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Summary

Operating Systems (OS’s) constitute the operational core for computing de-
vices. In order to facilitate their applicability to a variety of hardware platforms,
OS’s have evolved into complex componentized software entities whose key func-
tion is to provide applications access to the system resources. Fundamentally, the
provided system services inherently depend on the stability of the underlying OS.
Within the OS, the key components that dominate the cause of OS failures are the
device drivers (DDs), precisely the OS parts designed to enhance the OS’s sup-
port for hardware. Despite intensive efforts to elevate the DDs’ robustness level by
employing varied test paradigms, the existing testing approaches still exhibit very
high failure rates. Hence, the central premise behind this thesis involves the char-
acterization of the DD’s operational profile, and using it for focusing subsequent
testing to the functionality areas likely to be exercised over the DD deployment.

This thesis develops two novel and distinct methodologies to capture and an-
alyze the operational profile of DDs. The first – termed as the operational profile
(OP) – is based on the characterization of the I/O traffic between a selected DD
and the rest of the OS kernel. The second – termed execution path profile (EPP) –
observes the functional calls made by the respective DD in the operational phase,
thus revealing the code paths followed at runtime. Both presented approaches are
directly applicable to DD binaries as they do not require source-code level access
to any of the involved OS components.

This thesis develops the concepts and methodology for effectively profiling the
operational behavior of DDs. First, a state model is introduced for describing a
DD and its complete state space. Experimentally, we show that the DD’s oper-
ational state space (OSS) – the subset of states visited at runtime – represents a
only small fraction of the total state space, thus highlighting the areas to be tested.
Subsequently, occurrence- and duration-based quantifiers are defined for each of
the DD states belonging to the OSS. This enables test prioritization and workload
comparisons which are the key factors for testing. This conceptual process’s ef-
fectiveness is tested using extensive case studies including over fifty Windows XP
and Vista DDs.

The developed EPP is complementary to the OP as it discovers execution
hotspots as frequently traversed DD code paths. To highlight the execution
hotspots, a DD monitoring and code path analysis methodology is presented and
tested using actual Windows DD’s. Code paths are identified as call sequences
to kernel functions implemented externally to the selected DD. String similarity
metrics are used to compute the relative similarity among the inferred code paths.
Based on likeness, the code paths are grouped into equivalence classes helping
identify execution hotspots. These hotspots constitute primary targets for testing.

Overall the thesis develops novel profiling approaches for testing generalized
OS’s. The research is also validated on actual Windows XP and Vista OSs.
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Kurzfassung

Betriebssysteme (BS) bilden den operativen Kern eines jeden Computers. Für
eine einfache Anwendbarkeit auf verschiedenen Hardware-Plattformen haben sich
BS zu komplexen, aus Komponenten bestehenden Software-Einheiten entwickelt,
deren Hauptaufgabe darin besteht Anwendungen Zugriff auf Systemressourcen zu
ermöglichen. Grundsätzlich hängen die bereitgestellten Systemdienste inhärent
von der Stabilität des unterliegenden BSs ab. Die Komponenten, die innerhalb
eines BSs die dominierenden Verursacher von Ausfällen des BSs sind, sind die
Gerätetreiber, genauer gesagt die Teile des BSs, die entwickelt wurden um die
Hardware-Unterstützung des BSs zu verbessern. Trotz intensiver Anstrengun-
gen das Robustheitsniveau von Gerätetreibern durch Anwendung verschiedener
Testparadigmen zu heben, zeigen existierende Testmethoden nach wie vor äußerst
hohe Fehlerraten. Die Charakterisierung des operativen Profils von Gerätetreibern
und dessen Anwendung während der Entwicklung von Gerätetreibern zum ziel-
gerichteten Testen von mit hoher Wahrscheinlichkeit aufgerufenen Funktionen
bildet den Kernbeitrag der vorliegenden Arbeit.

Die vorliegende Arbeit beschreibt zwei neue Methoden um ein operatives Profil
von Gerätetreibern zu erstellen und zu analysieren. Die erste Methode — opera-
tional profile (OP) genannt — basiert auf der Charakterisierung der Ein-/Ausgabe-
Kommunikation zwischen einem ausgewählten Gerätetreiber und dem Rest des BS-
Kerns. Die zweite Methode — execution path profile (EPP) genannt — verfolgt die
vom entsprechenden Gerätetreiber während der Betriebsphase gemachten Funk-
tionsaufrufe, wobei die zur Laufzeit durchschrittenen Pfade im Code aufgezeigt
werden. Beide vorgestellten Ansätze können direkt auf die ausführbaren Dateien
von Gerätetreibern angewendet werden, weil kein Zugriff auf den Quellcode einer
beteiligten BS-Komponente benötigt wird.

Die vorliegende Arbeit präsentiert Konzepte und Methoden zur effektiven Pro-
filierung des operativen Verhaltens von Gerätetreibern. Zunächst wird ein Zu-
standsmodell eingeführt um einen Gerätetreiber und den kompletten Zustand-
sraum zu beschreiben. Wir zeigen mit Hilfe von Experimenten, dass der opera-
tive Zustandsraum (die Teilmenge von Zuständen, die zur Laufzeit besucht wer-
den) eines Gerätetreibers nur einen kleinen Anteil des gesamten Zustandsraums
ausmacht und somit die Gebiete im Zustandsraum hervorhebt, die vornehmlich
durch Tests abgedeckt werden müssen. Anschließend werden für jeden Zustand
des Gerätetreibers Quantifizierer, basierend auf dem (zeitlichen) Auftreten des
Zustandes, definiert. Dies ermöglicht Priorisierung von Tests und den Vergle-
ich von Arbeitslasten, welche die Schlüsselfaktoren für genaues und angemessenes
Testen sind. Die generelle Effektivität des gesamten Prozesses wird anhand
von ausführlichen Fallstudien, die mehr als fünfzig Windows XP und Vista
Gerätetreiber umfassen, erprobt.

Das EPP, welches ebenso in dieser Arbeit vorgestellt wird, ist komplementär
zum OP weil es Ausführungs-Hotspots in Form von häufig durchschrittenen
Pfaden im Code auffindet. Um solche Ausführungs-Hotspots hervorzuheben wird
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eine Methode zum Monitoring von Gerätetreibern und zur Code-Pfad-Analyse
präsentiert und an echten Windows-Gerätetreibern getestet. Code-Pfade werden
als Sequenzen von BS-Kern-Funktionsaufrufen charakterisiert, die außerhalb des
gewählten Gerätetreibers implementiert sind. String-Ähnlichkeitsmetriken werden
herangezogen um die relative Ähnlichkeit zwischen den abgeleiteten Code-Pfaden
zu bestimmen. Die Code-Pfade werden, basierend auf Wahrscheinlichkeiten, in
Äquivalenzklassen unterteilt um das Identifizieren von Ausführungs-Hotspots zu
erleichtern. Solche Hotspots bilden primäre Ziele für das Testen.

Zusammenfassend entwickelt die vorliegende Arbeit neue Profilierungsansätze
zum Testen allgemeiner BS. Die Forschungsarbeit wird an den realen Betriebssys-
temen Windows XP und Windows Vista validiert.
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Chapter 1

Introduction and Problem
Context

Why are device drivers an important source of OS-related fail-
ures despite sustained test efforts and what can be improved?

The diversity of computational entities and services is proliferating. Ex-
amples range from tiny embedded systems acting as nodes in wireless sensor
networks and ubiquitous mobile phones and PCs to powerful server clus-
ters used by Internet companies such as Google, Amazon or Ebay with each
utilizing specific software (SW) applications.

As it is not viable to develop new operating systems (OSs) for each entity,
a componentized approach is increasingly used with commercial-off-the-shelf
(COTS) OSs chosen as key building blocks of such systems, and acting as
mediators between the hardware parts and the installed SW applications.
Such OSs are transparent to the users and their main function is to provide
the services enabling the SW applications to perform their tasks in a correct,
timely and reliable manner.

The OS interface to the hardware is represented by device drivers (DDs).
They are often implemented as add-on components to the OS kernel, and
are responsible for handling the I/O operations with the hardware. With
hundreds of devices that can be attached to each ordinary computing system
(about 250 DDs in a regular Windows XP or Vista installation [Mendonca
and Neves, 2007]), the DD code represents a significant share of the total
OS code. For example, in Linux about 70% of the total lines of kernel code
belongs to DDs [Swift et al., 2005].

Unfortunately, the large size of DD code combined with the rapid feature-
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2 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

driven development cycles often implies limited DD testing coverage. Con-
sequently, DDs are released still containing undetected defects, thus leading
to overall OS outages in the operational phase. The generalized OS failure is
caused by the direct and un-restricted interaction of faulty DDs with critical
OS kernel structures. These observations are confirmed by results of the OS
reliability research community, from multiple independent [Ganapathi et al.,
2006], academic [Albinet et al., 2004; Arlat et al., 2002; Chou et al., 2001;
Durães and Madeira, 2003; Swift et al., 2005] and industry [Murphy et al.,
2006; Simpson, 2003] results.

While multiple, sophisticated test approaches (applicable in various stages
of a DD’s development life-cycle) exist, the community continues to witness
OS failures generated by insufficiently or inadequately tested DDs. Most
testing approaches (formal, statistical or random-based) aim at exploring
the full DD operational state space. The immense state space size natu-
rally precludes complete testing to be viable due to testing time and cost
issues. Hence, parts of the DD often remain un-tested by design, and defects
inherently arise post-shipment as the DD’s broad functionality is executed.

Our approach to improve DD testing is not to target the generic full state
space but to identify specific subsets of DD code that are actually executed
in operational mode of the DD, i.e., DD operational profiles. Hence, these
“actual” operational modes constitute areas to focus testing on.

Consequently, this thesis addresses the problem of highlighting the oper-
ational DD states by monitoring the communication interfaces of the black-
box level DDs within the OS kernel. Using the I/O traffic obtained through
monitoring, an operational profile of the targeted driver is built and is sub-
sequently used to ascertain the subset of the total DD state space which re-
quires focused testing. While being completely non-intrusive, the presented
methods help the selection of relevant test cases and define the actual test
space that needs to be covered. Existing test campaigns benefit from our
DD operational profiles by adopting a prioritized coverage of the operational
states, enabling faster discovery of the defects likely to occur in the field.

This chapter presents the general DD testing problem context alongside
with a discussion of its causes. The main ideas driving the research in this
thesis are also introduced here and refined as a set of conceptual and exper-
imental research questions. A brief summary of the thesis contributions is
also presented in this chapter.
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1.1 Operational Profiling: A Prerequisite for

Accurate and Adequate Testing

This section introduces the context of the OS robustness problem and dis-
cusses why DDs continue to constitute an important cause of OS failures
despite significant advancements in OS testing research. Subsequently, we
explain why current DD testing paradigms are inadequate. Our central ideas
for improving DD testing via operational phase profiling are discussed, to-
gether with defining the constraints the solution must observe in order to
ensure general applicability.

1.1.1 OS Complexity – Between Necessity and Burden

Initially, computing systems were designed for dedicated tasks with tightly
controlled resource management. For instance, in batch systems the main
computation task and the I/O functions were physically decoupled (running
on separate machines). Due to the fact that powerful machines were ex-
pensive, a mainframe (responsible for actual computation) was seconded by
several, inexpensive machines (responsible for reading punched cards, writ-
ing onto magnetic tapes and printing). Such systems did not have a holistic
OS; the task of organizing the jobs and feeding the cards and tapes was the
responsibility of human operators of the batch system.

The later development of multiprogramming marked the appearance of
OSs as we now know them. Multiprogramming allows computers to load
multiple jobs into memory, permitting a job to use the CPU while other jobs
are waiting for I/O to complete. The CPU utilization was thus enhanced
while minimizing the required operator intervention. This was the primary
job of a simple program loaded onto the computer, called operating system.
The OS’s task was to manage the attached I/O devices and the jobs stored
in memory, and to decide which one to run next when the current job blocks
for I/O.

The continual evolution of hardware formed a dominant catalyst for OS
development. The appearance of faster CPUs, larger and faster storage
(available at cheaper costs), fostered the establishment of the OS role as a me-
diator between the user and the available hardware resources. The develop-
ment of new input devices (i.e., mice), new user interfaces (i.e., GUIs) paral-
leled the advent of novel, innovative OS concepts and mechanisms like multi-
tasking, multi-processing or later, multi-threading. Thus, the OSs slowly
became transparent to the users, who could therefore concentrate on system
applications instead of directly being aware of the existence of the OS and
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hardware characteristics of the used machine. The more automation offered
by the OS, the more overhead was offloaded from the user of the computing
system. For reference, many well established books like [Tanenbaum, 2001]
or [Silberschatz et al., 2004] discuss in depth the OS history and multiple
other OS-related aspects.

Unfortunately, the continual addition of new features and support for
new peripherals also introduced more defects in the code associated with the
OS, proving to be a two-edged sword in terms of computer reliability. The
program code associated with the OS itself increased tremendously, current
OSs containing tens of millions of lines of code. For instance, [Amor et al.,
2005] summarizes the work presented in [Wheeler, 2000, 2001] and lists the
total lines of source code in millions (MSLOC) for several Linux distributions
(see Table 1.1). As the presented research reflects the situation in 2005 for
the listed Linux distributions, it is interesting to note the authors’ observa-
tion that “Debian total size (both in MSLOC and in number of packages)
is doubling every two-three years”, this observation highlighting the actual
trend.

Table 1.1: The evolution of GNU/Linux OSs in terms of lines of code
(adapted from Amor et al. [2005]; 1 MSLOC = 106 lines of code).

Distribution Name Release date MSLOC

Red Hat 5.2 April 1998 12
Red Hat 6.0 April 1999 15
Red Hat 6.2 March 2000 17
Red Hat 7.1 April 2001 30
Red Hat 8.0 September 2002 50
Red Hat 9.0 March 2003 53
Debian 2.0 July 1998 25
Debian 2.1 March 1999 37
Debian 2.2 August 2000 59
Debian 3.0 July 2002 105
Debian 3.1 June 2005 (est.) 229
Fedora Core 2 May 2004 67
Fedora Core 4 (pre.) May 2005 76

Other popular COTS OSs have comparable sizes in terms of lines of code
and also follow the same trend towards a significant size increase from version
to version. For instance, the Apple’s OS X v10.4 (code-named “Tiger”, also
an UNIX-based OS) released in April 2005 is evaluated at 86 MSLOC [Jobs,
2006]. Summarizing the data from various sources such as [Maraia, 2005]
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and [Hiner, 2008], Table 1.2 lists approximate values for different versions of
Microsoft Windows.

Table 1.2: The evolution of Microsoft Windows OSs in terms of lines of code
(adapted from Hiner [2008]; Maraia [2005]; 1 MSLOC = 106 lines of code).

Product (Release Name) Release date MSLOC

NT 1.0 (Windows 3.1) July 1993 4–5
NT 2.0 (Windows 3.5) September 1994 7–8
NT 3.0 (Windows 3.51) May 1995 9–10
NT 4.0 (Windows 4.0) July 1996 11–12
NT 5.0 (Windows 2000) December 1999 29+
NT 5.1 (Windows XP) October 2001 35–40
NT 5.2 (Server 2003) April 2003 50
NT 6.0 (Windows Vista) January 2007 50+

Logically, code testing was increasingly used to avoid shipping code con-
taining errors despite the increasing size and complexity of SW. In his book,
Glenford Myers defines SW testing as “the process of executing a program
with the intent of finding errors” [Myers, 2004]. According to this definition,
to systematically find the errors present in a program a tester should execute
the program in all possible ways, that is, cover all possible execution paths.
While this task might seem trivial when using proper testing tools, reaching
100% coverage even for very small programs is difficult (if not impossible
[Kaner et al., 1999]).

Myers provides an illustrative example for the effect of program complex-
ity on testing [Myers, 2004, chap. 2, pp. 11–12]. The “10- to 20-statement
program” used as an example has approximately 1014 possible execution
paths, generated by few loops and branches in the program code. To cover
all of them, a testing strategy that needs only one second to test each path
would finish in 3.2 million years, an obviously unrealistic task.

Given the immense size and inherent complexity of the code base of actual
OSs, and starting from the premise that 100% coverage is idealistic for testing
it in reasonable time, OS testers customarily resort to various abstractions
to reduce the test space they need to cover. Such abstractions (i.e., decisions
on which program parts need to be rigourously tested and which not) are
usually based on tester’s personal expertise and rules-of-thumb. Also, in or-
der to remove the human variable from this equation, (semi-)automatic test
paradigms which test at random were developed. While proving their appli-
cability and effectiveness to various test scenarios, such practices often leave
large parts of the program un-tested, leading to program releases containing
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defects likely to be reached only in the operational phase of the respective
program.

Moreover, a situation specific to COTS OSs is the limited amount of
resources for testing. As in many commercial products, OS projects often
have to limit themselves to the available budgets, size and experience of
personnel (developers) and deadlines. Under such circumstances, sometimes
OS components have to be released on the market even before the test cycle
initially planned is finished, irrespective of the reached coverage level.

Beside the effects of the OS size and complexity on testing, a related
aspect is its robustness, defined as “the degree to which a system or com-
ponent can function correctly in the presence of invalid inputs or stressful
environmental conditions” [IEEE, 1990]. In order to provide the specified
level of service to the users of a computing system equipped with an OS even
in the presence of perturbations, modern OSs have to cope with the effects
of failures generated by various entities. Among these entities which are po-
tentially faulty and the OS has to mask or withstand their failures are user
applications, OS components, hardware components and even inexperienced
users. In the following, we attempt to explain why device drivers are still
faulty despite sustained test efforts.

1.1.2 Faulty Drivers Despite Testing?

Currently, the largest (and also the most evolving) code part of an OS is its
interface to the hardware devices, as represented by the device drivers (DD).

For a better understanding of the concepts further presented in this the-
sis, a brief description of the functioning of a DD is overviewed. Figure 1.1
illustrates the role of the DD in the mechanism for performing I/O, as typ-
ically implemented by most of the current COTS OSs. An I/O request is
issued by an user application to the kernel of the OS. Specialized structures
of the OS kernel receive the request, and forward it to the responsible DD
(i.e., a “file read” request is forwarded to the hard-drive DD, a “print
file” request to the printer DD, and so forth). The respective DD performs
the necessary activity on the associated device located into the hardware
space (actual file reading or actual printing).

As soon as the I/O activity finishes, the DD forwards the results (content
of the read file or print acknowledgement) to the application that issued the
original I/O request, via the OS structures responsible for preparing the I/O
results in the format expected by the application.

The DDs play an important role on the I/O path acting as mediators
between the OS and the various hardware devices, thus their correct, timely
and reliable provisioning of results is crucial to the user programs.
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Figure 1.1: The role of the device drivers in the I/O path.

Unfortunately, recent research [Albinet et al., 2004; Arlat et al., 2002;
Durães and Madeira, 2003; Ganapathi et al., 2006; Simpson, 2003; Swift et al.,
2005] has shown that DDs constitute a dominant cause of OS failures. In the
following we summarize what we believe to be the main causes explaining
why DDs tend to contain more defects than the OS base:

DD code immaturity: Currently, OS kernels have reached a certain ma-
turity not to be the primary failing component per se. The main reason
is that major changes to kernel functionality occur fairly seldomly and
they are incremental – a new version of an OS often being an exten-
sion of the previous one. The functionalities proved to perform well in
the past version are usually kept. Instead, nowadays many new DDs
are produced everyday (as 3rd party offerings) to support the ever-
increasing volume of hardware peripherals, leading to an immense pool
of immature DDs on the market. The error reporting facility of Win-
dows Vista enabled Microsoft’s researchers to estimate the number of
different devices attached to Vista systems to 390000, while the DD
population is fulminant, increasing every day with 25 new and 100
revised DDs on average [Orgovan, 2008].

Inconsistent OS interfacing: As most DDs are built by 3rd party vendors
or by hardware producers and not by the developers of the OS, the
communication interfaces of the DD with the OS represent a key design
attribute, unfortunately also the source of failure. This fact can be
explained by the total reliance of the DD developers on the interface
specifications which are not always complete and correct, leading the
DDs (or the whole OS) to unspecified states [Oney, 2003; Orwick and
Smith, 2007]
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Human factor: DDs are inherently diverse and complex due to their add-
on nature, and consequently are difficult to develop using a standard
architectural basis. Usually, DD development requires teamwork, and
each developer’s experience, style, etc. differs from others’. Hence,
different developers produce code of different quality. This results in
DDs whose parts are heterogenous from the viewpoint of the amount
of defects they contain; also, overall some DDs are more defective than
others [Möller and Paulish, 1993].

Under a feature-driven market pressure, DDs are often released without
exhaustive testing, usually exhibiting a higher defect density compared to
the more mature OS kernel [Chou et al., 2001]. In addition, the sample
of drivers used for testing is often different from deployed systems. Conse-
quently, the coverage obtained from the limited test configurations does not
entirely match the wider spectrum of deployed system configurations.

In addition, the existing testing techniques are often ineffective at reveal-
ing all the defects that a DD contains. In an attempt to understand this
effect, we list below the main reasons we believe that explain the inefficacy
of DD testing.

DD complexity: The DDs installed in a common OS setup account for a
large fraction of code commonly associated with the OS – about 70% in
Linux – leading to tens of millions of lines of kernel code. A direct effect
of this is that the testing techniques must resort to a selection of the
sub-parts of a DD to be tested, as covering 100% of it is unattainable.

DD location: Most of the modern COTS OSs are implemented as mono-
lithic kernels, and faulty DDs are usually installed in kernel space,
where they freely interact with critical OS structures. Hence, a failure
of a DD may lead to a generalized OS failure. General SW testing
tools are inefficient for DDs due to the limited accessibility inside the
OS kernel space, thus warranting special testing approaches.

Black-box approach: DDs are typically delivered as binaries constrain-
ing potential testing campaigns to black-box strategies. While several
testing approaches able to test a program using only its binary image
(without requiring source code access) exist, their application to kernel
DDs is limited as the binaries of the DDs are kept in the kernel memory
area where the access of user-level programs is restricted.

Code coverage: Despite the efforts to cover as much of the DD code as
possible while observing the limitations imposed by various test con-
straints (method, resources, costs, etc.) some DD parts are left out by
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the test process. Unfortunately, these parts are often responsible for
generating most of the failures observed in the field, after DD release.

Test case selection: The process of building and ultimately sampling the
set of appropriate test cases to be applied to the DD from the set of
all available test cases is based on tester’s experience or it is often
done at random, by automatic tools [Whittaker, 2000, 2003]. As the
efficiency of a test campaign is measured by the ratio between found
errors and test costs, such a practice does not always yield optimal
results, important resources are wasted as a result of the unfortunate
choice of test cases.

While our research addresses many facets of the mentioned DD test in-
efficacy arguments, the latter two (code coverage and test case selection)
represent the central focus of the research presented in this thesis, as key
aspects to improving actual DD test paradigms.

1.1.3 Core Thesis Idea: Driver State Space Profiling

On this basis an important consideration is the DD testing under “field”
conditions. While multiple sophisticated static testing techniques for DDs
exist [Ball et al., 2004; Mendonca and Neves, 2007; Nagappan et al., 2005],
the choice of a relevant workload is key to exercising a DD in its actual
operational domain. Although the operational profile of a DD is difficult
to capture and later to reproduce for testing, once obtained it can bring
significant advantages over static testing techniques by identifying the func-
tionalities actually executed, their sequence and occurrence patterns. Using
this valuable information, we believe that subsequent test campaigns can
primarily target code likely to be executed in the field, therefore decreasing
the time required to find the defects with high operational impact. Conse-
quently, developers and system integrators are required to envision workloads
that realistically mimic the manner in which the DD (or the whole system)
will be used [Weyuker, 1998], i.e., the DD’s operational profile. The more
accurate the profile, the more effective a test campaign can be developed to
test the DD state space.

To better illustrate these aspects, Figure 1.2 qualitatively depicts the
total state space of a DD and also its operational space visited by the DD
while executing under the effect of a workload. The operational state space
is obviously a subset of the total state space. As the DD is not fault-free, the
state space contains some parts that are defective. As long as the defective
states are not reached in the field (i.e., do not belong to the operational
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state subset), the DD performs according to its specifications. In contrast,
if a faulty area is exercised at runtime, the obtained operational space will
include it. From this perspective, to ensure a fault-free execution of the DD
at runtime, the purpose of testing is to cover as much as possible from the
total state space as long as the operational space contains no faulty area.

Faults (Defects)

Actual Operational Space

SWIFI Testing

Area A: belonging to SWIFI but

not to the operational profile

Area B: belonging to the

operational profile but not SWIFI

Microsoft Testing
(fault checklists)

Total State Space

Figure 1.2: Total state space vs. operational space and coverage of various
test paradigms

Various test tools cover the DD state space differently, the distinction
being in the method used. While an in-depth discussion on existing test
strategies is presented in Chapter 2, Figure 1.2 briefly illustrates the areas
of the DD state space covered by such test tools.

For instance, SWIFI (SW Implemented Fault Injection – a popular
paradigm used for testing robustness of SW components) injects faults into
the program and then executes it using some workload in an effort to reach
the injection points. Therefore, such a test strategy covers a part of the state
space and this area is determined by the workload used. If this is divergent
from the manner the DD executes in the field, then the adequacy of test-
ing suffers. Such a situation is depicted in Figure 1.2, the area covered by
SWIFI testing is not coincident with the operational space. Hence, while
the SWIFI and the operational space subsets can intersect, two distinctions
exist, namely (see lower part of Figure 1.2):

• Area A: covered by SWIFI but not by the operational space.
Here the test resources were wasted, as the respective states are never
reached in the operational mode;
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• Area B: covered by the operational space but not by the
SWIFI. The defects located in this area have high likelihood to be
reached in the operational phases, though they are not covered by
SWIFI.

In the light of this observation and under the assumption that relevant
DD operational profiles can be captured, we conjecture that testing can be
improved by primarily covering the operational space of the DD-under-test.
Hence, the improvement to existing test paradigms is twofold. First, by
minimizing the area A, the accuracy of the respective test method is enhanced
and valuable test resources are saved. Second, by extending the test area into
covering more of the area B, the adequacy of the test tool is enhanced as it
addresses the subset of the test space actually reached in the operational
phase by the DD-under-test. Subsequently, an ideal test tool would cover an
area of the DD state space which exactly matches its operational space.

This observation is valid for other test paradigms beyond SWIFI. For
instance, Figure 1.2 illustrates the test strategy employed by some DD test
tools from Microsoft (used for acceptance test for Windows DDs) that exer-
cise the state space. Knowing the usual mistakes made by DD developers,
Microsoft builds and maintains pools of common fault patterns. Such pools
are used to build fault checklists that the DD-under-test must pass before
the respective DD can be delivered. Therefore, such tools test very small and
precise subsets of the state space, creating situations when DDs containing
non-standard defects (not present in the fault checklist) successfully pass the
testing phase and are released for mass distribution. Microsoft tries to allevi-
ate this effect by continuously updating its checklists and tools. Also, based
on the failure reporting facility present in later Windows OSs, Microsoft col-
lects and analyzes failures of many Windows computers worldwide, providing
major DD development companies with feedback on how their DDs perform
in the field. This allows for a timely distribution of patched or updated
versions of the problematic DDs [Orgovan, 2008].

In order to translate the concept of operational space into an useful tool
for improving existing test paradigms as described above, a procedural mech-
anism for constructing and distinguishing the operational space from the rest
of the DD states is presented in this thesis.

Focusing on generating operational profiles to guide DD testing, our ap-
proach is based on monitoring the communication interfaces between the OS
kernel and the DDs. At this interfaces, I/O traffic is captured and analyzed
to build a state model of the DD. The state of a DD is represented by the
set of DD functionalities observed to be in execution at specified instants.
The transitions between states are triggered by incoming and outgoing I/O
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requests (from a DD’s perspective). The resulting behavioral model is used
to discover execution hotspots in terms of frequently visited states and fre-
quently taken DD code paths. Also, the introduction of operational mode
quantifiers enables workload comparisons, by accurately measuring the sim-
ilarity of the workload used in the lab against the actual DD workloads, as
captured in the field.

Additionally, being non-intrusive and based on black-box principles, our
framework is portable and easy to implement in DD profiling scenarios where
the source code of OS kernel, workload applications or target DDs is not
available. As an effort to validate the presented theoretical aspects, extensive
empirical evaluations of actual Windows XP and Vista DDs are presented as
case studies.

Overall, the work presented in this thesis focuses on providing a general
operational state profiling framework for DDs. In addition, our work is an
effort towards an improved DD test paradigm and not a test method per se.
Developing a comprehensive stand-alone testing framework is not the intent
of the current thesis though it is a subject of our ongoing research.

1.2 Thesis Targets and Contributions

1.2.1 Thesis Research Questions

The research questions driving the research presented in this thesis belong
to two broad categories. The first one groups the conceptual definitions of
the driver model and the model of the operational behavior of a driver, while
the second one includes investigative questions regarding the experimental
aspects.

Category I: Conceptual Questions

Research Question 1 (RQ1) What are the events defining the operational
state and progress?
Chapter 3 sets up the model used to represent the operational activity
of a DD. The model must observe the limitations of a black-box ap-
proach while not constraining its future enhancement with additional
information obtained from source code insight. At the same time, the
model must be general enough to be representative for as many DDs
as possible, despite the inherent diverse nature of DDs.

Research Question 2 (RQ2): Can the operational states be delimited
from the rest of DD states?
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Chapter 4 raises and answers this research question, while discussing
the various observed aspects, like the relation between the sizes of the
operational state space and the total state space of a selected DD.

Research Question 3 (RQ3): What are the aspects characterizing a visit
of a state belonging to the operational state space?
Chapter 5 discusses the state visit occurrence and duration aspects, as
well as other facets of this problem from the testing perspective. The
more often a operational state is visited, or the longer time is spent in
the state, the more testing importance is associated with the respective
operational state. High operational state occurrence indicates a possi-
ble execution hotspot, while a state where the DD spends longer time
might indicate large amounts of code being executed and, therefore,
a higher probability for a defect to hide in the respective operational
state.

