
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

On Impact and Tolerance of Data Errors
with Varied Duration in Microprocessors

Örjan Askerdal

Department of Computer Engineering
School of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, SWEDEN, 2003

On Impact and Tolerance of Data Errors
with Varied Duration in Microprocessors
Örjan Askerdal
ISBN 91-7291-285-5

Copyright c
�

2003 Örjan Askerdal, All Rights Reserved

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie 1967
ISSN 0346-718X

School of Computer Science and Engineering
Chalmers University of Technology
Technical Report 12D
ISSN 1651-4971

Department of Computer Engineering
School of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Tel. +46 (0)31-772 10 00
www.ce.chalmers se

Author email: askerdal@ce.chalmers.se

Chalmers Reproservice
Göteborg, Sweden, 2003

i

On Impact and Tolerance of Data Errors
with Varied Duration in Microprocessors
Örjan Askerdal
Department of Computer Engineering, Chalmers University of Technology

Abstract

The evolution of high-performance and low-cost microprocessors has led to their
almost pervasive usage in embedded systems such as automotive electronics, smart
gadgets, communication devices, etc. These mass-market products, when deployed
in safety-critical systems, require safe services albeit at low recurring costs. More-
over, as these systems often operate in harsh environments, faults will occur during
system operation, and thus, must be handled safely, i.e., tolerated.

This thesis investigates the efficiency of adding software-implemented fault tol-
erance techniques to commercial off-the-shelf (COTS) microprocessors. Specifi-
cally, the following problems are addressed:

� Which faults need to be tolerated considering the architecture, implementation
and operational environments for COTS processors?

� Which software-implemented fault-tolerance techniques are effective and ef-
ficient to use?

� How can the efficiencies of such designs be evaluated?

The main contribution of this thesis is the development of novel approaches
for estimating the effects of data errors with varied duration, and for ascertaining
the efficiency of applied fault-tolerance techniques. These approaches are based on
identifying the characteristics that determine which effects data errors will have on
the system. Then these characteristics can be varied at a high abstraction level and
the effects observed.

The first approach is based on response analysis methods for understanding the
effects of data errors on control systems. The second is a VHDL simulation-based
fault injection method, based on insertion of specific components (so-called sabo-
teurs) for varying the characteristics. As most system development processes start at
a high abstraction level, we expect our approaches to be applied early in the process,
and be a useful complement to traditional post-design assessment approaches such
as fault-injection.

ii

Keywords: error effect analysis, error propagation analysis, fault injection, fault
tolerance, dependability

List of Papers

This thesis is based on, and extends the following work:

� Askerdal, Ö., Gäfvert, M., Hiller, M. and Suri, N., "A Control Theory Ap-
proach for Analyzing the Effects of Data Errors in Safety-Critical Control
Systems", Pacific Rim International Symposium on Dependable Computing,
pp.105-114, 2002.

� Gäfvert, M., Wittenmark B. and Askerdal, Ö., "On the Effect of Transient
Data Errors in Controller Implementations", to appear in American Control
Conference, 2003.

� Askerdal, Ö., Suri, N. and Torin J., "Use of Complementary Techniques for
Detection of Low-Level Errors Caused by both Transient and Persistent Faults,
Based on Analysis of Double Execution", Technical Report No. 00-24, De-
partment of Computer Engineering, Chalmers University of Technology, Swe-
den, 2000.

� Askerdal, Ö. and Suri, N., "On-Line Error Detection in Control Systems",
Technical Report No. 01-17, Department of Computer Engineering, Chalmers
University of Technology, Sweden, 2001.

� Askerdal, Ö., Wiklund, K., Mendelson, A. and Suri, N., "Accurate Impact
Evaluation of Hardware Faults with Varied Time Duration", In review, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2003.

iii

iv

Acknowledgments

It is now about six years since I joined the Department of Computer Engineering,
Chalmers. So much has happened during this time that I can barely remember who
the boy starting was. I have of course improved my research skills during these
years, but there is so much more I learned about people, life, love...

However, I would like to take this opportunity to thank you all for supporting
me during these years. Thank You!

There are though of course a few people I would like to thank specifically...
First, of course, I need to thank my family (My parents Bo and Monica, and

my brother Mikael) who always supported me, especially when I didn’t understood
people, life, love...

Coming to the department, it was Lars-Åke Johansson that employed me as an
“exjobbare” together with Jonas Wåhlström (at that time Olsson). Thank you both
for getting me interested in distributed computer systems!

Through that employment, I started to know the other people in the “Bil-gruppen”.
Professor Jan Torin, Arne Dahlberg, Rolf Snedsböl, Henrik Lönn, Vilgot Claesson
(at that time Klasson), and Kristina Forsberg (at that time Ahlström). After finish-
ing my “civilingenjörs-examen”, I was employed as a Ph.D. student by Professor
Jan Torin who supported me for three years (Thank you, Jan!), and you all become
my friends. Especially, I would like to thank Henrik for introducing me to how to
do research, Rolf for introducing me to how to teach, and Kristina for all nice, and
important, chats.

After three years Professor Neeraj Suri came around, this guy who I could not
figure out (and still cannot), provided a lot of Yada, Yada, and who really CON-
FUSED me. But, he did not just confuse me, he also taught me a lot about research
(how to write papers, how to make presentations, how to review work, etc.), intro-
duced me to people, organized nice dinners, and supported me, for at least two and
a half year. Thank You Neeraj!

Along with Neeraj, a group was formatted (an accidental typo, should be formed!),
DEEDS, constituting of Vilgot Claesson (I cannot remember if it still was Klasson at
this time or not), Martin Hiller, Arshad Jhumka, and later on also Robert Lindström,
and Andréas Johansson. We have been a hard-working group, but there has always

v

vi

been time for jokes, cakes, and everything else that makes life worth to live. You are
all close friends of mine (girlfriends and wives included) and I owe you a lot!

During these years, I have also got to work with other people. Already from
the start, Marcus Rimén (presently at Semcon) has with odd and even intervals dis-
cussed, criticized, and assisted my research. Thank you, Marcus! Stefan Asserhäll
at Saab Ericsson Space has provided me with simulation models and often helped
me out when I have had questions on the models. I would also like to thank the
funders, managers, members of the projects I have been working in during my time
as a Ph.D. student (X-By-Wire, DICOSMOS, PÅLBUS, SAAB). The work within
these projects has always been interesting.

I would also particularly like to thank my other co-authors during these years:
Kristian Wiklund (Ericsson), Avi Mendelson (Intel), Magnus Gäfvert (Lund Insti-
tute of Technology), Björn Wittenmark (Lund Institute of Technology), and Joakim
Aidemark (Chalmers). It has been great to work with you all and I have really
learned a lot.

I would also like to thank all people at this department for providing me with all
the help and things which I have been taken for granted. Thank you so much!

Especially, I would like to direct a special thank you to all my fellow Ph.D.
students which I have met during these years, at the department, at different councils,
at floor-ball, etc. You are just too many to name, but you will not be forgotten!

I would also like to give a special thank you to all people that has given me com-
ments on this thesis Per Johannessen, Håkan Forsberg, Daniel Eckerbert, Joakim
Aidemark, Jonny Vinter, Vilgot Claesson, Martin Hiller, Arshad Jhumka, Robert
Lindström, Andréas Johansson, Neeraj Suri, and Cristian Constantinescu. Your
comments have been invaluable!

Finally, but absolutely not least, I would like to thank life and Klara for making
me so fortunate to have someone to love as much as I love you! THANK YOU!

Now, a new chapter of my life is starting (which you cannot find in this thesis),
hope to see you there!

Contents

1 Introduction 1
1.1 Safety Definitions . 2
1.2 Development of Dependable Computer Systems 5

1.2.1 Development of Fault Tolerant Systems 8
1.3 Control Systems . 14

1.3.1 Distributed Dependable Control Systems 15
1.4 Restrictions and Targeted Problems 19

1.4.1 Adding Software-Implemented Fault-Tolerance Techniques 21
1.5 Major Contributions . 23
1.6 Thesis Organization . 24

2 Modern Microprocessors and Fault Mechanisms 27
2.1 The Functionality of a Microprocessor 28
2.2 Architecture of Modern Processors 28
2.3 The Integrated Circuit . 33
2.4 Device Scaling . 35
2.5 Fault Mechanisms . 36

2.5.1 Spot Defects . 38
2.5.2 Stress Voiding . 38
2.5.3 Package and Assembly . 38
2.5.4 Vibrations . 39
2.5.5 Temperature Variations . 39
2.5.6 Radiation . 40
2.5.7 Electromagnetic Interference 40
2.5.8 Electro Static Discharge (ESD) 41
2.5.9 Supply Voltage Disturbances 42
2.5.10 Electromigration . 42
2.5.11 Corrosion . 42
2.5.12 Gate Oxide Faults . 43

2.6 Fault Occurrence Rates for Integrated Circuits 43

vii

viii Contents

3 Design of Efficient Fault Tolerant Microprocessors 47
3.1 Error Propagation Between Abstraction Levels 48

3.1.1 Implications of Fault Tolerance 51
3.2 Design through Software-Implemented Techniques 52
3.3 Recovery . 53
3.4 Error Detection . 55

3.4.1 Crash Failures . 56
3.4.2 Control-Flow Errors . 57
3.4.3 Data Errors . 57

3.5 Coverage and Overhead . 62
3.6 Evaluation of Detection Coverage 63
3.7 Identification of the Characteristics of Data Errors 65

4 Analyzing the Effect of Data Errors in Control Systems 67
4.1 Related Work and Definition of Failure Criteria 68
4.2 The Controller . 70
4.3 Modeling of Data Errors . 71

4.3.1 Repetition Frequency Classes for Data Errors 73
4.3.2 Data Formats and Error Magnitudes 74
4.3.3 Error Effects on the Generalized Controller 75

4.4 Analysis Methods . 76
4.4.1 Sensitivity Analysis . 78
4.4.2 Impulse Response Analysis 80
4.4.3 Norm Analysis . 82
4.4.4 Step Response Analysis 83
4.4.5 White Noise Response Analysis 85

4.5 Design of Executable Assertions 86
4.6 Summary . 88

5 Experimental Evaluations of Data Errors 91
5.1 Traditional Simulation-Based Fault Injection 93
5.2 Investigation of Abstraction Level Dependency 95

5.2.1 Results of the Quantity Measurements 98
5.2.2 Summary of the Results 105

5.3 Related Work on High-Level Modeling of Persistent Faults 107
5.4 A Novel High-Level Evaluation Approach 109

5.4.1 Desired Properties for Evaluation 110
5.4.2 The Saboteur-Based Approach 111

Contents ix

5.4.3 A Saboteur Fault Injection Campaign 114
5.5 Reducing the Number of Error Cases 115
5.6 Accuracy and Complexity Evaluation 116

5.6.1 Simulation Accuracy . 118
5.6.2 Simulation Complexity . 118

5.7 Estimating the Error Detection Coverage of Double Execution . . . 124
5.7.1 Simulation Details . 125
5.7.2 Results . 127
5.7.3 Complexity . 131

5.8 Summary . 132
5.9 Generalizations . 133

6 Conclusions and Speculations About the Future 135
6.1 Conclusions . 135
6.2 Speculating About the Future... 139

Appendix A. A Survey of Error Detection Techniques 161
A.1 Functional Redundancy . 162
A.2 Assertions . 163
A.3 Signature Checking . 166
A.4 Self-Tests . 168
A.5 Double Execution . 170
A.6 Diversity . 171
A.7 Hardware Replication . 171
A.8 Watchdog Timers . 172
A.9 Coding . 173
A.10 On-Line Monitoring of Reliability Indicators 175
A.11 Summary . 176

Appendix B. Analysis of Double Execution 179
B.1 Detection of Data Errors Generated by Persistent Faults 180
B.2 A Single Double Executed Task 180

B.2.1 Multiple Periodic Tasks 185
B.2.2 Preemptive and Sporadic Tasks 185

B.3 Verification of the Analysis . 185
B.4 Summary and Discussion . 186

x Contents

Appendix C. Self-Test Tasks 187
C.1 Design of Software-Implemented Self-Tests 188

C.1.1 Test Instructions . 189
C.1.2 Input Data . 189
C.1.3 Test Length . 190
C.1.4 Test Interval . 191
C.1.5 False and Unnecessary Alarms 191
C.1.6 Summary . 192

Appendix D. Control Theory 193
D.1 The Closed-Loop System . 193
D.2 The Brake-Slip Controller . 194

Appendix E. The VHDL-code for a Saboteur 197

CHAPTER1
Introduction

Dependability has always been of prominent concern to mankind. The early humans
fought to find and construct dependable settlements, shelters, clothes and tools to
adapt to nature and survive. Looking back, one can say that this battle has been very
successful, even if the resources are of uneven quality and erratically distributed and
nature occasionally subverts the most careful of plans. In the modern world, based
on our advances in technology, most people today associate dependability with the
functionality and punctuality of different objects, for example: public transportation,
banking, telecommunication etc.

Considering computers, the concept of dependability has also changed over
time. The earliest computers were constructed of components such as relays and
vacuum tubes that would fail as often as once every hundred thousand or million
cycles, which is far too often to ensure correct completion of even modest calcu-
lations [Sieworek and Swarz, 1992]. This changed as more durable components,
such as the transistor, were introduced which made computers become one of the
most important and dependable tools for the human to make new discoveries. As
an example, in the first space flight to the moon, computers were used to facilitate
navigation. Today, the refined hardware development processes result in small size,
high performance and low-cost devices. Consequently, computers are being perva-
sively used and also embedded in diverse products such as vehicles, home gadgets,
communication devices etc.

The pervasiveness of our use of computers also results in our increasing depen-
dence on their correct operation. In most cases a computer failure would only mean
that the program running on the personal computer crashes or that the microwave

1

2 Chapter 1. Introduction

oven stops working. However, there are systems where a computer fault, if not
handled correctly, will cause much greater damage and even impact human safety.
Examples of such systems are brake-by wire systems in vehicles and navigation sys-
tems in aircraft among others. Additionally, the fact that people do not associate
such systems with computers have the psychological effect that for these systems to
be publicly accepted, the computers must be extremely dependable.

Another complicating aspect is that many systems are real-time systems, mean-
ing that their operational safety is not only dependent on the system delivering the
correct results but also at the correct time. Moreover, as many of these systems
are complex and operate in harsh environments, it is hard to prevent faults from
occurring. Thus such systems must inherently be designed to tolerate faults. Fur-
thermore, the severe cost-sensitivity of the consumers and manufacturers requires
cost-efficient solutions for provision of dependable devices and systems. There-
fore, the development of highly dependable and cost-efficient computer systems is
an extremely challenging task. This thesis contributes to this task by exploring how
microprocessors in such systems can be developed to be fault tolerant.

The intent of this introduction is to describe how safety-critical systems are de-
veloped, and also to develop the context of the thesis research. First the concepts
and terminology of safety, which is a specific attribute of dependability, used in this
thesis are defined. Second, the development process of safety-critical systems and
more specifically fault tolerant systems (systems that continue to operate correctly
even in the presents of faults) is described. After that, the main functionalities and
aspects of control systems are discussed, as these systems are one common type of
safety-critical systems, and used in this thesis to exemplify different methods and
techniques. Then, the specific research questions targeted and the contributions of
this thesis are presented. Finally, the organization of the thesis is detailed.

1.1 Safety Definitions

Firstly, we outline our definitions of the different concepts used in the thesis. With
a component, we mean a building block in the form of hardware, software or both.
Specifically, we use the term task for software building blocks and unit for hardware
building blocks. A system consists of several components of which at least one is a
microprocessor and should provide a desired, specified service. Sometimes the term
computer system is used to stress this fact. With a system developer, we mean a man
or woman that develops system, i.e., intelligently conjoins components such that the
specified service can be delivered.

When developing a system, it is always necessary to specify requirements on the

1.1. Safety Definitions 3

design so that it is possible to determine when a proper design has been reached. It is
important that the specified requirements are measurable in some way so that it can
be verified that the requirements are fulfilled. Therefore, it is necessary to exactly
define what is meant with different concepts and properties. Throughout this thesis,
the definitions originally developed in [Laprie, 1992], modified and expanded in
[Avižienis et al., 2001], are used.

Safety is classified as an attribute of dependability, which is defined as “the abil-
ity to deliver service that can justifiably be trusted”. Depending on the application
of the system, dependability can have different meanings, i.e., different attributes
could be of interest:

� Availability: Readiness for correct service.

� Reliability: Continuity of correct service.

� Safety: Absence of catastrophic consequences on the user(s) and the environ-
ment.

� Confidentiality: Absence of unauthorized disclosure of information.

� Integrity: Absence of improper system state alterations.

� Maintainability: Ability to undergo repairs and modifications.

The main attribute considered in this thesis is safety (availability, reliability and
maintainability is also considered to some extent). Sometimes, the term safety-
critical systems is used in this thesis, meaning systems where a computer fault may
impact human safety.

A system failure is said to have occurred when the delivered service deviates
from fulfilling the specified system requirements, i.e., incorrect service is delivered.
It is important to note that all system failures do not result in catastrophic conse-
quences. Failures occur as a result of some incorrect internal state, i.e., there exists
an error. The adjudged or hypothesized cause of an error is denoted as a fault.

The terminology of faults-errors-failures is bound to the abstraction level of ob-
servation. At that abstraction level, the fault is said to be active when it causes the
component/system to assume an incorrect state (a fault that is not active is called
dormant), i.e., the fault generates an error, see Figure 1.1. In turn, if the error prop-
agates to the border of that abstraction level, a failure is said to have occurred. This
failure will be considered a fault at the next higher abstraction level. This is de-
scribed in more detail in Chapter 3. Therefore, to have a safe system, either faults

4 Chapter 1. Introduction

Fault Error Failure

Fault
Activation

Error
Propagation

Transition between different
abstraction levels

Error
Masking

Fault Error Failure

Fault
Activation

Error
Propagation

Transition between different
abstraction levels

Error
Masking

Figure 1.1: The fault-error-failure cycle.

should be prevented from occurring and/or the fault-error-failure cycle should be
interrupted before a failure occurs at the system level.

The sources of faults can be classified into six major criteria:

� Phase of creation or occurrence: Does the fault occur during operation or was
it introduced already during development?

� System boundaries: Is the fault source internal or external of the system?

� Domain: Is it a hardware or software fault that has occurred?

� Phenomenological cause: Is the fault caused by human or the environment?

� Intent: Was the fault introduced deliberately or not?

� Persistence: Was the fault of transient or permanent nature?

The faults themselves are classified in detail in [Avižienis et al., 2001]. How-
ever, as this classification is more complex than needed for the context of this thesis,
we use a simpler fault classification, namely:

� Developmental faults: Faults introduced during system development (specifi-
cation, design or implementation, including manufacturing).

� Physical faults: Faults caused by the environment occurring during operation.

� Interaction faults: Faults caused by humans occurring during operation.

1.2. Development of Dependable Computer Systems 5

Faults are sometimes also grouped based on whether they are reproducible (termed
as solid or hard) or not (termed as elusive or soft). Furthermore, the term intermit-
tent faults is often used. In [Avižienis et al., 2001] this definition is used to include
all elusive developmental faults and transient physical faults as they manifest simi-
larly. Errors produced by intermittent faults are usually termed soft errors. However,
intermittent faults sometimes have different meanings (e.g., something in between
transient and permanent faults) in literature.

In the context of the thesis work, we utilize an abbreviated classification with
emphasis on the following fault types, namely:

� Transient faults: Faults generating errors only at one single point in time.

� Persistent faults: Faults generating errors at more than one point in time.

The advantages with these two definitions are that: all faults could be classified as
either transient or persistent, transient faults will be closely connected to the bit-flip
fault model, and the persistent fault class will include, for instance, permanent faults
and elusive developmental faults. Sometimes, also the term permanent fault is used
to stress that the fault can be removed only by removing the faulty component or
repairing it.

Four techniques can be used for development of dependable (including safety)
computing systems:

� Fault forecasting: How to estimate the present number, the future incidence,
and the likely consequences of faults.

� Fault prevention: How to prevent the occurrence or introduction of faults.

� Fault removal: How to reduce the number or severity of faults.

� Fault tolerance: How to deliver correct service in the presence of faults.

In this section, safety and how safety can be enforced has been defined. Next, we
will describe how the defined concepts in this section can be practically implemented
in the system development process.

1.2 Development of Dependable Computer Systems

Many different system development processes have been proposed all with the aim
of producing systems of consistent quality, reliably produce systems with complex
behavioral requirements, predict when systems will be complete, predict how much

6 Chapter 1. Introduction

systems will cost to develop, identify milestones during development, enabling mid-
course corrections when necessary, and enable efficient team collaboration for mod-
erate and large-scale systems. However, this section does not aim to survey all
different processes, but describe the general stages of development processes.

All development processes include the stages: analysis, design, implementation,
and testing or use similar terms. Examples of such processes are the waterfall pro-
cess, the v-process, the spiral model, and extreme programming [Pradhan, 1996],
[Douglass, 2001], [Peters and Pedrycz, 1999], [Wells, 2003]. The tasks of the dif-
ferent steps are:

� Analysis: The functionality and requirements are specified from the problem
to solve.

� Design: Solutions for solving the problem and meeting the requirements are
proposed.

� Implementation: The designs are implemented.

� Testing: The functionality and requirements are validated (are we developing
the right system?) and verified (are we developing the system correctly?).

As modern computer systems generally are very complex, these steps are gen-
erally iterated starting at high abstraction level with few details and then integrating
more and more details until a final complete design is reached, i.e., a top-down
approach. Thus, the first analysis step concerns which service the system should
deliver and the first design step which basic components that are needed to deliver
this service. The first implementation is thus generally a model of these components
that are simulated in the testing step to verify that the functionality and requirements
are likely to be met. The testing will then provide information for the analysis step
for determining the functionality and requirements of each basic component.

Subsequently, the development cycle continues with more detailed models lead-
ing to prototypes and till a final complete design. However, low-level testing may
sometimes discover faults in the high-level designs implying that the process needs
to backtrack and repeat the design iterations. The longer the process needs to be
backtrack the more costly it becomes. Thus, one very important task for develop-
ment processes is to avoid such re-iterations.

A recent iteration and cost saving trend is to use standard components (both
hardware and software components), so-called Commercial Off The Shelf (COTS)
components. However, the drawbacks are that these components are generally not
optimized for specific systems and the detailed design of these components are not

1.2. Development of Dependable Computer Systems 7

accessible for system developers. We will now briefly go through what these devel-
opment steps involve considering the dependability aspects.

As previously described, a development cycle needs to start by analyzing the
problem to solve and defining the requirements on the services, performance, de-
pendability, etc for the design (solution). For dependability analysis this specifically
implies progressing through the different attributes of Chapter 1.1 and determining
the requirements. For safety, which is the attribute this thesis mainly focuses on,
the first step could typically mean to determine the maximum accepted system fail-
ure rate at different working conditions, whether single point of failures should be
allowed and which values specific quantities are allowed to obtain.

When the first requirements for a sufficient solution for the problem have been
specified at the analysis step, different strategies (designs) for solving the problem
can be proposed. It is also necessary to determine how the requirements can be tested
for the different designs. For development of dependable systems this specifically
means determining the techniques (listed in Chapter 1.1) to use to reach a sufficient
design and to be able to test that it is sufficient.

The first design (solution) to start with is often a system that is believed to fulfill
the service requirements, but for which it is not known if the dependability require-
ments are met. In order to determine if and how the dependability requirements can
be met, dependability analysis methods are used in the testing step. Examples of
such analysis methods are Failure Mode and Effect Analysis (FMEA), Functional
Failure Analysis (FFA), Fault Tree Analysis (FTA), Markov Modeling, Petri Nets,
Formal Methods (FM), etc (the interested reader is referred to [Johannessen, 2001],
[Clarke and Wing, 1996], [Betous-Almedia and Kanoun, 2002]). Different methods
test different properties and require different implementations.

The target of the first analysis is often to identify the components that are critical
for the safety of the system. In later development steps, more quantitative analysis
can be applied for computing the Mean Time To Failures (MTTF) that are achieved
using different fault tolerance strategies, as based on component failure rates for in-
stance collected from [US Department of Defense, 1991]. A comparison of different
reliability prediction models is presented in [Jones and Hayes, 1999].

If the proposed design meets the safety requirements, the development process
can be taken to a lower abstraction level. However, if the requirements are not met,
the design must be modified such that faults are prevented from occurring or are
tolerated (i.e., the fault-error-failure cycle interrupted before a system failure occurs)
to such level that the requirements are met.

Fault prevention may for instance imply changing to more robust components,
redesigning the components/system, and/or shielding. This is most efficient to apply

8 Chapter 1. Introduction

to improve the safety against faults that else would be very common and/or affect
several separate parts of the system.

Fault tolerance generally implies error detection (identification of incorrect states)
and recovery (transforming the system into an acceptable state where faults are not
activated again).

It is generally not possible to efficiently (considering dependability, function-
ality, and cost) to prevent all faults from occurring, as the environment for safety-
critical systems can be very harsh, all components are exposed to wear, and the
complexity of components is increased. Thus, to meet the safety requirements fault-
tolerance techniques must be used. As mentioned previously, the focus of this thesis
is on exploring how efficient fault tolerant systems can be developed. Therefore,
in the next section, development of fault tolerant systems will be described in more
detail.

1.2.1 Development of Fault Tolerant Systems

After it has been determined that fault tolerance is necessary to meet the safety
requirements on the system, the fault tolerance development process can be started.
First, in order to develop fault tolerant components/systems, it is necessary to know
which types of faults need to be tolerated, i.e., the analysis step.

Looking at the four means to develop dependable services (see, Chapter1.1),
fault tolerance distinguishes itself by being the only “active” method, i.e., the only
method that can be used to avoid failures during system operation. To paraphrase
Murphy’s law: “If something bad can happen it will, and it will happen during that
time when it is most damaging”, fault tolerance techniques should ultimately be
applied to handle all unexpected faults. However, as fault-tolerance is expensive
to implement, it is an effective strategy to methodically constrain fault occurrences
using the processes of fault forecasting, fault prevention and fault removal. Thus,
the refined list of faults that are necessary to apply fault tolerance techniques for are
now discussed.

Developmental faults are introduced when the system is developed, i.e., before
it is operating. Many people consider developmental faults, specifically software
faults, to be the most important challenge for the dependability community. There-
fore, some tolerance techniques for detecting such faults have been proposed, in gen-
eral based on diversity, [Avižienis, 1985], [Ammann and Knight, 1988]. Regardless,
their efficiency is debatable as the technique increases the complexity, and thus, po-
tentially the number of faults. However, one cannot ignore that even if fault removal
techniques are improved, they will probably never be perfect, especially consider-

1.2. Development of Dependable Computer Systems 9

ing the complexity growth of computer systems. Therefore, this thesis assumes that
proper testing has been applied, meaning that developmental faults left after test-
ing have a low activation frequency, as faults with high activation frequency should
already have been detected. Thus, developmental faults following this assumption,
i.e., with low activation frequency, are considered in this thesis.

Physical faults occur when the system is operating due to wear-out and/or en-
vironmental disturbances. Even if new materials with better characteristics will be
introduced, and manufacturing, design, testing and shielding techniques improve,
the physical fault occurrence rate is expected to increase [Constantinescu, 2002],
[Avižienis, 2000], [Shivakumar et al., 2002], [Hazucha, 2000]. Therefore, it will be
necessary to apply tolerance techniques for such faults in order to get cost-efficient
solutions. Consequently, physical faults are the major type of faults considered in
this thesis.

Interaction faults are caused by that the user misunderstands how the system
should be used, or deliberately attacks the system, i.e., faults occurring due to misuse
of the system. These faults differ greatly from the other two classes as they are in-
troduced by humans during system operation. Thus, in many cases, a different fault
tolerance strategy (many faults are probably more cost-efficiently to avoid through
fault prevention) is required. Therefore, to restrict the content, such faults are not
treated in this thesis.

To summarize, this thesis focuses on tolerating physical faults and developmen-
tal faults with low activation frequency.

After specifying the desired class of faults to tolerate, the next step is to de-
termine how these faults should be handled, i.e., the design step. As mentioned
previously, fault tolerance generally implies error detection and recovery. To es-
tablish this, redundancy is required. There are three classical forms of redundancy
in practice: spatial-, temporal-, and information- redundancy. Generally, spatial
redundancy means physical replication of units; temporal redundancy implies re-
execution of tasks, and information redundancy often entails coding type techniques
to provide supplemental information onto the basic data content.

The choice of strategy to use is determined by the effect/impact1 each fault has
on the system, and the cost. First, in order for fault tolerance to work, it is required
that not all replicas (redundant tasks) fail in the same time. Second, for systems
which are manufactured in relatively small numbers as in the aerospace industry,
the total cost is primarily determined by the fixed cost for developing the system.
Thus, techniques based on error masking through spatial redundancy may be effi-
cient as they often are relatively simple to accomplish. However, for systems that

1These two terms will be used interchangeable in the continuation of this thesis.

10 Chapter 1. Introduction

are manufactured in large numbers, e.g., the automotive industry, the total cost will
mainly depend on the recurring cost (the manufacturing costs including the material
cost etc), strategies with less spatial redundancy are preferred, even if such solutions
may become more complex.

As safety-critical systems lacking a fail-safe state (a fail-safe state is a state
where no catastrophes can occur) require that units are at least duplicated to be able
to recover, it seems natural to provide fault tolerance by executing the tasks on both
units and comparing the results, i.e., a duplex systems. However, duplex systems
have the following problems:

� How should it be determined which unit that is erroneous?

� How should the comparison be performed? Should it be on one of the units
(in that case, what happens if this is the erroneous unit) or by an external
comparer (which must be assumed to be reliable)?

� The units must be synchronized, which reduces the performance.

Therefore, fault masking via voting across a number of replicas, so called N-
Modular Redundancy (NMR), can be used. To tolerate � faults,

��� ����� replicas are
required, [Pradhan, 1996], [Yeh, 1996]. In this way the system can recover without
specific error detection. However as this approach conceals fault occurrences, the
number of faults may eventually exceed � . Therefore, practical implementations
often log the errors (i.e., error detection). The main advantage with fault masking is
that it is simple to implement. However, it requires a large number of replicas which
makes it costly and/or time consuming.

Error detection and recovery techniques are potentially less costly and time con-
suming but can be complex to implement. The development of systems based on
error detection and recovery is now described in more detail.

Error Detection and Recovery

As it is not practical to recover a component/system before an error has been de-
tected, error detection often precludes recovery2. However, when developing the
system, it is more practical to design the fault recovery policy first as this sets the
requirements for the error detection, i.e., determines which errors that need to be
detected and separated. Therefore, the description of the different steps starts with
the recovery.

2It should be noted that some techniques perform immediate recovery, as for instance Error Cor-
recting Coding (ECC) or N-Modular Redundancy.

1.2. Development of Dependable Computer Systems 11

Recovery is aimed at transforming the system into a correct state where faults
are not activated again. This is achieved through error handling (eliminating errors
from the system state) and fault handling (locating faults and preventing them from
being activated again). Starting backwards, fault handling involves four steps:

� Fault diagnosis: Identification and recording the cause(s) of error(s), in terms
of both location and type.

� Fault isolation: Performing physical or logical exclusion of the faulty compo-
nent(s) from further participation in service delivery.

� System reconfiguration: Switching in spare components or reassigning tasks
among non-failed components.

� System reinitialization: Checking, updating and recording the new configura-
tion and updating system tables and records.

It should be noted that sometimes some of these steps are left out. For instance, if the
fault is transient, there are components performing the same tasks (so called active
replicas), or the system is allowed to degrade, i.e., reduce service in a controlled
manner (e.g., set the system in a fail-safe state). A classical example is the Anti-
Lock Braking System (ABS) for automobiles, which when functioning correctly,
reduces the braking distance for vehicles, but when turned off the normal braking
performance is obtained. Thus, the off position is a fail-safe state for the ABS.

Fault diagnosis can be performed based on information from how the error was
detected, a-priori information on how faults are activated and resulting errors prop-
agated, and from specific fault diagnosis tests. It is of greatest importance that the
fault diagnosis does not incorrectly point out a fault that should be handled in a
different way than the fault that really occurred, since this not only leaves the fault
untreated, but also may reduce the resources of the system.

Error handling can be achieved through:

� Rollback, where the state transformation consists of returning the system back
to a saved state that existed prior to error detection; that saved state is called a
checkpoint.

� Compensation, where the erroneous state contains enough redundancy to en-
able error elimination.

� Rollforward, where the state without detected error is a new state.

12 Chapter 1. Introduction

The decision on how to handle errors is determined by the cost for the specific sys-
tem, information of the specific system and the chosen fault treatment strategy.

When recovery strategies for all fault types are selected, the requirements on the
error detection is known. Errors are generally detected by checking some property
of the system. This can be achieved for instance through determining the property
twice, either from redundant components or from the same component, but separated
in time, or comparing it to in advance information about the property.

Generally, a number of quantities are used to determine the detection efficiency
of the error detection, namely:

� Error Detection Coverage: The percentage of the errors occurring that are
detected by the technique.

� Error Detection Latency: The time from that the error occur until it is detected
by the technique.

� False Alarms: The number of times the technique is triggered without an error
has occurred.

In many cases, the most efficient (detection efficiency, diagnosis, cost and overhead)
solution for error detection in a system is based on several complementing error
detection techniques, rather than one, [Steininger and Scherrer, 2002]. The choice
of which error detection technique to use is not only dependent on the cost for using
them and which error detection efficiency that is required, but also on what support
they give for fault and error diagnosis.

In this subsection we have described the necessary steps to be able to tolerate
faults. Thus, the fault tolerance coverage, i.e., the probability that a fault is tolerated
is the product of the probabilities that the resulting errors from the fault are detected
and handled correctly, the fault diagnosed and isolated correctly, and the system
reconfigurated and reinitialized correctly.

In order to determine the fault tolerance requirements, the analysis methods
mentioned in Chapter 1.2 can be used. However, for testing of fault tolerance de-
signs, fault injection is the most common used technique.

Fault Injection

Fault injection means evoking faults or errors in a system in order to observe their
effects. This can be used for understanding which effects faults have on the system,
but also to test and evaluate the efficiencies of fault tolerance techniques. Thus, fault
injection can be used for fault forecasting, fault prevention and fault removal.

1.2. Development of Dependable Computer Systems 13

If the injected fault is activated (i.e., generates an error) during the observation
time, the fault is said to be effective, else it is determined to be latent (i.e., it may have
been activated later if the observation time had been extended), or ineffective (i.e.,
if it can be established that errors never will be generated). Faults can be injected in
many different ways and at many different abstraction levels and locations. Some of
these are, [Iyer and Tang, 1996], [Folkesson, 1999], [Karlsson et al., 1995]:

� Simulation-based fault injection implies that faults are injected into a model
of the system that is simulated.

� Software-Implemented Fault Injection (SWIFI) injects faults through software
into registers and the program memory of the system.

� Scan-based fault injection (SCIFI) means that faults are injected through use
of the scan chains of the device.

� Physical fault injection implies that faults are physically injected into hard-
ware, i.e., at least a prototype must have been developed.

Simulation-based fault injection has the advantage that it can be applied early
in the development process, i.e., as soon as a model of the system exists. The con-
trollability and observability of the experiments are also usually very high. Further-
more, since simulations are used, there is no risk of physical damage due to the fault
injection. The drawbacks are that as for all simulations, the experiments can be very
time consuming for detailed models. Therefore, the models need to be abstracted,
i.e., less detailed models are used, which on the other hand implies a risk of giving
less accurate results. Thus, only a subset of the possible faults can be evaluated and
only on models, not on physical prototypes or real systems.

Software-implemented fault injection has the advantage that faults can be in-
jected into physical prototypes and systems with only a small risk of destroying
them. It has the potential of modeling all types of software faults and many hard-
ware faults as well, [Christmansson et al., 1998]. However, it is not clear how faults
should be injected as it is hard to determine which software faults that are not de-
tected during testing (which are the faults that are of main interest to investigate),
and how hardware faults should be modeled.

Scan-based fault injection has the advantage that faults can be injected into
physical prototypes and systems with only a small risk of destroying them. More-
over, it can use the traditional hardware fault models developed for simulation-based
fault injection. The main drawback is that the scan-chains generally only are acces-
sible for the device developers, i.e., not for system developers. Another potential

14 Chapter 1. Introduction

problem is that scan-chains often only access limited parts of the device, i.e., only a
subset of the possible faults can be investigated.

Physical fault injection has the major advantage that the real physical proto-
types or system is evaluated with real faults. The drawbacks are that the observabil-
ity and controllability often are low which can make it hard to explain the causes
of the measured results. Furthermore, there is a risk of destroying the devices, the
experiments can be time-consuming since it can be hard to evoke faults, and even
if real faults are injected, generally not all of types of faults can be injected, i.e.,
the results may be biased towards a certain fault type. Examples of physical fault
injection techniques are:

� Pin-level fault injection: the pins of an integrated circuit are forced to specific
levels.

� Radiation induced fault injection: the system is exposed of radiation.

� Power supply disturbance fault injection: the power supply to the system is
disturbed.

� Electro-magnetic interference fault injection: the system is exposed to electro-
magnetic waves.

� Laser fault injection: a laser beam is pointed to parts of the system that are
sensitive to Single Event Upsets (SEU).

In this section we have described the process of developing safe, specifically
fault-tolerant systems. In the next section we will describe control systems as such
systems are one of the most common safety-critical systems and used in this thesis
when discussing and exemplifying different methods and techniques.

1.3 Control Systems

Conceptually, a control system is set to control a certain physical process (see Fig-
ure 1.2). Examples of physical processes that generally are controlled are the tem-
perature in the compartment of a car, the braking of a truck, the travel direction of
a space shuttle etc. The control is performed by first determine the current state
of the process by measuring certain quantities, ������� , directly using sensors (S in
Figure 1.2), or by measuring related properties and estimating the quantities from
these. Then, the controller compares the current state with the desired state, i.e., the
reference signal, �	�
����� , that is provided by the user (which may be a human user or

1.3. Control Systems 15

an external computer system) and that may be fixed or variable, via some interface
(I in Figure 1.2). The difference between the current and desired state is used by the
controller to compute how the process should be controlled, i.e., the control signal,
� ����� , is computed, such that the process state is as close to the desired state as pos-
sible. The actual physical control of the process is carried out by a set of actuators
(A in Figure 1.2).

In this thesis we assume that controllers are implemented on microprocessors,
and that they execute in discrete steps, i.e., a controller reads reference values and
sensor values and calculates control signals periodically. This is most, at least for
safety-critical systems, but there also exist systems where the controller computation
is event-triggered, [Årzén et al., 1990]. In Figure 1.2, and subsequently, � indicates
the � ���

step in time.

Control
signal, u(k)

Physical
process

A

S
Sensor (real)

value, y(k)

Reference
(desired)

value, uc(k)

I
Controller

(with state
space, z(k))

Figure 1.2: A general figure of a controller and the corresponding physical process.

Using pseudo-code, the controller could be implemented as:

repeat:
uc := read_from_interface();
y := read_from_sensors();
u := compute_control_signal(z,uc,y);
write_to_actuator(u);
z := update_controller_state(z,uc,y);
wait_for_next_sample;

It is easy to realize that control systems generally are real-time systems as most
physical processes have time-requirements (consider for instance a brake-by wire
system in an automobile).

1.3.1 Distributed Dependable Control Systems

During the previous decade, the performance of microprocessors increased dras-
tically, whereas the size and cost decreased significantly. At the same time, the

16 Chapter 1. Introduction

requirements of low recurring costs, low weight, high dependability, high function-
ality and high controllability have increased. These aspects brought the trend to
distribute the functionality to several computers instead of having one central com-
puter. The advantages are less cabling (less weight), fewer single points of failure
(higher dependability), and improved functionality and controllability. However,
distributing systems means that the different parts need to communicate and often
also to be synchronized, which increases the complexity. Details on communication
and synchronization solutions can be found in [Lönn, 1999], [Claesson, 2002].

The distribution of control systems is often determined of where the physical
properties can be measured and controlled, i.e., the sensors and actuators are located
dependent on the architecture of the physical system. In many cases are simple com-
puters integrated with the sensors/actuators and additional computers placed accord-
ing to which computation efforts that are required at different part of the system. For
the future, it can be expected that the systems will become even more distributed,
such that sensors and actuators are directly connected to the communication net-
work, rather than to computer nodes. This implies that it will not matter which com-
puter connected to the network that computes which control algorithm, and thus, the
computers can be seen as a multiprocessor system. However, through out this the-
sis we assume that sensors and actuators are mainly connected to specific computer
nodes and that these nodes compute the data from and to these components. Later, in
the future work section in Chapter 6, the implications of this possible development
will be discussed.

The Computer Node
A generic computer node is shown in Figure 1.3. Such a node conceptually

contains two interfaces, a communication interface and an application interface. The
communication interface handles the information exchange with other nodes (e.g.,
sensor and/or control signal values). The communication is generally performed
according to a protocol, stating the packaging and encoding of data. Received data
is transferred through the memory to the application interface, where it is utilized
together with data received from internal data sources (e.g., local sensors) in the
control algorithms. The control signals are then transferred to their corresponding
actuators.

The actual implementation differs among computer nodes. In some nodes, com-
munication and calculation of control signals may be managed by the same main
processor, whereas in others, the main processor only handles calculations and a
specific controller manages network communication. For such nodes, data can be
transferred between the controller and main processor through an internal bus or
through a dual-port memory. Other variations are the types of memory used (EEP-

1.3. Control Systems 17

Memory

µP

Application
Interface

Communication
Interface

Sensors,
Actuators

Communication
 Bus

Communi-
cation

controller

Figure 1.3: A general architecture of a computer node.

ROM, FLASH, RAM, etc.).
Another issue is whether to use an operating system or not. As more and more

software is used and which have been developed by different developers, operating
systems will become necessary. In this thesis, operating systems are not specifically
discussed, but are seen as a software component, and thus, faults in the operating
system are indirectly included when developmental faults are discussed.

The Application Microprocessor of a Computer Node This thesis focuses
on how to develop fault tolerant microprocessors for use in safety-critical systems.
Therefore, the requirements on the functionality and dependability of the micropro-
cessor in the application interface are now discussed in more detail. As described in
the previous section, microprocessors are generally used in the application interface
even if they in some cases also handle the communication. In this thesis we focus on
the role of the microprocessor in the application interface. The requirements of the
microprocessor for such use can be divided into delivered service and dependability:

Service
As we are dealing with control systems, the most important services (tasks to

execute) for the microprocessor at the application interface are:

� Reading input values from directly connected sensors and other computer
nodes (through the memory on the computer node).

� Computing the control signals and updating the state of the controller based
on read input values.

� Distributing the control signals to the actuators, either directly or through
other computer nodes.

18 Chapter 1. Introduction

It is important that these functions are performed at specific time points in time as
the control algorithm is designed in most cases are designed for periodic sampling
and any difference in sampling time, i.e., jitter (see for instance [Lönn, 1999]), will
reduce the control performance.

However, the microprocessor may also perform other tasks. For instance, han-
dling interfaces between the system and the user that are not directly related to the
control system, and storing data on how the system is used in order to be able to
adapt it for the specific user and how to improve future developed systems. As
the microprocessors constitute the major intelligence of the system, it is also often
responsible for diagnosing the sensors and actuators of the system, and store in-
formation that can be used for repairs. Determining whether a sensor or actuator
is working properly is generally achieved through functional redundancy (an error
detection technique based on information redundancy) and/or test sequences, see
Appendix A for more details.

Considering these functions. it is easy to understand that a microprocessor fault
that is not treated correctly will in many case cause severe damage3.

Dependability
As the focus of this thesis is on safety-critical systems, the requirements on

dependability are high. For many such distributed systems, the computer nodes are
required to be fail-silent, i.e., that the nodes fail “cleanly” by just stopping to send
messages, [Powell et al., 1988]. The main advantages with this requirement are that:

� It is comparably expensive to recover from errors that have spread to several
nodes.

� Communication between nodes is expensive which makes error detection be-
tween nodes unattractive.

� Error propagation to actuators can be limited, as today, actuators often are
connected to computer nodes rather than to the communication network.

Thus, today (this may change in the future) fail-silent computer nodes simplifies the
design and reduces the cost.

As the microprocessor generally is the most complex component of the computer
node, and thus, the most failure prone, it is of utmost importance that faults in this

3In this thesis we consider diagnosis of the network, the status of other computer nodes and
system reconfiguration to be handled by the communication controller. Examples on references
on how to protect the communication controller are [Temple, 1998], [Steininger and Temple, 1999],
[Steininger and Vilanek, 2002].

1.4. Restrictions and Targeted Problems 19

component can be detected and handled to meet the requirements on fail-silence.
How to achieve this is the main focus for this thesis.

1.4 Restrictions and Targeted Problems

As was discussed in the previous section, microprocessors have a key role in safety-
critical control systems. Thus, it is very important that the microprocessors are
working correctly. Therefore, the main research question for this thesis is:

Q1: How should a system developer in the future design a computer node with
a microprocessor so that safety, cost and functionality requirements are met?

