reachable transition in the presence of faults)
/ T ... » faulttransition
(e L
state

Reachable statesin the Reachable statesin
absence of faults the presence of faults

Figure 4.1: Reachable states/transitions

Fig. 4.1 illustrates the concepts of reachable states/transitions in the

absence/presence of faults.

Observe that, starting from an initial state, in the absence of faults, all
computations of p satisfy the safety specification SS. Thus, the computa-
tions of p go through those transitions (states) of p that are reachable in
the absence of faults.. However, in the presence of faults, some transitions
(states) which were unreachable in the absence of faults, now become reach-
able. Using the above terminology, detectors remove some of the program
transitions which were unreachable by p in the absence of faults, but be-
come reachable in the presence of faults. In a sense, composing a program
with detectors means to refine the original transition relation and eliminate

certain program transitions so as to make bad transitions unreachable.

We close this section with a final remark regarding the assumption that
specifications be fusion-closed. Informally spoken, fusion-closure guarantees
that the entire history of a computation “is available” in the current state
of the system, i.e., it is sufficient to observe the current system state to
know whether the next step will result in a disallowed prefix. It has been
observed [Gum93, AK98a] that specifications in the popular Unity logic
[CM88] are fusion-closed, as are low-level specifications like C programs or

transition systems. In general a specification that is not fusion-closed can be

4.3. THE TRANSFORMATION PROBLEM 45

converted into a fusion-closed specification through the addition of history
variables. How this can be done in a way that minimizes the number of
additional states remains a topic for further research.

In this section, we have provided an overview of detectors and their role
and importance in the design of fail-safe fault tolerance. However, little is
known about whether the detectors designed are efficient or not. To address
this problem, we will first define the transformation problem of fail-safe fault
tolerance (Section 4.3). We will then develop a theory that underpins an

algorithm that solves the transformation problem.

4.3 The Transformation Problem

In this section, we will formally state the problem of transforming a fault-
intolerant program p into a fail-safe fault-tolerant version p' for a given safety
specification SS and fault model F.

When deriving p' from p, only fault tolerance should be added, i.e., p’
should not satisfy SS in new ways in the absence of faults. Specifically,

there are two conditions to be satisfied in the transformation problem:

e If there exists a transition (s,t) in p’ that is not reached by p to satisfy
SS, then (s,t) cannot be used by p', since this means that there are
other ways p’ can satisfy SS in the absence of faults. Thus, the set of

transitions of p’ must be a subset of the set of transitions of p.

e Also, if there exists a state s reachable by p’ in the absence of faults
that is not reached by p in the absence of faults, then this means that
p' can satisfy SS differently from p in the absence of faults, and such
a state s should not be reached by p’ in the absence of faults. Thus,
the set of states reachable by p’ should be a subset of the set of states

reachable by p.

46CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

In general, these conditions result in the requirement that both programs
should have the same set of fault-free computations. Formally, we define the

transformation problem as follows:

Definition 35 (Transformation for fail-safe fault tolerance) Let SS
be a safety specification, a fault model F, and p an F-intolerant program

for 8S. Identify a program p' such that the following three conditions hold:

1. p' satisfies SS in presence of F.

2. In the absence of faults, every computation of p' is a computation of
p.

3. In the absence of faults, every computation of p is a computation of

!

p.

The transformation problem can also be formulated as a decision prob-

lem:

Definition 36 (Decision problem for the transformation) Let SS be
a safety specification, a fault model F, and p an F-intolerant program for

SS. Does there exist a program p' such that the following three conditions

hold:

1. p' satisfies SS in presence of F.

2. In the absence of faults, every computation of p' is a computation of
p.

3. In the absence of faults, every computation of p is a computation of

!/

p.

Later in Section 4.5 we present a sound, and complete algorithm which
solves the above transformation problem, i.e., we present an algorithm that

systematically transforms a fault-intolerant program into a program that

4.4. A THEORY OF PERFECT DETECTORS 47

satisfies the above three conditions. Soundness of the algorithm means that
the resulting program indeed solves the transformation problem. Complete-
ness of the algorithm means that if the solution to the decision problem is
true, then the algorithm will find the fail-safe fault-tolerant program.

The algorithm is based on a theory of detectors which we introduce in

the following section.

4.4 A Theory of Perfect Detectors

This section presents a theory of detector components which helps in the
design of efficient fail-safe fault-tolerant applications. The theory is centered
around the notion of an SS-inconsistent transition which is introduced in
Section 4.4.1. Using this notion, we identify correctness criteria for programs
composed with so-called perfect detectors in Section 4.4.2. Our algorithm
to add fail-safe fault tolerance presented in Section 4.5 directly follows from

the theory presented now.

4.4.1 Transition Consistency in the Context of Safety Spec-

ifications

The intuition behind the definition of transition inconsistency is that if a
given computation violates the safety specification, then some “erroneous”
transition occurred in the computation, i.e., that transition is inconsistent
with the safety specification of the program. Specifically, consider a fault-
intolerant program p with safety specification S.S, and a computation « that
violates SS. From Propositions 1 and 2 we know that there exists a prefix

o of o that contains a bad transition.

When a computation violates safety, intuitively it means that the pro-

48CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

SS-inconsistent transition Bad transition s;7ified by the safety specification
_l _ - _ __.. program transition in absence of faults
(reachable transition)
_ _» program transition in presence of faults
@@@@@@ (reachable transition in the presence of faults)

/» faulttransition
Initial - - - - ” - I
Sate @ ’@ 1 ’@ - » Badtransition specified by safety specification

SS-consistent transition

Figure 4.2: An example to illustrate the concept of inconsistent transition

gram is on a “wrong path”, and such deviation has happened earlier. This

intuition is captured by the SS-inconsistency concept, as defined below.

Definition 37 (SS-inconsistent transitions) Given a fault-intolerant
program p with safety specification SS, and a computation « of p in the
presence of faults. A transition (s,s’) is SS-inconsistent for p with respect

to « in presence of faults F' iff
e There exists a prefiz o of a such that o' violates SS
e (s,8') occurs in o, i.e., o =o-5-5- 4,
o All transitions in s-s' - B are in &y,

e o - s maintains SS.

We now illustrate this concept pictorially. From Fig. 4.2, transition (7, 8)
is SS-inconsistent for p with respect to computation «a =1-7-8-9.... «
violates SS since it contains a bad transition, i.e., (10,11). Observe that
transitions (8,9), and (9, 10) are also SS-inconsistent for p with respect to
a given computation.

We now illustrate this definition: Consider the program P1 in Figure 4.3
which reads two sensors, and then outputs the sum of the two readings. The

safety specification SS requires the output to be always between 10 and 25.

4.4. A THEORY OF PERFECT DETECTORS 49

Program P1
var z init 1, y init 1, z init 10, ¢ init 1 : int

c=1— z:=read(); c:=c+1; // value between 5 and 10
¢ =2 — y:=read(); c:= c+1; // value between 5 and 15
c=3>z=z+y;c:=c+1

¢ =4 — output(z); ¢c:=1 // loop forever

F (faults):
true — z := random [0...25]
true — y := random [0. .. 50]

Figure 4.3: Program to illustrate the concept of SS-inconsistent transitions.

The fault transitions indicate that, from each state, the value of variable
z (respectively, y) can be arbitrarily changed to a value in the range of
[0...25](respectively, [0...50]). Consider now computation « (states are

given as triples (z,v, z), i.e., the program counter c is not explicitly given):
a:(1,1,10) - (10,1, 10) - (10,5, 10) - (10, 5,15)

Obviously, « satisfies SS and so no program transition is SS-inconsistent.

Now consider computation 8 which violates SS:
g :(1,1,10) - (10,1, 10) - (25,1,10) - (25,5,10) - (25, 5, 30)

In S, a fault transition occurs after the second state, i.e., state (10,1, 10),
changing the value of z to 25. The subsequent program transition from
(25,1,10) to (25,5,10) is SS-inconsistent, since the execution of the follow-
ing program transition to state (25,5,30) causes a violation of the safety
specification. The program transition from (25,5,10) to (25,5,30) is also
SS-inconsistent. The first program transition and the fault transition are
not SS-inconsistent.

Intuitively, an SS-inconsistent transition for a given program computa-
tion is a program transition where the subsequent execution of a sequence
of program actions causes the computation to violate the safety specifica-

tion. In a sense, SS-inconsistent transitions lead the program computation

50 CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

on the “wrong path”. The requirement of a sequence of program transi-
tions in the prefix is to capture the fact that no precaution is being taken,
and the inconsistent transition captures the fact that something harmful has
occurred.

Now we define SS-inconsistency independent of a particular computa-
tion. This captures the fact that, starting from such a transition, it is possible
to violate safety, i.e., if such a transition occurs during a computation, then

there is a chance that this computation will violate safety.

Definition 38 (SS-inconsistent transition for p) Given a program p
with safety specification SS. A transition (s,s') is SS-inconsistent for p
in presence of faults F' iff there exists a computation « of p in the presence

of faults F such that (s,s') is SS-inconsistent for p w.r.t. « in presence of

F.

Intuitively, a transition (s,s’) is SS-inconsistent for a program p if the
transition starts leading the computation on the wrong path. From Fig. 4.2,
transition (7, 8) is SS-inconsistent for p since it has taken the computation
on a possible wrong path, i.e., there can subsequently be safety violation.

In general, a transition can be SS-inconsistent w.r.t. a computation ay,
and not be SS-inconsistent w.r.t. aro. This can be due to nondeterminism in
program execution. To see this consider the program P2 in Figure 4.4. The
safety specification SS mandates that 10 < d < 50 at all times. Consider

now the following computation «; of P2 (a state is given as (w, z,y, 2)):
ar = (1,5,1,10)-(1,10,1,10)-(1, 45, 1, 10)-(15, 45, 1, 10)-(15, 45, 15, 10)-(15, 45, 15, 60)

In the second state a fault occurs setting x to 45 and effectively causing a;
to violate SS after execution of a sequence of program transitions. Notice
that the transition ¢t = ((1,45, 1,10), (15,45, 1,10)) is SS-inconsistent for p

w.r.t. a;.

4.4. A THEORY OF PERFECT DETECTORS 51

Now consider computation as of p:
ay = (1,5,1,10)-(1,10,1,10)-(1,45, 1,10)-(15,45, 1, 10)-(0, 45, 1, 10)-(0, 45, 0, 10)-(0, 45, 0, 45)
Here again a fault happens in the second state but due to a lucky interleaving

of program actions ap maintains SS. Hence, the same program transition ¢

as above is not SS-inconsistent for p with respect to as.

Program P2
var w init 1, ¢l init 1 : int // process a
var z init 5, y init 1, z init 10, ¢2 init 1 : int // process b

process a:
cl =1 — w:= read(); ¢l :=cl +1; // value between 15 and 25
cl=2Az<15 5> w:=w+5;cl:=1; // loop
cl=2Az>15 - w:=w—15; cl:=1; // loop

process b:
2=1— z:= read(); 2 := ¢2 + 1; // value between 0 and 20
c2=2—y:=w;c2:=c2+1;
2=3 Sz =y+zx;c2:=c2+1;
¢2 = 4 — output(z); c2 :=1; // loop

F (faults):
true — z := random [10. .. 45]
true — w := random [1...50]

Figure 4.4: Program containing two concurrent processes with a transition
that is both SS-inconsistent and not SS-inconsistent w.r.t. two different
computations.

If we cannot find a computation in the presence of faults for which a
particular transition is SS-inconsistent then we say that this transition is

SS-consistent. Specifically,

Definition 39 (SS-consistent transition for p) Given a program p
with safety specification SS. A transition (s,s’) is SS-consistent for p in

presence of faults F' iff (s,s’) is not SS-inconsistent for p in presence of F.

For example, from Fig. 4.2, transition (1,2) is SS-consistent for p. Tran-
sition (13, 14) is also S'S-consistent for p. The notion of SS-consistent tran-

sition captures the fact that executing such a transition is inherently safe,

52CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

i.e., there is no chance of safety being violated unless something harmful
occurs.

The notion of an SS-inconsistent transition is a characteristic of a com-
putation that violates SS, and is captured by the following proposition
(Prop. 3).

Proposition 3 Given an fault-intolerant program p with a safety specifica-
tion SS. Every computation o of p in the presence of faults that violates SS

contains an SS-inconsistent transition for p w.r.t. a in presence of F'.

Proof.

1. Because p is F-intolerant, there exists a computation « of p in the
presence of faults such that o € SS.

2. From step 1 and Proposition 2 there exists a bad transition (s,s’) in
Q.

3. From step 2 and the restriction of F' follows that (s, s’) € d,.

4. From step 3 and Definition 37, (s, s) is SS-inconsistent for p w.r.t. a.

O

Earlier, we have characterized inconsistent transitions by their ability of
causing computations to violate safety. Since a bad transition is reachable
only in the presence of faults, inconsistent transitions can also be character-

ized through the reachability of bad transitions.

Proposition 4 Given a fault-intolerant program p with a safety specifica-
tion SS. If (s,s') is an SS-inconsistent transition for p in the presence of
faults F, then a bad transition is reachable starting from s using only pro-

gram transitions from &,.

Proof. The proof follows directly from the definition of SS-inconsistent

transitions and Proposition 2. O

4.4. A THEORY OF PERFECT DETECTORS 53

Reachability of bad transitions in §, leads to the following observation.

Proposition 5 Given a fault-intolerant program p for safety specification
SS. Ewvery SS-inconsistent transition for p in presence of faults F is not

reachable in the absence of faults F.

Proof.

1. For a contradiction, assume the start state s of an SS-inconsistent
transition (s, s’) is reachable in the absence of faults.

2. Step 1 implies that there exists a computation a - s- s’ of p in the
absence of faults.

3. From the fact that (s, s") is inconsistent, and Proposition 4 there exists
a computation s - s’ - 8 of p in the absence of faults in which a bad
transition occurs.

4. From steps 2 and 3 follows that there exists a computation o = a-s-s'-8
of p in the absence of faults containing a bad transition.

5. From step 4 and Proposition 2 there exists a computation of p in the
absence of faults which violates SS.

6. From step 5 p violates SS in the absence of faults, a contradiction.

O

Note that the previous observation cannot be strengthened to an equiv-
alence (a non-reachable transition in the absence of faults must not be SS-
inconsistent). But it can be reformulated to characterize reachable transi-

tions in the absence of faults as SS-consistent.

Corollary 1 Given a fault-intolerant program p for a safety specification
SS. Ewvery reachable transition (s,s') € 0, in the absence of faults F is

SS-consistent for p in the presence of faults F.

In the next section, we introduce the notion of perfect detectors using

the terminology of SS-(in)consistency.

54CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

4.4.2 Perfect Detectors

From the previous section, we observed that SS-inconsistent transitions are
those transitions that can lead a program to violate its safety specification in
the presence of faults, if no precautions are taken. Detectors, as we explained
in Section 4.2, are a means to implement these precautions. However, as
pointed out by Leveson et al. in [LCKS90], design of efficient detectors is
inherently complex. Hence, we introduce the class of perfect detectors.
Perfect detectors are a means to efficiently implement these precautions.
The definition of perfect detectors follows two design principles: A (perfect)
detector d monitoring a given action ac of program p needs to (1) “reject”
the starting states of all transitions induced by ac that are SS-inconsistent
for p in the presence of faults, and (2) “keep” the starting states of all
induced transitions that are SS-consistent for p in the presence of faults.
These two properties are captured in the definition of completeness and
accuracy of detectors (the notions are defined in analogy to Chandra and

Toueg [CTY6]).

Definition 40 (Detector accuracy) Given a program p with safety spec-
ification SS, and a program action ac of p. A detector d monitoring ac is
SS-accurate for ac in p in the presence of faults F' iff for all transitions
(s,8") induced by ac holds: if (s,s") is SS-consistent for p in the presence of

F, then s € d.

The accuracy property captures the fact that efficient detectors should
not make mistakes. Thus, if a detector detects that a transition is safe, then

it “accepts” the state.

Definition 41 (Detector completeness) Given a program p with safety
specification SS, and a program action ac of p. A detector d monitoring

action ac is SS-complete for ac in p in the presence of faults F' iff for all

4.4. A THEORY OF PERFECT DETECTORS 55

transitions (s,s') induced by ac holds: if (s,s') is SS-inconsistent for p in

presence of F', then s & d.

On the other hand, the completeness property captures the notion that

a detector should “reject” all harmful transitions.

Definition 42 (Perfect detector) Given a program p with safety speci-
fication SS, and a program action ac of p. A detector d monitoring ac is
SS-perfect for ac in p in presence of faults F' iff d is both SS-complete and

SS-accurate for ac in p in presence of F.

Where the specification is clear from the context we will write accuracy
instead of SS-accuracy (the same holds for completeness and perfection).
Overall, the perfectness property of detectors captures the fact that such a
detectors detect all harmful faults, and do not make mistakes.

Intuitively, the completeness property of a detector is related to the
safety property of the program p in the sense that the detector should filter
out all “harmful” SS-inconsistent transitions for p, whereas the accuracy
property relates to the liveness specification of p in the sense that the detec-
tor should not rule out SS-consistent transitions. This intuition is captured
by the following lemmas. The first one (Lemma 1) uses the accuracy prop-
erty to show that the fault free behavior of a program is not affected by
adding perfect detectors. Intuitively, this also means that, in the absence of
faults, addition of perfect detectors to a program does not cause the orig-
inal program to lose any of its behavior. The next one (Lemma 2) uses
the completeness property to show that perfect detectors indeed establish
fail-safe fault-tolerance. Intuitively, this also means that these detectors
are efficient, in the sense that they do not make mistakes, and they also
cause “rejection” of all “harmful” transitions. Jhumka et al. introduced

the concept of SS-globally consistent detectors in [JHCS02]. As mentioned

56 CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

in [JHS03], a set of (SS-) perfect detectors for different actions in program

p with safety specification SS is §S5-globally consistent for p.

Lemma 1 (Perfect detectors and fault-free behavior) Given a fault-
intolerant program p and a set D of perfect detectors, consider program p'

resulting from the composition of p and D. Then the following statements

hold:

1. In the absence of faults, every computation of p' is a computation of
p.
2. In the absence of faults, every computation of p is a computation of

!

p.
Proof.

1. From Corollary 1, every program transition which is reachable in p is

SS-consistent.

2. From construction, p’ results from adding perfect detectors to p. Be-

cause they are perfect (Definition 42), they are accurate.

3. From steps 1, 2 and the definition of accuracy, all SS-consistent tran-

sitions of p are also transitions of p'.

4. Steps 1 and 3 imply that every reachable transition in p is also reach-

able in p'.

5. Step 4 implies that every computation of p is also a computation of

p', proving the first claim of the lemma.

6. From the definition of a detector (Definition 30) follows that compo-

sition with detectors does not introduce new state transitions.

7. Step 6 implies that 6,y C dp.

4.4. A THEORY OF PERFECT DETECTORS 57

8. Step 7 implies that every computation of p’ is also a computation of

p, proving the second claim of the lemma.

O
Lemma 1 intuitively suggests that, in the absence of faults, program
p, and its corresponding fail-safe fault-tolerant program have identical be-
haviors. What it also suggests is that any other detector that is designed
defensively (defensive programming) interferes with the behavior of the fail-
safe fault-tolerant program in the absence of faults. Specifically, it means
that there exists valid (SS-consistent) transitions that are however ruled
out by the detector, hence liveness is compromised.
To understand the behavior of a program in the presence of faults, we
make use of the notions of critical actions, which we formalized here. Intu-
itively, a critical action is one which if executed in an erroneous state will

cause violation of safety.

Definition 43 (Critical and non-critical actions) Given a program p
with safety specification SS, and fault model F. An action ac of p is said
to be critical iff there exists a transition (s,t) induced by ac such that (s,t)
is a bad transition (Proposition 2) that is reachable in presence of faults F.

An action is non-critical iff it is not critical.

Thus, the set of bad transitions reachable in the presence of faults define

a set of critical actions.

Lemma 2 (Perfect detectors and behavior in the presence of faults)
Given a fault-intolerant program p for a safety specification SS. Given also
a program p' by composing the critical actions of p with perfect detectors.

Then, p' satisfies SS in presence of faults.