Research Question 4 (RQ4): How different is the field execution of a DD
from the test executions?
The ability to accurately answer this question is a crucial condition
for ensuring the adequacy of testing over the operational behavior of a
DD. If the field execution differs considerably from the execution in the
test lab, then the probability that still uncovered defects will surface
and produce service failures is high, rendering useless all the efforts
and resources spent for performing testing. Chapter 6 discusses these
issues.

Research Question 5 (RQ5): Can hotspots in the DD code be highlighted
to help prioritize testing accordingly? What is the relation of the code-
paths to the operational state model?
Chapter 7 addresses these questions by introducing and then discussing
the conceptual basis and the relevance for testing such hotspots (areas
on the DD highly executed in the operational mode). If access to the
source code is available, then the code-paths represent valuable infor-
mation for other testing-related activities, like debugging for instance.

Category II: Experimental Questions

Research Question 6 (RQ6): How can the DD activity be modeled in the
absence of its source code? How can the operational mode of a DD be
profiled and obtained experimentally?
Further discussed in Chapter 4, these questions are answered by pre-
senting the experimental methodology which was set up to monitor
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and analyze the operational activity of DDs. The presented methods
enable precise bordering of the operational states from the rest of the
DD states.

Research Question 7 (RQ7): How does one differentiate across the op-
erational states of a DD?
Chapter 5 introduces quantifiers for describing the operational mode of
a DD. Based on the occurrence and temporal characteristics of each op-
erational state, the quantifiers enable distinguishing among the states
belonging to the operational mode of the DD.

Research Question 8 (RQ8): How does one compare operational profiles
of the same DD?
Chapter 6 shows how the operational states are quantified and how the
state quantifiers are used for differentiating among multiple operational
profiles of the same DD. This activity is crucial for evaluating the degree
of similarity between the test workload and the field workload in a
quantifiable manner.

Research Question 9 (RQ9): How can the code-path taken at runtime be
inferred without access to DD’s source code? How does one group simi-
lar DD code-paths into equivalence classes and which are the tradeoffs?
Chapter 7 investigates these questions by monitoring and interpret-
ing the information gathered on the functional interface of the DD, in
addition to the I/O interface. Code paths are built and clustered to-
gether on relative similarity. Well established string similarity metrics
are used to express the similarity between any two code paths and to
define similarity classes.

1.2.2 Thesis Contributions

The research presented in this thesis makes several important contributions
for the OS and testing research community. Listed below, the main contri-
butions also enumerate the research questions they help answering.

Contribution 1 (C1) – Driver State Model: A DD model and an as-
sociated profiling technique via I/O traffic characterization inside the
restricted-access OS kernel space are proposed. (RQ1, RQ2, RQ6)

Contribution 2 (C2) – Code Paths: A DD profiling technique based on
the characterization of the OS–DD functional interface additionally to
the I/O interface is presented and evaluated. This reveals the code
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paths followed by the selected DD at runtime, helping the selection of
test cases. (RQ5, RQ9)

Contribution 3 (C3) – Operational Profile Quantifiers: A set of
occurrence- and duration-based quantifiers for accurate DD state pro-
filing and workload characterization are introduced. They help distin-
guishing across the states of the operational profile, allowing for test
prioritization. (RQ3, RQ7)

Contribution 4 (C4) – Execution Hotspots Highlighting I: An exe-
cution hotspot discovery method for black-box DD is presented. This
is assisted by the ranked set of visited states and traversed transitions
belonging to the operational state space of the respective DD. (RQ5,
RQ7)

Contribution 5 (C5) – Execution Hotspots Highlighting II: An al-
ternative expression of the execution hotspots is given in terms of the
equivalence classes of the code-paths traversed in the operational phase.
Such information helps debugging and also indicate locations where
performance tuning is required (such hotspots are execution bottle-
necks). (RQ5, RQ9)

Contribution 6 (C6) – Workload Comparison: A state-based method-
ology for accurate workload comparison is proposed. This enables the
accurate quantification of testing adequacy, and also helps the choice
of testing workloads. (RQ4, RQ8)

Contribution 7 (C7) – Extended Case Study: A large scale case study
for Windows DDs was carried out, employing a large number of differ-
ent DDs and workloads. The profiled DDs belong to several, current
versions of Windows XP and Vista. (RQ6, RQ7, RQ8, RQ9)

Contribution 8 (C8) – Profiling Framework: A flexible and portable
framework including tools for (a) monitoring the runtime activity, (b)
constructing the operational profile of DDs and (c) call-path construc-
tion has been implemented and evaluated in our own and third-party
experiments, validating its applicability and usefulness. (RQ6, RQ7,
RQ8, RQ9)

1.2.3 Publications Resulting from the Thesis

The work reported in this thesis is supported by several international publi-
cations:
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• Constantin Sârbu, Andréas Johansson, Neeraj Suri and Nachiappan
Nagappan, Profiling the Operational Behavior of OS Device Drivers,
submitted to the Empirical Software Engineering Journal, a Special
Issue for ISSRE 2008 best four papers (in review), 2009

• Constantin Sârbu, Nachiappan Nagappan and Neeraj Suri, On
Equivalence Partitioning of Code Paths inside OS Kernel Components,
in Proceedings of the First International Workshop on Software Tech-
nologies for Future Dependable Distributed Systems (STFSSD), Tokyo,
2009 (to appear)

• Constantin Sârbu, Andréas Johansson, Neeraj Suri and Nachiappan
Nagappan, Profiling the Operational Behavior of OS Device Drivers, in
Proceedings of 19th International Symposium on Software Reliability
Engineering (ISSRE), Seattle / Redmond, pp. 127 – 136, 2008

• Constantin Sârbu and Neeraj Suri, On Building (and Sojourning)
the State-space of Windows Device Drivers, State-space Exploration
for Automated Testing Workshop (SSEAT), Seattle, 2008

• Constantin Sârbu, Andréas Johansson and Neeraj Suri, Execution
Path Profiling for OS Device Drivers: Viability and Methodology, in
Proceedings of the 5rd International Service Availability Symposium
(ISAS), Tokyo, in Springer Verlag’s LNCS 5017, pp. 90 – 109, 2008

• Constantin Sârbu, Andréas Johansson, Falk Fraikin and Neeraj Suri,
Improving Robustness Testing of COTS OS Extensions, in Proceed-
ings of the 3rd International Service Availability Symposium (ISAS),
Helsinki, in Springer Verlag’s LNCS 4328, pp. 120 – 139, 2006

1.3 Thesis Structure

The structure of the following chapters follows the structure of the research
questions described earlier:

Chapter 1 presents the background of the problems driving this research,
introduces the research problems and the contributions of this thesis.

Chapter 2 introduces the terminology used throughout the thesis and
surveys the state of the art and practice in the field of validation and verifi-
cation of OS and DDs.
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Chapter 3 presents and discusses the system model and the OS–DD
communication models used throughout this thesis. The model used for
describing the runtime activity of a DD is also introduced in this chapter.

Chapter 4 defines and presents various aspects related to the model of
the operational space and its characteristics.

Chapter 5 defines the quantifiers used to describe the operational modes
of a DD.

Chapter 6 shows the impact operational mode quantifiers introduced in
Chapter 5 for enabling cross-comparisons among operational profiles.

Chapter 7 presents and investigates a methodology that highlights the
paths followed through the DD code, when only the OS–DD interfaces are
monitored (without source-code level access).

Chapter 8 finally concludes the thesis, re-evaluating the value of the
conceptual and experimental contributions. A discussion on the applicability
of the thesis results to different fields of DD testing is provided, alongside
with an outline of the future research directions opened by the novel approach
presented by this thesis.
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Chapter 2

State of the Art and Practice

Why is defining the operational space a critical prerequisite for
software verification and what are the current uses of the oper-
ational profiles?

Generally, fault-tolerance is the ability of a system to provide its specified
services even in the presence of failures of one or several of its components.
A component is considered fault-tolerant if it can cope with internal and
external failures (that is, failures of its internal parts and failures of the
neighboring components). Fault-tolerance is not a binary concept. In the
presence of failures, some systems are able to provide their services at a
degraded level, a situation called “graceful degradation”. Fault-tolerance is a
property particularly sought-after in high-availability, life- or mission-critical
systems but as OSs have become ubiquitous, their tolerance to faults (or
defects / bugs) is an increasingly desired attribute.

As an important basis for the context of the research presented in this
thesis, this chapter starts by discussing the concept of fault-tolerant com-
puting and related aspects. Onwards, different validation and verification
paradigms and tools used in the design and engineering of fault-tolerant sys-
tems (and OS components) are surveyed. Brief discussions on test space
aspects accompany each of the presented techniques. The chapter concludes
with a discussion on several paradigms for operational mode profiling, along-
side with their most prominent applications, both in industrial and academic
environments.

19
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2.1 OSs’ Faults, Errors and Failures

The terms faults, errors and failures are key concepts in the design of fault-
tolerant systems. Being intensively used in different fields of research, these
concepts bear different names. For instance, in SW testing they are col-
lectively called “bugs”. The slight differences and the generally-accepted
translations in five different languages are tackled in the book “Dependabil-
ity: Basic Concepts and Terminology” [Laprie, 1992]. The article on “Basic
Concepts and Taxonomy of Dependable and Secure Computing” defines and
explains the nuances among the three concepts [Avižienis et al., 2004]. As
the work presented in this thesis adheres to the definitions given by Avižienis
et al., we briefly introduce faults, errors and failures as presented in the men-
tioned article.

Faults are anomalies resulting in service deviations (errors). By exercis-
ing the system, a fault can be activated, thus becoming an error. An error
propagates to the outputs of the system and causes a failure (service disrup-
tion). As usually the user of the system primarily observes its outputs, it is
generally considered that a failure is the manifestation of an activated fault.

In component-based systems (often the situation for modern computing
systems), failures spread from one component to another, leading to long
propagation chains. This effect considerably hampers the locating and sub-
sequent fixing of the original fault (this process is commonly called “debug-
ging”).

The error propagation in static SW components was formalized in the
EPIC framework [Hiller et al., 2004], using the PROPANE tool as a study
environment [Hiller et al., 2002]. Johansson et al. redefined the EPIC mea-
sures for OSs and used them to highlight and characterize the propagation
paths allowing faults in DDs to reflect at the user interface in Windows CE
[Johansson et al., 2004]. Subsequently, the insight gained into the propaga-
tion paths was used to improve the robustness testing of Windows CE DDs,
by addressing key aspects related to the effects of error location [Johans-
son and Suri, 2005], type [Johansson et al., 2007b] and activation instant
[Johansson et al., 2007a].

It is important to note that often the fault-tolerance of a system is defined
in terms of the nature of the faults that the respective system can cope with.
Fault-tolerance is not generic, a system is only tolerant to the faults that
it was designed to cope with (under the assumption that its fault-tolerance
mechanisms perform in a correct fashion). Choosing an example from the
field of interest of this thesis, a DD which is tolerant to faults of the managed
hardware device is not necessarily tolerant to faults manifesting themselves
in the DD’s communication interface with the OS kernel. Hence, when dis-
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cussing the fault-tolerance of a system, the fault types which the respective
system is tolerating must be properly specified.

A large body of research on design of fault-tolerant systems is dedicated
to precisely defining faults as a precondition for enforcing tolerance to the
respective faults, called fault modeling. While initially the main focus was on
hardware faults, the advent of SW increased the relevance of SW faults as
source of failures as high as 60% of the faults being SW faults in early 1990’s
Tandem systems [Gray, 1990]. Tandem systems used a number of redundant
processors and storage devices to provide high-speed fail-over in case of a
hardware failure.

As fault-tolerance mechanisms able to cope with all possible faults are
highly desirable but unfortunately unattainable, early identification of the
perturbations that the system will be subject to in the field is crucial. In an
effort towards identifying system failures, large companies collect usage data
about their products. Unfortunately, this activity is subject to extensive
discussions considering the legal and ethical consumer privacy concerns. Mi-
crosoft introduced the “Customer Experience Improvement Program” [Mur-
phy, 2004; Orgovan, 2008] collecting failure reports from computers running
Windows OSs worldwide. The collected information is based on a customer
participation choice and analyzed to better understand the field failures. The
results are subsequently used to improve the fault-tolerance of existing and
future versions of the OS components and applications responsible for the
reported failure.

As the OS acts as a mediator between user SW and hardware devices,
it has to cope with errors coming from both neighboring levels and also
from the various OS-internal components, such as DDs. Following an 1985
study on Tandem outages, Gray reported four main sources for the observed
failures: hardware, software, administration and environment [Gray, 1985].
In Microsoft’s Windows NT, Xu et al. found in 1999 that the main reboot
causes were maintenance activity (31%), SW (22%) and hardware failures
(10%) [Xu et al., 1999]. In the following, we present each of the main classes
of faults affecting the stability of current OSs.

Hardware-related Faults

Hardware-related failures of an OS originate in the physical faults contained
in the hardware of the computing system of which the respective OS is part of.
The hardware failures have internal causes (i.e., production defects, power
transients, aging of the electronic parts, etc.), are the effects of external
interference (i.e., radiation, electro-magnetic fields, etc.) or penetrate the
system via its interfaces (i.e., noisy input lines) [Avižienis et al., 2004].
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To cope with hardware failures, different approaches were taken, at dif-
ferent levels of the computing system. To contain (as much as possible) the
errors generated by malfunctioning hardware to propagate to other hard-
ware or SW parts of the system (for instance to the OS or user applications),
the hardware itself was enhanced with error detection and correction mecha-
nisms. Redundancy was intensively used for this purpose in different forms:
as data redundancy (e.g., cyclic redundancy check (CRC) codes), as spa-
tial redundancy (e.g., redundant communication lines, duplex systems and
TMRs) and as temporal redundancy (e.g., data re-transmissions).

Kao et al. identified several classes of hardware faults and characterized
them from the OS perspective into four classes [Kao et al., 1993]:

1. Memory faults – corruptions of memory cells, affecting both the code
and data regions of the programs loaded in memory;

2. CPU-related faults – corruptions of CPU registers, also the control flow
of running programs was affected, due to corruptions in the PC register;

3. Bus faults – corruptions of the various bus lines and the communication
using the affected lines;

4. I/O faults – corruptions of the hardware peripheral devices.

Another key characteristic of the hardware faults is their persistence.
Some are permanent that is they remain in the system as long as the hardware
part replaced, but some are transient1 their effects completely disappear after
some time.

When the fault-containment mechanisms of the hardware parts of the
computing system fail to restrict the failure propagation to the hardware
boundaries, hardware faults sometimes propagate to SW (and OS compo-
nents). When a hardware error propagates all the way up to the user appli-
cations, the source of the failure is usually difficult to infer due to the long
propagation path, involving both hardware and SW components.

Software-related Faults

Different in nature from the hardware faults, the SW-related faults increas-
ingly attracted the attention of the fault-tolerance community as the role of
SW in computing activities started to grow. While initially the value of SW

1Permanent faults are often called “Bohrbugs” – bugs manifesting themselves consis-
tently, transient faults are called “Heisenbugs” – their manifestation is erratic. Both
Bohrbugs and Heisenbugs can also manifest in SW [Gray, 1985].
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programs was considered insignificant in computers when compared to the
importance of hardware, the balance changed in favor of SW as soon as the
first OSs appeared. Due to much lower production costs, many hardware
mechanisms moved to SW thus also enabling a finer degree of control of the
computer to its users. While the production of hardware parts reached a cer-
tain maturity and thus stability, the SW counterpart witnessed a widespread
development. Soon, the SW defects were reported to cause more system
failures than the hardware (60% of total failures were caused by SW in the
beginning of the 1990’s [Gray, 1990]).

In an effort to characterize SW faults under the IBM’s MVS OS “in
order to gain the insight needed to provide a clear strategy for avoiding or
tolerating them”, Sullivan and Chillarege classified the sources of SW failures,
distributing them into two large groups [Sullivan and Chillarege, 1991]2:

1. Regular – are the “typical software errors encountered in the field” as
type mismatches, uninitialized pointers, synchronization errors, state-
ment logic etc.;

2. Overlay – are “defects that corrupt a program’s memory” spanning
boundary conditions, memory allocation management errors, invalid
pointers, timing errors.

Overlay errors were found to have much larger impact than the regular
defects as they are, by nature, harder to find and fix. Sullivan and Chillarege
also observed that (a) boundary conditions and allocation errors are the most
common defects and (b) most overlays manifest themselves as corrupted data
in small memory locations close to the data intended by the memory update.

In a later study that considered two large database systems from IBM
(additionally to the MVS OS), Sullivan and Chillarege compared defect and
error type, and distributions of error activations under the three mentioned
SW products [Sullivan and Chillarege, 1992].

Further summarizing the observed characteristics of the SW defects,
Chillarege et al. developed a set of seven defect types as the seminal Orthog-
onal Defect Classification (ODC) process [Chillarege et al., 1992]. According
to ODC, the SW defect types are: function, assignment, interface, checking,
timing/serialization, build/package/merge and documentation. Used as a
common reference platform in the SW testing community, many subsequent
test approaches used the ODC classification to formally specify the targeted
defects (for instance, Durães and Madeira [2006]; Johansson et al. [2007a,b]).

2In their work, Sullivan and Chillarege refer the SW defects as “errors”.
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User-related Faults

Xu et al. found that the user-related faults represented 31% of total outages
of a network of servers equipped with Windows NT [Xu et al., 1999]. These
faults were related to improper system configuration and planned mainte-
nance. System configuration faults are defects generated by inexperienced
system administrators, while planned maintenance defects were added to the
system by applying SW updates or by adding patches to existing SW or OS
components. Subsequently, Murphy and Levidow reported similar results
[Murphy and Levidow, 2000], additionally indicating DDs as a significant
source of outages.

The Customer Experience Improvement Program (CEIP) was introduced
by Microsoft to collect rich reliability data from computers running Windows
[Orgovan, 2008]. CEIP allows Microsoft to obtain failure rates and failure
prevalence from hundreds of thousands Windows Vista computers. Accord-
ing to the CEIP published results, application and DD install procedures are
in the top nine sources of Windows Vista failures.

Driver-related Faults

As DDs mediate the communication between user SW applications and the
hardware devices, they have to cope with failures coming from both direc-
tions. For instance, a faulty user application might call in a DD in an invalid
fashion or send it invalid parameters. A faulty hardware device might send
its associated DD malformed or incorrect data. In addition to being toler-
ant to faults coming from external sources, DDs also need to handle their
internal operational defects. Coping with faults from multiple sources and
belonging to multiple types requires DDs to contain complex fault-tolerant
mechanisms.

Unfortunately, as DDs perform their activity as part of the I/O chain
(notoriously slow) and inside the OS kernel (where performance is vital for
providing responsiveness), adding mechanisms to detect and handle errors
at runtime is problematic. Johansson et al. studied the error propagation
mechanics for Windows CE .Net DDs [Johansson and Suri, 2005], observing
that DDs are susceptible to propagating errors leading to severe OS failures.

As DDs are currently add-on components of the OS kernels, they represent
large parts thereof (about to 70% of Linux code [Swift et al., 2005]). Chou
et al. observed that current DDs have error rates three to seven times higher
than other OS components [Chou et al., 2001]. Interestingly, the same source
revealed that some DD-related functions contain more defects than others,
and that newer files have more defects than older ones. This observation
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confirms the research from the area of general SW testing that found that
defects tend to cluster [Möller and Paulish, 1993].

Other authors like Ganapathi and Patterson; Ganapathi et al.; Murphy
and Levidow also found DDs to be the main source of OS failures [Ganapathi
and Patterson, 2005; Ganapathi et al., 2006; Murphy and Levidow, 2000].

The Customer Experience Improvement Program (CEIP) developed at
Microsoft revealed that different types of DDs account for most of the top
500 Vista SP1 OS crashes. Table 2.1 lists their results, as of September 2008.

Table 2.1: Top 500 Vista SP1 OS crashes for September 2008 (adapted from
Vincent Orgovan’s keynote talk at ISSRE 2008, see Orgovan [2008])

Category % Crashes Notes
Networking 12.5 Mostly power management
Display 9.4 Mostly video cards
OS Core 8.6 Kernel 3.3%; USB 3.3%
Application drivers 6.5 Antivirus 3.6%; Malware 1.1%; Firewall 0.5%
Hardware 6.3 General 2.7%; Memory 2.2%; Disk 1.4%
Triage 5.7 Not well classified as of November 2008
Corruption 5.1 Cannot be classified
Storage 5.0 Mostly RAID controllers, some IDE/API
Peripherals 2.6 Mostly personal media players
Imaging 1.7 Camera drivers, USB video
Streaming Media 0.8 Third-party cameras and TV tuners
Audio 0.6 Audio cards and HD drivers
Input 0.5 Third-party mice
Issues Beyond Top 500 34.6 Haven’t looked at many of these

Without being too precise3, Table 2.1 indicates that most of the Vista
SP1 crashes are explicitly related to DDs, some are due to DDs not being
able to cope with failures of the underlying hardware devices, and some are
generated by hardware defects.

2.2 Verification and Validation Techniques

In the process of developing fault-tolerant systems an important aspect is to
determine if if the correct system is designed (validation), and if the system
is correctly designed (verification).

This section briefly presents the main current verification and validation
techniques for SW components. It introduces the background and terminol-
ogy as a basis for the more detailed discussion on the state of the art and

3Microsoft cannot precisely pinpoint the faulty SW and hardware components as they
usually belong to third-party producers.
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state of the practice in validation and verification of DDs which is developed
in Section 2.3.

2.2.1 Verification and Validation of Fault-tolerant SW
Systems

To determine if a SW product meets its requirements (validation) and if the
outputs of the design phases are correct (verification) numerous paradigms
and tools have been developed. Such approaches are used in the development
phases of many SW products, but they are usually applied for fault-tolerant
systems. Without attempting an exhaustive discourse on the base topic of
verification and validation (V&V), we briefly present commonly used tech-
niques in academia and industry.

The verification process encompasses both static and dynamic steps.
That is, often the source code is first inspected (static) and then it is ex-
ecuted against specific test cases (dynamic). In contrast, validation is done
dynamically. For instance, the SW product is (symbolically) executed in
typical and atypical use scenarios.

Some V&V techniques cross the theoretical boundaries between validation
and verification in an attempt to constitute complete solutions for ensuring
the product’s fault-tolerance. Hence, we list below the most common val-
idation and verification approaches, without attempting to strictly classify
them either as validation or verification methods:

• Monitoring and measurements – the behavior of the system is moni-
tored in the operational phase and specific measurements are carried
out to quantify various fault-tolerant attributes of the system;

• Simulation – the fault-tolerant attributes of the SW system (or pro-
tocol) are validated using an artificial environment that emulates field
installations;

• Formal verification – includes theorem proving, model checking and
static code analysis; a model of the system (or protocol) is first ab-
stracted and then used to verify its properties, further discussed in
Section 2.2.2;

• Testing – is performed at different levels (functional, structural, etc.)
and, according to Myers consists in “executing a program with the intent
of finding errors” [Myers, 2004]; testing is further discussed in Section
2.2.3;
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• Fault injection (for hardware or SW) – faults are artificially inserted
into the system with the purpose to validate the correct functioning of
the fault-tolerance mechanisms, is further presented in Section 2.2.4;

The approach presented in this thesis primarily falls into the “Monitoring
and measurements” category, and it is intended as a supporting tool for
existing testing and SW fault injection paradigms. It uses a model of the
DD and develops a state diagram of the operational phase, thus being similar
in some respect to the abstracted system model used by formal verification
methods. To highlight the relation to the mentioned V&V techniques, we
briefly discuss them in the following sections.

2.2.2 Formal Verification

In formal verification a model of the system alongside with powerful math-
ematical techniques are used to express the system’s properties, which are
then verified against its formally expressed specifications.

Formal verification uses multiple techniques to analyze the behavior of the
modeled system. For instance, theorem proving is concerned with proving
that the implementation follows its specification. In theorem proving the
model of the system is expressed as axioms using some mathematical logic
(for instance, λ–calculus) and theorems are inferred using a set of “deduction
rules”. Theorem proving is a powerful technique, but it is difficult to use
because of the task of manually specifying the deduction rules, thus relying
on the expertise of the person using it.

Another widely spread formal verification technique is model checking
[Clarke et al., 2001], which improves on theorem proving by enabling a higher
degree of automation. In model checking the system is modeled using a state
transition diagram (Kripke structure) which is then automatically and ex-
haustively explored by the model checker. Unfortunately, model checking
often suffers from state space explosion4 problems, thus their value being
currently limited to validation of small size systems and protocols. While
attempts to reduce the state space of larger and complex systems and proto-
cols such that they can be handled by model checkers have been done, they
often cannot claim checking completeness against the actual system as only
a subset of the possible states are covered.

Static code analysis is a method performed without the actual execution
of the program with the purpose to identify violations (or inconsistencies) of

4State space explosion manifests itself as a too large state space (all states plus the
transitions among them) to be exhaustively covered in useful time, when the model has a
high detail level.
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the specifications [Nielson et al., 2005]. The analysis is automatically per-
formed by a tool which takes as input either the program’s source code or
object code. The sophistication of the performed analysis ranges from indi-
vidual program statements to complete programs containing multiple source
code files. Static code analysis usually highlights coding errors (e.g., the
Lint tool – Johnson and Johnson [1978]) or mathematically prove program
properties (the SDV/SLAM tool – Ball et al. [2004]). Hayes and Offutt
have used static analysis to infer test cases for helping subsequent testing of
an large-scale industrial SW (Tomahawk Cruise Missile) [Hayes and Offutt,
2006].

Formal methods represent a promising approach for systematic and auto-
matic verification in the context of the current complexity of SW programs.
Unfortunately, their usage is limited to verification of mission- and safety-
critical systems, as their usage usually requires expertise (theorem proving)
or suffer from state space explosion (model checking). More applicable, the
static code analysis used by the SDV/SLAM for the formal verification of
Windows DD is discussed in detail in Section 2.3.

2.2.3 Software Testing

In SW testing, test cases are executed against the program-under-test with
the intent of revealing faults present in the code [Kaner et al., 1999; Myers,
2004]. Test cases define test context (i.e., which part of the program is tar-
geted, the actions that need to be performed to reach the desired part, etc.),
test inputs and the expected outcome (as defined in program specifications).
After the test is executed, the actual outcome is compared with the expected
one. In the case of identity, the respective test case is said to be unsuccessful
(the testing did not manage to reveal a defect).

Many approaches for testing exist, and various test paradigms were devel-
oped for being used in various SW development phases, for testing different
attributes of the software (i.e., usability, security, performance, reliability,
documentation, acceptance). Depending on the choice if the internal struc-
ture (i.e., source code) of the SW is used or not in the testing process, SW
testing is considered to belong to two large classes, namely black-box and
white-box testing.

In black-box testing (alternatively called “data-driven” or “input/output-
driven” testing) the program is viewed as a black box, i.e., the internal
structure is not utilized. Instead, the test process focuses on checking if
the outputs follow specifications for each possible combination of inputs. To
ensure test completeness, the full parameter range of each input line has
to be tested, and also all possible combinations of inputs, too. If one tests



2.2. VERIFICATION AND VALIDATION TECHNIQUES 29

for robustness, values lying outside the specified range of inputs have to be
tested as well.

Unfortunately, exhaustive input testing is hard to attain, as the duration
of the test procedure might be too long to be useful, even when a highly
automated tool is used. Moreover, some programs use internal variables to
decide the control flow (i.e., if branches on internal counter variables). In
such cases black-box testing, being unaware of the internal program structure,
might report erratic outcomes when the same inputs were repeatedly fed to
the system.

In contrast, white-box testing (also termed “logic-driven” testing) consid-
ers the program’s source code as an important source of information about
the structure of the program. In principle, the access to the program’s in-
ternal structure might suggest that complete coverage is achievable, as con-
structing relevant test cases is easier. While reaching 100% code coverage
seems hard if not impossible [Kaner et al., 1999], several levels of code cover-
age were discussed in the testing community in an attempt to establish when
is the right time to stop testing [Dalal and McIntosh, 1994; Huang and Lyu,
2005; Huang and Boehm, 2006; Musa and Ackerman, 1989]. Such exam-
ples include statement coverage (all statements of the code must be tested),
branch coverage (all decision branches have to be taken) and path coverage
(all paths in the program must be followed).

In his book on testing, Myers showed that the path coverage (the strongest
coverage strategy out of the previously mentioned ones) is infeasible even if
the program contains only finite loops. He used as an example a “10-20 state-
ment program” having few loops and branches that created approximatively
1014 possible paths. If one needs one test case to cover each program path,
and each test case takes one second to be executed, then the complete path
testing of the respective program would last about 3.2 million years, much
too long to be useful.

Despite the mentioned test space coverage issues, testing is currently in-
tensively used in both industry and academic environments as the main V&V
strategy for both hardware and SW. Using it, a certain level of assurance for
a desired operational requirement can be built. Unfortunately, the success of
testing (that is, showing that the program contains defects) is a two-edged
sword: on one hand, it indicates where bugs are thus helping their removal,
and on the other hand it proves that more bugs exist in the code. As full
coverage is usually not achievable, claiming that all the bugs were found is
not founded. Similarly, not finding bugs does not prove their absence, but
merely shows the used test method is not appropriate. Edsger Dijkstra con-
sidered that testing “is a very effective way to show the presence of bugs, but
is hopelessly inadequate for showing their absence”.
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Testing is a powerful V&V technique which suffers from two key problems:
coverage issues and construction of suitable test cases. Both determine the
effectiveness of testing in an decisive manner. The approach presented in
this thesis helps testing from different perspectives. It accurately defines the
operational test space which needs to be covered, guides test case choices
and prioritizes testing onto the code areas mostly activated in the field.

2.2.4 Fault Injection

The main purpose of fault injection is to identify the robustness weaknesses of
the targeted system. For this purpose, artificial faults are injected to activate
conditions that trigger the fault-tolerance mechanisms present in the system
(error detectors and error correctors).

Initially, fault injection started as a technique for evaluating the depend-
ability of hardware components [Arlat et al., 1993]. Physical, hardware
probes were inserted into the hardware components to inject faults and to
read the outcomes. As more access to the hardware became available via the
SW part of the system at cheaper costs than the physical implementation, a
new breed of fault injection techniques appeared, termed SWIFI (Software
implemented Fault Injection) [Hsueh et al., 1997].