It is assumed in the thesis that fault tolerance techniques will be necessary, i.e.,
that fault prevention in the future will not be enough to reach safety requirements.
Furthermore, the discussed fault tolerance techniques are mainly focused on physical
faults (even developmental faults with low activation probabilities are targeted). In
this thesis we have focused on systems that are produced in large numbers (e.g,
systems in automobiles) which implies that the cost requirements mainly consider
the recurring costs rather then the fixed costs.

For the future, there seem to be mainly three different directions for a system
developer to design a computer node with microprocessors. First, use specific de-
signed fault tolerant on-chip processors, second, use commercial processors, and
third, use commercial processors but adding software and/or hardware to improve
the fault tolerance4.

The number of microprocessors that have been designed for tolerating a wide
range of faults is limited. The main reason for this is that the market for fault
tolerant microprocessors has been considered too small (it is not only the micro-
processor itself that need to be developed, but also compilers and other develop-
ment tools). In spite of this, there exist some microprocessors that are designed to
be fault tolerant. Examples of such processors are: G5 [Check and Slegel, 1999],
Thor [Saab Ericsson Space, 1999], and LEON [Leon, 2003], [Gaisler, 2002]. The
G5 processor is based on massive hardware redundancy on-chip and has been de-
signed mainly for banking systems, whereas Thor and LEON have been designed for
space-flight applications. Thor and LEON are designed to tolerate faults occurring
in harsh environments, and offers good observability and controllability for system
developers. However, their performance is not comparable with modern commercial
processors.

4It is generally not possible for system developers to redesign commercial processors to improve
the on-chip fault-tolerance as low-level details are concealed by the microprocessor developers.

20 Chapter 1. Introduction

Commercial processors include fault tolerant techniques. However, it is impor-
tant to note that these techniques are not applied for the sole purpose of increasing
the dependability, but as the fault rate is so high that performance would be reduced
if the techniques were not applied. Today, most internal buses, registers and mem-
ories are protected with Error Detection and Correction Codes (EDCC). For the fu-
ture, as the scaling of the device geometries and the increased complexity are likely
to increase the fault occurrence rate, [Hazucha, 2000], [Shivakumar et al., 2002],
fault tolerance techniques can be expected to occur more and more frequently on-
chip of commercial processors. Many of the new proposed error detection tech-
niques are based on implementing time redundancy on chip, e.g., executing instruc-
tions several times and compare the results (examples of such are [Rotenberg, 1999],
[Rashid et al., 2000], [Mendelson and Suri, 2000], and [Lai et al., 2002]). Such tech-
niques can detect almost all types of errors caused by transient faults, and some even
errors caused by persistent faults. However, how to differentiate between faults of
different duration and how to recover from persistent faults are sparsely discussed.
The cost for these techniques is the additional execution time, which cannot totally
be avoided even if these techniques try to make use of resources that are idling.
Thus, there is a performance trade-off of adding error detection techniques. On one
hand, faults that are not handled will reduce performance, but on the other hand,
error detection techniques may constantly decrease performance.

If the yield (error detection and correcting codes are often used to compensate
for memory elements with developmental faults) or performance of commercial pro-
cessors is not increased by tolerating a certain fault, such techniques will generally
not be implemented on chip. However, for safety-critical systems, most faults need
to be tolerated. Therefore, specific techniques for tolerating faults can be added,
implemented in software or as off-chip hardware. Other advantages with such tech-
niques are that they are controllable for system developers and support fault diag-
nosis, which may not be the case for on-chip techniques. Even if such solutions
generally will not be as efficient as designed on-chip, they can still be competitive
as they be executed on commercial processors optimized for performance.

This thesis is focused on investigating the third alternative, designing fault tol-
erant microprocessor based on adding software-implemented techniques to com-
mercial processors. The motivation for this choice is that commercial processors
can today not be used without modifications and fault-tolerant microprocessors are
expensive and/or have less performance. By adding fault tolerance techniques to
commercial processors, the hope is that it should be possible to balance the fault tol-
erance coverage, cost and performance better. Furthermore, such solutions should
be portable as it is based on software, and thus, should be possible to add to any

1.4. Restrictions and Targeted Problems 21

microprocessor.
However, even if this decision was taken, it is important to emphasize that the

aim of the thesis is NOT to say that systems in the future will be built of commercial
microprocessors and the safety requirements reached through software-implemented
software techniques. It may very well be the case that such systems will be based
on specific designed microprocessors (due to the market for safety has increased) or
simple commercial microprocessors (due to that extensive fault tolerance techniques
become standard) or adding hardware-implemented fault tolerance techniques (due
to that hardware becomes cost-efficient). However, even if any of these scenarios
will occur, we still believe that this thesis will provide important insights, which at
least can be used for comparison.

1.4.1 Adding Software-Implemented Fault-Tolerance Techniques

By focusing the work to investigate whether commercial microprocessors can be
used in safety-critical applications by adding software-implemented techniques, the
research question Q1 transformed into the sub question:

Q1.1: How efficient (safety, cost, functionality) can a fault tolerant processor
based on commercial processors with added software-implemented fault tolerance
techniques be?

As we focus on systems that are manufactured in large numbers, it is important to
restrict the recurring costs, and thus, fault masking should not be used at the node-
level as it requires triplication of the microprocessors. This implies that efficient
error detection with recovery should be applied. With efficient error detection, we
mean:

� Maximum detection coverage for errors that result in failures, i.e., detect as
many errors as possible that will result in catastrophic consequences if not
handled.

� Minimum of false alarms, i.e., should not be triggered if no error exist.

� Minimum of unnecessary alarms, i.e., should not be triggered if the error has
insignificant impact on the system.

� Minimum detection latency, i.e., should be triggered as fast as possible after
an error has occurred.

� Maximum fault diagnosis, i.e., should provide as much information as possi-
ble on which error that triggered the detection.

22 Chapter 1. Introduction

� Maximum portability, i.e., should be portable to any system.

� Maximum scalability, i.e., should scale if the system is modified or redesigned.

� Minimum overhead, i.e., should have as low overhead (cost (mainly recurring
costs), performance, memory, power) as possible.

Efficient recovery means:

� All detected errors should be eliminated.

� All faults should be correctly diagnosed.

� All faults requiring to be actively handled (in contrast to transient faults),
should be correctly isolated, reconfigured or degraded, and reinitialized.

� Should have as low overhead (cost (mainly recurring costs), performance,
memory, power) as possible.

As was described previously in Chapter1.2, a development process starts with
the analysis step. Therefore, in order to identify the major problems of developing
fault tolerant processors based on applying software-implemented fault tolerance
techniques to commercial microprocessors, a number of studies were performed:

� Investigation of how the occurrence rate of different fault mechanisms are
affected by the device scaling, Chapter 2.

� Identification of how errors manifest them selves in a microprocessor at dif-
ferent abstraction levels, Chapter 3.

� Survey of different types of error detection techniques, Appendix A.

The major conclusions from these studies are that storing and transferring parts are
likely to be well protected in commercial processors whereas the transformation of
data is sensitive. Moreover, in the future, the duration of faults can be expected to
be more varied (today, most research is focused on transient faults).

Based on these results, a design was proposed in Chapter 3, based on the use
of complementary techniques for detection of different types of errors. In order to
determine the efficiency of the proposed design, evaluations were necessary. As low-
level details seldom are accessible for system developers, the next research question
became:

Q1.2: How can commercial processors with added fault-tolerant techniques be
designed and evaluated with only high-level information accessible?

1.5. Major Contributions 23

This are the focus of Chapter4-5 where analysis (Chapter4) and fault injection
(Chapter5) methods for evaluating the effect of data errors caused by faults with var-
ied duration, and the efficiency of applied error detection techniques are presented.

1.5 Major Contributions

One contribution of this thesis is the identification of the problems with developing
fault tolerant microprocessors, based on the studies of modern and future data archi-
tectures, occurrence rates of future architectures, and existing error detection tech-
niques, Chapter2-3 and Appendix A. From these studies, a design based on com-
plementary techniques for detection of different errors caused by faults with varied
duration were proposed. Even if the efficiency of this design has not been evalu-
ated, no major hindrances for building fault tolerant processors by adding software-
implemented techniques to commercial processors were detected.

The main contribution of this thesis is the development of a novel approach
for evaluating the effects of data errors caused by faults of varied duration and the
efficiency of applied error detection techniques. Most previous work has tried to
model low-level faults and then observed which errors and effects they result in,
i.e., bottom-up approaches. However, as low-level details of commercial micropro-
cessors seldom are accessible for system developers or researchers in academia, a
different, top-down strategy, has been progressed.

First, the characteristics of data errors (property, number, magnitude, state and
repetition frequency) that determines their effects and the possibility to detect them,
are identified, Chapter 3. Then, in Chapter 4, errors with different characteristics
are divided into different sets. Each set is modeled as a specific disturbance. Then,
analysis methods from control theory are applied to determine the impact of the
different errors.

The analysis can also be used for estimating the efficiency of executable asser-
tions. The main advantage with the analysis is that it provides information early in
the design process. However, with the proposed analysis methods, not all combina-
tions of the error characteristics can be analyzed.

The enabling of using analysis for estimating the effect of data errors is a major
contribution as most previous work has been based on fault injection experiments
which are time consuming, and as it requires more detailed implementations, must
be applied later on in the design process.

To investigate those errors that are hard to analyze, simulation-based fault in-
jection, Chapter 5, is proposed. One problem with simulation-based fault injection
is that the simulations must be performed at high abstraction level (as low level

24 Chapter 1. Introduction

models seldom are accessible), which means that there is a risk that the accuracy
of such simulations can be low. Therefore, a method based on VHDL-simulations
at Register Transfer Level (RTL) is developed. Here the errors are injected through
saboteurs, a specific VHDL-component added only for the purpose of stressing the
system. The saboteurs are developed so that the error characteristics can be varied.

The proposed high-level simulation-based fault injection methods are major con-
tributions as they enable accurate estimations of the effects of faults with varied du-
rations. Most previous high-level approaches have only considered transient faults
and those that have considered faults with longer durations, have not been able to
model there effects as accurately. Another advantage with this approach is that it
also can be used for evaluating the efficiency of applied error detection techniques.

One problem with simulations is that it is generally not practically possible to
investigate all combinations of the error characteristics. This problem is suggested
to be solved in this thesis by applying iterative fault collapsing. First errors with cer-
tain characteristics are simulated. If the effect of these errors are negligible, errors
with characteristics that generally implies less effects (e.g., lower magnitudes and
frequencies) do not need to be simulated. Next the error characteristics are tuned so
that the errors will have greater impact (e.g., the magnitude and frequency are in-
creased etc.). This continues until all errors can be classified into desired classes. In
this way the number of simulations is reduced. Similarly, for investigating which er-
rors that are detected by a certain technique, the characteristics are varied depending
on whether the errors are detected or not.

1.6 Thesis Organization

The organization of this thesis follows the steps of system development processes.
In Chapter 2, the problem is analyzed and in Chapter 3 a design is suggested. Then
in Chapter 4 and Chapter 5 testing at different abstraction levels (system level and
RTL) is discussed.

More precisely, this thesis is organized as follows: A short overview of the ar-
chitecture of modern and future microprocessors are given in Chapter 2. Also, in
this chapter, the effect of device scaling on the occurrence rate of different fault
mechanisms is briefly discussed. The effect of faults and how the generated errors
propagate in microprocessors is discussed in Chapter 3. The characteristics which
determines the effect of data errors are identified. Furthermore, a design of comple-
mentary software-implemented error detection techniques is proposed and the prob-
lems of evaluating it discussed. Subsequently, in Chapter 4, methods for analyzing
the impact of data errors on control systems are presented. As a complement for er-

1.6. Thesis Organization 25

rors/systems that are hard to analyze, two simulation-based fault injection methods
are presented in Chapter 5. In Chapter 6, the main conclusions are summarized and
how the results of this thesis may be affected by future development is discussed.

The appendices of this thesis have the following content:

� Appendix A, a survey of error detection techniques.

� Appendix B, analysis on the probability of detecting errors caused by persis-
tent faults with double execution.

� Appendix C, ideas on design of software-implemented self-tests for detection
of persistent faults.

� Appendix D, details on the control theory used in Chapter 4.

� Appendix E, the VHDL-code for a saboteur.

26 Chapter 1. Introduction

CHAPTER2
Modern Microprocessors and
Fault Mechanisms

As stated in the introduction, this thesis focuses on the design of fault tolerant micro-
processors using commercial processors with software-implemented fault tolerance
techniques. Fault tolerance can be defined as: “How to deliver correct service in the
presence of faults”, [Avižienis et al., 2001]. Thus, in order to design a fault tolerant
component, the correct service of that component must be known. In this chapter,
the function of a microprocessor and its basic functionality are described. After that,
architectures of modern processors are presented.

One of the reasons for the fast development of processors with increasing per-
formance is the successful scaling of transistors, i.e. reducing their size. However,
the scaling may also make the transistors more sensitive to discrepancies and distur-
bances. Therefore, also the microprocessor implementation and scaling trends, and
their implications on the occurrence rates of different faults, are briefly described
and discussed.

A related problem is that as the number of transistors increases on chip, more
complex microprocessors are developed which increases the fault probability. Fur-
thermore, the time required for testing the circuits increases exponentially with the
complexity, which makes exhaustive testing practically impossible. Thus, there is
a risk that the number of developmental faults, not detected during testing, will in-
crease. This is discussed briefly in this chapter.

The main result from these surveys is that we expect the fault occurrence rate
of commercial processors to increase in the future, not only for transient, but also

27

28 Chapter 2. Modern Microprocessors and Fault Mechanisms

persistent faults, due to scaling and increased complexity (however, few field data
exists to support this claim). Thus, for commercial microprocessors used in safety-
critical systems, techniques should be applied in order to tolerate transient faults as
well as persistent faults.

2.1 The Functionality of a Microprocessor

In Chapter 1.3.1, the service requirements of microprocessors used in the applica-
tion interface of a computer node, were described. However, the functionality of a
microprocessor itself was not discussed, but will be discussed here.

In Cambridge dictionaries online, [Cambridge, 2003], a microprocessor is de-
fined as "a part of a computer that controls its main operations" and where com-
puter is defined as "an electronic machine which is used for storing, organizing
and finding words, numbers and pictures, for doing calculations and for control-
ling other machines." Looking in the Computer User magazine online dictionary
[Computer User, 2003], a microprocessor is defined as: "A computer with its en-
tire CPU on one integrated circuit," where CPU is defined as "Central Processing
Unit. The CPU controls the operation of a computer. Units within the CPU perform
arithmetic and logical operations and decode and execute instructions. In micro-
computers, the entire CPU is on a single chip." Similar definitions are given in other
dictionaries.

Thus, microprocessors can organize data and perform simple calculations (logic
operations, addition, subtraction, multiplication and division). Thus, comparing this
to the wide range of actions a human can perform, microprocessors would be infe-
rior. However, when putting the simple functions (instructions) of a microprocessor
together in sequences (programs), very advanced computations can be performed,
and since these sequences can be run at a very high speed, the microprocessor can,
for some tasks, be a very efficient tool. Therefore, historically, performance has also
always been the main driver of the microprocessor development.

In the next section, the architectures of modern microprocessors for increasing
performance, is described. Following this, different performance optimizations used
in modern processors and future trends, are discussed.

2.2 Architecture of Modern Processors

As mentioned previously, the main functionality of a microprocessor is to organize
data and compute simple arithmetic and logic operations. The first microprocessors

2.2. Architecture of Modern Processors 29

generally executed one instruction at a time, had a large number of different, rather
advanced, instructions and only a few registers, i.e. so called Complex Instruction
Set Computers (CISC). This made assembler programs short and easy to design.

However, in the early 1980s, [Hennessy and Patterson, 1996], it was realized
that the most commonly used instructions were the simple load, store and branch
instructions. Thus, microprocessors that would be optimized for simple instructions
would show better total performance compared to processors with a lot of differ-
ent complex instructions. Therefore, the trend changed towards microprocessors
that only could perform the simplest operations, but on the other hand, could per-
form these very fast, i.e., so called Reduced Instruction Set Computers (RISC). This
made assembler programming more complex, but high-level languages and compil-
ers were improved to compensate for this.

The main idea for increasing the execution performance of simple instructions,
was to introduce pipelining. Pipelining exploits that the execution of different in-
structions still have many similarities. Thus, the execution of the instructions can be
divided into stages which are common to all or several of the instructions. The ad-
vantage with pipelining is that several instructions can be executed simultaneously
in the same way as the production line in the automotive industry, i.e., some parts
are assembled at one station and then forwarded to the next station where new parts
are added and so on until the end of the line where the automobile is complete. For
a microprocessor this means that when a program is started, the first instruction is
fetched to the first pipeline stage. When this stage is finished, it continues to the
second stage and the second instruction is fetched into the first pipeline stage. In
this way, ideally, all resources of the microprocessor can be utilized simultaneously,
and an instruction will be completed at every pipeline stage shift. Thus, this a very
efficient way of executing instructions.

A common way to divide the functionality of a microprocessor is to use the
following stages, [Hennessy and Patterson, 1996]:

1. Instruction Fetch

2. Instruction Decode/Register Fetch

3. Execute/Address Calculation

4. Memory Access

5. Write Back

In the instruction fetch stage, the next instruction of the program to execute is
read (fetched) from a memory (storage). The microprocessor keeps track of the next

30 Chapter 2. Modern Microprocessors and Fault Mechanisms

Instruction
decode

Instruction
fetch

Memory
accessExecution

Write
back

Instruction
decode

Instruction
fetch

Memory
accessExecution

Write
back

Figure 2.1: The stages of a pipelined processor.

instruction to execute by storing its memory address in an internal register, the pro-
gram counter register. The instruction consists of the operation code (a recognizing
pattern) together with required data or the necessary information (e.g., the memory
address) to obtain it.

At the instruction decode/register fetch stage, the operation code is decoded
in order to determine and generate the required control signals for the following
pipeline stages so that the desired operation is performed.

The execute/address calculation is the stage where the actual computation takes
place. This means that in this stage, different operations are performed for different
functions. In most processors addition, subtraction, logic functions, multiplication,
division and shifting can be performed. For instructions that read (load) data from,
or write (store) data to the memory, the memory address where the data should be
loaded from or stored in, is computed.

The memory access stage is only used for the load and store instructions. At
this stage, data is loaded from (stored at) the computed memory location.

At the write back stage, the result from the operation is stored into the desired
register. Store instructions do generally not use this stage.

It should be noted that modern processors often divides the functionality in
much finer stages (some state of the art processors use more than 20 pipeline stages,
[Intel, 2003(B)]).

In order to synchronize the instruction shifting between the stages, a clock signal
is used, i.e., the execution at each stage is only allowed for a maximum time (the
inverse of the clock frequency). After that amount of time, the data is transfered to
the next execution stage. Therefore, the clock cycle time must be set according to
the maximum time for the most time-consuming stage, and thus, it is important to
balance the execution time so that it is similar for all stages.

As was previously described, pipelining is very efficient as, ideally, all resources
of the microprocessor can be utilized simultaneously, and at least one instruction will
be completed at every pipeline stage shift. However, the pipeline execution can be

2.2. Architecture of Modern Processors 31

slowed down due to dependencies between the instructions. There are three major
dependencies: structural, control, and data hazards.

Structural hazards can for instance occur in the execution stage where some
operations can take several clock cycles to perform, e.g., multiplication. This means
that the execution of following instructions must be halted which decreases perfor-
mance. Therefore, microprocessors generally have parallelized execution stages,
which makes it possible for several instructions to execute simultaneously as long as
they do not use the same functional unit (e.g., adder, multiplier, etc.). Through this
design, and by allowing instructions to be executed in another order than at which
they were programmed (so called out-of-order execution with in-order-commit, i.e.,
the instructions can be executed out of order, but the results from the executions
are written to the memory in order), the pipeline flow is not restricted by time-
consuming instructions. Many microprocessors also have replicated functional units
so that instructions do not need to be halted even when the same type of resource is
needed for two consecutive instructions.

Control hazards occur at conditional branches in the program. As it is not
known which branch to follow until after the condition has been evaluated, the
pipeline need to be halted until it is determined which instruction to fetch next.
However, modern processors make advanced predictions on which branch will be
taken based on the specific type of branch, history, etc. If it turns out that it was the
correct branch was taken (predicted), the execution just continues. Otherwise the
instructions that have started to execute from the incorrect branch must be thrown
away and not considered, i.e., the pipeline is flushed.

Another way to avoid the problems with control hazards is to fetch several in-
structions instead of just one, and use out-of-order execution. In this way, some con-
trol branches can be avoided by executing only instructions that should be executed
for all branches while the condition has not been evaluated. Similarly, compilers
can analyze programs and change the order of instructions so that control hazards
are avoided without changing the functionality of the program.

Data hazards occur when an instruction requires data that is computed by the
previous instructions. As this data is not yet computed and stored when the instruc-
tion is fetched, the pipeline may need to be halted. In order to reduce the number
of cases where the processor needs to be halted, data is often fed back to previous
pipeline stages (i.e., so-called data forwarding) so that the closest following instruc-
tions do not need to wait for it to be written into the register bank. There exist some
techniques for predicting the data that is required, but this a much harder problem
than to predict the control flow, hence, the performance gain is generally less. Out-
of-order execution can resolve some of the hazards by simply executing independent

32 Chapter 2. Modern Microprocessors and Fault Mechanisms

instructions in between.
Another major bottleneck for the performance of modern microprocessors is

memory accesses, i.e., loading and storing data from/to memory. In order to enhance
the performance, several memory layers are generally used. At the lowest layer, the
main memory is located1. This memory can hold a large amount of data, but it can be
very time consuming to access. On top of the hierarchy, is generally one or several
cache-memory layers with shorter access times, i.e., they are faster, but have limited
storing capacity. The idea is to predict which data set the program will require in
the nearest future and transport that from the main memory through the cache-layers
to the highest layer (the cache with the fastest access-time) before it is required. If
this is successful, the access time seen by the microprocessor (which is the same
as the performance penalty) can be reduced significantly. However, the problem is
to correctly predict which data will be required, and how to guarantee that all the
memory layers will have the same data content after writing, without slowing down
the instruction (program) execution.

Looking at modern architectures of today, they are characterized by the rapid
device scaling (e.g., the reduction of the transistor size) of previous years (which
will be discussed in more detail later in Chapter 2.4). This has resulted in chips con-
taining large numbers of transistors. Therefore, it is now space available to replicate
units on chip. There are some different concepts for how to most efficiently uti-
lize replicate units. In Chip Multi Processors (CMP), the whole microprocessor is
replicated on chip, i.e., there are several microprocessors on the same chip which the
workload can be distributed between, [Hammond et al., 1997], [Diefendorff 1999],
[Belcastro, 1998], [Bossen et al., 2002], [Barroso et al., 2000].

Another approach is Simultaneous MultiThreading (SMT) architectures, which
have several pipelines on chip, but only one fetch and decode unit, [Lo et al., 1997],
[Theobald et al., 1999], [Chao, 2002]. The advantages with this structure are that
it is still possible to run a number of tasks (threads) simultaneously, without repli-
cating all units, and the scheduling of at which pipeline each instruction should be
executed is simplified as it can be controlled with one unit. If a task is stalled due to
a hazard, the microprocessor can still continue to run the other threads, which gives
higher performance. Another possibility is to run different parts of a task specula-
tively. For instance if the task has a conditional branch, then all branches can be
followed simultaneously by running them as speculative threads. When the condi-
tion is evaluated, all pipelines that ran incorrect branches are flushed, whereas the
pipeline with the correct branch is allowed to commit, i.e., the results of its execution
can be stored in the register bank and the memory.

1Many systems use external memories (e.g., hard discs), which can be seen as an even lower layer.

2.3. The Integrated Circuit 33

The difference between simultaneously multithreading and chip multi proces-
sors is that SMT can reuse some functionality between the pipelines which save chip
area, power and potentially can increase performance. On the other hand, the com-
plexity of SMT is much higher than CMP where the microprocessors are identical.
Furthermore, CMP may be more reliable than SMT since fewer parts are common
between the different processors, i.e., CMP may have fewer single-points of failure.

There also exist other approaches for increasing the performance by utilizing the
large number of transistors that the chips can hold. For instance, larger memories
can be placed on-chip and/or specific processors can be added to the memory to
improve the prediction accuracies, and thus, reduce the memory access times.

In this section, the architecture of modern microprocessors have been described.
In the next section, implementation of microprocessors will be discussed. As almost
all microprocessors today are implemented in silicon in form of integrated circuits,
we will focus the discussion to these. However, alternative platforms such as op-
tical, biological, quantum, etc processors have been proposed, [Mule et al., 2002],
[Theis, 2003], [Lewin 2002], [Oskin et al., 2002]. In the following sections, the de-
vice scaling trend and how different fault mechanisms are affected by the scaling
will be discussed. This will provide information on which faults are likely to occur
in the future.

2.3 The Integrated Circuit

The main building block of integrated circuits is the transistor. The most common
transistor type is Metal Oxide Semiconductor (MOS) transistors, see Figure 2.2.
These transistors consist of four connections: the source, the drain, the gate, and the

GATE

SUBSTRATE

SOURCE DRAINGATE INSULATION (OXIDE)

CHANNEL

BULK CONTACT

Figure 2.2: The structure of a general MOS transistor.

bulk. The gate is separated by an oxide layer. The source and drain are connected

34 Chapter 2. Modern Microprocessors and Fault Mechanisms

to doped silicon that is surrounded by oppositely doped silicon, the substrate, like
two islands. By applying a voltage to the gate, a channel of free charge carriers can
be formed between the source and drain. If the applied voltage exceeds a certain
threshold voltage, a current will flow between the source and drain. This means that
whether a current will flow between the source and drain can be controlled by the
voltage applied at the gate.

Thus, logical expressions can be implemented by putting several transistors to-
gether, but also memory elements, etc. Often, one N-channel (Negative doped) and
one P-channel (Positive doped) transistor are connected to form an inverter, as seen
in Figure 2.3, i.e., so called Complementary MOS logic (CMOS-logic). Using these
as the basic building block, arbitrarily complex gates/circuits can be built.

V_dd

V_outV_in

P-channel

N-channel

Figure 2.3: The structure of a general CMOS inverter.

As it is desired to hold as many transistors as possible on chip, transistors are
often connected through layers of interconnects, metal planes and vias (holes which
sides are filled with metal so that different metal planes can be connected). To
connect the integrated circuit to other external components, the internal points of
the circuit that should be connected using pads connected to bond-wires that in turn
are connected to the pins of the package.

Having described the components of the integrated circuit, the continuing im-
plementation optimization (e.g., reduction of the transistor size, supply voltage, in-
creasing the clock frequency, etc.), i.e., device scaling is now discussed.

2.4. Device Scaling 35

2.4 Device Scaling

It is desirable to scale transistors (i.e., reduce their size) as the resistance and para-
sitic capacitance decrease which make it possible to clock the circuit at a higher rate
(increase performance), the power consumption per transistor will decrease, and the
number of transistors that can fit on a single chip is increased. Therefore, developers
have since the beginning of the integrated circuit area, tried to come up with methods
to scale the size of the transistors. The problem with scaling can be described as fol-
lows: Decreasing the size of the transistor implies thinner oxide layers, i.e., reduced
oxide resistance. Thus, to maintain the electrical characteristics (avoid that the elec-
tric field increases which could result in an oxide breakdown), the gate voltage must
also be decreased. This is not directly a problem as it also reduces the power con-
sumption which is desirable. However, reducing the oxide thickness also means that
the probability for charge carriers tunneling through the oxide is increased. More-
over, also the threshold voltage is decreased which increases the influence of leakage
currents. This implies that the power consumption do not scale at the same rate as
the transistor size, [Borkar, 1999], [Eckerbert, 2002]. This is a major problem. It
also results in a reduced signal-noise ratio, i.e., increases the sensitivity of the signal
levels.

Another scaling problem is that when the clocking frequency is increased, the
wire capacitance is increased which delays the signal distribution. Thus, the syn-
chronization accuracy between different parts of the chip is reduced as differences
in wire length gets significant. Another issue is the scaling of the interconnects as
the resistance increases when the interconnect cross section area decreases.

A major problem with scaling is also how to test the integrated circuits when
their complexity increases. Testing is also complicated due to that physical size of
the devices is reduced and their power sensitivity (overheating) and clocking fre-
quencies are increased. Furthermore, the manufacturing processes need to be more
accurate when the device size decreases.

During the life-time of the integrated circuit, there have always been threats to
the performance increase predicted according Moore’s law (the number of transis-
tors on chip will double each year), [Moore, 1965]. However, researchers have so
far been able to come up with new solutions, keeping the performance increase up.
Today, a large number of research projects addresses the issues mentioned above.
Some suggested solutions are:

� New materials, e.g., the use of low resistivity metals, development of insula-
tors with low dielectric constants.

36 Chapter 2. Modern Microprocessors and Fault Mechanisms

� Advanced circuit design, e.g., using asynchronous building blocks.

� New transistor implementations, e.g., double and triple gate, strained silicon,
etc.

� Improved lithography techniques.

� New testing techniques, e.g., more advanced scan chains (components added
in chains to devices in order to be able to observe internal states) and Built-In
Self-Tests (BIST).

Some examples of references of the large number of papers targeting problems
and predictions of future design of integrated circuits are: [Hawkins et al., 1999],
[Torin, 1999], [Kam et al., 2000], [Bryant et al., 2001], [Kundu et al., 2001],
[Meindl, 2001], [ITRS, 2002], [Antoniadis, 2002], [Constantinescu, 2002],
[Geppert, 2002], [Otten et al., 2002], [Grundman et al., 2003], [Hamilton, 2003],
[Intel, 2003(A)], [Meindl, 2003].

Now, after describing the implementation of microprocessors and the device
scaling trend, different fault mechanisms and how they are affected by the scaling
trend will be described.

2.5 Fault Mechanisms

As described in the introduction, most faults can be divided into the classes: devel-
opmental, physical, and interaction faults. It was also motivated that fault tolerance
is best suited for handling physical faults. However, as it seems like developmen-
tal faults cannot completely be removed through testing, these are also discussed in
this section. Furthermore, as there are many different types of manufacturing faults,
these are treated in a specific subsection. The listing of possible fault mechanisms
are not in any way a complete survey but aimed at showing the recent trends. Fur-
thermore, there exist a lot of dependencies between the different fault mechanisms
(for instance, wear-out effects will generally have a faster lapse if spot defects exist
on chip) which are not evident as the mechanisms are explained separately. The
content of this section is to a high extent based on [Gil et al., 2002] and it should be
noted that that the discussion of this section is supported by very few field data.

2.5. Fault Mechanisms 37

Developmental faults:

As the complexity of components and the number of subcomponents of systems in-
creases, the number of developmental faults can be expected to increase, simply due
to the fact that there are more things to keep in mind, and there are more compo-
nents that can break (a chain is not stronger than its weakest link), [Avižienis, 2001],
[Avižienis, 2000]. Another problem is that the number of test cases increases when
the number of transistors on-chip increases.

All software faults are defined as developmental faults (the software code of a
system can change during operation, but this must be preceded by a hardware fault).
Many faults are of course detected during compilation, code inspection, testing etc.,
but it is considered as an utopia to be able detect all software faults before operation.
The set of faults left undetected after testing, are generally hard to characterize2

(else, testing techniques for detecting them would have been developed). This is also
the case for hardware developmental faults (hardware manufacturing faults may be
an exception).

Furthermore, the set of faults left undetected after testing is probably also depen-
dent on the program languages, development processes, and test techniques, being
used. Thus, this set will probably change over time. These facts complicate devel-
opment of techniques for tolerating development faults.

Examples of famous developmental faults are [Lions, 1996], the Ariane 5 rocket
failure, and [Blum and Wasserman, 1996], the Intel Pentium floating-point division
unit bug.

Manufacturing Defects:

The manufacturing process of integrated circuits (e.g., microprocessors) involve
many steps such as applying different types of masks, etching, splitting (sawing),
assembling, solding, bonding, etc. It also involves a large number of different met-
als and other substances. Thus, manufacturing of integrated circuits are itself a very
complex process, and the increased number and the decreased size of transistors
make the manufacturing process even harder.

In the rest of this section, different manufacturing defects will be discussed.

2However, an attempt to classify software faults occurring during operation was made in
[Chillarege et al., 1992].

38 Chapter 2. Modern Microprocessors and Fault Mechanisms

2.5.1 Spot Defects

A spot defect is a permanent deformation located to a specific point of the die struc-
ture. These faults can occur due to dust particles, discrepancies in the silicon or in the
metal of the interconnects, or due to incomplete manufacturing, as incorrect etching,
plasma or mask processing, etc. The effects of these faults are that the impedance
of some subcomponent (transistor etc.) is changed. Spot defects are often modeled
as opens (unwanted impedances, mainly resistive, on a signal line that is supposed
to conduct perfectly), shorts (unwanted connections between a signal line and the
supply voltage or ground), and bridges (unwanted connections between two signal
lines). As the line width decreases, the signal lines will get closer which increases
the probability for discrepancies to result in faults.

Spot defects may not immediately generate faults, but can also speed-up wear-
out and start to generate faults after a certain operation time period. Thus, the spot
defects may not be visible directly after manufacturing, but may start to impact
systems which have operated for a while.

Due to the reduction of transistor sizes, the critical size at which spot defects
will impact the device will also decrease. Thus, the cleanliness and accuracy of the
manufacturing processes most be improved when scaling, else their is a risk that the
average operating time before spot defects will impact systems is reduced, i.e., the
life-time of the device can be reduced.

For more details, see: [Hawkins et al., 1994], [Segura et al., 1995],
[Soden and Hawkins, 1995], [McVittie, 1996], [Riordan et al., 1999],
[Lisenker and Mitnick, 2000].

2.5.2 Stress Voiding

During the wafer manufacturing process, the application of different masks may
introduce mechanical stress. These may result in increased resistance, which can
result in for instance, undesired delays.

2.5.3 Package and Assembly

Several faults can be introduced during packaging and assembling, e.g.,

� Die Attach Faults: If the die is not correctly mounted to the lead frame, the
mechanical and/or thermal stress can be increased. This can with time lead to
cracks in the die.

2.5. Fault Mechanisms 39

� Bonding Faults: If the bonding is not correct, the bonds may lift, resulting
in open circuits. There is also the possibility that adjacent bond wires are
shorted.

� Delamination Faults: If moisture is introduced during packaging, this may
expand during operation and cause for instance delamination between the die
and the lead frame.

As the circuits get smaller, the requirements on packaging increases.

Environmental Disturbances:

Many embedded systems are working in harsh environments. Here a number of
different disturbances, possibly inducing faults, that can occur in such environments
will be discussed.

2.5.4 Vibrations

Vibration is a phenomenon, which can occur when a component is exposed to me-
chanical forces. When an electric circuit is exposed to these forces, faults may occur
due to imperfect manufacturing. For instance loose bondings, mechanical stress in
the material, narrow interconnects can wear out faster due to vibrations. For more
details, see: [Yu et al., 2002]

2.5.5 Temperature Variations

In many embedded systems the temperature can vary quite a lot (for instance, in the
engine compartment of an automobile the temperature can reach � ����� C). Varying
temperatures affect electric circuits in a number of ways. First, as metal expands
more than other parts of the circuit when the temperature increases, the mechanical
stress is increased. Second, a temperature increase will reduce the mobility of the
charge carriers, i.e., the internal resistances of the transistor will be higher, which
results in longer delays.

Another very important effect is that the leakage currents increase when the
temperature increases. This increases the power consumption.

For more details, see [Kundu and Galivanche, 2001], [Makabe et al., 2000].

40 Chapter 2. Modern Microprocessors and Fault Mechanisms

2.5.6 Radiation

Radiation occurs when an element decomposes. The radiation consists of different
types of particles with different weight. Two different causes of radiation is dis-
cussed.

� Radiation of Cosmic Rays: In space, elements decomposes all the time caus-
ing different types of radiation called cosmic rays. When such cosmic rays
enter the atmosphere and collide with the atoms there, particles are produced.
These particles can in turn hit integrated circuits and if the particles movement
energy is high enough, significant charges can be induced.

For more details, see [Henson et al., 1999], [Hazucha, 2000],
[Massengill et al., 2000], [Constantinescu, 2002], [Karnik et al., 2002],
[Shivakumar et al., 2002].

� Radiation of � -Particles: Radioactive impurities, i.e., elements that sponta-
neously decomposes, exist in the packaging of integrated circuits. The radia-
tion generated by the impurities may induce significant charges in the circuit.

For more details, see [Constantinescu, 2002], [Karnik et al., 2002],
[Oldiges et al., 2002].

Charges that are induced into the integrated circuit can make a RAM-cell, flip-
flop or even combinational logic to change value. When transistors are scaled, less
charges have to be induced to change the logical value, but the probability that the
transistor is hit is reduced even more. However, as the size of the integrated circuit is
not decreased (only more transistors are contained), the probability that a fault could
occur in the circuit is increased.

In some cases, induced charges can activate so-called parasitic transistors, i.e.,
undesired device paths which cannot be activated during normal conditions. This
can result in a short-circuit across the device until it burns up or the power to it is
cycled. Such faults are called latch-ups and it is important to design the circuit to
avoid such faults.

2.5.7 Electromagnetic Interference

As soon as an electric potential difference and/or electric current exist, an electro-
magnetic field is generated which will affect adjacent conductors. This can in some
cases give raise to undesired disturbances that could result in errors in the system.

2.5. Fault Mechanisms 41

The interference is dependent on how far away the source (the generator of the elec-
tromagnetic field) is, its strength (charge), the transfer path, and the physical shapes
of the source and receptor (the affected conductor).

Two different effects must be considered which impacts are determined by the
distance between the source and receptor. These are:

� Antenna-Induced Charges: This effect occurs when charges are introduced
due to sources at long distance. This is generally not a major problem for
printed circuit boards as they are enclosed and the length of the conductors
(possible antennas) are relatively short3. However, [White and Kim, 1996],
[Kim et al., 2000], [Eure et al., 2001] have investigated the effects of strong
EMI sources. Such sources can introduce bursts of faults at which several
components/subsystems may be affected. As the consequences can be so se-
vere, fault prevention techniques, e.g., shielding, are generally more efficient
than attempting to tolerate such faults.

� Cross Talk: Cross talk means that a conductor induces charges (capacitive
and inductive) on one or several other conductors on-chip. As the source in
this case is much closer, the effects may be severe. Furthermore, as the circuits
are scaled, the conductors (interconnects) are routed closer and closer which
increase the effect, [Clayton, 1992].

2.5.8 Electro Static Discharge (ESD)

Charges can be introduced into integrated circuits in other ways than through ra-
diation. One such example is through contact with electro static charged compo-
nents/objects. Even though the discharging generally has a very fast lapse the im-
pacts can be severe as the voltages can be very high. Therefore, integrated circuits
should be protected from electro static discharges, for instance through employing
specific diodes. However, such protection is getting more expensive as the transis-
tors are scaled, e.g., making it more difficult to lead away the charges and at the same
time stop charges on the circuit from taking the same way, i.e., avoid additional leak-
age currents. Moreover, the oxide thickness reduction makes the transistors more
sensitive to ESD.

For more details, see: [Ker et al., 2002], [Clayton, 1992], [Huh et al., 1998],
[Vinson and Liou, 2000].

3For transmission lines, as for instance communication buses, the effect can be severe,
[Clayton, 1992].

42 Chapter 2. Modern Microprocessors and Fault Mechanisms

2.5.9 Supply Voltage Disturbances

As integrated circuits need to be supplied with voltage, they are sensitive to dis-
turbances affecting the supply voltage source or the supply voltage wiring. Such
disturbance could for instance occur due to overloads (the supply source is to heav-
ily utilized) or electro magnetic interference. As the supply voltage is scaled, dis-
turbances will have greater influence, [Kundu and Galivanche, 2001], and there is
a risk of temporarily changing the behavior of transistors as well as permanently
damaging components.

Wear-Out (Aging)

Wear-ot faults are caused by the stress that is always present for operating compo-
nents/systems. Wear-out is a slow process that does not immediately results in faults
(therefore, aging is sometimes used to denote this mechanism). If manufacturing
discrepancies exist, these are often the first places where the wear-out effects be-
come visible. In most cases, wear-out faults first manifest as errors only at specific
operating points, i.e., system states. Therefore, it is hard to distinguish these errors
from those caused by transient faults. However, the difference is that if they are not
taken care of, they will with increasingly be activated more often, resulting in more
severe effects.

We now discuss different wear-out effects in more detail:

2.5.10 Electromigration

As interconnects are scaled they get more sensitive to the currents flowing through
them. If they are properly designed, there is generally no danger that they will break,
but if the current is flowing only in one direction of the conductor, there is a danger
that it will actually move metal atoms. This phenomenon is called electromigration
and can result in resistance changes and even open circuits.

For more details, see: [Besser et al., 2000], [Fischer et al., 2000],
[Fischer et al., 2002], [Lienig et al., 2002].

2.5.11 Corrosion

If the integrated circuit is exposed to moisture, the conductors can corrode which
will change their resistance and eventually, lead to open circuits.

2.6. Fault Occurrence Rates for Integrated Circuits 43

2.5.12 Gate Oxide Faults

The gate oxide is the part of the transistor that should isolate the gate from the
silicon. When the transistor is scaled, the thickness of the oxide is reduced. This
requires the gate voltage to be reduced in order to avoid failures. If defects exist
in the oxide or the oxide is thinner at some places due to process variations, the
electric field may be stronger at these spots. If the strength of the field gets too high,
the oxide will break down, resulting in short-circuits, but even weaker fields can
cause damage as the wear-out lapse may be speeded up. Some common gate oxide
wear-out mechanisms are:

� Hot Electron Injection: When the transistor is conducting, a current flows in
the silicon channel created by the electric field between the gate and the sub-
strate. Some of the electrons in the current may have extremely high energy.
Such electrons are called hot. If these electrons gains a direction towards the
oxide, they may not just “bounce” but actually penetrate the oxide, due to their
high energy. Once inside the oxide, their movement energy reduces fast and
they get trapped in the oxide. This phenomena is called hot electron injection
and the trapped electrons reduces the isolation capacity of the oxide, which
may eventually cause a break-down.

Hot electrons may also be trapped into the substrate of the transistor, reducing
the quality of the transistor. Other mobile particles, as for instance ions, may
also cause similar effects.

For more details, see: [Lee et al., 2000], [Zhang et al., 2001],
[Kaczer et al., 2002], [Zhang et al., 2002], [Crupi et al., 2003].

� Tunneling: According to quantum mechanics, there is always a certain prob-
ability that a particle can move through an object. This effect is called tunnel-
ing. The probability for tunneling is of course dependent on the thickness of
the object, and thus, when scaling devices and the oxide thickness is reduced,
the probability for tunneling increases, resulting in increased leakage currents.
For more details, see: [Nicollian et al., 1999].

2.6 Fault Occurrence Rates for Integrated Circuits

Based on the discussion of the previous section, we believe that a large number of
fault mechanisms will have higher impact when the size of the transistors are scaled
(However, it should be emphasized that very little field data exists to support this

44 Chapter 2. Modern Microprocessors and Fault Mechanisms

claim). Furthermore, the increased system (hardware and software) complexity is
likely to increase the number of undetected developmental faults. There is though a
large number of engineers and researchers addressing this issue by inventing and de-
veloping new and more: transistor implementations, materials, manufacturing pro-
cesses, design tools, testing methods, shielding techniques, etc. However, the main
goal of most of this research is to make it possible to develop microprocessors with
higher performance, working in stable environments, and where occasional faults are
acceptable and have low impact. This is generally not the case for embedded con-
trol systems where the operational environments often are harsh with extreme levels
of particle radiation, electromagnetic interference, vibrations, temperature changes
etc., and where the consequences of faults can be catastrophic. Therefore, we believe
that the occurrence rate of transient faults, but also of persistent faults (important as
the impact of these faults generally are more severe), will increase. Some significant
reasons for this are:

� The wear-out phenomena, discussed in the previous section, are expected to
have faster lapses as the sizes of transistors decrease, implying that the critical
dimension for stress and channel region defects introduced during manufac-
turing (too small to be directly detectable through post-silicon testing) also
will be decreased. Also, the increased number of transient faults may increase
the stress and accelerate the aging process.

� Some modern commodity components integrate parts with different clock do-
mains. Thus, faults may propagate from one clock domain to another. There-
fore, for fault tolerance techniques applied at the system level, transient faults
on a "slow clock" subsystem may appear as persistent faults on a different,
faster part of the same die. Furthermore, the constantly increasing clocking
frequency of circuits has the side effect that disturbances that previously only
generated errors at one single point in time now can generate errors at several
points in time, i.e. resulting in persistent effects.

� Research on high performance and low power processors may require on-chip
systems to be designed using GALS (Globally Asynchronous Locally Syn-
chronous) design, [Beerel, 2002]. This new design technology involves build-
ing the system of "voltage" or "frequency" islands, which are connected with
an asynchronous event based network. In such a design, it is hard to bound the
fault activation and error propagation times. So faults in such systems would
be classified as persistent.