Proof.

58CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

1. For a contradiction assume that p’ violates SS. From definition of

violates follows that there exists a computation o of p’ which is not in

SS.

2. Step 1 and Proposition 2 imply that there a bad transition (s, s’) occurs

in o.

3. Because of the restrictions on the fault model (critical variables are
not affected), the transition (s,s’) from step 2 must be a program

transition (i.e., (s,s') € &)

4. From step 3, and Definition 43, there exists a critical action ac that

induces the bad transition from step 3
5. From Definition 37 and step 3 the transition (s, s') is §S-inconsistent.

6. Consider the critical program action ac (from step 4) causing the bad
transition. From construction of p’, ac is composed with a perfect

detector d.
7. From step 5 and because d is perfect, it is also complete.

8. Because d is complete (step 6), d monitors ac (step 5) and transi-
tion (s, s') induced by ac is SS-inconsistent (step 4), the definition of

completeness implies that s & d.
9. Step 7 implies that (s,s’) € d,y which contradicts step 3.

O

Thus, Lemma 2 shows that perfect detectors for critical actions are suf-
ficient for design of fail-safe fault-tolerant program. Overall, composing the
critical actions of a fault-intolerant program p (resulting in p') with perfect

detectors ensures that (i) in the absence of faults, p and p' have identical

4.4. A THEORY OF PERFECT DETECTORS 59

behavior, and (ii) in presence of faults, p’ is fail-safe fault-tolerant (From

Lemmas 1 and 2).

Lemma 3 (Perfect Detection and Safety Specification) Given a
fault-intolerant program p with safety specification SS, which is encoded
as a set of bad transitions ss, and a fault class F. Given also a program

p', such that p' = p)\ ss,, where ss, C ss is the set of all reachable bad

transitions using transitions in 65 . Then, the following hold:

1. In the absence of faults, every computation of p is a computation of p’
2. In the absence of faults, every computation of p' is a computation of p

3. In the presence of faults, p' is fail-safe fault-tolerant.

We prove the first part of the claim:
Proof.

1. From Def. 38, ss contains only SS-inconsistent transitions for p.

2. From Propositions 3, and 4, only SS-inconsistent transitions are re-

moved from p’.
3. From step 3, no SS-consistent transition for p is removed in p'.

4. From step 3, all §S-consistent transitions of p are also transitions of

!

p

5. From Corollary 1 and step 4, all reachable transitions of p in absence

of faults are reachable by p’ in absence of faults.

6. From step 5, every computation of p is a computation of p’ in absence

of faults.

60CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

O
The proof of the second part of the claim follows:
Proof.

1. From Def. 38, ss contains only SS-inconsistent transitions for p.

2. From Propositions 3, and 4, only SS-inconsistent transitions are re-

moved from p’.
3. From step 3, and by construction, no transition is added in p’

4. From step 3, no transition is added in p' that is reachable in the absence

of faults
5. From step 4, 6, C d;

6. From step 5, every computation of p is a computation of p in absence

of faults.

O

The proof of the third claim follows: We assume that p’ is not a fail-safe
fault-tolerant program, and then show a contradiction.

Proof.

1. Assume p' is not a fail-safe fault-tolerant program. There exists a

computation « of p’ such that o violates SS in presence of faults.
2. From Prop. 2, there exists a bad transition (s, s’) in «
3. From step 3, (s,s') is not removed in p'.
4. From step 3, (s, s) is reachable using transitions in 55 .

5. Contradiction, since by construction of p’, all bad transitions reachable

by using transitions in 55 have been removed.

4.4. A THEORY OF PERFECT DETECTORS 61

O

Thus, from Lemma 3, p' = p\ ss, solves the transformation problem.

Also, removing ss, from 6, can be likened, following Lemma 2, to composing
the critical actions of p with perfect detectors.

We now present a result on the existence of perfect detectors.

Lemma 4 (Existence of perfect detectors) Given a program p with
safety specification SS, and fault class F. For every critical action ac in

p, there exists a detector D such that D is perfect for ac in p.

Proof.
1. Action ac in p is critical

2. From 1, and Definition 43, there exists a set of bad transitions B =

{(s,t) : (s,t)is a bad transition A (s,t)induced by ac}.

3. Let ac, be the set of transitions induced by ac reachable in the presence

of faults.

4. From steps 3, and 3, the set O = ac, \ B is the set of all transitions in-
duced by ac reachable in presence of faults that will not cause violation

of SS when executed.

5. From step 4, set O does not contain any reachable transition (s,)

induced by ac that is SS-inconsistent (bad) for p.

6. From step 4, set O contain all reachable transitions (s,t) induced by

ac that are 5S-consistent for p.

7. From steps 5, and 6, the set OS = {s : (s,t) € O} defines a state

predicate (thus a detector) that is perfect for ac in p.

62CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

Thus, we have shown that for every critical action ac of a program, there
exists a perfect detector for ac in p. At this point, since we for every critical
action of a program, there exists a perfect detector, the question is: how do

we design these?

4.4.3 Constructing Perfect Detectors

Finally, we study how to construct perfect detectors for critical actions. This

will also provide a basis for automated construction of such detectors.

Theorem 2 (Constructing perfect detectors) Given a fault-intolerant
program p with safety specification SS, and fault model F. The following

two statements are equivalent:

1. The program p' is obtained by composing each critical action ac of p

with a perfect detector for ac in p in presence of F.

2. Each bad transition of p reachable in the presence of F is unreachable
in p' in presence of F, and each transition of p which is not bad and

reachable in the presence of F is also reachable in p'in presence of F.

Proof. We first indirectly show the implication from statement 1 to 2. So
we assume statement 1 and assume the negation of statement 2 and derive

a contradiction.

1. So assume there exists a bad transition (s,t¢) of p that is reachable
in the presence of F' that is also reachable in p’ in the presence of
F. This transition must be induced by some action ac. According to

Definition 43, ac must be a critical action.

2. From step 1 and Proposition 2 there exists a computation « of p' such
that (s,t) occurs in a, and « violates SS. From Definition 37 the

transition (s,t) is SS-inconsistent for p’ w.r.t. @ in the presence of F.

4.4. A THEORY OF PERFECT DETECTORS 63
3. From step 2, the detector d monitoring ac in p’ is such that s € d.

4. From steps 2 and 3 and Definition 41 the detector d is not complete

and hence not perfect, which contradicts statement 1.

We now indirectly prove the implication from statement 2 to 1. We assume
that there exists a critical action ac in p’ which is composed with a detector
d that is not perfect and derive a contradiction. Detector d being not perfect
can mean two things: either d is not complete or it is not accurate. First

consider the case that d is not complete.

1. Since d is not complete, there exists a reachable transition (s,s’) in-
duced by ac which is SS-inconsistent for p’ in the presence of F and

for which holds that s € d.

2. Since (s, ') is SS-inconsistent for p’, a bad transition is reachable in

p’ in the presence of F' which is unreachable in p.
3. Step 2 contradicts the first part of statement 2.
Now we consider the case that d is not accurate.

1. Since d is not accurate there exists a transition (s, s’) induced by ac

which is SS-consistent for p’ but for which also holds that s ¢ d.
2. Since (s, ') is SS-consistent, (s,s’) is not a bad transition.

3. From steps 1 and 2 a transition which is not bad is reachable in p but
unreachable in p’ in the presence of F. This contradicts the second

part of statement 2 of the theorem.

O
The algorithm for synthesizing perfect detectors (or fail-safe fault-

tolerant programs with perfect detection) is based directly on Theorem 2.

64CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

4.5 An Algorithm for Perfect Detectors

In this section, we present a sound and complete algorithm for synthesizing
fail-safe fault-tolerant programs with perfect detection. Based on the fact
that composing critical actions of a fault-intolerant program p with perfect
detectors results in a fail-safe fault-tolerant program p’ whose behavior in

the absence of faults is identical to that of p.

add-perfect-fail-safe(d,, dr, ss: set of transitions):

{
ssy 1= get-ssr(dp,0F, ss)

return (p’ = p where transition relation is d, \ ss;)}

get-ssr(dp, 0F, ss: set of transitions):

{

ssy :={(s,1)|(s,t) € ss and (s,) is reachable using transitions in &} }

return (ss,)}

Figure 4.5: Algorithm to synthesize fail-safe fault-tolerant program with

perfect detection.

Theorem 3 (Correctness the of transformation algorithm) The al-

gorithm in Figure 4.5 solves the transformation problem of Definition 48.

Proof. Since the algorithm constructs p’ by removing the set ss, of all
bad transitions reachable by using transitions in 55 , we can apply Lemma 3

O

Theorem 4 (Perfect Detection) Given a fault-intolerant program p with
safety specification SS encoded as a set ss of bad transitions, and fault class

F. Program p' :=add-efficient-fail-safe(p, F, ss) has perfect detection.

4.5. AN ALGORITHM FOR PERFECT DETECTORS 65
Proof.
1. All 7 € ss, are transitions induced by critical actions (fault model)

2. From step 1, removing set ss, is equivalent to composing critical ac-

tions of p with detectors.
3. From Lemmas 1, 2, and 3, , p’ has perfect detectors.

4. From steps 3, and 3, the detectors for the critical actions of p are

perfect.

O
We say that p’ is fail-safe fault-tolerant to F (or fail-safe F-tolerant),

and has perfect detection to F.

Theorem 5 (Soundness and Completeness) Algorithm add-perfect-

fail-safe is sound and complete.

Soundness means that the resulting program solves the transformation
problem, while completeness means that if the result of the corresponding
decision problem is true, i.e., the fail-safe fault-tolerant program exists, then
the algorithm finds it.

Proof.
The proof of soundness (from Lemma 3), and completeness (by construc-

tion) is straight forward.

Complexity of Algorithm add-perfect-fail-safe

We now provide a brief analysis of the complexity of the algorithm:

1. Assume that the number of bad transitions specified by ss be m.

66 CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

2. Assume that the maximum number of transitions visited to determine
reachability of a bad transition is n. Then, the number of transitions

visited is O(n).

3. Therefore, maximum number of transitions visited when computing

set ss, is O(m - n).

4. Removing set ss, has complexity O(m), since the size of set ss, is

O(m).

5. Overall, the algorithm in Figure 5.1 has complexity O(m - n + m) =
O(m - n), where m is the number of bad transitions specified by ss,
and n is the maximum number of transitions considered to ascertain

reachability.

The complexity of our algorithm is no more than the complexity of an-
other algorithm presented by Kulkarni, and Arora [KA00], which also has
polynomial complexity in the state space of the program. An instance of
algorithm add-perfect-fail-safe was introduced by Jhumka et al. in [JHCS02]
that generates a set of perfect detectors. In fact, Jhumka et al. performed a
fault-injection experiment on a medium-scale embedded system for an air-
craft arrestment system to ascertain the viability of the concept of perfect
detectors in [JHS03]. The main finding was that perfect detectors (i) indeed

detect errors that lead to violation of safety, (ii) make no detection mistakes.

In the next section, we present several case studies showing the applica-

bility of our approach.

4.6 Three Case Studies

In this section, we present several simple examples to show how the algo-

rithm add-perfect-fail-safe works.

4.6. THREE CASE STUDIES 67

Bad transition 57ified by the safety specification
- _ - _ __. program transition in absence of faults
)) (reachable transition)
_ _. program transition in presence of faults
@@@@‘@‘@ (reachable transition in the presence of faults)

...» faulttransitionr

Isigled @-’@' 'A‘f@' — » Badtransition specified by safety specification
(o))

Figure 4.6: Example program p in the presence of faults

4.6.1 A Simple Example

In Fig. 4.6, we show a program p, together with the fault transitions that
can affect it. For example, transition (1,7) is a fault transition. There are
two bad transitions that are specified by the safety specification SS of the
program, namely transitions (10,11), and (20, 21). From Lemma 3, and al-
gorithm add-perfect-fail-safe, we need to remove only the set ss of bad tran-
sitions, as specified by the safety specification SS of the program, to make it
fail-safe fault-tolerant. Thus, add-perfect-fail-safe(d,,d,{(10,11),(20,21)})
will result in the removal of all the transitions in ss from the program.
This is depicted in Fig. 4.7. Observe that there can no longer exist a
computation of p’ in presence of faults that will include a bad transition.
Thus, the resulting program p’ is fail-safe fault-tolerant, and program p’

solves the transformation problem.

4.6.2 A Majority Voter System

We recall how a triple modular redundant (TMR) majority voter system
works. The system consists of three inputs in.1, in.2 and in.3 from three
processes p1, p2, and ps respectively, and an output variable, called out. For
simplicity, we consider the case where each process p; inputs a binary value

in.1 to the voter. In the absence of faults, all three values are identical.

68CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

Bad transition 7,ified by the safety specification
g g _ _» program transition in presence of faults
@‘@‘@‘@‘@‘@ (reachable transition in the presence of faults)
/ y ...» TfalttransitionF
g‘;g" @—-@‘ "‘@' — » Badtransition specified by safety specification
T o .

Figure 4.7: Fail-safe fault-tolerant program p' obtained by removing ss

. program transition in absence of faults
(reachable transition)

For the majority voter system, the class of faults that we consider is one
that can corrupt the input value of at most one of the three processes. In
the absence of faults, all inputs are identical and the value of the output
variable out can be set to that of any in.i, for any process p;.

Thus, the fault-intolerant majority voter program can be written as fol-

lows:

ITMRI1 :: out = 7 — out = n.l

Variable out = 7 means that the output has not yet been set. In the
absence of faults, the value of the output variable is set to that of in.1.

The faults transitions F' that we can consider are those transitions that
corrupt the input value in.7 from at most one process p;, setting it to some
arbitrary value. Thus, in our example, the fault transitions considered can

be represented as such:
F :: (inl=in2)V(inl=in3d) — inl= L

In presence of faults F' that can corrupt the input value from process
p1, i.e., in.1, the out variable can be wrongly set, i.e., it obtains its value

from a corrupted value of in.1. The specification of a majority voter is

4.6. THREE CASE STUDIES 69

that it always outputs the majority of its inputs, and its safety specification
is such that it never outputs a value that is not the majority, i.e., a fail-
safe majority voter will never output a corrupted value (under our assumed
fault model), though it may deadlock in presence of faults. However, as we
explained before, a fail-safe fault-tolerant program needs to satisfy only its
safety specification in presence of faults.

Thus, every transition that sets the output variable out to a corrupted
value should be removed. Specifically, consider set
T ={t: ((t(out) = t(in.1)) A ((t(in.1) # t(in.2)) A (t(in.1) # t(in.3)))},
where s(v) is the value of variable v in state s, and set T" represents the set
of states where variable out is incorrectly set, i.e., variable out is not set to
the majority value. Hence, any transition (s,t) : ¢ € T is a bad transition
for the TMR program, ITMRI1, i.e., ss = {(s,t) : t € T'}.

Thus, running algorithm add-perfect-fail-safe results in removing set ss
from program TMR. Removing set ss from TMR means that all the remain-
ing transitions that set the output variable out set out to a majority value,
whenever out is not already set. In other words, all the other remaining
transitions that set out to in.1, they start from a state where out is different
from in.1, and where in.1 is equal to at least one of the other input variables,
i.e., in.l1 = in.2orin.1 = in.3. Thus, in detector terms, we need to check
that in.1 is equal to the input value of at least one of the other processes.

Hence, the fail-safe fault-tolerant program majority voter, FSTMRI, is:

FSTMRI1 :: (out # in.1) A ((in.l =in.2) V (in.l =in3)) — out := in.l

Theorem 6 (Fail-safe TMR) Program FSTMR1 is fail-safe fault-
tolerant with perfect detection to faults that corrupt the input of at most

Oone process.

7T0CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION

Observe that if faults can arbitrarily corrupt the output out of the TMR
system, then no fail-safe fault-tolerant TMR exists, hence our focus on tol-

erable fault models.

4.6.3 Token Ring

In this example, we present an example of a fail-safe fault-tolerant version
of the token ring. We first recall the mutual exclusion algorithm using a
token ring.

Multiple processes wait to access their critical section. They can do so
provided that at any one time, at most one process is accessing its critical
section. This is the safety specification for a mutual exclusion algorithm.
Also, no process waits indefinitely to access its critical section, assuming that
each process leaves its critical section in finite “time”. This is the liveness
specification of a mutual exclusion protocol.

We assume a collection of processes arranged in a ring. Mutual exclu-
sion can be achieved in such a scenario by circulating a token among these
processes, and a process accesses its critical section only upon receipt of the
token. The token is circulated among the processes in a particular direc-
tion. For the token ring, the safety specification is that at most one process
holds the token at any one time. In this example, we present a fail-safe
fault-tolerant version of a token ring, i.e., in the presence of faults, at most
one process holds the token.

Processes 0... N are arranged in a ring. Process k,0 < k < N passes
the token to process k + 1, whereas process N passes the token to process
0. Each process k has a binary variable, t.k, and a process k,k # N holds
the token iff t.k # t.(k + 1), and process N holds the token iff t. N = ¢.0.

The fault-intolerant program for the token ring is as follows (+2 is

modulo-2 addition) :

4.6. THREE CASE STUDIES 71

ITR1 = k#0Atk#t(k—1) > tk:=t(k—1)

ITR2: k=0Atk#tN+21>tk:=t.N+21

Fault action: The fault action that we consider is

F :: true — t.k:=1

Note: In general, we assume faults like timing faults, message loss, or
duplication etc. However, we assume that when such faults occur, a process
k sets its variable .k =_1. In this sense, representing the faults as F' above
is representative of a large class of faults. Moreover, these faults are then
detectable. Also, there can be any number of state corruptions.

The safety specification of the token ring is that at any time no more
than one process holds the token. In presence of faults, especially when
t.k =1, no action based on t.k should be taken, just in case process k + 1
receives a duplicate token inadvertedly. Hence, all transitions of process k
that occur when the state of process (k—1),t.(k —1) =L will lead to safety
violation, and should be removed. Thus, we only allow process k to execute
its action when t.(k — 1) #.L.

Thus, applying add-perfect-fail-safe to the fault-intolerant token ring
ITR, the resulting fail-safe fault-tolerant token ring FSTR is:

FSTRI1 = t.(k— 1) #1L Ak £ OAtk £t (k—1) o t.k:=t.(k—1)

FSTR2 :: t N#L ANk =0Atk#tN+21—>tk:=t.N+21

Theorem 7 (Fail-safe TR) Program FSTR is fail-safe fault-tolerant to

faults that corrupt the state of any process.

72CHAPTER 4. PERFECT DETECTORS: BASIS FOR PERFECT DETECTION
4.7 Chapter Summary

In this chapter, we have presented a novel theory of detector components
for the design of fail-safe fault-tolerant programs. This theory allows to
derive a transformation algorithm which automatically adds fault-tolerance
abilitywith perfect detection. Specifically, we have made three important
contributions in this chapter: (i) We have presented a novel theory of detec-
tors, and (ii) identified a class of detectors called perfect detectors, and then
explained their role, and importance in fail-safe fault-tolerant programs,
(iii) we have provided an algorithm that adds perfect detectors to a fault-
intolerant program to synthesize a fail-safe fault-tolerant program.

The motivation for perfect error detection is obvious in adaptive sys-
tems. In adaptive systems, usually (in periods of non-perturbation) a fault-
intolerant program p executes. During periods of perturbation, a fault-
tolerant version p’ of p (with possibly lower efficiency) is switched in. If a
detector is not accurate, then p’ may be switched in, even when there is no
perturbation, lowering the efficiency of the system. If the detector is not
complete, it might fail to detect an error entirely. Hence, perfect detection
is necessary if the system is to be correct and efficient.

We close this chapter with a final remark concerning an observation made
by Arora and Kulkarni [AK98b, Sect. 3]. The authors observed that “based
on their experience”, when designing fail-safe fault-tolerant programs, the
detectors for non-critical actions are trivial, i.e., “true”, whereas the detec-
tors for critical actions are non-trivial. Lemma 2 is the first formal justi-
fication of the validity of Arora and Kulkarni’s observation since it shows
that it is sufficient to compose critical actions with perfect detectors to en-
sure fail-safe fault-tolerance. Proving this statement was made possible by
our notions of accuracy and completeness of detectors. In this sense these

properties can be regarded as a concretization of “non-trivial”.