Due to its flexibility, in addition to testing robustness of SW systems,
SWIFI was also used to verify security mechanisms [Chen et al., 2002; Neves
et al., 2006]. SWIFI was also used for OS robustness evaluation. The Ballista
project developed a robustness benchmark for the POSIX interface of the
UNIX/Linux OSs to user applications [Koopman and DeVale, 1999, 2000].
SWIFI was also used for evaluations of the performance of OS I/O libraries
[DeVale and Koopman, 2001], CORBA services [Pan et al., 2001] or Win32
libraries of Windows OSs [Shelton et al., 2000].

Fault injection was used also as a prerequisite for the automatic con-
struction of robustness wrappers. For instance, HEALERS [Fetzer and Xiao,
2002a,b] uses an adaptive fault injection mechanism that analyzes the param-
eters of C library functions using the information provided in the header files
and manual pages. Based on this, fault injectors are constructed to obtain
the robust argument type (the set of parameter values for which the tested
function performs correctly). The type domains obtained are utilized to gen-
erate robustness wrappers for the respective functions. The Autocannon tool
[Süßkraut and Fetzer, 2007] developed later HEALERS using a more compre-
hensive type system adapted from the Ballista project. Also the AutoPatch
project [Süßkraut and Fetzer, 2006] is based on HEALERS, and focuses on
how applications handle the error codes provided by library functions. Using
fault injection to return error codes from the targeted functions, the unsafe
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functions are highlighted.

Fault injection and SWIFI are related to testing as their primary goal
is to find robustness weaknesses as opposed to finding defects (which is the
goal of testing). Therefore, both face the same problems of coverage and test
case selection as testing does. Additionally, fault injection (and SWIFI ) has
to determine which faults to inject, a difficult problem in itself.

2.3 Current Verification of OS and Device

Drivers

The main focus of this thesis is on providing guidance to existing V&V tech-
niques for OS components and, in particular, for DDs. This area of research
is receiving an increasing amount of attention in the testing community,
attempting to parallel the widespread proliferation of COTS OS outages.
The used paradigms for testing OS components employ the V&V techniques
previously surveyed and also hybrid ones, in order to cope with the charac-
teristics of the OS components.

An important step in producing SW programs is the compilation stage.
According to Aho et al. “a compiler is a program that reads a program writ-
ten in one language – the source code – and translates it into an equivalent
program in another language – the target language” [Aho et al., 1986]. Usu-
ally, the target language is the machine language understood by the hardware
platform for which the source program is compiled for. As an important part
of this translation process, the compiler reports the presence of errors in the
source program. In this respect, a compiler can be considered a basic tool
for finding lexical, syntactic or typos for the language of the source program.
We consider that the discussed OS components are fully “compilable”, that
is, they contain no errors that a compiler can find.

From the viewpoint of the discussion presented in this section, the com-
pilation stage only helps differentiating among the various existing V&V
techniques for OS components, and is not necessarily considered a verifica-
tion method per se. In this respect, we distinguish two main directions in
V&V for OS components. The first one exclusively uses the source code of
the respective OS component, while the second one uses the target code of
the component for the same purpose.

Thorough testing throughout all development phases is key to creating
robust, fast and efficient OS components. Finding and fixing as many defects,
as early as possible in the development life-cycle is critical to reduce the
likelihood that failures of the component will cause system outage in the
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field, after releasing the respective OS component to customers.
Therefore, the rest of this section discusses the state of the art and prac-

tice in the area of OS component V&V, useful at compile time (described in
Section 2.3.1) and at runtime (described in Section 2.3.2). Some approaches
that isolate the components found to be faulty from the rest of the OS are
also discussed in this section.

2.3.1 OS Component Verification At Compile Time

As the DDs for the latest additions to the Windows OS family (XP and
Vista) are considered for a case study in this thesis, we focus here on the
testing tools provided by Microsoft. To help the development of DDs for its
OSs, Microsoft specifies the architecture and the interface that a DD must
follow to function properly in Windows OSs.

Prior to Server 2003 and Vista, the DD specifications were termed as Win-
dows Driver Model (WDM - Dekker and Newcomer [1999]; Oney [2003]). To
support WDM, Microsoft provided alongside with it a set of documentation,
development and testing tools – the Driver Developer Kit (DDK). As the
model used for drivers was slightly updated in Vista (user-mode drivers were
added), WDM was renamed to Windows Driver Framework (WDF), and
DDK to Windows Driver Kit (WDK) [Orwick and Smith, 2007].

WDK contains tools testing tools for DDs falling into two categories: (a)
static code analysis tools which are described in this section and (b) dynamic
verification tools, further presented in Section 2.3.2.

PREfast is a source code analysis tool that main goal is to find coding
errors that cannot be found by a compiler [Orwick and Smith, 2007, Chap.
23]. Using the DDs source code, PREfast builds the set of possible code
paths and then simulates their execution. The paths are checked against a
(manually specified) set of rules designed to highlight errors and bad coding
practices which are then logged as warnings. The classes of errors PREfast
can detect are listed in Table 2.2.

While being a powerful tool, PREfast requires proper expertise to be
efficiently used. The primary problem is handling the large amount of noise
(false-positives) present in PREfast’s log files. This is handled by using pre-
defined filters or by inserting annotations into the source code which is fed
to PREfast. For large and complex DDs this activity becomes a consider-
able overhead for developers. Moreover, mistakes can occur in the process
of adding annotations or writing log filters, thus leading to false-negatives
(actual errors which are not reported as such).

Secondly, executing all code paths is often infeasible, due to their large
number originating in the code complexity. Hence, to keep PREfast’s execu-
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Table 2.2: Classes of errors detected by PREfast (adapted from [Orwick and
Smith, 2007, Chap. 23, pp. 733])

Category Errors tested for

Memory
Memory leaks, uninitialized memory, de-referenced NULL
pointers, etc.

Resources Failures to release used resources such as locks

Function Usage
Function argument type mismatches, use of obsolete func-
tions, etc.

Floating-point
As the support for floating-point operation is limited in some
hardware devices, the floating point state has to be correctly
handled in the DD

Precedence Rules
Situations when DDs do not function correctly due to C lan-
guage precedence rules

Kernel-mode Coding
Errors occurring when the kernel-mode DD does not follow
the coding practices recommended in the WDF, such as using
a user-mode string library instead of its kernel counterpart

Driver-specific
Coding Practices

Specific operations which are often source of errors in DDs,
such as wrong initializations of DD-specific routines

tion time in manageable limits, the upper bound for the number of exercised
paths must be specified when PREfast is started (via the /maxpaths com-
mand line option). This reduces the effectiveness of PREfast in covering
relevant parts of the DD’s state space.

Static Driver Verifier (termed SDV henceforth) is another verification
tool for DDs which is designed to be run towards the end of the development
cycle, after the defects found by PREfast were fixed. SDV started as a
research program at Microsoft Research (MSR), intending to create an au-
tomatic engine to verify if a supplied C program correctly uses the interfaces
to its external libraries [Ball and Rajamani, 2002; Ball et al., 2004, 2006].
The project – called SLAM at MSR – was successful in lab scenarios and
made the leap to the DD’s verification practice: its engine was incorporated
in SDV [Knies, 2005] and made available to DD developers as a part of DDK
and later, WDK [Oney, 2003] [Orwick and Smith, 2007, Chap. 24].

SDV/SLAM used Bebop [Ball and Rajamani, 2000], a symbolic model
checker that automatically explores the state space of the targeted DD. To
specify the DD’s interfaces with the OS kernel’s API libraries, Ball and Ra-
jamani developed and used the SLIC formal language [Ball and Rajamani,
2001]. The main categories of SLIC rules are listed in Table 2.3.

SDV symbolically executes the source code of the DD against an own,
simplified model of the OS. The OS model contains several worst-case sce-
narios, such as continually failing system calls. In this “hostile” environment,
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Table 2.3: Rules tested for in SDV (adapted from Microsoft Corp. [2009d])

Category Rules tested for
IRP Functions that use I/O request packets
IRQL Functions that use interrupt request levels
PnP Plug and Play functions
PM Power management
WMI Functions that use Windows Management Instrumentation
Sync Synchronization related to spin locks, semaphores, timers, mutexes, and

other methods of access control
Other Functions that are not fully described by any of the other categories

SDV tries to prove using Bebop that the DD violates a set of interfacing rules
to the OS (defined using SLIC ). If no rule violation is found, the DD passes
the SDV verification.

An abstract model of the DD is used instead of the real DD in order to
keep the number of DD states within manageable limits for the model checker,
inducing a limitation of the coverage for the real DD. As a realistic limitation
SDV is used with DDs having less than fifty thousands lines of code, and it is
currently limited to WDM and kernel-mode WDF DDs [Orwick and Smith,
2007, page 824]. Recently, the SLAM engine was replaced with SLAM v2.0,
in which the Z3 theorem prover is used instead of Bebop [SLAM2.0, 2009].
The future will show the effectiveness of the new SDV engine over the older
one.

2.3.2 OS Component Verification At Runtime

Binary Instrumentation

While the proportion of lines of kernel code corresponding to DDs is on the
rise mostly due to higher OS support for peripherals [Swift et al., 2005], the
need for novel DD-specific testing approaches and tools is also increasing.
As a consequence, various paradigms were successfully applied to testing
OS code and in particular to DDs. Notable runtime testing tools include
PURIFY [Rational Inc., 2009] and Microsoft’s Driver Verifier [Microsoft
Corp., 2009a]. Such tools instrument a binary image with a set of checks,
thus enabling the examination of the respective binary’s runtime behavior.
The checks are designed to detect illegal activity of the instrumented binary,
avoiding potential system corruption.

Specifically designed for Windows DDs, Driver Verifier is included in
all releases of Windows 2000, XP, Server 2003 and Vista and continually
enhanced with each new version of the Windows OS [Orwick and Smith,
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2007, Chap. 21]. Driver Verifier traps at runtime many error conditions that
might go unnoticed (being masked by the respective DD or by the OS), and
signals the error condition by immediately stopping the system and supplying
the error details in the form of a “blue screen”. To ease the finding of the
defect that caused the error condition, a memory dump is saved for the later
use with a kernel debugger tool.

Driver Verifier performs on DDs which are installed and running in the
system. It intercepts the system calls made by the DD, injects them with
faults and then waits until an error occurs. Also, Driver Verifier can simu-
late extreme conditions for the DD’s environment, by limiting the available
resources (memory, locks, timers, etc.). Driver Verifier can be configured to
monitor the activity of multiple DDs at a time. Also the conditions that are
checked can be configured, by selecting them from a list. Table 2.4 briefly
lists the conditions checked by Driver Verifier, as its latest version released
with Windows Vista.

Table 2.4: Driver Verifier options (adapted from [Orwick and Smith, 2007,
pp. 678])

Category Rules tested for
Deadlock Detection Use of spin locks, mutexes, etc.
Disk Integrity Monitors HDD activity and data preserving
Direct Memory Access Use of DMA routines, buffers and adapters
Driver Hang Times DD routines to report passing given deadlines
Enhanced I/O Verification Performs stress testing of DD’s I/O routines

Force IRQL Checking
Detects access to paged memory at wrong interrupt
levels

Force Pending I/O requests Tests response to STATUS PENDING return values
I/O Verification Illegal or inconsistent use of I/O routines
IRP Logging Logs the use of I/O request packets (IRP)
Low Resources Simulation Randomly fails memory allocation requests
Miscellaneous Checks Checks for common causes of DD crashes
Pool Tracking Checks for memory leaks
Special Pool Monitors memory requests for over- and under-runs

The major weakness of the runtime instrumentation tools resides in the
dependency on the quality of the checks and on the activated parts of the
tested DD. That is, if a condition goes unchecked, no corruption is signaled.
To alleviate this issue, Microsoft encourages the use of Driver Verifier at all
development stages, especially in the testing phase. To be effective in finding
defects in DDs, Driver Verifier should be active when other DD test tools
included in WDK are used.
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SWIFI for OS Components

Software-implemented Fault Injection (SWIFI – see Section 2.2.4) was often
used to test the robustness of various OS components [Koopman and DeVale,
2000; Pan et al., 2001; Shelton et al., 2000]. Though, only a few research
efforts have addressed the DDs as targets for robustness assessments.

Durães and Madeira mutated the binary images of Windows 2000, NT4
and XP floppy disk and CDROM DDs by injecting single faults and studied
the outcomes in terms of OS availability, stability and user feedback [Durães
and Madeira, 2002a]. The executable is scanned for certain machine-code
patterns, and mutations are performed using the patterns in order to emulate
higher-level faults. While the approach is useful as a case study for the
injection mechanism (further presented in Durães and Madeira [2002b]), the
presented results lack generalization power (i.e., do not apply to other DDs).

Albinet et al. evaluated the robustness of DPI (Driver Programming In-
terface) by injecting faults in their functions, thus emulating incorrect usage
of these APIs by faulty DDs [Albinet et al., 2004]. Four Linux DDs con-
stituted the case study and the outcomes of the injection experiments were
considered from the perspective of kernel responsiveness, feedback and avail-
ability (same as Durães and Madeira [2002a]) and, additionally, the workload
safety.

Johansson and Suri changed on-the-fly the parameters of kernel functions
called by DDs under Windows CE .Net [Johansson and Suri, 2005]. Pre-set
values were injected in the called function parameters, in an effort to locate
the operational vulnerabilities and quantify their impact on OS robustness.
The error model used was later improved in [Johansson et al., 2007b] and
the impact of the injection trigger was studied in [Johansson et al., 2007a].

Mendonca and Neves implemented a SWIFI technique to test the ro-
bustness of DDK APIs for functions used by 95% of Windows XP and Vista
DDs [Mendonca and Neves, 2007]. They studied the DDs found in the Win-
dows repository (a folder containing the binaries of the DDs present in the
system) for the imported kernel APIs. A number of twenty kernel functions
were found to be used by most of the DDs, so they were injected with faults
manifesting themselves as malformed function parameters. For each func-
tion and each parameter thereof, a dummy DD containing a malformed call
of the respective API was built and automatically exercised in order to trigger
the injected fault. Using this approach, Mendonca and Neves showed that
most kernel APIs are “unable to completely check their inputs”, indicating a
possible robustness issue.

Unfortunately, Mendonca and Neves selected the targeted functions stati-
cally, irrespective of (a) the actual usage of the DDs (most of the DDs present
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in repository are not loaded by Windows) and (b) the actual usage of the
selected functions (some APIs are seldomly used). We believe that a more
useful quantification of the OS kernel robustness must consider the actual
usage patterns of DDs and kernel functions. Therefore, we provide a more
appropriate way to select such functions in Chapter 7, as a contribution of
this thesis.

Microsoft provides a powerful robustness testing tool for DDs developed
for Windows OSs, the Device Path Exerciser (called also DC2 ). In contrast
with the previously mentioned approaches which inject fault in DDs to re-
veal robustness issues in other OS components, DC2 explicitly targets the
robustness of DDs. DC2 is available to DD developers as part of the Win-
dows Device Testing Framework (WDTF) and Driver Test Manager (DTM),
included in the WDK for running test for submission to the Windows Logo
Program [Orwick and Smith, 2007, pp. 676]. That is, a DD which does not
pass the DC2 ’s robustness tests is not accepted for mass distribution. DC2
tests at random various error conditions for the supplied DD sending it bursts
of (correct and malformed) I/O requests over short time intervals. Thus, not
only DD robustness is tested, but also its timing and performance issues are
revealed. Microsoft recommends running DC2 while Driver Verifier is also
activated, to ease the location of the defects found by DC2.

The main issue with the results provided of DC2 (which are used to
decide mass distribution of the respective DD) is its randomness. That is, a
DD that passed DC2 test is not necessarily bug-free one. It only means that
DC2 could not find bugs for the executed tests. This aspect directly relates
to the coverage of the respective tests. In Chapter 7 we provide a mechanism
to visualize the covered state space of a tested DD, and also show and discuss
the areas covered by DC2 alongside the areas covered by real workloads.

2.3.3 In Isolation

To protect faulty DDs from affecting the rest of the OS, a paradigm assum-
ing the running the DDs in isolation exists. In order to validate individual
approaches from this perspective, SWIFI was the tool of choice used by
many researchers. Examples include tools like Nooks [Swift et al., 2002] or
SafeDrive [Zhou et al., 2006]. Both approaches suppose that the execution
of the real DD (or a slightly modified version thereof) inside a virtual exe-
cution environment. All execution traces of the targeted DD are monitored
to prevent potential failures from propagating to the rest of the OS, but this
comes at a high performance overhead.

In 2007 Herder et al. also presented a procedure for detecting and re-
covering from DD failures [Herder et al., 2007]. However, the focus was on
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constructing new OS recovery mechanisms and not necessarily using exist-
ing ones. Therefore, as the authors use a low-impact OS (the Minix 3), its
application for protecting existing OSs from DD failures is limited. The re-
covery from DD failures is therefore specific to Minix and hardly applicable
to current COTS OSs.

2.4 Operational Profiling as Guidance for

Testing

As indicated by the discussion on the state of the art and practice in testing
mentioned in Section 2.3, the state space covered by existing testing tools, as
well as the selection of test cases determines the adequacy and accuracy of
the respective testing method. In other words, in the context of limited test
resources, only covering the right states of the DD ensures the failure-free
functioning of the respective DD.

Hence, the construction of representative operational profiles is a key step
for assessing, and hence improving, the reliability of such complex systems as
DDs, with application to testing, performance profiling, and dependability
benchmarking. Next, we describe the need of testing driven by the opera-
tional profiles as resulted from multiple research efforts, and describe various
current uses of the operational profiles.

2.4.1 Why Profiling the Operational Phase?

Results from the area of software defect localization show that faults tend to
cluster in the OS code [Chou et al., 2001; Möller and Paulish, 1993]. This
effect is explained by the use of large development teams where unequally
experienced programmers work on the same code base, thus the distribution
of faults is not uniform over the resulting source code [Fenton and Neil, 1999].

Efforts have been made to predict where the faults are in large software
systems, employing sophisticated statistical methods ranging from regres-
sion mechanisms [Ostrand et al., 2004], failure-proneness models with code
churning metrics [Bhat and Nagappan, 2008; Layman et al., 2008], to cluster
analysis [Dickinson et al., 2001]. Also, the influence of the organizational
structure of the company producing SW was also studied in an effort to
indicate the failure prone binaries [Nagappan et al., 2008].

Musa’s work on reliability engineering suggests that the overall testing
economy can be improved by prioritizing testing activities on specific func-
tionalities with higher impact on the component’s runtime operation [Musa,
1993, 1994a, 1996, 2004].
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Similarly to Musa, Weyuker also recommends focusing on testing func-
tionalities with high occurrence probabilities [Weyuker, 2003; Weyuker and
Jeng, 1991]. Thus, a strategy aimed at clustering the code into functionality-
related parts and then testing based on their operational occurrence is desir-
able, especially when the resources allocated for testing are limited. Weyuker
underlines the necessity to test COTS components in their operational en-
vironment even though they were tested by their developers or third-party
testers [Weyuker, 1998].

Rothermel et al. empirically examined several verification techniques
showing that prioritization can substantially improve fault detection [Rother-
mel et al., 2001]. Specifically, they assert that “in a testing situation in which
the testing time is uncertain (...) such prioritization can increase the likeli-
hood that, whenever the testing process is terminated, testing resources will
have been spent more cost effectively in relation to potential fault detection
than they might otherwise have been”.

Accordingly, the work presented in this thesis helps focusing testing onto
the states of the DD-under-test based on their occurrence and temporal like-
lihoods to be reached in the field.

2.4.2 Operational Profiles

Under the premise that good reliability estimates are depending on testing as
if the SW is executing in the field, John Musa initially developed the concept
of operational profile while working as the head of the software reliability
engineering department at AT&T Bell Labs [Musa, 1992, 1993]. The first
operational profiles were built for AT&T Bell projects and are still under
active use ever since. Musa compiled most of his research in the seminal
book “Software Reliability Engineering: More Reliable Software Faster and
Cheaper” [Musa, 2004].

The significance of operational profiles for software engineering is appar-
ent in the large volume of research published by two major conferences (IEEE
International Symposium on Software Reliability Engineering – ISSRE, and
ACM International Conference on Software Engineering – ICSE). At these
two conferences, operational profiling still represents a hot topic, even though
more than twenty years have passed since they were first introduced in John
Musa’s work.

As considerable amount of work is dedicated to operational profile re-
search and applications of operational profiles (ISSRE 2008 published 30
research papers and hosted 24 industrial presentations), in the following sec-
tions we summarize the most important research projects, grouped by their
main application area.
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In Software Engineering

According to Musa, a profile is “simply a set of disjoint (only one can occur
at a time) alternatives with the probability that each will occur” [Musa, 1993].
Key to obtaining valid and accurate profiles is the usage information, and
Musa believes that this information is either readily available or it can be
estimated.

Using the SW system’s usage information, engineers derive operational
profiles, by manually quantifying the expected usage of each element in the
system. The recommended approach to obtain operational profiles is a multi-
stage process from user profiles to operation. At each step (customer, user,
system mode, functional) a profile is built. The process concludes with the
construction of an operational profile that encapsulates all the previous pro-
files. For instance, an operational profile of an OS includes information about
the user profile (programmer, database administrator, gamer), system mode
(the typical workload used by the selected user type), etc. [Musa, 2004].

Once obtained, an operational profile can be used for various purposes.
For instance, Musa also introduced SRET (Software Reliability Engineered
Testing), a concept that uses the operational profiles for test case selection
[Musa, 1996].

Musa used operational profiles to study the effects of errors to field fail-
ure intensity [Musa, 1994a] and later suggested improvements based on the
observed results [Musa, 1994b].

In an recent article Hassan et al. showed that the operational profiles
obtained based on estimations of the field conditions usually differ from the
actual usage, so the profiling should be done (where possible) based on real
field data (log files, other mechanisms that capture runtime behavior) [Hassan
et al., 2008].

In Logging Systems

While obtaining actual field data is not viable in many situations (i.e., user
privacy issues, additional performance and resource overhead of logging),
often logging systems are used to obtain better estimates of the SW system’s
field operation. Sometimes, beta-testing5 is also used to collect field data.

When available, logs are analyzed and operational profiles are constructed
from the usage information contained in the logs. The benefit from opera-
tional profiles is two-fold: (a) in debugging by providing support for locating

5Beta-testing uses a pre-release version of the product for external testing purposes, in
order to identify configurations that cause problems, as well as collect requirements and
suggestions from users.
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the defect that caused a system failure and (b) in performance improvement
by identifying and releasing pressure from the highlighted execution bottle-
necks (execution hotspots).

Some SW products use logging and profiling systems. Examples include
the Eclipse Test and Performance Tools Platform (TPTP)[Eclipse Project,
2009] or the Java Virtual Machine Profiler Interface (JVMPI ) [Sun Microsys-
tems, 2009a], replaced by the Java Virtual Machine Tool Interface (JVMTI )
in Java 1.5 [Sun Microsystems, 2009b]. Another prominent profiling system is
used by Microsoft to collect information about OS crashes (initially Watson,
later CEIP – Customer Experience Improvement Program) [Orgovan, 2008].
Microsoft uses the collected crash information to improve the OS compo-
nents that caused the failure or to inform the developers of the respective
OS components or SW applications, in an effort to improve user’s experience
with OSs belonging to the Windows family.

Despite sustained efforts to obtain accurate field data, Weyuker and
Avritzer acknowledge that constructing operational profiles based on actual
usage is difficult [Weyuker and Avritzer, 2002]. Nevertheless, Weyuker and
Avritzer hint that code profiling and trace analysis might help considerably
towards achieving this task.

Other Uses of Operational Profiles

McMaster and Memon introduced a statistical method for test effort reduc-
tion based on the call stacks recorded at runtime [McMaster and Memon,
2005]. While their approach effectively captures the dynamic program be-
havior, it is specific to single-threaded, user-space programs, though not di-
rectly applicable to DDs (as they run in an arbitrary thread context). Leon
and Podgurski evaluated diverse techniques for test-case filtering using clus-
ter analysis on large populations of program profiles, highlighting them as a
prerequisite for test effort reduction [Leon and Podgurski, 2003].

Avritzer and Larson proposed an approach to describe the load of a large
telecom system [Avritzer and Larson, 1993]. They introduce a load test-
ing technique called “Deterministic Markov State Testing” for describing the
operational model of a telecommunication system. The incoming and com-
pletion of five types of telephone calls define the state of the system. However,
as the work was driven by the necessity to test the given telecommunication
system, knowledge of the system internals was intensively used thus limit-
ing the applicability of the method to other systems. In contrast to their
method, the approach presented in this thesis is generalized to OS add-on
components and to DDs in particular.

For Windows WDF DDs, two main tracing techniques exist: (a) the WPP



42 CHAPTER 2. STATE OF THE ART AND PRACTICE

– Windows Trace Preprocessor and (b) the driver error logs) [Orwick and
Smith, 2007, Chap. 21]. WPP is a kernel-level trace logging facility used
to determine the location and context of bugs present in the DD code. The
driver error logs collect data related to different DD activities, such as setup
and update operations and system event logs.

For the approach presented in this thesis, DD activity tracing has value
only as an alternative source of obtaining information about a DD’s runtime
behavior. It requires manual source code-level instrumentation (via WPP)
or manual log enabling (driver error logs), while our approach assumes no
access to DD’s code.

Johansson et al. used the concept of “call blocks” to find the best time
instant to inject a fault into Windows CE. Net DDs [Johansson et al., 2007a].
Call blocks were obtained on the fly by monitoring the communication inter-
face of the selected DD with the rest of the OS kernel. They could be also
considered a form of an operational profile, as they represent runtime behav-
ior in terms of sequences of calls to driver-external functions. Instead of using
the more common approach of triggering an error injection on the first call of
an external function, Johansson et al. explore the effects of triggering injec-
tions on a call block basis. The operational profiling methodology presented
in the Chapter 7 of this thesis is similar in the sense that operational profiles
are built using an equivalent source of information. Though, the approach
presented in Chapter 7 is developed to reveal execution hotspots in DDs in
terms of followed code paths.

2.4.3 Code-path Profiling and Trace Analysis

Ball and Larus acknowledged the application of path profiling for test cover-
age assessment, “by profiling a program and reporting unexecuted statements
or control flow” [Ball and Larus, 1996]. They used binary instrumentation to
obtain instruction traces that revealed a program’s control-flow, to identify
paths and their execution frequencies. The paths end at loop and procedure
boundaries.

An extension is represented by the “whole program paths” described in
[Larus, 1999], which crosses both boundaries to provide a more accurate
picture of a program’s execution. Though, these approaches are not directly
applicable to DD as the they are implemented as libraries of functions rather
than programs in the classical sense. Moreover, instrumentation induces a
high execution overhead and produces large amounts of data, two character-
istics which penalize the use of this approach inside the OS kernel space.

Leon and Podgurski used profiles generated by individual test cases and
a clustering technique for evaluating test suite minimization by selecting one
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test case per cluster [Leon and Podgurski, 2003]. The profiles used were
generated by third-party tools, so the cluster analysis had to rely on their
accuracy.

While test cost reduction is outside of the scope of this thesis, we focus
on building viable and accurate DD profiles, as a prerequisite to reducing
test efforts. Further described in Chapter 7, our methodology creates such
profiles for kernel-mode DDs by revealing the code paths taken and the set
of driver-external functionalities required at runtime. By profiling a DD’s
activity, the work presented in this thesis guides a rigorous partitioning of
the code by indicating runtime execution hotspots. As our methodology is
disconnected from the need to access any OS part’s source code, it can be
used for black-box level DD profiling, to ease the testing campaigns targeting
DDs.

2.5 Chapter Summary

This chapter presented the context of the OS testing problem that this thesis
intends to solve, alongside with a survey of the state of the art and of the
practice in the field of verification and validation (V&V). On this basis we
first identified the main causes of OS outages. In their role of mediators
between the OS and the hardware parts of a computing system, DDs have
been found to be the main source of OS failures. After the functioning of
most common V&V techniques has been presented, the discussion continued
with the presentation of current verification tools specifically designed for OS
components and DDs. For each tool, the benefits and disadvantages in terms
of test space coverage and test case selection were discussed, as these aspects
explain why DD still continue to be faulty despite sustained test efforts.
Further, operational profiling was presented as a possibly viable solution to
guide testing onto the DD states having a higher likelihood to be reached in
the field, and several profiling approaches were introduced.
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Chapter 3

System Model and Driver State
Model

What is the device driver’s role in current OSs and how can its
activity be modeled? How can the state of a device driver be
modeled in a useful way for guiding testing?

Given the continual increase in code size and complexity of OSs (and
implicitly, of DDs), we believe that a proper characterization of the area tar-
geted by tests is a prerequisite of primary importance for improving current
testing paradigms.

Under the assumption that the source code of the tested DD is not avail-
able to testing, we present a model of the state space of a DD inferred only
by utilizing the communication traffic available at the DD’s interfaces to the
rest of the OS. The DD model and the methodology to infer its state space
presented this chapter constitute one of the key contributions of this thesis,
namely C1 (see Section 1.2.2).

Consequently, this chapter first presents and discusses the architecture
of DDs in the most common two COTS OSs, Microsoft Windows and
UNIX/Linux. Then, the system model is developed and discussed from the
perspective of the SW and hardware components directly communicating
with DDs. Subsequently, various DD communication interfaces are investi-
gated as primary information sources revealing the runtime activity of the
DD. Using the I/O traffic, an abstraction of the DD’s state is developed –
the driver mode. Finally, this chapter concludes with building a DD’s com-
plete state space as a state-diagram containing all possible modes that the
respective DD can be in at any chosen time instant.

45
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3.1 Device Drivers in Current COTS OSs

Device drivers (DD) are SW components that provide to user applications
(and to OS) a homogeneous programming interface to diverse hardware de-
vices. DDs are usually implemented as add-on components that can be added
to a compatible OS by system administrators (users having administrative
privileges for the respective OS installation).

In this section, we present and compare both Windows and Linux DDs
from architectural and internal routines perspectives. We have chosen these
two OS families as they are currently the most popular COTS OSs, each
with tens of millions of installations in the world. In this thesis we chiefly
use Windows DDs as case studies for the introduced concepts and methods
though these are directly portable to Linux DDs (and other OSs), due to
similar architecture of the DDs belonging to the two classes of OSs. To
substantiate this, the section concludes by discussing the similarities of the
two families of DDs.