2.6. Fault Occurrence Rates for Integrated Circuits 45

Another problem, [Driscoll et al., 2003], is the increased observations of Byzan-
tine faults. The generated errors by such faults can be interpreted differently for
different connected components, implying that different parts of the system may
estimate data and/or states differently.

We believe that these findings require novel strategies when designing fault tol-
erant systems in the future. First, techniques need to be added for tolerating not only
transient faults but also persistent faults, specifically considering their severe impact
potential. Second, tolerance against developmental faults with low activation fre-
quency needs to be provided. Third, Byzantine faults need to be considered during
design.

The work in this thesis aims at aiding system developers and researchers in
academia to develop systems based on commercial microprocessors that are tol-
erating faults with varied duration.

46 Chapter 2. Modern Microprocessors and Fault Mechanisms

CHAPTER3
Design of Efficient Fault
Tolerant Microprocessors

As was discussed in the previous chapters, we believe that fault tolerance will be
necessary to meet the requirements for safety-critical systems. In this section, as
error detection is one of the major concepts to achieve fault tolerance (see the in-
troduction for details), the effect of the fault mechanisms (i.e., the generated errors)
described in Chapter 2, on different abstraction levels is discussed. Looking at the
microprocessor level, the effects (errors) can be divided into three main classes:

� Crash Failures: The microprocessor has incorrectly halted.

� Control-Flow Errors: The instructions have been executed in an incorrect
order.

� Data Errors: Incorrect data has been produced.

After that, a design for efficiently tolerating faults based on complementary error
detection techniques (a survey of different error detection techniques is found in
Appendix A) is suggested. This solution has not been evaluated, but we believe
that it describes the problems and feasibility of applying software-implemented fault
tolerance techniques to commercial processors. The choice of the error detection
techniques is motivated by detection efficiency, cost and overhead considerations.

Finally, evaluation of the design is discussed. Previous evaluations have mainly
considered injection of transient faults. However, as was discussed in Chapter 2, we
believe that in the future, persistent faults must also be considered. As there is a

47

48 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

high risk of damaging the circuits when injecting such faults physically, generally
simulation and analysis methods must be used. There are mainly two problems
related to such evaluations of persistent faults:

� It is important to use a fault model that covers the different types of real faults.

� Detailed low-level circuit descriptions are generally not accessible for system
developers. Thus, high-level models must be used, which makes it hard to
reach accurate evaluation results.

We claim that these problems are mainly related to data errors as the impact of
crash failures and control-flow errors are rather independent on the fault duration.
Therefore, we propose a new approach for evaluating the effect of data errors as
well as the coverage of applied errors detection techniques. The approach is based
on identification of the data error characteristics that impacts the system and varying
these characteristics rather than injecting faults according to a model.

We believe that this is approach is a useful complement to traditionally tech-
niques. In following chapters, we develop analysis methods (Chapter 4) and a
simulation-based fault injection technique (Chapter 5) for such evaluations.

3.1 Error Propagation Between Abstraction Levels

As was described in Chapter 1.1, the terminology of faults-errors-failures is bound
to the abstraction level of observation. At that abstraction level, the fault produces
an error (incorrect state) when it is activated. In turn, if the error propagates to the
border of that abstraction level, a failure is said to have occurred, which is con-
sidered as a fault at the next higher abstraction level. Thus, in order to determine
which impacts the physical faults described in Chapter 2 will have on the system,
the propagation of errors need to be mapped.

Figure 3.1 describes the error propagation between abstraction levels. Starting
from the physical faults described in Chapter 2 (a discussion on the effect of de-
velopmental faults is held last in this section), it was found that a hardware fault
implies a change in voltage, current, and/or resistance, i.e., the electric characteris-
tics are changed1. This change could be temporarily or persistent dependent on the
nature of the fault. When this change occurs, an error is said to have been generated
on the electrical level.

1The fault-error cycle could be described at even lower levels as particle diffusion laws etc, but this
is out of the scope of this thesis.

3.1. Error Propagation Between Abstraction Levels 49

A
L
U

MUL

SHIFT

M
U
X

D
M
U
X

= 1

= 1

= 1

&

&

=1

+5

+5

S

mem
µp

comm.
bus

comm.
controller

A
L
U

A
L
U

MUL

SHIFT

M
U
X

D
M
U
X

= 1= 1

= 1= 1

= 1= 1

&&

&&

==

+5

+5

SS

memmem
µpµp

comm.
bus

comm.
controller

Figure 3.1: Error Propagation between different abstraction levels.

As microprocessors mainly are built of transistors, changes in the electric char-
acteristics may result in that a transistor is switched on or off at incorrect times.
If this happens, this mean that the error at the electrical level has propagated to
the switch level. Whether this happens or not depends on how much the electrical
characteristics are changed (Influence), at what time (Occurrence Time), for how
long time (Duration), and the function of the specific effected transistor (Location).
Small changes with short durations do generally not have any major impact on the
function of the transistor. However, it is important to note that if the transistor func-
tion is degraded and the device is clocked at discrete times, even small changes with
short durations may have non-negligible effects. If the error at the electrical level
does not affect the function of the transistor, it is said to be masked.

Looking at the error at the transistor level, the effect of the transistor switching
on or off at incorrect time may be that the output of a gate or memory cell assumes
an incorrect value. In such case, the error has propagated to the gate-level.

Gate-level errors may correspondingly result in combinational logic, sequential
logic or memory errors, dependent on the location of the fault. If so, the error has
propagated to the Register Transfer Level (RTL).

As the components are rather complex and different from each other at this level,
the errors they will generate will also be different. The effect of faults on some of
the components and functions at RTL will now be discussed in more detail.

Instruction Fetch Unit: This stage can be influenced not only by faults in the
components of the stage itself, but also by memory faults. Faults can for instance

50 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

result in that an illegal or incorrect instruction is fetched or that the instructions are
fetched in an incorrect order.

Instruction Decoder: At this stage the control signals for the specific operation
are generated. If a fault occurs in this stage it can mean that an incorrect instruction
is executed.

Functional units: In the execution stage the output or effective address, is com-
puted. For branch instructions, this will mainly result in that the instructions are
executed in incorrect order, whereas for other instructions it will mainly result in
incorrect results.

Memory Access: At this stage, the memory is accessed. For branch instructions,
this will mainly result in that the instructions are executed in an incorrect order,
whereas load and store instruction will mainly result in incorrect results.

Register access: At this stage, the results are written to the register bank. This
will mainly result in that incorrect data is stored in the registers, but also control-flow
errors are possible if the register content can be used to determine jump addresses,
i.e., so-called indexed addressing.

Thread, Prediction, Instruction Reorder Logic: Faults in these logics can
result in that instructions are executed in an incorrect order.

Registers and Data Buses: Faults in these units should mainly result in that
incorrect data are delivered.

Oscillator and Clock Signals: A fault in these units can result in that parts of
or the complete processor stops operating.

However, independently of the specific fault, we have divided the errors into
three main classes:

� Crash Failures2: The microprocessor has incorrectly halted.

� Control-Flow Errors: The instructions have been executed in an incorrect
order3.

� Data Errors: Incorrect data has been produced.

A microprocessor level error will in many cases affect the system4. If the de-
2As a microprocessor crash is an external incorrect state, we use the term failure rather then error.
3With correct order, we mean that the instructions are run in such order that they will give the same

result and not less performance than the order that was designed by the programmer. Therefore there
exists often several correct orders, which is utilized by out-of-order multiprocessors, see Chapter 2.

4The error propagation can be divided into more abstraction levels in between the microprocessor
level and system level (e.g., a computer node level), but as we in this stage do not want to make any
assumptions about the system architecture, and as we do not add any hardware-implemented fault
tolerance techniques, we assume that all microprocessor faults will propagate to the system level.

3.1. Error Propagation Between Abstraction Levels 51

livered service by the system deviates from the fulfilling the system specification, a
system failure is said to have occurred. For real-time systems, requirements gener-
ally are to deliver correct data at the correct time, and thus, the notions data errors
and timing errors are generally used for such systems.

So far, only physical faults have been discussed. However, hardware develop-
mental faults will be activated in the same way as the physical faults. Errors caused
by software faults will though in the beginning propagate a bit differently.

Assuming that the software has been properly compiled, a software fault implies
that some incorrect information (generally an instruction or data) is stored in the
memory. Such faults will be activated when this part of the memory is used, i.e.,
when the instruction or data including the fault is fetched. Therefore, one can say
that software faults that are activated generates errors at the RTL. After that, the
errors propagate in the same way as for physical faults. However, how often errors
will be generated is of course not dependent on the use of any hardware unit, but on
how often the incorrect software is accessed.

Summary

As was seen in the previous section, faults in different components will result in
different errors. It was seen that whether a fault is activated or not at a certain
abstraction level depend on:

� Influence: How much the characteristics are changed.

� Occurrence Time: At what time did the fault occur (in which state the com-
ponent/system is and the value of the input data).

� Duration: How long time the fault persist.

� Location: The function of the faulty component.

3.1.1 Implications of Fault Tolerance

Today, fail silent computer nodes (i.e., the nodes should fail “cleanly” by just stop-
ping to send messages, [Powell et al., 1988]) are desirable for distributed safety-
critical systems, which implies that faults should be tolerated on node-level. The
reasons for this are:

� It is comparably expensive to recover from errors that have spread to several
nodes.

52 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

� Communication between nodes is expensive which makes error detection be-
tween nodes unattractive.

� Error propagation to actuators can be limited, as today, actuators often are
connected to computer nodes rather than to the communication network.

Thus, fail-silent computer nodes simplifies design and reduces cost.
As the microprocessor generally is the most complex component of the computer

node, and thus, generally the most failure prone, it is of utmost importance that faults
in this component can be tolerated to meet the requirements on fail-silence.

As fault masking generally implies high recurring costs, fault tolerance in sys-
tems produced in large number is often implemented by error detection and recovery.
On which abstraction level fault-tolerance should be applied is is a trade-off. If de-
tection is applied on a high level, detection is generally less costly, but the errors
may have propagated to a large portion of the system which make recovery more
costly. On the other hand, the total cost for error detection at low abstraction levels
are comparatively high, but as errors are detected early (low latency) recovery is
often less costly.

In the next section, how to design a cost-efficient fault tolerant microprocessor
based on adding software-implemented techniques to commercial microprocessors
is discussed.

3.2 Design through Software-Implemented Techniques

In the introduction (Chapter 1), different strategies for designing fault tolerant sys-
tems were discussed. An efficient fault tolerant design means, first and foremost, that
faults are tolerated with a very high probability. However, to also be practical im-
plementable, the design must also be cost and resource-efficient (e.g., performance,
memory, device area, power). It is also an advantage if the design is portable to
different hardware platforms (different brands of microprocessors etc.) and scalable
(efficient fault tolerant design was defined in detail in Chapter 1.4). Therefore, it
is these criteria we target when we now discuss different fault tolerance solutions
based on error detection and recovery.

It is sometimes more practically to design the recovery policy first, as it sets the
requirements on the error detection. Thus, first, recovery is discussed and after that,
efficient techniques for detection of the errors identified in the previous section, will
be suggested.

3.3. Recovery 53

3.3 Recovery

As described in the introduction, recovery is aimed at transforming the system into
a correct state where faults are not activated again. This is achieved through error
handling (eliminating error from the system state) and fault handling (locating faults
and preventing them from being activated again). Starting backwards, fault handling
involves four steps:

� Fault diagnosis: Identification and recording the cause(s) of error(s), in terms
of both location and type.

� Fault isolation: Performing physical or logical exclusion of the faulty com-
ponent(s) for further participation in service delivery, i.e., it makes the fault
dormant.

� System reconfiguration: Switching in spare components or reassigning tasks
among non-failed components.

� System reinitialization: Checking, updating and recording the new configura-
tion and updates system tables and records.

It is hard to give any general solutions for the implementation of fault isolation,
system reconfiguration and system reinitialization steps as some systems should be
set in a fail-safe state when a unrecoverable5 error has been detected, whereas other
systems require the function to be transferred to a spare unit. However, generally,
such measures are costly as they reduce the resources of the system. Therefore, it
is very important that these steps are performed correctly and only performed when
absolutely necessary in order to avoid failures (e.g., for minor faults, i.e., faults with
negligible effects as transient faults, these measures should be avoided). To achieve
this, these measures must be robust, meaning that it can with high probability be
guaranteed that the measures were not incorrectly, triggered or executed, due to a
fault. Robust design will be discussed in Chapter 3.4.3.

It should be noted that sometimes, some of these measures are left out. For ex-
ample, when it is not required due to the nature of the fault (e.g., some transient
faults), there already exists components performing the same tasks (so called ac-
tive replicas), or the system can be allowed to degrade, i.e., loose functionality in a
controlled manner.

5With an unrecoverable error/fault we mean an error/fault that the microprocessor cannot recover
completely from itself.

54 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

It is also important to note that the use of replicated components are not efficient
for handling of developmental faults (except for some manufacturing faults) unless
diverse replicas are used. However, design diversity is costly, so for systems where
the recurring costs are critical (which we consider in this thesis), we assume that
the system has been accurately tested so that developmental faults are activated with
low frequency. This means, that it should be possible to recover from such faults
just by changing the state of the system slightly (e.g., re-executed the task with new
sensor values), i.e., without any isolation, reconfiguration or reinitialization.

The goal with fault diagnosis is to determine which fault that has occurred, and
which measures should be taken. Thus, it is very important that the fault diagnosis
correctly points out the fault that really occurred, since otherwise, the fault is left un-
treated, and correct parts of the system may be shut-down. Thus, the fault diagnosis
must also be robust designed.

Fault diagnosis can be performed based on a-priori information on how faults
are activated, information from how the error was detected, and from specific fault
diagnosis tests. As diagnosis can be a complex task, and the time requirements can
be strict, the diagnosis is often precluded by error handling, i.e., eliminating errors
from the system state, and storing status and events. Then, at specified times or at
times when the processor is less loaded, the stored information can be analyzed and
detailed tests run.

To give an example, consider a situation where a certain executable assertion
interrupt the execution of a specific task. The result from that task is then flagged
erroneous, possibly recovered, and the event stored. Then, the next task is exe-
cuted (unless the result of the erroneous task is very critical. In that case it can be
re-executed). If no further interruptions occur within a specified time, the fault is
diagnosed as a transient fault, and no further actions are necessary. However, if the
same assertion is triggered at the next execution of the same task also, it might be
necessary to disconnect that application (fault isolation). Then, accurate diagnosis
test can be run to determine the fault during the normal execution time of that ap-
plication. If the function has no fail-safe state, the task must be executed on a spare
unit.

Another distinct case is if several different error detection techniques are trig-
gered several times. Then it can be assumed that a unrecoverable fault has occurred
and the node has to disconnect completely from the network. In order for this node
to be reconnected to the network, extensive tests must be run. It should be noted that
what is determined as a minor or a unrecoverable fault, is in many cases dependent
on how often the fault is activated, and not, whether the fault is a transient fault or a
persistent fault.

3.4. Error Detection 55

It is important to note that it generally is impossible to recover from develop-
mental faults (except for random manufacturing faults) through spare components,
unless these components are diverse designs. Furthermore, it is generally also im-
possible to diagnose such faults, as if the diagnosis would have been run after man-
ufacturing (which should be the case if proper testing has been performed), it would
have been detected at that time. Thus, it is very important to guarantee that devel-
opmental faults only are activated very occasionally, so that they can be treated as
transient faults.

3.4 Error Detection

As identified in Chapter 3.1, errors at the microprocessor level can be divided into
crash, control-flow, and data errors. In this section, in order to efficiently cover these
errors, a number of detection techniques are suggested (more details about different
error detection techniques can be found in Appendix A). The major targets for er-
ror detection is to detect, in time, those errors that else could result in catastrophic
consequences and to provide information for fault diagnosis. It should also be ef-
ficient in terms of cost, performance, memory, device area, power, and portability
(see Chapter 1). Techniques based on hardware replication are avoided, as the focus
is on systems with strict requirements on recurring costs.

Error detection techniques can be divided into system-dependent and system-
atic techniques. System-dependent techniques utilize information about the system
to determine whether an error has occurred or not, whereas systematic techniques
detects errors through general properties as coding or executing tasks several times
on the same or different processors. System-dependent approaches often have low
recurring costs as they are based on information redundancy, but the fixed costs may
be higher than for systematic techniques, as they need to be designed, or at least
tuned, for the specific system of interest. However, this also implies that it is pos-
sible to design them to only detect severe6 errors (an example of this is given in
Chapter4.5), which often is hard to do with systematic techniques, reducing the risk
of unnecessary recovery.

We will now present suitable, software-implemented, techniques to run on a
microprocessor in order to detect crash, control-flow, and data errors.

6With a severe error/fault we mean an error/fault that, if not handled correctly, may result in catas-
trophic consequences.

56 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

3.4.1 Crash Failures

When a crash failure has occurred, the microprocessor has halted, and thus, is not
executing any instruction. This does not mean that the processor is fail-silent as its
output signals may be locked to undesired values, and thus, it is important to detect
these errors. Furthermore, if such error is detected, it may be possible to restart the
processor.

As the microprocessor cannot execute any instructions, these errors cannot be
detected on the erroneous chip unless it contains two separate oscillators, where one
oscillator can be used to drive a watchdog timer for monitoring that the processor
(driven by the other oscillator) has not crashed. Such chips exist [Temple, 1998],
but is not standard in commercial processors. Therefore, to detect crash failures, on
single oscillator circuits, an external component driven by another oscillator must be
used. An example of such detection technique is the so-called "I’m alive" message
protocol, see [Pradhan, 1996], [Dimmer, 1985], where messages are transmitted be-
tween different computer nodes with even and predetermined time intervals. The
use of these messages can be extended to show not only that the processor has not
crashed, but also that it delivers correct results. The more information that is ex-
changed and verified between the different computer nodes, the more reliance can
be put on that the microprocessor is working correctly, but the overhead will also be
greater. Other issues that must be considered are that the messages can be effected
by other faults faults and how to determine whether it is the receiver or sender that
is erroneous when an error is detected.

In distributed safety-critical systems membership agreement protocols (see for
instance [Claesson, 2002]) are generally used to detect crashed computer nodes.
However, as the communication generally is handled by a separate communica-
tion controller, messages may be transmitted correctly even if the microprocessor
has crashed, but such agreement should at least guarantee that the oscillator of the
communication controller is working properly (independent on whether the commu-
nication controller and the microprocessor are driven by the same oscillator or not).
Therefore, by having the communication controller checking that the information it
receives from the microprocessor (generally through the memory) is regularly up-
dated, also crash failures of the microprocessor can be detected. A simple example
of such check is to add a task to the microprocessor that increases a variable stored
in the memory, within even intervals. This variable should then regularly be checked
by the controller, Thus, in these systems, crash failures are detected without adding
any specific techniques.

For other type of systems, we believe that crash failures are best detected through

3.4. Error Detection 57

use of simple “I’m alive” messages on the communication network.

3.4.2 Control-Flow Errors

A control-flow error implies that the task has not been executed according to the
intended control-flow, i.e., it has been executed in an incorrect order. For detec-
tion of control-flow errors, software-implemented signature checking as for example
[Alkhalifa et al., 1999], [Oh et al., 2002(A)] are efficient to use. However, watch-
dog timers should be added to verify that the signature is checked repeatedly7. One
approach is to reset and start one timer whenever a new task is started. Then a sec-
ond timer can be reset and started as soon as the task has finished executing. In this
way at least one timer will always be running to detect control-flow errors.

3.4.3 Data Errors

A data error means that any stored, transmitted or transformed data assumes an
incorrect value. Data that is stored or transmitted is generally easy to protect with
error detecting and some times even correcting codes. Such techniques are applied
in most modern microprocessors, and thus, we believe that it is not necessary to add
any software to detect such errors.

However, the transformation of data is not as efficient to protect with coding, as
more complex codes are required, [Pradhan, 1996]. Looking at the function of the
microprocessor, the main data transformation performed are instruction decoding,
address computation, and data computation. For instruction decoding and address
computation faults, generating data errors, they are also likely to generate control-
flow errors, which can be detected with the applied control-flow error detection tech-
niques. However, for those faults that only result in data errors, e.g., faults in the
functional units of the execution pipeline state, techniques specifically for detection
of data errors, need to be added. We will first discuss this with specific focus on
control systems, and then briefly discuss other types of systems.

Control Systems

Contradictory to crash and control flow errors, the impacts of data errors are in many
cases negligible, [Vinter et al., 2001], [Cunha et al., 2001]. Therefore, it is impor-
tant to avoid spending resources on errors that would have no significant impact

7Most such errors would be detected with the detection techniques applied for detection of crash
failures, but the latency for such detection may be high. Therefore, in order to limit the error effects as
much as possible, watchdog timers should be used to decrease the detection latency.

58 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

on the system. In this sense, system-dependent error techniques are preferable as
they are specifically designed for the specific system, i.e., can be tuned to detect
only the severe errors. One such technique, which has shown to be able to detect
many errors, is executable assertions, i.e., software code that checks the validity of
a property (generally a value of a signal/variable) or a set of properties in order to
find faults either during system development or operation. We will now discuss how
executable assertions can efficiently be applied in order to reduce the impact of data
errors without using up resources. Also discussed is how the system can be put in
a fail-safe state or the control handed over to a spare unit in time to avoid system
failures when a unrecoverable error has been detected. As the problem consist of
two parts, we now treat them one by one.

Automatic Reduction of Data Error Impacts
The impact of data errors can be reduced without using up resources by detec-

tion and automatic recovery. Automatic recovery can be performed by replacing
the erroneous signal value with the closest acceptable value, [Hiller, 2000], the pre-
vious value, [Vinter et al., 2001], or by correction through a modified anti-windup
function, [Gäfvert et al., 2003]. All these are general techniques with low overhead,
but it is out of the scope of this thesis to investigate which of them that offer the
most efficient recovery (there may very well exist other solutions that are even more
efficient).

The most natural way to set the thresholds8 for assertions are to use the phys-
ical signal bounds. Such magnitude and rate bounds were computed and applied
in [Stroph and Clarke, 1999] for the open-loop system, and in [Gäfvert et al., 2003],
magnitude bounds for the closed-loop system (which gives tighter bounds than for
the open-loop) were used . However, for signals that have a large acceptable value
space, these assertions may not be efficient enough. In this case, dynamic bounds,
[Stroph and Clarke, 1999], may be used, though this increases the complexity. It
should be noted that it is always possible that the signal is disturbed after the check.
Still the assertions are not useless as the error may be detected at the next check, and
many other errors will be detected directly.

Another alternative is simply to reduce the acceptable value space (tighten the
thresholds) for the assertions, but if the specifications of the systems are not simulta-
neously adjusted, false alarms can occur, demanding to be handled when the system
is stressed. As systems often are very resource demanding when they are stressed,
we believe that false alarms should be avoided as far as possible.

Still, if the assertions are considered to be insufficient, the computation of the

8We use the term threshold to denote the borders for the acceptable value space of executable
assertions.

3.4. Error Detection 59

control algorithm, or part of it as suggested in [Vinter et al., 2002], can be replicated
(systematic error detection) either on another computer (spatial redundancy) or on
the same computer (time redundancy), see Appendix A. The overhead for these
solutions are higher, but not extreme.

Detection of Unrecoverable Errors
Determining when an error is unrecoverable and the system should be set in a

fail-safe state or the control handed over to a spare unit, is a multi-faceted problem.
First, how can an assertion be designed so that it will work even in the presence of an
unrecoverable, internal error? Second, which signals should the assertions check?
Third, how should the threshold for the acceptable value space be chosen?

These problems are rarely treated in literature. In [Cunha et al., 2001], and
[Cunha et al., 2002] solutions targeting the process industry are proposed. These
are not directly applicable to safety-critical systems as they are either ad-hoc or very
time-consuming. However, these papers give valuable insights which we will make
use of when we try to solve the problem for safety-critical systems.

Robust assertions, [Silva et al., 1998], is a technique for protecting assertions
from errors, based on double execution and a simple code (magic numbers). The
code is used to check that both executions of the assertions and a comparison of
them had been correctly performed. These solutions provide protection against tran-
sient faults occurring during the execution of the assertion (else the system could be
requested to recover unnecessarily). Is a mayor advantage if the used assertions are
checks, not so much because the overhead is low, but since this increases the chance
that the assertion is executed correctly despite of the unrecoverable error9. For more
complex versions, the risk is higher that the assertion also is affected by the fault.

However, robust assertions seem to have two indistinctions. First, how should
errors in the the magic number (the code) be handled? To set the system in a fail-
safe state or hand over the control may not be the most efficient solution (which is
the suggested measure in [Silva et al., 1998], [Cunha et al., 2001]), as such errors
can be caused by control-flow errors. An alternative is to delay this measure until
several similar errors have been detected in adjacent updates of the signal, when
it can be established that a severe fault has occurred. However, this increases the
complexity of the check, as some sort of buffer is necessary, which makes the robust
assertions more vulnerable.

Second, these assertions seem to be vulnerable to faults in the compare oper-

9To as far as possible avoid the assertions to be affected by the same errors as the computation of
the control algorithm, it would be desirable to execute the assertions on external hardware/computer.
However, this would require synchronization which reduces the performance, and it leaves the problem
of determining which unit that is erroneous, the controller or the checker?

60 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

ation, e.g., “stuck-at equal” comparison errors (all comparisons are claimed to be
equal). In order to avoid this we suggest to add a few additional comparisons which
are known to provide not equal or equal in advance so that “stuck-at equal” and
“stuck-at not equal” errors can be detected, i.e., a simple test of the compare func-
tion (this test is similar to the self-tests proposed in Appendix C). If this test fails it
should be re-executed in order to remove the possibility of transient faults. This test
should also be assigned a magic number (a code) so that it can be guaranteed that
the test has been executed.

In order to determine which signals the assertions should check, a signal moni-
toring the health of the system must be determined. Then, the thresholds for the as-
sertions on this signal should be set so that the recovery can be performed in time to
avoid system failures. This is a delicate balance as tight thresholds may unnecessary
set the system to a fail-safe state or hand over the control, which are safety-critical
measures them-selves. On the other hand, setting wide thresholds may imply that
the probability for system failure is increased.

In Chapter 4.5, an example of how to design executable assertions for control
systems is presented.

General Systems

Control systems can be considered to be rather deterministic as the state of the sys-
tem generally cannot change dramatically between samples due to the inertia of
physical processes (The sample rate is often designed so that the system should not
be able to change state arbitrarily between samples). This makes system-dependable
error detection techniques efficient as they are based on estimating the state of the
system. However, for systems that are not equally predictable, systematic techniques
must be applied (as discussed previously, this may also be necessary for control
systems). Such techniques are generally based on space or temporal redundancy.
As discussed previously, space redundancy requires additional hardware which in-
creases the fixed cost, and thus, temporal redundancy is preferred.

Double execution, i.e., executing tasks twice and comparing the results is one of
the most commonly used temporal redundancy technique, see Appendices A and B.
In some implementations, diverse tasks are executed, [Johnson, 1989], [Lovric 1996]
in order to increase the coverage for errors caused by persistent faults. However,
there are several disadvantages with diverse tasks. The tools for developing di-
verse programs generally targets only one type of microprocessors, and is thus not
portable. The development process may also be very time-consuming and which
detection coverage that can be reached varies between applications and micropro-

3.4. Error Detection 61

cessors. Even if some of these problems are targeted in [Jochim, 2002], we suggest
that the same task should be executed twice.

Double execution can detect some errors caused by persistent faults, see
[Aidemark et al., 2003] and Appendix B. The advantage with this is that such errors
need to be detected as they generally have more severe impacts, but the drawback is
that it complicates the error handling and fault diagnosis. Even if some errors caused
by persistent faults are detected by double execution, the coverage is generally not
sufficient. Therefore, we propose to add self-test tasks (see Appendix C). Previous
online test approaches has mainly been based on on-line Built-In Self-Tests (BISTs),
since software self-tests has been considered too slow. However, we challenge this
viewpoint because of the following reasons:

� The tests do not need to detect persistent faults in the entire microprocessor,
but can be focused to detect data errors, i.e., to the functional units. This
reduces the required test length drastically.

� In contrast to manufacture testing, on-line testing is not aimed to detect all
existing faults, but to avoid data errors to be activated in such rate that a
system failure could occur. For instance, it was discussed and shown in
[Vinter et al., 2001] and [Cunha et al., 2001] that many data errors caused by
transient faults are tolerated by control systems.

� BIST solutions require support from the manufacturing company and implies
a switch between normal execution and executing the BIST which is a poten-
tial safety risk. This is not the case with software-implemented tests as these
are executed as normal tasks.

The drawback with systematic error detection techniques are not only that the
overhead generally is high, but also that it can be hard to differentiate between minor
and severe errors. One approach for filtering errors with low impacts, is to accept
small differences at the comparisons between the two executions and for the self-
test. It is also possible to add executable assertions to facilitate the differentiation.

As most errors detected by double execution will be caused by transient faults
(assuming that the occurrence rate of transient faults is higher), the task triggering
this technique should be re-executed, if necessary, and the event stored for further
diagnosis. If a fault is triggered by the self-test, the self-test should be re-executed
to exclude transient faults. If the fault persist, the microprocessor need to be discon-
nected, and necessary functions transferred to spare units, so that detailed diagnosis
can be performed. The executable assertions should be applied to facilitate differen-
tiation between minor and severe errors.

62 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

3.5 Coverage and Overhead

To summarize, we propose to use “I’m alive” messages for detection of crash failures
(on other computer nodes or by the communication controller). As it may be difficult
and time-consuming to restart the microprocessor after a crash failure, important
services must be transferred to spare units.

For detection of control-flow errors we suggest to use control-flow checking and
watchdog timers. When a control-flow error is detected, if necessary, the task should
be re-executed. Else, the next task should be executed. If several errors are detected
close in time, it can be necessary to disconnect the node for more detailed diagnosis
at which important services must be transferred to spare units.

For detection of data errors we suggest to use executable assertions to monitor
deterministic properties. If a value that cannot occur during normal operation is de-
tected, automatic recovery can be applied (for instance using the method suggested
in [Gäfvert et al., 2003]).

Also, we suggest to use assertions for monitoring the health of the system. If
these assertions are triggered, the system should be set in a fail-safe state or the
control handed over to a spare unit. These assertions should be robust designed,as
reconfiguration due to false alarms are expensive and may be safety-critical.

For properties which are not deterministic enough for assertions to be efficient,
systematic approaches must be applied. We suggest to use double execution com-
plemented with self-test tasks and executable assertions. As most errors detected
by double execution will be caused by transient faults (assuming that the occur-
rence rate of transient faults is higher), the tasks triggering this technique should
be re-executed, if necessary, and the event stored for further diagnosis. If a fault
is triggered by the self-test, the self-test should be re-executed to exclude transient
faults. If the fault persist, the microprocessor need to be disconnected, and neces-
sary functions transferred to spare units, so that detailed diagnosis can be performed.
The executable assertions should be applied to facilitate differentiation of minor and
severe errors.

As the approach has not been evaluated, it is hard to estimate the total detection
coverage and the overhead related to the solution. Thus, below, only very prelimi-
nary estimates are presented, which are nor directly based on any implementation.

We believe that the total detection coverage should be well above
�����

, as indi-
vidual techniques have been shown to have this efficiency, at least for certain appli-
cations, [Wilken and Shen, 1990], [Rimén, 1995], [Hiller, 2000].

With the suggested approach, the recurring cost overhead should be low as no
additional hardware is used. Moreover, as no additional hardware is required and no

3.6. Evaluation of Detection Coverage 63

diversity is used, the solutions should be rather independent of the chosen hardware
platform (i.e., portable to any microprocessor). Furthermore, the power consump-
tion should be about the same as for the application tasks, without any applied fault
tolerance techniques, but the energy consumption will increase as the workload is
increased.

The memory overhead is expected to be around � ��� � � � � as the "I’m alive"
messages overhead should be negligible, signature checking around � ��� � ��� ,
watchdog timers around

��� � � � , executable assertions around
�����������

, self-
tests around

������� ���
, and double execution around

��� � ��� (assuming that the
task only is stored in one place of the memory).

The performance overhead is predicted to � ���	� � � ��� , as the "I’m alive" mes-
sages overhead should be around

��� � � � , signature checking around � �
� ��� � ,
watchdog timers around

��� � ��� , executable assertions around � ��� � ��� , self-tests
around

� ���� � �
, and double execution around � � �� � ����� .

It should be noted that the accuracy of these predictions may be low. Therefore,
especially for estimating the detection coverage for the different types of errors, the
solution need to be evaluated. How to perform such evaluation will be discussed in
the next section.

3.6 Evaluation of Detection Coverage

Traditionally, investigations of the dependability of systems has been based on list-
ing a number of faults and estimating their effect through analysis, see Chapter 1.2,
or fault injection experiments, see [Cunha et al., 2001], [Vinter et al., 2001], Chap-
ter 1.2.1. These methods require that the injected faults capture the behavior of all
real faults that can occur (i.e., that a correct fault model is used).

For faults generating crash failures and control-flow errors, the effects are rather
similar and it is rather easy to accurately model faults. However, as the impact of
different data errors can have large variations, it is much harder to find a fault model
that captures the behavior of real faults. For commercial microprocessors which are
very complex it is very difficult to identify all possible fault cases, and thus, suitable
fault models. Furthermore, the low-level details of such processors are seldom avail-
able for developers of safety-critical systems. Therefore, these bottom-up methods
are not flawless. The implications of modeling faults at different abstraction level is
shown in Figure 3.2.

In the continuation of this thesis we present a new methodology that could be
used as a complement to the traditional evaluation methods. Instead of looking at
which effects faults have, i.e., which errors they generate, the characteristics of data

64 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

A
bs

tr
ac

tio
n

L
ev

el

A
cc

ur
ac

y
&

 C
om

pl
ex

ity

+

+

Physical

Electrical

Switch

Register Transfer
(RTL)

Gate

Fault Cause

Fa
ul

t A
ct

iv
at

io
n

&

E
rr

or
 P

ro
pa

ga
tio

n

A
bs

tr
ac

tio
n

L
ev

el

A
cc

ur
ac

y
&

 C
om

pl
ex

ity

+

+

A
bs

tr
ac

tio
n

L
ev

el

A
cc

ur
ac

y
&

 C
om

pl
ex

ity

+

+

Physical

Electrical

Switch

Register Transfer
(RTL)

Gate

Fault Cause

Fa
ul

t A
ct

iv
at

io
n

&

E
rr

or
 P

ro
pa

ga
tio

n

System FailureSystem Failure

Microprocessor

Figure 3.2: Traditional fault modeling dependency on abstraction level.

errors that determines their impacts are identified. Then these characteristics are
varied and the effects on the system are observed. This makes it possible to use
top-down approaches for determining, at high abstraction levels, the effect of any
data error on the system, e.g., determine which errors the system is most sensitive
to. After that, it can be determined which faults (if any) that result in severe er-
rors and fault tolerance techniques can applied to handle these. We believe that the
methodology has the following advantages:

� The risk of missing certain fault cases is decreased.

� The first analysis can be performed at high level.

� Fault tolerance techniques can be focused to the most damaging faults.

� The same approach can be used for estimating the efficiency of applied fault
tolerance techniques.

A similar methodology aimed at profiling the sensitivity of different software
modules, was proposed in [Hiller, 2000], [Hiller et al., 2001], [Hiller et al., 2002].
However, as it was mainly focused on the profiling methodology, it did not in detail
investigate which characteristics that influence the effects of data errors on the sys-
tem (bit-flips was injected with PROPANE, a software-implemented fault injection
tool).

3.7. Identification of the Characteristics of Data Errors 65

Also [Kim and Shin, 1994] and [Kim et al., 2000] uses a similar approach for
investigating the effect of data errors on control systems. However, here the char-
acteristics are randomized chosen in a limited interval rather than varied (which we
propose) and only the effect on the system stability is evaluated.

In the continuation of this chapter, the characteristics of data errors are identified.
Then, in Chapter 4 and 5, different approaches using this methodology is presented.

3.7 Identification of the Characteristics of Data Errors

As previously defined, a data error has occurred when a property (e.g., a signal or
variable) has assumed an incorrect value, i.e., incorrect data has been produced. As
seen from the discussion in this chapter, whether a fault is activated (i.e., an error is
generated) or not at a certain abstraction level depend on:

� Influence: How much the properties are changed.

� Occurrence Time: At what time did the fault occur (in which state the com-
ponent/system is and the value of the input data).

� Duration: How long time the fault persist.

� Location: The function of the faulty component.

These quantities also determines the characteristics of the data error. The fault
influence and the fault duration determine the probability of an error being gener-
ated, which determines how often errors are generated. The occurrence time deter-
mines system state when the error occurs, which also influences its effect.

Continuing, the fault duration determines how often errors are generated. For
instance, if the fault is transient, only one error may be generated at one point in
time. However, if the fault has longer duration, several errors may be generated with
or without even intervals.

The location of the fault determines which part of the system that is affected,
but also how the error propagates, divides (several errors can be generated) and
manifests.

Therefore, the effects of a data errors depend on a limited number of character-
istics, namely:

� Property: Which property that is erroneous.

� Number: The number of properties that are erroneous.

66 Chapter 3. Design of Efficient Fault Tolerant Microprocessors

� Magnitude: The difference between the correct value and the erroneous value
of a certain property.

� State: The occurrence time of the error.

� Repetition: How often the error is repeated.

To summarize, by varying the above defined error characteristics it should be
possible to mimic the effect of all data errors, independently on which fault that
generated them. The problem with this methodology is that it is not practical pos-
sible to explore the effect of all possible combinations of the characteristics. Thus,
the characteristic combinations to explore must be intelligently chosen so that the
evaluations will be accurate. Different approaches for accomplishing this will be
discussed in the continuation of the thesis.

In Chapter 4 analysis methods for estimating the the effect of data errors on con-
trol systems are presented. Here data errors with different characteristics are classi-
fied as different types of disturbances, which makes it possible to apply traditional
control theory methods for estimating there effects.

As the analysis can not determine the effect of all types of errors, a simulation-
based fault injection technique is developed in Chapter 5 to estimate the effect of
these errors. As low-level details of microprocessors are seldom accessible for sys-
tem developers, the simulations must be performed at a high-level. Usually, high-
level simulations imply less accurate results, but by modeling the error characteris-
tics derived above, the most important information can be gained.

CHAPTER4
Analyzing the Effect of Data
Errors in Control Systems

As was discussed in the previous chapter, evaluations of fault tolerance techniques
are a major problem for system developers and researchers as few low-level compo-
nent (e.g., microprocessor) details are accessible. In this chapter analysis methods
for understanding the effects of data errors on linear control systems are developed.
These analysis methods can be used to determine which fault tolerance techniques
that need to be added, but also to estimate the efficiency of system dependent error
detection techniques.

First, in this chapter, suitable failure criteria for control systems is discussed
based on related work. It was decided to use failure criteria based on the control er-
ror, that is the difference between the desired and actual value of a physical property.
Then, the linear control system model is defined. After that, a top-down modeling
approach and suitable models for data errors are presented. The approach is based
on modeling data errors with varied characteristics of the signals (the control and
state signals) affecting the physical process. This differentiates from most previous
approaches as they generally have been based on injecting faults at low levels, i.e.,
bottom-up approaches.

The analysis methods consist of:

� Sensitivity Analysis: Determines which error repetition frequencies the sys-
tem is most sensitive to.

� Impulse Response Analysis: Describes the effect of occasional errors for

67

68 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

instance caused by transient faults.

� Norm Analysis: Determines how much the physical property is affected by a
certain error magnitude.

� Step Response Analysis: Describes the effect of errors that are repeated sev-
eral samples in a row, caused by persistent faults.

� White Noise Analysis: Describes the effect of errors that occur randomly, for
instance caused by persistent faults that are activated seldomly.

These analysis methods are exemplified through a simple model of a brake-slip con-
troller. It is also shown how the analysis can be used for designing executable asser-
tions and to determine their efficiencies.

To be able to use the analysis, models of the controller and the physical process
must exist. Such are often developed for designing the controller.

The major advantages with the new approach are that it can be applied early in
top-down system development processes and that, since the models are linear, the
effects of errors with different characteristics can be found from simple computa-
tions. The problems with the approach is that it is hard to model some errors caused
by persistent faults. Another problem is to determine which characteristics errors
caused by real faults will have, i.e., which error characteristics that are of interest
to analyze. For the errors that are hard to model, simulation is suggested, either in
the same signals (Chapter 4.4.5) for instance with MATLAB simulations or through
VHDL simulations (Chapter 5). The problem of analyzing realistic error character-
istics is discussed in Chapter 5.

These analysis methods do not cover complete evaluations of the effect of data
errors in control systems, but we believe that it can be a useful complementing tool
to traditional fault injection.

Readers that would like more details about the analysis methods and how they
are used at control design are referred to [Åström and Wittenmark, 1997].

4.1 Related Work and Definition of Failure Criteria

Understanding the effect of data errors on computer functionality is an intensively
researched area, e.g., [Pradhan, 1996]. As defined in the introduction of this thesis,
efficient fault tolerance implies that resources should be focused on those faults that
will have severe impacts on the system. Therefore, it is desirable to be able to
determine the impacts of different faults when designing safety-critical systems.

4.1. Related Work and Definition of Failure Criteria 69

For control systems, recent results [Cunha et al., 2001], [Vinter et al., 2001] show
that many data errors will have a limited effect on control performance, i.e., control
systems often have an inherent resilience or inertia to data errors. The results in
[Cunha et al., 2001], [Vinter et al., 2001] were obtained experimentally using fault-
injection (fault-injection is described in greater detail in Chapter 1.2.1) a technique
suitable for validation purposes. However, this technique requires a prototype of the
system (or at least a detailed model), which generally is not available in the early
design phases. Thus, methods for estimating the effects of data errors earlier in the
design process are preferred.

Methods for analyzing the effects of errors have previously been developed. For
instance, [Kim and Shin, 1994], [Wittenmark et al., 1995] have investigated the ef-
fect of timing errors on control systems. Analysis of the effects of data errors caused
by EMI bursts on system stability was investigated in [Kim et al., 2000]. These data
errors were modeled as a time-invariant Poisson process with random magnitudes
bounded within a certain interval. However, data errors may occur of other rea-
sons than EMI bursts, and then, have other characteristics (distributions). Moreover
catastrophic failures in certain safety-critical systems may occur before the system
reaches instability. For some industry processes, nuclear power plants, and space
ship stabilization, etc., stability may be a valid failure criteria. However, for track-
ing systems, i.e., systems where the reference signal is changing frequently, failure
may occur even if the stability is not lost.

As an example, take the steering of an automobile. If the driver turns the steer-
ing wheel 15 degrees to the right, but it is interpreted as a 15 degree turn to the
left, for instance due to a bit-flip in the sign bit, a catastrophic situation may occur,
even though the erroneous value is in the valid domain of the angle sensor. Thus,
the severity of errors is for some systems more related to how much the reference
(desired) value of a controlled physical process property differ from the actual value
of this property, i.e., the control error of the system (e.g., in a system controlling
the steering of a car, the control error would be the difference between the steering
angle set by the driver through the steering wheel and the actual steering angle of
the front wheels of the car). Therefore, for such systems, we instead suggest to use
the following (application dependent) requirements on the control error:

� C1: The control error must not exceed a certain specified limit.

� C2: A control error above a certain level is only acceptable (from a control
perspective) for a limited duration.

If any of these two requirements is violated, we say that the system has failed. Sim-
ilar criterion as C1 was used in [Cunha et al., 2001], [Vinter et al., 2001].

70 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

Note that a control error may be non-zero even if the control system is fault
free. A change in reference (desired) value may generate a control error, as well as
external disturbances (e.g., for the steering system, deep tracks in the road). Thus,
the impact of a fault on the system is not only dependent on the specific fault, but
also the current operational state (the current operational state is called the operating
point) of the system, e.g., for the steering example, whether the driver drives straight
ahead or turns sharply.

As most systems have a certain inherent inertia, the control error is dependent on
i) the dynamics of the system, ii) how the reference value changes, and iii) external
disturbances. Thus, the effect of a fault on the system is not only dependent on the
specific fault, but also the current operating point of the system. We assume that the
developer has identified the most sensitive operating point and set the requirements
on the control error for that point.

4.2 The Controller

In this section, the models for a generic controller structure implementing a con-
trol function at a level detailed enough to communicate the ideas presented in this
chapter, are described.

Control
signal, u(k)

Physical
process

A

S
Sensor (real)

value, y(k)

Reference
(desired)

value, uc(k)

I
Controller

(with state
space, z(k))

Figure 4.1: General figure of a controller and the corresponding physical process.