Chapter 5

Fast Detectors: A Basis for
Fast Error Detection

In the previous chapter 4, we introduced the concept of perfect detection
(perfect detectors), i.e., the ability of a detector to detect all harmful faults,
and not making any mistakes. This represents one aspect of efficiency of
fail-safe fault-tolerant programs.

In this chapter, we look at a second aspect of efficiency of fail-safe fault-
tolerant programs, namely fast error detection. We introduce the concept
of fast detection, and is based upon the concept of SS-consistency and SS-
inconsistency, as defined in Chapter 4. Further, while providing for fast error
detection, we endeavor to preserve the ability for perfect error detection. In

this chapter, we make the following contributions:

1. We present a theory of fast and perfect detection, and formalize a
metric, called detection latency, that can be used to (i) estimate the
detection latency of a fail-safe fault-tolerant program, and (ii) com-
pare the detection latency efficiency of different fail-safe fault-tolerant

programs .

2. We present a sound, and complete algorithm that, given a fault-

intolerant program p with safety specification SS and fault model

73

TACHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

F', synthesizes a fail-safe fault-tolerant program with perfect detec-
tion, and minimal latency. As way of contrast, the algorithm of chap-
ter 4 synthesizes fail-safe fault-tolerant programs with perfect detec-

tion only.

5.1. INTRODUCTION 75

5.1 Introduction

Given the pervasiveness of current computer systems, their ability to tolerate
effect of faults is becoming increasingly important, as shown in Chapter 4.
When such (harmful) faults occur, they can corrupt the state of the program.
When a variable is corrupted, and its corrupted value is used to update the
value of another variable, error is said to propagate. If no immediate action
is taken, the error may propagate beyond a given boundary. When the
error propagates beyond the “system” boundary, a failure is said to occur.
Thus, as we showed in Chapter 4, composing critical actions with perfect
detectors will prevent the errors from propagating beyond the “system”
boundary. If the system/program to be designed is only needed to be fail-
safe fault-tolerant, one only needs to compose critical actions with perfect

detectors.

However, as we mentioned in Chapter 1, when designing a masking fault-
tolerant program, designing a corresponding fail-safe fault-tolerant program
can be the first step of the process. Hence, as we explained in Chapter 1
on the design of fault tolerance, once an error is detected, it needs to be
corrected too. However, the greater the error propagation, the greater is
the recovery process. To see this, consider the following: assume that in a
given program p, the value of a variable v; is used to update the value of
another variable vy. Now, a fault occurs that corrupt the value of v1, and
the resulting error is detected, before v, is updated. During recovery, only
the value of v; needs to be “recovered”. However, if vy is updated with
the corrupted value of v1, then during recovery, both the value of v;, and
v9 needs to be recovered. Hence, the recovery process is more complicated.
Thus, from the point of view of recovery, the earlier the error is detected,
the simpler the error recovery process. Thus, in this chapter, we present a

theory of fast error detection.

7T6CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

The theory of fast detection is also based on the notion of SS-consistency
and SS-inconsistency of transitions, developed in Chapter 4. Recall that a
given detector monitors a certain program action. If the state of a program is
such that safety can potentially be violated by execution of program actions
alone (see definition of SS-inconsistent transitions — Def 37 — Chapter 4),
then these program actions need to be prevented from occurring. Specifi-
cally, the program can be halted even before safety is about to be violated,
through execution of bad transitions. This has the effect of preventing errors
from propagating, and corrupting the whole state space of the program, i.e.,

the effect of the fault is contained.

Intuitively, to achieve fast detection, not only do the critical program
actions need to be monitored with perfect detectors, but other non-critical
program actions too (depending on the fault model) . What this means
is that we may need to refine the guards of both critical and non-critical
actions, depending on the fault model. As way of contrast, the theory

presented in Chapter 4 refines only the guards of critical actions.

To evaluate the “fastness” at which a fail-safe fault-tolerant program
detects an error, we formalize a commonly-used metric called detection la-
tency. For a program that is fail-safe fault-tolerant, from Chapter 4, only
bad transitions induced by critical actions are removed. Thus, from the
onset of a “harmful” fault to the “time” the program “halts” at a critical
action (i.e., the transition induced by the critical action is removed, since
it is bad), the detection latency for this fault is “maximal”. Whenever we
say that detectors are fast, we mean that the “time” (more specifically, the
number of program transitions) it takes for the program to “halt” is less
than that maximum detection latency. In this chapter, we show how the
detection latency can be minimized, i.e., the fault is detected in O-step. Fur-

ther, as we composed both non-critical and critical actions with detectors,

5.2. FAST ERROR DETECTION 7

we endeavor to develop perfect detectors in such cases, thus preserving the
ability of having perfect detection.

This chapter is structured as follows: In Section 5.2, we present a the-
ory of fast error detection. We define the transformation problem for fast,
and perfect error detection in Section 5.3. In Section 5.4, we present an
algorithm that solves the transformation problem. We present examples to
illustrate the working of the algorithm in Section 5.5. We discuss some issues
concerning the approach in Section 5.6, and we summarize and conclude the

chapter in Section 5.7

5.2 Fast Error Detection

Perfect detectors, introduced in Chapter 4, ensure correctness of the fail-safe
fault tolerance transformation problem. They ensure that, in the absence
of faults, liveness of the resulting program is not compromised, while also
ensuring that safety is not violated in presence of faults.

We now turn to a different aspect, namely the detection latency efficiency
of fail-safe fault-tolerant programs. Intuitively, we would like an error to be
detected as early as possible to prevent further contamination of the pro-
gram state. If a fault occurs, and no precaution is taken, then the error can
propagate, and corrupt the entire state space of the program. More sophis-
ticated recovery methods, such as a distributed reset [AG94], may then be
needed to get the system into a consistent state, which are computationally
expensive procedures.

In this section, we focus on explaining the relationship between fast de-
tection and SS-inconsistent transitions. To see fast detection, consider a
computation @ = sg...8i—1 - 8; - Si+1 ... of a fault-intolerant program p in
the presence of faults that violates safety. Assume (s;, s;+1) is a bad transi-

tion (from Proposition 2) in «. From the algorithm add-perfect-fail-safe of

7T8CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

Chapter 4, transition (s;, s;+1) would be removed from p when synthesizing
the fail-safe fault-tolerant program p’, so that transition (s;, s;1+1) is unreach-
able in a. However, if transition (s;_1,$;) is a program transition, and is
thus SS-inconsistent for p, then removing transition (s;_1, ;) will also make
transition (s;, 8;+1) unreachable in a. So, from the point of view of safety,
removing transition (s;_1,s;), or (8;, $;+1) achieves the same result, that of
making the bad transition (s;,s;y1) unreachable. However, not executing
transition (s;_1,s;) prevents error from propagating, i.e., the variables that
would have been updated and corrupted had the transition (s;_1,s;) taken
place are now not corrupted, hence errors are contained.

Informally, a detector d monitoring an action ac in p is perfect for ac
in p if it removes every arbitrary SS-inconsistent transition induced by ac
for every violating execution, while keeping all §S-consistent transitions
induced by ac. Thus, given a computation « of p that violates safety, o has
a sequence of program transitions leading to a bad transition (following from
the definition of SS-inconsistency of Chapter 4), where every such program
transition in that sequence is SS-inconsistent for p. For fast detection, i.e.,
to prevent error from propagating, a given program action ac of p should
be composed with a perfect detector such that the “first” SS-inconsistent
transition of that sequence is removed, and that transition is induced by
ac. This will allow a fail-safe fault-tolerant program to have both perfect
and fast error detection. On this background, we formalize the notion of an

earliest SS-inconsistent transition.

Definition 44 (Earliest SS-inconsistent transition) Given an F-
intolerant program p with safety specification SS, and a computation
a = S0 818 - Sit1- - Sm of p in the presence of faults that violates
SS. The transition (s;,s;+1) is the earliest SS-inconsistent transition for p

w.r.t. « iff the following two properties hold:

5.2. FAST ERROR DETECTION 79

1. (84, 8i+1) is SS-inconsistent for p w.r.t. a.

2. (8i-1,8;) is a transition induced by a fault action.

Intuitively, when a computation « of a program p in the presence of faults
violates the safety specification SS of p, there exists a suffix of the violating
computation prefix of « that starts with an SS-inconsistent transition and
ends in a bad transition. The earliest SS-inconsistent transition is the first
SS-inconsistent transition in this suffix. Basically, it is the first program
transition that leads the program on the wrong track. Since we have no
control on fault transitions, this is the first transition which can be enabled
or disabled, depending on whether it is S.S-consistent, or S.S-inconsistent.

Define the set EI Tg (SS) of earliest SS-inconsistent transitions of a pro-
gram p as the union of the earliest SS-inconsistent transitions over all com-

putations of p violating SS. Define p\ EIT 5 (SS) as the program p’ which is

the same as p except that all transitions from ET Tf (SS) have been removed

from 4.

Definition 45 (Fast detectors) Let p be a fault-intolerant program. A

set of perfect detectors D for program p is fast iff p composed with D results
in p\ EIT} (SS).

At this point, we need to assess the role and impact of fast (perfect)
detectors in the presence of faults. We find that, composing a fault-intolerant
program with these fast detectors, and also since these fast detectors are
perfect, the resulting program is indeed fail-safe fault-tolerant, and this is

captured by Lemma 5.

Lemma 5 (Fast perfect detectors and behavior in the presence of faults)
Let p be a fault-intolerant program for a safety specification SS. Then
p composed with a set of fast perfect detectors for p satisfies SS in the

presence of faults.

80CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

Proof. This is a generalization of the proof of Lemma 2.

1. For a contradiction, it is again assumed that p’ violates SS, i.e., that

there exists a computation o of p’ which is not in SS.

2. From Definition 44 it is possible to generalize Proposition 3 to
state that in every violating execution there exists an earliest SS-
inconsistent transition in every violating computation. Denote this

transition in o as (s, s').

3. The fact that detectors are fast and from Definintion 45 we have that
all earliest inconsistent transitions are removed from p while construct-
ing p’, which is a contradiction to the occurrence of (s,s’) in a com-

putation of p’.

O

We now define, and formalize a metric to measure the “fastness” of
detectors. Intuitively, the detection latency metric defines the number of
program transitions executed until the program “halts” at a detector, after

a “harmful” fault has occurred.

Definition 46 (Detection latency) Let SS be a safety specification and
p' be a program which has been made fail-safe fault-tolerant for SS by com-
posing a fault-intolerant program p with a set of detectors. Consider a finite
computation o = Sg-++8;_1 " 8; - Si+1-+-Sm of p' in the presence of faults,

such that:

1. (si—1,8i) s a transition induced by a fault action,
2. all transitions in s;...sy, are in 6y, and

3. starting from s, a bad transition in SS is reachable by using a sequence

of program actions of p.

5.2. FAST ERROR DETECTION 81

Then, the detection latency Ly,(a) of p' w.r.t. a is the number of transitions

executed in S;...Spy, i.e., (m —1) transitions.

Intuitively, the detection latency measures the number of (SS-
inconsistent) transitions executed after the occurrence of a harmful fault,

and before a detector halts the program.

Definition 47 (Maximum detection latency) Let F' be a fault model,
SS be a safety specification and p' be a fail-safe F-tolerant program for SS.

The maximum detection latency LM;, of p' is defined as the mazimum of

L;,(oz) for all computations « of p' in the presence of faults.

Lemma 6 (Latency of fast detectors) Given a fault-tolerant program
p' which is the result of the composition of a fault-intolerant program p with

a set of fast perfect detectors. Then p' has mazimum detection latency 0.

Proof. Consider any computation @ = sg -+ s; - - - 5., of p’ which satisfies

Definition 46. We need to show that s; = s,,.

1. Definition 46 implies that there exists a computation ¢ of p which can

be written as 0 = a - § (i-e., a continuation of) which violates SS.

2. Step 1 and Definition 44 imply that (s;,s;+1) is the earliest SS-

inconsistent transition of p w.r.t. .

3. Step 2 and the definition of fast detectors imply that p’ evolved from

p by removing (among other transitions) also (s;, Si+1).
4. Step 3 implies that s; = s;,, which in effect means that L, (a) = 0.

Since we have not restricted the choice of «, the statement holds for all a.
This implies that LM, = 0. O
Since the maximum detection latency of a fail-safe fault-tolerant program

p' must be at least 0, composition of a fault-intolerant program p with fast

82CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

perfect detectors results in a fail-safe fault-tolerant program p’ with optimal
detection latency. It remains to be shown that this composition preserves

the original behavior of the fault-intolerant program in the absence of faults.

Lemma 7 (Fast perfect detectors and fault-free behavior) Given a
program p' that is the composition of a fault-intolerant program p and a set

of fast perfect detectors. For p and p' holds:

1. In the absence of faults every computation of p' is a computation of p.

2. In the absence of faults every computation of p is a computation of p'.

Proof. The proof is the same as that of Lemma 1. O
Lemmas 5 (behavior in the presence of faults), 6 (optimal detection la-
tency) and 7 (behavior in the absence of faults) taken together show that
composing a fault-intolerant program with fast, perfect detectors, the re-
sulting program (i) preserves the original behavior in the absence of faults,
(ii) is fail-safe fault-tolerant in the presence of faults, and (iii) has mini-
mal detection latency. These lemmas will form the basis for deriving the
transformation algorithm for adding fast, perfect detectors in Section 5.4.
In the next section, based on the results developed in Chapter 4 and
in this section, we provide an algorithm that automates the synthesis of a
fail-safe fault-tolerant algorithm with perfect and fast error detection capa-

bilities.

5.3 The Transformation Problem for Fast and
Perfect Detection

We now formally state the problem of transforming a fault-intolerant pro-
gram p into a fail-safe fault-tolerant version p’ for a given safety specification

SS and fault model F' with perfect detection, and minimal detection latency.

5.3. THE TRANSFORMATION PROBLEM FOR FAST AND PERFECT DETECTIONS3

Again, when deriving p' from p, only fault tolerance should be added,
i.e., p’ should not satisfy SS in new ways in the absence of faults. For
completeness, we recall the main constraints defining the transformation

problem:

e If there exists a transition (s,t) in p’ that is not reached by p to satisfy
SS, then (s,t) cannot be used by p', since this means that there are
other ways p’ can satisfy SS in the absence of faults. Thus, the set of

transitions of p’ should be a subset of the set of transitions of p.

e Also, if there exists a state s reachable by p’ in the absence of faults
that is not reached by p in the absence of faults, then this means that
p’ can satisfy SS differently from p in the absence of faults, and such
a state s should not be reached by p’ in the absence of faults. Thus,
the set of states reachable by p’ should be a subset of the set of states

reachable by p.

In general, these conditions result in the requirement that both programs
should have the same set of fault-free computations. Formally, we define the

transformation problem as follows:

Definition 48 (Transformation for efficient fail-safe fault tolerance)
Let SS be a safety specification, a fault model F, and p an F-intolerant

program for SS. Identify a program p' such that the following four conditions

hold:

1. p' satisfies SS in presence of F.

2. In the absence of faults, every computation of p' is a computation of
p.

3. In the absence of faults, every computation of p is a computation of

!

p.

84CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

4. p' has detection latency 0.

The transformation problem can also be formulated as a decision prob-

lem:

Definition 49 (Corresponding decision problem) Let SS be a safety
specification, a fault model F', and p an F-intolerant program for SS. Does

there exwist a program p' such that the following three conditions hold:

1. p' satisfies SS in presence of F.
2. In the absence of faults, every computation of p' is a computation of
p.

3. In the absence of faults, every computation of p is a computation of

!

p.

4. p' has detection latency 0.

Later in Section 5.4 we present a sound, and complete algorithm which
solves the above transformation problem, i.e., we present an algorithm that
systematically transforms a fault-intolerant program into a program that
satisfies the above three conditions. Soundness of the algorithm means that
the resulting program indeed solves the transformation problem. Complete-
ness of the algorithm means that if the solution to the decision problem is
true, then the algorithm will find the fail-safe fault-tolerant program.

The algorithm is based on a theory for perfect detectors which we in-
troduce in the following section. The algorithm also synthesizes fail-safe
fault-tolerant program that detects faults early, and is based on a theory for

fast detectors.

5.4 Adding Efficient Fail-Safe Fault Tolerance

In this section we give an algorithm to solve the transformation problem of

Definition 48 which follows from the theory presented in Section 4.4.

5.4. ADDING EFFICIENT FAIL-SAFE FAULT TOLERANCE 85

The basic idea of the algorithm is to remove the set of earliest inconsistent
transitions from the input program p. Intuitively, the algorithm works as
follows: It takes as parameters the fault-intolerant program p (in the form
of its transition relation d,) and the fault model F' (in the form of the set of
fault transitions). The safety specification SS is encoded as the set of bad
transitions and passed to the algorithm in variable ss.

Starting from the set of bad transitions in ss, the algorithm constructs
the set it of all inconsistent transitions. From this set, it constructs the
set eit of earliest inconsistent transitions. This set of transitions is removed
from §, yielding the transition relation of the transformed program. The

algorithm is presented in Figure 5.1.

add-efficient-fail-safe(d,, 05, ss: set of transitions):
eit := get-eit(d,, 0F, 55)

return (p’ = p where transition relation is d, \ eit)

get-eit(dy, O, ss: set of transitions):
it == {(s0,51) | Ja = s¢ - 81 - s2- - - of program transitions:
I(s,s') € ss : (s,8') occurs in « and (s,s') is
reachable in &'}

eit := {(s0,51) | (s0,51) € it As € Sp: (s,50) € 0r}

return (eit)

Figure 5.1: Algorithm to add efficient fail-safe fault-tolerance.

Theorem 8 (Correctness of the transformation algorithm) The al-
gorithm in Figure 5.1 solves the transformation problem of Definition 48.

Furthermore, the resulting program has minimal detection latency.

Proof. Since the algorithm constructs p’ by removing the set of all ear-

86CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

liest inconsistent transitions, we can apply the lemmas from Section 5.2.
Lemma, 5 ensures that p’ satisfies the specification in the presence of faults,
which proves the first requirement of Definition 48. Lemma 6 ensures that
the maximum detection latency is 0, meaning that it is trivially optimal.
Lemma 7 ensures that p and p’ have the same fault-free behavior which

proves the second and third requirements of Definition 48. O

Theorem 9 (Soundness and Completeness) Algorithm add-efficient-

fail-safe is sound and complete.

Proof.

The proof of soundness (from Lemma 5), and completeness (by construc-
tion) is straight forward. O

In contrast, another algorithm for automatic synthesis of fail-safe fault-
tolerance proposed by Kulkarni and Arora [KAOO] generates programs with
detection latency equal to the maximum length over all partial computations
considered when computing set it, since they remove only bad transitions,
i.e., the last transition in the partial execution, whereas we remove the first
one.

We now provide a brief analysis of the complexity of our algorithm:

1. Assume that the number of bad transitions specified by ss is m.

2. Let the maximum number of computations containing any bad tran-
sition is c.

3. Thus, to compute set it, the number of partial computations visited
is O(m - ¢).

4. Assume that the maximum number of transitions visited in any partial
computation when computing set it is n.

5. The maximum number of transitions visited when computing set it is

O(m - c-n).

5.5. TWO CASE STUDIES 87

6. Computing set eit means going through set it, thus this step has com-

plexity O(m - ¢ n).
7. Removing set eit has complexity O(m-c), since set eit has size O(m-c).

8. Overall, the algorithm in Figure 5.1 has complexity O(m-c-n+m-c-n+
m-c-n+m-c) = O(m-c-n), where m is the number of bad transitions
specified by ss, ¢ is the number of maximum number of computations
containing any given bad transition, and n is the maximum number

of transitions considered in any partial computation.

Also, as mentioned in the Introduction (Chapter 1), our approach targets
a class of programs known as bounded programs. In bounded programs, the
length of the partial executions to be considered when calculating the set it
is finite. This means that in the program, there are no infinite or unbounbed
loops, rather all loops are bounded. An instance of bounded programs can
usually be found in the domain of embedded applications, more specifically
applications where the output is to be written within a bounded number of
steps. Another instance of bounded programs are distributed algorithms.