3.1.1 Device Driver Architectures

When speaking about the architecture of the Windows and Linux compo-
nents, the historical connection of the two OSs is useful. Both of these OSs
have the same ancestor, namely the UNIX OS. Linux was created as a UNIX
clone by Linus Torvalds in 1991. Linux refers hardware devices using a num-
ber (a combination of minor and major numbers) and DDs are considered
files. In current Linux versions three types of devices exist: character devices
(accessed sequentially without buffering), block devices (accessed randomly,
data accessed in blocks) and network devices (accessed using socket API).

The history of Microsoft OSs starts much earlier. In 1979 AT&T decided
to sell UNIX as a commercial product and Microsoft purchased the mass dis-
tribution license for UNIX V7 (seventh edition). One year later, Microsoft
licensed XENIX, a new OS for PDP-11 machines. XENIX was based on
UNIX V7 and BSD 4.1, containing also Microsoft enhancements (i.e., multi-
ple virtual consoles – later inherited by Linux). In 1981 MS DOS v1.0 was
released, having a similar driver architecture to XENIX, the main difference
being the fact that the DOS DDs were built-in and they were not considered
files anymore (as in Linux OSs). MS DOS v2.0 introduced loadable DDs,
thus supporting the development of new DDs by the hardware device pro-
ducers. Windows 3.1 utilized an DD architecture based on MS DOS. It was
the Windows 95, 98 and NT that made an important step forward, by in-
troducing the WDM (Windows Driver Model) [Dekker and Newcomer, 1999;
Oney, 2003].
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WDM appeared as an effort to create a driver architecture which
is forward-compatible (all next Windows family OSs use WDM). WDM-
compliant DDs are usable on all of Microsoft’s recent OSs (from Windows 95
to Vista SP1). WDF (Windows Driver Foundation) was later introduced as
an wrapper for WDM to ease the development of Windows kernel DDs and
enable user-mode DDs. Vista and even the newest Windows 7 (at the time
of writing this thesis still a beta-version) use WDM/WDF DDs [Microsoft
Corp., 2009c].

In the following, we detail the architecture and functioning of both Win-
dows and Linux DDs, concluding with a discussion on the observed simi-
larities. Such a discussion constitutes the key basis for understanding the
choices made to build the system and DD models (Section 3.2) and the DD
state model (Section 3.3).

WDM/WDF Driver Architecture

To illustrate how an I/O request is processed by a DD in Windows OSs,
consider a simple example of an application that issues a read request to
a hardware device, for instance the hard-disk drive. Figure 3.1 depicts this
procedure where the main stages are: (1) the application calls the ReadFile

function of the system calls library Win32 API; (2) the Win32 API traps the
OS kernel into the I/O Manager which selects the DD managing the hard-
disk drive; (3) the I/O Manager encodes the I/O request in an “I/O request
packet” structure (presented and detailed soon) and forwards it to the hard
disk DD; (4) the DD contacts the HAL (Hardware Abstraction Layer1) which,
in turn, retrieves the actual data and completes the I/O request packet; (5)
the I/O Manager reads the completion information from the I/O request
packet and (6) returns the result to the Win32 API, in terms of a pointer to
read data; (7) the Win32 API copies the data to a buffer accessible to the
calling application (in user space) and (8) informs the application about the
result of the operation and the location of the requested file.

The steps (3’) and (4’) are actually composed of multiple stages. As in
Windows DDs are internally organized in stacks, at step (3’) the initial I/O
request packet is sent (and modified along the way) to the driver located
below the current one, until the HAL is reached. At step (4’) each driver
completes the I/O request packet coming from HAL, eventually sending it
back to the I/O Manager when the topmost driver is reached, at step (5).

1HAL is a SW layer that deals directly with the hardware. HAL’s purpose is masking
all hardware-specific information regarding the characteristic of the actual hardware device
in order to ensure an unified access interface [Microsoft Corp., 2006].
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Figure 3.1: The WDM/WDF driver architecture.

WDM describes several different driver types [Oney, 2003]. WDM uses a
layered architecture of DDs similar to the one depicted in Figure 3.2. Each
hardware device has at least two associated DDs, the function driver and the
bus driver. The former handles proper managing of the associated hardware
peripheral, while the latter manages the communication bus which connects
the respective peripheral to the rest of the computing system (i.e., ISA, PCI,
USB etc.).
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Figure 3.2: The WDM/WDF driver implementation. The function driver
is implemented either as a monolithic driver or as a combination of a class
driver (provided by the OS) and a minidriver.

Some devices have additional driver layers, consisting of filter drivers
which wrap the function driver. A filter driver is responsible for modifying
the behavior of the main function driver and it can be located either above or
below it. WDM does not limit the number of filter drivers a hardware device
can have. This mechanism permits incremental changes to the main behav-
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ior of the function driver, thus enabling modifications that would otherwise
require source code access to the function driver.

Additionally, the function drivers come in two flavors, depending on their
implementation: as monolithic and as combinations of a class driver and a
minidriver. A monolithic driver encapsulates all of the functionality needed
to support a hardware device. The same functionality can also be modularly
implemented as a combination of a class- and a minidriver. In this case, the
class driver manages the entire generic class of devices, while the minidriver
handles only the vendor-specific functional characteristics of a certain device.
Usually, the class drivers are provided by Microsoft and writing the minidriver
is generally the hardware manufacturer’s task.

I/O Request Packets

The I/O Request Packet (termed henceforth IRP) is an OS kernel structure
built by the I/O Manager when a request needs to be sent to a DD. The
IRP structure contains the request type and the parameters needed by the
recipient DD to start executing the request-associated activity. When a
result of the operation is available, the DD uses the same IRP structure
to piggyback it back to the I/O Manager.

Currently, WDM/WDF specifies 28 types of IRP requests (for instance
READ for reading data from the device and CLEANUP for preparing the
device for unload etc.). A DD must implement dispatch functions for every
IRP type it supports and register its list of supported IRPs with the I/O
Manager. This request type-based code separation of WDM-compliant DDs
is relevant for our approach, as one can infer the functionality executed at
any instant by a DD, based only on the type of the received and completed
IRPs.

Linux Module Architecture

The DD architecture used in Linux OSs is similar to the WDM architecture
used by the latest Windows OSs. When visually compared with the Win-
dows architecture (see Figure 3.1 versus Figure 3.3), this similarity becomes
apparent. In Linux, the role of POSIX2 is the same as the role of the Win32
API system call libraries in Windows.

In Linux there is no clearly defined entity mediating the I/O, PnP and
Power issues (the I/O Manager in Windows), and there is no clear distinction

2POSIX are UNIX-wide specifications for system calls, each UNIX/Linux clone using
an own implementation of the POSIX specifications.
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Figure 3.3: The Linux module architecture.

between the layered modules3 as the bus, functional or filter drivers in Win-
dows. Also, while Windows uses a set of well-defined IRPs to communicate
with DDs, in Linux the modules communicate with each other using function
calls with custom parameters instead.

Current versions of Linux use a HAL layer whose implementation depends
on the actual hardware platform of the machine that the Linux kernel is
compiled for, similar to Windows.

3.1.2 Device Driver Routines

Both Windows and Linux DDs consist internally of various routines. A
subset of them are mandatory for the OS kernel to be able to communicate
properly with the respective DDs and some are optional depending on the
actual DD and hardware device type, operations etc. Without going into the
details of these DD routines, we briefly present the most relevant ones for the
approach presented in this thesis. For a more detailed description of the DD
architectures, several books exist. For Windows see Dekker and Newcomer
[1999]; Oney [2003] and Orwick and Smith [2007], while for Linux a good
reference is Corbet et al. [2005].

3In UNIX/Linux the DDs are commonly called “modules”.
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Windows Driver Routines

A loaded and active Windows DD is represented by a special OS structure,
termed as DriverObject. The DriverObject contains pointers to different
routines that the associated DD can perform.

Maintenance routines. When the DD is loaded into the OS kernel
(when the OS boots or when a new PnP hardware device is added to the run-
ning computer), the DriverEntry routine fills the DriverObject OS structure
with pointers to the kernel memory addresses where different I/O-handling
routines of the DD are located. By knowing the location of those routines,
the OS kernel is enabled to call directly each necessary DD routine. Simi-
larly, when the DD is unloaded from the system, the DriverUnload routine
removes these pointers and destroys the DriverObject.

Once the DriverObject structure is filled with the necessary pointers, the
DD needs to be initialized and bound to a hardware device. This is the
responsibility of the AddDevice routine. The AddDevice allocates the neces-
sary resources, creates and populates another kernel structure representing
the hardware device itself – the DeviceObject. This structure holds the name
associated to the hardware device which, in Windows, is a global unique iden-
tifier (GUID). Once a device object is created, the respective hardware device
can be referred to using a handler obtained by providing its GUID. To avoid
naming ambiguities, Microsoft provides a tool in the DDK for automatically
generating GUIDs [Oney, 2003].

Dispatch routines. Another important class of routines present in
WDM/WDF-compliant Windows DDs are the so called dispatch routines.
They are responsible for handling incoming I/O requests packed as IRPs.
Based on the IRP type, a corresponding dispatch routine is selected and ex-
ecuted. The I/O Manager selects the right dispatch routine using the infor-
mation published at DD initialization in the DriverObject structure. Every
IRP structure have fields containing parameters required by the respective
I/O dispatch function. When a dispatch routine receives an IRP, it reads the
operation’s parameters and starts processing it by either sending the work
directly to HAL (if the respective driver is located closest to HAL in the
driver stack – see Figure 3.1) or to the driver located immediately below it
in the stack.

To ensure a minimal compatibility between the Windows kernel and DDs,
WDM/WDF-compliant DDs must implement the dispatch routines listed in
Table 3.1, the rest of the dispatch routines are optional.

For brevity, henceforth we use only the actual name of the I/O operation
when referring to a IRP (that is, without the IRP MJ prefix).
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Table 3.1: Dispatch routines required in WDM/WDF-compliant DDs [Oney,
2003]

Full IRP Name The dispatch routine manages...
IRP MJ CREATE the creation of DeviceObject
IRP MJ CLEANUP the destroying the driver-created structures
IRP MJ CLOSE the actual removal of the DD from the system
IRP MJ READ read requests to the hardware device
IRP MJ WRITE write requests to the hardware device
IRP MJ PNP Plug-and-Play activities
IRP MJ POWER Power activities (stand-by, hibernate, power off)
IRP MJ DEVICE CONTROL I/O control requests to a hardware device
IRP MJ INTERNAL DEVICE CONTROL I/O control requests specific to a certain device
IRP MJ SYSTEM CONTROL Windows Management Instrumentation (WMI)

Linux Module Routines

Linux modules are internally similar to Windows DDs as they also contain
different specialized routines to control I/O operations and the hardware
devices. The initialization and unload routines of a Linux module do not
bear predefined names as in Windows. Instead, module developers can choose
custom names for those routines and register them with the Linux kernel by
using the module init and module exit macros.

Maintenance routines. The routine designated as module initializa-
tion routine in the module init macro must specify the DD’s name, a set
of routines for file operations (the Linux counterpart of Windows dispatch
routines) and a major number for the hardware device associated with the
respective DD. In Linux, each hardware device is associated with a number
ranging from 1 to 255 (called device major number). In addition, each DD
handling one of the 256 devices can manage as many as 256 devices (DD-
managed devices are designated by a minor number). Hence, in Linux up to
65535 devices can be accessed, as major number 0 is reserved for automatic
device assignment. On DD unload, the routine designated by the module exit
macro de-registers all the associations made by the initialization routine.

File operations. In Linux the file operations handle all I/O activity
of the module. In Linux almost everything is considered to be a file, even
external hardware devices are accessed as regular files after they are mounted
to the local file-system, thus the name for Linux I/O operations. Typical
modules implement the following file operations (names are self-explanatory):
Open, Read, Write, Seek and Close. For handling device-specific parameters,
the IoCtl operation is also implemented by certain Linux modules.
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3.1.3 Comparing Windows and Linux Drivers

To warrant the generality of the driver model subsequently built in the next
sections of this chapter for current COTS OSs, we now briefly summarize the
main similarities and differences between Windows and Linux DDs.

From the architectural perspective the DDs in the two OSs are very similar
to each other. The I/O processing mechanism is more complex in Windows,
Linux does not have an OS entity centralizing I/O, PnP and Power activities
(the Windows I/O Manager). Both OSs use a system call layer and an HAL
layer, even though they are implemented differently. In Windows DDs are
stacked and different DDs communicate to each other in a well-specified order
and fashion, using IRP structures. In Linux the inter-module communication
is open, developers deciding the details based on the purpose of the module.
Messages are passed from module to module (or to HAL) using customizable
function calls. Hence, we consider that the Windows driver architecture is
more restrictive then Linux’s from this perspective.

From the internal routines perspective the two OSs are very similar to each
other. Both use routines to register and de-register DDs with the OS kernel,
and both use dispatch routines specialized for handling certain I/O operation
types. As a note, Windows internal structure is more regulated than in Linux,
this reducing the possible incompatibilities between DDs written by different
developers (see Windows’ fixed number of IRPs, device naming using unique
GUIDs, etc.).

3.2 System and Device Driver Models

In this section we develop the system model and subsequently, the driver
model used throughout this thesis. Given the commonality between the
two current families of COTS OSs shown in the previous section (Windows
and UNIX/Linux), we believe that our model is representative for systems
equipped with any of the two OSs. Moreover, our system model is abstract
enough to represent most computing systems equipped with monolithic OSs.

3.2.1 Involved OS Structures and Components

We now introduce our system model and the background behind the state
model for DDs. Figure 3.4 represents a typical computer system equipped
with a COTS OS supporting a set of applications (the system workload)
using services provided by the OS.

This thesis focuses on the communication interfaces between the I/O
Manager and the DDs located within the OS kernel space. The I/O Manager
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Figure 3.4: The considered system model, representing a general-purpose
computing system equipped with an OS mediating between user applications
and hardware peripherals.

is a collection of OS structures responsible for mediating the flow of I/O,
PnP and Power requests between the applications and the DDs. A DD is an
independent OS component handling the communication with one or more
equivalent peripherals. In our model DDs act on I/O requests initiated by
the I/O Manager directly or on behalf of user applications.

Our system model does not differentiate between a single DD placed on
the I/O path between the OS kernel and the hardware and driver stacks.
This abstraction enables our model to be used independently of the actual
DD architecture of a specific OS. Also, in our model the I/O Manager is
an abstraction of the Windows I/O Manager presented in Figure 3.2, in the
sense that it only represents the other communication end from the DDs
perspective. That is, in our model the I/O Manager has only two roles: (I)
it constructs and serializes the I/O requests to be sent to the DD, and (II)
constitutes the recipient of the I/O operations results provided by the DD.

While our approach is applicable for generic DDs and OSs, we utilize
Windows XP and Vista DDs as representative case studies for the proposed
concepts in the following chapters of this thesis. Hence, onwards we use the
terms established by Windows to refer to DDs and related aspects.

3.2.2 A Driver’s Communication Interfaces

The communication flow between the I/O Manager and the DDs has a key
importance for the DD profiling methodology presented in this thesis, as this
flow is analyzed to characterize the activity of a DD. At this level Windows
uses different communication schemes as specified by the Windows Driver
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Model (WDM) and described in the following sections [Dekker and New-
comer, 1999; Oney, 2003].

I/O Call Interface

In Windows, the I/O Manager builds a request data structure and populates
it with the parameters necessary for the DD to start resolving the request.
Next, the I/O Manager informs the responsible DD that a request is avail-
able. When the DD finishes executing the code associated with resolving
the request, it fills the result fields of the structure and passes it back to the
I/O Manager. The I/O Manager unpacks the data structure and forwards
the results to the user space application that requested the I/O. The data
structures used for passing the request between the I/O Manager and DDs
are the IRPs.

In Linux, applications make direct calls to a specific DD by first obtaining
a handle to it by using its major and minor numbers. Once the handle is
obtained, the user application issues the actual I/O request to the selected
DD. The DD performs the associated activity on the hardware device and
returns the result in a kernel buffer. Next, the content of the kernel buffer is
copied in an user-space buffer supplied by the calling application.

In both Windows and Linux each incoming I/O request triggers execution
of a certain dispatch routine. At this interface (onwards termed “I/O call
interface”) we monitor the I/O traffic and analyze it to gain insight on which
routines are executed at any time instant.

Functional Interface

Often DDs are implemented as dynamic-linked libraries (DLLs), which are
libraries of functions. The functions implemented in DDs get executed when
they are called by the OS (directly, or on behalf on user applications). Like
any other DLL library, a DD might call functions which are implemented in
other DLL libraries. As most current DDs execute in kernel space, they can
only link at runtime to libraries of functions also located in kernel space.

At runtime, a DD calls functions located in DD-external DLLs as required
by the current activity performed by the respective DD. Therefore, the DD’s
evolution in time can be characterized by monitoring this interface (onwards
termed “functional interface”). In Chapter 7 we use this communication
interface in addition to the I/O call interface to infer the followed code paths
taken inside the DD at runtime.
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Hardware Interface

Some of the hardware devices that attach to a communication bus (ISA, PCI,
PCI-Express etc.) generate interrupts to signal the OS that they need service
[Orwick and Smith, 2007]. Hence, the function driver for such a device must
include code to manage interrupts when they occur in the operational phase.

Hardware devices generate two types of interrupts, line-based and
message-based interrupts. Older devices generate line-based interrupts,
which are electrical signals on a dedicated interrupt line. Newer devices gen-
erate message-based interrupts, which represents data written to a special
memory address. Prior to Vista, only line-based interrupts were supported
in Windows.

A DD that manages interrupts has to implement two classes of rou-
tines: the Interrupt Service Routines (ISR) and the Deferred Procedure Calls
(DPC). When a hardware device interrupts, the OS calls the associated DD
to handle the interrupt. The respective DD then starts executing its ISR,
which is responsible to (a) check if the associated device is interrupting; if
yes, then (b) stops the device from interrupting and saves all device context
and, finally, (c) it calls the DPC routine and returns. The DPC performs the
actual device-specific interrupt handling and, after finishing, it re-enables the
interrupts for the respective hardware device.

Devices that attach to USB, FireWire, Bluetooth and other protocol buses
do not generate interrupts, so their DDs do not contain ISR and DPC rou-
tines. In this thesis, we only consider the I/O call and the functional inter-
faces of a DD for developing the framework to model its operational behavior.

3.3 Driver State Model

From a testing perspective, the ability to precisely pinpoint which function-
ality the system-under-test executes at any specific instant is of critical im-
portance as a basis for observability. This is not a trivial task when testing
OSs (or components thereof) as they are complex and dynamic, entailing a
high level of non-determinism and often being delivered without their source
code. These constraints constantly challenge the software testing community
to investigate new methods to define and accurately capture the state of such
a system.

In this thesis we consider that the source code of the DD is not available.
Except the situation when testers indeed have access to the DD’s source
code, this assumption represents the regular circumstances for testing add-
on, COTS DDs. If the source code becomes available, the validity and value



3.3. DRIVER STATE MODEL 57

of our approach is maintained and can be enriched with relevant information
obtained from the source code, as needed.

Therefore, we consider the DD state being characterized by the handled
I/O requests. As we assume no access to the DD’s source code, we are
constrained to use a relaxed definition of state to accommodate only the
available information (i.e., the observable communication at the interfaces of
the DD with the OS kernel). Onwards, we define this relaxed state as the
“driver mode”.

3.3.1 Driver Mode and Transitions Between Modes

A DD is idle from the initialization instant until the first IRP request is
received. The DD is in the “processing IRPi” state from the instant when
IRPi is received and until the DD announces its completion. In each mode,
the DD executes a dispatch routine determined by the type of the received
IRP, as specified by the WDM [Oney, 2003]. This situation is depicted in
Figure 3.5.

IDLE WORKING

I/O Request Packet

Result & Status

Figure 3.5: The basic idle↔working functioning cycle of a DD. Initially the
DD is idle, incoming I/O request trigger state change to working. When the
processing of the initial request is finished, the DD outputs operation status
and returns to the idle state.

Actually, some I/O requests are processed concurrently by the DD, i.e.,
processing IRPj can start before IRPi is completed (assuming that IRPi

was initiated before IRPj but its activity is not finished yet). To the current
extent of our experimental work we have never encountered situations when
more than one I/O requests of the same type are processed at once. Hence,
we define the mode of a driver D as follows:

Definition 1 (Driver Mode). The mode of a driver D is a n-tuple of
predicates, each assigned to one of the n distinct I/O request types supported
by the driver:

MD : < PIRP1 PIRP2 .. PIRPi
.. PIRPn >, where
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PIRPi
=


1, if D is currently performing the functionality triggered by

the receipt of IRPi

0, otherwise

From this definition it results that the driver mode is a binary tuple of
size n, and therefore the total state space size (the total number of modes)
for a driver D is 2n.

Definition 2 (Transition). A transition between two driver modes is an
instantaneous event triggered by receiving or completing I/O requests.

As the I/O Manager serializes both the sending and receival of I/O re-
quests, only one bit can change at a time in the n-tuple describing the driver
mode. Thus, a DD can only switch to modes whose binary tuples are within
Hamming distance4 of 1 from the current mode. As the mode is a tuple of
length n, there are n transitions possible from each mode, implying the total
number of transitions in our model to be n · 2n.

A key observation for further developing of the concepts presented in
this thesis is that the driver modes are associated with execution of code,
and therefore, have computational duration. That is, while transitions are
instantaneous, the DD spends a certain amount of time in each visited mode.

To illustrate the concepts of DD modes and transitions between modes
let us consider a simple example. Figure 3.6 depicts the temporal evolution
of a hypothetical DD supporting four distinct I/O requests, i.e., CREATE,
READ, WRITE and CLOSE, in an arbitrary time interval. Consequently, the
DD modes are represented by 4-tuples (CREATE, READ, WRITE,CLOSE).

The leftmost bit is set while the DD performs the functionality associ-
ated with CREATE (the dispatch routine handling CREATE requests), the
second leftmost bit is set while the DD performs READ, the third bit when
performing WRITE and the rightmost bit when performing CLOSE. Note
that the DD can execute several activities of different types concurrently, in
which case the binary string defining the current mode contains several bits
set.

In Figure 3.6 the considered DD receives I/O requests (the black trian-
gles on the time axis) and, after a while, finish their execution (the white
triangles). The horizontal arrows represents the activity being performed by
the DD in the respective time interval (idling, reading, writing), while the
vertical arrows represent mode switches (transitions).

4The Hamming distance between two strings is the number of positions for which the
corresponding symbols are different [Hamming, 1950].
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Figure 3.6: The temporal evolution of a DD supporting four I/O requests.

Initially, the considered DD is idle, waiting for I/O requests (the DD
is in mode 0000). After a while, the DD receives a READ request, so it
switches instantly to mode 0100. After some time the DD finishes reading
(the READ dispatch routine returns) and the DD switches back to the idle
mode. Next, the considered DD receives a WRITE request and, before the
WRITE dispatch routine returns, another READ request is received. Hence,
according to our definition of the driver model, the DD is considered to
be in mode 0110 (both READ and WRITE were received and none of the
respective dispatch routines had returned). After a while, WRITE dispatch
routine returns, followed shortly by a READ routine return, such that the
DD switches back to the idle mode.

3.3.2 The Total State Space of a Device Driver

Figure 3.6 depicts the temporal evolution of a DD supporting four I/O re-
quest types (CREATE, READ, WRITE and CLOSE), but only for a short
time interval and only for few possible sequences of incoming and outgoing
requests. As previously mentioned, the complete state space of a DD has
to be identified for ensuring accurate and adequate testing, so all possible
combinations of I/O requests simultaneously handled by the DD have to
be accounted. Consequently, Figure 3.7 represents the integral state space
reachable by the considered DD (that is, the complete area that should be
covered by exhaustive testing – all modes, all transitions).
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Figure 3.7: The total state space of a DD supporting four IRPs. Circles are
driver modes, lines represent bi-directional transitions between pairs of driver
modes.

In Figure 3.7 we organized the reachable driver modes on levels. On each
level i there are i I/O requests serviced simultaneously by the DD. That is,
on level 0 the DD is idling, on level 1 there are four modes each associated
with a single I/O request in execution, level 2 contains all combinations of
modes where two I/O requests are simultaneously in execution and so forth.
For simplicity, in Figure 3.7 the lines are actually bi-directional transitions.
As defined, transitions represent one-bit changes in the mode tuple, so tran-
sitions are not allowed to jump over neighboring levels.

Generalizing, for a DD supporting n I/O request types, such a representa-
tion of the state space has n+ 1 levels, the levels labeled from 1 to n contain
modes in which the DD is executing some I/O-related functionality, while
level 0 is reserved for the idle mode.

Definition 3 (Total State Space). We define a driver’s total state space
as a digraph with the complete set of modes M = {MD

1 ,M
D
2 , . . .} as vertices

and the set of transitions T = {t1, t2, . . .} as edges. Each transition from T
maps to an ordered pair of vertices (MD

i ,M
D
j ), with MD

i ,M
D
j ∈ M , i 6= j

and the modes MD
i and MD

j within a Hamming distance of 1 from each other
[Hamming, 1950].

As a direct consequence, the total state space size of a driver supporting
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n I/O requests contains 2n modes interconnected by n·2n transitions. At this
point, we speculate that only few driver modes and transitions are actually
visited and, respectively, traversed in the operational phase. This assertion
is based on the intuition that not all the theoretically reachable modes are
actually allowed by the internal structure of the DD. For instance, is unlikely
that CREATE and CLOSE can be processed simultaneously by a DD, as their
actions are mutually exclusive. However, the aspects related to the reachable
subset of total (theoretically) possible state space of a DD constitute the main
subject of the next chapter.

3.4 Chapter Summary

This chapter started by presenting the role of the DDs in the architecture of
the currently two most popular COTS OSs families, Microsoft Windows and
UNIX/Linux. In this context, we discussed the processing of I/O requests
inside the OS kernel and the most important classes of routines present in
DDs designed for each of the two OSs. Based on the observed similarities
and accenting mainly on the generality aspects, this chapter subsequently
developed abstracted system and driver models.

The driver model was used to introduce a relaxed model of a DD’s state
(that is, the driver mode) as a key concept towards identifying the total state
space that need be covered by exhaustive testing. As defined in this chap-
ter, the driver mode is based exclusively on the incoming and outgoing I/O
requests, thus requiring no source-code level insight for any of the involved
OS components. The DD model and the methodology to infer its state space
presented in this chapter constitute one of the key contributions of this thesis,
namely C1 (see Section 1.2.2).
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Chapter 4

Operational State Space

How can the operational state space of a device driver be deter-
mined? How can the test progress be assessed via the operational
state space of the respective driver?

Once the total state space of a DD is determined as shown in the previous
chapter, a driver-relevant workload can be used to exercise the DD for reveal-
ing the operational state space of the respective DD – workload combination.
After the operational state space is highlighted, the operational profile can be
determined, by assigning occurrence probabilities to each of the visited states
as suggested by Musa [Musa, 1993]. As the operational state space depends
on the workload used to obtain it, the set of states reached in the field can
differ from the ones the DD visits in the lab during the test procedures. In an
ideal situation, to ensure the adequacy of testing, an operational state space
should be obtained in the field and then used to infer the set of DD states
that must be primarily covered in the testing process. As this is not always
possible, Weyuker suggested that workloads realistically mimicking the field
conditions have to be envisioned for adequate testing [Weyuker, 1998].

This chapter introduces an abstract representation of the operational
state space of a DD as a key prerequisite for thesis contributions C2 and
C3 (Section 1.2.2). Test coverage metrics are developed to support assess-
ing the test progress. The importance of highlighting the operational state
space before starting the actual testing process is also discussed. This chap-
ter concludes by presenting various aspects related to the operational space
size versus the total space size by making several hypotheses, used onwards
as guidance for an experimental case study – obtaining the operational state
space of the default serial port DD for Windows XP SP2.
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4.1 The Operational State Space of a Device

Driver

To introduce the concept of operational state space for DDs, let us reuse the
example of the DD supporting four distinct I/O requests (i.e., CREATE,
READ, WRITE and CLOSE) introduced in Section 3.3.1, Figure 3.6. The
leftmost bit is set while the DD performs the functionality associated with
CREATE, the second leftmost bit is set while the DD performs READ and so
forth. Note that the DD can execute several I/O activities of different types
concurrently, in which case the binary string describing the driver mode
contains several set bits.

Figure 3.6 depicted the temporal evolution of the considered DD under the
effect of the incoming and outgoing I/O requests generated by a hypothetical
workload. Subsequently, Figure 4.1 represents the same temporal evolution,
using the total state space representation as depicted in Figure 3.7.

Level 0

Level 1

Level 2

Level 3

Level 4

1000
(CREATE)

0100
(READ)

0010
(WRITE)

0001
(CLOSE)

0000
(IDLE)

1110
(3 IRPs)

1101
(3 IRPs)

1011
(3 IRPs)

0111
(3 IRPs)

1111
(4 IRPs)

0101
(2 IRPs)

1010
(2 IRPs)

1001
(2 IRPs)

0011
(2 IRPs)

0110
(READ+
WRITE)

1100
(2 IRPs)

1

6

3

4

5

2

Figure 4.1: The operational state space of a DD supporting four IRPs.

In Figure 4.1 the subset of modes visited by the DD is highlighted together
with the traversed transitions. The transition labels represent the temporal
evolution in a step-by-step fashion. That is, at step 1 the DD changes from
idling to reading and then returns to idling at step 2. At step 3 the DD
receives the WRITE I/O request, triggering a switch to the writing mode.
At step 4 the DD switches to the mode 0110 representing synchronous reading
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and writing. After a while, the WRITE activity finishes and the DD changes
to the reading mode as the READ routine has not returned yet (step 5).
Eventually, the READ routine returns and the DD is idling again, waiting
for new I/O requests (step 6).

The set of highlighted modes and transitions represent the operational
state space of the respective DD. This set depends on (a) the I/O request
types received by the DD and (b) the sequence of incoming / outgoing I/O
requests. That is, the OSS varies with the workload used to exercise the DD.

Definition 4 (Operational State Space). The operational state space
(OSS) of a DD with respect to a workload is the set of modes visited (together
with the traversed transitions) in the time interval spanning the workload
execution.