As was described in the introduction (Chapter 1), conceptually, a control system
is set to control a certain physical process (see Figure 4.1). This is achieved using
a set of actuators (A in Figure 4.1) for affecting the physical process and sensors (S
in Figure 4.1) for monitoring the effects of the actuators. The user of the controller
(which may be a human user or an external computer system) provides the controller
with a reference signal �	� ����� via some interface (I in Figure 4.1). The controller will
then attempt to change the physical process, with control signal � ����� to the actua-
tors, such that the sensor value ����� � is as close to the reference value as possible. As

4.3. Modeling of Data Errors 71

controllers implemented on microprocessors are considered, we assume that it exe-
cutes in discrete steps, i.e., the controller reads reference values and sensor values
and calculates control signals periodically. In Figure 4.1, and subsequently, � will
indicate the � ���

step in time.
Typically, a control system has non-linear effects (a non-proportional relation-

ship between the value of the control signal and the resulting physical value read
by the sensors). However, linear models are in many cases sufficient approxima-
tions at the normal system operating point and reduce the complexity. Therefore,
in this chapter, the error effect analysis are focused on linear system models. The
generalized feedback controller in Figure 4.1 is defined as:

� ������� ��� ����� �����
	 �	�
��� � ����� � ������ ��� � �
���� � ����� ������	 � � ����� ����� ������� (4.1)

The equations in Eq. (4.1) provide a generic linear controller with internal states,
e.g., a PI-controller (we have a controller with a proportional feedback (P) and an
integrated feedback (I)) or a state-feedback controller with observer states and inte-
gral action. The control signal � ����� is calculated using the reference value ��� ��� � ,
the sensor value ����� � , and an intermediate value

� ����� . This intermediate value is ac-
tually a set of various values constituting the state space (history) of the controller.
The state space can for instance contain integrator states, which are used to provide
a certain level of history that guarantee that the correct output is reached despite
constant disturbances, and observer states, which are used to estimate signals which
influence the control algorithm, but may be impossible to measure. In the example
in Chapter 4.4 one integrator state and one observer state is used.

 , � �
	 , � � , � , � �
	 and � � are matrices containing control constants, used as
weights in the equations. The control constants are amplifying factors that are set by
the designer to give the desired control performance, e.g., making the physical value
assume the reference value as fast as possible (after a change of the reference value)
without exceeding the reference value (i.e., overshooting).

Now the general structure of the controller has been introduced. In the next
section, how data errors can be described with disturbance models used in control
theory is discussed. The motivation for this is that if data errors can be described as
disturbances, disturbance analysis can be used to estimate the effect of errors.

4.3 Modeling of Data Errors

In Chapter 3.7 the characteristics that determine the effect of an data error were
identified to be:

72 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

� Which property that is erroneous (Property).

� The number of properties that are erroneous (Number).

� The difference between the correct value and the erroneous value of a certain
property (Magnitude).

� The occurrence time (State).

� How often the error is repeated (Repetition).

Thus, error models used for estimating the impact of errors must accurately consider
these characteristics. Based on the assumptions and restrictions made in Chapter 4.2,
error models, using the disturbance mathematical framework from control theory,
considering these characteristics will now be defined.

As discussed in the previous section, the controller can only affect the physical
process through the computed control signal (see Eq. (4.1)). Therefore, for a com-
puter node fault to have an impact on the system, they must affect the calculation
of this signal (directly or through propagation). Thus, the data errors (disturbances)
disrupting the calculated control signal (�) and/or the state space of the controller
(
�
) can be modeled as additive terms1 as follows:

� ����� � ��� ����� �����
	 �	� ����� ����� � ����� � �������	�
� ��� � � ��� � ��� � �����
	 � � ��� � ����� ������� � ��
����	� (4.2)

where � � ��	� and �
 ��	� are the functions describing disturbances due to faults in
the computer (i.e., errors) executing the control equations. Thus, the properties that
are considered are the control and the state signals. As these are the signals of the
control algorithm, this can be seen as a top-down approach compared to traditional
fault injection where faults generally are injected at low levels.

As linear systems are considered, the impact of an error is not dependent directly
on the state of the system. This means that the impact can be computed for any
state. However, in order to determine the worst case, the most sensitive operating
point must have been identified. The total impact of several errors (i.e., the number
characteristic) can, due to the linearity, be found by superimposing the impacts of
each individual error. Thus, the analysis can be limited to study the individual errors
(these will be discussed more in Chapter 4.4.2).

1The reason to why the errors are modeled with additive terms is that the magnitude of the errors
are bounded to the word-length for representing the control signal. This implies that, which will be
seen in Chapter4.3.2, any error magnitude can be modeled with additive terms.

4.3. Modeling of Data Errors 73

Now, the expressions for ������ � and ��
���	� to fit errors with different repetition
frequencies are defined. Then, it will be described how to model the magnitude of
the errors.

4.3.1 Repetition Frequency Classes for Data Errors

In this subsection, the data errors are divided into classes based on the rate of occur-
rence, i.e., the repetition frequency.

Class A: Persistent Errors This class consists of errors which will affect almost
all calculated samples (from when the error first occurs and then subsequent sam-
ples). If the errors are caused by faults in the memory storing the control constants,
they can substantially change the behavior/structure of the system (Disturbances
with this effect are denoted structural in control theory. Tools for more detailed
analysis of structural disturbances are provided by robust control theory, see e.g.,
[Zhou and Doyle, 1998]). If the errors have similar magnitude at longer time in-
tervals, for instance caused by faults in memory cells storing the most significant
bits of variables (which change their value infrequently), they can be modeled by
the step-function2,

� ��� ��� � . In this chapter this type of persistent errors is mainly
handled. However, Chapter 4.4.5 briefly treats other types of persistent errors.

Class B: Sporadic Errors This class includes errors that occur so infrequently
that the system has time to return to a correct state before the next error occurs, i.e.
the effects of errors are not superimposed. Thus, these errors can be modeled as
temporary impulse disturbances, described with the pulse-function3, � ��� ��� � . Such
errors are for instance caused by transient faults, occurring with low intensity, and
persistent faults in the functional units (adder, multiplier, etc.) of the microprocessor
that are activated occasionally and propagated with low probabilities.

Class C: Frequent Errors This class consists of errors not covered by the two
previous classes, i.e., errors that do not affect every sample, but yet many enough
for their effects on the system to be superimposed. The effects of these errors can
be modeled as stochastic processes, i.e., a function that assumes random values and
whose properties are described by its mean and variance, which either will assume

�

(when no error affects the system) or the magnitude, � , of the error (when an error
does affect the system), see Chapter 4.3.2. Such errors could be caused by transient
faults occurring with medium intensity, memory faults in the least significant bits of
variables (which change value relatively often) and persistent faults in the functional

2 ���
	��������� for 	��� and � for 	��� , where denotes the point in discrete time where the
error occurs.

3 � �
	������� � for 	��� , else � , where denotes the point in discrete time where the error occurs.

74 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

units, that have medium high propagation probabilities.

4.3.2 Data Formats and Error Magnitudes

The error magnitude will be dependent on the formats used for representation of data
in the calculations performed by controller. Two commonly used formats to repre-
sent numerical data are floating-point and fixed-point values. Floating-point values
give better accuracy than fixed-point values for a given number of bits, but require
either floating-point units (i.e., more expensive microprocessors) or additional soft-
ware routines (adding to the total execution time of the calculations). We will now
define the error magnitudes that can occur for the different formats.

In the IEEE floating-point standard [IEEE, 1985], numbers are represented with
a sign bit,

�
, a fraction part with value � , (23 bits for the single precision format) and

an exponent part with value � , (8 bits for the single precision format). A decimal
number � is represented in the single precision format as:

� � � � � ��� � ����� � �	��
��������
(4.3)

The range of representable values4 is then for the single precision format � �� � � � � � ����� ��� � ������� � � � � ����� ��� � ����� � , with a resolution (minimum difference between
two non-identical numerical values) of ! � � ����� . With this format, the magnitude
of a bit error is dependent on the values of the other bits, but if it occurs in the
most significant bits of the exponent, it will result in very high error magnitudes,
see Table 4.1. Even if the physical limitations of actuators, sensors, etc., limit the
immediate effects of such errors, the state update (see Eq. (4.1)) can be seriously
perturbed. This problem is addressed in [Vinter et al., 2001] by adding executable
assertions that check that data do not exceed their specified limits.

Table 4.1: Example of error magnitudes for single-bit errors in different data for-
mats.

Erroneous
bit

Error magnitude, floating-point, single format
(" # is the value of the remaining exponent bits)

Error magnitude, fixed-
point integer, N=32, M=23

� $&%('*)�+$&,.-�%	/*'1032 $&%('*)
��4 $&%(05+$&,.-6%7/8'3012 $&%(09 � � �;: < �=+ �>$,?-�@6AB/*2 �C$,.-6@�%	/*'3012 � $ED

4Often some values are used to represent special entities, e.g., F , reducing the usable range.

4.3. Modeling of Data Errors 75

In the fixed-point format [Hanselmann, 1987], numbers are represented as two-
complement integers, with a total of � bits, of which � ��� bits are used as
fractional bits. Hence, a decimal number � is represented by the bit sequence
��� ��� � �&���� , such that

� � �	�	�

� ��� ��� � � ��� �

� ���� �� � �
�
�
���

(4.4)

The ��� � � ����� bit carries the sign information. The range of representable values is
then � � � � � � �	� ��� � � � �	� ��� � � �	� �

, with a resolution of ! � � �	� .
With this representation, the magnitudes of the errors will be in the same range

as the control signals (assuming that the data has been properly scaled). Thus, a
single bit error in bit ��� � � � � � � � will have the magnitude:

� � � � � ����� ���B�	� (4.5)

where � � is the correct bit value. A bit error in the sign bit � ��� � � will have the
magnitude:

� � � � � � ���! %	/ � � �	� ���
(4.6)

Some examples of magnitudes for single-bit errors are given in Table 4.1. Note that
burst errors, affecting multiple bits, will correspondingly have magnitudes being the
sum of the individual bit error magnitudes.

Fixed-point values will be used in the continuation of this chapter, but as only the
range of magnitudes differ between the two formats, the proposed analysis methods
are valid also for floating-point values.

4.3.3 Error Effects on the Generalized Controller

Looking at the errors described in previous subsections, expressions for modeling
the errors effects on the generalized controller of Eq. (4.1) are now defined. The
expressions are summarized in Table 4.2, based on the discussions in Chapter 4.3.1
and Chapter 4.3.2 The first column defines the error class, the second column is
the type of the disturbance that the error will cause and the third column shows the
mathematical expressions describing the disturbances, " , for modeling the error in
Eq. (4.2). Here, �$# ��� � is a piecewise constant error magnitude, �&% � � � the error

76 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

magnitude at time s, ��� ����� a stochastic process describing the error magnitude
when a frequent error occurs,

�
the step-function, � the impulse function and

�
the

point in discrete time when the the first error occurs (i.e., the error occurs in a specific
sample).

Table 4.2: Effects of errors occurring at time s.

Error class Nature of resulting disturbance � : Mathematical expression for disturbance

A:Persistent Step ��� �
	�� � �
	 � �
B:Sporadic Impulse ��� �
�� � �
	 � ��
C:Frequent Stochastic Process ��� �
	 � ���
	 � ��

4.4 Analysis Methods

In the previous section the disturbance-models for the effects different errors have
on the system were defined. In this section. first, an example of a control system is
given. Then it is shown how different analysis methods can be used to understand
the effect of errors on control systems, using the disturbance-models (Chapter 4.3.3)
on the example.

Example — Brake-Slip Controller

A brake-slip controller is used to control the wheel-slip
	

on a car during braking.
This is used to avoid situations where the car looses its grip of the road and starts
skidding. The sampling time is set to � � � � � � � s. The brake-slip controller normally
operates in the region

� � 	 � � � � , where
�

corresponds to no slip, i.e., no braking,
and

� � � very hard braking where the wheels are almost locked. It is essential that
the brake force on the left and right side of the car is balanced, otherwise there will
be a resulting torque on the vehicle, and the car will turn during braking, which may
lead to a hazardous situation.

The process can be described as a linear discrete-time system:

	 ��� ���

 ��� �
 ��� � � ��� � (4.7)

where the polynomials B and A are of degree 1 and 2, respectively. The gener-
alized controller in Eq. (4.1) were used and instantiated according to traditional

4.4. Analysis Methods 77

control design for achieving desired control performance (for design details, see
Appendix D.2). This resulted in the following values of the control constants:

 �
�
� �

� � � � � ����� � ����	��
� � � � � ���
� � � � ������� �

��� �
� � � � � � ���
� � � � ���	� � � ��
 � � � ��� ��� � � ��� �

���
	�� � � � � � � � � � � � � ��� �
(4.8)

The first value in the state space of the controller (i.e., the top values of , � � 	 and
� �) is an integrator state and the second value (the bottom values) is an observer
state.

To validate that the desired control performance was reached with this instan-
tiation, a case where the driver suddenly applies full brakes, was investigated. At
normal driving conditions (dry asphalt road), this manoeuvre corresponds to a slip
change from

	 � �
(no braking) to

	 � � � � (full braking). Figure 4.2 shows how
the output signal (Figure 4.2(a)) and the control signal (Figure 4.2(b)), are changed
during the manoeuvre. Please note that different scales are used between different
plots in this and subsequent figures.

As can be seen in Figure 4.2(a), the output value assumes the reference value
within 0.4 s and without any major overshooting (i.e., exceeding the reference value).
Looking at the control signal Figure 4.2(b), it first increases quickly to make the out-
put signal assume the desired value (the reference value) as fast as possible. Then
it decreases to avoid overshooting and stays constant on the level required to give
the desired slip of

	 � � � � . The maximum required braking was considered to be
possible to deliver with the actuators. Therefore, as this control instantiation gives
acceptable performance it was used.

To avoid hazardous situations, the system developer must specify the failure cri-
teria C1 and C2, see Chapter 4.1. The requirements should be set from experience
of the system and detailed studies. We lack this essential information and as a con-
sequence cannot specify accurate criteria. However, as we would like to illustrate
different analysis methods, we simply set an ad-hoc requirement:

� C1: The system has failed if the magnitude of the control error exceeds
� � � �

when no reference signal changes has taken place for
� � � � .

The last condition is necessary as else normal reference changes would be defined
as failures. For instance, in Figure 4.2(a), the maximum control error is

� � � (i.e., ten
times higher than C1) as the desired value is

� � � at time
�
, but the actual value still

is
�

at this time. We do not set any requirement on C2 for this example.

78 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

In the continuation of this chapter, Figure 4.2 can be used for comparison of
how the system signals are changed due to normal changes of the reference values
(braking) and how they are changed due to different types of errors caused by com-
puter node faults (the effects of errors on control system are detailed in the following
subsections).

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

t [s]

S
lip

 [n
or

m
al

iz
ed

]

u
c
→y

(a)

0 0.1 0.2 0.3 0.4
0.5

1

1.5

2

2.5

3

t [s]

C
on

tr
ol

 s
ig

na
l v

al
ue

 [n
or

m
al

iz
ed

]

u
c
→u

(b)

Figure 4.2: Step-input command-signal response of closed-loop system. The plots
have different scales.

To study the effect of bit errors, the data format needs to be set. Assume that the
available word-length is � � � � bits. Based on the numerical values in Eq. (4.8)
and the signal magnitudes of Figure 4.2, the fixed-point numerical implementation
is chosen as � � � � , which gives the numerical range � � � � � � �=� � � ��� �=� � � ! �
with a resolution of ! � � ������� � � � � � � � ��� .

In the subsequent subsections, it is described how the effects of data errors on
control systems can be investigated using different analysis methods, adopted from
control theory, and exemplify these using the control system example (i.e., the brake-
slip controller) given in this subsection. It should be noted that the emphasis is on
describing the analysis methods, not on the results of this particular example.

4.4.1 Sensitivity Analysis

In control theory, the sensitivity function is used to determine how the system is
affected by disturbances occurring in a particular signal. It is calculated by deter-
mining the impulse response function, � ��� � , for how changes of that specific signal

4.4. Analysis Methods 79

affect the output value. This function is then transformed from the time domain to
the frequency domain (to the closed-loop transfer-function,

� � � �) to determine how
much disturbances with different frequencies are amplified (or attenuated). This
makes it possible to determine which occurrence rates of disturbances the system is
most sensitive to. Thus, for data errors this corresponds to investigating which rep-
etition frequencies of errors the system is most sensitive to. For more details about
the sensitivity functions, see Appendix D.1.

As shown in Chapter 4.3.3, errors can be described as disturbances in the cal-
culation of the control signal, " � , and state space, "�� , (Henceforth, disturbances af-
fecting the integrator state are denoted as " � and disturbances affecting the observer
state as " � .) see Eq. (4.2). Thus, the effects of different repetition frequencies of
errors on the system, can be found by calculating the sensitivity functions for each
disturbance.

To exemplify this approach, the sensitivity functions for errors affecting the
brake-slip controller example, were calculated. The results are shown in Figure 4.3,
where the x-axis shows angular frequency and the y-axis how much harmonic (sine
shaped) disturbances (errors) of each angular frequency are amplified. As control
signals are sampled, errors will be rectangular shaped, consisting of various fre-
quencies. However, the repetition frequency of the error will be the main frequency
component, i.e., cause the largest effects, and thus, analyzing the effect of this fre-
quency will in most cases give a good assumption.

As can be seen, the curve for errors affecting the integrator state (" � in Fig-
ure 4.3(b)) assumes the highest value, i.e., the system is most sensitive for these
errors. The highest value for the sensitivity function of " � , about

�
, is assumed at

�
Hz, which means that the magnitudes of errors affecting multiple consecutive sam-

ples, i.e., persistent errors, of the calculation of the integrator state, will be amplified
about

�
times and have the largest effect on the system output. As the sensitivity is

greater than
�
, the errors will result in a steady-state influence on the process output

(i.e., the system will never return to the reference value).

For the control signal (" � in Figure 4.3(a)) and the observer state (" � in Fig-
ure 4.3(b)) persistent errors (frequency =

�
Hz) are rejected (asymptotically assumes

�
, meaning that the effect of the error eventually will decrease to

�
). Instead the max-

imum value for their sensitivity functions are reached at
� � � � rad/s =

� � � Hz. Thus,
for errors affecting the control signal and observer state, the largest slip effect (the
error that is amplified most) will be for errors occurring with this frequency.

80 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

10
0

10
1

10
210

−5

10
−4

10
−3

10
−2

10
−1

M
ag

ni
tu

de
 [n

or
m

al
iz

ed
]

Frequency [rad/s]

η
u
→y

(a)

10
0

10
1

10
210

−4

10
−2

10
0

10
2

Frequency [rad/s]
M

ag
ni

tu
de

 [n
or

m
al

iz
ed

] η
1
→y

η
2
→y

(b)

Figure 4.3: Sensitivity functions from " � , " � and " � to output, � . The plots have
different scales.

4.4.2 Impulse Response Analysis

To more accurately estimate the effects of sporadic errors with different magnitudes,
one can study how the output value is affected by impulse disturbances occurring in
the control algorithm (" � and " � in Eq. (4.2)), by calculating the impulse response
functions, � ����� (described in Chapter 4.4.1 and in Appendix D.1). These functions
show how the output value changes due to impulses (sporadic errors) with magnitude
� , affecting the calculation of the different signals of Eq. (4.2). As linear systems
are considered, the effect on the system will be proportional to the magnitude of
the error. Thus, the effect of an error with magnitude � will be5 �&� ����� . Thus,
generally errors with large magnitude will affect systems more than errors with low
magnitude. However, errors with small magnitudes are generally harder to detect
with system-dependent error detection techniques as they differentiates less from
correct values.

The impulse response analysis also reveals how fast the output returns to the
correct value, due to the inherent robustness of the system (i.e., without adding any
error recovery), after an error has occurred. This time can be used to determine how
often errors can occur without their effects being superimposed, i.e., it can be used
for classifying errors into sporadic errors or frequent errors. It should be noted that

5For an error that manifests as an impulse with magnitude � at time ��� , i.e., � � � � �
	�� , the
effect on the process output will be described by � �
	 ����������
	�� �� � � � �
	 �� ��� � � �
	 � .

4.4. Analysis Methods 81

due to the linearity, the time constant is independent of the magnitude of the error.
This means that if the response to an error with a certain magnitude has decreased
to �

�
of its maximum value after a certain time, errors with other magnitudes will

also have decreased to �
�

of their maximum value, after the same time.
To exemplify this analysis method, the output and control signal responses to

sporadic data errors for the example described in Chapter 4.4 were calculated. Fig-
ure 4.4 shows how the slip is affected (the nominal value is set to

�
) by an impulse

(sporadic error) affecting the calculation of the control signal (Figure 4.4(a)) and
state space (Figure 4.4(b)). Figure 4.5 shows how the control signal is affected for
the same impulse affecting the control signal (Figure 4.5(a)) and state space (Fig-
ure 4.5(b)).

0 0.1 0.2 0.3 0.4
−2

−1

0

1

2

3x 10
−3

t [s]

S
lip

 [n
or

m
al

iz
ed

]

η
u
→y

(a)

0 0.1 0.2 0.3 0.4
−0.2

0

0.2

0.4

0.6

0.8
S

lip
 [n

or
m

al
iz

ed
]

t [s]

η
1
→y

η
2
→y

(b)

Figure 4.4: Output signal responses to sporadic data errors. The plots have different
scales.

It can be seen that sporadic errors have larger effect when affecting the states
compared to the control signal (i.e., the slip diverges more from its nominal value of
�

in Figure 4.4(b) compared to Figure 4.4(a). This is due to the large scaling of the
state variables when calculating the control signal (matrix

�
in Eq. (4.8)) and that

the errors will be stored in the states of the controller (the old values of the state
�

in Eq. (4.2) are used for calculating the new state and the control signal), and thus,
affect several samples, whereas control signal errors will only directly affect one
sample.

Furthermore, it can be seen that the integrator state is more sensitive to sporadic
errors than the observer state (the magnitude is higher for the solid line " � ����� in

82 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

Figure 4.4(b) than for the dashed line " � �����). However, looking at Figure 4.5(b)
it can be seen that errors in the observer state generate control signals with higher
magnitudes (the dashed line has a higher maximum magnitude than the solid line).
This implies that if an assertion would be placed on the control signal (which seems
natural and has been suggested for instance in [Vinter et al., 2001]), it would either
(dependent on how the threshold is set) let unacceptable integrator errors through
(that would violate the failure criteria) or unnecessarily and even incorrectly (i.e.,
cause false alarms) detect observer errors.

It can also be seen from Figure 4.4 that the system returns to the nominal slip,
�
, about

� � � s (in this case
� �

samples, � � � � � � � s) after the error occurred. This
means that if errors do not occur more frequently than this, the effects of them will
not be superimposed.

0 0.1 0.2 0.3 0.4
−0.5

0

0.5

1

t [s]

C
on

tr
ol

 s
ig

na
l v

al
ue

 [n
or

m
al

iz
ed

]

η
u
→u

(a)

0 0.1 0.2 0.3 0.4
−50

0

50

100

t [s]

C
on

tr
ol

 s
ig

na
l v

al
ue

 [n
or

m
al

iz
ed

]

η
1
→u

η
2
→u

(b)

Figure 4.5: Control signal responses to sporadic data errors. The plots have different
scales.

4.4.3 Norm Analysis

As discussed in Chapter 4.1 we base our failure criteria on magnitude and duration of
the control error. Thus, to get numerically comparable values, the following norms
are useful:

� � � ���� �
�
� � ����� � and

� � ��� ����
	���
� � ����� � (4.9)

4.4. Analysis Methods 83

where sup denotes the supremum function. The norm
� � � � is the maximum ab-

solute value of the error resulting from the disturbance. The norm
� � � � is the sum

of the absolute control errors over time. The essential difference is that
� � � � only

gives information on the largest size of the error. When combined with
� � � � , infor-

mation on the duration of the error is also assumed. The choice of controller state-
realization (i.e., which values for the control constants of Eq. (4.1) that are chosen)
will affect the size of

� � � . In the example described in Chapter 4.4, all state real-
izations are scaled such that a step-input command-signal results in state-variables
with unit stationary value.

The maximum single bit error, � , which do not violate the failure criterion C1
can thus be found through:

� � � � � � ��� � � � ���	� � � C1
 � � � � � (4.10)

where � is the number of fractional bits used in the fixed-point representation.
It follows that multiple bit errors satisfying � � � � � � � � do not lead to failure.
Similarly,

� � � � can be used to determine when C2 is violated. However, to avoid
that small control errors, having no real effect on the system, eventually sum up and
violate C2, control errors below a certain level should be neglected, and the norm
reset.

The impulse-response norms for the example described in Chapter 4.4 are shown
in Table 4.3. The largest bit for which a single-bit or multiple-bit error does not
result in failure (i.e., the control error exceeds

� � � � , see Chapter 4.4), according to
Eq. (4.10), is shown in Table 4.4.

Table 4.3: Impulse-response norms.

Norms ��� �
	 � � / �
	�� � ' �
	 � � / 2.45e-02 8.28e+00 3.08e+00 � � 2.48e-03 7.66e-01 3.07e-01

4.4.4 Step Response Analysis

Persistent errors change the dynamics of the closed-loop system, and thus, control
performance is generally substantially affected. Therefore, most of these errors need
to be handled, and thus, the analysis method in this section is focused on how fast
errors need to be detected in order for the system to recover before it fails.

84 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

Table 4.4: Largest bit-number for which a single or multiple bit sporadic error is
tolerated.

� � � / � '
Single bit error 25 16 18
Multiple bit errors 24 15 17

In many cases, errors occurring several samples in a row with high constant mag-
nitude (i.e., � # ����� � � # in Table 4.2), are some of the most harmful errors, i.e.,
the errors that in shortest time will result in failures (which error repetition frequen-
cies that result in the largest impact on the system can be identified with sensitivity
analysis, see Chapter 4.4.1). Such errors will, at least for the first samples, have sim-
ilar effects as step disturbances (the step function,

�
, is described in Chapter 4.3.1).

Thus, the system response to step disturbances can be studied to find when (after
how many samples) the failure limits are reached for different error magnitudes6.

To exemplify this approach the step response functions for the brake-slip con-
troller described in Chapter 4.4 were calculated. The result is shown in Figure 4.6.
For persistent errors with constant magnitude affecting the calculation of the control
signal (Figure 4.6(a)) or the observer state (the dashed line, " � ��� � , in Figure 4.6(b))
of Eq. (4.2), the slip returns to the nominal value

�
within

� � � s. This is due to
the fact that the controller uses an integrator state designed to mask the effect of
constant disturbances. However, when such errors affect the integrator state directly
(the solid line in Figure 4.6(b)), the slip will never return to its nominal value.

As previously discussed in Chapter 4.4.2, the time constant is independent of the
error magnitude. Using this, the number of samples between the fault occurrence
and until the C1 or C2 criteria are violated, can be used as a measure of the required
system recovery time. As an example, consider an error occurring in the integrator
state (the solid line in Figure 4.6(b)). Closer inspection of the plot shows that after
� � � � s (two samples) the control error reaches from

�
to

� � � � � � for an error with
magnitude7 � , which is well above C1 � � � � � (C1 was specified in Chapter 4.4).
This means that recovery must have been initiated before

� � � � s after occurrence of

6For a fault that manifests as a step with magnitude � on state � occurring at time
� � � , i.e.,

��� � � � �
	�� , the effect on the process output will be described by � �
	�� � � ����
	�� � �� � � � �
	�� � �
� ������
	 � � �� � . Using this equation the first sample (if any), 	 , at which the requirements are no longer
fulfilled can be found. That is, the time within which the system needs to be recovered to avoid system
failures.

7For an error occurring in the most significant bit (i.e., with magnitude $�)�/&+ $�% '1) � $ D), the control
error will be (due to the linearity): � : ���	� 9 +$ D�
 � $: � , i.e., much higher.

4.4. Analysis Methods 85

the error.

0 0.1 0.2 0.3 0.4
−5

0

5

10

15x 10
−3

t [s]

S
lip

 [n
or

m
al

iz
ed

]

η
u
→y

(a)

0 0.1 0.2 0.3 0.4
−2

0

2

4

6

8

10

t [s]

S
lip

 [n
or

m
al

iz
ed

]

η
1
→y

η
2
→y

(b)

Figure 4.6: Output responses to step fault disturbances. The plots have different
scales.

4.4.5 White Noise Response Analysis

For determining the effects of frequent errors we propose two different approaches,
which are not exemplified. For errors which can be described as uncorrelated stochas-
tic processes (also termed white noise), with variance � �

(for instance errors caused
by faults in memory cells storing low significant bits of variables), a requirement on
the maximum tolerated variance on the slip, can be specified. To determine which
errors violate this requirement, the resulting variance8 of errors with different occur-
rence frequencies can be calculated.

The second approach to estimate the effects of frequent errors is to run simula-
tions. As we are looking at linear systems, the effects of several errors occurring
closely in time (i.e., another error occurs before the system has returned to the cor-
rect state after the previous error) can be simulated by superimposing the effect of
each error. Thus, by adding the error as an additional input and defining which sam-
ples it is active and the magnitude at each specific active sample, the effect should

8The variance can be calculated through: ��� � '�� � ����� � � � �� � � �
	 � �	��
 �� � ��� � � �
	 ��� ����� �
� � � �� �1'��7'�� � '' �B' , where � determines which calculation of the control algorithm Eq. (4.2) that

is affected and
 � ''�����

�
� �
	 �1' .

86 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

be possible to find. In order to reduce the number of error cases to simulate, the lin-
earity can be utilized as if a specific magnitude exceeds the failure criteria, all higher
magnitudes will also violate the criteria. Furthermore, as the system in this case was
most sensitive to persistent errors in the integrator state, it can be expected that if
a certain error repetition frequency exceeds the failure criteria, all higher repetition
frequencies will also violate the criteria.

4.5 Design of Executable Assertions

In the previous part of this chapter, it has been shown how different analysis methods
can be used to estimate the effect of data errors on control systems. Now, in this
section, it is shown how these methods can be used for designing and estimating
the efficiency of executable assertions, a systematic error detection technique (see,
Appendix A).

As was defined in Chapter 3.4.3, it is desirable to design assertions that 1) will
reduce the impact of data errors, and 2) determine when the controller cannot handle
an error, i.e., an unrecoverable error has occurred and the system must be set in a
fail-safe state or the control handed over to a spare computer. It is now exemplified
how such design can be performed for the brake-slip controller example, using the
previous described analysis methods.

First, in order to reduce the impacts of data errors, we apply the anti-windup
technique suggested in [Gäfvert et al., 2003] (this technique can be seen as an ex-
ecutable assertion with automatic recovery), which sets the bounds for the control
signal as:

� � ����� ��� ��� ��
 � � � �
��� � � , where � is the maximal absolute value of

the reference signal, � �
��� � , and � � is the impulse response function sequence of the
closed-loop system from the reference signal to the control signal. According to the
specification for the brake-slip controller, the reference signal (the slip), is bounded
as

� � 	 � � � � � � , and computation gave � ��
 � � � �
��� � � � � � � � � . Thus, the anti-

windup observer is designed to be activated for
� � ����� ��� � � � , i.e., it will reduce the

impact of all errors resulting in a control signal higher than
� � � . As linear systems

are used, the maximum control error due to a sporadic data error will be an error
resulting in a control signal value change of

� � � .
To determine the maximum control error due to a sporadic error, the impulse

response function from the integrator state signal (integrator state errors were iden-
tified to be the worst errors in Chapter 4.4) to the process output, � � ����� , is computed,
Figure 4.7(a), and the corresponding control signal, Figure 4.7(b). From closer in-
spection, the maximum control error is about

� � ��� and the maximum generated con-
trol signal was � � � � � . As the maximum accepted control signal was

� � � , the maxi-

4.5. Design of Executable Assertions 87

mum control error due to a sporadic data error will occur when an integrator error
results in a control signal just below

� � � . This will happen for data errors with mag-
nitudes

� � �
 � � � � � � � � ��� . The resulting control error will be
� � ��� � � � ��� � � � � � .

This can be compared with the maximum control error if no restrictions on the sig-
nals are used which would be

��� � � � � ��� � � ��� � � � .
It can be seen that the maximum control error exceeds the failure criterion, C1,

which we set in Chapter 4.4. However this criterion was set ad-hoc, so whether
the control error can be considered acceptable or not should be judged from tests
and experience, as in one hand the magnitude is high, but on the other, it returns
back to normal quite fast and the error itself will occur seldom. If it is considered
acceptable by the system developer, the process is finished, else some of the pro-
posed measures in Chapter 3.4.3 can be used to design an assertion, which then can
be evaluated using the analysis described above. This iteration should be continued
until an acceptable design is found.

0 0.1 0.2 0.3 0.4
−0.2

0

0.2

0.4

0.6

0.8

S
lip

 [n
or

m
al

iz
ed

]

t [s]

η
1
→y

(a)

0 0.1 0.2 0.3 0.4
−20

0

20

40

60

80

t [s]

C
on

tr
ol

 s
ig

na
l v

al
ue

 [n
or

m
al

iz
ed

]

η
1
→u

(b)

Figure 4.7: Output response and corresponding control signal to sporadic data errors
in the integrator state.

Second, as discussed in Chapter 3.4.3, to determine when the controller cannot
handle a specific error, a signal monitoring the health of the system should be de-
fined. As we determined to use the control error as failure criteria, this signal is
suitable to use. Thus, an robust assertion, according to Chapter 3.4.3, should be
applied to this signal.

In order to set the threshold for the assertion, the most severe errors should be
identified. For the brake-slip controller, persistent errors with constant high magni-

88 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

tude in the integrator step were identified to be one of the most severe errors through
sensitivity analysis, Chapter 4.4.1. Therefore, to exemplify the analysis methods, the
step response function is now computed and shown in Figure 4.8(a) together with
the resulting control signal, Figure 4.8(b), for such errors.

From closer inspection of Figure 4.8(b), the maximum generated control signal
was � � �B� � � . As the maximum accepted control signal was

� � � , due to the modified
anti-windup described above, the magnitude of the most severe persistent error with
constant magnitude, can be found as � � � � �
�� � �B� � � . Thus the response function
needs to be scaled (multiplied) with this factor. Then from the scaled figure the times
when the failure criteria is violated can be found (i.e., when do the response exceed
the maximum allowed magnitude and duration).

Figure 4.9 shows the scaled response to a persistent error with constant magni-
tude � � � � �
�� � �B� � � in the integrator state. The specified failure criteria is also
included in the figure. From closer inspection of Figure 4.9 it was found that the
failure criteria is exceeded at

� � ��� s. Now assume that it takes two samples for the
controller to set the system in a fail-safe state (or for a spare computer to recover the
system). As the assertions are working on the control error that already exist in the
system, this means that the detection must take place at least two samples (

� � � � s)
before the failure criteria is exceeded, i.e., at time

� � ����� � � � � � � � � � s. Through
the inspections, it was found that the control error is

� � ��� � � at this time. Thus, the
threshold for the assertion checking the magnitude of control error should be set to
� � � � � � . However, this is a very low level, even lower than the assertions designed
for automatically recovery. This implies, first, that the automatic recovery would
be useless, and second, that the assertion would probably have very high false and
unnecessary alarm rates. Therefore, either the failure criterion C1 should be relaxed
(remember that it was set ad-hoc for this example), or another type of error detection
technique must be applied for detection of these errors.

It should be noted that when the failure criterion C2 is used, similar assertions
can be applied to monitor this property.

4.6 Summary

In this chapter, analysis models and methods were adopted from control theory for
understanding the effect of data errors on control systems. The results obtained from
the analysis of an automotive brake-slip controller showed that many transient faults
are tolerated by the control system and that the part most sensitive to data errors
is the integrator state. This indicates that many results found from fault injection
experiments [Cunha et al., 2001], [Vinter et al., 2001] can be estimated from anal-

4.6. Summary 89

0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

t [s]

S
lip

 [n
or

m
al

iz
ed

]

η
1
→y

(a)

0 0.1 0.2 0.3 0.4

0

50

100

150

200

t [s]
C

on
tr

ol
 s

ig
na

l v
al

ue
 [n

or
m

al
iz

ed
]

η
1
→u

(b)

Figure 4.8: Output response and corresponding control signal to persistent errors
with constant magnitude in the integrator step.

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

t [s]

S
lip

 [n
or

m
al

iz
ed

]

η
1
→y

C10.04s

Figure 4.9: The scaled output response to a persistent error with constant magnitude
in the integrator step, together with the specified failure level C1.

90 Chapter 4. Analyzing the Effect of Data Errors in Control Systems

ysis already in early design phases. Such information is valuable for developers of
safety-critical systems when deciding on which fault tolerance techniques are effi-
cient to use.

More specifically, using the described analysis it is possible to estimate: i) the
control performance degradation (i.e., the control error) different errors cause, ii)
the maximum allowed recovery time before a system failure occurs, iii) how often
errors can occur without their effects being superimposed, iv) the error magnitude
dependency on the data format used.

Furthermore, it was also shown how executable assertions can be designed and
evaluated with similar analysis. These analysis methods provide, among other things,
information on how much the impact of different data errors are reduced due to ap-
plied assertions and recovery.

The analysis methods are best suited for sporadic errors and persistent errors
with constant magnitude. As these often are considered to be the most frequent
and severe errors, we believe that the analysis can provide important results during
development of safety-critical control systems. However, for other error classes,
and for verification purposes, simulations may be necessary if not complementary
analysis methods can be developed.

CHAPTER5
Experimental Evaluations of
Data Errors

In the previous chapter, analysis methods for estimating the effect/impact of data
errors were discussed and developed. The main advantage with the proposed analy-
sis is that it can be applied early in the design process. However, for certain errors,
and for validation and verification purposes, the analysis cannot be used. For such
detailed evaluations, fault injection (see Chapter 1.2.1) is often suitable.

As the first implementations generally are models of the system, simulation-
based fault injection is preferable. The main drawback with simulations is that mod-
els are used, and thus, the accuracy of the results is dependent on the accuracy of
the models. This is a major problem for the use of commercial processors as low-
level (detailed) descriptions of such seldom are accessible for system developers.
Thus, high-level simulations must be used which generally are less accurate com-
pared to low-level simulations as less locations are controllable and observable for
fault injections. In addition, most existing evaluation techniques focus on a spe-
cific class of faults such as transient or permanent faults and/or require detailed (low
level) descriptions of the processors, which seldom are accessible for developers of
embedded systems. Therefore, first in this chapter, how the error generation is de-
pendent on the fault injection abstraction level, is investigated. The investigation is
performed by comparing the characteristics of errors (important error characteris-
tics were identified in Chapter 3.7) generated from faults injected at gate-level with
errors generated from faults injected at RTL. The results showed that fault activa-
tion (error generation) probability is much more dispersed for errors generated from

91

92 Chapter 5. Experimental Evaluations of Data Errors

gate-level fault injections and the average activation probability is lower. Thus, the
impact of faults injected at RTL may significantly differ from the impacts of faults
injected at gate-level.

Then, related research on modeling of persistent fault for those cases when the
characteristics differs, is presented. Most of this research targets accurate modeling
of specific fault types and requires some sort of detailed information, e.g., fault
libraries, or do not show how the simulated errors correspond to errors caused by
real faults.

Therefore, in order to be able to model the effects of real faults without detailed
low-level information, a high-level simulation-based fault injection approach based
on insertion of specific components, so-called saboteurs [Jenn et al., 1994], for fault
injection into VHDL-models is developed. The novelty of this approach is that the
characteristics of errors that determines the impact on the system can be varied for
the signals that are reachable at the chosen abstraction level. Furthermore, not only
the impacts of data errors can be evaluated, but also the efficiency of applied error
detection techniques.

If the developer has little knowledge about the characteristics of the faults that
can occur and/or which impacts they will have, faults with great varying character-
istics should be injected, since the approach itself has no inherent correspondence to
the characteristics of real faults. However, the impact of a fault will in many cases
be the same if it occurs within a certain time interval or is located within a certain
area. Also, generally the longer the duration of the fault is, the more severe is the
resultant impact. Thus, using this information for intelligently choosing injection
times, and locations and durations for the faults, the required number of simulations
can be heavily reduced.

If the developer has some knowledge about the faults that can occur or the ro-
bustness of the system, this can be utilized to focus the injections to faults with
specific characteristics. As an example, if it is known that the system tolerates most
transient faults, the injections can be focused mainly to persistent faults. When the
system developer has determined the characteristics of the faults to inject, the rest of
the evaluation process is fixed, and thus, can be automated.

The saboteur approach is implemented and evaluated in two different examples.
In the first example, it is shown that the error characteristics can be varied as de-
sired. The second example describes evaluation of the detection coverage of double
execution for data errors caused by persistent faults. From the latter example it can
be seen that as it is possible to vary the characteristics of errors with the saboteur
approach, the influence of these characteristics on error impact and detection cov-
erage, can be evaluated. Furthermore, for this specific implementation, it was not

5.1. Traditional Simulation-Based Fault Injection 93

possible to deactivate the overflow exception which then affected the estimation of
the coverage for double execution. However, with the saboteurs, it was possible to
generate errors that did not result in overflows, and thus, most of the influence of
the overflow exception on the estimated coverage of the double execution technique
could be removed.

In the end of this chapter, it is described how the approach can be modified for
use at other abstraction levels (the approach is also portable to any simulation tool)
and for other fault injection methods (e.g., scan-chain and software-implemented
fault injection).

5.1 Traditional Simulation-Based Fault Injection

Traditionally, the impacts of faults have been determined through fault injection
Chapter 1.2.1, i.e., injecting faults into the system and observing their impacts on
the delivered service and whether resulting errors are detected. Faults can be in-
jected either physically, through scan-chains, simulations or in software. Most of
this previous work considers injection of transient faults. However, as was seen in
Chapter 2, the occurrence rate of persistent faults can be expected to increase in
commercial microprocessors. Therefore, it is important to be able to estimate the
effect of such faults as well.

The problem of evaluating the impact of faults with long duration using physical
fault injection is that there is a risk of permanently destroying the circuit. Fur-
thermore, internal scan-chains are seldom accessible for system developers and it
is difficult to mimic all types of hardware faults with software-implemented fault
injection. Simulation-based fault injection does not suffer these problems, but the
accuracy of the result is, as for all simulations, highly dependent on the level of
details that are provided by the model. As microprocessor manufacturers seldom
make low level (detailed) models of the microprocessors available, the simulation is
invariably based on high-level models, and thus, there is a risk that the evaluation
gives inaccurate results.

Accurate modeling of transient hardware faults at Register Transfer Level (RTL)
has been discussed for instance in [Yount and Siewiorek, 1996]. The modeling was
intended to resemble the effects of real faults, but to avoid combinatorial explosions,
only a subset of the faults was chosen. Since modeling of persistent faults also
needs to consider the time aspect, i.e., such faults can be activated several times, the
combinatorial growth explosion will be even more critical for such modeling. Fur-
thermore, fault activation depends not only on the application for which the system
is used, but also on how the faulty component is implemented. Since detailed infor-

94 Chapter 5. Experimental Evaluations of Data Errors

mation of the implementation may not be available for most system developers, a
high-level approach that can model faults with varied time duration is necessary.

The simplest and the most commonly used fault model is to manipulate the value
of some signal in the structural model of the component/system for the desired fault
duration. For transient faults this implies halting the simulations, changing the value
of the desired signal(s) and then continuing the simulation, i.e., bit-flipping. For per-
manent faults, this means forcing the desired signal to hold a certain value during
the continuation of the simulation, i.e. the so-called stuck-at fault model. The accu-
racy of using these models at high level, considering the identified characteristics in
Chapter 3.7, is now briefly discussed.

As it is possible to halt the simulations at any time to manipulate signals, it is
simple to model the occurrence-time (State) by injecting the fault (manipulating the
value of the signal(s)) at this time. Moreover, as the tasks and hardware is simu-
lated, and assuming that relevant input data is used (i.e., that the system responses to
typical input data are known), the error generation is included inherently (Repetition
frequency). Furthermore, the Magnitude and Number can be controlled by which
and how many bits that are flipped or set stuck.

However, if only high-level component/system models are accessible, which
generally is he case for system developers and researchers within the academia, the
number of locations (Property) where faults can be injected is limited. As the loca-
tion of the fault affects how, when and to which output(s) resulting errors propagate
to, the Magnitude, Number, and Repetition frequency, are indirectly restricted. This
means that the number of errors that propagate becomes higher than in reality, as no
errors are masked at lower abstraction levels than the faults are injected at. Also, the
number of multiple errors can be expected to be lower when faults are injected at
high levels as the propagation paths are fewer.

For transient faults, it is generally possible to compensate for both these incon-
sistencies by biasing the number of effective errors and by also injecting multiple
faults. However, for persistent faults, the Repetition frequency for stuck-at faults
injected at high-level can become higher as high-level signals generally has a larger
influence on the functionality of the component. Thus, faults injected at high-level
simulations can be expected to be activated more often. This inconsistency can gen-
erally not be compensated for by biasing.

The Repetition frequency of an error is one of the characteristics determining its
impact on the system, but also how easy it is to detect. Generally, the higher the
Repetition frequency is of an error, the greater will the impact be, but at the same
time, the resulting errors will be easier to detect. Therefore, it is important that the
set of faults that can be injected have the same error characteristic distributions as

5.2. Investigation of Abstraction Level Dependency 95

the total set of faults.
It should be noted that in Chapter 4, there were also limitations on which signals

(properties) that could be analyzed as erroneous. However, it was identified that in
order for any microprocessor fault to have any impact on the controlled physical
process, the resulting errors must propagate to any of the signals that were acces-
sible. This implies that as it is possible to vary the characteristics of these errors
freely, the impact of all possible errors can be modeled. Also, for high-level sim-
ulations, for any fault to have any effect on the system, the resulting errors must
eventually propagate through a reachable signal. However, the difference between
the analysis and high-level simulations, is that it is not possible to vary the charac-
teristics of errors injected in high-level signals freely using the bit-flip or stuck-at
fault model. Therefore, it is possible that these fault models discriminate errors with
certain characteristics, when used at high-level simulations. If so, it is possible that
results from such evaluations is not valid in reality.