The algorithm add-efficient-fail-safe was also presented in [JHCS02] to
generate SS-globally consistent detectors. The algorithm basically removed
all earliest S'S-inconsistent transitions such that the resulting program have

both perfect detection, and minimal detection latency.

We next some examples to show the working of our algorithm.

5.5 Two Case Studies

In this section, we present two examples. For the first example, we reuse the
fault-intolerant program of the first example of Chapter 4, and the second

example concerns a majority voter.

88CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

5.5.1 A Simple Example

In Fig. 5.2, state 1 is an initial state, and in the absence of faults, execution
goes from states 1...6. However, in the presence of faults, other states
previously unreachable become reachable, for example, state 7. Transition
(10,11) is a bad transition, specified by the safety specification. Transition
(7,8) is an SS-inconsistent transition.
Bad transition syified by the safety specification
@_ _ .@_ _@ __, program transition in absence of faullts
(reachable transition)

_ —» program transition in presence of faults

@——@——@——@——@——@ (reachable transition in the presence of faults)

. fault transitionF

I;;':' @ ’@ " ’@ ’. — » Badtransition specified by safety specification

Figure 5.2: An example to illustrate how algorithm add-efficient-fail-safe

works

A call to add-efficient-fail-safe(p, F, ss) will pass the program of Fig. 5.2
as argument, with the set of fault transitions. The variable ss holds the set

of bad transitions specified by the safety specification of the program, and

is equal to {(10,11),(20,21)}. Thus,
1. The program p = {(1,2),(2,3)... (7,8),(8,9)...}
2. fault F = {(1,7),(1,17),(3,9), (3,14) ...}
3. ss = {(10,11),(20,21)}

From the algorithm, we collect all earliest inconsistent transitions. We
start with each bad transition specified by the safety specification. For
example, transition (10,11) € ss. We “backtrack” along all possible com-

putations in presence of faults that include transition (10,11), until a fault

5.5. TWO CASE STUDIES 89

transition occurs. The program transition that follows the fault transition is
an earliest inconsistent transition. For example, going backwards, starting
from transition (10,11), we reach reach fault transition (3,9), which makes
transition (9,10) an earliest inconsistent transition. Similarly, transition

(7,8) is an earliest inconsistent transition. Hence, eit = {(9,10), (7,8)}.

Likewise, starting with transition (20,21) € ss, we have the following
earliest inconsistent transitions: {(20,21), (20,19), (19,18), (18,17)}. Hence,
eit = {(9,10),(7,8),(20,21),(20,19), (19,18),(18,17)}, and we need to re-

move eit from the program.

Bad transition specmed by the safety specification
@ .@ ,@ __, program transition in absence of fauits
(reachable transition)
_ _» program transition in presence of faults
@@@@@@ (reachable transition in the presence of faults)

. fault transitionF

IS?;:LaI @ ’@ ” ’@ ’. - » Badtransition specified by safety specification

Figure 5.3: Fail-safe fault-tolerant program resulting from applying algo-

rithm add-efficient-fail-safe

The resulting program is shown in Fig. 5.3. Observe that the transitions
in ss are now unreachable in the presence of faults, which makes the pro-
gram fail-safe fault-tolerant. Also, as soon as a “harmful” error occurs (i.e.,
those that could have brought about violation of safety), the SS-inconsistent

transition is disabled/removed.

In the next example, we present the case of the majority voter, developed

in the last chapter.

90CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

5.5.2 A Majority Voter System

To recall the working of the triple modular redundant majority voter, there
are three processes pi, pa, and ps that inputs values in.1, in.2, and in.3
respectively, and an output variable, called out. For simplicity, each process
p; inputs a binary value in.i to the voter. In the absence of faults, all three
values are identical.

The mojority voter program is written as follows:

ITMRI1 :: out = 7 — out = n.l

The fault transitions are represented as follows:

(in.1=1in.2)V(in.l=imn3) — nl= 1

To compute the set eit of earliest SS-inconsistent transitions, we start
with a transition in ss (recall that ss encodes SS by holding the set of
bad transitions), and “backtrack” along every computation until a fault
transition is reached. To illustrate this, consider a small example of a
computation « of the majority voter in presence of faults (a state of the

majority voter is represented as (in.1,in.2,in.3, out):

O‘:/B'<]-’1a]-’_>'<J—’1a]-’_>'<J—51’15J—>'7

Recall that | is some “bad” value. Variable out = — means that out is not
set. Transition ({(1,1,1,—)-(L,1,1,—)) is a fault transition, and transition
((L,1,1,—)-(L,1,1,1)) is a bad transition in ss, and needs to be removed.
Now, when computing set eit, the transition ((L,1,1,—)-(L,1,1, 1)) isin
eit, since it is preceded by a fault transition. However, observe that every

bad transition in ss will always be preceded by a fault transition, and hence

5.6. DISCUSSION 91

ss C eit. Also, since there is only one action in the majority voter, eit = ss.
Then, we need to remove et from the intolerant program to make it fail-safe.
Thus, the set of transitions that is removed is:
{(s,t) : t € T'}, where the set T' is defined as
T = {t : ((t(out) = t(in.1)) A ((t(in.1) # t(in.2)) A (t(in.1) # t(in.3)))}, as
in Chapter 4

Running algorithm add-efficient-fail-safe results in removing set eit from
program TMR. Removing set eit from TMR will be equivalent to removing
set ss from TMR. So, the fail-safe fault-tolerant version of the majority voter
program, with perfect detection, and minimal detection latency is identical

to the version with only perfect detection (see below).

FSTMRI1 :: (out #in.1) A ((in.l =in.2) V (in.l=1in3)) — out := inl

Theorem 10 (Fail-safe TMR) Program FSTMR1 is fail-safe fault-
tolerant with perfect detection, and minimal detection latency to faults that

corrupt the input of at most one process.

Observe that if faults can arbitrarily corrupt the output out of the TMR
system, then no fail-safe fault-tolerant TMR exists, hence our focus on tol-
erable fault models.

In the next section, we present some discussion about the applicability

of the algorithm add-efficient-fail-safe.

5.6 Discussion

From the examples provided, we can see that the fail-safe fault-tolerant
majority voter with perfect detection, and minimal latency is identical to

the fail-safe fault-tolerant majority voter with perfect detection presented in

92CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

Chapter 4. This can be explained by the following: Algorithm add-perfect-
fail-safe refines the guards of critical actions, while algorithm add-efficient-
fail-safe refines the guards of critical, as well as non-critical actions. Since
the majority voter program consists of only a critical action, the fail-safe
fault-tolerant majority voter resulting from both algorithms can be expected

to be identical.

However, comparing the fail-safe fault-tolerant program of the first ex-
ample of Chapter 4, and that of the first example of this chapter, we find that
the fail-safe fault-tolerant programs are different. This is because the pro-
gram has both critical and non-critical actions. Since the algorithms refine
the guards of different sets of actions, the resulting fail-safe fault-tolerant

programs can be expected to be different.

Thus, given that the complexity of the algorithm add-efficient-fail-safe is
more than that of algorithm add-perfect-fail-safe, but that both algorithms
yield the same fail-safe fault tolerance version of the majority voter with
perfect detection, and minimal detection latency, then it is better to use al-
gorithm add-perfect-fail-safe to generate the fail-safe fault-tolerant majority

voter version.

In general, for distributed algorithms, such as mutual exclusion, token
ring, agreement problems etc, most of the actions are critical. Thus, as in
the case of the majority voter, applying algorithm add-perfect-fail-safe or
algorithm add-efficient-fail-safe to a fault-intolerant distributed algorithm
will result in identical fail-safe fault-tolerant distributed algorithm. Intu-
itively, any computation of a distributed algorithm in the presence of faults
consists of critical transitions and fault transitions. So, every program tran-
sition which is an earliest S S-inconsistent transition is also a bad transition,
and vice-versa. Thus, removing set eit will always have result identical to

when removing set ss from the fault-intolerant program of a distributed al-

5.7. CHAPTER SUMMARY 93

gorithm. Hence, for distributed algorithms, it is preferable to use algorithm
add-perfect-fail-safe, since they will always have perfect detection, and min-
imal detection latency, and the algorithm have lower complexity.

However, algorithm add-efficient-fail-safe can be used to yield fail-safe
fault-tolerant programs with perfect detection, and minimal detection la-
tency for a wide class of programs which consists of both critical and non-
critical actions. Embedded programs typically consist of both critical and
non-critical actions, as examplified in the first example in this chapter.
Then, the set eit needs not be equal to the set ss of bad transitions, as

in the case of distributed algorithms.

5.7 Chapter Summary

In this chapter, we have presented a novel theory of fast detector compo-
nents for the design of efficient fail-safe fault-tolerant programs. This theory
builds upon the theory of perfect detectors, and allows the derivation of a
transformation algorithm which automatically adds fault tolerance abilities
with perfect detection and minimal detection latency to an initially fault-
intolerant program. Specifically, we have made two important contributions
in this chapter: (i) We have presented a theory of fast detectors, that ensures
perfect detection, and minimal detection latency of fail-safe fault-tolerant
program and (ii) we have developed an algorithm that adds fast, and per-
fect detectors to a fault-intolerant program to synthesize an efficient fail-safe
fault-tolerant program. We have shown that the complexity of the algorithm
is polynomial in the state space of the fault-intolerant program.

We have also shown that algorithm add-efficient-fail-safe is particularly
suitable for a class of programs that consist of both critical and non-critical
actions, while algorithm add-perfect-fail-safe is particularly suitable for dis-

tributed algorithms.

94CHAPTER 5. FAST DETECTORS: A BASIS FOR FAST ERROR DETECTION

The motivation of minimal detection latency is for fault containment.
The earlier an error is detected, the higher is the error containment. If an
error is not contained, more sophisticated error recovery mechanisms may
be required to correct the fault than if the error is contained. Specifically, if
an error is contained, a local recovery procedure may be initiated, but if the
error is not contained and the state of several processes is corrupted, local

recovery mechanisms may not be adequate.

Chapter 6

Design of Efficient
Multitolerance

In Chapters 4 and 5, we introduced the concept of perfect, and fast detectors
respectively. We provided algorithms that, given a fault-intolerant program
p, a fault model F, and a safety specification SS for p, synthesize (i) fail-
safe fault-tolerant programs with perfect detection, and (ii) fail-safe fault-
tolerant programs with perfect detection, and minimal detection latency.
In those cases, we have considered only one given fault class, i.e., we have
synthesized efficient fail-safe fault tolerance to a given fault class.

However, in a distributed setting, the nature, and type of faults occur-
ring is varied. For example, faults can lead to message loss, corruption
of program state, processor crash and so on. Thus, faults that can affect a
given program can come from different sources (called fault classes), meaning
that the program should be (fail-safe) fault-tolerant to these different fault
classes, i.e., the program should be (fail-safe) multitolerant. This points to
a methodology that can support systematic addition of such efficient mul-
titolerance, i.e., we aim to generalize the results of Chapters 4 (addition of
perfect detection) and 5 (addition of perfect and fast detection) to deal with

multiple fault classes.

In this chapter, we consider two different approaches for automated syn-

95

96 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

thesis of efficient fail-safe multitolerant programs. The first design approach
for addition of multitolerance that we consider handles one fault class at a
time, where efficient fail-safe fault tolerance to different fault classes is added
in a stepwise (compositional) fashion, i.e., efficient fault tolerance is added
to one given fault class, before another fault class is considered. Then, we
consider a second design approach that, on the other hand, considers all

fault classes at the same time.

For each design approach, we provide two algorithms for the addition of
efficient multitolerance, and each algorithm (for each approach) adds some
efficiency properties to the resulting multitolerant program with respect to
each fault class considered. Specifically, starting from a fault-intolerant pro-
gram, and the different fault classes to be tolerated, we present algorithms
(for each design approach) that (i) add perfect fail-safe multitolerance to
every fault class considered, and (ii) add fail-safe multitolerance with both
perfect detection and minimal detection latency to every fault class consid-
ered. We show that the corresponding algorithms from each design approach
yield identical fail-safe multitolerant programs. We exploit this relation to

prove properties of programs generated using the second approach

The properties of the fail-safe multitolerant programs resulting from ei-
ther approach are: either (i) they have minimal detection latency, and per-
fect detection to each fault class, or (ii) to each fault class, the fail-safe
fault-tolerant programs have perfect detection. By way of contrast, Arora
and Kulkarni observed in [AK98a, Kul99] that using a method that considers
one fault class at a time may not yield programs that are optimal (in some
sense) with respect to all fault classes, whereas the method that considers
all fault models at the same time may. Here, we show that both approaches
yield programs that are efficient (with respect to fault detection, and de-

tection latency) to all fault classes. In effect, we have identified a class of

97

multitolerant programs (i.e., fail-safe multitolerant programs) and classes of
efficiency properties (i.e., perfect detection, and minimal detection latency)
for which these efficiency properties can be effectively designed for each fault
class considered during the design of such multitolerant programs.

The first design approach can be used when fail-safe fault tolerance to
new fault classes needs to be added to a given program, whilst the second

approach can be used whenever some given fault classes are re-defined.

98 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

6.1 Introduction

In this chapter, we consider the design of (efficient) multitolerance, i.e., the
ability of a program to tolerate multiple classes of faults. Specifically, we
restrict our attention to adding fail-safe fault tolerance to multiple fault
classes to a given fault-intolerant program. We recall that a fault-intolerant
program is one that satisfies its specification in the absence of faults, but
violates it in the presence of faults. Specifically, as mentioned before, a
specification is composed of two parts, namely (i) a safety specification, and
(ii) a liveness specification, as indicated by Alpern and Schneider [AS85], and
a fail-safe fault-tolerant program satisfies at least its safety specification in
presence of faults.

In a distributed setting, the nature of faults arising is varied. For exam-
ple, faults may corrupt input variables, corrupt the interfaces of processes,
cause loss of messages, or processor crashes, among others. Thus, when de-
signing a (fail-safe) fault-tolerant program, the design should be cognizant
of those varied fault classes. To make a program fail-safe fault-tolerant to
a given fault class, (a set of) detectors are added that handle faults from
that given fault class. Thus, to transform a fault-intolerant program into a
fail-safe multitolerant one, a set of detectors is added to the fault-intolerant
program, where each detector handles faults from a particular fault class.

One obvious difficulty that needs to be handled, as observed by Arora
and Kulkarni in [AK98a], is the fact that detectors handling different fault
classes may interfere either with each other or with the program. Intu-
itively, this means that every computation of a given program component,
in the presence of other program components, is still in its specification.
For example, one condition that needs to be verified is that the new compo-
nents introduced (such as detectors) should not interfere with the behavior

of the original program. Thus, non-interference between different program

6.1. INTRODUCTION 99

components should be verified.

However, given our focus on efficiency properties of the fail-safe fault-
tolerant programs, such as perfect detection, and minimal detection latency,
the above verification conditions may not suffice. To see this, consider the
following: Though addition of two detectors may not cause interference, one
may cause the resulting fail-safe fault-tolerant program to lose one of its
efficiency properties, either perfect detection or minimal detection latency
or both. Thus, the verification conditions need to be extended to deal with
those efficiency properties.

Therefore, the difficulty to be handled when adding detectors to a pro-
gram p (resulting in program p’) for a new fault class F,,, in addition to
ascertaining non-interference across different program components, is to en-
sure that the new detectors included for the new fault class F,, (i) p’ still has
efficiency properties with respect to other fault classes, and (ii) p’ has effi-
ciency properties with respect to Fy,, i.e., the resulting fail-safe multitolerant
program p' has efficiency properties to all fault classes considered. In other
words, when new detector components are added to a given program for a
new fault class, the verification conditions are (i) there is no interference
among the different program components, (ii) the new components preserve
and extend the efficiency properties of the original program with respect to
other fault classes. Thus, non-interference properties should include both
behavioral and efficiency aspects.

There are two possible approaches for the design of multitolerance:

1. The first approach considers one fault model at a time, and

2. The second approach considers all fault models at the same time.

For the first approach, we present two algorithms, one that automatically
yields fail-safe multitolerant programs, with perfect detection to all fault

classes considered, and another that yields fail-safe multitolerant programs

100 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

with perfect detection, and minimal detection latency to all fault classes.
By way of contrast, Arora and Kulkarni argued in [AK98a] that programs
designed using this appraoch can have complexity (in some sense) which is
efficient for some, but not all, fault classes.

For the second approach, we present two algorithms that consider all
the fault classes at the same time. The first algorithm yields a fail-safe
multitolerant program with perfect detection to all fault classes considered,
while the second algorithm yields fail-safe multitolerant programs with per-
fect detection, and minimal detection latency to all fault classes considered.
We also show that the resulting fail-safe multitolerant programs obtained
from the corresponding algorithms, e.g., those that add fail-safe fault toler-
ance with perfect detection, from each design approach are identical. For
example, the fail-safe multitolerant program obtained from the algorithm
that adds multitolerance with perfect detection to a program to every fault
class according to the first approach is identical to the fail-safe multitolerant
program obtained from the algorithm that adds multitolerance with perfect
detection to every fault class according to the second approach.

Thus, the contributions in this chapter are:

1. We present non-interference conditions (behavioral and efficiency) to

be verified during the design of multitolerance.

2. We present an automated approach for design of efficient fail-safe mul-

titolerant programs by considering one fault class at a time.

3. We present an automated approach for designing efficient fail-safe mul-

titolerant programs by considering all fault classes at the same time.

4. We also show that the programs obtained by corresponding algorithms
of either approaches are identical, and that they have some efficiency

properties for all fault classes.

6.2. ISSUES IN MULTITOLERANCE DESIGN 101

This chapter is structured as follows: In Section 6.2, we present the
non-interference conditions that have to be verified during the addition of
multitolerance. In Section 6.3, we present the stepwise approach (one fault
class at a time) for automatic addition of multitolerance, and provide two al-
gorithms that yields fail-safe multitolerant programs. We present two other
algorithms that handle all the fault classes at the same time in Section 6.4.
We discuss and summarize the results presented in this chapter in Sec-

tion 6.5.

6.2 Issues in Multitolerance Design

In this section, we present and discuss the non-interference issues involved in
the design of efficient multitolerance, i.e., fail-safe fault tolerance to multiple
fault classes with perfect detection, and minimal detection latency to all fault
classes.

First, we define a fail-safe multitolerant program:

Definition 50 (Fail-Safe Multitolerant Program) Given a program p
with specification S, and safety specification SS, and n fault classes
Fy...F,. A program p is said to be fail-safe multitolerant to fault classes

Fy ... F, iff p is fail-safe F;-tolerant for each 1 <i <mn.

As mentioned in the introduction of this chapter, there are two pos-
sible approaches for the design of multitolerant program. The issues and
discussions presented in this section mostly apply to a stepwise approach
that considers one fault class at a time, in some fixed order Fj...F,, in
which a fault-intolerant program p is transformed into a fail-safe multitol-
erant program to fault classes Fj ... F,. In general, in the first step, the
fault-intolerant program p is augmented with detectors that will make it

fail-safe Fj-tolerant, i.e., the resulting program p; is fail-safe Fj-tolerant.

102 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

Then, in the second step, the resulting program p; is augmented with de-
tectors that will make it fail-safe Fy-tolerant, while preserving its fail-safe
F-tolerance. The same is repeated, until the n'® step, where the program
is augmented with detectors that will provide fail-safe F),-tolerance, while
preserving fail-safe fault-tolerance to Fi ... F,,_1. However, because of our
focus on perfect detection, and minimal detection latency, these steps need
to be extended to deal with those efficiency requirements.

The steps are extended as follows, below:

In the first step, when the fault-intolerant program p is augmented with
detectors that will make it a fail-safe F}-tolerant program py, p; should have
perfect detection and/or minimal detection latency to Fj. The following

non-interference conditions need to be verified:

1. In the absence of F7, the detector components added to p do not inter-
fere with p, i.e., each computation of p is in the problem specification

even if it executes concurrently with the new detector components.

2. In the presence of faults F7, each computation of the detector compo-
nents is in the components’ specification even if they execute concur-

rently with p.

3. In the presence of faults F7, the detector components added to p pro-

vide perfect detection and/or minimal detection latency to Fj.