An important note has to be made at this point is that the OSS differs
fundamentally from the operational profile of the DD, as defined by Musa
[Musa, 1993]. According to his definition, the profile is “a set of disjoint (only
one can occur at a time) alternatives with the probability that each will occur”.
Hence, the OSS only defines the “disjoined set” of alternative DD executions,
but it does not associate probabilities to each of the modes or transitions.
The OSS is enhanced into an operational profile (similar to Musa’s definition)
in Chapter 5, after a set of occurrence and temporal quantifiers are developed
to capture the probabilities of each mode and transition.

Next, we discuss the value of the OSS as guidance for subsequent testing
tools. A set of coverage metrics are developed to help quantify the progress
of an ongoing test process.

4.2 Coverage Metrics for Testing Drivers

Software defect prediction research showed that software faults are not uni-
formly distributed throughout the code; they tend to cluster in certain areas
[Fenton and Neil, 1999; Möller and Paulish, 1993]. Assuming that different
inputs to the DD trigger different functionalities inside it, a logical implica-
tion is that testing an input can be associated with a certain likelihood of
finding a fault.

According to the state-based approach presented in this thesis, each DD
mode is associated with the execution of one or more disjoint pieces of code.
Subsequently, a tester can use our driver state model to test each functionality
separately (see Figure 3.7, the modes on the level 1 are associated with
servicing single I/O requests) and in a combined manner (lower levels in the
same figure).
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It makes sense to test the modes located on levels below 1 (l ≥ 2) as
they might contain faults that surface only when a functionality is executed
in conjunction with others, for instance faults triggered only when accessing
shared resources. Therefore, a complete testing coverage of the OSS defined
by our methodology is highly desirable because it represents a quantifiable
measure of the test status. Moreover, no modes and no transitions outside
the OSS need to be tested.

As long as a DD is in a certain mode, it can only switch to a limited
number of neighbors located on the immediately upper and lower levels. A
testing campaign aimed at transition coverage must exercise the entire set of
transitions exiting any mode belonging to the OSS.

Ensuring traversal of all transitions belonging to the OSS can reveal er-
rors that occur at entering or exiting a DD routine. For instance, mode 1000
in Figure 4.1 can be visited even if the transition 0000→1000 was never tra-
versed (i.e., instead the path 0000→0100→1100→1000 was followed). Intu-
itively, this means that some of the transitions between modes might never
be traversed even if all modes were visited, so transition coverage is more
complete than mode coverage testing but is still not complete enough.

As DDs use memory to communicate and store variables while processing
I/O dispatch routines (are stateful systems), the sequence of I/O requests
that put the DD in a certain mode is relevant for the testing process, too.
In the example above, one should be aware of the fact that the different
paths between 0000 and 1000 may lead the system into two different states
(i.e., having different memory contents). Our method cannot capture the
whole driver state from this perspective (see the discussion in Section 3.3),
but is useful from a testing viewpoint as it can capture the effect of input
sequences like ordering of requests. Knowing the paths between two modes
(from inspecting the OSS), a tester can develop test cases to traverse all
of them in order to discover faults occurring as a result of certain input
sequences. For instance, the sequence READ→CLOSE might work out fine
in contrast to the sequence CLOSE→READ which might yield an error.

For complete test coverage of our OSS model a testing process should
ensure that (a) mode coverage, (b) transition coverage and (c) path coverage
are satisfied at the same time.

4.2.1 Mode Coverage

Our OSS model improves the granularity of the testing process: the WORK-
ING mode of a DD as illustrated in Figure 3.5 is split into several, refined
modes (see Figure 3.7, all modes located on levels l ≥ 1). Using our method,
one can precisely pinpoint which functionality the DD is executing at any
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given time instant, with regard to the received I/O requests. This finer gran-
ularity contrasts with the generally impractical insight – “the DD is currently
working” – unfortunately characterizing many black-box level test tools.

Moreover, the OSS model captures the concurrent execution of several
I/O requests, so a testing campaign can identify faults in DD routines that
only surface when the DD is executing them in conjunction with other pro-
cedures (the modes located on levels l ≥ 2 in our OSS – see Figure 4.1).

If complete mode coverage is intended, a testing process can use test suites
which force the DD-under-test into every OSS mode, thus implying that all
the functionalities are executed at least once, separately and in conjunction
with other ones.

Definition 5 (Mode Coverage). A testing technique having 100% mode
coverage (MC) ensures that every mode of the OSS is tested.

The MC of a testing procedure can be quantified by relating the tested
modes and the total number of modes forming the OSS, as a percentage:

MC =
|tested modes ∩OSS modes|

# of OSS modes
· 100 [%] (4.1)

4.2.2 Transition Coverage

Since the test space is not large (WDM defines 28 distinct IRP types, see
Dekker and Newcomer [1999]; Oney [2003]; Orwick and Smith [2007], and
not all modes are visited), covering all of it is feasible given that a set of test
cases capable of putting the DD into each mode can be devised.

However, the MC metric only measures the test coverage of the IRP-
related functionalities in all possible combinations, without considering how
a DD leaves the current mode. Therefore, we need a more comprehensive
coverage metric and, accordingly, we introduce the concept of transition cov-
erage.

Definition 6 (Transition Coverage). A testing technique having 100%
transition coverage (TC) ensures that for each mode which belong to the OSS
all outgoing transitions are tested.

The progress in terms of TC of a given test procedure can be evaluated
as a percentage using the following formula:

TC =
|tested transitions ∩OSS transitions|

# of OSS transitions
· 100 [%] (4.2)
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Satisfying complete TC requires a larger number of test cases than MC
but TC implies 100% MC, thus being a better measure of testing complete-
ness.

4.2.3 Path Coverage

The concept of path is used in our approach to express a sequence of I/O
requests that lead the DD under test from an current mode to a destination
mode. Depending on the end modes and on the path length on hops, there
might be several paths connecting the two modes. For instance, in Figure
4.1 there are two 2-hop paths from mode 1000 to 1110 (the number of paths
is actually infinite if we consider cycles and multi-hop paths): Path 1 –
1000→1100→1110 and Path 2 – 1000→1010→1110.

Definition 7 (Path Coverage). Path Coverage (PC) denotes traversing
all paths between two different modes of the OSS (specified as source and
destination of the paths), over any number of hops.

We consider that the number of paths between any two modes in our
OSS model is theoretically infinite. However, the PC can be used to compare
the influence of following different paths between two modes, assuming that
the parameters which differ can be captured. For instance, if a value at a
memory location associated with the tested DD is different for the two paths,
this might indicate a fault on one of the two paths. Of course, the semantics
of the respective value has to be known to claim that the differing value is
the result of an activated fault, a situation specific to white-box level testing.

4.3 Operational State Space Hypotheses

An important note here is that the test coverage metrics presented in the
previous sections refer only to the operational state space and not to the
total state space of a given DD. This differentiation implies that the metrics
are related to the actual size of the OSS which varies depending on the
workload used to obtain it. So, to be able to accurately measure the test
progress (and, implicitly, the amount of pending testing) at a given time
instant, a clearly defined OSS for the tested DD must be available.

In this section we introduce several work hypotheses that substantiate
the differences between the OSS and the total state space of the DD. They
are first intuitively presented and then evaluated via investigative experi-
mentation using an actual Windows XP DD in combination with multiple
workloads.
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4.3.1 Hypothesis H1: OSS and Total State Space Size

We believe that the OSS forms only a very small part of the DD’s total state
space, irrespective of the workload used to obtain the OSS. This has some
significant implications on testing coverage.

First, the OSS indicates the modes and transitions having high likelihoods
to be reached in the field. This set of modes and transitions vary across
several OSSs, but at least the subset represented by the intersection of several
OSSs is very likely to be executed in the field.

Second, we believe that only few I/O requests can be serviced concur-
rently, due to DD and OS restrictions (i.e., access to shared resources). By
exhaustively testing all combinations, the internal constraints on how re-
quests can be concurrently executed might be disclosed. Based on the earlier
assumption that not all DD modes are reachable, it implies that the total
number of test cases used by in test campaign can be reduced dramatically,
by filtering out the superfluous ones.

Third, assuming that a testing tool always starts applying test cases in
the idle mode, the length of the sequence needed to bring the driver into the
mode of interest for testing is very short as some I/O requests are mutually
exclusive.

4.3.2 Hypothesis H2: Access to Lower-level Modes

As a direct implication of the previous assumption, we also hypothesize that
the modes located on levels l ≥ 2 in the OSS are have a smaller likelihood
to be visited. This assumption is based of several facts, discussed below.

First, the execution of the I/O dispatch routines of a DD has to be as
fast as possible in order to avoid any unnecessary delays occurring in the
I/O path, notorious for its inherent slowness. This is recommended also as
part of the DDK [Oney, 2003]. Therefore, the modes on levels l ≥ 2 are
visited only if two conditions are fulfilled at the same time: (i) the rate of
the incoming I/O requests is higher than the completion rate and (ii) the
execution of the incoming I/O requests is not excluded (or postponed) by
the currently running I/O dispatch routines.

Secondly, inside the OS kernel rules of thumb recommend DD developers
to keep the number of threads as low as possible in order to avoid race
conditions, deadlock situations etc. [Dekker and Newcomer, 1999]. Moreover,
the DD must be able to service as fast as possible any incoming I/O request,
so the DD code must block as little as possible. Therefore, we consider
that very few different I/O requests are actually allowed to be synchronously
executed for any DD.
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4.3.3 Hypothesis H3: Unequally Visited OSS Modes

Another hypothesis that deserves mentioning is that there is a significant
difference between the visits to different OSS modes. This directly follows
from H2 and has a deep implication for testing, which therefore has to treat
the modes differently.

For instance, the OSS modes visited very frequently under a given work-
load have a high likelihood to be also visited very often in the field. Intu-
itively, the modes belonging to this category might be the modes associated
with repetitive operations as READ or WRITE. Hence, the subsequent test-
ing tool should primarily test those modes.

Similarly, the OSS modes visited infrequently should not be disregarded,
as they are usually associated with infrequent but critical operations of the
DD. For instance, the CREATE or CLOSE operations are executed only
once, when the DD loads and unloads itself from the OS kernel, but they are
central to the correct functionality of the DD.

4.3.4 Hypothesis H4: Testing Entails Accurate Profil-
ing

Using the OSS by itself for testing purposes is not very useful. The reason
is that the OSS represents only a subset of visited DD modes and traversed
transitions out of the total state space of the considered DD.

By using the OSS, testing has access to an important source of informa-
tion not available without it, namely the explicit bordering of the states which
deserve focused attention from the rest of the DD states. Unfortunately, this
insight is binary in nature (i.e., only visited or not-visited), thus a further
prioritization of the test across the visited states is not possible. The use
of the operational mode quantifiers introduced in Chapter 5 alleviates this
issue.

4.4 An OSS Case Study – The Serial Driver

To validate the presented approach for building DD OSS, we have conducted
experiments that monitor the flow of I/O requests sent to a targeted DD.
The purpose is to investigate the hypotheses discussed above, in Section 4.3.
Hence, we try to determine the shape and size of the OSS in contrast with
the total state space of the DD.

For our experimentation we considered the serial DD provided as a part
of the Windows XP Professional SP2. The executable image of the DD is
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represented by the serial.sys file, version 5.1.2600.2180. The chosen DD is
part of the default set of DD, thus being present on most machines running
XP with Service Pack 2. It is used as both a function driver for legacy PnP
and COM ports, or as a lower filter driver for PnP devices requiring 16550
UART interface.

As the selected DD successfully passed Microsoft’s quality tests, it was
digitally signed by Microsoft. This indicates that it was tested with the DD
test tools available in the Windows Logo Kit (WLK) [Microsoft Corp., 2009b]
and in the DDK (Driver Development Kit) [Oney, 2003], which includes
reliability and stress tests.

For the experiments presented in this section we utilized two Pen-
tium4(HT)@2.80Ghz machines with 1Gb of RAM each and a 56k external
serial modem, Devolo Microlink 56k Fun II [Devolo, 2009]). To monitor the
I/O request flow we used IrpTracker v2.1, a free tool from Open Systems
Resources Inc. [Open Systems Resources, Inc., 2009]. This tool is capable
of logging all the communication taking place at the I/O interface of the
targeted DD. Both the incoming and outgoing I/O requests are logged.

The experimental setup is depicted in Figure 4.2. For each of the two
experiments presented in this section, a different application was used as
relevant workload for the serial DD. The workload produces I/O requests
(via the I/O Manager) that triggers mode switches of the DD.

Workload Application IrpTracker

Serial

driver

I/O

Manager

Logs

Serial port

USER SPACE

KERNEL SPACE

HW SPACE

IRPs

   Communication Party

   - a second computer

   - serial ext. modem

   - loopback cable

Figure 4.2: The experimental setup. The workload application exercises the
serial DD (via I/O Manager) by communicating data through the serial port.
I/O requests are captured and logged by IrpTracker.

We assume the DD is already installed in the OS kernel and properly
initialized, so each experiment started with the DD in idle mode. After the
IRP requests were captured and logged by the IrpTracker tool, we parsed
and analyzed the log files sequentially and we built mode graphs similar to
the one shown earlier in this chapter, in Figure 4.1.



72 CHAPTER 4. OPERATIONAL STATE SPACE

4.4.1 Experiment 1 – Determining the OSS

For this experiment we used an external modem, connected to the serial
port. As workload we used ModemTest v1.3, a diagnostic test from PassMark
Software [Passmark Software, 2007]. The main purpose was to validate the
viability of obtaining OSS graphs for combinations of DDs and workloads.

ModemTest sends data packets which are echoed back by the modem.
Before sending any data, ModemTest first checks the serial port settings and
then the modem itself. The received data is verified to ensure its complete-
ness and correctness. We have chosen this diagnostic tool as it generates
workloads which are representative for modems and thus for serial port us-
age. At the same time, we used the diagnostic tool as it generates a repeat-
able workload, a key requirement to ensure the repeatability among different
experiment runs.

The observed behavior of the serial DD under this workload is represented
by the mode graph shown in Figure 4.3. For readability only the transitions
between visited modes were depicted. Details can be observed in Figure 4.4,
which shows only the OSS (visited modes and traversed transitions).

0010100

0100110

0110011

0110111

1010110

1101011

1110111

1111111

Figure 4.3: The obtained OSS vs. the total state space for the serial DD –
ModemTest combination. The OSS is represented in gray. Note that the
OSS represent only a small fraction of the total states space.

The experiment issued a total of 186 I/O requests (incoming and out-
going) using 7 distinct I/O requests (in order of appearance: CREATE,
POWER, DEVICE CONTROL, WRITE, READ, CLEANUP and CLOSE).
With a total state space having 128 modes (27) and 896 transitions (7 · 27),
only 9 modes and 16 transitions were actually visited, forming the OSS for
the considered workload. This means that only 7% of the modes and only
1.8% of transitions were traversed. Therefore, for properly testing the se-
lected DD for the given workload, one has to focus only onto very few modes
and transitions. This observation confirms our H1 hypothesis (see Section
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CREATE | POWER | DEVICE_CONTROL | WRITE | READ | CLEANUP | CLOSE
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Figure 4.4: The OSS obtained for the ModemTest workload. Edge label
indicate the number of traversals. The upper box shows the corresponding
I/O request names.

4.3.1).

To verify if the obtained OSS is stable across multiple runs, we executed
the same experiment five times, each time using different baud rates (4800,
14400, 19200, 57600 and 115200). The rest of COM port settings were the
default ones (8/N/1/no flow-control). The observed flow of I/O requests
was identical each time and produced the same graph of visited modes (Fig-
ures 4.3 and 4.4). Moreover, the number of issued I/O requests was also
unchanged for all runs.

These facts indicate that the workload application is following an oper-
ational pattern, with each execution generating the same sequence of I/O
requests. Additionally, the serial DD under test performed in a deterministic
manner (responded to requests in the same manner every time). If a single
I/O request would have been dropped or the DD would have finished execut-
ing the associated code in a different period of time (so that the DD would
have started processing another incoming I/O request), the OSS would have
had a completely different shape.

If the OS, DDs and the set of used applications are known (or at least
a subset of them), the system tester can first build behavioral patterns that
describe the manner the OS and the installed applications exercise a DD
(the OSS), as sets of visited modes and traversed transitions. If needed,
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counters can be associated to each mode and transition to observe which are
frequently visited or, respectively, traversed (as depicted in Figure 4.4).

4.4.2 Experiment 2 - Aggregated Workload

In the following experiment we show the usefulness of the OSS for subse-
quent testing, thus tackling the H4 hypothesis (see Section 4.3.4). Under
the assumption that the tester can identify the set of applications with im-
pact on the targeted DD, we collected a set of applications which we used
to generate a workload for the serial DD (see Table 4.1). The main goal
of this experiment is to investigate the variability of the OSS across several
workloads.

Table 4.1: The applications used as workloads for the serial DD.

Short Application HW at COM port Description
A1 BurnIn Test Pro

v4.0
Loopback serial cable Reliability and stability

test; RTS, CTS, DTR,
DSR test, cycling all the
baud rates

A2 DirectX Diag.
Tool v9.0c

Computer (via serial
cable)

DirectPlay test; text mes-
sages exchanged between
machines

A3 HyperTerminal
v5.1.2600.0

Computer (via serial
cable)

Exchanged messages and
50k files

A4 ModemTest v1.3 External modem See Section 4.4.1
A5 Win XP modem

diagnostics
External modem Windows XP queries the

modem to check its capabil-
ities

A6 Win XP Device
Manager

External modem and
COM port

Device Manager scans for
hardware changes; the se-
rial port and the modem
are queried

A7 Dial modem off External modem Tried to dial a number
when modem is off

Similar to the previous experiment, we built the OSS of the serial DD for
the selected application set. Table 4.2 contains the results of the aggregated
workload experiment, as well the results for each application.

107456 requests were issued in total, out of which 10 were distinct, thus
modes are represented by 10 bits. The total state space graph (not shown
here for space reasons) has 1024 (210) modes and 10240 (10 · 210) transitions.
Only 17 modes and 35 transitions were visited, which corresponds to 1.66%
of modes and 0.34% of transitions.
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Table 4.2: The aggregated results of the considered workloads.

IRPs Total State Space (from which (%) OSS)Application
Issued Distinct Modes Transitions

A1 98398 7 128 (7.03) 896 (1.78)
A2 220 8 256 (4.68) 2048 (1.07)
A3 6704 7 128 (7.81) 896 (2.12)
A4 187 7 128 (7.03) 896 (1.78)
A5 1326 8 256 (3.90) 2048 (0.87)
A6 146 8 256 (4.68) 2048 (0.92)
A7 476 8 256 (4.29) 2048 (0.97)

Aggregated: 107456 10 1024 (1.66) 10240 (0.34)
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Figure 4.5: The OSS obtained using the aggregation of the applications
described in Table 4.1. The thick-bordered modes were not visited by A4.

In Figure 4.5 we marked with thicker circles the DD modes visited under
the aggregated set of workloads but not under the A4 workload, described in
our previous experiment (see Figure 4.4).

Hence, this figure can be used to illustrate (obviously, at a lower scale)
why testing fails to find all the defects present in the DD code. Assuming
that DD test tools activate only the thick-bordered modes, defects present
in the thin-bordered modes (assumedly activated in the field) have a high
likelihood to surface, despite of the thoroughness of the used test methods.

Our experimental results show that even for a large set of varied appli-
cations only a very small percent of modes and transitions is visited, thus
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confirming the hypotheses H1. To ensure a thorough activation of a large
set of DD routines we have chosen a variate set of workloads, some of them
serial port benchmarks, but still the set of visited modes was not propor-
tionally larger than only one workload was used. This indicates that various
workloads exercise the serial DD in a similar fashion (from the perspective
of the visited set of modes – the OSS).

We observed also that the modes located on lower levels in our model are
not visited; we have only two visited modes on level l = 3. This can be an
indication of the low degree of I/O request interlacing, i.e., not many IRPs
are permitted by the DD’s design to execute concurrently, this confirming
our hypothesis H2.

Another observation is the large difference between the number of times
transitions and modes were visited (see Figure 4.5). That is, some modes were
visited multiple times (i.e., the mode 0000100000 associated with WRITE
operations), while others are only seldomly visited (i.e., the mode 0000000001
associated with PnP operations). This confirms our hypothesis H3.

4.5 Chapter Summary

By developing the concept of operational state space (OSS) this chapter es-
tablished the necessary basis for introducing the operational profiling in the
next chapters. The importance of the OSS for testing is discussed in terms
of DD mode, transition and path coverage. Also, a set of four work hypothe-
ses are presented as main aspects to be tackled by the ensuing experimental
investigation.

Finally, this chapter experimentally validates the work hypotheses via two
investigative experiments aimed at validating the viability of obtaining OSS
for DD – workload combinations for actual Windows DDs. The presented
experiments show that only a small subset of the driver modes are actually
exercised by using several commercial applications (benchmarks) that gen-
erate workload for the DD monitoring sessions. This result is important,
indicating the relevant areas to focus a testing method (the OSS). Therefore,
using the OSS to guide testing represents a significant improvement over
random test methods, given the tendency of faults to concentrate in specific
areas of the code [Möller and Paulish, 1993].

Moreover, the OSS enables construction of operational profiles for the
DD-under-test, associating with each mode and transition a probability of
occurrence in the field as proposed in Weyuker [2003]. Additionally, the
method of obtaining OSSs is non-intrusive, requiring no access to the source
code of the OS and the DD under test.



Chapter 5

Operational Profiles

How to distinguish across the modes and transitions belonging
to the operational state space? How can the operational profile
of a device driver be obtained?

In the previous chapter we experimentally identified the OSS of the serial
port DD provided with Windows XP SP2. The experimental results revealed
that the reached modes and transitions and the selected DD are consistent
across different runs. Moreover, the OSS of the studied DD has a small
footprint (only 1.6% of the modes were visited and 0.3% of the transitions
were traversed). Though small and stable, the applicability of the OSS for
operational profiling purposes is limited as it divides the modes and transi-
tions into only two subsets (gives only binary information i.e., visited and
non-visited). Unfortunately, this is insufficient for a proper characterization
of the DD’s activity as the ability to distinguish among the visited modes
and traversed transitions is missing.

As one of the main contributions of this thesis (C3 – see Section 1.2.2),
in this chapter we enhance the highlighted OSSs by introducing mode and
transition quantifiers for an accurate characterization of the DD’s runtime
behavior. We start from the hypothesis that the higher detail level of the OSS
quantification permits discovery and assessment of the existing execution
hotspots inside DD’s code (this approach constitutes the contribution C4).
This assumption is justified for testing black-box DDs as the information
about their runtime behavior is implicitly meager.

This chapter starts by introducing the concept of operational profile
for DDs. Then, to support the construction of DD operational profiles,
occurrence- and duration-based quantifiers are defined. A large-scale case
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study for Windows DDs is also presented, alongside with the set of tools de-
veloped for capturing and analyzing the obtained operational profiles (con-
tributions C7 and C8).
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5.1 Operational Profile of a Device Driver

In the previous chapter, the DD’s OSS was defined as the set of visited modes
and traversed transitions belonging to the DD’s total state space under a
workload exercising the respective DD. The concept of operational profile for
DDs represents an augmentation of the OSS model with a set of metrics as
an effort to enhance its value for testing.

To introduce the operational profile let us reuse the example of the DD
that supports four distinct I/O requests (CREATE, READ, WRITE and
CLOSE) described in the previous chapter, Figure 3.6. The leftmost bit of the
tuple defining the DD mode is set as long as the respective DD performs the
functionality associated with CREATE, the second leftmost bit is set while
the DD performs READ and so forth. The DD can execute several activities
of different types concurrently, in which case the binary string defining the
mode contains several bits set.

Level 0

Level 1

Level 2

Level 3

Level 4

1000
(CREATE)

0100 0010 0001
(CLOSE)

0000

1110
(3 IRPs)

1101
(3 IRPs)

1011
(3 IRPs)

0111
(3 IRPs)

1111
(4 IRPs)

0101
(2 IRPs)

1010
(2 IRPs)

1001
(2 IRPs)

0011
(2 IRPs)

01101100
(2 IRPs)

2

2

1

1

1 1

1

1

2

Figure 5.1: The operational profile of a DD supporting four IRPs. The oper-
ational profile adds probabilities to each of the OSS modes and transitions.
The probabilities are computed using the mode and transition occurrence
counters depicted as labels in this figure.

Figure 5.1 is structurally similar to the Figure 4.1 described in the pre-
vious chapter, the only difference lies in the presence of mode and transition
labels in Figure 5.1. Transition labels indicate how many times the edges
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were traversed, while mode labels (white circles inside the DD modes) repre-
sent the number of times the DD modes were visited. For instance, the label
“1” of the transition 0000 → 0010 means that the respective transition was
traversed once in the time frame described in the Figure 3.6, while the “2”
on the mode 0100 means that the respective mode was visited twice.

The mode and transition labels in Figure 5.1 are obviously simple coun-
ters, but they play a key role in transforming a DD’s OSS into a more useful
concept for testing, namely the operational profile. The respective counters
are later used to compute probabilities for each OSS mode and transition
reached in the field, thus enabling the differentiation between the visited
modes and transitions. This differentiation allows for prioritization of the
test procedure, such that testing can be “tuned” on particular modes and
transitions for various test scenarios.

Hence, we define the operational profile of a DD, while the next section
develops the quantifiers for it, as probabilities.

Definition 8 (Operational Profile). The operational profile (OP) of a DD
with respect to a workload is the set of modes and transitions belonging to the
DD’s OSS together with their corresponding probabilities to be visited (or,
respectively, traversed) in the time interval spanning the workload execution.

Hence, the OP of a DD–workload combination is the OSS of the same pair,
enriched with reachability probabilities for each of the modes and transitions
belonging to the OSS.

5.2 Operational Profile Quantifiers

An accurate characterization of the operational behavior of a SW component
is highly desirable for establishing effective testing methods. Our interest
focuses on DDs, and these SW components are unfortunately known for
their limited observability at runtime.

As test completeness is hard to achieve for DDs mainly due to their
complexity, testers usually choose to primarily test the key functionalities
[Mendonca and Neves, 2007]. Even when it is assisted by tools having a cer-
tain degree of automation, this selection remains a process based on tester’s
subjective experience in prioritization.

Hence, this section presents a set of quantifiers developed for differentiat-
ing among the visited modes and transitions of a DD’s OSS (thesis contribu-
tion C3 – see Section 1.2.2). Using these quantifiers, the relative frequencies
of the visited modes and transitions can be observed and analyzed, revealing
execution hotspots (thesis contribution C4 – see Section 1.2.2).
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The metrics introduced here are also useful as they provide accurate work-
load characterization from the DD’s perspective. For instance, capturing the
DD’s field activity can be useful for workload assessments, usage/failure data
collection or post-mortem debugging. Moreover, different workloads can be
statistically compared to reveal the DD modes with higher probability of
being reached in the field, thus allowing for a guided choice in the process of
selecting the part of the DD to be targeted by the test tool.

From a testing perspective, the metrics associated with the DD modes
indicate how often and how long each mode is visited. They represent key
information about the operational mode of a DD for subsequent test cam-
paigns, as they permit inter-mode priority rankings (intra-mode rankings are
enabled by our DD code profiling methods presented in Chapter 7).

These rankings are tunable to the main purpose of the test scenario. For
instance, if the goal is early discovery of the defects with high probability to
occur in the field, then the test campaign should start by first covering the
mostly visited DD mode, and continue in the decreasing order of the sojourn
rate of the remaining modes until all of them are covered or the resources
allocated for testing are depleted.

In this section we also introduce metrics for transitions among the modes
belonging to an OSS. While we believe that the need for mode quantifiers
for testing is intuitive (modes are abstract representations for the DD code),
the arguments supporting the development of transition quantifiers are easier
understood by using a simple example.

For instance, let us assume that a tester wants to test the mode 0011 in
Figure 5.1. To “drive” the DD into that mode (onto the same transitions
followed in the OSS!), one needs to design a test case which calls a WRITE
shortly followed by a READ I/O request. A simple issuance of the two
commands in this sequence might not be sufficient as the DD might finish
the WRITE operation before the READ is called. If this happens, the test
is applied to mode 0100 instead of the intended mode 0110.

We note that the test parameters alone (that is, of the issued I/O re-
quests) cannot guarantee that the desired mode is reached. Consequently,
a decisive test timing aspect is also involved. This means that the READ
request must be called before the WRITE returns. Our transition quantifiers
probabilistically capture the temporal dimension of the process, enabling the
development of complex test cases (i.e., sequences of I/O calls instead of sin-
gletons). Hence, they permit computing the probability to reach the mode
of interest depending on the current mode. Specifically, this probability is
re-calculated in terms of the current mode after each hop in a sequence of
I/O calls.

The developed metrics have a statistical meaning specifically in the con-
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text of the workload for which they were assessed. Within this perspective,
the OP can be used to detect deviations from the expected behavior of a
DD by observing a population of runs of the selected workload and finding
the OP which diverges from the rest of the runs in terms of one (or mul-
tiple) quantifiers. Chapter 6 illustrates the workload comparison procedure
enabled by our approach.

For testing purposes, our metrics can be used to quantitatively compare
the effectiveness of test cases (or test suites) on the DD-under-test. For
instance, if the DD source code is not available, one can select the test cases
(suites) having the highest coverage in terms of reached DD modes. Hence,
while still reaching the same DD functionalities, the size of test case pool
can be reduced to a least necessary minimum by removing the redundant
test cases.

5.2.1 Occurrence-based Quantifiers

Two important characteristics of the runtime behavior of a DD are the mode
and transition occurrence weights. They reflect the DD’s likelihood to visit
the mode (or transition) to which these quantifiers are bound. To express
them, we first define as prerequisite notions the transition and mode occur-
rence counts for a given workload.

OP Counters: Transition Occurrence Counter (TOC) and Mode
Occurrence Counter (MOC)

As a DD’s OP is defined as its OSS annotated with mode and transition
probabilities, the modes and transitions belonging to the OP are a subset of
the total state space. In the following, we use the graph notation introduced
in Definition 3; the OP is a connected subset of the total state space digraph,
defined as “the set of modes M = {MD

1 ,M
D
2 , . . .} as vertices and the set of

transitions T = {t1, t2, . . .} as edges. Each transition from T maps to an
ordered pair of vertices (MD

i ,M
D
j ), with MD

i ,M
D
j ∈M , i 6= j and the modes

MD
i and MD

j within a Hamming distance of 1 from each other”.