To investigate in which cases the error characteristics differ between faults in-
jected at low and high-level, a comparison between fault-injection at RTL and gate-
level was performed. The results are presented in the next section.

5.2 Investigation of Abstraction Level Dependency

Prior to developing a new evaluation approach, first, in this section, how the accuracy
of evaluations using traditional fault models is affected by the fact that fewer signals
(locations) are accessible at higher abstraction levels, is investigated. This investi-
gation is performed by comparing the characteristics of faults injected at gate-level
and RTL. The estimation was performed on Functional Units (FU), i.e., the units of
the execution stage of the processor pipeline, e.g., ALU, multipliers, shifters, etc.
These components are of specific interest to investigate as they are some of the least
protected components in microprocessors (e.g., they are hard to efficiently protect
with codes since they transform data), see [Mendelson and Suri, 2000].

However, even if the simulation results in this section are valid mainly for func-
tional units (which are combinational), the fault injection approach presented in this
chapter should be possible to utilize also for other types of combinational compo-
nents and sequential components, see Chapter 5.4.2.

For injection of faults, the stuck-at model was used, based on the assumption
that the impact of a single-bit fault that has shorter duration than the time required
to perform one computation of the functional unit, will either not effect the com-
putation or have the same impact as a fault with duration longer than the required
computation time. We motivate this assumption by the fact that the signals in a func-

96 Chapter 5. Experimental Evaluations of Data Errors

tional unit are generally only run through once during a computation, and thus, are
then either correct or incorrect. Moreover, the computation (execution) time of a
functional unit is in the order of nanoseconds (and decreasing).

To estimate the impacts of faults, four quantities were measured, namely:

� (I): The probability that an injected fault generates an error that propagates to
any of the outputs of the component. This measure can be used to estimate
the repetition frequency.

� (II): The number of times each input value propagated an error to any output.
This measure can be used to determine whether certain operating states are
more error prone than others.

� (III): The number of output signals that each error propagated to, i.e., the
number of single- and multiple-bit errors. This measure is connected to both
the number and magnitude characteristics.

� (IV): The number of times an error manifested in each specific output bit.
This measure can be used as an estimate of the magnitude of the errors.

As faults were injected in different signals, the property characteristics was indi-
rectly investigated.

All these quantities were measured by first simulating the components with the
chosen input values, without injecting any stuck-at faults (the golden run). Then the
components were simulated with the same input values for each stuck-at fault (i.e.,
with a signal held at 0 or 1).

More specifically, the estimations were performed through simulations of two
different gate-level adders and multipliers, and one barrel-shifter. The obtained re-
sults were compared with simulations of the simple behavioral descriptions of the
components at RTL, see Table 5.1.

The reason to simulate different gate-level implementations of the same compo-
nent was that components that use a different trade-off among performance, power-
consumption and circuit area, have different gate-architectures. Of these compo-
nents, the 74238 and c6288 are simpler, and thus, easier to analyze, whereas the
Thor1-components are larger, and thus, more realistic. However, at the RTL, all be-
havioral descriptions of a certain component will be very similar and thus, only one
representative case, were implemented.

1Thor is a microprocessor developed by Saab-Ericsson Space designed for space applications,
[Saab Ericsson Space, 1999].

5.2. Investigation of Abstraction Level Dependency 97

Table 5.1: The investigated components.

Component Description Total
Number of
Bit-Signals

Number
of Injected
Faults �

�
Number of
Applied In-
put Values

74238
Adder

Gate-Level Carry Look-Ahead
Adder,

�
inputs, � outputs

� � 9 4�� $ �
� $ � � � $ � �

Thor Adder Gate-Level Carry Look-Ahead
Adder (Synopsis standard compo-
nent), �E4 inputs, $�� outputs

� � � ��4 � � 9 $ � $ �9 4;4 � ��� � � $ � �����

Thor Barrel-
Shifter

Gate-Level Barrel-Shifter, � � $
inputs,

9 $ outputs

� � � � � � � � � � $ �
� �	�E4 ����
 ����� � � $ � �����
 �

c6288 Mul-
tiplier

Gate-Level Radix-2 Multiplier,
(ISCAS-85),

9 $ inputs,
9;9

outputs

� $ � �	� $�� ��4�� $ �
��� 9 $ � � � $ � �����

Thor Multi-
plier

Gate-Level Multiplier using
Booth recoding and Wallace tree
structure, 4 � inputs, 4 � outputs

� � � ��� � $�� ��4�� $ �
��� 9 $ ����
 ����� � � $ � �����

RTL Adder Unsigned Behavior Adder,
9 $ in-

puts, � � outputs

� � � � � $�� � � � � $ � �����

RTL Barrel-
Shifter

Behavior Barrel-Shifter, 4�� in-
puts,

9 $ outputs

� � � � � $ �
� � �

� � $ � �����

RTL Multi-
plier

Unsigned Behavior Multiplier,
9 $

inputs,
9 $ outputs

4 � 4 � � $ �
� $�� � � $ � �����

�
Faults were not injected in the input signals.���
Faults were not injected in the input and output signals.�����
The input values were randomly selected.�

� All possible input values were tested.
� Only left and right shift of zeros were tested.
�
�

Both stuck-at-0 and stuck-at-1faults were injected.

98 Chapter 5. Experimental Evaluations of Data Errors

As the gate-level components were described with different formats, the simula-
tions were run on two different simulators. The 74238 and c6288 components were
described with the original ISCAS-85 format [Brglez and Fujiwara, 1985], for which
the gate-level fault simulator KSIM [Wiklund, 2000] was used, which was validated
with a switch-level simulator [Dahlgren and Lidén, 1991] that, in turn, was vali-
dated using SPICE3 [Johnson et al., 1991]. The other components (the components
from Thor and the behavioral RTL components) were described with VHDL-code
and were simulated with ModelSim [Mentor Graphics 1998], a commercial VHDL-
simulator. The number of signals each component consists of, the number of in-
jected faults and the number of applied input values (i.e., the number of performed
computations) can be found in Table 5.1.

5.2.1 Results of the Quantity Measurements

In this subsection, the results from the four fault quantities measurements are pre-
sented and discussed as four separate points (I-IV).

I) The first quantity that was measured was the probability for each injected fault
to generate an error that propagated to at least one of the outputs. That is, the result
from the simulation, with the fault injected, differed from the golden run in at least
one bit. In Figures 5.1-5.3, the probabilities different faults have for generating an
error that propagates, can be seen for the specific components of Table 5.1. The
minimum, maximum and average propagation probabilities for each component are
summarized in the left part of Table 5.2, which also distinguish amongst injected
stuck-at-0 and stuck-at-1 faults.

The first apparent observation when comparing the figures of the gate-level sim-
ulations with the RTL simulations is that the propagation probability generally is
much more dispersed between different faults at the gate-level (this is most evident
for the barrel-shifter, Figure 5.2, and the multiplier, Figure 5.3). This is natural since
fewer signals are controllable at higher abstraction levels (RTL), i.e., there are fewer
locations for which it is possible to simulate faults (the exception is the 74238 adder
which is a very small component, and therefore, shows similarities with the RTL-
components). Furthermore, the locations at which it is possible to simulate faults are
often symmetric, resulting in faults that will have similar propagation probabilities.

It can also be seen in Table 5.2 that the average propagation probability generally
is higher at RTL than at gate-level. This is due to the fact that faults are more likely
to be logically masked when simulated in the components (gate-level) than when
simulated at the inputs or outputs of the components (RTL). Furthermore, modeling
persistent faults with the stuck-at model means assuming that a signal is stuck at a

5.2. Investigation of Abstraction Level Dependency 99

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

Propagation Probability

N
or

m
al

iz
ed

 N
um

be
r

of
 F

au
lts

RTL
74283
Thor

Figure 5.1: The propagation probability distributions for the different adders.

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Propagation Probability

N
or

m
al

iz
ed

 N
um

be
r

of
 F

au
lts

RTL
Thor

Figure 5.2: The propagation probability distributions for the different barrel-shifters.

100 Chapter 5. Experimental Evaluations of Data Errors

Table 5.2: The error propagation probabilities.

Propagation Probability
Comp- Stuck-at-0 Faults Stuck-at-1 Faults Input Values
onent Min Max Average Min Max Average Min Max

74238
Adder

� : � �	�;4 � : � � � � : 9 � 9 � � : $ � � � � : � � � � � : � � $;$ � : 9 � �E4 � : � � � �
Thor
Adder

� � : � 4 � 4 � : 9 � 9 $ � � : � 4 9 � � : 9 � $ � � : $ � ��4 � : 9 � � �
Thor
Barrel

� � � : 9 9 � � � � : � 4 9 � � : 9 � $ � � : $ � ��4 � : 9 � � �
c6288
Multi-
plier

� � : � $ � 9 � : 9 $ 9 4 � : � � � � � : � � 9 � � : � � � � � : � 9 � � � : � � 9 �

Thor
Multi-
plier

� � � : 9 � � � � � : � � 4;4 � : 9 � $ � � : 9;9 4 9 � : 9 4 � �

RTL
Adder
In

� : � 4 ��� � : � 9 � 9 � : � � ��� � : � 4 � � � : � 9 � $ � : � � $ 9 � : � � � � � : � � � �

RTL
Adder
In

� : � � � � � : � $�� � � : � � � � � : � � �E4 � : � $ � 9 � : � ��� � � : � � � � � : � � � �

RTL
Barrel
In

� � : � � � � � : � � � $ � : $ 9 � 9 � : � � � � � : � � � � � : $ � � � � : � � �	�

RTL
Barrel
Out

� : $;$�� � � : $�� � $ � : $ ��� � � : � � �	� � : ��� �	� � : � � � 9 � : 9 � � $ � : � � �	�

RTL
Mul-
tiplier
In

� : � 4 ��� � : � 9 � 9 � : � � ��� � : � 4 � � � : � 9 � $ � : � � $ 9 � : � � � � � : � � � �

RTL
Mul-
tiplier
Out

� : ��4 � � � : � $ � � � : � �E4 � � : � � � 4 � : � 9 9 � � : � � 9 $ � : � � � � � : � � � �

5.2. Investigation of Abstraction Level Dependency 101

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

0.25

0.3

Propagation Probability

N
or

m
al

iz
ed

 N
um

be
r

of
 F

au
lts

RTL
c6288p
Thor

Figure 5.3: The propagation probability distributions for the different multipliers.

certain value during a certain time. This is accurate for short-circuits to ground or
supply voltage in accessible signals. However, some persistent faults imply only a
slightly changed resistance, and/or short-circuits to other signals (bridging faults),
which means that the signal is erroneous only at certain operation points, i.e., for
certain input values. For these reasons we expect the propagation probability for
real faults to be even more dispersed and to have even lower average propagation
probability than the results from the gate-level simulations. Thus, considering the
propagation probabilities, only a small subset of the possible errors, will be evaluated
using the stuck-at fault model at RTL. Since the propagation probability to a high
extent affects the impact of faults, it is important to be able to evaluate errors with
different propagation probabilities, and thus, another approach is required.

In Table 5.2, it can be seen that the average propagation probabilities for the
RTL adder and multiplier are roughly 0.5. This is because that if the correct value
of a signal is 0, then the injected stuck-at-0 fault will not be propagated whereas the
stuck-at-1 fault will be, and the other way around. However, for the barrel-shifter,
the average probability is lower. This is because injected faults in the input signals
may be shifted out, and in that case, not cause any errors to propagate to the output
signals. It can also be observed that for the RTL multiplier and barrel-shifter, the
propagation probabilities are different between stuck-at-0 and stuck-at-1 faults in-

102 Chapter 5. Experimental Evaluations of Data Errors

jected in the same signal. For the multiplier, this depends on that the least and most
significant output bits with higher probability will be 0 (the result from a multiplica-
tion is with higher probability even than odd and for many multiplications the most
significant output bits are not required to form the result). Thus, injected stuck-at-
1 faults are activated with higher probability. For the barrel-shifter the difference
comes from the fact that some bits in the register controlling the number of steps to
shift, are not utilized and set to 0, and that only zeros are shifted in, i.e., the proba-
bility for a signal to be 0 is higher. Therefore, injected stuck-at-1 faults are activated
with higher probability.

Also, for the gate-level simulations of 74238, c6288 and Thor barrel-shifter a
difference between injected stuck-at-0 and stuck-at-1 faults can be seen in Table 5.2.
This is explained for 74283 and c6288 by the fact that these components mainly
consist of NOR-gates and AND-gates, whose output signals with probability � � � �
� �
 � � attain 0 for � -input gates, resulting in stuck-at-0 faults being more likely to
be masked than stuck-at-1 faults. For the Thor barrel-shifter, the error propagation
probability is slightly higher for the stuck-at-0 faults than the stuck-at-1 faults. This
component is built from different types of gates, so it is not as easy as compared to
the 74238 and c6288 to analyze the reason for the difference, even if it still may be
the choice of gates.

Another observation regarding the error propagation is that generally, the more
signals the component description consist of, the lower the measured average propa-
gation probability will be simply because the number of possible data paths is higher.
However, the probability for a fault to occur (the fault intensity) will be higher for
components consisting of many signals, i.e., there are more possible points of fail-
ures.

Thus, the results show that the propagation probability distribution depends on
both the function and the implementation of the component. However, the exact
relation between these two factors has not been investigated.

II) The second quantity that was measured was the number of times each input
value propagated an error to the output signals. This measure provides information
whether some input values are more prone to propagating errors. This information is
useful for generation of efficient test data sets, but also at system level to determine
whether there exist certain operating points (system states) at which errors are more
likely to propagate. The two right-most columns of Table 5.2 show the minimum
and maximum normalized number of propagated errors for the input values of each
component. It can be seen that for the multipliers, the variance is very low, whereas
for the adders and the barrel-shifter, the variance is higher, but still low. Thus, we
conclude that for these functional units the error propagation probability is at both

5.2. Investigation of Abstraction Level Dependency 103

abstraction levels rather independent of the input value being applied (i.e., the stuck-
at fault model at RTL models this quantity satisfactory). Thus, the state has only
minor influence on which impact errors have on the system.

III) The third quantity was the distribution of single- and multiple-bit errors.
This measure provides information about how the errors manifest themselves. This
is an important factor for determining which impacts faults have on the system.
Figures 5.4-5.6 show the distributions for the different components, where also the
probabilities for an error not to propagate are added as references (the 0-values).

0

2

4

6

8

0

0.2

0.4

0.6

X−Bits Errors

M
an

ife
st

at
io

n
P

ro
ba

bi
lit

y

RTL
74283
THOR

Figure 5.4: The single-, multiple- bit manifestation probability distributions for the
different adders.

As can be seen, single-bit errors have the highest occurrence rate. Furthermore,
the probability for multiple errors decreases exponentially with the number of erro-
neous bits for all components, except for the RTL multiplier. Through closer inspec-
tion of this component, it was found that the higher rate (still low compared to the
rate of single-bit errors) of multiple errors (centered around 9-bit errors as seen in
Figure 5.6) was caused by faults injected in the input signals of the component. This
is explained by the fact that injecting a fault in one bit of the operands will, due to
the nature of multiplication, most likely change several of the output bits. Thus, for
some components (functions) the stuck-at fault model at RTL does not correspond
to the distribution at gate-level. This also shows that even if single-bit errors are

104 Chapter 5. Experimental Evaluations of Data Errors

0

5

10

15

20

0

0.2

0.4

0.6

X−Bits Errors

M
an

ife
st

at
io

n
P

ro
ba

bi
lit

y
RTL
THOR

Figure 5.5: The single-, multiple- bit manifestation probability distributions for the
different barrel-shifters.

0

5

10

15

0

0.2

0.4

0.6

X−Bits Errors

M
an

ife
st

at
io

n
P

ro
ba

bi
lit

y

RTL
c6288
THOR

Figure 5.6: The single-, multiple- bit manifestation probability distributions for the
different multipliers.

5.2. Investigation of Abstraction Level Dependency 105

the most common type of errors at the outputs of a failed component, this may be
changed if the error is propagated through an additional component.

IV) The fourth measured quantity was the distribution of manifested errors among
the output signals. This quantity also provides information on how errors manifest
themselves, and thus, can be used to determine how faults will affect the system.
Figures 5.7-5.9 show the distributions for the adders, the barrel-shifters, and the
multipliers. Please note that since the components have different number of outputs
(see Table 5.1), the components have different number of data points in the figures.
Therefore, to be able to compare components with different number of outputs, the
manifestation probabilities have been weighted with their total number of output
bits. This implies that if the manifestation is evenly distributed among all outputs of
two components with different number of output bits, the data points of these two
components will also get the same value in the figure. For the 74283 adder it can be
seen that the manifestation probability is higher for more significant bits, with ex-
ception for the most significant bit, which has the lowest probability. This is due to
the fact that errors are more likely to propagate to sum signals than carry-out signals,
and the most significant bit is just the carry-out signal from the computation of the
second most significant bit. The same pattern can be seen also for the RTL-adder,
but is not evident for the Thor-adder. For the barrel-shifters the distributions are
rather evenly distributed.

For the c6288 multiplier the error manifestation probability is highest for the
bits in the middle. This is because more hardware (signals) is required to form these
bits than the other bits. The other multipliers show the same characteristics, but the
distribution is smoother for the Thor-multiplier. To visualize this, the outputs of the
multipliers in Figure 5.9 have been centered.

To summarize, the stuck-at fault model at RTL models this quantity satisfactory
for these components.

5.2.2 Summary of the Results

The following summarizes the important results from the stuck-at fault modeling at
gate-level and RTL:

� There are similarities between the two abstraction levels in how errors mani-
fest themselves (in which bit locations and the number of locations).

� There are differences between the two levels in the distribution and average of
the error propagation probability (the average is higher and the distribution is
less dispersed for faults injected at high level).

106 Chapter 5. Experimental Evaluations of Data Errors

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Bit−Significance (Bit 1 Least Significant)

M
an

ife
st

at
io

n
(W

ei
gh

te
d)

RTL
74283
THOR

Figure 5.7: The output-bit manifestation probability distributions for the different
adders.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Bit−Significance (Bit 1 Least Significant)

M
an

ife
st

at
io

n
(W

ei
gh

te
d)

RTL
THOR

Figure 5.8: The output-bit manifestation probability distributions for the different
barrel-shifters.

5.3. Related Work on High-Level Modeling of Persistent Faults 107

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Bit−Significance (Bit 1 Least Significant)

M
an

ife
st

at
io

n
(W

ei
gh

te
d)

RTL
c6288
THOR

Figure 5.9: The output-bit manifestation probability distributions for the different
multipliers (to visualize patterns between the multipliers, they have been centered).

From these results we conclude that the error propagation probability is greatly
affected by the fact that only a limited number of signals (locations) are accessible
for fault injection at high abstraction levels. This implies that the repetition fre-
quency of the resulting errors will be different. This influences the effects/impacts
persistent faults have on the system services as well as the detection efficiencies of
different techniques Chapter 3.7. Thus, the stuck-at model at RTL is not sufficient
for evaluating the impacts of persistent faults and for ascertaining the efficiencies of
online error detection techniques. Furthermore, gate-level descriptions of micropro-
cessors are seldom accessible for system developers. Therefore, a high-level evalu-
ation approach that can model the characteristics of real low-level faults is required.
In the next section previously proposed alternative approaches are discussed.

5.3 Related Work on High-Level Modeling of Persistent
Faults

In the previous section, it was found that the stuck-at fault model at RTL cannot
capture all characteristics of real low-level faults. Therefore, the stuck-at fault ap-
proach is not appropriate and a more complex high-level evaluation approach that

108 Chapter 5. Experimental Evaluations of Data Errors

can model the characteristics of real low-level faults is required. In this section such
previously proposed approaches are surveyed.

To be able to simulate more complex effects of persistent faults using high-
level simulations, two concepts were introduced in [Jenn et al., 1994]: mutants and
saboteurs. A mutant is a model of a component with a specific fault inside. The
mutant replaces the original component in the simulation when one would like to
evaluate the impact of the fault. Examples of how mutants can be implemented and
used are found in [Gracia et al., 2001], [Leveugle and Hadjiat, 2000]. The draw-
backs with these solutions are that in order to simulate all types of faults, detailed
low-level information must be available. A saboteur is a special type of compo-
nent that is inserted into the system model for enabling manipulation of signals to
resemble complex faults. The saboteur will manipulate the signals when specific
conditions defined in the simulator are satisfied. Some examples of implementa-
tions are [Gracia et al., 2001], [Boué et al., 1998]. However, these implementations
of saboteurs cannot vary all characteristics of the simulated faults, and thus, can only
simulate subsets of all possible persistent faults.

Approaches for injecting persistent faults similar to saboteurs and mutants, are
provided in [Delong et al., 1996], [Sieh et al., 1997], but they do not define how to
resemble low-level faults at high-level. In [Kalbarczyk et al., 1999] a method where
faults are injected using fault libraries, i.e. requiring low-level details, is developed.

Within the test community, research on high-level modeling of persistent faults
has been performed in order to find efficient test data sets for detecting manufac-
turing faults, e.g., [Ferrandi et al., 2002]. However, there are differences between
developing manufacturing tests and ascertaining the efficiencies of online error de-
tection techniques: An efficient manufacturing test set should detect as many dif-
ferent faults as possible where the length of the test is determined as a trade-off
between the cost of the time delay introduced due to the testing and the cost for ship-
ping faulty components. Thus, the detection efficiency of the test can be estimated
directly from the hardware architecture of the component. For online detection tech-
niques, the important thing is to detect those errors that if not handled in time will
violate the dependability requirements, while ensuring that the real-time constraints
of the system is not violated. Thus, the efficiency of online error detection techniques
is dependent on how the specific system activates the fault (Chapter 3.7), i.e., utilizes
the faulty hardware. Therefore, preferably, the application software should also be
simulated to get accurate evaluations.

There are some test approaches based on saboteurs and/or mutants that may be
used: [Celeiro et al., 1996], [Riesgo and Uceda, 1996],
[Aftabjahani and Navabi, 1997], [Vargas et al., 1998], [Vado et al., 2000],

5.4. A Novel High-Level Evaluation Approach 109

[Shaw et al., 2001]. However, these are based on detailed low-level information or
can only simulate the effects of a limited number of faults.

To summarize, the limitation of existing approaches is that low-level knowledge
is required or that they do not show how to resemble all types of real faults at high
abstraction levels. Therefore, in the next section, a new high-level approach that can
inject faults with any characteristics is developed. The problem of how to set the
characteristics to match real low-level faults is also discussed.

5.4 A Novel High-Level Evaluation Approach

As shown in Chapter 5.2.1, the error propagation probabilities differ between stuck-
at faults injected at gate-level and RTL. Furthermore, low-level details of compo-
nents are seldom accessible for system developers. Thus, for system developers to
evaluate the impacts of faults and to ascertain efficiencies of error detection tech-
niques, more complex high-level modeling is required. As seen in the previous
section, a number of approaches have previously been proposed, but either they
are based on low-level details, or they do not describe how to model real faults.
Therefore, in this section, a novel high-level VHDL-simulation approach for accu-
rate modeling of fault characteristics, is developed. Here, the approach is imple-
mented at RTL, but it should be possible to implement it to any abstraction level, see
Chapter 5.9. To be able to model the characteristics of real faults, the approach uti-
lizes the fact that for a fault to have any impact, the resulting errors must propagate
to one or more outputs of the component, eventually propagating through at least
one accessible signal (this was also discussed in Chapter 4.3. Therefore, by manipu-
lating the accessible signals according to the propagation of the errors resulting from
the fault, it should be possible to model any faults, also at those locations which are
not directly accessible. The problem with this approach is how to manipulate the
accessible signals so that they correspond to real faults.

In this section this problem is handled by first defining the desired properties
for an evaluation approach. Then a fault injection approach based on saboteurs,
i.e., insertion of specific components for enabling injection of faults into the system
model, is developed. The novelty of the approach is that the saboteurs are designed
so that the characteristics determining the impacts of faults (these were discussed
in Chapter 3.7) and the possibility to detect resulting errors can be set arbitrarily.
Thus, any value combinations of these characteristics can be investigated. After that,
how the characteristics should be tuned if the developer has no or little knowledge
about the characteristics of the faults that can occur, is briefly discussed. It is also
shown how knowledge of faults can be obtained and utilized to limit the number

110 Chapter 5. Experimental Evaluations of Data Errors

of injected faults. Then, it is demonstrated how a fault injection campaign is set
up. In Chapter 5.6, some simple simulations are performed to verify that the fault
characteristics can be set as desired and to investigate the associated complexity.

5.4.1 Desired Properties for Evaluation

In order for system developers to be able to evaluate the impacts faults have on
system services and to ascertain the efficiencies of online techniques for detecting
resulting errors, some basic properties are desired, namely:

� A high-level approach, as low-level descriptions of the components generally
are not accessible.

� The simulation time (complexity) must be reasonably low.

� The impacts of the simulated faults/errors must correspond to the impacts of
real faults.

� The modeling should not require any manual changes of the system model,
i.e., it should be automated.

RTL is often the lowest level at which component descriptions are accessible for
system developers. We also believe that the required simulation time will be low
enough for most applications at this level. Therefore, the approach is focused to this
level even if it is transferable also to other levels, see Chapter 5.9.

In order to simulate faults with characteristics corresponding to real faults, ac-
cording to the results from the comparison in Chapter 5.2.1, we would like to:

� Simulate faults with any duration.

� Simulate errors with any propagation probability.

� Simulate errors that manifest themselves in correspondence to how errors
caused by real faults manifest themselves.

In the next subsection, it is described how these desired properties can be imple-
mented and automated in VHDL-simulations.

5.4. A Novel High-Level Evaluation Approach 111

5.4.2 The Saboteur-Based Approach

VHDL-models at RTL consist of data storage and transformation units where inputs
and outputs are interconnected to form more complex components/systems. The be-
haviors of the components are defined by program code. To be able to simulate errors
in the simple components according to the previously defined properties, saboteurs
are inserted at the outputs of the components one would like to simulate faults in-
side, see Figure 5.10(a). The saboteur is inserted in between the target-component
for the fault injection and the components the outputs of the target-component are
connected to. This means that all outputs (Y) are fed through the saboteur. Thus, the
output signals from the saboteur (Y’) will have the same format as the output signals
of the target and will be connected to the same components as the target originally
was.

Generally, a fault will be activated and the resulting errors propagated in the
same way each time the input signals assume the same values. To accomplish this,
the input signals (X) are also connected to the saboteur. It should be noted that the
insertion of saboteurs into the VHDL-model of the microprocessor can be automated
as it is just a question of inserting a component between existing components whose
connections are well defined in the VHDL-code. This is discussed in more detail in
Chapter 5.4.3.

As described in Chapter 5.3, previous proposed approaches do not enable, or
describe how to the characteristics of the injected faults can be varied to resemble
real faults. To enable this, which is the novelty of our approach, the saboteur (the
complete VHDL-code for a saboteur can be found in Appendix E) has a number of
control signals which are set by the system developer to match the characteristics
of faults that are believed to occur. Table 5.3 shows the formats of these signals
and Figure5.10(b) shows the internal structure of the saboteur where the names of
control signals are emphasized.

To be able to simulate faults with any duration (as discussed in the beginning
of Chapter 5.4.1), an activation signal, sab_act, is added to the saboteur. When
the saboteur is not activated, it just feeds through the output signals of the target
component without manipulation (i.e., the simulations will be the same as for the
original VHDL-model), but when the saboteur is activated. Then the output value
will be the possibly manipulated value ��� ��� ��� � � , i.e., an error may have been
injected. Through the activation signal, the saboteur can be activated and deactivated
at any time. Thus, transient faults can be modeled by activating a fault only once
(generating one error), and persistent faults by having the saboteur activated for a
longer period of time.

112 Chapter 5. Experimental Evaluations of Data Errors

Random Number
Generator

Manipulator

sab_actX

Y

Propagation
Controller

R1

R2

R3

seed
prop_prob

P

fault_mod
xfault_prob

bit_prob

Saboteur

Y’
M(X,Y)

MUX

Random Number
Generator

Manipulator

X

Y

Propagation
Controller

R1

R2

R3

seed

P

Saboteur

Y’
M(X,Y)

MUX

(b)

control signals

X Y Y’Target
Component Saboteur

control signals

X Y Y’Target
Component Saboteur

(a)

Figure 5.10: The structure and architecture of the implemented saboteurs.

5.4. A Novel High-Level Evaluation Approach 113

Table 5.3: The saboteur control signals.

Signal Description Type Range
sab_act Signal for activating and deactivating

the saboteur.
Boolean False-True

prop_prob Signal determining the error propaga-
tion probability for the injected fault.

Real 0.0-1.0

fault_mod Signal determining which manipula-
tion to use (set-0, set-1, or bit-flip).

Integer 0-2

seed Signal that is used to produce the ran-
dom generator seed so that the input
values that propagate an error will dif-
fer between each injected fault.

Array(1 to 2) of
real

[0.0, 0.0]-[1.0,
1.0]

xfault_prob Signal determining the probabilities
for single- and multiple- bit faults.

Array(1 to # of
output signals)
of real

[0.0, 0.0, ...]-
[1.0, 1.0, ...]

bit_prob Signal determining the probabilities
for errors to propagate to a certain out-
put bit.

Array(1 to # of
output signals)
of real

[0.0, 0.0, ...]-
[1.0, 1.0, ...]

As seen in Chapter 5.2.1, it is mainly the architecture of the component that de-
termines which input values that activate a specific fault and propagate the resulting
error. This characteristic cannot be modeled at RTL without low-level information.
Therefore, a random generator is used to determine which input values that should
activate a specific fault and propagate the resulting errors. This means that even if the
input values which activate faults will be different from real faults, the propagation
probability and error manifestation, which often are the characteristics determining
whether the error is detected or not (see Chapter 3.7) can be set to match errors
caused by real faults.

If the target of the fault injection is a sequential component and if it is known
which input signals that change the internal state of the component, then one can let
the saboteur change states correspondingly. This means that a fault can be activated
only for certain inputs, but also only in certain state(s). As an example, take a
component with a simple state machine of three different states for which it is known
when the states change (for example, the state can change for every positive clock
pulse). If a saboteur should be used to model a fault that only affects one of the states,
this saboteur also needs to include a state machine with three states. In this way the
saboteur can change state correspondingly to the state machine and be activated
only at the specific state (for the previously given example this would mean that the
saboteur only is active after every third positive clock flank). However, if nothing is

114 Chapter 5. Experimental Evaluations of Data Errors

known about how many states the component have or how it changes states, it will
have to be treated as a combinational component.

To simulate faults accurately, we would like for each specific fault that each
specific input value (when applied in the same state) always propagate errors in the
same way. However, if another fault is injected, the propagation events for each input
value should be changed. Therefore, the input signals of the target component are
used as the seed to the random generator. This implies that a new number (between
0.0 and 1.0) will be generated for every new combination of the input signals, but
each time the same combination occurs, the same number will be regenerated. The
generated random number (R1) is compared with the propagation probability set
for the injected specific fault (prop_prob) to determine whether an error should be
propagated or not. This decision is communicated to the manipulator through the
signal P (see Figure 5.10(b)). To enable the input values that propagate an error
to be changed between each specific injected fault (independently if they have the
same error propagation probability or not), the control signal, seed (specific for each
fault), was added. This signal together with the input values of the component are
used as the seed to the random number generator.

In order to make propagating errors manifest them-selves in the output signals
according to the desired, set, characteristics (to determine which of the output sig-
nals of the target component that should be manipulated by the saboteur), two new
random numbers (R2 and R3) were generated. The first one is used for deciding
how many of the output signals that an error should propagate to (i.e., single- or
multiple- bit errors). The second one is used to determine which bit(s) the error
should manifest itself in. The actual decisions are made by comparing the generated
numbers with the values of signals determining the desired characteristics for the
specific fault (xfault_prob and bit_prob) set by the developer.

Another issue is how to manipulate the output bits. This was not investigated
in the performed experiments of Chapter 5.2.1. Therefore, three different standard
ways were implemented: bit-flipping, setting the bits to 0 and setting the bits to
1. Which method that is used for a specific fault is set through the control signal
fault_mod. It should be noted that, if manipulation by setting bits to 0 or 1 is used,
the error propagation probability will be lower than the set value (prop_prob), since
if the bit has the same value as the injected value, the error is masked.

5.4.3 A Saboteur Fault Injection Campaign

In the previous section, the architecture of a saboteur for injecting faults whose
characteristics can be controlled through specific control signals, was described. In

5.5. Reducing the Number of Error Cases 115

this section how to set up a fault injection campaign is demonstrated. First, in order
to run a fault injection campaign, the developer has to choose the components that
should be the targets for the fault injection, i.e., the components that are of interest
to model faults inside. Then the developer has to determine the characteristics of
the faults he/she would like to inject, i.e., make a file containing the values of the
saboteur control signals (the signals of Table 5.3) for each specific fault to inject (to
help the developer to get the right format for the file, we developed some simple
MATLAB scripts).

After that, the developer needs to select which data to store from the fault injec-
tion experiments. This can be performed using the simulator tool in the same way
as for standard simulations.

After the target-components have been selected, the characteristics of the faults
for injection have been set and the data to store has been selected, the injection
process itself can be started. The first step in this process is to insert the saboteurs
according to Figure 5.10(a), by breaking up the connections between the output
signals of the target components and the connected components. As the number
of input and output signals are known, this step can be automated by mapping the
saboteurs from a generic architecture with support from a VHDL-simulator. It should
be noted that by inserting all saboteurs at the same time, the modified VHDL-model
only needs to be compiled once. Single faults can still be injected since it is possible
to activate and deactivate the saboteurs separately, and for event-triggered simulators
the simulations are not slowed down, see Chapter 5.6.

Then, to start the campaign, a script (written in Tcl)controlling the simulator
is run. The script first performs a golden run experiment, where all saboteurs are
deactivated. After that, the script restarts the simulation, collects the values of the
saboteur control signals for the first fault to be injected from the file created by the
developer and performs the simulation. When finished, it restarts, collects the signal
values for the next fault to inject, performs the simulation, and so on until the end of
the file is reached, i.e., until the last fault has been simulated.

5.5 Reducing the Number of Error Cases

A major problem with the proposed approach is how to chose which characteristics
of errors that should be investigated as it is not practical possible to investigate all
combinations. This section will give suggestions on how to accomplish this.

Looking at the error magnitude, it is generally reasonable to assume that if it is
known that a certain magnitude will generate a failure, then all errors with higher
magnitudes will also result in failures if other characteristics remain unchanged. It

116 Chapter 5. Experimental Evaluations of Data Errors

is generally also reasonable to assume that in most cases, errors that are repeated
frequently, will affect the system more than errors that are repeated less frequently
(under the assumption that the other characteristics remain unchanged). Moreover, it
is also the case that the system generally is more sensitive to errors occurring at op-
erating points that are very dynamic (meaning that state of the system is changing),
compared to operating points that are static (meaning that the state of the system is
unchanged). Also, it is seldom the case that two or several errors compensate each
other, which means that multiple errors generally are more severe than single. Fur-
thermore, certain properties often have a greater influence on the systems behavior
than others.

Using this information, the number of cases to investigate the impact of errors
can be reduced. However, it is important to note that these only are rules of thumb
and may not be valid for every case. Therefore, these rules need to be used with care
and random generation of error cases is a good complement to confirm the validity
for the specific system.

It is also sometimes possible to though analysis determine that certain errors will
have the same or similar effect. If this is possible, errors can be divided into classes
in which all errors will have the same or similar effect of which it then is enough
to investigate one error from each class. This is termed fault collapsing and has for
instance been proposed in [Parotta et al., 2000].

If the developer has some in advance knowledge about the faults that can occur
or the robustness of the system, this can of course be utilized to focus the injections
to faults with specific characteristics. As an example, if it is known that the system
is robust to transient faults, the injections can be focused mainly on persistent faults.
However, if the developer has little knowledge about the characteristics of the faults
that can occur and/or what impact they will have, it can be wise to first run a small
fault injection campaign with evenly distributed fault characteristics in order to iden-
tify the faults which need to be investigated in more detail. Then further campaigns
can be focused to these faults.

5.6 Accuracy and Complexity Evaluation

In this section the results from fault injection campaigns, of a RTL adder, shifter and
multiplier with saboteurs are presented. In each campaign 210 faults were injected,
and for each fault, 1024 computations were performed, i.e., 1024 different input
vectors investigated. For a real campaign, the system developer would simulate
the whole microprocessor at RTL, with the saboteurs inserted at desired locations,
running the system application software. However, the intention of these campaigns

5.6. Accuracy and Complexity Evaluation 117

is not to investigate the impact of different data errors or to evaluate any detection
techniques, but to verify that the implementation of the saboteur meets the desired
properties defined in Chapter 5.4.1.

The control signals of the saboteurs for this campaign were set (see Table 5.4)
to generate faults with varying characteristics, resembling real faults in such com-
ponents. However, the characteristics were not directly set according to any of the

Table 5.4: The properties of the injected faults.

Signal Values for the Adder
Fault Campaign

Values for the Shifter
Fault Campaign

Values for the Multi-
plier Fault Campaign

sab_act True (Permanent faults
were simulated.)

True (Permanent faults
were simulated.)

True (Permanent faults
were simulated.)

prop_prob Starting with 1.0 de-
creasing with 0.05 for
every tenth fault down
to 0.0 (totally 210
faults)

Starting with 1.0 de-
creasing with 0.05 for
every tenth fault down
to 0.0 (totally 210
faults)

Starting with 1.0 de-
creasing with 0.05 for
every tenth fault down
to 0.0 (totally 210
faults)

fault_mod 2 (bit-flipping) 2 (bit-flipping) 2 (bit-flipping)
seed Selected randomly for

each fault.
Selected randomly for
each fault.

Selected randomly for
each fault.

xfault_prob [0.6, 0.2, 0.1, 0.05,
0.025, 0.015, 0.01, 0.0,
..., 0.0]

[0.9, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.0, ...,
0.0]

[0.5, 0.2, 0.15, 0.1,
0.025, 0.015, 0.01, 0.0,
..., 0.0]

bit_prob [0.0375, 0.0525, 0.060,
0.0625, 0.0625, 0.0625,
0.0625, 0.0625, 0.0625,
0.0625, 0.0625, 0.0625,
0.0625, 0.0625, 0.0625,
0.0625, 0.0375]

[0.03125, 0.03125, ...,
0.03125]

[0.001, 0.002, 0.003,
0.005, 0.009, 0.015,
0.02, 0.025, 0.035,
0.04, 0.045, 0.05,
0.055, 0.06, 0.065,
0.070, 0.070, 0.065,
0.06, 0.055, 0.05,
0.045, 0.04, 0.035,
0.025, 0.02, 0.015,
0.009, 0.005, 0.003,
0.002, 0.001]

gate-level simulations in Chapter 5.2.1, since, for real campaigns, this information:
(a) is generally not available, (b) may differ between different component implemen-
tations (compare the results from the Thor-components with the ones from the c6288
and the 74238) and (c) may differ from real faults.

An example of information that we believe is generic, and thus, used for the
simulations, is that the manifestation probability is highest for the middle bits of

118 Chapter 5. Experimental Evaluations of Data Errors

multiplier. However, for specific systems, the developer will use his/her knowledge
of which faults are likely to occur and focus the campaigns to those faults, see Chap-
ter 5.4.3.

5.6.1 Simulation Accuracy

The results of the campaigns can be seen in Figures5.11-5.18. Figure 5.11 shows the
number of output errors each injected fault caused for the campaign. From these re-
sults, the error propagation probabilities can be computed (as was done for the RTL
and gate-level experiments and illustrated in Figures 5.1-5.3), but we chose not to do
so as it would have made it more complicated to verify that the results correspond
to the desired set values in Table 5.4. As can be seen the number of errors ramps
down according to the desired set signal, prop_prob, value with a small variance due
to that not all possible input values were computed. Therefore, we conclude that the
approach makes it possible to inject errors with any error propagation probability,
which is necessary to be able to evaluate the impact of all types of real faults. This
is not supported by other approaches.

Figure 5.12 confirms that the number of propagated faults is similar for all input
values (the number varies between 83 and 126), which was an assumption made
based on the results in Chapter 5.2.1.

Figures 5.13-5.17 show the number of single-bit errors, double-bit errors etc.
and to which output bits an error propagated for the saboteur campaigns. It can be
seen that the results of the saboteur campaigns correspond to the values set through
the control signals, xfault_prob and bit_prob in Table 5.4. It is important to note that
Figures 5.11-5.17 should not directly be compared with the results of the previous
simulations (illustrated in Figures 5.1-5.9) as we set the saboteur error characteris-
tics, and thus, these characteristics only imitates real physical values. However, we
believe that it is possible to, through the saboteurs, closely resemble the character-
istics of real errors. Thus, the real merit with this approach is the possibility for
system developers to tune the fault characteristics arbitrarily, so that the faults that
they believe are of highest importance to investigate can be injected, based on gen-
eral information, and knowledge of the specific system, without requiring low-level
descriptions.

5.6.2 Simulation Complexity

In this section the complexity of the different approaches are investigated and com-
pared through simple analysis and measurement of their simulation times. Most
VHDL-simulators are event-triggered, i.e., the value of a signal is re-evaluated only

5.6. Accuracy and Complexity Evaluation 119

100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

1000

Fault Number

N
um

be
r

of
 P

ro
pa

ga
te

d
E

rr
or

s

Adder
Shifter
Multiplier

Figure 5.11: The number of times each fault was activated for the different cam-
paigns.

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140

160

180

200

Input Vector Number

N
um

be
r

of
 P

ro
pa

ga
te

d
E

rr
or

s

Adder
Shifter
Multiplier

Figure 5.12: The number of times a fault was activated for each applied input vector.

120 Chapter 5. Experimental Evaluations of Data Errors

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

X−Bits Errors

M
an

ife
st

at
io

n
P

ro
ba

bi
lit

y
Saboteur

Figure 5.13: The single-, multiple- bit manifestation probability distributions for the
adder saboteur.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

X−Bits Errors

M
an

ife
st

at
io

n
P

ro
ba

bi
lit

y

Saboteur

Figure 5.14: The single-, multiple- bit manifestation probability distributions for the
shifter saboteur.

5.6. Accuracy and Complexity Evaluation 121

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

X−Bits Errors

M
an

ife
st

at
io

n
P

ro
ba

bi
lit

y

Saboteur

Figure 5.15: The single-, multiple- bit manifestation probability distributions for the
multiplier saboteur.

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

Bit−Significance (Bit 1 Least Significant)

M
an

ife
st

at
io

n
(W

ei
gh

te
d)

Saboteur

Figure 5.16: The output-bit manifestation probability distributions for the adder
saboteur.

122 Chapter 5. Experimental Evaluations of Data Errors

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Bit−Significance (Bit 1 Least Significant)

M
an

ife
st

at
io

n
(W

ei
gh

te
d)

Saboteur

Figure 5.17: The output-bit manifestation probability distributions for the shifter
saboteur.

when any of the signals its value depends on is changed (compared to time-triggered,
when the values of all signals are re-evaluated with even intervals). This means that
the simulation complexity is dependent on how many signals that are simulated and
how they depend on each other. To understand this, compare the case when all sig-
nals depend on each other, with the case when there are no dependencies. In the first
case all signals have to be re-evaluated as soon as one signal is changed, whereas
for the second case, only the signal itself is changed and no other signals have to
be re-evaluated. Therefore, if an event-triggered VHDL-simulator is used, all sabo-
teurs can be inserted at the same time without slowing down the simulations because
when a saboteur is deactivated, none of its signals need to be re-evaluated. Thus, the
VHDL-model only needs to be recompiled once.

For the multipliers, a lot of dependencies exist (which was indicated by the fault
injection experiments in Chapter 5.2.1, showing that changing one input bit often
led to a change of several output bits) and thus, many signals need to be re-evaluated
when the inputs are changed. For the adders and barrel-shifters, the dependencies
are weaker. As it is hard to measure the exact dependencies, the number of signals
that the components consist of is used as a simple measurement of the complexity,

5.6. Accuracy and Complexity Evaluation 123

5 10 15 20 25 30
0

0.5

1

1.5

2

Bit−Significance (Bit 1 Least Significant)

M
an

ife
st

at
io

n
(W

ei
gh

te
d)

Saboteur

Figure 5.18: The output-bit manifestation probability distributions for the multiplier
saboteur (to visualize patterns between the multipliers, they have been centered).

see Table 5.5. As another estimation of the complexity difference between gate-
level and RTL simulations the approximate simulation times for the components
simulated were measured (we used the the Unix command time). The approximate
average times (for simulation of one input value) can be seen in Table 5.5. Since
the simulations of the 74283 and c6288 were run on a different simulator, no simu-
lation times for these components were put in the table. The approximate increase
in complexity due to the use of saboteurs (compared to the clean RTL components)
has also be listed in the lower right corner of the table.