Note: In this section, whenever it is clear from the context, we will
use the term “fail-safe fault-tolerant program (fail-safe fault tolerance)” to
mean “fail-safe fault-tolerant program (fail-safe fault tolerance) with perfect
detection, and/or minimal detection latency”.

In the second step, when the fail-safe Fi-tolerant program p; is aug-

mented with detectors that will make p; fail-safe fault-tolerant to Fy (i.e.,

6.2. ISSUES IN MULTITOLERANCE DESIGN 103

transform it into a program ps), the following non-interference conditions

need to be satisfied:

1. In the absence of F} and Fy, the new detectors for fail-safe fault toler-
ance to F5 do not interfere with pq, i.e., each computation of p; satisfies
the problem specification even if p; executes concurrently with the new

detectors.

2. In the presence of Fi, the new detectors for fail-safe fault tolerance to
F5 do not interfere with the fail-safe fault tolerance to Fy of p1, i.e.,
every computation of p; is in the fail-safe fault tolerance specification

to F} even if p; executes concurrently with the new components.

3. In the presence of Fi, the new detectors for fail-safe fault tolerance to
F5 do not interfere with the perfect detection and/or minimal detection

latency to Fy of p;.

4. In the presence of F», p; does not interfere with the new detectors that

provide fail-safe fault-tolerance to F5.

5. In the presence of Fy, p; does not interfere with the new detector com-
ponents providing perfect detection, and/or minimal detection latency

to F2

In the " step, when the fail-safe F; i-tolerant program p; | is aug-
mented with detectors that will transform it into a fail-safe Fj-tolerant
program p; (i.e, p; is fail-safe fault-tolerant to fault classes Fj ... F;), the

following non-interference conditions need to be satisfied:

1. In the absence of faults Fj ... F;, the new detectors for fail-safe fault
tolerance to F; do not interfere with p;_1, i.e., each computation of p;_;
satisfies the problem specification even if p;_1 executes concurrently

with the new detector components for fail-safe fault tolerance to F;.

104 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

2. In the presence of Fi, the new detectors for fail-safe fault tolerance to
F; do not interfere with the fail-safe fault-tolerance to F; of p;_1, i.e.,
every computation of p; 1 is in the fail-safe fault tolerance specification

to F1 even if p; 1 executes concurrently with the new components.

3. In the presence of F1, the new detectors for fail-safe fault tolerance to
F5 do not interfere with the perfect detection, and/or minimal detec-

tion latency to Fi of p;_1.

5. In the presence of faults F;, p;_1 does not interfere with the new detec-
tor components that provide fail-safe fault tolerance to Fj, i.e., each
computation of the detector components for fail-safe fault tolerance to

F; is in the components’ specification.

6. In the presence of Fj;, p;_1 does not interfere with the new detector
components that provide perfect detection, and/or minimal detection

latency to Fj.

Automated procedures that add fail-safe multitolerance to a previously
fault-intolerant program need to guarantee that these conditions are met by
design.

In the next section, we consider a design approach for addition of multi-
tolerance that handles one given fault class at a time, and we then present
two algorithms that automatically yield fail-safe multitolerant programs
with differing efficiencies. The first algorithm, presented in the first part,
yields fail-safe multitolerant programs with perfect detection to fault classes
Fy ... F,, while the second algorithm, presented in the second part, yields
fail-safe multitolerant programs with perfect detection, and minimal detec-

tion latency to fault classes Fj ... F,, by considering one fault class at a

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 105

time.

Before presenting the algorithms that automatically add multitolerance,
we adopt a step-by-step derivation of the algorithm, and each step of the
algorithm is shown to guarantee that the non-interference conditions stated

are met by design.

6.3 Omne-at-a-time Design of Multitolerance

In deriving both algorithms, we focus on the case of two fault classes, and

the approach can be easily generalized to n fault classes.

6.3.1 Multitolerant Programs With Perfect Detection

Given a fault-intolerant program p with safety specification S'S, and n fault
classes F ... F, which have to be tolerated, the idea is to transform p into a
program p, that is fail-safe fault-tolerant to Fj ... F,, with perfect detection
for each fault class. To do this, we first consider fault class Fj, then Fy
until fault class F), is handled. In this section, whenever it is clear from
the context, we will use the term “fail-safe fault-tolerant program (fail-safe
fault tolerance)” to mean “fail-safe fault-tolerant program (fail-safe fault
tolerance) with perfect detection”.

Before explaining and introducing our automated approach for addition
of fail-safe multitolerance, we present a result upon which our approach is
based. Intuitively, the result states that, starting with a program p; that
is fail-safe fault-tolerant to fault classes Fj ... F; with perfect detection to
each of these fault classes, composing p; with a perfect detector for fault
class F;;1 such that the resulting program p;; is fail-safe fault-tolerant to
F; 11 with perfect detection, then p; 1 also preserves the efficiency properties
of p; with respect to F} ... F;. Said otherwise, composing a program p; as

above with perfect detectors for a new fault class F;; satisfy the verification

106 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

conditions presented in Section 6.2.

Lemma 8 (Perfect detectors and multitolerance) Given a fault-
intolerant program p with safety specification SS. Given a program p;_i
which is fail-safe multitolerant for SS with perfect detection to fault classes
Fy...F;_1. Given also a program p; obtained from p;_1 by composing
critical actions of p;—1 with perfect detectors, such that p; is fail-safe
fault-tolerant to fault class F; with perfect detection. Then, p; is also

fail-safe multitolerant with perfect detection to fault classes Fy ... F;_q.

Proof. Assume: (i) A fault-intolerant program py = p with safety
specification SS, (ii) Program p;_; is fail-safe multitolerant for SS with
perfect detection to fault classes F; ... F;_1, (iii) a new fault class F; which
needs to be tolerated, (iv) program p; that is fail-safe fault-tolerant for SS
with perfect detection to F; obtained by composing some critical actions of
p;—1 with perfect detectors for F;.

Prove: Program p; is fail-safe multitolerant for SS with perfect detec-

tion to fault classes Fy ... F;_.

1. From assumption, p;—1 = pg \ Bf_l, where Bf_l C ss and ss is the set

of bad transitions.

2. From assumption, p; = p;_1[|.PD;, where [|, means composing critical
actions, and PD; meaning perfect detectors that will tolerate fault

class Fj.

3. From 3, p; = p;—1\B;, where B; = {(s,t) : (s,t) is induced by a critical

action A(s,t) is reachable in presence of F; A (s,t) € ss}.

4. From 3, since no SS-inconsistent transition is added to p;_1, p; has

complete detection to fault classes F} ... F;_1.

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 107

5. From 3, since no SS-consistent transition is removed from p;_1, p; has

accurate detection to fault classes Fy ... F; 1.

6. From 4, and 5, p; has perfect detection to fault classes Fi ... F;_1.

O

The above lemma shows that by composing critical actions with per-
fect detectors that makes a given program fail-safe fault-tolerant to a new
fault class, fail-safe fault tolerance with perfect detection to previous fault
classes is preserved, i.e., there is no interference between the new detector
components with detector components for previous fault classes either at
the behavioral level or at the efficiency level. This result allows us to reuse
algorithm add-perfect-fail-safe (see Chapter 4), since add-perfect-fail-safe

generates perfect detectors for a given fault class.

Step 1 in Multitolerance Design

To synthesize a program that is fail-safe fault-tolerant to F}, starting
from a fault-intolerant program p, with perfect detection to Fy, we first need
to compute the set ss; of bad transitions for p reachable in the presence of
faults F; (reachable by using transitions in §)") (from Lemmas 2, 3). We then
remove those transitions from program p, to obtain a program p;, which is
fail-safe Fi-tolerant, with perfect detection for F7, as shown in Fig 6.1, where

ss is the set of bad transitions that the safety specification SS of p rejects.

p1 := add-perfect-fail-safe(p, F1, ss)

Figure 6.1: The first step in the design of multitolerant programs with

perfect detection.

At this point, we need to verify the non-interference conditions for the

first step of the transformation.

108 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

First, by construction, p; has perfect detection to F7.

Second, we need to prove that “In the absence of Fy, the detector compo-
nents added to p do not interfere with p, i.e., each computation of p is in the
problem specification even if it executes concurrently with the new detector
components”.

Proof. By construction (using algorithm add-efficient-fail-safe, the de-
tector components for fail-safe fault tolerance to F; do not interfere with p
O

Third, we need to prove that “In the presence of faults F1, each com-
putation of the detector components is in the components’ specification even
if they execute concurrently with p, i.e., p does not interfere with the new
detector components.”.

Proof. By construction, p does not interfere with the detector compo-

nents for fail-safe fault tolerance to Fj. O

Step 2 in Multitolerance Design

In the second step of the multitolerance addition procedure, we consider
fault class F, and we transform program p; (which is fail-safe fault-tolerant
to F) into a program pothat is fail-safe fault-tolerant to F, while preserving
the existing fail-safe fault tolerance to F}. Specifically, we compute the set
ss9 of bad transitions that are reachable in presence of faults F5, and we
remove those transitions from program p; to obtain program po, which is
fail-safe fault-tolerant, with perfect detection to both Fj, and Fj, as shown

in Fig 6.2.

po := add-perfect-fail-safe(p;, Fy, ss)

Figure 6.2: The second step in the design of multitolerant programs with

perfect detection.

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 109

By construction, po has perfect detection to Fb, i.e., p; does not interfere
with the new detector components that provide perfect detection to fault
class F5.

To verify the other non-interference properties, we first need to prove
that “In the absence of Fy and Fy, the detector components added to p; for
fail-safe fault tolerance to Fy do not interfere with p1, i.e., each computation
of p1 is in the problem specification even if it executes concurrently with the
new detector components”.

Proof. By construction, the new detector components for fail-safe fault
tolerance to F5 do not interfere with py. O

We now prove the second part of the non-interference conditions, which
is “In the presence of Fy, the new detectors for fail-safe fault tolerance to
Fy do not interfere with the fail-safe Fy-tolerance of p1, i.e., every compu-
tation of p1 is in the fail-safe Fy-tolerance specification even if p1 executes
concurrently with the new components.”

Proof. We prove this by contradiction. We first assume that there exists
a computation in presence of F; that violates safety, and show that such a

computation cannot exist, i.e., a contradiction.
1. Given p; = add-efficient-fail-safe(p;, F, ss)

2. Assume that there is a computation « in presence of F that violates

safety

3. From step 3 and Proposition 2, a contains a bad transition 7 that is

reachable in presence of F}.
4. By construction of pi, 7 & 0p,
5. By construction of py, transition 7 is not added to d,,.

6. From steps 3, 4, and 5, we have a contradiction.

110 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

O
We now prove that “In the presence of F1, the detector components for
fail-safe fault tolerance to Fy do not interfere with the perfect detection of
p1 to F1.”
Proof.

1. From the fact that the new detector components do not interfere with
the fail-safe Fj-tolerance of p; in the presence of F;, we deduce that

the detector components for F; are complete.

2. Since only SS-inconsistent transitions are removed, the detector com-

ponents for F) are accurate.

3. From steps 1, and 3, the detector components for F; are perfect.

O

The proof of the last part, which is “In the presence of Fs, p1 does not
interfere with the new detectors that provide fail-safe fault tolerance to F».”
Proof. By construction, p; does not interfere with the new detector

components for fail-safe fault tolerance to F5. O

Step K in Multitolerance Design

In the k™ step (3 < k < n), we consider fault class Fj, and we trans-
form a fail-safe F} ... Fj_i-tolerant program py_1, i.e., pi_1 is fail-safe fault-
tolerant to fault classes Fj ... Fi_1, into program py that is fail-safe fault-
tolerant to Fj, while also preserving the fail-safe fault tolerance to F7 ... Fy,_
i.e., program py is fail-safe F} ... Fg-tolerant. To do this, we compute the
set ssi of bad transitions that are reachable in presence of faults Fj, and
we remove those transitions from program p_; to obtain program p; which
have fail-safe fault tolerance with perfect detection to fault classes Fj ... Fj.

The k' step is shown in Fig 6.3.

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 111

p := add-perfect-fail-safe(py_1, Fi, ss)

Figure 6.3: The k" step in the design of multitolerant programs with perfect

detection.

With this step, we need to verify that non-interference conditions are
guaranteed.

First, pi has perfect detection to Fj by construction, i.e., program pg_1
does not interfere with the perfect detection of the new detector components
for fault class Fb.

To verify the other non-interference properties, we prove that “In the
absence of Fy...Fy, the detector components added to pr_1 for fail-safe
fault tolerance to Fy do not interfere with py_1, i.e., each computation of
Pr—1 15 in the problem specification even if it executes concurrently with the
new detector components”.

Proof. By construction, the new detector components for fail-safe fault
tolerance to Fj do not interfere with p;_1. [l

We now prove the i part (2 < i < k) of the non-interference conditions,
which is “In the presence of F;, the new detectors for fail-safe fault tolerance
to Fy do not interfere with the fail-safe fault tolerance to F; of pp_1, i.e.,
every computation of pp_1 is in the fail-safe fault tolerance specification to
F; even if pp_1 executes concurrently with the new detector components.”
Proof. We prove this by contradiction. We first assume that there exists
a computation in presence of F; that violates safety, and show that such a

computation cannot exist, i.e., a contradiction.
1. Given py = add-efficient-fail-safe(py_1, Fj, ss)

2. Assume that there is a computation « in presence of F; that violates

safety

112 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

3. From step 3 and Proposition. 2, a contains a bad transition 7 that is

reachable in presence of F;.
4. By construction of py_1, 7 & 0p, _,

5. By construction of py, 7 is not added to d,,_,

6. From steps 3, 4 and 5, we have a contradiction.

O
We now prove that “In the presence of F;, the new detector components
for fail-safe fault tolerance to Fy, do not interfere with the perfect detection
of pg—1 to F;.”
Proof.

1. From the fact that the new detector components do not interfere with
the fail-safe Fj-tolerance of p;_1 in the presence of F;, we deduce that

the detector components for F; in p;_1 are complete.

2. Since only SS-inconsistent transitions are removed, the detector com-

ponents for F; in p;_1 are accurate.
3. From steps 1, and 3, the detector components for F; are perfect.

O
The proof of the last part, which is “In the presence of Fy, pp_1 does
not interfere with the new detectors that provide fail-safe fault tolerance to
E,.”
Proof. By construction, px_1 does not interfere with the new detector
components for fail-safe fault tolerance to Fj. O
Observe that, in general, because (i) the new detector components that
provide fail-safe fault tolerance to Fj do not interfere with the fail-safe fault

tolerance of py 1 to all fault classes F; (1 < ¢ < k), and (ii) only bad

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 113

transitions are removed from pg_1, the perfect detection to all fault classes
F; is preserved.
In general, the algorithm for automatic synthesis of fail-safe multitolerant

programs with perfect detection to all fault classes is shown in Fig. 6.4

add-perfect-fail-safe-multitolerance(p, [F} . .. F,], ss: set of transi-

tions):

{i:=1po:=p

while (i <n) do {
p; := add-perfect-fail-safe(p;_1, Fj, ss);
i:=1i+1;} od

return(p,,)}

Figure 6.4: The algorithm adds fail-safe fault tolerance to n fault classes,

with perfect detection to every fault class

Theorem 11 (Multitolerance with perfect detection) Given a fault-
intolerant program p with safety specification SS, and n fault classes
F,...F,. Algorithm add-perfect-fail-safe-multitolerance(p, [F} ... Fy], ss)
returns a program that is fail-safe fault-tolerant to Fy ... F,, with perfect

detection to all the fault classes.

In this section, we have presented a stepwise approach for the automatic
design of multitolerance. We have proved that every step of the algorithm
guarantees that there is no interference between the new detector compo-
nents and those existing fail-safe fault tolerance mechanisms for other fault
classes, as well as no interference with their perfect detection to those fault
classes. In the next two sections, we will present examples to show the

working of the algorithm.

114 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE
6.3.2 A Simple Example

One-at-a-Time Addition of Perfect Fail-Safe Fault Tolerance

In this section, we present a small example to illustrate how algorithm
add-perfect-fail-safe-multitolerance works. Fig 6.5 shows the fault-intolerant
program in presence of faults F;. In this example, transitions (10,11) and

(20,21) are bad transitions.

Bad transition specmed by the safety specification

H@G@ﬁ@
/@@@@@@
i @@0@@

(o) i)4

Figure 6.5: Fault-intolerant program in the presence of F; — first iteration

of the algorithm

During the first iteration through the algorithm, both bad transitions
are removed since both are reachable in presence of F; (through the call
to add-perfect-fail-safe). The resulting fail-safe fault-tolerant program with
perfect detection to F is shown in Fig. 6.6. Denote it by p;.

Then, for the second iteration through add-perfect-fail-safe-
multitolerance, we need to add perfect fail-safe fault tolerance to Fj
to p1, while preserving the fail-safe fault tolerance with perfect detection of
p1 to Fy. First, we consider p; in presence of F5, as shown in Fig. 6.7

In the presence of F5, no bad transition is reachable, since all of them

has been removed during the previous pass. So, the program is also fail-safe

NOSOSOSORD
JOR0ROROROR0
e
) @

Figure 6.6: Resulting fail-safe fault-tolerant program p; to Fi

DR O~OSONC
/@@@@@@
N O R ORC
DEOEOEONCY

Figure 6.7: Resulting fail-safe fault-tolerant program p; in presence of F»

fault-tolerant to Fh, while maintaining the fail-safe fault-tolerance to Fj.
The resulting program (p2) is shown in Fig. 6.8. Observe that in presence

of Fy or Fy, po will never violate the safety specification.

6.3.3 Token Ring

The token ring was described in Chapter 4. Processes 0... N are arranged
in a ring. Process k,0 < k < N passes the token to process k + 1, whereas
process N passes the token to process 0. Each process k£ has a binary

variable, t.k, and a process k,k # N holds the token iff t.k # ¢.(k + 1), and

OROSOSONC
/@@@@@@
el (9@

(e) ()

Figure 6.8: Resulting fail-safe multitolerant program ps to F; and Fy with

perfect detection to both fault classes.

process N holds the token iff t.N = ¢.0.
The fault-intolerant program for the token ring is as follows (+2 is

modulo-2 addition) :

ITR1 : k#O0Atk#t(k—1) =tk :=t.(k—1)

ITR2:: k=0Atk#tN+21—>tk:=t.N+21

Fail-Safe Fault Tolerance to Fault Class F;: First, we consider a fault
class where fault actions can corrupt the state of a single process k, which

can be any process.

Fault action: The fault class that we consider is

F:|{k:tk=L}=0—tk:= L

Running algorithm add-perfect-fail-safe-multitolerance will result in the

following program after the first iteration

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 117

1-FSTR1 = [{k:tk =1} =1At.(k—1) AL Ak #OAtk £ t.(k—1) = t-h:=t.(k— 1)

1-FSTR2 :: [{k:thk=1} = 1At N#L Ak =0Atk#tN+21—>tk:=t.N 421

Theorem 12 (Fail-safe TR) Program 1-FSTR is fail-safe fault-tolerant

to faults that corrupt the state of a single process k, which can be any process.

Fail-Safe Fault Tolerance to Fault Class F5: Second, we consider a
fault class where fault actions can corrupt the state of any two processes k

and /.

Fault action: The fault class that we consider is

Fu|{k:tk=1}=1Atk#Ll>tk:= L

The second iteration of algorithm add-perfect-fail-safe-multitolerance

will result in the following program:

2FSTRI = [{k:th=L} <2At.(k—1)#L Ak £OAtk#t.(k—1) > t.k:=t.(k—1)

2-FSTR2 :: [{k:t.k=L1} <2AtN#LAk=0At.k#tN+31 >tk:=t.N+,1

Theorem 13 (Fail-safe TR) Program 2-FSTR is fail-safe fault-tolerant
to faults that corrupt the state of at most two processes k and I, which can

be any process.

Fail-Safe Fault Tolerance to Fault Class Fy;: Finally, we consider
a fault class where fault actions can corrupt the state of n (3 <n < N +1)

processes.