Definition 9 (Transition Occurrence Count: TOCti,j ). The occurrence
count for transition ti,j ∈ T , originating in mode MD

i and terminating in
mode MD

j (MD
i ,M

D
j ∈M and i 6= j) is the total number of recorded traversals

from mode MD
i to mode MD

j .

Definition 10 (Mode Occurrence Count: MOCj). The occurrence count
of mode MD

j ∈ M is the number of times mode MD
j was visited during the

workload execution.
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MOCj =

NOP∑
i=1

TOCti,j (5.1)

Note that both the occurrence counters expressed above are defined for
the duration of the workload. Counter variables associated with each mode
and transition can be used to store their values. The TOC and MOC counters
are next utilized to develop subsequent quantifiers accurately specifying the
operational behavior of DDs, namely the mode occurrence weight and the
transition occurrence weight.

OP Weights: Transition Occurrence Weight (TOW) and mode Oc-
currence Weight (MOW)

Definition 11 (Mode Occurrence Weight: MOWi). The occurrence
weight of mode MD

i ∈ M represents a quantification of the driver’s likeli-
hood to visit the mode MD

i relatively to all other sojourned modes of the OP
(NOP ).

MOWi =
MOCi

NOP∑
i=1

MOCi

(5.2)

This metric is similar to the metric used for development of OPs for build-
ing reliable SW components proposed by Musa [Musa, 2004]. In contrast, our
quantifier is specific to profiling the runtime behavior of kernel-mode DDs
and its significance is coupled with the specific workload for which it was
computed. If the chosen workload accurately mimics the manner in which
the DD is used in the field, the obtained mode quantifiers accurately express
the field conditions.

Using this metric in profiling the runtime behavior of a DD helps building
test priority lists. For instance, the modes with higher MOW value repre-
sent primary candidates for early testing, as higher values of this quantifier
indicate the functionalities of the DD which are most frequently executed.
For the idle mode (the mode where the DD is not executing any IRP-related
activity) this quantifier indicates the percentage of mode sojourns that put
the DD in an idle state, i.e., waiting for I/O requests.

Similar to MOW but referring instead to the transitions between modes,
we define the transition occurrence weight for each traversed transition be-
longing to the DD’s OP for a given workload.
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Definition 12 (Transition Occurrence Weight: TOWti,j ). The occur-
rence weight of transition ti,j ∈ T , originating in mode MD

i and terminating
in mode MD

j (MD
i ,M

D
j ∈ M and i 6= j) is the quantification of driver’s

likelihood to traverse the transition ti,j when leaving the mode MD
i .

TOWti,j =
TOCti,j

MOCi

(5.3)

Thus, the occurrence weight associated with the transition ti,j indicates
the probability that this transition is actually followed when leaving the mode
MD

i . Note that the probability of following a certain transition depends on
the current mode. This information is relevant for estimating which mode is
to be visited next, given that there is a one-hop transition in the OP between
the current mode and the one whose reachability is to be calculated.

2

1000 0100 0001 0010

1110 1101 1011 0111

1100 1010
1001

0011 0110 0101
50

8

15 25

Figure 5.2: Calculating TOWt1001,1011

For instance, consider the situation depicted in Figure 5.2, where only the
modes and the outgoing transitions of interest are shown, together with their
TOC values as edge labels. The mode 1001 is current, the MOC1001 = 50
and TOCt1001,1011 = 8. Therefore, TOWt1001,1011 = 8

50
= 0.16. This indicates

that the transition between 1001 and 1011 has been traversed 16% of the
times the mode 1001 was left (i.e., 16% probability that the mode 1011 will
be visited next when the mode 1001 is current).

5.2.2 A Duration-based Quantifier for Modes

To increase the accuracy of DD profiling, both spatial and temporal dimen-
sions need to be considered. We regard the duration of a DD’s activity not
just as an artifact of the device’s inherent slowness but as an important aspect
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of the computation, as longer execution time reveals more defects (shown by
many defect estimators in the field, e.g., the Musa-Okumoto model [Musa
and Okumoto, 1984]).

Therefore, we introduce a quantifier accounting for the relative amount of
time spent by the DD executing in each mode. As we consider the transitions
between modes as instantaneous events, defining a corresponding temporal
metric for edges is superfluous.

The overall time spent by the DD in each mode reveals information about
the latencies of various I/O-related activities of a DD. If the DD spends a
relatively large amount of time in a certain mode, that mode can be con-
sidered important for a subsequent testing campaign although the respective
mode has a very low occurrence count (and, implicitly MOW).

For instance, the DDs managing “slow” devices as disks or tape drives
spend large amounts of time in modes associated with READ or WRITE
operations, irrespective of their sojourn rate. To capture this behavior we
introduce a new OP quantifier, the mode temporal weight, to be used in con-
junction with the mode occurrence weight for a multivariate characterization
of DD modes.

Definition 13 (Mode Temporal Weight: MTWi). The temporal weight
of the mode MD

i ∈ M is the ratio between the amount of time spent by the
driver in mode MD

i and the total duration of the workload w.

5.2.3 A Compound Quantifier for Modes

An accurate characterization of the runtime behavior of a DD needs to con-
sider both the occurrence and duration-based metrics, on a stand-alone basis
or in combination. In order to facilitate combinations of the two metrics,
we propose a compound quantifier capturing these dimensions of the profiled
DD’s activity, namely the mode compound weight.

Definition 14 (Mode Compound Weight: MCWi). The compound
weight of a mode MD

i ∈ M is given by the expression (where λ ∈ R, 0 ≤
λ ≤ 1):

MCWi(λ) = λMOWi + (1− λ)MTWi (5.4)

By varying λ, MCW can be biased towards either occurrence or tempo-
ral dimension as needed for test requirements. For instance, to emphasize
the temporal aspect λ should take values closer to 0, while the occurrence
dimension is highlighted by values of λ that approach 1.



86 CHAPTER 5. OPERATIONAL PROFILES

5.3 Experimental Evaluation

To validate the profiling approach and the associated metrics, we conducted
a series of experiments that investigate the applicability of the OP quantifiers
using a large number of Windows DDs.

Subsequently, the following sections introduce the used experimental
setup and then present the set of DDs considered for the case study together
with the applications used as workloads. Finally, detailed experimental data
is presented and discussed.

5.3.1 Experimental Setup and OP Analysis Strategy

Our experimental procedure is a two-step process: first, the flow of I/O
requests is captured and logged in a file (online step). In the second step
the respective logs are analyzed and OPs are constructed (offline step). The
two steps of the methodology for obtaining DD OPs are detailed below. For
a graphic representation thereof, please refer to Figure 5.3.

Online step. To capture the I/O requests flow, we have built a
lightweight “filter driver” interposed between the I/O Manager and a DD
of our choice (Figure 5.3). This mechanism is widely used by many OSs for
modifying the functionality of existing DDs or for debugging purposes.

Our filter driver acts as a wrapper for the monitored DD, logging only
the incoming (from I/O Manager to DD) and outgoing (from DD to I/O
Manager) IRPs. The I/O request traffic is then forwarded unmodified to
the original recipient (the wrapped DD). As for logging each I/O request
only a single call to a kernel function is needed, we expect the computation
overhead of our filter driver to be marginal. The overheads introduced by
our filter driver are assessed and discussed in Section 6.4.2.

Interposing our filter driver between the I/O Manager and a selected DD
uses the standard DD installation mechanisms offered by Windows. Hence, it
is non-intrusive and does not require detailed knowledge about the wrapped
DD. The insertion and removal of the filter driver requires only disabling
and re-enabling the target DD but no machine reboot. Moreover, due to its
conformance to WDM, we used (sans modifications) the same filter driver to
monitor all DDs whose runtime behavior was investigated in this thesis (see
tables 5.1 and 5.3).

Offline step. To build the OPs we have designed the OP-Builder tool
that processes the logs and outputs the DD’s OP together with all runtime
quantifiers. The figures 5.4 – 5.23 are obtained using directly the outputs of
the OP-Builder tool.

For our experiments we utilized a Pentium4@2.66Ghz machine with
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Figure 5.3: The experimental setup for obtaining the OP; the online (moni-
toring) and offline (analyzing) phases.

512Mb of DDRAM, equipped with Windows XP Professional SP2
(v5.01.2600). To build the filter driver we have used the tools provided
by Microsoft as a part of the Windows Server 2003 DDK [Dekker and New-
comer, 1999; Oney, 2003]. For logging the kernel messages sent by the filter
driver we have used Sysinternal’s DebugView tool [Russinovich, 2008].

5.3.2 Studied Drivers and Workloads

As the case studies presented in this thesis are valid for WDM-compliant
DDs, they are readily transferrable to Vista DDs, too. For its latest commer-
cial OS (Vista) Microsoft introduced the Windows Driver Foundation (WDF)
[Orwick and Smith, 2007]. WDF defines two main DD categories, the user-
mode drivers (User-Mode Driver Framework - UMDF) and the kernel-mode
drivers (Kernel-Mode Driver Framework - KMDF). As KMDF represents an
extension of the earlier WDM, our case studies on WDM DDs hold also for
Vista’s KMDF-compliant DDs.

Currently, an important number of DDs are moving from WDM to KMDF
as Vista’s popularity is increasing. The error reporting facility of Windows
Vista enabled Microsoft’s researchers to estimate the unique devices attached
to Vista OSs to be 390,000, while the DD population is increasing every day
with 25 new and 100 revised DDs on average [Orgovan, 2008]. The vast
majority of Windows DDs is represented by WDM/KMDF DDs [Microsoft,
2006], emphasizing the applicability of our profiling methodology presented
in this thesis.

In this chapter we perform a systematic evaluation of the methodology
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for obtaining the OP for five types of WDM-compliant DDs:

• a serial port DD (serial.sys) – for XP;

• a CDROM DD (cdrom.sys) – both for XP and Vista;

• an Ethernet card DD (sisnic.sys) – for XP;

• a floppy DD (flpydisk.sys) – both for XP and Vista and

• a parallel port DD (parport.sys) – for XP.

All DDs are provided (and digitally signed) by Microsoft, except the
sisnic.sys, which is provided by the SiS Corporation. The DDs selected
for the experimental evaluation presented in this chapter span all the different
DD types described earlier in Section 3.1. Table 5.1 lists their main char-
acteristics and features. Table 5.3 lists all the DD–workloads combinations
used in the full spectrum of our experimental work.

To properly exercise the chosen DDs, we selected a set of benchmark ap-
plications generating comprehensive and deterministic workloads for the tar-
geted DDs. For each experiment we analyzed the collected logs, constructed
the OP graphs and calculated the OP quantifiers as previously defined in
Section 5.2.

Beside commercial benchmarks testing the performance and reliability
of the peripherals under various conditions, it is worth mentioning that we
have additionally used the Device Path Exerciser (DC2 ) tool as a workload
[Orwick and Smith, 2007, chap. 21, pp. 671–672].

DC2 is a robustness testing tool that evaluates if a DD submitted for
certification with Windows is reliable enough for mass distribution. It sends
the targeted DD a variety of valid and invalid (not supported, malformed
etc.) I/O requests to reveal implementation vulnerabilities. DC2 requests
are sent in synchronous and asynchronous modes and in large amounts over
short time intervals to disclose timing errors. In our experiments we exercised
the parallel port and the floppy disk DDs with a comprehensive set of the
DC2 tests.

The results of experimenting with the chosen DDs are summarized in
Table 5.2. In the full spectrum of our experiments all the other mentioned
DDs also showed the effectiveness of our OP profiling method. The detailed
results are presented in the next section.
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Table 5.1: Considered DDs and their characteristics. The first column con-
tains the short name used onwards to refer to the respective DDs, differenti-
ating among DDs profiled under the Windows XP or Vista OSs.

Short Executable
Image (Ver.)

Managed
Device

Used as Features

cdr XP cdrom.sys
(5.1.2600.2180)

DVD drive Class driver, pro-
vides access to
CD ROMs and

PnP, power management
and media change notifi-
cation (autorun)

cdr Vista cdrom.sys
(6.0.6000.16386)

DVD ROMs

flpy XP flpydisk.sys
(5.1.2600.2180)

Floppy drive Block-device,
legacy driver
(monolithic)

Sits on top of the floppy
disk controller in the
driver stack mediating the
communication with

flpy Vista flpydisk.sys
(6.0.6000.16386)

the user-level application
which calls into the floppy
disk controller

par XP parport.sys
(5.1.2600.2180)

Parallel port Parallel port
function driver
and parallel port
bus driver

PnP, power management,
WMI, raw access to all
parallel devices. Can
share the access to all
parallel ports on the sys-
tem and detects all par-
allel enumerable devices
connected to the port

ser XP serial.sys
(5.1.2600.2180)

Serial port Function driver
for legacy PnP
COM ports or as
a lower-level filter
driver for PnP
devices requiring
16550 UART
interface

PnP, power management,
WMI. Controls interrupts
and communication with
device hardware (mono-
lithic). Used in conjunc-
tion with serenum.sys
(which acts as a device up-
per filter for serial.sys

eth XP sisnic.sys
(1.16.00.05)

Ethernet card No information available (distributed as
binary-only by the SiS Corp.)

5.3.3 Detailed Experimental Results

In this section we present the detailed results of the experiments listed in
Table 5.2, in terms of the obtained OPs. All figures in this section (figures
5.4 – 5.23) are structurally similar, the information contained in the nodes
of the OP graphs is the mode name, the MCW value and the MTW value.
For instance, in Figure 5.4 the mode 000 has a MCW of 0.5008 and a MTW
of 0.9951. Similarly, the transitions are marked with the TOW weight (see
transition labels in the same figure).
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Table 5.2: The workloads utilized to exercise the DDs and their experimental
attributes, in terms of generated I/O traffic and operational profile size. The
OPs captured for all the benchmark / DD / OS combinations listed in this
table are presented in detail in Section 5.3.3.

IRPs OSS
Description - Duration

S
h

or
t

Benchmark DD Short

Is
su

ed

T
y
p

es

M
o
d

es
E

d
ge

s

[min:sec]

C1 BurnInTest-Audio 1336 3 / 9 4 6 Audio CD test mode [07:40]
C2 BurnInTest-Data

cdr XP
71012 2 / 9 3 4 Data CD read / verify [01:03]

C3 BurnInTest-Audio 2170 5 / 9 6 10 Audio CD test mode [03:50]
C4 BurnInTest-Data

cdr Vista
51034 5 / 9 6 10 Data CD read / verify [01:02]

F1 BurnInTest 2946 5 / 6 6 10 Various read and write [05:03]
F2 Sandra Benchmark 19598 5 / 6 9 16 Perf. benchmarks [23:40]
F3 DC2 50396 4 / 6 5 8 MS DC2 tool [00:32]
F4 DevMgr-Disable flpy XP 10 1 / 6 2 2 DevMgr – disable [00:0.01]
F5 DevMgr-Enable 400 3 / 6 4 6 DevMgr – enable drive [00:17]
F6 F1 – F5, sequentially 63396 5 / 6 6 10 Seq. run of F1–F5 [31:00]
F7 F1 ‖ F2 (run I) 12298 5 / 6 15 34 Conc. run of F1+F2 [18:40]
F8 F1 ‖ F2 (run II) 21884 5 / 6 15 34 Conc. run of F1+F2 [27:50]
F9 BurnInTest 3008 6 / 6 7 12 Various read / write [05:03]
F10 DevMgr-Disable flpy Vista 10 3 / 6 4 6 DevMgr – disable [00:.004]
F11 DevMgr-Enable 245 6 / 6 7 12 DevMgr – enable [00:0.03]
P1 DC2 par XP 48530 6 / 6 7 12 MS DC2 tool [00:5.7]
S1 BurnInTest ser XP 11568 6 / 6 9 16 COM1 loop-back test [05:00]
E1 BurnInTest 2480 4 / 28 5 8 TCP/UDP full duplex [05:03]
E2 DevMgr-Disable eth XP 6 1 / 28 2 2 DevMgr – disable [00:01]
E3 DevMgr-Enable 114 6 / 28 7 12 DevMgr – enable [00:02]

Operational Profiles of the cdr XP Driver

The workload C1 generated (Figure 5.4) 1336 IRPs belonging to 3 types
(CREATE, CLOSE and DEVICE CONTROL) out of a total of 9 types
supported by the cdr XP DD. The most accessed DD operation was DE-
VICE CONTROL, the other two were only seldomly called.

Figure 5.5 illustrates the behavior of the cdr XP DD under the work-
load generated by the BurnInTest application by testing a data CD media.
71012 IRPs were generated in total, belonging to 2 types (READ and DE-
VICE CONTROL). READ was the most accessed DD operation under this
workload, the DD spending here 82.35% of the total experiment time.
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Figure 5.6: cdr Vista profile for the workload C3: BurnInTest - Audio
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Figure 5.7: cdr Vista profile for the workload C4: BurnInTest - Data
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Operational Profiles of the cdr Vista Driver

Under Vista, we re-used the same workloads that were used to exercise the
DVD drive DD under Windows XP. However, we observed large differences
in both shapes and quantifiers of the obtained OPs from figures 5.4 and 5.5
versus the figures 5.6 and 5.7.

These differences can be explained by the fact that different I/O Manager
units build the I/O traffic for the responsible DD, as we are dealing with
different OSs. For instance, the cdr Vista DD received five types of IRPs
from the Vista I/O Manager on behalf on both C3 and C4 workloads, while
under Windows XP only three (and respectively, two) distinct types were
issued (see Table 5.2). By comparing figures 5.4 and 5.6 in terms of issued
IRPs, it becomes apparent that the cdr Vista DD received two distinct
IRPs (READ and CLEANUP) more than the cdr XP DD. Figures 5.5 and
5.7 show the same trend, this time three distinct IRPs (CREATE, CLOSE
and CLEANUP) were additionally issued for the cdr Vista DD but not for
the cdr XP DD.

The BurnIn Test benchmark completed successfully for both XP and
Vista. While the DDs there provide similar functionality, the difference in
the obtained OPs indicate the different internal structures of the two versions
of the considered DVD drive DDs.

Operational Profiles of the eth XP Driver
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Figure 5.8: eth XP profile for the workload E1:
BurnInTest
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Figure 5.9: eth XP pro-
file for the workload E2:
Device Manager - Dis-
able driver

We exercised the ethernet DD (eth XP) with three workloads. First we
have used BurnInTest benchmark (Figure 5.8), followed by disabling the
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Figure 5.10: eth XP profile for the workload E3: Device Manager - Enable
DD

DD from the Windows Device Manager (Figure 5.9) and then re-enabling it
(Figure 5.10). Therefore, figures 5.9 and 5.10 illustrate the activity performed
by the DD at loading and unloading. This discloses the execution of the
functionalities executed very seldomly (i.e., only at load and unload of the
DD), but which are critical for the correct and dependable performance of
the DD.

While the disable operation requires only the execution of the activity
performed by a single IRP (CLOSE), the enable operation is more compli-
cated, six IRPs are called, all of them in conjunction with the PnP activity.
As both Enable and Disable operations require the PNP I/O operation to
be executed, it indicates the high importance this IRP type has for the man-
agement of the DD in the OS.

Operational Profiles of the flpy XP Driver

This section presents and discusses the OPs obtained for the flpy XP DD
by exercising it with the F1 – F8 workloads, as described in Table 5.2. The
same flpy XP DD along with the mentioned workloads are also the subjects
of a different study (further presented in Section 6.2) aimed at revealing the
ability to compare workload effects using our OP quantifiers.

The OPs induced by the workloads F1 and F2 onto the flpy XP DD are
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illustrated by the figures 5.11 and 5.12. The same two workloads were also
selected to run concurrently, thus generating the F7 and F8 workloads.

BurnInTest accessed five IRP types without concurrent executions of the
associated functionalities (Figure 5.11) in the time interval spanning the ex-
periment. In contrast, Sandra benchmark called exactly the same IRP types,
but in a manner that forced the DD into three additional modes located on
the level 2 in the OP graph (Figure 5.12 - the modes 00011, 01010 and 10010).
In all these three modes, the floppy disk DD accessed CREATE, CLOSE and
DEVICE CONTROL in conjunction with the WRITE operation. The mode
00010 (WRITE) is both the most accessed and the mode where the DD spent
most of the time.
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Figure 5.11: flpy XP profile for the workload F1: BurnInTest

However, the behavior of the flpy XP DD was counter-intuitive. DC2 is a
robustness test tool and given the fact that it generated a very large number
of IRPs for the short interval of time it ran (averaging at more than 1500
IRPs per second), we had expected a large number of modes to be visited.
Interestingly, the number of modes sojourned under DC2 (Figure 5.13) was
less than those for the workloads F1 and F2. Moreover, no modes associated
with concurrent execution of DD functionality were visited. This might be
an indication that the DC2 waits until the DD finishes the current test
then resets the device settings in order to start a new robustness test. This
assumption is supported by the large number of times the mode responsible
for DEVICE CONTROL operations is accessed. Also, it indicates that DC2
tests miss many operational modes of the DD.

Interestingly, for the floppy disk DD both the enable and disable oper-
ations use different IRPs than the Ethernet driver. Instead of issuing PNP
I/O requests for disabling it, the I/O Manager calls CLOSE to disable the
flpy XP DD (Figure 5.14). Also, for enabling the DD (Figure 5.15), only
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Figure 5.12: flpy XP profile for the workload F2: Sandra benchmark

three IRP types are used (CREATE, CLOSE, DEVICE CONTROL), an ad-
ditional call to the PNP I/O request is not required. We believe that these
major differences, in the manner in which DDs are loaded and unloaded
from the OS originate in the functional and architectural variety among DDs
following the WDM specifications.
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Figure 5.13: flpy XP profile for the workload F3:
DC2 (Device Path Exerciser)
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Figure 5.14: flpy XP

profile for the workload
F4: Device Manager -
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Figure 5.16 is a graphic representation of the OP when the workloads
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F1 to F5 were sequentially executed. The purpose is to study the runtime
behavior of the flpy XP DD over longer periods of time while the DD is
subjected to multiple tasks. The DD executed mostly DEVICE CONTROL
operations in terms of number of sojourns to the respective mode, while
WRITE was the most expensive operation in terms of time spent running
the functionality associated with it.
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Figure 5.15: flpy XP profile for the workload F5: Device Manager - Enable
driver
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Figure 5.16: flpy XP profile for the workload F6: Sequential execution of
F1–F5 workloads

The concurrent executions of F1 and F2 revealed that exactly the same
modes and transitions were visited irrespective of the order in which the
workloads were started. The respective OPs are depicted in the figures 5.17
and 5.18. A detailed analysis and a quantitative comparison of these two
workloads is presented in Section 6.2.
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Figure 5.17: flpy XP profile for the workload F7: Concurrent execution of
F1 and F2 (run I)
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Figure 5.18: flpy XP profile for the workload F8: Concurrent execution of
F1 and F2 (run II)

Operational Profiles of the flpy Vista Driver

For the DVD drive DD we conducted a detailed profiling of the operational
behavior also for the floppy disk DD under Windows Vista and XP. The
trend observed by comparing the two DVD drive DDs was confirmed by the
comparison of the OPs of the floppy disk DDs installed under the two OSs.
In general, under Vista more distinct I/O request types are issued than under
Windows XP, while the benchmarks produced the same results.

For the flpy Vista DD, on behalf of the BurnInTest benchmark, the
Vista’s I/O Manager issued additionally to the XP’s I/O Manager the
CLEANUP IRP (see figures 5.11 and 5.19). The structure of the OP graphs
is similar, only the modes located on the first level were visited for both
floppy disk DDs.

By comparing the OPs obtained for Disable operations (workloads F4 and
F10, figures 5.14 and 5.20), we observed that two more distinct IRP types
were issued for flpy Vista than for flpy XP, hinting at a more complex
mechanism for unloading DDs in Vista than in Windows XP, even though
exactly the same number of IRPs were issued under both OSs (namely 10,
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CREATE | CLOSE | READ | WRITE | DEVICE_CONTROL | CLEANUP

000000
0.5003
0.1061

000001
0.0223
0.0000

0.0445

000010
0.1719
0.0033

0.3435

000100
0.2018
0.6319

0.4033

001000
0.0595
0.2587

0.1189

010000
0.0223
0.0000

0.0445

100000
0.0223
0.0000

0.04451.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Meaning of the bits

Figure 5.19: flpy Vista profile for the workload F9: BurnInTest

see Table 5.2).
In contrast to the DD unload mechanism, by comparing the install rou-

tines of the two OSs (figures 5.15 and 5.21), we observed that Vista is
much faster than XP (0.03 seconds for Vista versus 17 seconds for XP).
The number of issued IRPs under XP was reduced in Vista to almost half,
even though the distinct types they belong to contains three more in Vista
(QUERY INFORMATION, CLEANUP and PNP).
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Figure 5.20: flpy Vista profile for the workload F10: Device Manager -
Disable driver

Operational Profiles of the par XP Driver

Figure 5.22 illustrates the behavior of the par XP using the DC2 ro-
bustness tool as workload. Similar to the OP captured in Figure 5.13
for the flpy XP DD, DC2 only accessed modes located on the first
level in the case of the par XP, too. For the parallel port, DC2 ad-
ditionally called the QUERY INFORMATION, CLEANUP and INTER-



5.3. EXPERIMENTAL EVALUATION 99

CREATE | CLOSE | QUERY_INFORMATION | DEVICE_CONTROL | CLEANUP | PNP
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Figure 5.21: flpy Vista profile for the workload F11: Device Manager -
Enable driver

NAL DEVICE CONTROL, but it did not call the READ IRP. Overall, the
functionality associated with the DEVICE CONTROL operation was mostly
visited, indicating that the setting and getting of device capabilities repre-
sents significant activity from the perspective of the DC2 robustness test
tool.
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Figure 5.22: par XP profile for the workload P1: DC2 (Device Path Exerciser)

Operational Profiles of the ser XP Driver

Figure 5.23 graphically represents the OP recorded for the ser XP DD under
the BurnInTest workload. Only two modes (0100001 and 1000001) were
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visited on the second level, most of the mode sojourns being made to the
modes associated with READ (0010000) and WRITE (0001000) operations.
The most of execution time was also spent in the WRITE mode.
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Figure 5.23: ser XP profile for the workload S1: BurnInTest

5.3.4 Other Profiled Drivers

Due to space limitations, in the previous section we only presented in detail
a subset of our experimental results. The complete set of DD for which OPs
were built is listed in Table 5.3, while the obtained OPs are available online
[Sârbu, 2009]. The list includes 50 DDs running on different versions of XP
and Vista OSs, exercised using more than 260 workloads on more than 15
different machines. We also profiled several versions of the same DDs (for
instance, see cdrom.sys, flpydisk.sys or serial.sys in Table 5.3).

Table 5.3: Other DDs profiled in our experimental evaluation. The obtained
OPs are available online at [Sârbu, 2009].

# DD Image Version Device OS # Workloads
1 rfcomm.sys 5.1.2600.5512 Bluetooth XPSP3 3
2 cdrom.sys 6.0.6000.16386 CDROM Vista 13
3 cdrom.sys 5.1.2600.2180 CDROM XPSP2 15
4 cdrom.sys 5.1.2535.0 CDROM XPSP2 20
5 cdrom.sys 5.1.2600.5512 CDROM XPSP3 18
6 sisnic.sys 2.0.1039.1210 Ethernet Adapter Vista 10

continued on next page →
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← continued from previous page

# DD Image Version Device OS # Workloads

7 b57xp32.sys 8.48.0.0 Ethernet Adapter XP Home 3
8 pcntpci5.sys 4.38.00 Ethernet Adapter XPSP3 8
9 pcntpci5.sys 4.38.00 Ethernet Adapter XPSP2 2
10 sisnic.sys 1.16.00.05 Ethernet Adapter XPSP3 8
11 flpydisk.sys 5.1.2600.0 Floppy disk XPSP2 3
12 flpydisk.sys 5.1.2600.2180 Floppy disk XPSP2 15
13 flpydisk.sys 6.0.6000.16386 Floppy disk Vista 30
14 flpydisk.sys 5.1.2600.5512 Floppy disk XPSP3 9
15 disk.sys 6.0.6001.18000 Hard Disk Drive VistaSP1 3
16 disk.sys 5.1.2600.5512 Hard Disk Drive XPSP3 2
17 parport.sys 6.0.6000.16386 Parallel Port VistaSP1 3
18 parport.sys 5.1.2600.2180 Parallel Port XPSP3 1
19 pci.sys 5.1.2600.5512 PCI Bus XPSP3 3
20 pcmcia.sys 5.1.2600.5512 PCMCIA Adapter XP Home 2
21 dot4prt.sys 5.1.2600.0 Printer XPSP2 3
22 Dot4Prt.sys 5.1.2600.0 Printer XPSP3 3
23 usbprint.sys 5.1.2600.2180 Printer XPSP2 3
24 serial.sys 6.0.6000.16386 Serial Port VistaSP1 3
25 serial.sys 5.1.2600.2180 Serial Port XPSP3 1
26 ac97intc.sys 5.1.2535.0 Sound XPSP2 3
27 adihdaud.sys 5.10.01.5410 Sound XPSP2 3
28 ALCXWDM.SYS 5.10.5900 Sound XPSP2 3
29 smwdm.sys 5.12.01.3533 Sound XPSP2 1
30 drmk.sys 1.0.4825.0 Sound XPSP2 3
31 tcpip.sys 5.1.2600.5512 TCPIP Services XPSP3 2
32 AF15BDA.sys 8.6.24.1 TV Tuner XPSP3 3
33 usbhub.sys 6.0.6000.16386 USB Controller Vista 6
34 rndismpx.sys 5.1.2600.2781 USB Mobile Phone XPSP2 3
35 hidusb.sys 5.1.2600.5512 USB Mouse XP Home 1
36 usbhub.sys 5.1.2600.2180 USB Mouse XPSP2 3
37 usbscan.sys 5.1.2600.1106 USB Scanner XPSP1 3
38 disk.sys 5.1.2535.0 USB Stick XPSP2 8
39 disk.sys 5.1.2600.5597 USB Stick XPSP3 3
40 disk.sys 6.0.6001.18000 USB Stick VistaSP1 3
41 usbstor.sys 5.1.2600.5512 USB Stick XP Home 3
42 Volsnap.sys 5.1.2600.5512 USB Stick XPSP3 3
43 ks.sys 5.3.2600.2180 USB Video XPSP2 3
44 fwlanusb.sys 2.0.6.1647 USB WLAN XPSP3 3
45 EU3USB.sys 2.1.1.0 USB WLAN XPSP1 3
46 VboxVideo.sys 2.0.4.0 Video Adapter XPSP2 3
47 BCMWL5.SYS 3.100.46.0 WLAN XPSP2 3
48 bcmwl5.sys 5.10.38.26 WLAN XP Home 3
49 NETw5v32.sys 12.1.0.14 WLAN VistaSP1 3

continued on next page →
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← continued from previous page

# DD Image Version Device OS # Workloads

50 ar5211.sys 4.1.2.156 WLAN XPSP3 3
DD–workload combinations additionally profiled: 262

5.4 Chapter Summary

This chapter introduced the concept of operational profile of a DD as the
DD’s OSS enriched with probabilities to be visited for each of the modes and
transitions belonging to the OSS. To express these probabilities in a mean-
ingful manner for testing, a set of occurrence- and duration-based quantifiers
were developed for both modes and transitions. Moreover, a compound quan-
tifier – the MCW – was introduced to ease tuning the subsequent test tools
towards either occurrence or temporal probability of each DD mode.