It can be seen that the relative increase in number of signals is much higher than
the relative increase in simulation times. This can be explained by the fact that only
a few of the added signals depend on other signals, and thus, few signals need to
be re-evaluated. However, even if the complexity is increased, we believe that this
will be affordable for most applications, especially when comparing it to the cost for
gate-level simulations. Thus, our approach meets the desired properties defined in
Chapter 5.4.1.

124 Chapter 5. Experimental Evaluations of Data Errors

Table 5.5: Complexity order and simulation time for the different simulations.

Component Number of Average Simulation
Bit-Signals Time (ms)

74238 Adder 45 -
Thor Adder 1916 2.50
Thor Barrel-Shifter 4175 3.71
c6288 Multiplier 2448 -
Thor Multiplier 58774 141.10
RTL Adder 49 0.51
RTL Barrel-Shifter 97 0.41 Increased Complexity %
RTL Multiplier 64 0.54 Bit-

Signals
Average Simu-
lation Time

RTL Saboteur
& Adder

105 0.58 115 14

RTL Saboteur
& Shifter

198 0.68 105 66

RTL Saboteur
& Multiplier

165 0.69 158 28

5.7 Estimating the Error Detection Coverage of Double Ex-
ecution

In order to evaluate and illustrate the capacity of the previously presented saboteur
approach, the detection coverage of double execution is estimated, in this section,
through gate-level, RTL, and saboteur simulations. The results from the different
simulations are discussed and compared.

Double execution, i.e., executing a task twice and comparing the results of the
two executions, is a common proposed error detection technique based on time re-
dundancy. It has mostly been used for detection of data errors caused by transient
faults, but as seen in Appendix B, data errors caused by persistent faults may also be
detected. In [Aidemark et al., 2003], the coverage of double execution for detection
of errors caused by permanent faults where investigated with simulation-based fault
injection of stuck-at faults at gate-level. In this section, these results will be com-
pared with the results from stuck-at faults injected at RTL and faults injected through
saboteurs. First, the three different simulations are described in detail. Then, the re-
sults are presented and discussed.

5.7. Estimating the Error Detection Coverage of Double Execution 125

5.7.1 Simulation Details

As was discussed in Chapter 2 and 4, the functional units are some of the most vul-
nerable parts of commercial microprocessors. Double execution is generally applied
to detect such faults. Therefore, it is desirable to use a workload that exercise such
units. Moreover, double execution is a systematic error detection technique as it
compares the two results of a task that is executed twice, i.e., it is independent of the
actual application of the task. Furthermore, the interest of this study was primarily
to compare different coverage estimation approaches. Therefore, we chose to use a
simple calculation as workload, in this case a simple integer matrix multiplication:� � � � � � �

��� �� ��� � � � � � � � � � � � � . Even if this is a very simple workload, many

control algorithms consist of similar computations.
In order to avoid over-flow, the input data (� � , � � , � � , and

� �) were randomly

chosen in the interval

�
� � � ��� � ��� �
	�� �
��E
� �� � . For all simulations,

� �
(
��� � � � ��� �

different input data) different matrix multiplications were calculated.
This task (workload) was simulated in VHDL (the ModelSim simulator was

used, [Mentor Graphics 1998]) on a RTL model of the Thor-processor,
[Saab Ericsson Space, 1999]. Even if Thor is not a commercial processor, the func-
tional units are of similar architecture as can be seen in Table 5.1.

As seen from the workload, the adder and multiplier are the functional units that
are exercised by the workload2. However, to simplify the fault injections, faults were
only injected in the multiplier.

 x1 x2

T2 T3 T4 T5

 x1' x2'

T1

Comparison
TA,1 TA,2 Time

Figure 5.19: Time redundant execution of the matrix computation.

Figure 5.19 illustrates the matrix computation (the execution of task � # in the
figure). The first execution is denoted: � #�� � , and the second: � #�� � . The first and

2The assembler code resulting from the compilation was checked to verify that add and multiply
instructions were used.

126 Chapter 5. Experimental Evaluations of Data Errors

second multiplication of the task is marked as � � and � � and the intervals � � - ��� the
times before, between, and after the multiplications. As described in Appendix B,
faults occurring before the first multiplication of the first execution or after the sec-
ond multiplication of the second execution cannot be detected by double execution
as they will affect the two executions identically. Therefore, as the double executed
workload only consists of totally

�
integer multiplications (two multiplications in

each of the two executions), faults were injected at only three different times: be-
tween the first and second multiplication of the fist execution, � � , between the sec-
ond multiplication of the first execution and the first multiplication of the second
execution, � � , and between the first and second multiplication of the second execu-
tion, ��� .

As discussed previously, three different simulations were performed, namely:

� Gate-Level Simulations

In these simulations, a structural gate-level description of a multiplier with
Booth recoding and Wallace tree, was used. Stuck-at-faults were injected in
246 of totally 24635 signals (both as stuck-at-0 and stuck-at-1).

� RTL Simulations

In these simulations, only the input and output signals of the multiplier were
reachable for injection of faults. Stuck-at faults (both as stuck-at-0 and stuck-
at-1) were injected in all input and output signals, totally 96 signals.

� Saboteur-Based Simulations

Here, saboteurs were inserted after the RTL-multiplier as described earlier in
this chapter (see Figure 5.10). Due to that errors generally only are detected
as a difference in the results between the two executions, the detection cov-
erage of the double execution technique is not dependent on the magnitude
of the error. Therefore, in order to simplify the estimations, errors were only
injected as single-bit errors in the least significant bit of the results. Thus,
the only error characteristics that were varied were the property, the state (as
described earlier in this chapter) and the repetition frequency (which is de-
pendent on the activation probability of the fault) which was varied between
�

and � in
� � � steps with � � faults injected at each level, i.e., the total number

of different faults injected were � � ��� � � � � � . The reason for this choice of
characteristics were that we wanted a first view on the detection efficiency of
double execution for faults generating errors with any repetition frequency.

5.7. Estimating the Error Detection Coverage of Double Execution 127

5.7.2 Results

The results from the three different experiments can be found in the Tables 5.6, 5.7,
and 5.8.

Table 5.6: Results from the gate-level simulations.

Injection Time Interval � ' �) ���
Total Number of Injections 24600 24600 24600
Correct Result 40.7% 40.8% 49.3%
Overflow 45.7% 45.6% 39.8%
Detected 9.2% 13.6% 10.9%
Incorrect Result 4.4% 0% 0%

Table 5.7: Results from the RTL simulations.

Injection Time Interval � ' �) ���
Total Number of Injections 9600 9600 9600
Correct Result 17.25% 17.25% 33.46%
Overflow 56.82% 56.82% 41.46%
Detected 18.96% 25.93% 25.08%
Incorrect Result 6.97% 0% 0%

Table 5.8: Results from the saboteur simulations.

Injection Time Interval � ' �) � �
Total Number of Injections 5500 5500 5500
Correct Result 18.64% 21.56% 28.20%
Overflow 0% 0% 0%
Detected 71.95% 78.44% 71.80%
Incorrect Result 9.42% 0% 0%

The Correct Result-rows contain the percentage of the injected faults that were
ineffective. The Overflow-rows correspond to the number of the injected faults that
raised an overflow exception. The Detected-rows contain the percentage of errors
that did not raise an overflow-exception, but were detected by the double execution
technique. Finally, the Incorrect Result-rows contain the percentage of errors that
did not raise an overflow exception and were not either detected by the double ex-
ecution technique. The reason why the overflow row is included is that it was not

128 Chapter 5. Experimental Evaluations of Data Errors

possible to deactivate this exception, and that it when triggered sometimes generated
an exception before the task could be executed a second time.

As can be seen when comparing the numbers in the Tables 5.6, 5.7, and 5.8, the
results differ very much among the used fault injection techniques. Comparing the
gate-level and RTL simulations, based on the previous discussions in this chapter, the
activation frequency of the injected faults are likely to be the cause of the difference.
At gate-level, a high number of locations are reachable for fault injection. However,
at RTL, only the input and output signals are reachable for injection, and faults at
these locations generally are more likely to be activated and propagated further than
internal faults. Therefore, it would be expected that the RTL simulations have a
lower number of correct results, which also is the case when comparing the Tables
5.6 and 5.7.

In order to verify this, the fault activation probabilities for the injected faults
were estimated. The distributions can be seen in Figure 5.20 and the fault activation
averages were: gate-level:

� � � � and RTL:
� � � � 3. As can be seen, the activation prob-

abilities are higher for the RTL injections than for the gate-level. It can be seen that
the RTL simulations do not have any activations between

� � � � and
� � � . Thus, the

efficiency of detecting errors generated by such faults cannot be evaluated from the
RTL simulations.

It can also be seen that the activation probabilities for the faults are higher than
what was seen in Chapter 5.2.1. This depends on that the multiplier in the Thor-
processor is based on sequential execution, i.e., the multiplication is divided into
three sub-multiplications, which results are shifted and added to build the final re-
sult. Therefore, multiplier faults can be activated three times for each performed
multiplication instruction, and thus, the activation probability will be higher.

To summarize, there is a big difference between the results of the gate-level and
RTL simulations.

Now, looking at the results of the fault injections using the saboteur, there is
little use of comparing the average numbers in Table 5.8 to the other injections,
as one through the saboteurs determined the error characteristics. However, one
major difference can be seen, the saboteur do not generate any overflow exceptions.
The reason for this is that we chose to inject the errors in the least significant bit,
and thus, overflow exceptions are not triggered. This shows that the saboteur fault
injections have a major advantage as the error characteristics of the injected faults
can be tuned to trigger specific error detection techniques. However, it should also
be noted that the number of errors that are masked due to repeated multiplications is

3the average for the saboteur was � : � $, but as the fault activation probability was controlled for this
campaign, this value cannot be compared with the averages of the other campaigns.

5.7. Estimating the Error Detection Coverage of Double Execution 129

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

Propagation Probability

N
or

m
al

iz
ed

 N
um

be
r

of
 F

au
lts

RTL
Gate−Level
Saboteur

Figure 5.20: The activation probabilities for the injected faults.

increased (i.e., at the first multiplication, the fault is activated and generates an error,
but this error is masked after the second multiplication). This can be seen by that
number of correct results is higher when the faults were injected at time ��� than for
the ones injected at time ��� . This depends on that the injected fault always flipped
the least significant bit, and through two multiplications this could mean that for the
first multiplication, the least significant bit of the result is flipped from 0 to 1 and for
the second multiplication, the least significant bit of the result is flipped from 1 to 0.
Thus, when adding the two results, the final result will still be correct.

However, the major advantage with the saboteur approach is that the error char-
acteristics arbitrarily can be varied to determine at which points (for which charac-
teristics) the system is least/most sensitive, and/or the error detection technique is
least/most efficient. To illustrate this, Figures 5.21-5.23 shows the error detection
probability of double execution for faults with different activation frequencies (error
repetition frequencies).

As can be seen, the detection coverage increases with the propagation probability
of the fault, except for the faults with high activation probability, injected in time-
interval ��� . This depends on the fact that some of the errors are masked (as discussed
previously in this section).

Another difference is that the average of the time-interval ��� increases steeper,

130 Chapter 5. Experimental Evaluations of Data Errors

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Propagation Probability

D
et

ec
tio

n
C

ov
er

ag
e

average
specific fault

Figure 5.21: The detection coverage for the faults injected with saboteurs at time � � .

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Propagation Probability

D
et

ec
tio

n
C

ov
er

ag
e

average
specific fault

Figure 5.22: The detection coverage for the faults injected with saboteurs at time � � .

5.7. Estimating the Error Detection Coverage of Double Execution 131

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Propagation Probability

D
et

ec
tio

n
C

ov
er

ag
e

average
specific fault

Figure 5.23: The detection coverage for the faults injected with saboteurs at time � � .
which depends on the fact that faults injected into this interval can be activated at two
times (multiplications), and thus, be detected, whereas for the other two intervals (� �
and � �), there is only one time (multiplication) that the faults can be activated. If the
multiplier had not been sequential, one would expect the � � and ��� average curves
to be linear and the � � average to be a second degree curve. However, now, the
multiplications are performed in three stages, which implies that each fault can be
activated at three different times for each multiplication. Then, the average will be
third degree curves (� � and � �) and sixth degree curve (� �) respectively.

5.7.3 Complexity

In order to determine the complexity of the different simulations, the number of
signals in the different models and the simulation times, is listed in Table 5.9. The
simulation times is an average of

�
simulations where

�
different calculations were

computed and � � faults were injected each time, that is, totally
�

golden runs were
executed, and

� �
faults were injected for each simulation. The number of signals of

the RTL-model of the Thor-processor without the multiplier was
� ��� �

, i.e., the total
number of signals for each simulation was

� ��� �
+ the number of signals found in

the number of bit-signals column of Table 5.9.

132 Chapter 5. Experimental Evaluations of Data Errors

Table 5.9: Number of simulated multiplier signals and simulation time for the three
fault injection approaches.

FI Approach Number of Bit-Signals Average Simulation Times (s)
Gate-Level 24635 229
RTL 96 116
Saboteur 148 116

As can be seen, the complexity is not significantly increased for the saboteur
simulations compared to the RTL. However, in this case only one saboteur was in-
serted, i.e., faults were only injected in one component, the multiplier. Furthermore,
as faults were only injected as single bit-flips in the least significant bit, no distri-
butions over the number of errors that should be activated and in which bits were
needed, and thus, the saboteur was simplified compared to the one presented in Ap-
pendix E (mainly, the signals x_faultprob and bit_prob signals and the two while-
loops were removed). Still, we believe that it would be possible to insert several
saboteurs without increasing the simulation times significantly, specifically consid-
ering that in most cases only one saboteur is active at each time (only if faults in
multiple components are simulated, more than one saboteur will be activated). As
can be seen from the saboteur code in Appendix E, the VHDL-code can be opti-
mized.

5.8 Summary

This chapter consists of mainly two parts: (1) measurements and comparisons of the
characteristics of stuck-at faults modeled at gate-level and RTL, and (2) develop-
ment and implementation of a saboteur-based VHDL-architecture for evaluating the
impacts of faults with various durations and ascertaining the efficiencies of online
error detection techniques at high-level simulations. The most important conclusion
from the stuck-at fault injections is that the error propagation probability varies con-
siderably across different faults, and also among abstraction levels. The reason for
this is that fewer signals (locations) are accessible at high levels, which implies that
fewer faults can be injected. As error propagation greatly influences the impact of
faults, the stuck-at fault model is not accurate to use for effect/impact evaluations.

To facilitate more accurate evaluations, a VHDL-simulation approach was pre-
sented. The approach is based on insertion of specific components for injection of
faults into VHDL-simulations, so called saboteurs. The novelty of this approach is

5.9. Generalizations 133

that it enables and describes how to compensate for the limited number of locations
that are accessible for fault injection at high-level simulations so that the evaluation
results will be accurate. Furthermore, the fault injection process can be automated.

The results from simulations using this new architecture showed that faults with
varied time durations can be simulated, errors with any propagation probability can
be modeled and the distribution of single- and multiple- bit errors can be tuned to fit
real values, all within reasonable simulation time.

It was also shown that as it is possible to vary the characteristics of the injected
faults through the saboteurs, the evaluations can be focused to trigger only certain
error detection techniques. Another major advantage is that by using the proposed
approach it is possible to determine the error characteristics for which the system is
vulnerable/robust and errors detected/not detected.

Therefore, in our opinion, this approach is preferable for fault impact evalua-
tions and evaluating the efficiencies of error detection techniques, compared to fault
injections using the stuck-at fault model performed at RTL. Furthermore, we be-
lieve that this approach in many cases can give complementing results to gate-level
simulations, since even if the stuck-at fault model much closer resembles real faults
at this level, it may still miss some fault types, e.g., bridging faults, which can be
investigated with the proposed saboteur approach.

5.9 Generalizations

The basic problem handled in this chapter is that it is hard to accurately model all
types of faults at a high level where few signals are accessible. We tackled this prob-
lem by utilizing the property that for a fault to have any impact, the resulting errors
must propagate to the output(s) of the component, and thus, eventually propagate
through at least one accessible signal. Therefore, by manipulating the accessible
signals according to the propagation of the errors resulting from the fault, it should
be possible to model any faults, also those at locations which are not directly acces-
sible (Chapter 5.4). As it is generally not practical to simulate all value combinations
of the different fault characteristics, the number of simulated faults must be limited.
This can be accomplished by (see Chapter 5.4.3):

� Dividing errors causing the same effects into sets in which only one error has
to be simulated.

� Using knowledge on the fault effects for low-level components.

134 Chapter 5. Experimental Evaluations of Data Errors

� System specific knowledge on which faults that can occur, and their impacts
on the system.

Therefore, the basic idea with the proposed approach, i.e., top-down simulation of
errors, can be applied at any abstraction level, for any type of simulations, for any
type of components/systems, and also to scan-chain or software fault injection tech-
niques, as long as the number of errors that are required to be simulated can be
limited.

One direction for continued research is profiling of components, in order to re-
duce the number of faults that needs to be injected. This can be achieved through
further simulation of components and in more detail investigating how much detail
that can be obtained of the error propagation and manifestation only from informa-
tion about the function of the component (without knowing how it is implemented),
i.e., which characteristics are generic for components having the same function.

CHAPTER6
Conclusions and Speculations
About the Future

6.1 Conclusions

The target of our research has been on how to develop fault-tolerant microprocessors
for use in mass market safety-critical systems, e.g., x-by-wire systems in automo-
biles. Thus, the research has been performed from the perspectives of developers
of such systems. This means that not only the fault tolerance efficiency has to be
considered, but also the costs (mainly recurring costs), portability, scalability and
performance, power, memory overheads.

This thesis has focused on investigating development of fault tolerant micropro-
cessor by adding software-implemented tolerance techniques to commercial proces-
sors. Such solutions have the following advantages:

� The only necessary hardware is the commercial processors, which implies low
recurring costs.

� Commercial processors have higher performance than custom designed fault-
tolerant processors.

� Commercial processors are generally employed in many different type of sys-
tems, decreasing the probability of running into previous undetected develop-
ment faults.

135

136 Chapter 6. Conclusions and Speculations About the Future

� As the fault tolerance is based on software, the solutions should be portable
and scalable.

One major problem with such development is that the low-level details of com-
mercial processors are generally concealed by the manufactures which makes it hard
to utilize on-chip tolerance techniques, and to evaluate the tolerance efficiency of
these solutions.

Another problem is that the additional software introduces overhead resulting in
reduced performance, increased memory usage, increased energy consumption, etc.
These problems were discussed in this thesis.

First, the architecture and implementation trends of commercial processors were
analyzed to determine which faults such processors are likely to be exposed to, in
the future (Chapter 2). We believe that the complexity increase of such processors
will increase the number of developmental faults undetected by testing. Further-
more, the transistor size reduction and the increase in number of transistors on chip,
are likely to increase the vulnerability of the processors against disturbances and
result in reduced life-times. This implies that the fault intensity of commercial pro-
cessors will increase, not only for transient faults, but also for persistent faults (in-
cluding for instance elusive developmental and permanent faults). Thus, the applied
software-implemented techniques must provide tolerance for both transient and per-
sistent faults.

Based on the results of the analysis, suitable error detection and recovery tech-
niques were discussed in Chapter 3 (based on the survey in Appendix A). It was
suggested that simple “I am alive” messages would be suitable for detection of pro-
cessor crashes. For monitoring that the correct instructions are executed, use of
signature checking complemented with watch-dog timers were proposed, and for
detection of data errors, executable assertions, double execution, and self-tests were
suggested.

For recovery, when a crash failure has been detected, the tasks handled by the
processor should be set in fail-safe states or be handed over to spare computers. Then
attempts to restart the processor can be made. Detected control-flow errors should
be recovered from by recomputing the task or start with the next task. However,
if several control-flow errors are detected in short time (the detections need to be
logged), it may be necessary to set the tasks fail-safe states or hand over them to
spare computers so that more accurate fault diagnosis can be performed.

Which recovery of data errors that is necessary is very dependent on the spe-
cific system. For instance, many sporadic data errors have limited effect on control
systems. Therefore, it is desirable to only detect errors that requires recovery. For
data errors that require recovery, the results can initially be discarded and the task,

6.1. Conclusions 137

if necessary, recomputed. However, if several data errors are detected in short time,
it may be necessary to also set the tasks in fail-safe states or hand over them to spare
computers, and perform more accurate fault diagnosis.

When a suitable design has been proposed, evaluations are necessary to deter-
mine if it is efficient enough, i.e., meets the specified requirements. Such evalua-
tions of the solutions for detecting and recovery from crash failures and control-flow
errors should be possible to perform, even when only high-level models are accessi-
ble, as the effects and characteristics of these errors are rather similar (a crash failure
simply means that the processor is not executing and a control-flow error that incor-
rect instruction is executed and both these errors generally have sever impact on the
system). However, evaluations of data errors are much harder as their effects and
characteristics varies a lot.

In order to find a suitable method for evaluating the effects of data errors, we
defined their effects on systems to depend on the following characteristics:

� Which property that is erroneous (Property).

� The number of properties that are erroneous (Number).

� The difference between the correct value and the erroneous value (Magnitude).

� The occurrence time (State).

� How often the error repeats itself (Repetition)

As most previous evaluation methods either are qualitative (e.g., fault tree anal-
ysis), focused on failure analysis (e.g., Markov modeling), or requires low-level
details (fault injection), analysis methods for determining the effect of data errors on
linear control systems were developed in Chapter 4. Previous proposed such meth-
ods have focused on identifying which errors that result in lost stability. However, as
some failures may result in catastrophic consequences even if the stability is not loss
we instead focused the analysis to determine how much and for how long time the
controlled physical property differentiates from the desired value, due to different
data errors.

As it was necessary to restrict the analysis, only the effect of data errors in the
control signal and the controller states were studied. However, in order for a data
error to have any effect on the controlled physical property, it must eventually prop-
agate to any of these signals.

It was also shown that the analysis methods can be used to design and determine
the efficiency of applied executable assertions.

138 Chapter 6. Conclusions and Speculations About the Future

The main advantage with the analysis methods are that they can be applied early
in the development process when only models of the control system exist. We be-
lieve that such early information will be valuable for developers of safety-critical
systems.

As the analysis had limitations (it only targeted control systems, had limitations
in which characteristics of data errors that could be analyzed, and cannot be used for
detailed verifications) simulation-based fault injection approaches were investigated
in Chapter 5. First it was shown that the generated error characteristics of injected
stuck-at faults depends on at which abstraction level they are injected at. This im-
plies that there is a potential risk that the results from evaluations become inaccurate,
as detailed models of commercial processors seldom are accessible.

Therefore, a new top-down fault injection approach was developed. Instead of
trying to imitate as many low-level faults as possible, which is the goal of most
traditional approaches, the method instead focuses on enabling variation of the char-
acteristics of data errors (defined above) in the reachable signals. This will cover the
important faults, as for any data error to have any effect, it must eventually propagate
to any of the reachable high-level signals.

However, the problem is to select which characteristics of errors to investigate,
as it is not possible to test all combinations and since the exact characteristics of
real errors generally are not known. A suggestion to handle this problem is to first
run a small campaign where all characteristics have sparse, but large, variations.
From these initial results, which characteristics to investigate in greater detail may
be identified.

We believe that this approach will be useful, at least as a complement to tradi-
tional bottom-up approaches, as it also can be applied early in the system develop-
ment process, reduces the risk of missing relevant fault cases, and can be used for
both estimating the effects of different data errors, as well as for ascertaining the
efficiency of applied fault tolerance techniques.

We have in this thesis identified problems with developing fault tolerant mi-
croprocessors, by adding software-implemented techniques to commercial micro-
processors. Moreover, we have identified suitable software-implemented tolerance
techniques and developed methods for evaluating the efficiency of such solutions.
Thus, to conclude, we believe that this thesis provides an essential step towards a
framework for developing fault-tolerant processors based on commercial micropro-
cessors with software-implemented tolerance techniques.

6.2. Speculating About the Future... 139

6.2 Speculating About the Future...

So far, we have mainly discussed today’s requirements on fault tolerant micropro-
cessors. In this section, we speculate of how these requirements may change in the
future, and how this affects the results of this thesis.

As the cost/performance ratio continues to decrease for microprocessors, dis-
tributed computer control systems become more prevalent. Today, the communica-
tion network bandwidth is the major bottleneck for this development, forcing most
computations of data to be performed in the nodes connected to the data source,
i.e., at local nodes. Therefore, today, fault tolerance at computer node level is very
important.

However, the communication bandwidth may not be a problem in the future.
For instance, optical networks may be developed further so that they can be used in
this type of systems. This would enable the systems to be distributed further as any
data could be computed at any computer node without any major penalties. Thus,
the microprocessors in such distributed systems could be seen as a multiprocessor
system. This would clearly simplify recovery as tasks easily could be rescheduled
to run on another microprocessor when a certain processor has failed.

This would also make it possible to re-execute tasks at different nodes to detect
errors. However, as discussed previously in this thesis, duplex systems convey the
problems of determining which unit that is the erroneous, synchronizing the units,
and how to perform the comparison (the two last problems are also common for N-
Modular Systems (NMR)). Therefore, even for such systems, fault tolerance on the
individual nodes can be advantageous, at least fault diagnosis.

Another question for the future is efficient design for fault tolerance. Today, the
largest market for microprocessors is for high-performance processors even though
embedded system specific processors are emerging. However, as the market for em-
bedded and fault-tolerant processors are likely to increase as the performance/cost
ratio increases, the total market will be more evenly distributed, resulting in that
more processors focused on these area are being developed.

One complicating issue for the development of fault-tolerant commercial pro-
cessors is that the developers of safety-critical systems must be able to trust that the
processors are dependable enough, i.e., must be able to evaluate them. As micro-
processor manufacturers generally conceal low-level details to avoid their solutions
to be copied, it is not evident how such evaluation should be performed so that both
parts are satisfied.

A similar problem for microprocessors with extensive fault-tolerance provided
on-chip, is which information that should be communicated to the system level. In

140 Chapter 6. Conclusions and Speculations About the Future

many cases, it is possible to perform some recovery on-chip which means that the
error occurrence may not be visible at higher abstraction levels. If such recovery is
not developed with care, this may complicate system level recovery. Moreover, it is
not clear how developmental faults can be tolerated on-chip.

Whether COTS processors with added fault tolerance techniques will be used
in the future is of course not only dependent on how efficient other solutions will
be, but also on which efficiency that can be reached with such solutions. This first
need to be evaluated. Furthermore, it is not enough to be able to show that faults
are tolerated to a high degree, but it must also be shown that the fault intensity of
such processors, is not unacceptable high1. This is not clear because of their extreme
complexity and scaling.

However, independent on how fault tolerant microprocessors will be developed
in the future, we believe that the error effect evaluation techniques developed in this
thesis still will be useful for system developers and researchers in the academia,
mainly because that even if detailed information should be available, low-level eval-
uations are very time-consuming. Thus the proposed top-down approaches should
provide valuable guidance at the early design stages.

1Even if a system would tolerate all faults, it would be of no use if the fault intensity is that high
that all its resources always are allocated by the fault tolerance techniques.

Bibliography

[Abdelhay and Simeu, 2000] Abdelhay, A. and Simeu, E., "Analytical redundancy
based approach for concurrent fault detection in linear digital systems", On-
Line Testing Workshop, pp. 112 -117, 2000.

[Aftabjahani and Navabi, 1997] S. Aftabjahani and Z. Navabi, "Functional Fault
Simulation of VHDL Gate Level Models", VHDL International Users’ Forum,
pp. 18 -23, 1997.

[Ahlström and Torin 2001] Ahlström K., and Torin J., "Future architecture of flight
control systems", IEEE Aerospace and Electronics Systems Magazine, Vol. 17,
Issue 12, pp. 21-27, 2002.

[Aidemark et al., 2002] Aidemark, J., Vinter, J., Folkesson, P. and Karlsson, J., "Ex-
perimental Evaluation of Time-redundant Execution for a Brake-by-wire Ap-
plication”, International Conference on Dependable Systems and Networks,
pp. 210-215, 2002.

[Aidemark et al., 2003] Aidemark, J., Folkesson, P. and Karlsson, J., "On the Prob-
ability of Detecting Errors Generated by Permanent Faults Using Time Redun-
dancy”, to appear at International On-Line Testing Symposium, 2003.

[Aidemark and Askerdal, 2003] Aidemark, J. and Askerdal, Ö., “Use of Time Re-
dundancy for Detection of Data Errors Caused by Non-Transient Faults”, Tech-
nical Report No. 03-09, Department of Computer Engineering, Chalmers Uni-
versity of Technology, Sweden 2003.

[Alkhalifa et al., 1999] Alkhalifa, Z., Nair, V., Krishnamurthy, N., and Abraham,
J., “Design and Evaluation of System-Level Checks for On-Line Control Flow
Error Detection”, IEEE Transactions on Parallel and Distributed Systems, Vol.
10, No. 6, pp. 627-641, 1999.

[Ammann and Knight, 1988] Ammann, P. and Knight, J., “Data Diversity: An Ap-
proach to Software Fault Tolerance”, IEEE Transactions on Computers, Vol.
37, No. 4, pp. 418-425, 1988.

141

142 Bibliography

[Antoniadis, 2002] Antoniadis, D., “MOSFET Scalability Limits and “New Fron-
tier” Devices”, Symposium on VLSI Technology, pp. 2-5, 2000.

[Askerdal et al., 2000] Askerdal, Ö., Suri, N. and Torin, J., "Use of Complemen-
tary Techniques for Detection of Low-Level Errors Caused by both Transient
and Persistent Faults, Based on Analysis of Double Execution", Technical Re-
port No. 00-24, Department of Computer Engineering, Chalmers University of
Technology, Sweden, 2000.

[Askerdal and Suri, 2001] Askerdal, Ö. and Suri, N., "On-Line Error Detection in
Control Systems", Technical Report No. 01-17, Department of Computer En-
gineering, Chalmers University of Technology, Sweden, 2001.

[Askerdal et al., 2001] Askerdal, Ö., Wiklund, K., Mendelson, A. and Suri, N., "A
Novel Simulation Approach for Accurate Modeling of Persistent Faults", Tech-
nical Report No. 01-18, Department of Computer Engineering, Chalmers Uni-
versity of Technology, Sweden 2001.

[Askerdal et al., 2002] Askerdal, Ö., Gäfvert, M. and Suri, N., "A Control Theory
Approach for Analyzing the Effects of Data Errors in Safety-Critical Control
Systems", Pacific Rim International Symposium on Dependable Computing,
pp.105-114, 2002.

[Avižienis and Chen, 1977] Avižienis, A. and Chen, L., ”On The Implementation
Of N-Version Programming for Software Fault-Tolerance During Program Ex-
ecution, International Conference on Computer Software and Applications, pp.
149-155, 1977.

[Avižienis, 2001] Avižienis, A. and Yutao, H., “Microprocessor entomology: a tax-
onomy of design faults in COTS microprocessors”, Dependable Computing for
Critical Applications, pp. 3-23, 1999.

[Avižienis, 2000] A. Avižienis, "A Fault Tolerance Infrastructure for Dependable
Computing with High-Performance COTS Components", International Con-
ference on Dependable Systems and Networks, pp. 492-500, 2000.

[Avižienis et al., 2001] Avižienis, A., Laprie, J.-C. and Randell, B., “Fundamen-
tal Concepts of Dependability”, Technical Report No. CS-TR-739, Newcastle
University, 2001.

Bibliography 143

[Avižienis, 1985] Avižienis, A."The N-version approach to fault-tolerant software”,
IEEE Transactions on Software Engineering, Vol. 11, No. 12, pp. 1491-1501,
1985.

[Bagchi et al., 2001] Bagchi, S., Liu, Y., Whisnant, K., Kalbarczyk, Z. and Iyer,
R., “A Framework for Database Audit and Control Flow Checking for a Wire-
less Telephone Network Controller”, International Conference on Dependable
Systems and Networks, pp. 225-234, 2001.

[Barroso et al., 2000] Barroso, L., Gharachorloo, K., McNamara, R., Nowatzyk,
A., Qadeer, S., Sano, B., Smith, S., Stets, R. and Verghese, B., “Piranha: A
Scalable Architecture Based on Single-Chip Multiprocessing”, International
Symposium on Computer Architecture, pp. 282-293, 2000.

[Batcher and Papachristou, 1999] Batcher, K. and Papachristou, C., “Instruction
Randomization Self Test For Processor Cores” VLSI Test Symposium, pp. 34-
40, 1999.

[Beerel, 2002] Beerel, P., “Asynchronous Circuits: An Increasingly Practical De-
sign Solution”, International Symposium on Quality Electronic Design, pp.
367-372, 2002.

[Belcastro, 1998] Belcastro, C., "Monitoring functional integrity in critical control
computers subjected to electromagnetic disturbances", American Control Con-
ference, pp. 374 -378, 1998.

[Besser et al., 2000] Besser, P., Marathe, A., Zhao, L., Herrick, M., Capasso, C.
and Kawasaki, H., “Optimizing the electromigration performance of copper
interconnects”, International Electron Devices Meeting, pp. 119-122, 2000.

[Betous-Almedia and Kanoun, 2002] Betous-Almedia, C. and Kanoun K., “Step-
wise Construction and Refinement of Dependability Models”, International
Conference on Dependable Systems and Networks, pp. 515-524, 2002.

[Betta and Pietrosanto, 2000] Betta, G. and Pietrosanto, A., "Instrument Fault De-
tection and Isolation: State of the Art and New Research Trends", IEEE Trans-
actions on Instruments and Measurements, Vol. 49, No. 1, pp. 100-107, 2000.

[Bishop, 1993] Bishop, P., “The Variation of Software Survival Time for Different
Operational Input Profiles”, International Symposium on Fault Tolerant Com-
puting, pp. 98-107, 1993.

144 Bibliography

[Blum and Wasserman, 1996] Blum, M. and Wasserman, H., “Reflections on the
Pentium Division Bug”, IEEE Transactions on Computers, Vol. 45, No. 4, pp.
385-393, 1996.

[Borkar, 1999] Borkar, S., “Design Challenges of Technology Scaling”, IEEE Mi-
cro, pp. 23-29, 1999.

[Bossen et al., 2002] Bossen, D., Kitamorn, A., Reick, K. and Floyd, M., “Fault-
tolerant design of the IBM pSeries 690 system using POWER4 processor tech-
nology”, IBM Journal of Research and Development, Vol. 46, No. 1, pp. 77-86,
2002.

[Boué et al., 1998] J. Boué, P. Pétillon and Y. Crouzet, "MEFISTO-L: A VHDL-
Based Fault Injection Tool for the Expt. Assessment of Fault Tolerance", Inter-
national Symposium on Fault-Tolerant Computing, pp. 168-173, 1998.

[Brglez and Fujiwara, 1985] F. Brglez and H. Fujiwara, "A Neutral Netlist of 10
Combinational Benchmark Circuits", International Symposium on Circuits and
Systems, pp. 695-698, 1985.

[Bright and Sullivan, 1995] Bright, J. and Sullivan, G., "On-line Error Monitoring
for Several Data Structures", International Symposium on Fault-Tolerant Com-
puting, pp. 392-401, 1995.

[Bryant et al., 2001] Bryant, R., Cheng, K.-T., Kahng, A., Keutzer, K., Maly, W.,
Newton, R., Pileggi, L., Rabaey, J. and Sangiovanni-Vincentelli, A., “Lim-
itations and Challenges of Computer-Aided Design Technology for CMOS
VLSI”, Proceedings of the IEEE, Vol. 89, No. 3, pp. 341-365, 2001.

[Cambridge, 2003] Cambridge dictionaries online, URL:
http//www.dictionary.cambridge.org, 2003.

[Celeiro et al., 1996] F. Celeiro, L. Dias, M. Santos and J. Teixera, "Defect-
Oriented IC Test and Diagnosis Using VHDL Fault Simulation", International
Test Conference, pp. 620 -628, 1996.

[Chao, 2002] Chao, L., Publisher, “Hyper-Threading Technology”, Intel Technol-
ogy Journal, Vol. 6, Issue 1, pp. 1-66, 2002.

[Check and Slegel, 1999] Check, M. and Slegel, T., “Custom S/390 G5 and G6 mi-
croprocessors”, IBM Journal of Research and Development, Vol. 43, No. 5/6,
pp. 671-680, 1999.

Bibliography 145

[Chen and Dey, 2001] Chen, L. and Dey, S., “Software-Based Self-Testing Method-
ology for Processor Cores”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 20, No. 3, pp. 369-380, 2001.

[Chillarege et al., 1992] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moe-
bus, D., Ray, B. and Wong, M.-Y., “Orthogonal Defect Classification - A Con-
cept for In-Process Measurements”, IEEE Transactions on Software Engineer-
ing, Vol. 18, No. 11, pp. 943-956, 1992.

[Christmansson et al., 1998] Christmansson, J., Hiller, M. and Rimén, M., “An Ex-
perimental Comparison of Fault and Error Injection”, International Sympo-
sium on Software Reliability Engineering, pp. 369-378, 1998.

[Claesson, 2002] Claesson, V., “Efficient and Reliable Communication in Dis-
tributed Embedded Systems”, Ph.D. thesis, Technical Report No. 6D, Depart-
ment of Computer Engineering, Chalmers University of Technology, Sweden,
2002.

[Clarke and Wing, 1996] Clarke, E. and Wing, J., “Formal Methods: State of the
Art and Future Directions, ACM Computing Surveys, Vol. 28, No. 4, pp. 626-
643, 1996.

[Clayton, 1992] Clayton, P., “Introduction to Electromagnetic Compatibility”, John
Wiley & Sons, Inc., 1992.

[Computer User, 2003] Computer User Magazine, URL:
http//www.computeruser.com, 2003.

[Constantinescu, 2002] Constantinescu, C., "Impact of Deep Submicron Technol-
ogy on Dependability of VLSI Circuits", International Conference on Depend-
able Systems and Networks, pp. 205-209, 2002.

[Crupi et al., 2003] Crupi, F., Kaczer, B., Degraeve, R., De Keersgieter, A. and
Groseneken, G., “A Comparative Study of the Oxide Breakdown in Short-
Channel nMOSFETs and pMOSFETs Stressed in Inversion and in Accumu-
lation Regimes”, IEEE Transactions on Device and Materials Reliability, Vol.
3, No. 1, pp. 8-13, 2003.

[Cunha et al., 2001] Cunha, J., Maia, R., Rela, M. and Silva, J., “A Study of Failure
Models in Feedback Control Systems”, International Conference on Depend-
able Systems and Networks, pp. 314-323, 2001.

146 Bibliography

[Cunha et al., 2002] Cunha, J., Rela, M. and Silva, J., “On the Use of Disaster
Prediction for Failure-Tolerance in Feedback Control Systems”, International
Conference on Dependable Systems and Networks, pp. 123-132, 2002.

[Dahlgren and Lidén, 1991] P. Dahlgren and P. Lidén, "Injection of Physical Tran-
sistor Faults into CMOS Processor Building Blocks using Simulations", Tech-
nical Report No. 109, Department of Computer Engineering, Chalmers Uni-
versity of Technology, Sweden, 1991.

[Delong et al., 1996] T. Delong, B. Johnson and J. Profeta III, "A Fault Injec-
tion Technique for VHDL-Behavioral-Level Models", IEEE Design & Test of
Computers, Vol. 13, pp. 24-33, Winter 1996.

[Dimmer, 1985] Dimmer, C., “The Tandem Non-Stop System”, Resilient Comput-
ing Systems, 1985.

[Diefendorff 1999] Diefendorff, K., “Power4 Focuses on Memory Bandwidth”, Mi-
croprocessor Report, Vol. 13, No. 13, pp. 1-8, 1999.

[Douglass, 2001] Douglass, B., “Doing Hard Time Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns”, Addison-Wesley, 2001.

[Driscoll et al., 2003] Driscoll, K., Hall, B., Sivencrona, H. and Zumsteg, P.,
“Byzantine Fault Tolerance from Theory to Reality”, submitted to the Inter-
national Conference on Computer Safety, Reliability and Security, 2003.

[Eckerbert, 2002] Eckerbert, D., “Deep Submicron Issues in RTL Power Estima-
tion”, Licentiate thesis, Technical Report No. 7L, Department of Computer
Engineering, Chalmers University of Technology, Sweden, 2002.

[Elliott and Sayers, 1990] Elliott, I., and Sayers, I., "Implementation of 32-bit RISC
processor incorporating hardware concurrent error detection and correction",
IEE Proceedings Computers and Digital Techniques, Vol. 137, No. 1, pp. 88-
102, 1990.

[Eure et al., 2001] Eure, K., Belcastro, C. and Weinstein, B., “Monitoring Func-
tional integrity in Critical Control Computers Subjected to Electromagnetic
Disturbances During Laboratory Tests”, System Readiness Technology Con-
ference, pp. 730-738, 2001.

[Feick et al., 2000] Feick, S., et al. "Steer-by-Wire as a Mechatronic Implementa-
tion", SAE World Congress, 2000.

Bibliography 147

[Feldt, 1999] Feldt, R., “Genetic Programming as an Explorative Tool in Early Soft-
ware Development Phases, International Workshop on Soft Computing Ap-
plied to Software Engineering, pp. 11-21, 1999.

[Ferrandi et al., 2002] F. Ferrandi, F. Fummi and D. Sciuto, "Test Generation and
Testability Alternatives Exploration of Critical Algorithms for Embedded Ap-
plications", IEEE Transactions on Computers, Vol. 51, No. 2, pp. 200-215,
2002.

[Fischer et al., 2000] Fischer, A., Abel, A., Lepper, M., Zitzelsberger, A. and von
Glasow, A., “Experimental Data and Statistical Models for Bimodal EM Fail-
ures”, International Interconnect Technology Conference, pp. 359-363, 2000.

[Fischer et al., 2002] Fischer, A., von Glasow, A., Penka, S. and Ungar, F., “Elec-
tromigration failure mechanism studies on copper interconnects”, International
Interconnect Technology Conference, pp. 139-141, 2002.

[Folkesson, 1999] Folkesson, P., “Assessment and Comparison of Physical Fault
Injection Techniques”, Ph.D. thesis, Technical Report No. 377, Department of
Computer Engineering, Chalmers University of Technology, Sweden, 1999.

[Frank 1997] Frank, P. and Ding, X., “Survey of Robust Residual Generation and
Evaluation Methods in Observer-Based Fault Detection Systems”, Journal of
Process Control, No. 6, pp. 403-424, 1997.

[Gaisler, 2002] Gaisler, J., “A Portable and Fault-Tolerant Microprocessor Based on
the SPARC V8 Architecture”, International Conference on Dependable Sys-
tems and Networks, pp. 409-415, 2002.

[Geppert, 2002] Geppert, L., “The Amazing Vanishing Transistor Act”, IEEE Spec-
trum, Vol. 39, Issue 10, pp. 28-33, 2002.

[Gil et al., 2002] Gil, P., Arlat, J., Madeira, H., Crouzet, Y., Jarboui, T., Kanoun, K.,
Marteau, T., Durães, J., Viera, M., Gil, D., Baraza, J.-C. and Gracia, J., “Fault
Representativeness”, DBench Project Report, ETIE2, 2002.

[Gracia et al., 2001] J. Gracia, J. Baraza, D. Gil and P. Gil, "Comparison and Ap-
plication of different VHDL-Based Fault Injection Techniques", International
Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 233 -241,
2001.

148 Bibliography

[Grundman et al., 2003] Grundman B., Galivanche, R. and Kundu, S., “Circuit and
Platform Design Challenges in Technologies beyond 90nm”, Conference and
Exhibition on Design, Automation and Test in Europe, pp. 44-47, 2003.

[Gupta and Pradhan, 1996] Gupta, S. and Pradhan, D., “Utilization of On-Line
(Concurrent) Checkers during Built-In Self-Test and Vice-Versa”, IEEE Trans-
actions on Computers, Vol. 45, No. 1, pp. 63-73, 1996.

[Gäfvert et al., 2003] Gäfvert, M., Wittenmark B. and Askerdal, Ö., "On the Effect
of Transient Data Errors in Controller Implementations", to appear at American
Control Conference, 2003.

[Hamilton, 2003] Hamilton, S., “Intel research expands Moore’s law”, IEEE Com-
puter, Vol. 36, Issue 1, pp. 31-40, 2003.

[Hammond et al., 1997] Hammond, L., Nayfeh, B. and Olukotun, K., “A Single-
Chip Multiprocessor”, IEEE Computer, Vol. 30 Issue 9, pp. 79-85, 1997.

[Hanselmann, 1987] Hanselmann, H., “Implementation of Digital Controllers – A
Survey”, Automatica, 23(1), pp. 7-32, 1987.

[Hawkins et al., 1999] Hawkins, C., Baker, K., Butler, K., Figuera, J., Nicoladis,
M., Rao, V., Roy, R. and Welsher T., “IC Reliability and Test: What Will Deep
Submicron Bring?”, IEEE Design & Test of Computers, Vol. 16, Issue 2, pp.
84-91, 1999.