118 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

Fault action: The fault action that we consider is

Ful|{k:thk=L}=n—1Atk#Llotk:= L

The n'? iteration of algorithm add-perfect-fail-safe-multitolerance will

result in the following program:

n-FSTRL = [{k:tk=L} <nAt(k—1)#LAk#OAtk#t.(k—1) = tk:=t.(k—1)

n-FSTR2 :: [{k:t.k=L} <nAtN#LAk=0Atk#tN+21>tk:=t.N+21

Theorem 14 (Fail-safe TR) Program n-FSTR is fail-safe fault-tolerant
to faults that can corrupt the state of any number of processes, upto all n

processes.

From program n-FSTR, we know that when n = N + 1, |{k : t.k =1L

}H < n is always “True”, so program n-FSTR simplifies to:

MFSTRI = t.(k—1) #L Ak #O0Atk #t.(k—1) = tk:=t.(k—1)

MFSTR2 :: t N #L Ak =0Atk#t.N 421 >tk :=t.N+1

Program MFSTR is identical to the fail-safe fault-tolerant token ring
program presented by Arora and Kulkarni in [AK98a]. However, our inter-
mediate programs are different. This is because, in [AK98a|, certain bad
transitions that are unreachable in the presence of a fault class F; were al-
ready removed. Thus, though the overall multitolerant program is correct,
the intermediate programs adopted a more defensive approach, by remov-
ing more transitions that are necessary. As way of contrast, our approach

removes only bad transitions that are reachable in the presence of faults.

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 119

In this section, we have considered the automated design of multitol-
erance with perfect detection to all fault classes, by considering one fault
class at a time. In the next section, we consider the automated design of
multitolerance with perfect detection, and minimal detection latency to all

fault classes by considering one fault class at a time.

6.3.4 Multitolerant Programs With Perfect Detection and

Minimal Detection Latency

In the previous section, we presented an algorithm (together with necessary
proofs of non-interference) that yields fail-safe multitolerant programs to
n fault classes, with perfect detection to every fault class. The algorithm
considers the fault classes in a given total order.

In this section, an algorithm is developed (along with relevant proof
of non-interference) that yields fail-safe multitolerant programs to n fault
classes, with perfect detection, and minimal detection latency to every fault
class. Again, the fault classes are considered in a given total order. In-
tuitively, the approach builds partly upon algorithm add-efficient-fail-safe,
whereby, for each fault class, the set of earliest SS-inconsistent transitions is
computed, and these transitions are then removed from the given program.

Given a fault-intolerant program p with safety specification S.S, and n
fault classes F} ... F),, the idea is to transform p into a program p,, that is fail-
safe fault-tolerant to F ... F, with perfect detection and minimal detection
latency to each fault class, by first considering fault class Fi, then Fy until F),
is considered. Specifically, given a fault class F;, and a program p; ;1 that is
fail-safe fault-tolerant with perfect detection, and minimal detection latency
to fault classes Fy ... F; 1, p;_1 is transformed into a program p; which is
fail-safe fault-tolerant with perfect detection, and minimal detection latency

to F;, while preserving the fail-safe fault tolerance with perfect detection and

120 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

minimal detection latency of p;_1 to Fy ... Fj.

Apart from having to verify non-interference between a program p; 1
and the new detector components for F5, we also need to verify that the
perfect detection, and minimal detection latency of program p; 1 to fault
classes F} ... F;_1 are not interfered with when adding fail-safe fault toler-
ance with perfect detection, and minimal latency to F>. Thus, the set of
non-interference conditions, presented in Section 6.2, is extended with those
conditions that guarantee that no interference exists between the new de-
tector components for F;, and the minimal detection latency of p;_; to fault
classes Fy...F;_1.

In this section, we show the stepwise addition of fail-safe fault tolerance
with perfect detection, and minimal detection latency to two fault classes
Fy and F5. The procedure can be easily generalized to n fault classes.

Note: In this section, whenever it is clear from the context, we will
use the term “fail-safe fault-tolerant program (fail-safe fault tolerance)” to
mean “fail-safe fault-tolerant program (fail-safe fault tolerance) with perfect

detection, and minimal detection latency”.

Step 1 in Design of Efficient Multitolerance

Given are: (i) A fault-intolerant program p with safety specification
SS, and (ii) fault classes Fj...F, to be tolerated. To transform p into
a program p; that is fail-safe fault-tolerant to Fi, set eit; of earliest SS-
inconsistent transitions for p in presence of faults F; is computed, and this
set of transitions is then removed from p. The program p; obtained is fail-
safe fault-tolerant, with perfect detection, and minimal detection latency to

Fy. This first step is shown in Fig 6.9.

Proposition 6 Program p; is fail-safe fault-tolerant, with perfect detection,

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 121

eit; := get-eit(p, F1, ss)

p1:=p)\ eit

Figure 6.9: The first step in the design of multitolerant programs with

perfect detection and minimal latency.

and minimal detection latency to Fy.

Proof. The proof is based on Lemmas 5, 6 and 7, which ensure that p;
satisfies its safety specification in presence of F7, and have perfect detection,
and minimal latency to F}. O

We now need to show that this construction of p; satisfies the non-
interference properties defined in Section 6.2.

First, we need to prove that “In the absence of Fy, the detector compo-
nents added to p do not interfere with p, i.e., each computation of p is in the
problem specification even if it executes concurrently with the new detector
components”.

Proof.

1. From Lemma 7, p; and p have the same behavior in the absence of

faults.

2. From step 1, each computation of p is in the problem specification even
if p executes concurrently with the detector components for fail-safe

fault tolerance to Fj.

3. From step 3, the detector components for fail-safe fault tolerance to

F1 do not interfere with p.

O
Secondly, we need to prove that “In the presence of faults Fy, each com-

putation of the detector components is in the components’ specification even

122 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

if they execute concurrently with p, i.e., p does not interfere with the new
detector components.”.

Proof.
1. From Prop 6, p; is fail-safe Fi-tolerant.

2. From step 1, each computation of the detector components for fail-
safe fault tolerance to F} is in their specification even if they execute

concurrently with p

3. From step 3, p does not interfere with the detector components for

fail-safe F}-tolerance.

O

In fact, these two non-interference conditions are guaranteed by construc-
tion of p; since the synthesis method is identical to algorithm add-efficient-
fail-safe(p, F1,ss). It is also guaranteed that p; has perfect detection, and

minimum detection latency to Fj.

Step 2 in Design of Efficient Multitolerance

Next, fault class F; is considerd, and program p; (which is fail-safe fault-
tolerant to F1) is transformed into a program ps that is fail-safe fault-tolerant
to F5, while preserving the fail-safe fault tolerance to Fj, i.e., program
po is fail-safe Fp, Fo-tolerant. To achieve this, the set eity of earliest SS-
inconsistent transitions for p in presence of faults F5 is computed, and these
transitions are removed from program p; to obtain program ps. Program
po, designed as such, is fail-safe fault-tolerant, with perfect detection, and
minimal detection latency to both Fj, and F5. The design of py is shown in

Fig 6.10.

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 123

eity 1= get-eit(p, Fy, ss)

p2 = p1 \ eity

Figure 6.10: The second step in the design of multitolerant programs with

perfect detection and minimal latency

Proposition 7 (Fail-safe fault tolerance of ps to F») Given a fault-
intolerant program p with safety specification SS, two fault classes Fi and
Fy, and a program py which is fail-safe fault-tolerant to Fii.e., fail-safe Fy-
tolerant. Then, po = p1\get-eit(p, F, ss) (i) is fail-safe fault-tolerant to Fs,
(7i) has perfect detection in presence of Fa, and (iii) has minimal detection

latency in presence of F.

Observe that the set eits is the set of earliest SS-inconsistent transitions
for p in presence of F5, but to obtain program ps, the set eity needs to be
removed from program p;.

To prove the correctness of such a step, we need to prove the following:

1. Program ps is fail-safe fault-tolerant to F with perfect detection, and

minimal detection latency, i.e., we prove Proposition 7.

2. We need to fail-safe fault-tolerance to F7 in presence of F; is preserved,

as explained in Section 6.2.

3. We need to prove that the perfect detection, and minimal detection

latency of p; to Fi is preserved

First, we prove that po is fail-safe fault-tolerant to Fj.

Proof.
1. Given: po = p1\get-eit(p, Fa, ss)

2. There are two cases to consider:

(i) 37 € get-eit(p, Fz,ss) and T € p,

124 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE
(ii) 31 € get-eit(p, Fp,ss) and 7 & 6p,

3. (i) From step 3(i), 7 & dp, since T € get-eit(p, Fy, ss) and po = pi\get-
eit(p, Fa, ss)
(ii) From step 3(ii), 7 & 0p, since 7 & dp,, and po = pi1\ get-
eit(p, Fy, ss)

4. From step 3, V7 € get-eit(p, F, ss), T & dp,-

5. From step 4 and from Defs. 37 and 44, and construction of get-eit, bad

transitions in ss reachable in presence of F5 can no longer be reached.

6. From step 5, po is fail-safe fault-tolerant to F.

O
We now prove the second part of Proposition 7: po has perfect detection
to Fb.
Proof.

1. Given: po = p;\get-eit(p, Fa, ss)
2. From Prop. 7 (i), p2 is fail-safe fault-tolerant to F»
3. From step 3, no computation of py in presence of Fy will violate SS.

4. From step 3, the new detector components for fail-safe fault tolerance

to F5 are complete.

5. From step 3 and Def. 44, all 7 € get-eit(p, F», ss) are SS-inconsistent

for p

6. From step 5, the new detector components for fail-safe fault tolerance

to Fy are accurate.

7. From steps 4, and 6, the new detector components for fail-safe fault

tolerance to Fy are perfect.

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 125

O
We now prove the third part of 7: p2 has minimal detection latency to
Fy.
Proof.

1. Given: po = pi1)\ get-eit(p, F», ss)
2. From Prop. 7 (i), V1 € get-eit(p, Fa,ss), T & 0p,

3. From step 3, po has detection latency 0, i.e., minimal detection latency,

to FQ.

0 We have proved that this way of designing fail-safe fault tolerance to F»
is correct, and that p, has perfect detection, and minimal detection latency
to Fy.

However, we have yet to show that the construction preserves the fail-safe
fault-tolerance to F1, i.e., we need to verify that there are no interference.

To achieve this, we first need to prove that “In the absence of F1 and F5,
the detector components added to p1 for fail-safe fault tolerance to Fy do not
interfere with py1, i.e., each computation of p1 is in the problem specification
even if it executes concurrently with the new detector components”.

Proof.
1. From Prop. 7 (ii), po has perfect detection to F.

2. From step 1, the new detector components for fail-safe fault tolerance

to Fy are perfect in p;.

3. From step 3 and Lemma. 1, the new detector components for fail-safe

fault tolerance to Fy do not interfere with py.

O
We now prove the second part of the non-interference conditions, which

is “In the presence of Fy, the new detectors for fail-safe fault tolerance to

126 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

Fy do not interfere with the fail-safe Fi-tolerance of p1, i.e., every compu-
tation of p1 is in the fail-safe Fy-tolerance specification even if p1 executes
concurrently with the new components.”

Proof. We prove this by contradiction. We first assume that there exists
a computation in presence of Fi that violates safety, and show that such a

computation cannot exist, i.e., a contradiction.

—

. Given p2 = p1\get-eit(p, Fy, ss)

2. Assume that there is a computation « in presence of F that violates

safety
3. From step 3 and Proposition. 2, a contains a bad transition 7.

4. From step 3 and by construction of p;, 7 is not reachable in presence

of Fl.

5. From step 4, and by construction of ps, no new transition is introduced,

hence 7 is still unreachable.

6. From steps 3, 4 and 5, we have a contradiction.

O

The proof of the third part, which is “In the presence of Fy, p1 does not
interfere with the new detectors that provide fail-safe fault tolerance to F».”
Proof. By Proposition 7(i), p1 does not interfere with the new detector
components. O We have
proved that the new added components to p; adds fail-safe fault tolerance
with perfect detection, and minimal detection latency to F5, and that this
addition preserves the fail-safe fault tolerance to F;. Thus, we now need to
prove that, in presence of Fi, the perfect detection, and minimal detection

latency of p; to F is preserved.

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 127

Proof. We prove that perfect detection to F; is preserved in presence of

F;.
1. Given: po = p1)\ get-eit(p, Fs, ss)
2. From the first design step, p; has perfect detection to F;

3. By construction, the new detector components for F5 do not interfere
with fail-safe fault tolerance of p; to Fi, hence completeness of detector

components for F} is preserved.

4. From Def. 38, every transitions 7 € get-eit(p, Fa, ss) is S.S-inconsistent

for p.

5. From step 4, and by construction, no SS-consistent transition is re-

moved, hence accuracy of the detector components for F} is preserved.
6. From steps 3, and 5, perfect detection is preserved.

O
Proof. We now prove that minimal detection latency to F} is preserved

in presence of Fj.
1. Given: po = p1\ get-eit(p, Fo, ss)
2. From step 1, no transition is added.
3. From step 3, set eit; is still “removed”

4. From step 3, minimal detection latency to Fi is preserved.

O
We have, at this point, proved the correctness of the transformation step
of program p; into program po. The procedure of adding fail-safe multitol-

erance can be easily generalized for n fault classes.

128 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

The algorithm to design fail-safe multitolerance to n fault classes, with

perfect detection, and minimal detection latency is shown in Fig. 6.11.

add-efficient-fail-safe-multitolerance(p, [F] ... Fy], ss: set of transi-

tions):

{i==1po:=p

while (i < n) do {
eit; :== get-eit(p, F;, ss);
pi == pi—1 \ eit;;
i:=i+1;} od

return(py,)}

Figure 6.11: Algorithm add-efficient-fail-safe-multitolerance adds fail-safe
fault tolerance to n fault classes, with perfect detection, and minimal detec-

tion latency to every fault class

Theorem 15 (Synthesis of Efficient Multitolerance) Given a fault-
intolerant program p with safety specification SS, and n fault classes
Fy ... F,. Algorithm add-efficient-fail-safe-multitolerance adds fail-safe fault
tolerance to Fy ... F, to p, with perfect detection, and minimal detection la-

tency to all fault classes.

6.3.5 A Simple Example

One-at-a-Time Addition of Fail-Safe Fault Tolerance with Perfect

Detection and Minimal Detection Latency

In this section, we will present a small example to illustrate the workings
of algorithm add-efficient-fail-safe-multitolerance. For continuity, we reuse

the same example as before. The fault-intolerant program is identical to the

6.3. ONE-AT-A-TIME DESIGN OF MULTITOLERANCE 129

program of Fig 6.5, and is depicted in the presence of Fi. Recall that, for
this program, transitions (10,11) and (20,21) are bad transitions.

During the first iteration through algorithm add-efficient-fail-safe-
multitolerance, the call to get-eit causes transitions (7,8), (18,19) and
(19,20) to be tagged as earliest SS-inconsistent transitions. These tran-
sitions are then removed from the fault-intolerant program. The resulting
fail-safe fault-tolerant program p; has perfect detection, and minimal detec-
tion latency to Fj. Program p; in presence of F} is shown in Fig. 6.12.

Bad transition specmed by the safety specification

H@e@ﬁ@
/@@@@@@
i @@0@@

@) o) (@)

Figure 6.12: Resulting fail-safe fault-tolerant program with perfect detec-

tion, and minimal detection latency to £}

Then, we consider program p; in presence of F5, as shown in Fig. 6.13

In the second iteration through add-efficient-fail-safe-multitolerance, we
need to add fail-safe fault tolerance with perfect detection, and minimal
detection latency to F5 to p;, while preserving the fail-safe fault tolerance
with perfect detection, and minimal detection latency of p; to Fi. First, we
consider p; in presence of Fy, as shown in Fig. 6.13. The call to add-efficient-
fail-safe-multitolerance causes transitions (9, 10), (17, 18), (20, 21) to be con-
sidered as earliest S'S-inconsistent transitions.

Observe that the call to add-efficient-fail-safe-multitolerance in the sec-

ond iteration refers to the fault-intolerant program p, instead of p;. This

130 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

Bad transition specn‘led by the safety specification

ofororcls
/@@@@@@
O T CRC
DEONORORD

Figure 6.13: Program p; in presence of F»

is so because had the call referred to pi, transition (17, 18) would not have
been included. Given that transition (19,20) has been removed in the first
iteration, if p; is referred to, then no path from a fault transition of F5 to
a bad transition, using only only program transitions, would be observed,
i.e. no path from transition (17,18) to bad transition using only program
transitions would be observed. So, transition (17,18) would not have been

included as an earliest S.S-inconsistent transition.

The resulting fail-safe multitolerant program py to fault classes F; and
Fy with perfect detection, and minimal detection latency to both is shown

in Fig. 6.14.

In this section, we have considered the approach where fault classes
are considered in some fixed total order, and presented two algorithms that
automates the addition of multitolerance. Another possible design approach

for multitolerance considers all fault classes at the same time.

In the next section, we present two algorithms that add multitolerance,

while considering all fault classes at the same time.

6.4. ALL-AT-A-TIME DESIGN OF MULTITOLERANCE 131

Bad transition specmed by the safety specification

oforolcls
/p@@@@@
N CRORCECRC

DNORORONO

Figure 6.14: Resulting fail-safe fault-tolerant program ps in presence of F5

6.4 All-at-a-time Design of Multitolerance

In the previous section (Section 6.3), we presented two algorithms that syn-
thesize fail-safe multitolerant programs to n fault classes, by considering
one fault class at a time. The first algorithm ensures that the resulting fail-
safe multitolerant program has perfect detection to all fault classes, while
the second algorithm ensures that the multitolerant program has perfect

detection, and minimal detection latency to all fault classes.

In this section, we consider another design approach where all the fault
classes are considered at the same time, and we present two algorithms
based on this design approach that achieve the same goals as the algorithms
of Section 6.3. The first algorithm yields fail-safe multitolerant programs to
n fault classes Fi ... Fn with perfect detection, by considering all the fault
classes at the same time, while the second algorithm, that again handles
all fault classes at the same time, yields fail-safe multitolerant programs
to fault classes F} ... F, with perfect detection, and minimal latency. We
also show that fail-safe multitolerant programs obtained from corresponding
algorithms of either design approach are identical. We further exploit this

relation to prove properties of the fail-safe multitolerant programs obtained

132 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

using the algorithms presented in this section.

Design of multitolerance while considering all fault classes at the same
time still requires the verification of non-interference between the different
program components. Since all fault classes are considered at the same
time, adding fault tolerance to one fault class entails verification that the
new detector components do not interfere with the fail-safe fault tolerance to
all other fault classes. This problem is tackled by showing that the fail-safe
multitolerant program obtained using the all-at-a time algorithm is identical
to the fail-safe multitolerant program obtained by using the corresponding

one-at-a-time algorithm.

6.4.1 Multitolerance with Perfect Detection

In this section, we present an algorithm that adds fail-safe multitolerance
with perfect detection to fault classes Fj ... F), by considering fault classes
at the same time.

The algorithm,add-perfect-fail-safe-multitolerance-all, is shown in

Fig. 6.15.

add-perfect-fail-safe-multitolerance-all(p, [F; ... Fy,], ss: set of

transitions):

{ cobegin
||y ssr, :=get-ssr(p, Fj, ss); coend

_ n
sspi=Jjq SSr;

return(p, :=p\ ss,)}

Figure 6.15: Algorithm add-perfect-fail-safe-multitolerance-all adds fail-safe
fault tolerance to n fault classes, with perfect detection to every fault class

by considering all fault classes at the same time.

6.4. ALL-AT-A-TIME DESIGN OF MULTITOLERANCE 133

Theorem 16 Given a fault-intolerant program p with safety specifica-
tion SS, and n fault classes Fy...F,. Algorithm add-perfect-fail-safe-
multitolerance-all adds fail-safe fault tolerance to Fy ... F,, with perfect de-
tection to all fault classes, while considering all fault classes at the same

time.
To prove this, we make the following observation.