Onwards, to validate the viability of the methodology for obtaining OPs,
a set of seven XP and Vista DDs were exercised with several workloads.
At the same time, their activity was captured using a specially-designed
filter DD interposed between the I/O Manager and the targeted DD. The
activity logs were parsed offline and the OPs of the selected DD–workload
pairs were constructed. Finally, all the DDs used in the full spectrum of our
experimental evaluation are listed.



Chapter 6

Operational Profiles’ Usefulness

How do operational profiles help for improved testing of device
drivers? What are the experimental issues that need be consid-
ered when building operational profiles?

The operational profiles are useful – as defined and experimentally ob-
tained in the previous chapter – for multiple testing-related purposes. On-
wards, we present a test prioritization methodology that uses the available
operational profiles to guide the testing progress by producing a ranking of
the DD modes in terms of occurrence and temporal weights thereof.

Next, a method for accurate workload cross-comparisons using the oper-
ational profiles is presented, constituting the contribution C6 of this thesis
(see Section 1.2.2). By highlighting the differences between the way the DD
is exercised in the field against the test runs executed before the release of the
DD, such a methodology enables a quantifiable assessment of the test accu-
racy and adequacy. The test space reduction of the OP against the OSS and
the total state space of the DD are evaluated and discussed in this chapter.

The last part of this chapter presents several experimental aspects.
Among these, notable are the validity of the experimental procedure, the
operational overhead introduced by our DD monitoring mechanism and the
effort required to profile OS DDs.

103
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6.1 Test Prioritization via OP

Figure 6.1 depicts the Windows XP default floppy disk DD’s OP, as exer-
cised by the F2 workload. For detailed descriptions of the applications used
as workloads – including F2 – see Table 5.2 in Section 5.3.2. Nodes are la-
beled with the mode name, MOW and MTW values (the latter in square
brackets), while transition labels represent the TOW values of the respective
directed edges. For simplicity, the occurrence counters of modes (MOC) and
transitions (TOC) are not shown in the figure.
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Figure 6.1: The OP for F2 and three prioritization cases; the figure is content-
wise similar to Figure 5.12, with the difference that here we visually empha-
sized the execution hotspots by using darker shades and thicker lines.

In Figure 6.1 the darker gray hemispheres represent higher MOW or
MTW values, revealing the frequently executed DD functionalities and the
ones with longer execution times, respectively. The mode 000000 was pre-
dominantly visited under the workload, indicating that the DD was idle al-
most 25% of the time. Most of the time (66%) was spent by the DD executing
the functionality of the mode 000100. This result is intuitive, as this mode
is associated with the slower WRITE operation of the floppy disk drive.

Table 6.1: Priority ranking example for the modes in Figure 6.1

Priority Rank
λ

1 2 3 4 5 6 7 8
λ = 0.25

001000 000010
λ = 0.50 000100 010000 100000 000110 010100 100100
λ = 0.75 000010 001000
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Depending on the testing purpose, the balance factor λ (see Eq. 5.4,
MCW) can be tuned to guide test prioritization. Varying λ from 0 to 1 is
equivalent to move emphasis from MTW to MOW. Table 6.1 represents the
test priority ranking based on MCW of the modes when λ is 0.25, 0.5 and
0.75 (rank 1 has the highest priority). For instance, when λ = 0.5 (equal
balance between MOW and MTW weights is desired), the mode 000100 is
identified as a primary candidate for testing, followed by 001000 and 000010.
In contrast, a λ = 0.75 (when MOW dominates MTW) keeps the same mode
on the first priority rank but swaps the order of the second and the third
modes. All other modes keep their ranking irrespective if λ takes the values
of 0.25, 0.50 or 0.75.
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Figure 6.2: Temporal evolution for F2. Note that the DD is executing only
in a single mode at any instant; this is more visible in the lower part of the
figure, where the sojourn pattern of a very short interval of time is presented,
with the transitions among modes depicted as vertical dotted lines.

Figure 6.2 illustrates the temporal evolution of F2 with different time
windows. The upper part of the figure depicts the DD’s evolution over the
entire experiment duration (23 minutes and 40 seconds), where dots indicate
mode sojourns. This representation reveals distinct execution patterns. For
instance, the modes 000110, 010100, 100100 are visited only seldomly and
also repeat (three times) the same sojourn pattern. For a better insight, the
lower part of the figure shows the mode sojourn pattern in an arbitrarily
selected 60µs time frame. This representation exposes the functionalities in
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execution at any instant enabling testers to reproduce the IRP sequence that
brings the DD in a mode of interest (i.e., to create effective test cases).

6.2 Workload Comparison via OP

Continuous post-release service provision is problematic mainly due to the
limited capacity of the in-house testing to accurately reproduce the entire
spectrum of possible field workloads. To estimate the difference between the
behavior seen during in-house testing and field behavior, a comparison of the
OPs can be performed. Ideally, a minimal difference ensures post-release test
adequacy [Weyuker, 1998], though measuring it is not trivial without detailed
knowledge about the field workload and a set of metrics to quantify the
deviation. Assuming that several OPs of the DD are available, our runtime
behavior quantifiers can be used to outline their relative deviation.

6.2.1 One-to-one Comparison

We present here a comparative study of two workloads for the floppy disk
DD, workloads F7 and F8 (see Table 5.2). For F7, we first started the F2
workload, followed after a few minutes by F1. For F8, we swapped the start
order. Both F1 and F2 are performance benchmarks that create, read, write
and delete files on the floppy disk. Both F1 and F2 completed successfully
when run concurrently despite the fact that F7 is 9 minutes and 9586 IRPs
shorter than F8.

We observe that the structures of the OPs for F7 and F8 are identical
(exactly the same modes and transitions were visited – see figures 5.17 and
5.18). We note that considering only the structure of the OP graphs when
comparing workloads is not effective for runtime behavior profiling as the level
of provided detail is limited. For instance, it is impossible to differentiate
between a workload executing multiple READ operations and a workload
accessing this operation only once, as the reading mode appears in both of
the two obtained OPs. This fact recommends using the OP quantifiers for a
more accurate comparison.

Figure 6.3 shows a side-by-side representation of the MCW (λ = 0.5)
values for each mode, as generated by the F7 and F8 workloads. Similarly,
Figure 6.4 depicts the TOW values side-by-side for each traversed transi-
tion. The values above the bars represent the absolute difference between
the MCW values of each mode, and between TOW values for each transition.
In both figures the small difference between the two OPs is apparent, despite
of an almost double amount of issued IRPs for F8 relative to F7. The largest
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deviations among MCW values are for modes 000010 (0.024) and 001100
(0.015), an indication that F7 executed more READ + WRITE operations
and less DEVICE CONTROL in contrast with F8.
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Figure 6.3: MCW comparison for F7 and F8
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Even though the same modes and transitions were visited under both
workloads, the distance between TOW values show a wider distribution than
the MCW values. Figure 6.4 indicates the transition 001000→000000 (the
bars pointed by the arrow in Figure 6.4) as having the largest difference be-
tween TOW values of F7 and F8, with 0.280 bias towards F8. This transition
is traversed when the READ operation finishes and the DD returns to the idle
mode. A closer inspection reveals that F7 compensates this difference with
higher TOW values of the other transitions originating in 001000, i.e., tran-
sitions to the modes 001100, 001010 and 101000. As these modes are located
on a lower level than 001000, this reveals the tendency of F7 to start the con-
current execution of WRITE, DEVICE CONTROL or CREATE while still
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running READ operations. This behavior might disclose potential problems
related to concurrency handling or indicate places for optimizations.

Therefore, for comparing the effects of several workloads on a DD, the
Euclidean distance between MCW values of each mode or between TOW val-
ues of each transition can be evaluated. Moreover, if the distance is smaller
than a chosen threshold, then the compared workloads are considered equiv-
alent. This constitutes feedback for ascertaining the adequacy of a testing
campaign versus operational usage. The next section provides a detailed
example on how the Euclidean distance can be used to analyze the relative
similarity across workloads.

6.2.2 Many-to-many Comparison

This section presents a preliminary quantification method to ascertain the
relative closeness between the execution pattern of a testing method and
OPs generated by field workloads. This visually estimates the chances for
the chosen testing strategy to cover the code areas that actually occur with
a high likelihood as based on the mode and transition quantifiers presented
in Chapter 5.

We use multidimensional scaling (MDS) plots to graphically display the
distances between the workloads used to exercise the flpy XP DD. MDS is
a statistical technique used to visually express the degree of similarity (or
dissimilarity) among objects belonging to a population, each object being
characterized by a set of attributes. For each attribute a distance matrix is
computed among the objects. To evaluate the similarity among the objects,
the distance matrices associated with each object attribute are aggregated
in a weighted average. The MDS plot is computed using this average. For
the MDS plot depicted in Figure 6.5 we have used the Euclidean distance
among the MCW values of the corresponding modes visited by each workload.
Similarly, Figure 6.6 is computed using the Euclidean distance among the
TOW values of the corresponding transitions for each workload. For instance,
the closeness between two points in Figure 6.5 indicates that the associated
workloads have visited the same modes, generating similar MCW values for
each of them.

Figure 6.5 shows the MDS plot of the workloads F1 – F8, where the
attributes of the objects are the MCW values of every sojourned modes of
the OPs (i.e., 15 modes, see Table 5.2), with a λ = 0.5. If a workload did not
visit a certain mode in our experiments, the MCW value of that attribute is
zero. The MDS plot in Figure 6.5 reveals that the DC2 is most similar to F4
and F5, two workloads that are representative for the operations performed
when the floppy DD is loaded and unloaded from the OS. The comparison
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between the modes of the F7 and F8 presented in Figure 6.3 is visually
confirmed by the MDS plot, as the points associated with the two workloads
are very close to each other.
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To examine how the workloads compare for the traversed edges, in Figure
6.6 we have considered as object attributes the TOW values of every transi-
tion of the OPs. Here, F7 and F8 are located farther away from the rest of
the workloads. This effect is explained by the fact that F7 and F8 actually
traverse all the 34 transitions that act as attributes of the objects in this
plot, while the rest of the workloads traverse only a small subset of them.
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As mentioned before, we assigned equal weights to modes and transi-
tions for the MDS plots in figures 6.5 and 6.6. To accurately ascertain how
close a testing campaign is from the manner the DD is exercised under re-
alistic workloads, one should assign heavier weights to the modes and to
the transitions carrying the most of interest when the inter-object distances
are computed. For instance, Figure 6.7 shows the relative similarity among
the workloads when only the initial mode (000000) and the mode associated
with DEVICE CONTROL (000010) are considered as object attributes, all
the rest of the modes being ignored (all considered workloads visit these two
modes). The MDS plot in Figure 6.8 is computed when weight is assigned
only to the transitions between the same two modes.

While in Figure 6.7 the spatial configuration remains the same as in Figure
6.5 (despite the fact that F1, F2, F6 and F7 cluster closer to each other), the
positions change dramatically in Figure 6.8 as compared to Figure 6.6. The
closeness between F3 and F6 reveals that DC2 generates an execution pattern
which is very similar to the one recorded for F6. Therefore, using the DD
state quantifiers introduced in Chapter 5, multidimensional scaling analysis
can be successfully used on the data provided by our OPs to quantify the
relative similarities among several workloads (for instance, field workloads
vs. in-house testing workloads). This reveals new possibilities for statistical
measurement of test coverage in terms of execution patterns.

Interestingly, our MDS plots revealed the tendency of DC2 to cluster
closer to the workloads that are associated with driver maintenance activ-
ities, F4 and F5. Given that DC2 is a tool for testing the robustness and
security of DDs, this tendency indicate that the Enable and Disable are exer-
cising DD functionalities considered to be potentially harmful by Microsoft’s
OS developers. Moreover, it is reasonable that DC2 shows dissimilarity with
the other workloads, which are mostly associated with floppy disk DD’s cus-
tomary operations.

6.3 Test Space Reduction Tunability

To evaluate the test-space reduction enabled by our OP obtaining approach,
we compared it with the total test space and the DD’s OSS, considering both
modes and transitions that need be covered by a testing campaign. At the
end of this section Table 6.2 summarizes the overall improvement introduced
by the current approach.
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6.3.1 First-pass Reduction – The OSS

In figures 6.9 and 6.10, for each DD, we have selected the workload that
exercised the largest set of modes and transitions, respectively. For instance,
for the flpy XP DD we selected the workload F7, as it issues IRPs belonging
to five distinct types out of the six types supported by the respective DD.
This indicates a total state space size of 26 = 64 modes and 6 · 26 = 384
transitions. From this set, only 15 modes (23.44%) and 34 transitions (8.85%)
were visited (see Table 5.2, columns 5–7). In figures 6.9 and 6.10, we call
this early reduction step first-pass reduction.
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While the first-pass reduction solely divides the total state space into
two classes (visited and non-visited), we additionally utilize the newly in-
troduced execution quantifiers for modes and for transitions. They permit
a finer differentiation among the visited modes (and among the traversed
transitions), offering subsequent testing campaigns a richer insight about the
modes and transitions that need consideration. In figures 6.9 and 6.10 this
step is called second-pass reduction and it is based on the relative ranking
among modes and transitions, respectively. The process of obtaining such
rankings is discussed in Section 6.1 and depicted by Figure 6.1.
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6.3.2 Second-pass Reduction via Priority Ranking

To explain the mechanism of the second-pass reduction, we introduce a
threshold T specifying the desired test coverage level. Onwards, the word
“coverage” refers to the coverage of the modes and transitions in our model.
In relation with the ranking of modes (or transitions, respectively), T gives
the reduction of the second-pass. For example, if a test coverage of 95% is
desired for the visited modes under the workload F7, then they are selected
from a list ranked by their MCW weights. Figure 6.11 depicts the cumula-
tive MCW value of the modes visited under F7. The modes are ordered in
decreasing MCW order, from left to right. Therefore, when the example cov-
erage goal is 95% of the visited modes, the first five leftmost modes (marked
in the figure) are selected. This gives a test space reduction of 66.66% com-
pared to the OSS presented in Chapter 4. When a stricter 99% coverage of
visited modes is desired, three more modes are selected, still giving a 46.66%
reduction relative to the first-pass.
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Figure 6.11: The cumulative coverage of the DD’s modes for F7. The modes
are ordered in decreasing MCW order from left to right.

Figure 6.11 indicates that the most visits are concentrated to a very small
number of modes. This trend also holds for the transitions, indicating a high
reduction in modes and transitions selected by the second-pass, also when the
desired coverage is high. Therefore, this mechanism of selecting the modes
of interest based on the rankings given by the execution quantifiers can be
tuned using the threshold T to best fit coverage goals. Figures 6.9 and 6.10
depict the second-pass reduction of modes (and transitions, respectively) for
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95% testing coverage. Table 6.2 lists the reduction for each of the workloads
considered in figures 6.9 and 6.10.

Table 6.2: Test space reductions of the OP relative to the OSS. (for a coverage
threshold T = 95%)

Quantifier C1 [%] E3 [%] F7 [%] P1 [%] S1 [%] C4 [%] F9 [%]
MCW 50.00 42.85 66.66 85.71 77.77 66.66 42.86
TOW 33.33 41.66 44.11 41.66 25.00 40.00 8.33

Hence, when test resources are limited, we believe that the testing effort
can efficiently be tuned for the desired coverage level in order to first cover
the modes and transitions associated with high likelihoods to be reached
in the field. Assuming that the test effort is equally distributed among the
visited modes, this result indicates that a significant reduction in the amount
of testing is possible, without affecting its adequacy. While the test case
creation and prioritization are out of the scope of this thesis, we believe that
existing test methods can directly utilize the test guidance insights offered
by our profiling methodology.

6.4 Experimental Aspects

In this section we discuss different issues related to our experimental pro-
cedures. We start by describing the threats to the validity of the obtained
results, then we discuss the overheads of the used monitoring mechanisms.
This section also addresses the efforts required to obtain OPs and concludes
by presenting the lessons learned.

6.4.1 Threats to Validity

We discuss here the issues that can potentially limit the generalization of
the experimental profiling approach for a wider population of DDs. The
DDs chosen for our experiments are WDM-compliant DDs and therefore
do not represent a random selection, as they were chosen from the set of
DDs installed on the host machines. However, we believe that they are
representative for the population of Windows XP DDs as the WDM DDs
constitute the main type of DDs available for this OS [Oney, 2003].
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External Threats to Validity

The external threat to validity is related to the generalization of the exper-
imental results to all currently existing DD types. To address this issue we
selected as diverse DDs as possible (see Table 5.2). Also, the filter driver
used to monitor the selected DD’s runtime activity was kept general enough
to be ported on virtually any WDM-compliant DD. The representativeness
of the workloads chosen to exercise the DDs does not impact the validity of
the experiments presented in this thesis as we are not attempting to com-
pletely profile the field behavior of the DDs. Our purpose here is to propose
a general methodology to quantify DD operational behavior.

Instead, the workloads listed in Table 5.2 were selected as they trigger
a wide set of specified DD functionalities. However, for obtaining accurate
OPs we recommend collecting them in the field (e.g., during a beta-testing
campaign involving many users); when this is not possible, a wide selection
of workloads for the target DD has to be used to ensure accuracy of the OP
quantifiers.

The OP-Builder, the software tool we created for offline log parsing and
analysis was found not to easily scale to extremely large log files1. This
limitation is due to an inefficient object management of the JVM which leads
to memory leaks. However, this has no impact on the results presented in this
thesis but we are aware that the re-usage of our tools in larger DD profiling
projects may require handling this issue, possible by running it in other
(better) JVMs or, ultimately, porting it to other programming language.

Internal Threats to Validity

The internal threats to validity of the presented experimental results repre-
sent conditions influencing the dependent variables of the experiments. The
main threats to internal validity are represented in our experiments by con-
founding and instrumentation.

Confounding occurs whenever an extraneous variable changes along with
the independent variable, preventing the inference of a causal relationship
between the independent and dependent variables. To avoid this threat to
the validity of our experiments, we have carefully ensured that no other active
process accessed the target DD in the experiment’s time window. To detect
and filter out the I/O calls not belonging to the considered workload – DD
pair before proceeding with OP analysis, we accordingly marked the messages
intended for logging.

1Some log files have hundreds of thousands entries.
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Instrumentation threat is produced by changes introduced to the studied
system by the measurement instrument itself. To reduce this internal threat,
we have restarted each DD (the DD’s code was removed and then reinstalled
in the OS kernel) after each experimental run. Also, to keep our approach as
non-intrusive as possible, only the filter driver was inserted into the target
OS kernel on the I/O requests’ path. With its code written with efficiency in
mind, the filter driver only captures, logs and then forwards the IRP traffic.
The next section presents the overheads introduced by our DD monitoring
mechanisms.

6.4.2 Monitoring Overhead

Table 6.3 lists the average overheads introduced by the filter driver for the
DDs presented in this study. Each DD was exercised with the DC2 testing
tool from Microsoft. It was run 64 times with, and then 64 times without
the filter driver installed in the driver stack.

Table 6.3: The overheads introduced by the filter driver in terms of elapsed
time and CPU time for all the studied DDs. The data represents averages
over 128 runs of each DD, 64 with and 64 without the filter driver installed.

Elapsed Time CPU TimeDriver
w/o filter w/ filter Increase w/o filter w/ filter Increase(see OS

t0 t1
t1−t0

t0
· 100 t2 t3

t3−t2
t2
· 100

Table 5.1)
[ms] [ms] [%] [ms] [ms] [%]

cdrom.sys XP 5418 5428 +0.18 276 340 +23.18
cdrom.sys Vista 1600 1685 +5.31 120 140 +16.67

flpydisk.sys XP 3010 3087 +2.55 165 208 +26.06
flpydisk.sys Vista 3070 3308 +7.75 234 289 +23.50
parport.sys XP 4896 4929 +0.67 205 253 +23.41
serial.sys XP 1230 1238 +0.65 86 98 +13.95
sisnic.sys XP 3516 3585 +1.96 186 236 +26.88

AVERAGE 3248.5 3322.6 +2.72 181.7 223.4 +21.95

We measured two temporal parameters on each run: (a) elapsed time and
(b) CPU time. The elapsed time represents the total duration of a run (i.e.,
calculated from the moment when the process starts until it finishes), while
the CPU time is the total time spent by the DC2 process in the CPU (i.e.,
executing computing-intensive operations).

The results presented in Table 6.3 show that our filter driver induces a
minimal overhead in terms of elapsed time averaging 2.7% increase, despite
the fact that the CPU time increase is on average almost 22% higher than
without our filter driver installed.
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However, this apparently high impact is actually insignificant as our work-
load is mostly I/O intensive, and the CPU time represents only 6% of the to-
tal elapsed time. The data presented in Table 6.3 also show that the increase
is similar across all the studied DDs, indicating the fact that the overhead
introduced by our filter driver is stable irrespective of the type of the DD
that it is installed upon. Interestingly, for the DDs profiled under Windows
Vista the influence of the filter driver was higher than for the corresponding
Windows XP DDs.

6.4.3 Efforts for Obtaining Operational Profiles

Development Effort

The primary effort in obtaining the experimental data presented in Chapter
5 was spent in implementing the filter driver and the OP-Builder tool (see
Figure 5.3). Due to the constraints imposed by WDM and DDK [Oney, 2003],
the filter driver was programmed using plain C. In contrast, OP-Builder was
programmed using Java.

The SLOC (source lines of code) metric gives an insight on the effort
required to build the tools. SLOC counts the number of physical lines of
code, whereas the blank and comment lines are not counted (for a detailed
definition see Wheeler [2001]). Hence, the filter driver has a SLOC count of
378, while the OP-Builder has a SLOC count of 1317. The required amount
of work estimates to approximatively one person–month for the filter driver
and a little over four person–months for developing the OP-Builder tool (we
have used the COCOMO metric [Boehm, 1981] to estimate the development
cost).

Usage Effort

As the tools developed for monitoring and analyzing purposes are supposed to
be widely portable across the population of WDM-compliant DDs as possible,
we expect that their re-usage effort is kept to a minimum. No re-compilation
of the tools is required for analyzing each DD, the configuration parameters
are implemented as editable text files.

Hence, the usage effort is represented only by tool configuration. In the
case of the filter driver, the name of the target-DD has to be specified in a
configuration file, while for the OP-Builder tool one must list the supported
IRP calls in a text file.

Fifteen students were asked to run profiling sessions for several DDs,
after they were instructed how to use the tools. Thanks to the high degree of
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automation and simplicity of the configuration mechanisms, all students were
able to successfully produce OPs for the given set of DDs in a few minutes
of work. Table 5.3 contains, in part, the results of their work.

Analysis Effort

The OP-Builder tool takes log files containing I/O traffic information as in-
puts and produces OP graphs as outputs. The OP graphs are represented
in DOT language, thus they can be viewed using Graphviz [Simionato, 2004]
or other open-source graph visualization tools. The analysis process is ex-
tremely fast, the OP-Builder tool can process log files at an average speed of
25000 IRPs per second. The longest time required by the log-analysis stage
in our experiments was around three seconds, namely for the workload C1
(see Table 5.2).

6.4.4 Experimental Issues and Lessons Learned

Our experiments showed that some workloads issue large amounts of I/O
requests per time unit, an example being the DC2 workload. This puts high
pressure on the monitoring mechanisms, introducing the risk that important
behavioral information may be lost. This happens due to the DebugView
kernel debugger (see Figure 5.3) which is unable to track all messages when
the arrival rate is extremely high.

A discussion with the developers of the DebugView revealed that the
messages are stored in a temporary buffer. When the buffer is full, new
messages are dropped. We are currently working on an improved version of
the logging mechanism which circumvents this problem by directly logging
into a selected file.

Our filter driver has been built to carefully ensure that no I/O requests
are lost, and we have verified offline all traces to ensure that no invalid
transitions are made (two bits in the mode are changed) and that all IRP
pairs (incoming and outgoing) are matched. Note that the results presented
in Table 5.2 are complete with respect to the tracked I/O requests.

Summarizing the experiences gained from our experimental efforts, Table
6.4 represents a collection of suggestions intended to further improve the
testing of DDs by applying the OP introduced quantifiers.

6.5 Chapter Summary

This chapter introduced the usage of the DD operational profiles for test
support activities. First, the mode quantifiers were used to create rankings
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Table 6.4: Suggestions for proposed metric usage toward improved DD test
campaigns.

I Filter driver: build a filter driver (or reuse ours) to monitor the I/O traffic
between I/O Manager and the DD of interest; keep it as simple as possible, to avoid
negative impact on system performance and reliability.
I Quantifiers: verify the log-files generated by the filter driver for lost IRPs to
ensure the validity of the obtained data; using the validated logs, compute the OP
quantifiers (as presented in Section 5.2) for each mode and transition of the OP.
I Choosing λ: λ is a coefficient designed to enable tuning the test priority toward
often visited modes or toward modes where the DD spent large time amounts; vary
λ according to test interest and use the obtained MCW values to prioritize the test
campaign.
I Seldomly sojourned modes: the modes with small values of MOW or MTW
should not be overlooked in testing, as their activities are usually crucial for DD’s
service provision, being associated with management of the DD.
I Find patterns: carefully inspect the execution pattern to identify I/O sequences
relevant for DD testing (and build test cases accordingly).
I Compare workloads: to express the relative similarity among several workloads,
measure the Euclidean distance of the mode and transition weights and define a
equivalence threshold; for weights smaller than the threshold, the workloads are said
to be equivalent.
I Capture field workloads: when possible, capture the DD’s OP in the field and
compare it with the workload used in-house for testing to improve the adequacy of
the test process.

of the OP modes, thus alleviating the test prioritization effort. Second,
two methodologies were presented that permit one-to-one and many-to-many
cross comparisons among workloads. These methods are useful as they enable
the choice of test workload as similar as possible to the field workload. Third,
the effectiveness of the introduced DD OPs was analyzed from test reduction
perspective as a two-pass process. While the first-pass is represented by the
transition from the total state space to the OSS, the second-pass is a tunable
step further and significantly reducing the test space that need be covered
without losing adequacy.

The chapter outlines the key aspects of the experimental process, the
presented discussion including the threats to validity and the costs required
to construct DD OPs both in terms of monitoring overhead and also as
implementation effort. The chapter concludes with a summary of the lessons
learned in our experimental endeavor towards constructing DD OPs.



Chapter 7

Execution Path Profiles

How can the code-paths taken at runtime be inferred without
access to the driver’s source code? Can hotspots in the driver’s
code be highlighted to help prioritize testing accordingly?

The methodology for obtaining DD operational mode profiles presented
in the previous chapters is exclusively based on monitoring the I/O call in-
terface. By capturing the I/O request traffic at this level we first defined
the DD state and its total state space (Chapter 3), then identified its opera-
tional state space (Chapter 4), and finally highlighting its operational profile
(Chapter 5).

In this chapter we now present experimental results obtained by inves-
tigating the DD’s functional interface to the OS kernel, in addition to the
I/O call interface. At the functional interface of the DD, the calls made
to driver-external functions (located in kernel libraries) can be ascertained.
While the information obtained at the I/O call interface permits only inter-
mode profiling of the DD’s activity, the flow obtained from the functional
interface allows for a deeper insight into the DD’s runtime behavior, as they
reveal the code paths followed in the operational phase.

The experimental evaluation of the code paths show a key phenomenon,
namely the tendency of call traces to cluster with respect to the source code
being executed. Consequently, we present a cluster analysis method to assess
the relative similarity of the executed code paths. The obtained trace clusters
represent (together with their occurrence indexes) effective representations of
a DD’s execution hotspots. From a testing perspective, this strongly indicates
the possibility to significantly reduce the testing effort needed to cover the
exercised code paths by thoroughly testing only a single representative code
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path from each equivalence class. These represent the thesis contributions
C1 and C5 (see Section 1.2.2).

Additionally, we show how the number of equivalence classes can be de-
cided by varying the similarity threshold (the cutoff factor of the dendrogram
– a tree-like structure describing the clustering). This represents a powerful
tool for directing the efforts that a subsequent testing campaign needs to
undergo. As a case study, both conceptual contributions are experimentally
evaluated against an actual Microsoft Windows DD.
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7.1 Code Tracing – A Basis for Execution

Profiling

Execution profiling information is an important prerequisite for helping DD
validation. It is an abstract model to describe how a DD behaves under the
influence of external stimuli. As such it can help DD testers identify which
part of the DD code is exercised for a representative workload. This can be
used to guide selection of test cases by focusing on the most frequently used
parts in an operational setting, which may substantially differ from statically
selected test cases.

In this chapter we develop a profiling methodology for kernel-mode DD
execution paths by considering an additional communication interface along-
side with the I/O requests considered in the previous chapters of this thesis
(chapters 3 – 5). According to this communication paradigm, at runtime a
DD acts as a consumer of the services (i.e., functions) provided by various
OS kernel libraries.