[Hawkins et al., 1994] Hawkins, C., Soden, J., Righter, A. and Ferguson, J., “De-
fect Classes - An Overdue Paradigm for CMOS IC Testing”, International Test
Conference, pp. 413-425, 1994.

[Hazucha, 2000] Hazucha, P., “Background Radiation and Soft Errors in CMOS cir-
cuits”, Dissertation No. 638, Dept. of Physics and Measurement Technology,
Linköpings Universitet, Sweden, 2000.

[Hennessy and Patterson, 1996] Hennessy, J. and Patterson, D., "Computer Archi-
tecture A Quantitative Approach", second edition, Morgan Kaufmann Publish-
ers, Inc., 1996.

[Henson et al., 1999] Henson, B., McDonald, P. and Stapor, W., “SDRAM Space
Radiation Effects Measurements and Analysis”, IEEE Radiation Effects Data
Workshop, pp. 15-23, 1999.

Bibliography 149

[Hiller, 2000] Hiller, M., “Executable Assertions for Detecting Data Errors in Em-
bedded Control Systems”, International Conference on Dependable Systems
and Networks, pp. 24-33, 2000.

[Hiller et al., 2001] Hiller, M., Jhumka, A. and Suri, N., “An Approach for
Analysing the Propagation of Data Errors in Software, International Confer-
ence on Dependable Systems and Networks, pp. 161-170, 2001.

[Hiller et al., 2002] Hiller, M., Jhumka, A. and Suri, N., “On the Placement of Soft-
ware Mechanisms for Detection of Data Errors, International Conference on
Dependable Systems and Networks, pp. 135-144, 2002.

[Huh et al., 1998] Huh, Y., Lee, M., Lee, J., Jung, H., Li, T., Song, D., Lee, Y,
Hwang, J., Sung, Y. and Kang, M., “A Study of ESD-Induced latent Damage
in CMOS Integrated Circuits”, International Reliability Physics Symposium,
pp. 279-283, 1998.

[IEEE, 1985] “IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE
Std 754-1985, 1985.

[Intel, 2003(A)] “New Transistors for 2005 and Beyond”, Intel Research & Devel-
opment, URL:
http://developer.intel.com/research/silicon/micron.htm#micronpub, 2003.

[Intel, 2003(B)] “The Intel Pentium 4 Processor”, Intel Research & Development,
URL:
http://www.intel.com/design/Pentium4/prodbref/index.htm, 2003.

[ITRS, 2002] “International Technology Roadmap for Semiconductors”, URL:
http://public.itrs.net, update 2002.

[Iyer and Tang, 1996] Iyer, R. and Tang, F., "Experimental Analysis of Computer
System Dependability”, in book: “Fault-Tolerant Computer System Design”,
editor Pradhan, D., Prentice Hall, 1996.

[Jenn et al., 1994] Jenn, E., Arlat, J., Rimén, M., Ohlsson, J. and Karlsson, J., "Fault
injection into VHDL models: the MEFISTO tool", International Symposium
on Fault-Tolerant Computing, pp. 66 -75, 1994.

150 Bibliography

[Jhumka et al., 2002] Jhumka, A., Hiller, M., Claesson, V. and Suri, N., “On Sys-
tematic Design of Globally Consistent Executable Assertions in Embedded
Software”, ACM Joint Conference - Languages, Compilers and Tools for Em-
bedded Systems/Software and Compilers for Embedded Systems, pp. 74-83,
2002.

[Jochim, 2002] Jochim, M., “Detecting Processor Hardware Faults by Means of
Automatically Generated Virtual Duplex Systems”, International Conference
on Dependable Systems and Networks, pp. 399-408, 2002.

[Johannessen, 2001] Johannessen, P., “Design Methods for Safety Critical Automo-
tive Architectures”, Licentiate thesis, Technical Report No. 407L, Department
of Computer Engineering, Chalmers University of Technology, Sweden, 2001.

[Johnson et al., 1991] B. Johnson, T. Quarles, A. Newton, D. Pederson and A.
Sangiovanni-Vincentelli, "SPICE3 version 3e user’s manual, "Department of
Electrical Engineering and Computer Sciences, Univiversity of California,
Berkley, April, 1991.

[Johnson, 1989] Johnson, B., “Design and Analysis of Fault-Tolerant Digital Sys-
tems”, Addison-Wessley, 1989.

[Jones and Hayes, 1999] Jones J. and Hayes J., “A Comparison of Electronic-
Reliability Prediction Models”, IEEE Transactions on reliability, Vol. 48, No.
2, pp. 127-134, 1999.

[Kaczer et al., 2002] Kaczer B., Crupi, R., Roussel, Ph., Ciofi, C. and Groseneken,
G., “Observation of hot-carrier-induced nFET gate-oxide breakdown in dy-
namically stressed CMOS circuits”, International Electron Devices Meeting,
pp. 171-174, 2002.

[Kalbarczyk et al., 1999] Z. Kalbarczyk, R. Iyer, G. Ries, J. Patel, M. Lee and Y.
Xiao, "Hierarchical Simulation Approach to Accurate Fault Modeling for Sys-
tem Dependability Evaluation", IEEE Transactions on Software Engineering,
Vol. 25, No. 5, pp. 619-632, 1999.

[Kam et al., 2000] Kam, T., Rawat, S., Kirkpatrick, D., Roy, R., Spirakis, G., Sher-
wani, N. and Peterson, C., “EDA Challenges Facing Future Microprocessor
Design”, IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, Vol. 19, No. 12, 2000.

Bibliography 151

[Karlsson et al., 1995] Karlsson, J., Folkesson, P., Arlat, J., Crouzet, Y., Leber G.
and Reisinger, J., "Application of Three Physical Fault Injection Techniques to
the Experimental Assessment of the MARS Architecture", International Work-
ing Conference on Dependable Computing for Critical Applications, pp.150-
161, 1995.

[Karnik et al., 2002] Karnik, T., Vangal, S., Veeramachaneni, V., Hazucha, P., Er-
raguntla, V. and Borkar, S., “Selective Node Engineering for Chip-level Soft
Error Rate Improvement”, Symposium on VLSI Circuits, pp. 204-205, 2002.

[Ker et al., 2002] Ker, M.-D., Peng, J.-J. and Jiang, H.-C., “Failure Analysis of ESD
Damage in a High-Voltage Driver IC and the Effective ESD Protection Solu-
tion”, International Symposium on Physical and Failure Analysis on Integrated
Circuits, pp. 81-86, 2002.

[Kim and Shin, 1994] Kim, H. and Shin, K., “On the Maximum Feedback Delay
in a Linear/Nonlinear Control System With Input Disturbances Caused by
Controller-Computer Failures”, IEEE Transactions on Control Systems Tech-
nology, Vol. 2, No. 2, pp. 110-122, 1994.

[Kim et al., 2000] Kim, H., White, A. and Shin, K., “Effects of Electromagneti-
cal Interference on Controller-Computer Upsets and System Stability”, IEEE
Transactions on Control Systems Technology, Vol 8, No. 2, pp. 351-357, 2000.

[Kopetz and Grunsteidl, 1994] Kopetz, H. and Grunsteidl, G., "TTP - a protocol for
fault-tolerant real-time systems", IEEE Computer, pp. 14-23, 1994.

[Kundu et al., 2001] Kundu, S., Zachariah, S., Sengupta, S. and Galivanche, R.,
"Test Challenges in Nanometer Technologies", Journal of Electronic Testing:
Theory and Applications, Vol. 17, Issue 3-4, pp. 209-218, 2001.

[Kundu and Galivanche, 2001] Kundu, S. and Galivanche, R., "Test Challenges in
Nanometer Technologies", Tutorial held at the European Test Workshop, 2001.

[Lai et al., 2002] Lai, S.-C., Lu, S.-L., Lai, K. and Peir, J.-K., “Ditto Processor”,
International Conference on Dependable Systems and Networks, pp. 525-534,
2002.

[Laprie, 1992] Laprie J, Ed. "Dependability: Basic Concepts and Terminology,
Dependable Computing and Fault-Tolerant Systems", Vol.5, Springer-Verlag
1992.

152 Bibliography

[Lee et al., 2000] Lee, Y., Wu, K., Linton, T., Mielke, N., Hu, S. and Wallace,
B., “Channel-Width Dependent Hot-Carrier Degradation of Thin-Gate pMOS-
FETs”, IEEE International Reliability Physics Symposium, pp. 77-82, 2000.

[Leon, 2003] LEON SPARC processor, URL:
http://www.gaisler.com/leonmain.html, 2003.

[Leung and Whitehead, 1988] Leung, J. and Whitehead, J., “On the Complexity of
Fixed-Priority Scheduling of Periodic, Real-Time Tasks”, Performance Evalu-
ation, pp. 237-250, December 1988.

[Leveugle and Hadjiat, 2000] R. Leveugle and K. Hadjiat, "Optimized Generation
of VHDL Mutants for Injection of Transition Errors", Symposium on Inte-
grated Circuits and Systems Design, pp. 243 -248, 2000.

[Lewin 2002] Lewin, D., “DNA Computing”, IEEE, Computing in Science & En-
gineering, Vol. 4, Issue 3, pp. 5-8, 2002.

[Lienig et al., 2002] Lienig, J., Jerke, G. and Adler, T., “Electromigration Avoid-
ance in Analog Circuits: Two Methodologies for Current-Driven Routing”,
International Conference on VLSI Design, pp. 464-469, 2002.

[Lions, 1996] Lions, J., chairman of the inquiry board, “ARIANE 5, Flight 501
Failure Report by the Inquiry Board”, URL:
http://java.sun.com/people/jag/Ariane5.html, 1996.

[Lisenker and Mitnick, 2000] Lisenker, B. and Mitnick, Y., “Reliability Assessment
through Defect Based Testing”, International Reliability Physics Symposium,
pp. 407-412, 2000.

[Littlewood and Miller, 1989] Littlewood, B. and Miller, D., “Conceptual Model-
ing of Coincident Failures in Multiversion Software”, IEEE Transactions on
Software Engineering, Vol. 15, No. 12, pp. 1596-1614, 1989.

[Lo et al., 1992] Lo, J.-C., Thanawastien, S., Rao, T., R., N., Nicoladis, M., "An
SFS Berger Check Prediction ALU and Its Application to Self-Checking Pro-
cessor Designs", IEEE Transactions on Computer-Aided Design, Vol.11, No.
4, pp. 525-540, 1992.

[Lo et al., 1997] Lo, J., Eggers, S., Emer, J., Levy, H., Stamm, R. and Tullsen,
D., “Converting Thread-Level Parallelism to Instruction-Level Parallelism via
Simultaneous Multithreading”, ACM Transactions on Computer Systems, Vol.
15, No. 3, pp. 322-354, 1997.

Bibliography 153

[Lovric 1996] Lovric, T., "Detecting hardware faults with systematic and design
diversity: Experimental results", Computer Systems Science and Engineering,
Vol. 11, No. 2, pp. 83-92, 1996.

[Lönn, 1999] Lönn, H., “Synchronization and Communication Results in Safety-
Critical Real-Time Systems”, Ph.D. thesis, Technical Report No. 374, Depart-
ment of Computer Engineering, Chalmers University of Technology, Sweden,
1999.

[Maamar and Russel, 1998] Maamar, A., and Russel, G., "A32-Bit RISC Processor
With Concurrent Error Detection", EUROMICRO Conference, Vol. 1, pp. 461-
467, 1998.

[Mahmood and McCluskey, 1988] Mahmood, A. and McCluskey, E., "Concurrent
Error Detection Using Watchdog Processors- A survey", IEEE Transactions on
Computers, Vol. 37, No. 2, pp. 160-174, 1988.

[Makabe et al., 2000] Makabe, M., Kubota, T. and Kitano, T., “Bias-temperature
degradation of pMOSFETs: mechanism and suppression”, International Reli-
ability Physics Symposium, pp. 205-209, 2000.

[Massengill et al., 2000] Massengill, L., Baranski, A., Van Nort, D., Meng, J. and
Bhuva, B., “Analysis of Single-Event Effects in Combinational logic - Simu-
lation of the AM2901 Bitslice Processor”, IEEE Transactions on Nuclear Sci-
ence, Vol. 47, No. 6, pp. 2609-2615, 2000.

[McVittie, 1996] McVittie, J., “Plasma Charging Damage: An Overview”, Interna-
tional Symposium on Plasma-Induced Damage, pp. 7-10, 1996.

[Meindl, 2001] Meindl, J., ”Special issue on limits of semiconductor technology”,
Proceedings of the IEEE, Vol. 89, Issue 3, pp. 223-226, 2001.

[Meindl, 2003] Meindl, J., ”Beyond Moore’s law: The Interconnect Era”, IEEE
Computing in Science & Engineering”, Vol. 5, Issue 1, pp. 20-24, 2003.

[Mendelson and Suri, 2000] Mendelson, A. and Suri, N., “Designing High-
Performance & Reliable Superscalar Architectures - The Out of Order Reli-
able Superscalar (O3RS) Approach”, International Conference on Dependable
Systems and Networks, pp. 473-481, 2000.

[Mentor Graphics 1998] Mentor Graphics (Model Technology) "ModelSim
EE/PLUS Reference Manual", 1998.

154 Bibliography

[Miremadi et al., 1995] Miremadi, G., et. al, "Use of time and Address Signatures
for Control Flow Checking", International Working Conference on Dependable
Computing for Critical Applications, 1995.

[Moore, 1965] Moore, G., “Cramming More Components onto Integrated Cir-
cuits”, Electronics, Vol. 38, No. 8, pp. 114-117, 1965.

[Mule et al., 2002] Mule, A., Bakir, M., Jayachandran, J., Villalaz, R., Reed, H.,
Agrawal, N., Ponoth, S., Plawsky, J., Persans, P., Kohl, P., Martin, K., Glytsis,
E., Gaylord, T. and Meindl, J., “Optical Waveguides with Embedded Air-gap
Cladding Integrated Within a Sea-of-Leads (SoL) Wafer-level Package”, IEEE
International Interconnect Technology Conference, pp. 122-124, 2002.

[Nicoladis, 1995] Nicolaidis, M., "Efficient UBIST Implementation for Micropro-
cessor Sequencing Parts", Journal of Electronic Testing-Theory and Applica-
tions, Vol. 6, No. 3, pp. 295-312, 1995.

[Nicolaidis and Zorian, 1998] Nicolaidis, M., and Zorian, Y., "On-Line Testing for
VLSI - A Compendium of Approaches", Journal of Electronic Testing - Theory
and Applications Vol.12, No. 1-2, pp. 7-20, 1998.

[Nicollian et al., 1999] Nicollian, P., Rodder, M., Grider, D., Chen, P., Wallace, R.
and Hattangady, S., “Low Voltage Stress-Induced-Leakage-Current in Ultra-
thin Gate Oxides”, International Reliability Physics Symposium, pp. 400-404,
1999.

[Oh et al., 2002(A)] Oh, N., Shirvani, P. and McCluskey, E., “Control-Flow Check-
ing by Software Signatures”, IEEE Transactions on Reliability, Vol. 51, No. 2,
pp. 111-122, 2002.

[Oh et al., 2002(B)] Oh, N., Shirvani, P. and McCluskey, E., “Error Detection by
Duplicated Instructions in Super-Scalar Processors”, IEEE Transactions on Re-
liability, Vol. 51, No. 1, pp. 63-75, 2002.

[Ohlsson and Rimén, 1995] Ohlsson, J. and Rimén, M., "Implicit Signature Check-
ing", International Symposium on Fault-Tolerant Computing, pp. 218-227,
1995.

[Ohlsson, 1995] Ohlsson, J., "Application Signature Checking", Technical Report
No. 238, Department of Computer Engineering, Chalmers University of Tech-
nology, Sweden, 1995.

Bibliography 155

[Oldiges et al., 2002] Oldiges, P., Bernstein, K., Heidel, D., Klaasen, B., Cannon,
E., Dennard, R., Tang, H., Ieong, M. and Wong, H.-S., “Soft Error Rate Scaling
for Emerging SOI Technology Options”, Symposium on VLSI Technology, pp.
46-47, 2002.

[Oskin et al., 2002] Oskin, M., Chong, F. and Chuang, I., “A Practical Architecture
for Reliable Quantum Computers”, IEEE Computer, Vol. 35, Issue 1, pp. 79-
87, 2002.

[Otten et al., 2002] Otten R., Camposano, R. and Groeneveld, P., “Design Automa-
tion for Deepsubmicron: present and future”, Conference and Exhibition on
Design, Automation and Test in Europe, pp.650-657, 2002.

[Paschalis et al., 2001] Paschalis, A., Gizopoulos, D., Kranitis, N., Psarakis, M. and
Zorian, Y., “Deterministic software-based self-testing of embedded processor
cores”, Conference and Exhibition on Design, Automation and Test in Europe,
pp. 92-96, 2001.

[Parotta et al., 2000] Parotta, B., Rebaudengo, M., Reorda, S. and Violante, M.,
“New Techniques for Accelerating Fault Injection in VHDL descriptions”,
IEEE International On-Line Testing Workshop, pp. 61-66, 2000.

[Peters and Pedrycz, 1999] Peter, J. and Pedrycz, W., “Software Engineering an En-
gineering approach”, John Wiley & Sons, Inc., 1999.

[Powell et al., 1988] Powell, D., Bonn, G., Seaton, D., Verissimo, P. and Waese-
lynck, F., “The Delta-4 approach to dependability in open distributed com-
puting systems”, International Symposium on Fault-Tolerant Computing, pp.
246-251, 1988.

[Pradhan, 1996] Pradhan, D., “Fault-Tolerant Computer Systems Design”. Prentice
Hall PTR, 1996.

[Prata and Silva, 1999] Prata, P. and Silva, G., "Algorithm Based Fault Tolerance
Versus Result-Checking for Matrix Computations", International Symposium
on Fault-Tolerant Computing, pp. 4-11, 1999.

[Radecka et al., 1997] Radecka, K., et al. "Arithmetic Built-In Self-Test for DSP
Cores", IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 16, No. 11, pp. 1358-1369, 1997.

156 Bibliography

[Rashid et al., 2000] Rashid, F., Saluja, K. and Ramanathan, P., “Fault Tolerance
Through Re-execution in Multiscalar Architecture”, International Conference
on Dependable Systems and Networks, pp. 482-491, 2000.

[Rela et al., 1996] Rela, Z., Madeira, H. and Silva, J., "Experimental Evaluation of
the Fail-Silent Behaviour in Programs with Consistency Checks", International
Symposium on Fault-Tolerant Computing, pp. 394-403, 1996.

[Riesgo and Uceda, 1996] T. Riesgo and J. Uceda, "A Fault Model for VHDL De-
scriptions at the Register Transfer Level", Conference and Exhibition on De-
sign, Automation and Test in Europe, pp. 462 -467, 1996.

[Rimén, 1995] Rimén, M., "Use of Data Signatures and Double Execution for Data
Error Detection", Technical Report No. 247, Department of Computer Engi-
neering, Chalmers University of Technology, Sweden, 1995.

[Riordan et al., 1999] Riordan, W., Miller, R., Sherman, J. and Hicks, J., “Micro-
processor Reliability Performance as a Function of Die Location for a 0.25 � ,
Five Layer Metal CMOS Logic Process”, International Reliability Physics
Symposium, pp. 1-11, 1999.

[Rotenberg, 1999] Rotenberg E., "AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors", International Symposium on Fault-
Tolerant Computing, pp. 84-91, 1999.

[Saab Ericsson Space, 1999] Saab Ericsson Space AB, "Red Hard Thor Micropro-
cessor Description", Document No. P-TOR-NOT-004-SE, 1999.

[Scobie et al., 2000] Scobie, J., et al. "A Cost Efficient Fault Tolerant Brake By
Wire Architecture", SAE World Congress, pp. 51-60, 2000.

[Segura et al., 1995] Segura, J., De Benito, C., Rubio, A. and Hawkins C., “A De-
tailed Analysis of GOS Defects in MOS Transistors: Testing Implications at
Circuit Level”, International Test Conference, pp. 544-551, 1995.

[Shaw et al., 2001] D. Shaw, D. Al-Khalili and C. Rozon, "Accurate CMOS Bridge
Fault Modeling With Neural Network-Based VHDL-Saboteurs", International
Conference on Computer Aided Design, pp. 531-536, 2001.

[Shen and Abraham, 1998] Shen, J. and Abraham J., "Native Mode Functional Test
Generation for Processors with Applications to Self-Test and Design Valida-
tion", International Test Conference, pp. 990-999, 1998.

Bibliography 157

[Shivakumar et al., 2002] Shivakumar, P., Kistler, M., Keckler, S., Burger, D. and
Alvisi, L., “Modeling the Effect of Technology Trends on the Soft Error Rate
of Combinational Logic”, International Conference on Dependable Systems
and Networks, pp. 389-398, 2002.

[Sieh et al., 1997] V. Sieh, O. Tschäche and F. Balbach, "VERIFY: Evaluation of
Reliability Using VHDL-Models with Embedded Fault Descriptions", Interna-
tional Symposium on Fault-Tolerant Computing, pp. 32 -36, 1997.

[Sieworek and Swarz, 1992] Sieworek, D. and Swarz, R., "Reliable Computer Sys-
tems, Design and Evaluation", second edition, Digital Press, 1992.

[Silva et al., 1998] Silva, J., Prata, P., Rela, M. and Madeira, H., “Practical issues
in the Use of ABFT and a New Failure Model”, International Symposium on
Fault-Tolerant Computing, pp. 26-35, 1998.

[Soden and Hawkins, 1995] Soden, J. and Hawkins, C., “ ������� Testing and Defect
Classes - A Tutorial”, Custom Integrated Circuits Conference, pp. 633-642,
1995.

[Steininger and Scherrer, 1999] Steininger A. and Scherrer C., "On the Necessity
of On-line BIST in Safety-Critical Applications- A Case Study", International
Symposium on Fault-Tolerant Computing, pp. 208-215, 1999.

[Steininger 2000] Steininger, A., "Testing and Built-in-Self-Test - A Survey", Jour-
nal of Systems Architecture, Elsevier Science Publishers, Vol. 46, pp. 721-747,
2000.

[Steininger and Temple, 1999] Steininger, A. and Temple, C., "Economic Online
Self-Test in the Time-Triggered Architecture”, IEEE Design & Test of Com-
puters, Vol. 16, Issue 3, pp.81-89, 1999.

[Steininger and Vilanek, 2002] Steininger, A. and Vilanek, J., "Using Offline and
Online BIST to Improve System Dependability - The TTPC-C Example”, In-
ternational Conference on Computer Design, pp. 277-280, 2002.

[Steininger and Scherrer, 2002] Steininger A. and Scherrer C., "Identifying Effi-
cient Combinations of Error Detection Mechanisms Based on Results of Fault
Injection Experiments”, IEEE Transactions on Computers, Vol. 51, No. 2, pp.
235-239, 2002.

158 Bibliography

[Stroph and Clarke, 1999] Stroph R. and Clarke T., "Dynamic Fault Detection Ap-
proaches", American Control Conference, pp. 627-631, 1999.

[Sullivan et al., 1995] Sullivan, G., et al. "Certification of Computational Results",
IEEE Transactions on Computers, Vol. 44, No. 7, pp. 833-847, 1995.

[Talkhan et al., 1989] Talkhan E.-S., Ahmed, A. and Salama, A., “Microprocessors
Functional Testing Techniques”, IEEE Transactions on Computer-Aided De-
sign, Vol. 8, No. 3, pp. 316-318, 1989.

[Temple, 1998] Temple C., "Avoiding the babbling-idiot failure in a time-triggered
communication system", IEEE International Symposium on Fault-Tolerant
Computing, pp.218-227, 1998.

[Theis, 2003] Theis, T., “Beyond the Silicon Transistor: Personal Observations”,
IEEE, Computing in Science & Engineering, Vol. 5, Issue 1, pp. 25-29, 2003.

[Theobald et al., 1999] Theobald, K., Gao, G. and Sterling, T., “Superconducting
Processors for HTMT: Issues and Challenges”, Symposium on Frontiers of
Massively Parallel Computation, pp. 260-267, 1999.

[Torin, 1999] Torin, J., ”The Evolution of Microelectronics and its impacts on
Avionics”, Space Technology, Vol. 19, No. 3-4, pp. 199-204, 1999.

[Turmon and Granat, 2000] Turmon, M. and Granat, R., "Algorithm-Based Fault
Tolerance for Spaceborn Computing: Basis and Implementations", Aerospace
Conference, pp. 411-420, 2000.

[US Department of Defense, 1991] "Military Handbook - Reliability Prediction of
Electronic Equipment, MIL-HDBK-217F", US Department of Defense, 1991.

[Vado et al., 2000] P. Vado, Y. Savaria, Y. Zoccarato and C. Robach, "A Methodol-
ogy for Validating Digital Circuits with Mutation Testing", International Sym-
posium on Circuits and Systems, pp. 343 -346, 2000.

[Vargas et al., 1998] F. Vargas, E. Bezerra, A. Terroso and D. Barros, "Reliability
Verification of Fault-Tolerant Systems Design Based on Mutation Analysis",
Brazilian Symposium on Integrated Circuit Design, pp. 55 -58, 1998.

[Vinson and Liou, 2000] Vinson, J., Liou, J., “Electrostatic Discharge in Semicon-
ductor Devices:Overview of Circuit Protection Techniques”, Electron Devices
Meeting, pp. 5-8, 2000.

Bibliography 159

[Vinter et al., 2001] Vinter, J., Aidemark, J., Folkesson, P. and Karlsson, J., “Re-
ducing Critical Failures for Control Algorithms Using Executable Assertions
and Best Effort Recovery”, International Conference on Dependable Systems
and Networks, pp. 347-356, 2001.

[Vinter et al., 2002] Vinter, J., Johansson, A., Folkesson, P. and Karlsson, J., “On
the Design of Robust Integrators for Fail-Bounded Control Systems”, to appear
at International Conference on Dependable Systems and Networks, 2003.

[Wells, 2003] Wells, D., “Extreme Programming: A Gentle Introduction”, URL:
http://www.extremeprogramming.org, 2003.

[White and Kim, 1996] White, A. and Kim, H., ”Designing Experiments for Con-
troller Perturbation Theories - an Example”, Aerospace Application Confer-
ence, Vol. 1 pp. 265-278, 1996.

[Wiklund, 2000] K. Wiklund, "A gate-level fault simulation toolkit", Technical Re-
port No. 00-17, Department of Computer Engineering, Chalmers University of
Technology, Sweden, 2000.

[Wilken and Shen, 1990] Wilken K. and Shen, J., "Continuous Signature Moni-
toring: Low-Cost Concurrent Detection of Processor Control Errors", IEEE
Transactions on Computer-Aided Design, Vol. 9, No. 6, pp. 629-641, 1990.

[Wittenmark et al., 1995] Wittenmark, B., Nilsson, J. and Törngren, M., "Timing
Problems in Real-time Control Systems: Problem Formulation", American
Control Conference, pp. 2000-2004, 1995.

[Yeh, 1996] Yeh, Y., "Triple-triple redundant 777 primary flight computer",
Aerospace Applications Conference, pp. 293-307, 1996.

[Yount and Siewiorek, 1996] C. Yount and D. Siewiorek, "A Methodology for the
Rapid Injection of Transient Hardware Errors", IEEE Transactions on Com-
puters, Vol. 45, No. 8, pp. 881-891, 1996.

[Yu et al., 2002] Yu, Q., Kikuchi, H., Ikeda, S., Shiratori, M., Kakino, M. and Fu-
jiwara, N., “Dynamic Behavior of Electronics Package and Impact Reliability
of BGA Solder Joints”, Intersociety Conference on Thermal Phenomena in
Electronic Circuits, pp. 953-960, 2002.

[Zhang et al., 2001] Zhang, J., Sii, H., Groseneken, G. and Degraeve, R., “Gener-
ation of hole traps in silicon dioxide”, Physical and Failure Analysis of Inte-
grated Circuits, pp. 50-54, 2001.

160 Bibliography

[Zhang et al., 2002] Zhang, W., Zhang, J., Lalor, M., Burton, D., Groseneken, G.
and Degraeve, R., “Two Types of Neutral Electron Traps Generated in the Gate
Silicon Dioxide”, IEEE Transactions on Electron Devices, Vol. 49, No. 11, pp.
1868-1875, 2002.

[Zhou and Doyle, 1998] Zhou K. and Doyle, J.C. “Essentials of robust control”,
Prentice Hall, Upper Saddle River, New Jersey, 1998.

[Åström and Wittenmark, 1997] Åström, K. and Wittenmark, B., “Computer-
Controlled Systems”, Prentice Hall, third edition, 1997.

[Årzén et al., 1990] Årzén K-E., “A Simple Event-Based PID Controller”, Reprints
14th World Congress of IFAC, 1999.

Appendix A.
A Survey of Error Detection
Techniques

As mentioned in the introduction of this thesis, faults can be tolerated, either by
fault masking (N-Modular Redundancy (NMR)), or error detection and recovery.
For products with strict requirements on recurring costs, fault masking is generally
not efficient as it requires replication (at least triplication) of the hardware, but the
error detection and recovery strategy is more suited even if such solutions may be
more complex. This appendix focuses on surveying different error detection tech-
niques and giving qualitative efficiency estimates. Therefore, first, what is meant
with efficient error detection is discussed.

As described in the introduction (Chapter 1), error detection is generally based
on some sort, or a mix, of redundancy (spatial, temporal or information). This
means that error detection is associated with an overhead (additional hardware, time-
consumption, memory-utilization, etc.). The type of redundancy used also deter-
mines the type of errors that can be detected. As it generally is required to handle
many different types of errors, techniques detecting several error types are in that
perspective advantageous. However, as it generally is more difficult to determine
the exact cause for triggering of these techniques, fault diagnosis is generally more
complicated.

Another important aspect of detection techniques, related to the detection cov-
erage, is the probability for the technique to be triggered in the absence of errors,
i.e., the false alarm rate. Moreover, some techniques detect errors independently on
which impact they have on the system (so-called systematic techniques), whereas
others detect those errors that have the greatest impact on the system (so-called sys-
tem dependent techniques). To only detect those errors that can cause damage to the
system is advantageous as unnecessarily detection of errors consumes resources and
increases the risk to incorrectly handle errors. However, the design cost is generally
higher for system-dependent techniques, as these has to be design or at least adjusted
for each system. Furthermore, it is not always possible to detect all errors that can

161

162 A Survey of Error Detection Techniques

cause damage without using systematic techniques.
An additional important issue is how long time it takes from that an error occur

until it is triggered by the detection technique, i.e., the error detection latency.
In the following sections, different error detection techniques are described and

discussed. At the end of this appendix, we give a short summary and present a table
with simple and rough qualitative estimates of the previous described properties.

A.1 Functional Redundancy

Functional redundancy (or model based fault diagnosis) is a error detection tech-
nique based on estimation of signal values, through correlated signals and models of
the system, and comparing it with the measured signal value, i.e. forming a resid-
ual. The residual should be chosen so that it is highly sensitive to malfunctions.
The estimation could utilize present values of signals and/or previous values (earlier
sampled values). Functional redundancy is often designed to detect errors in sensors
and actuators, but it may detect errors in the computer node as well.

One important aspect of error detection through the use of residuals is to decide
the border-value for the residual, i.e., a so called threshold, when it should be con-
sidered that a fault has occurred. The lower this value is set, the more sensible it will
be to faults and the recovery can be started faster, but the number of false alarms
will be larger (due to model inaccuracies, transient disturbances, the dynamics of
the system, etc.). So this value has to be set with care.

Functional redundancy could be based on parity space methods, filter based
methods, neural networks, fuzzy logic, frequency based methods, expert systems ap-
plications, pattern recognition, statistical classification and limit and trend check or
knowledge based approaches, [Betta and Pietrosanto, 2000], [Frank 1997]. Some of
these approaches do not rely on models of the system (for instance neural networks,
fuzzy logic, pattern recognition etc.), and thus, can be used when such models do
not exist, or are too costly to develop.

With model-based approaches, a system model is used to predict the values of
the states and outputs. Then residuals are formed from these estimates and compared
with the values of the real system. Residuals can be generated in different ways:
parity equations, observer-based generation and parameter estimation.

Functional redundancy has mainly target sensor, actuator, and process faults,
but some ideas have been proposed for detection of computer/controller errors. In
[Abdelhay and Simeu, 2000] it is used to detect faults in linear digital systems, gen-
erally consisting of processing elements such as adders, multipliers, shifters and
register which cooperate with each other to achieve a complex function. Functional

A.2. Assertions 163

redundancy can also be used to detect faults in computer nodes when sufficient in-
formation can be obtained [Ahlström and Torin 2001], [Belcastro, 1998], e.g., by
running a model of the controller on another computer.

To summarize, this technique is mainly used for detection of errors caused by
sensor, actuator and process faults. In many cases it is possible to derive signals
for which faults can be identified, i.e., improve fault diagnosis. as the data used
for the estimation has passed the complete control loop, detected errors could be
originated from a fault in any component, i.e., it is possible to also detect errors in
the controller. However, if the controller and the residual generation is executed on
the same computer, it is possible that one fault interfere with both computations, and
thus, the error cannot be handled.

The overhead due to applying functional redundancy is mainly the required com-
putations (increased execution time) and the memory storage for the program task
executing the estimation.

A.2 Assertions

This technique utilizes the information about signals provided in the specification to
verify that the system is working correctly. Many signals have some limit in what
values they can attain or how much it can differ from one measurement to the next
(the signals derivative).

Executable Assertions

An executable assertion is software code that checks the validity of a predicate (gen-
erally concerning the value of a signal/variable) or a set of properties, in order to find
errors either during system development or operation. This technique can detect er-
rors caused by faults in sensors, actuators as well as internal signals in the computer
node. In [Rela et al., 1996], assertions based on the specification, the regularity of
used data structures, the produced results, and the internal structure of the code, are
presented.

In [Hiller, 2000], a classification of signals and suitable assertions were made.
To evaluate the efficiency of different executable assertions, several signals of an
arresting aircraft control system were monitored with assertions. In further work
[Hiller et al., 2001], [Hiller et al., 2002] the propagation of data errors were ana-
lyzed using assertions and guidance on which signals to monitor with assertions
provided. In [Jhumka et al., 2002] an algorithm for designing consistent assertions,
i.e., designing assertions of different signals that depend on each other so that they

164 A Survey of Error Detection Techniques

Value outside limit
=> error -signal

Value outside limit
=> error -signal

Figure A.1: Detection of a monitored property value outside the valid data space of
the applied assertion.

have consistent value spaces, is proposed. This removes the possibility that the as-
sertions will contradict each other so that one assertion accept the value of a specific
signal where as another assertion do not accept it.

Some work has considered how to chose the value space for assertions. In the
text below describing these approaches, we will use the term threshold to denote the
borders for the acceptable value space of the executable assertions.

In [Stroph and Clarke, 1999], the threshold for the acceptable value space were
computed using bounds on the properties for open-loop systems. Both assertions
based on bounds for the magnitude and the rate of change for signals were developed
both as static thresholds as well as dynamic thresholds. Dynamic means that the
assertion has different thresholds for different operating points. It was shown in
[Vinter et al., 2001] that simpler checks based on the bounds of the control signal
and system states together with a simple recovery technique (if an error was detected
by an assertion, the old value of the signal was reused) could reach high detection
coverage for transient faults. The integrator state was also identified as the most
sensitive part of the system (which was confirmed in [Askerdal et al., 2002]).

In order to protect the integrator, [Vinter et al., 2002] implemented a robust in-
tegrator based on double execution of the integrator. Another approach was taken in
[Gäfvert et al., 2003] was to modify the anti-windup function. Anti-windup is gen-
erally used to reduce the influence of actuator saturation when an integrator is used
(else the integrator could lock the control signal). However, instead of using the
actuator saturation point for activating the anti-windup, the maximum control signal
for the closed-loop system was computed, based on bounds on the reference value,
which reduces the impacts of both actuator saturations as well as data errors.

In [Cunha et al., 2001], the impact of data errors on the control of an inverted
pendulum was investigated. In order to avoid failures, it was suggested to place
a robust assertion checking the control error (the difference between the reference

A.2. Assertions 165

(desired) value of a controlled physical process property and the actual value of this
property). A robust assertion means that the assertion is executed twice and a simple
code (called “magic number”) is applied that both assertions have been executed (for
more details on robust assertions, see [Silva et al., 1998]). As assertions are simple,
the overhead for making them robust, considering the compile system, is low even
if the software code compared to simple assertions is duplicated.

The same authors proposed, in [Cunha et al., 2002], to compute the impact of
each control value on a model of the system online. This computation is termed
oracle as it predicts the impact of the next computed control value on the system
performance. If it was seen that the control value could make the system fail within
a number of iterations, the output was blocked and the control handed over to a spare
computer. In order to protect the oracle it was put in a robust assertion block.

Executable assertions can be used for faults resulting in erroneous signal values.
The coverage that can be reached is very dependent on how predictable the checked
signal is [Hiller, 2000]. The error detection latency will be the time from that the
fault occurs until the signal, which an error caused by the fault propagated to, is
checked. The ratio of unnecessary alarms should be low (false alarms should be 0)
if the checked limits are derived from the specification, but to decrease the detection
coverage, they may be set in other ways (e.g. based on measurements of the value
of the signal) and than the ratio may become higher. The overhead for executable
assertions is comparable low, but some additional computations (time) and memory
are required. Quite accurate diagnosis can be achieved if the executable assertions
are placed in an intelligent way.

Algorithm Based Fault Tolerance (ABFT)

ABFT is in some ways similar to executable assertions, but ABFT utilize informa-
tion known about the algorithm of the calculation rather than information from the
specification. Thus, for ABFT to be efficient, the algorithm should be static in the
sense that the same computations are performed, more or less, independently on the
input data. Applications where ABFT has been used so far are matrix multiplica-
tions, LU-factorizations, QR-decompositions, Fast Fourier Transforms and iterative
solvers for partial differential equations.

In [Turmon and Granat, 2000] different implementations of ABFT for matrix
multiplication is discussed. A solution on how to secure the inputs and outputs
and correct execution flow of the ABFT is described in [Silva et al., 1998]. In
[Prata and Silva, 1999] ABFT is compared with another similar technique caller
result-checking. Result-Checking utilizes that it is often simpler to check a result

166 A Survey of Error Detection Techniques

than to compute it and thus the overhead for checking can be tolerated.
Assertions can also be combined with ABFT to increase the detection coverage

for microprocessor errors, [Rela et al., 1996].
For the applications where ABFT can be used, high detection coverage can be

reached for errors affecting the calculations. The detection latency will be the time
from that the error is generated until the calculation is checked. No distinction of
which errors that are detected is usually made, so the ratio of unnecessary detections
may be rather high. ABFT requires additional computations (time) and memory.
ABFT does not seem to provide much information that can be used for fault diagno-
sis.

Certification

With certification, first the original algorithm is performed, but during the calcula-
tions some data is stored as a certification trail, that is used after the completion of the
original algorithm, to speed-up the verification of the result. In [Sullivan et al., 1995]
and [Bright and Sullivan, 1995] it is described how certification can be performed
for some usual problems, like for instance, sorting of elements in a list. They also
compare certification with other techniques.

This technique can detect faults that affect the execution of the algorithm and
the verification differently, i.e. the detection coverage is dependent on how diverse
the verification is from the execution of the algorithm. The error detection latency
will be the time from that the fault occur until the verification has finished and the
number of unnecessarily detected faults is also dependent on how the verification is
performed. This technique does not offer information that can be used for accurate
diagnosis. The overhead is the additional computations (time) and memory required.

A.3 Signature Checking

Signatures are used to trace the control flow of the program execution. In most
cases, the signatures are instructions inserted in the program by the compiler to
indicate legal control flows. At run time, a monitor (implemented either in hardware
or software) calculates signatures and compares them with the stored signatures in
the program. If they are different. an error has been detected.

The earliest suggested signature techniques were based on compiler-hardware
solutions (e.g, in [Mahmood and McCluskey, 1988] different designs of signature
checking are surveyed, [Wilken and Shen, 1990] derives the coverage-dependence

A.3. Signature Checking 167

on the implementation., and, [Ohlsson and Rimén, 1995] describes one possible im-
plementation). The problems with these solutions is that the monitor is implemented
in hardware, thus the recurring cost is increased. Furthermore, it can be hard to han-
dle modern architectures including out-of-order execution, cache memories, branch
prediction etc.

signature

new signature

instr i

embedded
signature

signature

error-signal

comparison

monitor

instr i+1

signature

new signature

instr i

embedded
signature

signature

error-signal

comparison

monitor

instr i+1

Figure A.2: Example of error detection using signature checking.

However, recent solutions have been compiler-software solutions. These so-
lutions are not affected by the hardware architecture, e.g., [Alkhalifa et al., 1999],
[Bagchi et al., 2001], [Oh et al., 2002(A)].

Another complication is interrupts, i.e., events forcing the microprocessor to
halt the present execution and execute specific interrupt routines. This mean that the
control-flow is abruptly and significantly changed. Also here software-based solu-

168 A Survey of Error Detection Techniques

tions seem to have an advantage as each task will have individual signatures which
only are updated when the task is executed, i.e., which are not affected if other in-
structions are executed. However, one related drawback with software-implemented
assertions is that if an error occurs, it cannot be guaranteed that the signature is
checked, i.e., the error could result in that the signature checks never are executed,
and thus, the error is not detected.

The detection coverage for this technique depends on how the signatures are
calculated. If the signature is calculated based on the instruction codes, the coverage
will be very high, but this requires specific hardware since commercial components
does not utilize this. Software implementations generally have reduced coverage
since the checking has to be based on more sparse information.

A.4 Self-Tests

Self-tests are tests implemented in hardware and/or software to test some specific
component of the system. Traditionally they have been used for detecting develop-
mental faults after production, but self-tests could also be used for detection of faults
during system start-up and operation. However, in such cases where they are used
during system operation, they must be designed so that they will not affect the nor-
mal operation. Therefore, it is hard to implement tests for all sensors and actuators,
but it may be cost-efficient to use tests for microprocessors and/or communication
controllers that are not fully utilized and run them during their idle time.

In [Steininger 2000], hardware BISTs are surveyed. The detection of dormant
faults through BISTs is analyzed, in [Steininger and Scherrer, 1999]. The design of
BISTs for TTP ([Kopetz and Grunsteidl, 1994]) controllers is discussed in
[Steininger and Temple, 1999] and [Steininger and Vilanek, 2002].

Self-tests for digital signal processors (DSP) cores using the existing hardware
of the DSP is suggested in [Radecka et al., 1997]. In [Nicoladis, 1995] BIST and
self-testing are merged to give high coverage with a decreased hardware overhead.
Similar ideas are presented in [Gupta and Pradhan, 1996] where the BIST is utilized
for implementing on-line checkers.

Software-implemented design of a self-test for microprocessors is described in
[Shen and Abraham, 1998]. In [Batcher and Papachristou, 1999] a similar method is
described. In [Talkhan et al., 1989], instructions are divided into classes after which
errors they will detect. This means that not all instructions need to be executed
when testing the processor. Also [Paschalis et al., 2001] and [Chen and Dey, 2001]
presents methods for testing microprocessors with software implemented tests. De-

A.4. Self-Tests 169

sign of Software-Implemented Self-Tests for on-line detection of errors is also dis-
cussed in Appendix C.

CUT

Test pattern generator

O
utput data com

pactors

test controller

MUX

Input data

D
M

U
X

O
utput data

Enable test

Error-signal

CUTCUT

Test pattern generatorTest pattern generatorTest pattern generator

O
utput data com

pactors

test controller

O
utput data com

pactors

test controller

O
utput data com

pactors

test controller

MUX

Input dataInput data

D
M

U
X

O
utput data

Enable test

Error-signal

Figure A.3: Error detection using Built-In Self-Tests (BISTs).

This technique is used for detection of persistent faults in the computer nodes
and the coverage is dependent on how long the test is, i.e. how many test-vectors
that are included. The error detection latency is dependent on how often the test
is run and the overhead is the time required for running the test and the memory
for storing it. If the circuit already contains a hardware Built-In Self-Test (BIST)
for detection of developmental faults, the overhead may be reduced. The diagnosis
accuracy can be high (especially for BIST) since it is possible to control which parts
of the hardware that should be tested.

170 A Survey of Error Detection Techniques

A.5 Double Execution

Double execution means that a program is executed twice with the same input data.
Then the results from the executions are compared. Different implementations are
surveyed in [Askerdal et al., 2000]. In [Aidemark et al., 2003] analysis of which
errors can be detected are performed (some of the analysis can be found in Ap-
pendix B). In [Rimén, 1995] and [Ohlsson and Rimén, 1995] double execution is
implemented and the error detection coverage evaluated through fault injection sim-
ulations.