Proposition 8 Given a fault-intolerant program p with safety specifica-
tion SS, and n fault classes F; ... F,. Given two programs p, == add-
perfect-fail-safe-multitolerance (p,[Fi ... Fy)),ss, and pl, :=add-perfect-fail-

safe-multitolerance-all(p, [Fy ... F,),ss). Then, p, = pl,.
To prove the above proposition, we need to show the following:

1. Every transition removed in p,, is also removed in p,.

2. Every transition removed in p/, is also removed in p,.

Proof. We consider any given transition 7 that is removed in p,,.
1. 7 is removed in p,
2. From step 1, 3i: 1 <i < n: 71 €get-ssr(pi_1, Fj, $3)

3. From step 3 3 a computation « of p;_1 in presence of F; s.t 7 occurs

n «

4. From step 3 « is also a computation of p in presence of F; and 7 occurs

n «

5. From step 4, and by construction of p,, 7 is removed in p,

We now prove the second part:

134 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

Proof. We prove this by contradiction, i.e., we assume there is a transi-

tion 7 that is removed in p], but not in p,, and show a contradiction.
1. 3 :1<4<n:7 €eget-ssr(p, Fj, ss)

2. From step 1, there exists a comptutation « of p in presence of F; s.t 7

occurs in q.

3. Since T & dp,,, Vi : 1 <14 <mn, T is not reachable by p;_; in presence of

F,

4. By counstruction of p;_1,7 > 1, either 7 is also unreachable by p in

presence of F;, or 7 is already removed from p,
5. From assumption, steps 3, and 4, we have a contradiction.

O

Thus, we have proved that algorithms add-perfect-fail-safe-multitolerance
and add-perfect-fail-safe-multitolerance-all yield identical fail-safe multitol-
erant programs with perfect detection. We present a simple example in the

next section to illustrate the working of the algorithm.

6.4.2 A Simple Example

All-at-a-Time Addition of Fail-Safe Fault Tolerance with Perfect

Detection

Again, we use the same example as before to illustrate the working of
algorithm add-perfect-fail-safe-multitolerance-all. The fault-intolerant pro-
gram in presence of F; and Fy is shown in Figs. 6.16 and 6.17 respectively.

In the presence of Fj, bad transitions (10,11),(20,21) are reachable,
while in the presence of Fy, the same set of bad transitions is reachable (call

to get-ssr). These transitions are then removed from the program to yield

6.4. ALL-AT-A-TIME DESIGN OF MULTITOLERANCE 135

Bad transition specmed by the safety specification

HQO@Q@
/@@@@@@
i @@0@@

(@) Y o)

Figure 6.16: Fault-intolerant program in presence of F;

Bad transition specmed by the safety specification

@ .@ @ __, program transition in absence of faults
F2 (reachable transition)
_ _» program transition in presence of faults
@‘@@‘@‘@‘@ (reachable transition in the presence of faults)

. fault transitionsF1 and F2

I;;f' @ ’@ ” ’@ " - » Badtransition specified by safety specification

Figure 6.17: Fault-intolerant program in presence of Fj

a fail-safe fault-tolerant program with perfect detection to both F; and F5,

as shown in Fig. 6.18.

Observe that the resulting program in Fig. 6.18 is identical to the pro-
gram shown in Fig. 6.8 (obtained using the approach that considers fault

classes one at a time).

In the next section, we present an algorithm that adds fail-safe fault
tolerance to n fault classes Fi ... F,, with perfect detection, and minimal
detection latency to all fault classes, while considering all fault classes at

the same time.

136 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

NOSOZO0SONC
/@@@@@@
el () (0

DEOEOEONC

Figure 6.18: Resulting fail-safe multitolerant program ps to F; and Fy with

perfect detection to both fault classes.

6.4.3 Multitolerance with Perfect Detection and minimal de-

tection latency

In this section, we present an algorithm that adds fail-safe multitolerance
to fault classes F ... F,,with perfect fault detection, and minimal detection
latency, while considering all fault classes at the same time.

The algorithm,add-efficient-fail-safe-multitolerance-all, is shown in

Fig. 6.19.

Theorem 17 Given a fault-intolerant program p with safety specifica-
tion SS, and n fault classes Fy...F,. Algorithm add-efficient-fail-safe-
multitolerance-all adds fail-safe fault tolerance to Fi ... F,, with perfect de-
tection, and minimum detection latency to all fault classes, while considering

all fault classes at the same time.
To prove this, we make the following observation.

Proposition 9 Given a fault-intolerant program p with safety specification
SS, and n fault classes Fi ... F,. Given two programs p, :== add-efficient-
fail-safe-multitolerance (p,[Fi ... F,]),ss, and p, :=add-efficient-fail-safe-
multitolerance-all(p, [F} ... F,],ss). Then, p, = pl,.

6.4. ALL-AT-A-TIME DESIGN OF MULTITOLERANCE 137

add-efficient-fail-safe-multitolerance-all(p, [F} ... F},], ss: set of

transitions):

{ cobegin
||, eit; :=get-eit(p, F}, ss); coend
eit := (Ui, eit;

return(p, :=p \ eit)}

Figure 6.19: Algorithm add-efficient-fail-safe-multitolerance-all adds fail-
safe fault tolerance to n fault classes, with perfect detection, and minimal
detection latency to every fault class by considering all fault classes at the

same time.

To prove the above proposition, we need to show the following;:

1. Every transition removed in p,, is also removed in p),.

2. Every transition removed in p/, is also removed in p,,.

Proof. The proof is trivial, by construction.

1. In both constructions, the set eit; is computed in the same way, and

then removed.
2. From step 1, every transition removed in p,, is also removed in p/,

3. From step 1, every transition removed in p/, is also removed in pj,

6.4.4 A Simple Example

One-at-a-Time Addition of Fail-Safe Fault Tolerance with Perfect

Detection and Minimal Detection Latency

138 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

As before, we reuse the same example to illustrate the working of al-
gorithm add-efficient-fail-safe-multitolerance-all. The fault-intolerant pro-

gram in presence of F; and Fy is shown in Figs. 6.20 and 6.21 respectively.

NoTososer
JorcrOR0S0R0
m (@) o

o et

Figure 6.20: Fault-intolerant program in presence of Fy

Bad transition sp;ified by the safety specification
- _ _ __, program transition in absence of faults
F2 (reachable transition)
_ _» Pprogram transition in presence of faults
@‘@‘@‘@‘@4@ (reachable transition in the presence of fauilts)
F2

» fault transitionsF1 and F2

;];La/ @ @ " '@ " — » Badtransition specified by safety specification
) @) @

Figure 6.21: Fault-intolerant program in presence of Fj

In the presence of F}, transitions (7,8),(18,19),(1,20) considered ear-
liest SS-inconsistent transitions, while in the presence of Fy, transitions
(9,10), (17,18), (20,21) are earliest SS-inconsistent transitions. These tran-
sitions are then removed from the program to yield a fail-safe fault-tolerant
program with perfect detection to both F; and F5, as shown in Fig. 6.22.

Observe that the resulting program in Fig. 6.22 is identical to the pro-

gram shown in Fig. 6.14 (obtained using the approach that considers fault

6.5. CHAPTER SUMMARY 139

Bad transition speuhed by the safety specification

° @ __, program transition in absence of faults
FL R (reachable transition)
_ » program transition in presence of faults
@‘@‘@‘@‘@‘@ (reachabletransition in the presence of faults)
F2

. fault transitionsF1 and F2

In|t|a| @ @ @ — » Badtransition specified by safety specification
o) | ‘)

Figure 6.22: Resulting fail-safe multitolerant program ps to Fi and F, with
perfect detection and minimal detection latency to both fault classes when

considering all fault classes at the same time.
classes one at a time).

6.5 Chapter Summary

In this chapter, we have presented four different algorithms that yields fail-
safe multitolerant programs, with various efficiency properties, such as per-
fect detection, and minimal detection latency for all fault classes, using
different design approaches.

We have considered two possible approaches for the design of multitol-
erance, namely (i) one that considers one fault class at a time, and (ii)
another that considers all fault classes at the same time. We first consid-
ered the approach which adds multitolerance by considering one fault class
at a time, and we presented two algorithms, namely add-perfect-fail-safe-
multitolerance, and add-efficient-fail-safe-multitolerance, which add fail-safe
multitolerance to a previously fault-intolerant program, with various optimal
properties. We explained that, during the addition of multitolerance, some

non-interference conditions between different program components need to

140 CHAPTER 6. DESIGN OF EFFICIENT MULTITOLERANCE

be verified. However, we extended the proof obligations to include non-
interference with the efficiency properties of the program. When fail-safe
multitolerance with perfect detection is added, the non-interference condi-
tions are similar to those proposed by Arora and Kulkarni in [AK98a], and
are guaranteed by the use of algorithm add-perfect-fail-safe-multitolerance.
For provision of fail-safe multitolerance with perfect detection, and mini-
mal detection latency, we verified non-interference between various program
components, as well as verified that those efficiency properties are not com-
promised.

We then considered the approach where all the fault classes are handled
at the same time. We provided two algorithms, namely add-perfect-fail-safe-
multitolerance-all, and add-efficient-fail-safe-multitolerance-all that add fail-
safe multitolerance with perfect detection, and perfect detection and min-
imal detection latency respectively to an initially fault-intolerant program.
We show that the corresponding fail-safe multitolerant programs are identi-
cal to those obtained using the one-at-a-time design approach. This means
that all non-interference conditions are satisfied, as well as optimal proper-
ties preserved.

The algorithms based on the one-at-a-time approach can be used to add
fault tolerance to new fault classes. Specifically, assume a fail-safe fault-
tolerant program F), to n fault classes F; ... F),. If fail-safe fault tolerance
to fault class Fi, 1 needs to be added, those algorithms can be used, without
having to recompute the fail-safe fault tolerance to all the other fault classes.
On the other hand, the algorithms based on the all-at-a-time approach can
be used when a fault class is re-defined, or removed. Also, this also means
that for fail-safe multitolerance, efficiency properties such as perfect detec-

tion can be designed for all fault classes.

Chapter 7

Conclusion and Future Work

In this thesis, we have presented a framework for the design of efficient fail-
safe fault tolerance. Such an approach is bound to raise several questions.
We first address some of the issues raised in Section 7.1. In Section 7.2, we
summarize the contributions made in this thesis, and we discuss their impact

in Section 7.3. In Section 7.4, we outline some possible future avenues.

141

142 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.1 Discussion

In this section, we address some of the issues our approach has raised.

Arora and Kulkarni [AK98c] also give a formal definition of de-
tectors. Isn’t every detector according to Arora and Kulkarni a
perfect detector? No. Arora and Kulkarni [AK98c, AK98a| define a de-
tector to be a component which relates two predicates with each other: a
detection predicate X (describing the presumed “bad” state like the crash
of a process), and a witness predicate Z (indicating that this state holds).
The safeness condition of the detector [AK98a] mandates that Z = X, i.e.,
the witness is never wrong, while the progress and stability conditions of
the detector [AK98a] mandates that if X is true for long enough, Z will
eventually witness this fact and it will do this until X is falsified again. If
the detection predicate can be evaluated atomically by the processes, then
the detection predicate can be equivalent to the witness predicate. How-
ever, a detector does not necessarily guarantee that the detection predicate
has any meaningful connection to the correctness specification. So even if
the witness predicate is equivalent to the detection predicate, there is no
guarantee that it detects bad or inconsistent states with respect to a safety
specification.

However, Arora and Kulkarni [AK98a| prove that for any safety specifi-
cation and every action there exists a detection predicate such that execut-
ing the action when the predicate holds maintains the specification. They
also indicate that a weakest predicate may exist. However, they do not
explain how such predicates (detectors) can be obtained. Our theory gives

a guideline how to find this weakest detection predicate d. Assuming that

7.1. DISCUSSION 143

d = X = Z, every detector in the sense of Arora and Kulkarni is perfect.
Further, in the sense of Arora and Kulkarni, the weakest predicate exists for

critical actions, while in our case, we make no such distinction.

How do perfect detectors in our work compare to Chandra and
Toueg’s perfect failure detectors? There is a close relationship be-
tween our terminology and that of the failure detector theory of Chandra
and Toueg [CT96]. Kulkarni [Kul99] argues that these failure detectors can
be regarded as an instance of detectors in the sense of this paper. The ac-
curacy property of Chandra and Toueg also limits the number of mistakes a
detector can make. The completeness property of Chandra and Toueg also

refers to the ability of a detector to detect all faults.

In this paper, we have assumed bounded programs, i.e., programs
with finite state space. What is the impact if the program is
unbounded? If unbounded programs are considered, the method has to
deal with an infinite state space and in the worst case loses completeness,
i.e., it may not terminate. However, the method remains sound. This is
analogous to the situation in the area of model checking where the failure
to invalidate the specification on any finite subset of the state space says
nothing about satisfaction of the specification on an infinite state space.
Because our method is transition-based, unfortunately, it does not allow to
reason directly on the level of guarded command programs, which can be

regarded as a finite representation of an infinite transition system.

In this paper, we provided an algorithm for automating design
of fail-safe fault tolerance. Is it efficient? Can the theory be
used as a stand-alone? There are two main contributions of the present

work: Firstly, the transformation algorithm automates the addition of fault-

144 CHAPTER 7. CONCLUSION AND FUTURE WORK

tolerance and is efficient in the sense that it has polynomial time complexity
in the “size” of the specification (the number of bad transitions) and the
“size” of the program (the number of reachable transitions). If the program
is given as a guarded command program, it must first be translated into a
state machine.

Secondly, we provided a theory which allowed the derivation of the trans-
formation algorithm and is used to prove its correctness. The theory can
be regarded as a refinement of the detector theory of Arora and Kulkarni
[AK98c] and better explains the working principles of detectors, e.g., allows
a natural way to formulate and explain accuracy and completeness prop-
erties. For example, Leveson et al. [LCKS90] observed that the efficiency
of a detector is dependent on its location, i.e., which action the detector
monitors. Our theory contributes to this by proving that it is sufficient to
monitor critical actions with perfect detectors for fail-safe fault tolerance.
This saves the programmer of having to try different detectors at different

locations to add fail-safe fault tolerance.

Kulkarni and Arora [KAO0O] presented an algorithm which also
solves the transformation problem defined in Section 4.3. Isn’t
this algorithm the same as the algorithm presented in this paper?
No. The algorithm by Kulkarni and Arora [KA00] also works on the state-
transition representation of the pogram but does more work than absolutely
necessary: by adding detectors, it also removes non-reachable transitions
from the transition relation. So while the effect of the transformation is the
same, the form of the added detectors is different. The ability to formulate

this difference is one of the contributions of our theory.

In this paper, we made use of bad transitions. How are those

transitions obtained? Is the generation process computationally

7.1. DISCUSSION 145

expensive? If the safety specification is given as a state invariant, i.e.,
a predicate ¢ on system states (without using history variables), then it is
relatively easy to compute the set of bad transitions. For this, it is just nec-
essary to inspect all possible transitions (s, s’) and check whether s satisfies
¢ and s’ satisfies —¢. This is feasible if the set of transitions is bounded. In
practice, most safety specifications are state invariants.

Not every safety specification can be represented as a predicate on system
states, even if it is fusion-closed. As an example, consider a system consisting
of three states s1, s9, s3 and the correctness specification SS = {s1 - s - s3}.
There is no “bad state” in this program, but there is a bad transition (sq, s3).
We are not aware of any method to efficiently calculate these transitions
from an abstract representation of the specification (e.g., a temporal logic

formula).

In the definition of SS-inconsistency, there exists a sequence of
program transitions after the occurrence of faults that eventually
lead to violation of safety. What is the impact of such a require-
ment? In the definition of SS-inconsistency, we require that there exists
a sequence of program transitions that eventually lead to violation of safety.
The reason behind this requirement is based on the fact that fault cannot
directly violate safety, which can then only be violated by a (bad) program
transition. Thus, when safety is violated, at least one program transition
is executed (which is the bad transition itself). However, depending on the
fault model, there can then be a sequence of program transitions that ul-
timately leads to the bad transition being executed. Also, the reason for
considering only when there exists a sequence of program transitions that
ultimately lead to safety violation is that one can prevent (bad) program
transitions from occurring, however this is not possible for fault transitions.

The impact of such a requirement is that it allows the definition of the

146 CHAPTER 7. CONCLUSION AND FUTURE WORK

earliest S.S-inconsistent transition that underpins fast detection. If such a
requirement is “removed”, then assuming that a fault transition is an “ear-

liest inconsistent transition”, one cannot prevent it from occuring.

Can the algorithm add-perfect-fail-safe be used to synthesize fail-
safe fault-tolerant programs with perfect detection, and optimal
detection latency? We have shown through examples how the use of
algorithms add-perfect-fail-safe, and add-efficient-fail-safe yield the same
results for distributed algorithms. However, for other classes of programs,
the results will be different.

But, there is a sense in which algorithm add-perfect-fail-safe is equivalent
to algorithm add-efficient-fail-safe. Since all §S-inconsistent transitions can
possibly lead to safety violation, then if we treat each such SS-inconsistent
transition as bad, then the set ss of bad transitions is extended to include
the set of transitions that are SS-inconsistent for p. Then, since all ear-
liest inconsistent transitions are SS-inconsistent, they are also included in
set ss. Running algorithm add-perfect-fail-safe thus removes the earliest
inconsistent transitions, which then gives the same result as that when
running algorithm add-efficient-fail-safe. However, the set eit of earliest
inconsistent transitions still needs to be determined. That is, algorithm
add-efficient-fail-safe can call add-perfect-fail-safe for generation of efficient

fail-safe fault-tolerant programs.

Is our assumption of such a fault model as assumed in this thesis
valid? What it the impact of choosing a fault model where faults
can directly violate safety? In this thesis, we have assumed fault models
that can be tolerated. Specifically, we have discarded fault models where
faults can directly lead to violation of safety. We can analyze the impact of

such an assumption for two general cases.

7.2. SUMMARY OF RESEARCH CONTRIBUTIONS 147

In the case of distributed algorithms, it is seldom the case that faults
can lead directly to violation of safety. To see this, consider, for example,
a mutual exclusion protocol. When one process is executing in its critical
section, even if a fault happens, the fault cannot just cause another process to
start accessing its critical section. The fault can however cause the process
to enter its critical section, by “enabling” a transition which would have
otherwise been disabled. Kulkarni and Ebnenasir termed such specifications

as fault-safe specifications [KE02].

For the case of embedded applications, such a fault model is still valid.
For example, the output register can be replicated in such a way that the
probability of more than a majority of registers being corrupted is always 0.

However, this ensures that safety is never violated by faults.

If we allow faults to directly violate safety, then our algorithms can be
extended to deal with such a case. When designing fail-safe fault tolerance,
we need to take steps to prevent the program from reaching those states
from where faults can directly violate safety. If such faults can occur from
any state, then we need to prevent the program from reaching any state,

i.e., there is no fail-safe fault-tolerant program.

7.2 Summary of Research Contributions

In this section, we present brief summaries of the main contributions made
in this thesis. The aim was to develop a framework that can allow systematic
development of efficient (fail-safe) fault-tolerant programs, where efficiency
was characterized by such commonly-used metrics as detection coverage and

detection latency.

148 CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2.1 Perfect Detection

In Chapter 4, we developed a theory of detectors, and identified a class
of detectors, called perfect detectors, that are crucial in the design of fail-
safe fault-tolerant programs. The theory is believed to capture the working
principles of detectors better than before. We showed, among others, that
composing critical actions of a program with perfect detectors ensures fail-
safe fault tolerance in presence of faults, i.e., composing critical actions of a
program with perfect detectors is sufficient to ensure fail-safe fault tolerance.
We also showed that, in the absence of faults, liveness is not compromised.
In practical terms, this means that, whenever an error is flagged, there is a
“harmful” error in the system, i.e., it is not a false alarm. We have presented

examples to show the viability of our approach.

As indicated by Leveson et.al in [LCKS90], the design of “effective”
detectors is problematic, and the effectiveness is heavily reliant on the
experience of the software designers/programmers. Though the authors
of [LCKS90] did not explicitly indicate what they meant by “effectiveness” of
detectors, we have shown that “effectiveness” is captured by the complete-
ness, and accuracy properties of detectors. To lessen the impact of such
requirements as experience of programmers on the design of effective detec-
tors, we provided an algorithm that yields a fail-safe fault-tolerant program
with perfect detection, by composing the critical actions of the correspond-
ing fault-intolerant program with perfect detectors. This is achieved by

removing those bad transitions that are reachable in presence of faults.