In [Johnson, 1989], different time redundancy approaches for detection of er-
rors caused by both transient and permanent faults are surveyed. The techniques
for detection of errors caused by permanent faults are based on introducing diver-
sity by computing the second execution with the complement of the input data, with
shifted operands, or with swapped operands, etc. Diverse programs are created in
[Lovric 1996] by the use of different compilers, mathematical rules, force of differ-
ent register usage, etc. Then, both versions are run after each other and the results are
compared. The purpose of using diverse versions is to increase the error detection
coverage for permanent faults.

In [Aidemark et al., 2002], tasks are double executed, but if an error is detected
and no hard deadlines are violated, the task is executed a third time and a majority
decision on which result to deliver is taken.

In [Rotenberg, 1999], a modern simultaneous multithreading microprocessor
running double execution as two threads separated with a certain time interval, is
described. It also utilizes that information about branch prediction etc. from the
first thread can be reused be the second thread to reduce the execution time. This
technique has been followed up in a number of different papers. A survey of these
can be found in [Lai et al., 2002].

A technique where the instructions are duplicated by the compiler is described
in [Oh et al., 2002(B)]. Here no hardware modifications are necessary, but the in-
structions can still be scheduled to utilize the architecture of super-scalar processors
to reduce the time overhead.

This technique detects errors that affects the two executions differently (i.e.
mostly transient faults) and that not prevent the result comparison. The overhead
is the additional execution time caused by the second execution (not necessarily >
100% [Rotenberg, 1999]) and the comparison and the error detection latency is the
time from that a fault occur until next comparison, i.e. dependent on how often the
task is interrupted to start the second execution. If a fault is detected it can be as-
sumed that the fault occurred in the microprocessor or the communication controller,

A.6. Diversity 171

but better diagnosis accuracy than so is hard to achieve.

result 1EX. 1 EX. 2 result 2

result 1 = result 2
?

result 1EX. 1 EX. 2 result 2

result 1 = result 2
?

Figure A.4: Error detection using double execution.

A.6 Diversity

That faults can be detected through diversity has been known for a long time, but
[Avižienis and Chen, 1977] was one of the first attempts to design diverse software
in order to tolerate software faults. The main idea is to divide different (diverse)
programs that should provide the same function. Assuming that these fail indepen-
dently, errors can be detected by comparing their results. However, research has
indicated (e.g., [Littlewood and Miller, 1989], [Feldt, 1999]) that software fail de-
pendently even if it has been designed independently. Moreover, as the software
overhead is large, this technique may significantly increase the fault intensity. This
also means that the time overhead is large.

One way to reduce the software overhead is to achieve diversity through the
input data rather than the software itself, i.e., use diverse input data. This technique,
called data diversity is discussed in [Ammann and Knight, 1988], [Bishop, 1993],
and [Christmansson et al., 1998]. Generally, in these studies, several errors were
detected, but the coverage is very application and fault dependent. It is also hard to
compare results produced from different input data.

As described in Appendix A.5, diversity has also been applied to detect errors
caused by hardware faults.

A.7 Hardware Replication

By comparing results from replicated units, errors caused by any faults can be de-
tected, if not all units are affected by the dame fault (for instance developmental
faults). It is important that the replicated components are synchronized and fed with

172 A Survey of Error Detection Techniques

exactly the same input data to be able to perform a correct comparison (error mask-
ing through voting, N-Modular Redundancy (NMR), [Pradhan, 1996], [Yeh, 1996],
has the same problem). Another problem is how to determine which of the units that
is erroneous and how the comparison should be performed.

In [Scobie et al., 2000], a fault tolerant design of a brake by wire system using
hardware replication, is described. For fault diagnosis (isolation), duplicated sys-
tems (DUPLEX) need some additional test to determine which of the units that was
erroneous. In [Feick et al., 2000] a similar steer-by-wire system is presented.

In order to detect crash failures, on single oscillator circuits, the "I’m alive"
message protocol, see [Pradhan, 1996], [Dimmer, 1985], was introduced. With this
technique messages are transmitted between different computer nodes with even,
predetermined time intervals. If a message do not arrive punctual, an error is as-
sumed to occurred.

The overhead is the hardware for replication of components and the comparer
and the time to compare. Even if the approach is capable of detecting all types of
faults with high coverage, the technique is often considered to be expensive due to
the cost for the additional hardware. The error detection latency is the time from the
fault occurs until the results from the two units have been compared.

unit 1 unit 2unit 1

comparator

unit 2

Figure A.5: Error detection using hardware replication.

A.8 Watchdog Timers

When the execution time of an event (e.g. task) is known, timers can be used to
monitor it, i.e. so called watchdog timers. For instance, consider an event, i, that
will take place at least every 12ms. To check this property a timer could be set for
12ms (an additional safety marginal may be added) and reset when the event takes
place. If the timer reaches 12ms an interrupt is generated to indicate that an error

A.9. Coding 173

has occurred. This technique is often used to detect incorrect execution order inside
the microprocessor and/or the communication interface of the computer node.

One important issue to consider is that if the monitored component and the timer
itself is clocked with the same oscillator, they will have a common failure point.
Often oscillator faults are considered to be very unlikely, but if the fault intensity is
to high, replicated oscillators can be used or timers on another computer node (and
thus running with another oscillator) can be used by the transmission of so called
"I’m alive" messages, see Chapter A.7.

In [Miremadi et al., 1995], a technique based on watchdog timers for monitoring
the execution order of a microprocessor is described. A watchdog timer is imple-
mented as a "bus guardian" in [Temple, 1998] to secure that the communication
controller does not transmit data on the communication bus at incorrect times.

The detection coverage is very dependent on how predictable the execution times
of the monitored tasks are. The detection latency depends on the time interval be-
tween the events. The overhead is the required execution time for setting the timer
that should be low (watchdog timers often exist on-chip so no additional hardware is
required). The number of unnecessary detected errors is low since most control-flow
faults are harmful and the false alarm rate will generally be low. It is hard to achieve
diagnosis with high accuracy.

A.9 Coding

Coding means adding redundant bits for representing data values. Just adding bits
would result in that the bit combinations in the interval [max value+1, max bit pat-
tern] would be invalid, i.e., never naturally arise. However, by intelligently trans-
forming all combinations, the invalid combinations can be spread so that faults for
instance resulting in bit-flips will with high probability result in an invalid combina-
tion and therefore be detectable.

1 0 0 1 1 0 1 1 1

parity bit

1 0 0 1 1 0 1 1 1

parity bit

Figure A.6: Even parity bit coding.

Coding can be used to detect any errors affecting data. However, coding of

174 A Survey of Error Detection Techniques

data transformations (i.e., arithmetic and logic operations) is often very costly, and
thus, it is in most cases only used to secure stored or transferred data (e.g. on the
communication bus).

One of the simplest and most used coding techniques is parity coding, see Fig A.6.
Parity coding adds one bit (the parity bit) to the data value to indicate if the number
of ones in the data value is even or odd. The code word is validated by checking
that the parity bit and the number of ones (odd or even) agree. This code detects all
single errors.

The dual-rail code takes the information bits and takes the complement of them
and adds the complement as check bits, and thus, detects all errors with exception
for those that booth changes an information bit and the corresponding check bit.
This code will need more than a duplication of the hardware.

The Berger code is an optimal separable unordered codes, i.e. the information
and check bits can be separated and a code word can not be transformed to another
code word by changing some of its bits from

��� � or by changing some of it bits
from � � �

. So the only way a code word can be transformed to another code word
is by having at least one bit flip from

��� � and at least one from � � �
. This

means that this code will detect all unidirectional errors.
Arithmetic codes with base A are built by either taking the check part equal to

the modulo A of the information bits (separable code) or equal to the product of A
and the information bits (non-separable code). The advantage with arithmetic codes
is that they are preserved through arithmetic operations.

Error detecting and correcting codes such as for instance SEC/DED Hamming
codes, Reed-Solomon codes, BHC codes, etc. are often used for error correction in
memory systems and transmission channels. Cyclic codes, for instance CRC, are
often used for message transmissions in communication systems, [Pradhan, 1996].

In [Elliott and Sayers, 1990] a 32-bit RISC, using a Hamming code for error
detection and correction was designed. All single faults with exception for faults
on the input latches to the ALU were detected. The hardware overhead needed
was 112% and the processor had a performance-loss of 50% compared to the same
processor without the error detection capability.

In [Lo et al., 1992] a technique for designing a strongly fault secure ALU using
the Berger code is presented. This article also demonstrates that a self-checking
processor can be designed by just using the Berger code. If the ALU operation can
be overlapped with the check symbol evaluation of the last instruction the extra delay
time for using this type of ALU is negligible. The hardware overhead is less than
100% for the total self-checking processor.

In [Maamar and Russel, 1998] an implementation of a 32-bit RISC processor

A.10. On-Line Monitoring of Reliability Indicators 175

using Dong’s code (a modified Berger code) for error detection is described. The
approach presented in [Lo et al., 1992] is used. The processor is able to detect many
unidirectional errors. As before the extra time delay can be neglected if it is al-
lowed to pipeline the checking part with the next instruction’s ALU operation. The
hardware overhead is said to qualitatively be much less than duplication.

The error detection latency is dependent on how often the codes are checked, but
is in most cases low. The diagnosis accuracy can be rather high and one specific at-
tractive property of coding is that not only can errors be detected, but also corrected,
which reduces the number errors that must be handled with other methods.

A.10 On-Line Monitoring of Reliability Indicators

One way to detect errors in the components is to monitor the current consumed.
Many faults cause abnormal power consumption and can therefor be detected by ei-
ther external sensors or Built-In Current Sensors (BICS). External sensors are much
slower than BICS so for many applications BICS are the only possible solution.
However there are many problems left to be solved for BICS such as, they have to
be as fast as the monitored circuit and still offer good resolution, they must not have
a negative effect on the circuit’s performance and the circuits clock must be slowed
done so that the steady state of the current is measured. To avoid these problems,
periodic monitoring of the current could be used, but this decreases the detection
coverage for transient errors which then must be detected using other methods.

Other parameters can also be used for error detection, such as temperature,
voltage-level for logic circuits, output signal activity and total dose of radiation
[Nicolaidis and Zorian, 1998]. However, these are more difficult to measure effi-
cient, so they can so far only be used as complement to other methods.

This technique detects faults in the computer nodes and the coverage is depen-
dent on where at the circuit the faults occur. The coverage that can be reached is
generally not high enough for safety-critical systems so it can only be used as a
complementary technique. However, the number of unnecessarily detected errors is
usually low. The error detection latency is the time from the fault occurrence until
a high enough erroneous current is produced so that an interrupt is generated. This
time is generally low. The overhead is the sensor for measuring the current. It is
hard to achieve diagnosis with high accuracy using this technique.

176 A Survey of Error Detection Techniques

A.11 Summary

In this appendix, different error detection techniques have been described. To sum-
marize, it is not only the coverage of an error detection technique that is of interest,
but also detection latency, number of unnecessary alarms, diagnosis accuracy and
overhead. Table A.1 shows approximate quality estimates of these properties for
the different described techniques. It should be emphasized that these estimates are
rough and are very dependent on the implementation of the error detection tech-
nique.

A.11. Summary 177

Table A.1: Rough qualities of different error detection techniques.

Technique Targeted
Errors

Overhead Coverage Unnecessary
Alarms

Latency Diagnosis
Accuracy

Functional
Redun-
dancy

Data Errors Time,
Memory

High Few-
Several

Short-
Long

Bad-
Medium

Executable
Assertions

Data Errors Low
Time,
Low
Memory

Medium-
High

Few-
Several

Short Medium-
Good

ABFT Data Errors Time,
Memory

High Few-
Several

Short Bad

Certification Data Errors Time,
Memory

Medium-
High

Few Short-
Long

Bad

Signature
Checking

Control-
Flow Errors

HW, Low
Memory
or Time
Memory

Medium-
High

Few Short-
Long

Bad-
Medium

Self-Tests Data Errors Time,
HW or
Memory,
Time

Medium-
High

Few-
Several

Short-
Long

Medium-
Good

Double Ex-
ecution

Data Errors Long
Time,
Memory

High Few-
Several

Short-
Long

Bad

Design Di-
versity

Data (De-
sign) Errors

Long
Time,
Large
Memory

High Few-
Several

Short-
Long

Bad

Data Diver-
sity

Data (De-
sign) Errors

Time Medium-
High

Few-
Several

Short-
Long

Bad

Hardware
Replication

All Types
Except
Design

High HW High Few-
Several

Short-
Long

Bad-
Medium

Watchdog
Timers

Crash
Failures
and Control
Flow Errors

Short
Time,
Low
Memory

Medium-
High

Few-
Several

Short-
Long

Bad

Coding Data Errors Low
Memory

High Few Short Medium-
Good

Monitoring
of Re-
liability
Indicators

Data Errors HW, Low
Memory

Medium Few Short-
Long

Bad

178 A Survey of Error Detection Techniques

Appendix B.
Analysis of Double Execution

Double execution, i.e., executing a task twice and comparing the results of the two
executions, is a commonly proposed error detection technique based on time redun-
dancy. Most previous research has only considered which transient errors that can
be detected. However, in this appendix an attempt is made to estimate the detection
coverage for errors caused with varied duration. The reasons for this investigation
are:

� The occurrence rate of persistent faults can be expected to increase (see, Chap-
ter 2).

� Double execution is a cost-efficient error detection technique considering re-
curring costs, i.e., no additional hardware is necessary, which makes it desir-
able to use for many systems.

� For fault diagnosis it is important to know which faults that can generate errors
that are detected by a certain error detection technique.

A first approach for estimation can be found in [Askerdal et al., 2000] which was de-
veloped further in [Aidemark et al., 2003] and [Aidemark and Askerdal, 2003] from
which the rest of this appendix is fetched.

Double execution detects all faults that will make the results of the two execu-
tions differ, i.e., generates a data error in the result. Considering a transient fault,
such a fault will only generate a data error that can affect one of the two executions
unless it occurs in a signal/variable/etc. that is stored and not updated between the
executions. This means that most data errors generated by transient faults will be
detected. Moreover, this fact is valid for all faults with shorter duration than the time
to execute the task once1.

1Tasks can be divided into smaller parts of which the first part first is executed twice and the
results compared. Then is the second part double executed and so on until all parts have been double
executed. For this division, all faults with shorter duration than the time to execute one part once will
give different results, and thus, be detected.

179

180 Analysis of Double Execution

It should be noted that transient faults can generate errors in internal states that
not directly affect the result. However, if the states are updated separately for the
two executions, these errors will eventually be detected when they affect the result (if
the result never is affected by the error, the error is not likely to have any significant
effect on the system either). To shorten the detection latency of such errors, internal
states etc. can also be compared between the executions.

Whether the two executions will generate different results for persistent faults
is dependent on where in the execution the fault occur, and when (if) it is activated.
The probability for a data error, caused by a persistent fault, to be detected will be
analyzed in the next section.

B.1 Detection of Data Errors Generated by Persistent Faults

In this section, the probability for errors caused by persistent faults to be detected
for a processor executing a single task first will be analyzed. Then, the analysis will
be extended to execution of several, non-preemptive, periodic tasks, and finally are
preemptive and sporadic tasks discussed. The assumptions for which the analysis
are valid are:

� A1: The probability that a fault occurs is evenly distributed over the Least
Common Multiple time (LCM) of the periodic tasks, i.e., the time until the
task schedule is repeated. As the Least Common Multiple time often is com-
parably low compared with the Mean Time To Failure (MTTF), this assump-
tion is generally valid.

� A2: The time to execute the one instruction is considered negligible com-
pared to LCM. This assumption is used in order to in the analysis neglect the
instruction executing when the fault occurs.

� A3: If an error is generated, it will result in an incorrect result. This im-
plies that no error masking is considered. In [Aidemark et al., 2003], errors
were seldom masked. However, only a simple workload was investigated so
whether this assumption is valid also for more complex workloads needs to be
further verified.

B.2 A Single Double Executed Task

As stated in the previous section, double execution detects errors if the two execu-
tions produce different results. This can only happen for a persistent fault it occurs

B.2. A Single Double Executed Task 181

after the first execution and before the second execution has finished. This implies
that errors caused by developmental faults will not be detected (if identically the
same task is re-executed).

An example of a single double executed task, � # , is shown in Figure B.1. The
time redundant replicas are denoted � #�� � and � #�� � respectively. When the task has
been executed twice, the results are compared and then the microprocessor is idle
until the next invocation of the task.

TA,1

 x1 x2 x3

T2 T3 T4 T5 T6

 x1' x2' x3'

T1

 x1 x2 x3

TPeriod

T7

Comparison TA,2 TA,1 Time

Figure B.1: A single double executed periodic task.

The � � , � � and � � represent one specific instruction that is executed three times
in the task. The �

� � , �
� � and �

� � is the repeated instructions in the second execution of
the task. The time intervals � � to � � represent the intervals between the executions of
the instructions. The time to execute the actual instruction is considered negligible.
The probability that an error is detected depends on the point in time a fault occurs
and the probability that a fault is activated.

First, let
�
�

denote the probability that a fault occur in a certain time interval � � .
Using assumption A1,

�
�

can be computed as:

�
�
� � � � �

� ��� � � � � �
�
� � (B.1)

where, � � is the length of time interval � , � is the total number of periods, and �
� �

is in this case is equal to the period time of the task.
Second, let

�
� � denote the probability that a fault is activated when a certain

instruction � � is executed.
�

� � can then be calculated as:

�
� � � � � � � � ��� �	� � � � � �� (B.2)

where � is the number of possible inputs for the specific instruction and � ��� � � � � � � �
is
�

for the inputs that did not activate the fault and � for the inputs that activated the

182 Analysis of Double Execution

fault. Note that different subsets of the � possible inputs may be used for different
executions of � . The use of each subset must then be considered as a different
instruction.

Let
�

�
� ��� � be the total probability that a fault is activated by any of several exe-

cutions of a specific instruction � . The probability
�

�
� ��� � that the fault is activated

can be derived for two subsequent executions of instruction � , � � and � � , as:

�
�
� ��� � � � � � � ��� � ��� � ��� � ��� � � � � ��� �	��� ��� � � � � �
� � � ���!� ��B����� � � � � ��� � � � �

� � � � � � ��� � � � ��� �B����� ��B� ��� � � � ��� � � � � � � ��� � � � ��� �B����� ��B� ��� � � � ��� � � � �
Since we assume A3, i.e., that no errors is masked, the probability of activating

a fault in instruction � � is independent of the probability of activating a fault in
instruction � � , � �

� ��� � , and can be expressed as:

�
�
� ��� � � � � � � � � � � � ���!� ��B����� � � � � ��� � � � � � � � � � � � � � ���!� ��B����� � � � � ��� � � � � �

which can be generalized to:

�
�
� ��� � � � � � � � �

� � � � � � � �
� � �E� � � � � � � �

�

�
� (B.3)

where � is the number of repeated executions of instruction � .
Using equations B.1 through B.3, the probability for detecting an error in the

example given in Figure B.1 can be derived: If a fault occurs during time interval � �
or � � it can never be detected since it will always affect � #�� � and � #�� � in the same
way. However, if the fault occurs during time interval � � , errors will be detected if
the first instruction of � #�� � (�

� � in Figure B.1) activates the fault. Thus the proba-
bility that an error is detected,

� � � � (where D is the set of detected errors), can be
computed as

� � � ��� � � � � �
� � , where

� � is the probability that a fault occurs in
time interval � � , and

�
�
� � is the probability that a fault is activated when executing

instruction �
� � .

Deriving
� � � � for the remaining time interval � � or �	� in the example in Fig-

ure B.1 is done in the same way, i.e.: If the fault occurs during time � � , the error
will be detected if either the first and/or the second instruction of � #�� � (�

� � or �
� � in

Figure B.1) activate the fault which gives
� � � � � � � �
� � � � � � �

�
� � � �
� � � �

�
� � � � .

For ��� there are three possibilities that the fault can be activated (by �
� � , �

� � or �
� � in

Figure B.1),
� � � � � �

� � � � � � � � �
�
� � ��� � � � �

�
� � �5� � � � �

�
� � � � . At � � there are

again only two possibilities that the fault is activated differently between � #�� � and� #�� � (by �
� � or �

� � in Figure B.1),
� � � � � �

� � � � � � � � �
�
� � � � � � � �

�
� � � � , and

during ��� there is only one (�
� � in Figure B.1) ,

� � � � � �
� � � �

� � .

B.2. A Single Double Executed Task 183

We assume that the probability that an instruction � activates a fault is constant
for all executions of the instruction, i.e.

�
� � �

� � � �
� � � �

� � . This is
reasonable if the same subset of the � possible inputs is used for each execution of

� (see equation B.2). The total probability,
� � � � � , of detecting an error generated

by a persistent fault for one task can then be computed as:
� �

� � � � � � � � � � � � �
� �

� � � � � � � � � � � � � �
� � � � (B.4)

Equation B.4 can be generalized for an arbitrary number of time intervals to:

� � � � � �
�� � ��� ��1����� �� ��

�
� �
���

� � � � �
�
� � � � � � � � � � �

�
���	

� � ��� � � � � � � � � � � � � � � � ��� �E� � � � � (B.5)

where � is the number of intervals (in this case
�

for � � to � �). Note that the number
of intervals � is always odd since the number of instructions always is even as the
tasks are executed twice.

If a set, � , of different instructions each activate a certain fault, the probability
of detecting the fault,

� � � � is the probability of the union of the detected faults for
each instruction

� � � :

� � � � � �

�
�
�

� �

�
�

(B.6)

This can be explained by the following example. Consider a fault that can be
activated by two different instructions � and � and that a task containing one instruc-
tion of each is executed. The probability for activating a fault with each instruction
is
�

� , and
� � respectively. The instructions are distributed in the task according to

Figure B.2.
Using equation B.5, the detection probability for each instruction,

� � � � � and� � � � � , can be computed as:
� � � � ��� � � � � � � � � � � � (B.7)

� � � � ���
� � � � � �

�
� � � � (B.8)

As we assume that all generated errors will result in an incorrect result, A3, the
probability of activating a fault in instruction � is independent of the probability of

184 Analysis of Double Execution

 x y

T2 T3 T4 T5

 x' y'

T1

Comparison
Time

Figure B.2: A double executed task containing two multiply instructions.

activating a faults in instruction � . This implies that the total probability, ������� , can
be computed according to equation B.4 as:

�������
	�������������������������������������� ���!�#"$� �%�&��'��(�#" (B.9)

Inserting equation B.6 and B.7 in B.8 gives:

�������
	��)���*�+�#�&�����,"$��������(���-����" (B.10)

Since:

�/.��*�102�,"(34	������5���%�&�)���5"$����6.��*�172�5"(3 (B.11)

and �����5��� and �����,"8� are independent i.e.:

� . � � 79� ":3 	��)��� � �������� " � (B.12)

Then we need to show that:

�����5�+��(�����5"$�1	����������-�(�#" (B.13)

Inserting equation B.7 and B.8 in the left hand side of equation B.12 and using
the information that �;� , �� and ��' are mutually exclusive, i.e. (the time intervals< � , < � and

< ' do not overlap), thus � � �$� � 	6= , � � �:� ' 	6= , � � �:� ' 	6= and that���?>A@B>C�D	E� , thus, informally, ��F��8�#F�	G��F , the right hand expression of equation
B.12 corresponds to the left: �����H�+�I�J�����,"$�1	K����$�J�����,���8�J���+�I�?�����8�J�#"��A��'+�J���+�1	���������L�(�#"

B.3. Verification of the Analysis 185

B.2.1 Multiple Periodic Tasks

There may be several double executed tasks in a schedule. The probability of detect-
ing errors generated by persistent faults can thereby be estimated based on all double
executed tasks in the interval where all periodic tasks are invoked at least once. This
interval is called the Least Common Multiple time (LCM) [Leung and Whitehead, 1988].
This means that for such tasks, the detection probability for all tasks in the LCM in-
terval can be computed from the equations in the last section as:

� � �
 � � � � � � �
�
� � ��

�

� ���
�

�
��� � � � � � � � � � � (B.14)

where ! is the number of double executed tasks within LCM.

B.2.2 Preemptive and Sporadic Tasks

Some systems allow preemption of tasks, i.e., higher priority tasks can interrupt
lower priority tasks and after the higher priority task is finished, the lower priority
task can resume its execution. This means that the time between the instructions
in the lower priority task can increase (a time interval � � can increase), and thus,
the probability of detecting errors will be higher (according to equation B.1 and
B.5). Therefore, the lowest error detection probability is reached when no tasks are
preempted.

If sporadic tasks are considered, there must be enough resources to handle them.
This is often achieved by assuming that a sporadic task cannot be invoked more
often than a certain period time. This means that the LCM time must encompass
the additional time for executing sporadic tasks. The lowest detection probability
is reached when a sporadic task is not executed during the LCM time, then the
processor idles and no errors can be detected during this time period.

B.3 Verification of the Analysis

Verification of some of the assumptions for this estimation approach can be found in
[Aidemark et al., 2003], where fault injection experiments were performed for the
multiplication instruction. The results supported that:

1. Faults occurring after the double execution of a task has finished and before
the double execution of the next task has started, will not be detected.

2. If an error occurs, it is seldom masked by further instructions.

186 Analysis of Double Execution

Further verifications are necessary. However, the most important reason for
adding double execution seems to be for detection of errors generated by faults in
the functional units (ALU, multiplier, etc.) which this initial verification targeted.

B.4 Summary and Discussion

In this appendix, which errors that can be detected with double execution has been
analyzed. As double execution will detect data errors that generate different results
of the two executions, all faults with shorter duration than the time to execute the
task once, generating errors in the result, will be detected.

For faults with longer duration, equations for estimating the detection coverage
were derived. What these equations basically say is that the probability that an error
is detected is binomially distributed �

 � � � � � � � , where � is the number of times an
instruction is executed that may activate the fault, and � , the activation probability
for the specific fault within a certain time-interval.

Even if it can be shown that the detection probability of data errors generated by
persistent faults can be increased by using the equations for scheduling of periodic
tasks, as was shown in [Askerdal et al., 2000], [Aidemark et al., 2003]. However,
this scheduling policy may not always be adaptable (it may for instance increase
the detection latency and response time), and even so, the coverage may not be
sufficient for faults with low activation probability. Even if such faults generally
have less impacts than faults that are activated often, they may still be required to be
detected. Thus, other detection techniques may need to be applied for detection of
errors caused by persistent faults.

Another merit with this analysis is that it shows if an error is detected by double
execution, it cannot automatically be assumed that the cause of the error must have
been a transient fault. Thus, more advanced diagnosis methods are required.

Appendix C.
Self-Test Tasks

In this appendix, the possibility of detecting data errors caused by persistent faults
with software-implemented self-tests is discussed. The idea is only outlined and
evaluations are needed to estimate the efficiencies of the proposed tests.

In Chapter2, the functional units of modern processors were identified to be one
of the most vulnerable spots of a microprocessor, and thus, need to be protected. As
hardware replication is costly for systems that are manufactured in large numbers,
and it is complicated to protect these units with coding, other solutions would be
preferable.

For mass-market products, it is important to restrict the recurrence costs. In that
sense, error detection techniques based on time redundancy are preferable as they
do not generally require any additional hardware, (in Appendix A error detection
techniques based on different types of redundancy are surveyed). For detection of
data errors caused by transient faults, double execution is an efficient technique, but
for faults with longer duration (persistent faults), double execution may not be so
efficient (see the analysis in Appendix B) if not diverse programs are used or the
program executed on diverse units. However, diversity introduce some problems:

� The number of generated errors may increase due to the diversity.

� It can be hard to diagnose which type of fault that caused the error. That is,
how can errors generated by transient faults be separated from errors caused
by persistent faults?

� The fixed cost may be increased, since several versions of the program need
to be developed.

� It can be hard to estimate which detection coverage that can be reached, as the
efficiency of diversity generally is dependent on the specific hardware plat-
form.

� The solutions may not be portable.

187

188 Self-Test Tasks

Due to these reasons, we propose to use software-implemented self-tests instead.
Previous online test approaches has mainly been based on on-line Built-In Self-

Tests (BISTs), since software self-tests has been considered too slow. However, we
challenge this viewpoint due to the following reasons:

� The tests do not need to detect persistent faults in the entire microprocessor,
but can be focused to the functional units (see Chapter 3). This reduces the
required test length drastically.

� Unlike manufacturing testing, on-line testing is not aimed to detect all existing
faults, but to avoid data errors to be activated in such rate that a system failure
could occur (for instance, it was discussed and shown in Chapter 4 that many
transient data errors are tolerated by control systems).

� BIST solutions require support from the manufacturing company and implies
a switch between normal execution and executing the BIST which is a poten-
tial safety risk. This is not the case with software-implemented tests as these
are executed as normal tasks.

Thus, in the continuation of this appendix, ideas on how to design software-
implemented self-tests are developed.

C.1 Design of Software-Implemented Self-Tests

We visualize a software-implemented self-test to consist of a certain number of dif-
ferent instructions with different input data. Therefore, designing a test implies
defining which and how many instructions, that should be included, which input
data to use for these instructions, and how often the test should be executed. The
more often the test is executed and the more combinations of instructions and input
data that are used, the higher will the error detection coverage be. On the other hand,
the time-overhead for executing the test will increase.

One way of balancing the coverage and overhead is to split the execution of the
test in parts in between which the “normal” system tasks can be executed. In such
case, the tests can be run during the processor idle time. However, dividing the tests
in parts requires that partial results are stored which increases the overhead.

Now, different ideas on how to select the instructions, the number of instructions
(the length), input data, and execution interval for the test will be discussed. Finally
the possibility to auto-generate tests is discussed.

C.1. Design of Software-Implemented Self-Tests 189

C.1.1 Test Instructions

The instructions of a program determine which operations that are performed. There-
fore, by determining which type of instructions that should be used, the test can be
focused to certain operations, i.e., specific parts of the hardware.

A major difference between testing and fault tolerance is that testing is aimed to
detect as many faults as possible, whereas fault tolerance, in order to save resources,
should only detect those faults that could harm the system. Therefore, as a first
selection, it seems to make sense to only use instructions in the test that are also used
by the safety-critical tasks of the system, i.e., the test is focused to the operations that
are used by the application.

Another selection strategy that we propose is to only use instructions utilizing
the functional units. The reason for this is that, as discussed in Chapter 3.6, persistent
faults in other parts of the microprocessor will in most cases behave as correspond-
ing transient faults, and thus, be detected by the same error techniques. However,
the behavior of faults in the functional units are dependent on their duration (see,
Chapter 5.2.1). Furthermore, these units are some of the least protected parts of a
microprocessor, [Mendelson and Suri, 2000].

To summarize, we propose to only use instructions that utilize the functional
units, and that also are used by the safety-critical tasks of the system.

C.1.2 Input Data

Most instructions require input data, i.e., on which data the operation of the instruc-
tion should be performed. For instructions utilizing the functional units, which we
in the previous section identified to be the most suitable target for self-tests, input
data is generally numbers.

The overhead for using a large number of input data is not only the execution
time, but also the memory for storing the input data and the predetermined (golden)
results for comparison with the online computed results. One way to reduce the
data that need to be stored is to link instructions so that the output data from one
instruction is the input data for the next instruction and so on. In this way, ideally,
only one pair of input data and one result need to be stored. However, this makes it
harder to divide the test in several parts and there is also the possibility that faults
that are activated once, are masked by a later executed instruction.

As was discussed in the previous section it is preferable to only test operations
that are performed by the real system tasks, and thus, input data outside the specified
value space of the system should be avoided. However, for many systems, the valid
value space is large.

190 Self-Test Tasks

One way to adapt the test to the data used by the application is to use the same
data. The problem with this is that the result of an operation cannot be determined
in advance, i.e., off-line. One solution is to let the test consist of executing the
application program backwards. In this way, the test starts with the output data of
the application and computes the input data which then can be compared with the
original input data. As an example of this, take a simple task (e.g., most control
algorithms consist of simple computations) that computes: �*� � � � �
� � � � � . Then
the test program would take � as input data and compute: � �1�	� � �
 � � � � �
� � � �
 � � � � �

,
and compare the computed � �

with the original input data � .

Another idea is to use diversity as suggested in Ref. [Lovric 1996]. An example
of this is to compare computations with shifted data as for instance that � � �

should
equal �1� � � � � � � �
 � .

C.1.3 Test Length

The test length is the total number of instructions of the test. In order to determine
this, first, which instructions that are necessary to include should be determined, for
instance as was done in Chapter C.1.1. Second, it is necessary to determine how
many times each instruction should be included in the test. Assuming that faults
activated once will not be masked by further test instructions, and that the proba-
bility to activate a specific fault is uniformly distributed over the input data space.
Then, the probability of detecting a fault (i.e., activating a fault) with the test will be
binomially distributed �

 � � � � � � � where � is the number of instructions that can
activate the fault included in the test, and � is the estimated average probability that
the fault is activated when one such instruction is executed once. This means that
the probability,

�
� � � for detecting the fault when the instruction is executed (with

different input data) � times is:
�

� � � � � � � � � � �

�
.

To illustrate which coverage that can be reached under these assumptions for
different faults (different �) and different test lengths (different �), the function has
been plotted in Figure C.1. As can be seen, quite high coverage can be reached
with short tests for faults with high activation probability. To detect faults with low
activation probability, longer tests are needed. However, it is important to note, the
impact of faults with low activation probability may not be severe. Therefore, they
may not be necessary to detect. (methods for estimating the impact of faults with
different activation probability were presented in Chapter 4 and 5).

C.1. Design of Software-Implemented Self-Tests 191

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of instructions that can activate the fault

P
ro

ba
bi

lit
y

fo
r

th
e

fa
ul

t t
o

be
 a

ct
iv

at
ed

 a
t l

es
t o

ne
 ti

m
e

P(x)=0.1
P(x)=0.3
P(x)=0.5
P(x)=0.7
P(x)=0.9

Figure C.1: The relationship between test length and error detection coverage of
self-tests.

C.1.4 Test Interval

As was discussed previously, in order to reduce the time overhead for the test, it can
be desirable to divide it into several parts, where a part ideally is executed when the
processor else would be idling. However, dividing the test can increase the detection
latency and the number of data that need to be stored.

For tests that execute application tasks backwards and tests based on diversity,
more time is required to spend on comparing the results. However, such tests are
generally easier to divide, and thus, are simpler to fit into applications with really
hard deadlines.

C.1.5 False and Unnecessary Alarms

As has been mentioned several times already, the test can be focused to those in-
structions and input data that are used by the safety-critical tasks in order to reduce
the overhead. However, this strategy will also imply that less faults with no or lim-
ited impact will be detected. This is valuable in order to utilize the resources of the
system in the best and safest way.

192 Self-Test Tasks

To reduce the unnecessary alarms even more, and false alarms (for instance due
to round-off errors), one can allow small differences between the in advance com-
puted (golden) result and the result computed on-line. However, if the test sequences
before comparison is long, it may be hard to find a suitable acceptance level.

Moreover, to differentiate errors caused by transient faults affecting only the
test execution, from errors caused by persistent faults possibly affecting the system,
the test can be double executed, i.e., executed two times and the results compared.
However, this will significantly increase the time overhead.

C.1.6 Summary

In this appendix, we have proposed to use software-implemented self-tests for detec-
tion of persistent faults in the functional units. These tests should be designed to only
contain instructions that are used by the functional units and by the safety-critical
tasks of the system. Furthermore, the amount of data that need to be stored for the
tests can be reduced by linking the instructions so that the output of one instruction
is used as the input to the next, and so on. Another alternative is to use the same
data as the application tasks by either computing the application task backwards, or
to use tests based on diversity.

We also suggest that the detection coverage of the test can be estimated through
the binomial distribution with the activation probability of the specific fault, and
the test length (i.e., the number of instructions) as parameters. By considering that
faults with high activation probability are more likely to be detected and that faults
with low activation probability generally have lower impacts on systems, it should
be possible to find a suitable test length.

In order to reduce the time overhead for executing the test, the test can be divided
into parts, and if possible, executed when the processor else would be idling.

As the test is focused to the parts that are utilized by the safety-critical tasks,
the risk of unnecessary alarms should be low. Specifically, the test can be double
executed to distinguish between errors caused by transient and persistent faults.

Looking at the design process of self-test tasks, it should be possible to automate.
First, which instructions the test should consist of can be determined by compiling
the safety-critical tasks and identifying all used instructions utilizing the functional
units. Second, when the desired coverage is specified, the number of instructions
needed can be computed through the binomial distribution. Third, the test can be
divided into parts with suitable sizes and scheduled in the system as any other task.

Appendix D.
Control Theory

D.1 The Closed-Loop System

Let

� ��� � � � � �� � ��� � ����� � �����
� ��� � � � � � ����� (D.1)

with � � � ���
, �� � � ����� ���

, ���$� � ����� �
, and

�
�$� � �	� ���

be an arbitrary state
realization of the process subject to control. Combined with the controller (4.2) this
yields the closed-loop system

 ��� � � � � � �
 ��� � ��� �
	� � �	�
��� � ��
�

��� �� � " � ��� � ����� �� � " � ����� (D.2)

����� � � � �� �
 ����� (D.3)

� ����� � � �� �
 ����� �����
	 �	� ����� � " � ��� � (D.4)

with

 � � ��

� � and

 � � �
�
�� ����� � � � � ��� �

� � � � � � ��	� � �
�
��� � �
	
� �
	 �

��� �� � �
� �
� � � ��� �� � �

�
���
� �

� �� � ��
 � � ��� � �� � ��
 � � � � � �
(D.5)

193

194 Control Theory

where � � is the
�
:th column of the unit matrix � � � � � � . The impulse-responses from

the computation-errors "�� ����� and " � ����� to the process output ������� are

� � ��� � � � � � � � �

� �� �
� ���� � ��� �� � � � � �

� � ��� ��� � � � � � �

� �� �
� ���� � ��� �� � � � � �

(D.6)

The process output-responses to the disturbances " � and " � are now described by

������� �
�� �� � � � � � ��" � ��� � � �

� ��� � �
�� �� � � � � � ��" � ��� � � �

(D.7)

respectively. The sensitivity functions
�
� � � � � � �� � � � � � � � � ��� ��� �� �

�

� �
� � � � �� � � � � � � � � ��� ��� �� � (D.8)

are the � -transforms of the impulse responses, and describe the frequency responses
from " � and " � to the output � . Evaluation of the sensitivity functions at

� � �
���

���
,

where � � is the sampling time, gives the stationary response of the closed-loop
system for pure sinusoidal inputs " � ��� � � ���	� ����
 � � � and " � ����� � ���	� ���
 � � � as
������� � � �

� �1�
���

��� � � ���	� ����
 � � ����� � � � � �3�
���

��� � � � and ����� � � � �
� �1�

���
��� � � ���	� ����
 � � ���� � � � � �3�

���
��� � � � respectively. Please refer to [Åström and Wittenmark, 1997] for

more details.

D.2 The Brake-Slip Controller

The wheel-slip is the normalized relative velocity between the rotating wheel and
ground:

	 � � ��
 � � �
 � , where � is the wheel radius,
 the wheel angular velocity,
and � the speed of the car. The braking force of a wheel is proportional to the wheel
slip for

� � 	��
�

� � � , as ��� ��� � ��� 	
, where � � is the normal load on the tire and���

is a tire-stiffness parameter. A simple quarter-car model of the slip dynamics is

�
 �
� 	 � � �
� � � 	 � � �����
 ��� � � � � (D.9)

D.2. The Brake-Slip Controller 195

with � � ����� � ���
 ��� , � � �
 � , where � is the car mass, and
�

is the wheel
inertia. The braking torque � � � � � is described by the actuator dynamics

� � � � � � � �� � � � � � � � ��� � � � � � (D.10)

Combining Eq. (D.9) and Eq. (D.10), and discretizing with zero-order-hold (ZOH)
sampling with period � � results in the second order open-loop system Eq. (4.7).

Numerical values used in the example are � � ��� m/s, � � ����� � kg,
� � � �

kgm
�
, � � � � � m,

��� � �
, � � � ����� �

N, � � � � � � kgm/s
�
, � � � � � � � s, and

� � � � ��� � .
A RST-controller [Åström and Wittenmark, 1997] is designed to obtain a closed-

loop system with poles in a Butterworth pattern with
 � � � ��� rad/s and opening
angle

��� �
. The controller includes integral action. An observer pole is introduced at�
 � � . A modal form state-realization of the controller is found in Eq. (4.8).

196 Control Theory

Appendix E.
The VHDL-code for a Saboteur

library ieee;
use ieee.all;
type v1 is array (1 to 2) of real;
type v2 is array (1 to 32) of real;

ENTITY saboteur IS
PORT (
insmul1: IN BIT_VECTOR(15 DOWNTO 0);
insmul2: IN BIT_VECTOR(15 DOWNTO 0);
outmul: IN BIT_VECTOR(31 DOWNTO 0);
outsab: OUT BIT_VECTOR(31 DOWNTO 0);
sab_act: IN BIT;
prop_prob: IN real;
fault_mod: IN integer;
seed: IN v1;
xfault_prob: IN v2;
bit_prob: IN v2
);

-- insmul1, insmul2 and outmul are the inputs and
-- outputs to/from the multiplier.
-- outsab is the output signal from the saboteur.
-- sab_act is the activation signal for the saboteur
-- (0 => off, 1 => on).
-- prop_prob is the set fault activation (i.e., error
-- genaration) probability for the simulated fault.
-- fault_mod determines how signals are activated
-- (0 => stuck-at-0, 1 => stuck-at-1, 2 => bit-flip).
-- seed contains the inital seeds for the

197

198 The VHDL-code for a Saboteur

-- random number generator in the saboteur.
-- xfault_prob is the set probability for multiple
-- bit errors.
-- bit_prob is the set probabilties for an error
-- should occur in a certain bit.

END saboteur;

ARCHITECTURE behaviour OF saboteur IS
BEGIN

PROCESS(outmul,sab_act)
FUNCTION bit2int(bv: in bit_vector) return integer is
-- This function converts bit_vectors to integers.

VARIABLE result:integer:=0;
BEGIN

FOR index in bv’range LOOP
IF bit’pos(bv(index))=1 THEN

result:=result*2+1;
ELSIF bit’pos(bv(index))=0 THEN

result:=result*2;
ELSE

report "not a bit_vector";
END IF;

end LOOP;
RETURN result;

END FUNCTION bit2int;

CONSTANT inmax:real:=real(2**16);
CONSTANT ranmax:real:=real(2147483397);
CONSTANT ranmin:integer:=1;
-- inmax is the maximum value of each of the
-- inputs of the multiplier.
-- ranmax and ranmin is the max respectively min
-- seeds that can be used for the random generator.

199

VARIABLE slump,slump2,slump3,fr1,fr2,test1,test2:real;
VARIABLE s1,s2:integer;
VARIABLE outtemp:bit_vector(31 downto 0);
VARIABLE counter:integer;
VARIABLE c2:integer;
VARIABLE i:integer;
VARIABLE hit:bit_vector(1 to 32);

BEGIN
IF sab_act =’1’ THEN
-- If the saboteur is not activated (sab_act=’0’)
-- the output from the multiplier is just fed through.

fr1:=(ranmax/inmax)*seed(1)*real((bit2int(insmul1)+1));
fr2:=(ranmax/inmax)*seed(2)*real((bit2int(insmul2)+1));
s1:=integer(math_real.floor(fr1))+ranmin;
s2:=integer(math_real.floor(fr2))+ranmin;
math_real.uniform(s1,s2,slump);

-- The saboteur is activated so a random number between
-- 0 and 1 is generated using the multpliers inputs
-- and the experiment specific numbers (seed) as seeds.

outtemp:=outmul;
IF slump > prop_prob THEN

-- Determines whether the error should propagate or not.
-- If the random number, slump, is bigger than the set
-- control signal prop_proban an error should be
-- generated.

counter:=1;
i:=1;
hit:="00000000000000000000000000000000";
test1:=xfault_prob(counter);
math_real.uniform(s1,s2,slump2);
WHILE slump2 > test1 LOOP

counter:=counter+1;
test1:=test1+xfault_prob(counter);

END LOOP;

200 The VHDL-code for a Saboteur

-- Determines in how many bits of the output the error
-- should manifest itself in according to the
-- distribution given by the set control signal:
-- xfault_prob

WHILE i <= counter LOOP
math_real.uniform(s1,s2,slump3);
c2:=1;
test2:=bit_prob(c2);
WHILE slump3 > test2 LOOP

c2:=c2+1;
test2:=test2+bit_prob(c2);

END LOOP;
IF hit(c2)=’0’ THEN

hit(c2):=’1’;
i:=i+1;

END IF;
END LOOP;

-- Determines in which bits of the output the error
-- should manifest itself in according to the
-- probability distribution given by the set
-- control signal: bit_prob

CASE fault_mod is
WHEN 0 =>

outtemp:= outtemp and (not hit);
WHEN 1 =>

outtemp:= outtemp or hit;
WHEN 2 =>

outtemp:= outtemp xor hit;
WHEN others =>

report "not a fault mode";
END CASE;

END IF;
-- Determines how the error should manifest.
-- Fault mode 0 => stuck-at-0
-- Fault mode 1 => stuck-at-1
-- Fault mode 2 => bit-flip

201

outsab <= outtemp;
else
outsab <= outmul;
END IF;
END PROCESS;
END behavior;

202 The VHDL-code for a Saboteur