In general, to validate the fault tolerance mechanisms incorporated in a
program, fault injection experiments [IT96, AAA190] are usually conducted.
In particular, they are used to quantify the coverage of the mechanisms,
such as in [Hil00], where the coverage is the ratio of the number of faults

detected to the number of faults injected. However, by design, the fail-safe

7.2. SUMMARY OF RESEARCH CONTRIBUTIONS 149

fault-tolerant programs obtained from the algorithm has “perfect” coverage,
since the detectors are perfect.

We have also shown that the automatic synthesis of fail-safe fault-
tolerant programs has polynomial time complexity in the size of the state

space of the fault-intolerant program.

7.2.2 Fast Detection

In Chapter 5, we developed a theory of fast detectors, and identified a class
of detectors, called fast detectors, that ensures minimal detection latency, as
well as perfect detection. The idea behind fast detection is to prevent errors
from propagating and corrupting the entire state of the program. However,
when designing fast detectors, one problem can be that these fast detectors
are not perfect. We have therefore identified the class of fast detectors that
ensures both perfect detection, and minimal detection latency.

As before, design of effective detectors is problematic. Also, when design-
ing fault-tolerant systems, when fault injection experiments are conducted
to determine the effectiveness of the fault tolerance mechanisms, detection
latency of these mechanisms is usually evaluated, and is taken to be the
minimum time between the onset (injection) of a fault and its detection.
Fault injection experiments can be a computationally expensive process to
evaluate detection latency. Thus, to tackle the problem of designing perfect
detectors while ensuring minimal detection latency, we provided an algo-
rithm that achieves that. By construction, the detection latency of the

fail-safe fault-tolerant program to the fault class is 0 (minimal).

7.2.3 Design of One-at-a-time Multitolerance

Building upon the design of perfect and fast detectors, we aimed at gen-

eralizing the results to deal with multiple fault classes. In Chapter 6, we

150 CHAPTER 7. CONCLUSION AND FUTURE WORK

addressed the problem of adding efficient fail-safe multitolerance, i.e., the
ability of a program to tolerate multiple classes of faults. We argued that, in
a distributed environment, the nature and types of faults affecting a system
is varied, and thus the design of fault-tolerant systems needs to be cognizant
of such diversity. There are two possible ways of designing multitolerance,

and in Chapter 6, we presented algorithms that build upon each approach.

The first approach deals with addition of multitolerance in a stepwise
fashion, that is adding fail-safe fault tolerance to a given fault class one at a
time. We explained that during the addition of multitolerance to an initially
fault-intolerant program, the program is extended with detector components
that handle faults from each fault class. Consequently, there can be interfer-
ence between different program components, for example between detector
components for different fault classes, or between the program and the detec-
tor components for some fault class. This interference needs to be handled,
and “removed”, since it may prevent the different program components from
satisfying their problem specification. Some of the non-interference condi-
tions were first presented by Arora and Kulkarni in [AK98a]. However,
given our focus on efficient fail-safe fault tolerance, we explained that dur-
ing addition of multitolerance, the detector components for different fault
classes should not interfere with the optimal properties (perfect detection,
and minimal detection latency) of the fail-safe multitolerant program to dif-
ferent fault classes. Therefore, we have extended the set of non-interference
conditions to include those relating to program properties. Therefore, any
algorithm that automatically adds multitolerance to a program needs to

reflect those non-interference requirements.

We developed two algorithms that automatically add multitolerance to
a fault-intolerant program. The first algorithm transforms a fault-intolerant

program into a fail-safe multitolerant program, with perfect detection to all

7.3. IMPACT 151

fault classes considered. The second algorithm transforms a fault-intolerant
program into a fail-safe fault-tolerant program with perfect detection, and
minimal detection latency to every fault class considered. Each algorithm
was incrementally developed, and each design stage was proved to handle
the non-interference conditions (between program components, and program

properties).

7.2.4 Design of All-at-a-time Multitolerance

In Chapter 6, we also focused on the second approach for designing multi-
tolerance. In this approach, all the fault classes are considered at the same
time. We developed two algorithms that add fail-safe multitolerance to a
fault-intolerant program, by considering all fault classes at the same time.
The first algorithm yields a fail-safe multitolerant program with perfect
detection to all fault classes, while the second algorithm yields a fail-safe
multitolerant program with perfect detection, and minimal latency to all
fault classes. We have shown that the programs yielded using these algo-
rithms are identical to those yielded by the corresponding algorithm that

considers one fault class at a time.

7.3 Impact

We now discuss briefly the impact our contributions have on design of fail-
safe fault tolerance. Our theory provides a general yet powerful basis for
understanding the working principles of detectors. Specifically, we have been
able, through our defined notion of perfect detectors, to explain design de-
cisions in the design of fault-tolerant programs. For example, only critical
actions of programs were composed with detectors. How these detectors
were designed or what properties should they possess were mostly intuitive,

or based on experience. Our contribution has shown that, for fail-safe fault

152 CHAPTER 7. CONCLUSION AND FUTURE WORK

tolerance, the detectors need to be perfect, and that it is sufficient to com-
pose critical actions with such detectors.

We have also shown that, in order to have minimal detection latency, the
detectors of non-critical actions are non-trivial, i.e., they are also perfect.
By way of contrast, Arora and Kulkarni observed in [AK98b] that, “accord-
ing to their experience”, detectors of non-critical actions are trivial, i.e.,
true. Thus, we conclude that there are times when their approach can yield
minimal detection latency, but may be not always. Arora and Kulkarni also
observed in [AK98b] that the detectors of critical actions are non-trivial,
while Leveson et.al observed in [LCKS90] that design of effective detectors
is difficult. Though the authors never explicitly clarified the meaning of
“non-trivial”, or “effective”, our theory has enabled us to determine the
properties that underpin the notions of “non-triviality” and “effectiveness”,
i.e., the properties of completeness, and accuracy.

Further, we have provided a generalization of our approach by looking
at the design of multitolerant programs. We have provided algorithms that
can automatically add efficient fail-safe multitolerance, and that for certain
classes of fault tolerance, and efficiency properties, the impact of the order

in which fault classes are handled can be minimized.

7.4 Future Work

Our work on automated synthesis of fail-safe fault tolerance has opened up
several new avenues for future research. Some of them are outlined below.
One of the main assumptions underpinning our work has been that spec-
ification are fusion closed. Fusion closure guarantees that the history of the
computation is “available” in the current state of the system, i.e., by just
looking at the current state, one can determine whether the next step is a

bad one or not. A specification that is not fusion closed can be made fusion

7.4. FUTURE WORK 153

closed by adding history variables. However, adding another variable leads
to an exponential increase in size of the state space of the program. This
suggests two possible avenues: (i) Is there a way of converting non fusion
closed specifications into a fusion closed specification that minimizes the
number of states added?. (ii) Does there exist a class of non fusion closed
specifications which have sufficiently “nice” features such that the absence
fusion closure is irrelevant?.

In this thesis, we have looked at two properties of fail-safe fault-tolerant
programs, namely perfect detection, and detection latency. However, there
are other properties that can be investigated. One such property is avail-
ability. In fact, in the course of this work, we have observed that one needs
to adopt a pessimistic look of a computation in order to have fast detection.
However, for availability, one needs to adopt a more optimistic outlook.
How can availability be modeled, and its impact on design decisions will be

investigated.

154 CHAPTER 7. CONCLUSION AND FUTURE WORK

Bibliography

[AAAT90] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre, J. C. Laprie,

[AD97]

[ADKO1]

[AG94]

[AK95]

[AK98a]

[AK98b]

E. Martins, and D. Powell. “Fault Injection for Dependability Valida-
tion: A Methodology and Some Applications”. IEEE Transactions on
Software Engineering, 16(2):166—182, 1990.

Yehuda Afek and Shlomi Dolev. Local stabilizer. In Proceedings of the
16th Annual ACM Symposium on Principles of Distributed Computing
(PODC97), 1997.

A. Arora, M. Demirbas, and S. Kulkarni. “Graybox Stabilization”. In
Proceedings of the International Conference on Dependable Systems and

Networks, 2001.

Anish Arora and Mohamed G. Gouda. Distributed reset. IEEE Trans-

actions on Computers, 43(9):1026-1038, September 1994.

Anish Arora and Sandeep S. Kulkarni. Designing masking fault-
tolerance via nonmasking fault-tolerance. In Proceedings of the 14th
IEEE Symposium on Reliable Distributed Systems (SRDS95), pages
174-185, 1995.

Anish Arora and Sandeep S. Kulkarni. Component based design of
multitolerant systems. I[EEE Transactions on Software Engineering,

24(1):63-78, January 1998.

Anish Arora and Sandeep S. Kulkarni. Designing masking fault toler-
ance via nonmasking fault tolerance. IEEE Transactions on Software

Engineering, 24(6), June 1998.

155

156

[AK98(]

[AL91]

[APSV91]

[AS85]

[Avi85]

[BDDTY8]

[CDPVO1]

[CMSS8]

[Cri91]

BIBLIOGRAPHY

Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A the-
ory of fault-tolerance components. In Proceedings of the 18th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS98),
May 1998.

Martin Abadi and Leslie Lamport. The existence of refinement map-

pings. Theoretical Computer Science, 82(2):253-284, May 1991.

Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
stabilization by local checking and correction. In FOCS91 Proceedings
of the 31st Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 268-277, 1991.

Bowen Alpern and Fred B. Schneider. Defining liveness. Information

Processing Letters, 21:181-185, 1985.

A. Avizienis. “The N-Version Approach to Fault-Tolerant Software”.

IEEFE Transactions on Software Engineering, 39(4):1491 — 1501, 1985.

Joffroy Beauquier, Sylvie Delagt, Shlomi Dolev, and Sébastien Tixeuil.
Transient fault detectors. In Proceedings of the 12th International Sym-
posium on DIStributed Computing (DISC’98), number 1499 in Lecture
Notes in Computer Science, pages 62-74, Andros, Greece, September

1998. Springer-Verlag.

A. Cournier, A. K. Datta, F. Petit, and V. Villain. “Snap-stabilizing
PIF Algorithm in Arbitrary Rooted Networks”. In Proceedings of the

International Conference on Distributed Computing Systems, pages 91

— 98, 2001.

K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-
dation. Addison-Wesley, Reading, MA, Reading, Mass., 1988.

Flaviu Cristian. Understanding fault-tolerant distributed systems.

Communications of the ACM, 34(2):56-78, February 1991.

BIBLIOGRAPHY 157

[CT96]

[CW96]

[Dij74]

[DIMY3]

[Dol97]

[Dol00]

[DW95]

[Gae99a]

[Gae99b]

[GMO91]

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM, 43(2):225-267,
March 1996.

E. M. Clarke and J. M. Wing. “Formal Methods: State of the Art and
Future Directions”. ACM Computing Surveys, 28(4):626 — 643, 1996.

Edsger W. Dijkstra. Self stabilizing systems in spite of distributed con-
trol. Communications of the ACM, 17(11):643-644, 1974.

Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of

dynamic systems assuming only read/write atomicity. Distributed Com-

puting, 7:3-16, 1993.

Shlomi Dolev. Self-stabilizing routing and related protocols. Journal of

Parallel and Distributed Computing, 42(2):122-127, 1997.
Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchroniza-
tion in the presence of Byzantine faults. In Proceedings of the Second

Workshop on Self-Stabilizing Systems, pages 9.1-9.12, 1995.

Felix C. Gaertner. Fundamentals of fault-tolerant distributed computing

in asynchronous environments. ACM Computing Surveys, 31(1):1-26,

March 1999.

Felix C. Gaertner. Transformational approaches to the specification and
verification of fault-tolerant systems: Formal background and classifica-
tion. Journal of Universal Computer Science (J.UCS), 5(10):668-692,

October 1999. Special Issue on Dependability Evaluation and Assess-

ment.

Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communica-
tion protocols. IEEE Transactions on Computers, 40(4):448-458, April
1991.

158

[Gum93|

[GV00]

[GVO1]

[Hil0O]

[HIS01]

[HJS02]

[1T96]

[JHCS02]

BIBLIOGRAPHY

H. Peter Gumm. Another glance at the Alpern-Schneider character-
ization of safety and liveness in concurrent executions. Information

Processing Letters, 47(6):291-294, 1993.

Felix C. Gértner and Hagen Volzer. Redundancy in space in fault-
tolerant systems. Technical Report TUD-BS-2000-06, Department of
Computer Science, Darmstadt University of Technology, Darmstadt,

Germany, July 2000.

Felix C. Gértner and Hagen Volzer. Defining redundancy in fault-
tolerant computing. In Brief Announcement at the 15th International
Symposium on DIStributed Computing (DISC 2001), Lisbon, Portugal,
October 2001.

M. Hiller. “Executable Assertions for Detecting Data Errors in Embed-
ded Control Systems”. In Proceedings International Conference Depend-

able Systems and Networks, pages 24 — 33, 2000.

M. Hiller, A. Jhumka, and N. Suri. “An Approach for Analyzing the
Propagation of Data Errors in Software”. In Proceedings of the Inter-

national Conference on Dependable Systems and Networks, pages 161 —

170, 2001.

M. Hiller, A. Jhumka, and N. Suri. On the placement of software mech-
anisms for detection of data errors. In Proceedings of the International

Conference on Dependable Systems and Networks, pages 135 — 144,
2002.

R.K. Iyer and D. Tang. Ezperimental Analysis of Computer System De-
sign Dependability, chapter 5 in Fault- Tolerant Computer System De-
sign. Prentice Hall, 1996.

A. Jhumka, M. Hiller, V. Claesson, and N. Suri. On Systematic Design
of Globally Consistent Erecutable Assertions in Embedded Software. In
Proceedings LCTES/SCOPES, pages 74-83, 2002.

BIBLIOGRAPHY 159

[JHSO01]

[JHSO02a]

[JHS02b)

[THS03]

[KA9Ta]

[KA9Tb]

[KA9S]

[KAOO]

A. Jhumka, M. Hiller, and N. Suri. “Assessing Inter-Modular Error
Propagation in Distributed Software”. In Proceedings of the 20th Sym-
posium on Reliable Distributed Systems, pages 152 — 161, 2001.

A. Jhumka, M. Hiller, and N. Suri. “An Approach to Specify and Test
Component-Based Dependable Software”. In Proceedings of the Tth In-

ternational Symposium on High Assurance Systems Engineering, 2002.

A. Jhumka, M. Hiller, and N. Suri. “Component-Based Synthesis of De-
pendable Embedded Software”. In Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and Fault- Tolerant Sys-
tems, pages 111 — 128. Lecture Notes in Computer Science (LNCS),
2002.

A. Jhumka, M. Hiller, and N. Suri. “A Framework for the Design
and Validation of Efficient Fail-Safe Fault-Tolerant Programs.”. In

To Appear, Proceedings Software and Compilers for Embedded Systems
(SCOPES), 2003.

S. Kulkarni and A. Arora. “Once-and-forall Management Protocol
(OFMP)”. In Proceedings of the 5th International Conference on Net-
work Protocols, 1997.

Sandeep S. Kulkarni and Anish Arora. Compositional design of mul-
titolerant repetitive Byzantine agreement. In Proceedings of the 18th
International Conference on the Foundations of Software Technology

and Theoretical Computer Science, Kharagpur, India, pages 169 — 183,
1997.

S. Kulkarni and A. Arora. “Multitolerance in Distributed Reset”.

Chicago Journal of Theoretical Computer Science, 1998(4), 1998.

Sandeep S. Kulkarni and Anish Arora. Automating the addition of fault-
tolerance. In Mathai Joseph, editor, Formal Techniques in Real-Time

and Fault-Tolerant Systems, 6th International Symposium (FTRTFT

160

[KE02]

[KRS99]

[Kul99]

[LA90]

[Lam?77]

[Lap92]

[LOKS90]

[Liu9l]

[LJ92]

BIBLIOGRAPHY

2000) Proceedings, number 1926 in Lecture Notes in Computer Science,

pages 82-93, Pune, India, September 2000. Springer-Verlag.

S. Kulkarni and A. Ebnenasir. “Complexity of Adding Fail-Safe Fault
Tolerance”. In Proceedings International Conference on Distributed

Computing Systems, 2002.

Sandeep S. Kulkarni, John Rushby, and Natarajan Shankar. A case-
study in component-based mechanical verification of fault-tolerant pro-
grams. In Anish Arora, editor, Proceedings of the 19th IEEE Inter-
national Conference on Distributed Computing Systems Workshop on
Self-Stabilizing Systems, pages 33-40, Austin, TX, USA, June 1999.
IEEE Computer Society Press.

Sandeep S. Kulkarni. Component Based Design of Fault-Tolerance. PhD
thesis, Department of Computer and Information Science, The Ohio

State University, 1999.

P. A. Lee and T. Anderson. “Fault Tolerance - Principles and Prac-
tice”. volume 3 of Dependable Computing and Fault-Tolerant Systems.

Springer Verlag, 1990.

Leslie Lamport. Proving the correctness of multiprocess programs.

IEEF Transactions on Software Engineering, 3(2):125-143, March 1977.

J. C. Laprie. “Dependability: Basic Concepts and Terminology”. In
Dependable Computing and Fault-Tolerant Systems series, volume 5.

Springer-Verlag, 1992.

N. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall. The Use of Self-
Checks and Voting in Software Error Detection: An Empirical Study.
IEEFE Transactions on Software Engineering, 16(4):432-443, 1990.

Zhiming Liu. Fault-tolerant programming by transformations. PhD the-

sis, University of Warwick, Department of Computer Science, 1991.

Zhiming Liu and Mathai Joseph. Transformation of programs for fault-

tolerance. Formal Aspects of Computing, 4(5):442-469, 1992.

BIBLIOGRAPHY 161

[LJ93]

[LJ94]

[LJ95]

[MAMS84]

[Ran75]

[Ros95]

[Sai78)

[SS9g]

[SS99a]

Zhiming Liu and Mathai Joseph. Specification and verification of re-
covery in asynchronous communicating systems. In Jan Vytopil, editor,
Formal Techniques in Real-time and Fault-tolerant Systems, chapter 6,

pages 137-165. Kluwer, 1993.

Zhiming Liu and Mathai Joseph. Stepwise development of fault-tolerant
reactive systems. In Formal techniques in real-time and fault-tolerant
systems, number 863 in Lecture Notes in Computer Science, pages 529—

546. Springer-Verlag, 1994.

Zhiming Liu and Mathai Joseph. A formal framework for fault-tolerant
programs. In C. M. Mitchell and V. Stavridou, editors, Mathematics of

Dependable Computing, pages 131-148. Oxford University Press, 1995.

A. Mahmood, D. M. Andrews, and E. J. McCluskey. “FEzecutable As-
sertions and Flight Software”. In Proceedings of the 6th AIAA/IEEE

Digital Avionics Systems Conference (DASC-6), pages 346 — 351, 1984.

B. Randell. “System Structure for Software Fault Tolerance”. IEEE
Transactions on Software Engineering, 1(2):220 — 232, 1975.

D. S. Rosenblum. “A Practical Approach to Programming with As-
sertions”. IEEE Transactions on Software Engineering, 21(1):19 — 33,
1995.

S. H. Saib. “Exzecutable Assertions: An Aid to Reliable Software”.
In Proceedings of 11th Asilomar Conference on Circuits, Systems and

Computers, pages 277 — 281, 1978.

N. Suri and P. Sinha. “On the Use of Formal Methods for Validation”.
In Proceedings of the 28th International Symposium on Fault-Tolerant

Computing, pages 390 — 401, 1998.

P. Sinha and N. Suri. “Identification of Test Cases Using a Formal
FI Approach”. In Proceedings of the 29th International Symposium on
Fault Tolerant Computing, 1999.

162

[SS99b)

[YB94]

BIBLIOGRAPHY

P. Sinha and N. Suri. “On the Use of Formal Techniques for Analyzing
Dependable Real-Time Protocols”. In Proceedings Real Time Systems

Symposium, pages 126 — 135, 1999.

H. Yin and J. M. Bieman. “Improving Software Reliability With As-
sertion Insertion”. In Proceedings of the International Test Conference,

pages 831 — 839, 1994.