Therefore, a DD’s runtime activity can be defined by the sequences of
calls made to external functions. As DDs act on kernel calls, the call se-
quences are delimited by the I/O requests generated by the OS, and thus
infer the execution path taken in the DD’s code. This helps to evaluate and
to compare the effects of different workloads (i.e., test suites or individual
test cases) by revealing execution hotspots. The presented process for cap-
tion and evaluation of the call traces does not require source code access to
any of the involved OS components.

Overall, this section outlines a methodology to obtain execution profiles
for kernel DDs. By using tracing information from two DD communication
interfaces, our technique provides insights that help better understand a DD’s
runtime behavior in terms of execution paths.

A significant amount of research was dedicated to tracing code execution
but very little of it is applicable to black-box level SW, and more precisely
to kernel-mode DDs. Johansson et al. proposed a selection method for
SWIFI injection triggers which is based on call blocks of DD-external func-
tions [Johansson et al., 2007a]. The methodology presented in this chapter
for profile construction is similar in terms of the used monitoring strategy,
but in contrast we consider the effects of the kernel’s I/O requests on the
DD’s behavior.

Mendonca and Neves used a SWIFI technique to evaluate the robustness
of the kernel libraries [Mendonca and Neves, 2007]. The target functions
were selected statically by inspecting the import tables of the DDs of several
Windows installations and choosing the ones that are used by most of the
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DDs. In accordance with Weyuker’s recommendations [Weyuker, 2003], our
results suggest that the target functions should be selected on a dynamic
basis (using profiling), by using occurrence indexes to guide the selection
process.

Ball and Larus acknowledged the application of path profiling for test
coverage assessment, “by profiling a program and reporting unexecuted state-
ments or control flow” [Ball and Larus, 1996]. They used binary instrumen-
tation to obtain instruction traces that reveal a program’s control-flow to
identify paths and their execution frequencies. The paths ended at loop and
procedure boundaries. An extension is represented by the “whole program
paths” described in [Larus, 1999], which crosses both boundaries to reveal a
better picture of a program’s execution patterns. Though, these approaches
are not directly applicable to DD as the they are implemented as function
libraries rather than programs in the classical sense. Moreover, instrumenta-
tion induces a high execution overhead and produces large amounts of data,
two characteristics which penalize the use of this approach inside the OS
kernel space.

Leon and Podgurski used profiles generated by individual test cases and
a clustering technique for evaluating test suite minimization by selecting one
test case per cluster [Leon and Podgurski, 2003]. The profiles used were
generated by third-party tools, so the cluster analysis had to rely on their
accuracy. While test cost reduction is out of the scope of this thesis, we
focus on building viable and accurate DD profiles, as a prerequisite mean to
reducing test efforts.

7.1.1 The PE/COFF Executable Format and DLL-
Proxying

The communication between OS kernel and DDs is not limited to the I/O
request scheme. A DD also communicates with the OS kernel using a sec-
ond interface, which we onwards call the “functional interface” (detailed in
Section 3.2.2). Enabled by the concept of dynamic linking, at this commu-
nication level the parties involved are kernel libraries and DDs, as image
files. In fact, this scheme forms the basis of OS modularity, and is the most
commonly used data communication paradigm between binaries.

The OS provides a set of kernel libraries containing functions required by
the different kernel components. Each library publishes a list of the available
functions. On the other side, the DDs (as consumers of the services provided
by the libraries) contain a list of necessary external libraries and for each of
them a list of the used functions from the respective library. For both kernel
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libraries and DDs the lists mentioned above are stored in the headers of
the binary files. In Windows, the PE/COFF format [Microsoft Corp., 2008]
specifies the file headers that permit a Windows executable file to publish
the contained functions and variables (exports) and to use functions defined
externally by another library (imports).

Figure 7.1 depicts a DD importing functions implemented in two external
kernel libraries, Lib1.sys and Lib2.dll. Each contains an Export Address
Table (EAT) that publishes a list of functions exported by the respective
library. At runtime, the DD links to the kernel libraries on demand, when the
result of the functions “foo” and, respectively, “bar” are needed. Therefore,
the header of the DD file contains an Import Address Table (IAT) for each
of the needed libraries. The IAT contains only the function names which are
used in the DD’s code.

KERNEL

SPACE

Lib1.sys

“foo”

“bar”

Device Driver

Executable

Image

(.sys)

Lib2.dll
IAT2

IAT1

EAT

EATEAT

Figure 7.1: A DD importing functions from two libraries.

At DD load time, the OS automatically checks if all the required libraries
are present in the system by inspecting the DD’s IATs. If they cannot be
found, an error message is issued and the DD loading is aborted. At load
time, no verification is done to check if the found libraries actually contain
the necessary functions for the DD to execute correctly. Only at runtime,
when parts of code containing calls to external functions are reached, the DD
accesses the associated library.

The work presented in this chapter relies on the ability to capture the
calls to external functions at DD runtime. While various methods for cap-
turing calls to externally located functions exist (eg., Detours [Hunt and
Brubacher, 1999] or Spike [Vasudevan and Yerraballi, 2006]), they are spe-
cific to user-space software and are therefore not directly applicable to kernel-
mode programs. In contrast, we utilize a kernel space mechanism to monitor
the function calls.
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Therefore, we have chosen to implement a DLL-proxying technique.
Briefly, DLL-proxying consists of building a DLL library acting as a wrapper
of the original library. In order to leave the functionality of the DD unaf-
fected, the wrapper library has to implement all the functions required by
the DD, or to forward its calls to the original library. By modifying the IAT
tables of the target DD to point to the wrapper library instead of the original
one, the wrapper library (termed as DLL-proxy) is interposed between the
two parties. Section 7.3 details our implementation of DLL-proxies inside
the Windows OS kernel.

Our kernel-mode library wrappers are used exclusively for capturing the
sequences of functions called by a DD at runtime, when exercised by a se-
lected workload. Consequently, we only need to log the function names but
not modify any parameters or behavior of the wrapped kernel APIs. There-
fore, the overhead induced by the DLL-proxy is kept to minimum.

7.1.2 Call Strings as Code Path Abstractions

As external function calls correspond to DD code being executed as a result
of I/O requests (or other OS kernel maintenance requests), grouping them
using I/O requests as boundaries is intuitive. Therefore, we introduce the
notion of call string as follows:

Definition 15 (Call String). A call string (CS) is a sequence of DD-
external function calls issued at runtime by a DD, delimited by incoming
and outgoing I/O requests.

We consider each CS an abstraction representing the code path taken
by the DD at execution time. As we use the incoming and outgoing I/O
requests as CS delimiters, each CS can be associated with a DD mode and,
subsequently, with an I/O request dispatch function.

Accordingly, the execution path profile can be now defined as follows:

Definition 16 (Execution Path Profile). The execution path profile
(EPP) of a DD is the complete set of the call strings captured at runtime
in the time interval spanned by the execution of a workload exercising the
respective DD.

Illustrating the CS capturing method, the left part of Figure 7.2 shows
an abstract representation of the WDM-compliant DD’s source code with
dispatch routines for handling READ and WRITE requests. Assuming that
the DD can handle only those two I/O requests, the visited modes are defined
by bit strings with length two; the first bit is associated with READ and the
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second with the WRITE operation. Note that both dispatch routines call
functions implemented externally by other kernel libraries.

Assuming that at a certain instant the DD receives the READ request
followed by an WRITE request, the log file storing the events obtained by
monitoring the two communication interfaces is depicted on the right side of
Figure 7.2. Hence, the call strings CSi and CSi+1 can be constructed and
associated with the DD modes 10 and, respectively, 01.

Driver code Log file

...

Dispatch_READ{

   ...

   a = foo_1 (x, y);

   b = foo_2 (z);

   ...

}

Dispatch_WRITE{

   ...

   c = bar_1 ();

   ...

   bar_2 (x, y, z);

   ...

}...

. . . 

. . . 

IRP_MJ_READ (incoming, entering mode <10>)

   foo_1

   foo_2

IRP_MJ_READ (outgoing,  exiting mode <10>)

IRP_MJ_WRITE (incoming, entering mode <01>)

   bar_1

   bar_2

IRP_MJ_WRITE (outgoing,  exiting mode <01>)

. . .

. . .

}

} CS i+1, DD mode 01

CS i, DD mode 10

Figure 7.2: The code path taken in a DD when READ and WRITE requests
are called.

Consequently, the EPP can be studied from two perspectives: (a) per
mode basis, i.e., CSs belonging to the same DD mode are compared to reveal
possible differences in the code paths taken each time the DD performs the
activity associated with the respective mode, and (b) per CS basis, i.e., all
CSs are compared among themselves to identify similarities and to group
them accordingly in equivalence classes. Hence, we define the term execution
hotspot as follows:

Definition 17 (Execution Hotspot). A group of similar CSs belonging to
the same equivalence class represents an execution hotspot. The magnitude
of each hotspot is given by the occurrence index of the CSs contained within
the equivalence class.

The methodology for building EPPs presented in this chapter reveals the
execution hotspots together with their magnitudes. The construction of the
equivalence classes is achieved by employing a cluster analysis algorithm, as
described in the following section.

From the testing perspective, our DD code profiling approach can be
used by subsequent testing campaigns as it reveals the code paths taken by
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a black-box DD-under-test (for instance when a test case is run against it).
Moreover, a testing campaign can be prioritized by associating a high priority
to the CSs appearing often in the captured logs. Therefore, DD testing might
benefit by using the information contained in the CSs to avoid testing code
paths which are never taken in the field and balance the efforts towards code
areas having a high likelihood to be reached in the field.

7.2 Clustering as Execution Hotspot Identi-

fication

Given the large amount of data collected in the monitoring phase, a data
clustering method applied to the EPP greatly facilitates organizing and in-
terpreting the data trends1. Cluster analysis is a multivariate technique that
helps partitioning a population of objects into equivalence classes.

The partitioning decision is taken on object similarity, i.e., similar ob-
jects are grouped together in the same cluster. The most common clustering
approaches are hierarchical and partitional. Usually slower than hierarchical
algorithms, partitional clustering initially divides (randomly) the object pop-
ulation into k clusters, improving the clusters at each step by redistributing
the objects. Hierarchical clustering approaches fall in two classes, agglomer-
ative and divisive.

Agglomerative clustering (also called bottom-up clustering) initially as-
signs each object into its own cluster, at each step similar clusters are merged.
The agglomerative clustering algorithms stop when all objects are placed in
a single cluster, or when a number of k clusters (given as a parameter to
the algorithm) remain. Divisive clustering (top-down clustering) algorithms
initially assign all the objects from a given population to a single cluster,
divided at every step in two non-empty clusters. A divisive clustering algo-
rithm stops when each object sits in an own cluster or when a number of k
clusters is reached.

We use automated agglomerative analysis to divide the EPP into simi-
lar clusters. We use AgNes, an agglomerative algorithm provided by the R
statistical programming environment [Ihaka and Gentleman, 1996]. AgNes
requires as input a matrix containing the distances between every pair of
objects, in our case CSs. It outputs a dendrogram, which is a tree-like repre-
sentation of the clustering.

The figures 7.8 and 7.9 represent examples of such dendrograms. The

1A log file contains many call blocks, hence a manual analysis thereof being impractical.
For instance, Sandra produced over 9500 call blocks, and DC2 more than 5000.



7.2. CLUSTERING: EXECUTION HOTSPOT IDENTIFICATION 127

CSs are represented as leaves, and branches intersect at a height equal to
the dissimilarity among the children. Cutting the dendrogram at a given
height reveals the clusters and the contained call sequences at the respec-
tive distance. That is, the similarity cutoff of the dendrogram indicates the
equivalence classes that partition the CS population for the respective dis-
tance. For a cutoff set at 0, the equivalence classes contain only the CSs
which are identical. Therefore, the cutoff value acts as a tunable mask for
CS diversity.

7.2.1 Metrics to Express Call String Similarity

To obtain relevant dendrograms of the CS clusters, an appropriate similarity
metric has to be selected. In the areas of bio-informatics and record link-
age (duplicate detection) researchers have developed a series of metrics to
quantify the relation between two strings. Depending on their application
area, some metrics express the similarity while other measure the difference
(dissimilarity) of the compared strings.

The Levenshtein distance (dL) is based on the edit distance between the
compared strings [Levenshtein, 1966]. Given two strings s1 and s2 whose
distance is to be computed, Levenshtein distance express the minimum num-
ber of operations needed to transform s1 in s2 or viceversa. The considered
operations are character insert, delete or substitution and they all have the
cost of 1.

Used in bio-informatics to decide global or local alignments for protein
sequences, Needleman-Wunsch [Needleman and Wunsch, 1970] and Smith-
Waterman [Smith and Waterman, 1981] distances are versions of the Leven-
shtein metric, additionally considering gap penalties (a gap is a subsequence
that does not match).

Jaro distance is not based on the edit distance, but instead uses the
amount and order of the common characters [Jaro, 1989]. The Jaro distance
is expressed by the following formula:

dJ =
1

3

(
m

|s1|
+

m

|s2|
+
m− t
m

)
(7.1)

where m is the number of matching characters and t is the number of nec-
essary transpositions. Two characters are considered matching if they are

not farther than
⌊

max(|s1|,|s2|)
2

⌋
− 1 from each other. An extension of the Jaro

distance was proposed by Winkler, in order to reward with higher scores
the strings that match from the beginning (they share a common prefix).
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Therefore, the Jaro-Winkler distance is defined by the formula

dJW = dJ + [0.1 · l(1− dJ)] (7.2)

where l is the length of the common prefix and dJ is the Jaro distance between
the strings [Winkler, 1999].

Many other distance metrics exist and have been evaluated for various
applications [Cohen et al., 2003]. We have also investigated several of them
and subsequently chosen the Levenshtein and Jaro-Winkler metrics, as we
believe they express best the distance among the CSs. Levenshtein was
selected as it neutrally captures the variability of the CSs. As we expect
the CSs to contain short, repetitive subsequences (generated by loops in the
code path) and common sequences (generated by shared helper functions),
we have also selected the Jaro-Winkler metric as it favors similarities between
CSs showing this behavior.

To balance their effects and to minimize the impact of the metric choice
on the final cluster structures, we combined them in a compound measure, a
simple weighted average:

dC =
norm(dL) + norm(dJW )

2
(7.3)

Our compound metric uses normalized values for both Levenshtein and
Jaro-Winkler functions, therefore 0 ≤ dC ≤ 1. Being a dissimilarity function,
small values of dC indicate high similarity between the compared CSs. The
distance matrix required by AgNes was computed using dC for expressing
the distance among every CS pairs.

7.2.2 Cluster Linkage Methods

Besides the distance matrix, AgNes requires that a clustering method is
specified. Simple linkage merges at every step two clusters whose merger has
the smallest diameter. This method has as disadvantage a tendency to form
long cluster chains (i.e., at every step a single element is added to an existing
cluster). Complete linkage merges clusters whose closest member objects
have the smallest distance. This linkage method creates tighter clusters but
is sensitive to outliers. To alleviate the disadvantages of simple and complete
clusterings, average linkage groups clusters whose average distance between
all pairs of objects is minimal.

AgNes provides a standard measure to express the strength of the clus-
tering found in the population of CSs. A strong clustering tendency means
larger inter-cluster dissimilarities and smaller intra-cluster dissimilarities. If
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d(i) is the dissimilarity of object i to the first cluster it is merged with divided
by the dissimilarity of the last merger, the agglomeration coefficient (AC) is
expressed by AgNes as the average of all 1− d(i). With 0 ≤ AC ≤ 1, larger
AC values indicate a good cluster structure of the object population.

For our clustering analysis experiments presented in the next section we
have used the average linkage method as we believe this choice factors out
best the impact of CS distance variance among the object population.

7.3 Experimental Evaluation

For a comprehensive evaluation of the dual-interface DD profiling method
presented in this section for obtaining DD EPPs, we have used it against
the flpydisk.sys (v5.1.2600.2180), the floppy disk DD provided by Windows
XPSP2.

Figure 7.3 depicts our experimental setup. To capture the requests oc-
curring on the I/O call interface of the target DD we have built a filter driver
and installed it between the monitored DD and the I/O Manager. The fil-
ter driver receives the incoming and outgoing I/O requests, logs them to a
file and forwards them to the original recipient. As the filter driver does
not rely on the implementation details of the underlying DD, it can be used
to monitor virtually any WDM-compliant DD, as shown in practice by the
experimental work in Chapter 5.
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Figure 7.3: Obtaining the code paths taken at runtime.

The monitoring of the functional interface is more complex than that of
the I/O call interface, as it requires building a wrapper library for each of the
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kernel libraries imported by the floppy DD (Figure 7.3). flpydisk.sys imports
functions from two kernel libraries, NTOSKRNL.EXE (61 functions) and
HAL.DLL (4 functions). After building the library wrappers, the IAT tables
of the target DDs were modified in order to look for the wrappers instead of
the original libraries.

Wrapper code

...

NTSTATUS

FASTCALL

WrapperIofCallDriver(

 IN PDEVICE_OBJECT DeviceObject,

 IN OUT PIRP Irp)

{

   PrintOut("IofCallDriver");

   return IofCallDriver(DeviceObject, Irp);

}

...

Figure 7.4: A wrapper for the NTOSKRNL::IofCallDriver API.

Each API wrapper was built using exclusively the function prototypes
provided in the header files available publicly from Windows DDK package.
Each time the DD called a function, the API wrapper is called instead of
the original function. The API wrappers are designed as extremely simple
plain C constructs in order to minimize the computational overhead. When
a wrapper is called, the call is logged and the call parameters are forwarded
unchanged to the original function from the original library, as depicted by
the code snippet in Figure 7.4. In this figure, IofCallDriver is the original
function implemented by NTOSKRNL.EXE and WrapperIofCallDriver is
our wrapper.

After the floppy DD is exercised by a relevant workload, the resulted log
files are analyzed offline by a software application that extracts the CSs,
builds the EPP and constructs distance matrix files. These files are then fed
to the AgNes algorithm which builds clusterings of the CSs.

More precisely, the procedure followed to build the clusterings that eval-
uate the CS relative similarity is depicted in Figure 7.5 in a step-by-step
manner: (1) collect the CSs by using the monitoring logs (EPP); (2) encode
each function call to an Unicode character to be able to apply the string
metrics; (3) calculate the distance matrix containing the distances between
all pairs of CSs; (4) select the distinct CSs and count for each one the oc-
currence index; (5) construct a clustering from all distinct CSs to evaluate
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Figure 7.5: Our cluster analysis process.

inter-CS similarities; (6) for each mode, construct a clustering of CSs to
reveal intra-mode paths.

Table 7.1: The workloads utilized to exercise the floppy DD and the overall
experimental outcomes.

#Called Imports #CSs

Benchmarks for
flpydisk.sys

Total NT1 HAL2 #
M

o
d

es

T
ot

al

D
is

ti
n

ct

AC

Description

Sandra 27 25 2 3 9545 51 .859 Performance benchmark
DiskTestPro 28 26 2 5 588 13 .735 Surface scan, format
BurnInTest 21 19 2 5 1438 24 .823 Reliability benchmark
Enable Disable 42 38 4 3 136 10 .388 DD load and unload
DC2 21 19 2 4 5102 9 .644 Robustness benchmark

To exercise the DD properly, we have used commercial performance and
stability benchmark applications designed for testing the floppy disk drive.
We have also used a robustness testing tool, DC2 (Device Path Exerciser).
DC2 is part of the DDK package and evaluates if a DD submitted for cer-
tification with Windows is reliable enough for mass distribution. It sends
the targeted DD a variety of valid and invalid I/O requests (not supported,

1The number of functions called from NTOSKRNL.EXE.
2The number of functions called from HAL.DLL.
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malformed etc.) to reveal implementation vulnerabilities. The Table 7.1
lists the experimental outcomes and provides a comparative evaluation of
the clustering strength (see Section 7.2.2).

Sandra was the workload that issued the highest number of distinct CSs
(51 out of 9545), showing the highest cluster strength in the distinct CS
population, with AC = 0.859. Also, the DD visited only three modes, in-
tuitively indicating that this workload has the strongest tendency to reveal
execution hotspots. At the other extreme, Enable Disable only revealed 10
distinct CSs (out of 136), but instead the calls to the external functions were
the most diverse, 38 from NTOSKRNL.EXE and 4 from HAL.DLL. As the
agglomerative coefficient of this workload is relatively small, we expect that
Enable Disable has the weakest clustering tendency.

7.3.1 Revealing Execution Hotspots

To visualize the clustering tendency of the CSs belonging to the EPP as
generated by the used workloads and, implicitly, the execution hotspots in
floppy DD’s code, we used a multidimensional scaling (MDS) plot. MDS is a
statistical technique designed to graphically express the degree of similarity
or dissimilarity between objects. The points representing similar objects are
clustered together in different regions of the 2D-space depicted by the MDS
plot, while the points representing dissimilar objects are placed far apart
from each other. The MDS plot in Figure 7.6 is computed using the already
available distance matrices.
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Figure 7.6: MDS plot of the CSs for
each workload.
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Figure 7.7: MDS plot of the execu-
tion hotspots with their magnitudes.

With a high AC, Sandra forms the biggest clusters mostly in the center of
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the figure, while the areas exercised by the Enable Disable are located farther
apart from each other. This visual representation of the CSs also helped
reveal another tight cluster close to the center of the Figure 7.6, generated
by the BurnInTest workload. Also, DiskTestPro’s executions form a hotspot,
located in the second quadrant of Figure 7.6. Overall, the grouping of the
CSs in the middle of the MDS plot indicates that most of them share a certain
degree of similarity (that is, most of the workloads executed the same code
areas).

Interestingly, the EPP generated by DC2 are located quite differently
from the rest of other CSs. This is explained by the fact that DC2 is a
robustness testing tool, therefore accessing areas of code seldomly visited
under common executions. To better substantiate this tendency, Figure 7.7
represents the same MDS plot, where each CS was enhanced with the mag-
nitude of the associated CS. That is, a bigger circle represents a higher rate
of occurrence of the respective CS.

The circles are scaled using a logarithmic function2 in order to create a
visual balance between CSs having different magnitudes. Additionally, the
execution hotspots generated by the first four workloads from Table 7.1 were
merged as white spots, while the hotspots generated by the robustness testing
tool DC2 were represented in gray. As DC2 ’s hotspots are off-centered, it
becomes apparent that the DC2 covers very few of the execution hotspots
generated by all other studied workloads.

Nevertheless, figures 7.6 and 7.7 validate our methodology and graphically
motivate the usage of execution profiles as a prerequisite step for testing. We
believe that a significant amount of testing can be saved by redistributing
the effort to covering the execution hotspots. Doing so significantly reduces
the test effort, while the test adequacy remains unaffected. While test case
filtering is not the scope of this thesis, we hypothesize that an iterative
method based on comparisons of test suites against an existing execution
hotspot map can be devised in order to guide this process.

7.3.2 Similarity Cutoffs

The dendrograms obtained at steps 5 and 6 in Figure 7.5 represent useful
support for deciding which code paths to test. To ensure high accuracy for
the subsequent testing campaigns with respect to the execution hotspots, the
test cases must exercise the DD in the same manner as the workload does
or, alternatively, use the test cases themselves as workload for exercising the
DD in the profiling phase.

2size = log(magnitudeCS)
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We believe that the testing effort can be significantly reduced by testing
only the distinct CSs. A prioritization scheme for this procedure should
consider (and therefore be indexed by) the occurrence index associated with
each CS (magnitudeCS). Intuitively, a subsequent test campaign can reduce
its overhead by testing only one CS per cluster.

Figure 7.8 illustrates this concept: by setting a similarity cutoff T = 0.2,
the dendrogram is split into four clusters and five alones (CS0, 1, 15, 22 and
23). This indicates nine code paths that must be tested: the alones and any
one CS from each of the four clusters, since all the CSs that are contained in
the cluster are considered similar. With T = 0, 24 CSs should be tested in
order to achieve complete hotspot coverage.
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Figure 7.8: BurnInTest : A threshold set to 0.2 reveals a clustering with 4
clusters and 5 alones (62.5% test cost reduction).

Therefore, setting the T = 0.2 gives an overall reduction of 62.5% of the
testing cost (assuming that the cost of testing is equally distributed among
the 24 distinct CSs). In practice, the similarity cutoff T has to be chosen
as close to zero as possible, because large values of T have a tendency to
mask CS diversity. Actually, dendrograms support the similarity threshold
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decision by their structure. If the CSs cluster at very low heights, a small
cutoff value will group many CSs together, thus significantly reducing the
test efforts without having to pay a high cost to diversity masking.

In contrast, Figure 7.9 depicts the dendrograms of the CSs for each mode.
In this representation it is apparent that in the visited modes the DD was
taking several different paths through the source code. The heights at which
they cluster indicate that the CSs are quite dissimilar, even though they
are basically associated with the same DD functionality. This reveals that
the IRP dispatch routines are quite complex, possibly containing multiple
decision branches in the code.
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Figure 7.9: BurnInTest : The distinct CSs called by every mode.

In the case of the per-mode dendrograms (Figure 7.9), a similarity cutoff
T smaller than the shortest cluster will reveal all the code paths taken inside
the respective mode. Though, to balance the testing efforts, T should be
chosen anywhere between the height of the smallest cluster and 1. With
T = 1 the granularity of testing is the same as the one given by the DD’s
OP, namely the DD mode. Using the dual-interface approach presented in
this chapter, a subsequent testing technique can take advantage of the smaller
granularity offered by the new concept of CS versus the DD mode paradigm.
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7.3.3 Results Interpretation

Sequence Types

From a testing perspective it is important to identify the code areas activated
in the operational mode, thus permitting to accurately focus and prioritize
subsequent testing activities. We distributed the CSs in equivalence classes
based on their relative similarity (i.e., similar paths were grouped together)
in order to emphasize the code areas exercised by a certain workload.

To reduce the testing effort without losing adequacy, we conjecture that
only one CS per cluster needs to be tested. Our experimental results show
that the code paths taken at runtime tend to differ significantly even if the
DD is executing in the same DD mode. This is indicative of the high DD
code complexity, warranting our effort toward providing testing assistance
via methodical construction of the clusters, where the following are the key
issues:

a. Similarity cutoff - the distance value among the intra-cluster objects
(i.e., the degree of similarity among the objects of the same cluster). A small
value results in many clusters containing fewer code paths (i.e., high testing
overhead), while a too large value groups together code paths sharing little
similarity, masking path diversity and thus reducing the adequacy of testing.

b. Similarity metric - the distance quantifier expressing the differ-
ence between any two code paths. It should properly capture and reward
the features of the compared code paths accordingly. We have empirically
used as similarity quantifier an equally-weighted average of Levenshtein and
Jaro-Winkler similarity metrics [Cohen et al., 2003], as the emphasis was on
presenting a valid methodology for DD profiling and not necessarily on its
effectiveness for reducing testing effort.

To support an appropriate choice for the similarity metric, one of the
research questions we plan to investigate is which code constructs generate
the ascertained similarity classes. Currently, we distinguish three primary
similarity patterns (SP) between any two captured DD code paths3:

SP1: [xyabcz and mabcno] - share a common substring (very often the same
prefix); we believe that the same helper (or initialization) routine is
performed by both runs;

SP2: [xyabcz and mnabcabcabcabco] - a common substring is repeated mul-
tiple times; we believe this is generated by a loop in the DD code;

3In the following, each character represents the encoding of a driver-external function
called at runtime; for actual examples see Table 7.3.
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SP3: [abc and xyzmno] - independent code paths; they should not be grouped
in the same cluster as they need to be covered by different test cases.

Another research question that needs answering is how to decide which
is the best-candidate code path for testing from each cluster, as the random
choice might not always be acceptable. For instance, if a cluster contains four
code paths out of which only three are very similar to each other, a random
choice might elect the fourth one for testing, thus reducing the effectiveness
of the equivalence partitioning as an abstraction for test reduction.

Identification of Repeating Functions

Table 7.3 depicts five distinct CSs, as generated by the BurnInTest workload.
The respective CSs are highlighted also in Figure 7.9. CS15 is formed by a call
IofCompleteRequest function, followed by ExInterlockedRemoveHeadList

and KeWaitForSingleObject, repeating twice. The distance from CS15 to
CS19 is 0.54 and to CS23 is 1.0; the distance from CS19 to CS20 is 0.18 (also
depicted in Fig. 7.9). The low similarity values shared by the CS15, CS19 and
CS20 are mainly given by the fact that the sequences share a common prefix
and the group of two functions that repeat themselves. These repetitions
indicate the presence of short loops in the DD’s code.

In particular, according to the DDK documentation,
ExInterlockedRemoveHeadList routine “removes an entry from the
head of a doubly linked list” and KeWaitForSingleObject “puts the current
thread into a wait state”. CS23 is heavily penalized when related to CS15
because the position of the only common character is not the same in the
two CSs. In contrast, the distance from CS23 to CS0 is (only) 0.83 because
both CSs are very short.

Table 7.2: Five functions and their encodings (used in Table 7.3).

Function Name Encoding Char
IofCompleteRequest a
ExInterlockedRemoveHeadList b
KeWaitForSingleObject c
ExAcquireFastmutex d
ExReleaseFastMutex e

Figure 7.8 shows cases when two CSs are very similar, even though they
belong to different modes (i.e., CS11 and CS12, at a distance of 0.02). We
believe that they share the same or large portions of a dispatch function. It
is also possible that they share a large amount of helper functions. Future
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Table 7.3: Four distinct CSs issued by the BurnInTest.

CS Name Encoding #Occurences
CS0 a 144
CS15 abcbc 2
CS19 abcbcbcbcbc 2
CS20 abcbcbcbc 1
CS23 dea 13

research directions include investigating in more depth the reasons behind
this observed behavior on publicly available DD source code.

Table 7.4: The function calls accounting for 99.97% of all recorded calls,
for all workloads, sorted descending on occurrence. The first two functions
belong to HAL.DLL, the rest to NTOSKRNL.EXE library.

Rank Function Name #Occurrences [%]
1 ExAcquireFastMutex 60414 18.40
2 ExReleaseFastMutex 60414 18.40
3 IofCallDriver 45976 14.00
4 KeInitializeEvent 40777 12.42
5 IoBuildDeviceIoControlRequest 40771 12.41
6 ExInterlockedRemoveHeadList 22007 6.70
7 ExInterlockedInsertTailList 16123 4.91
8 IofCompleteRequest 11562 3.52
9 KeWaitForSingleObject 11032 3.36
10 KeReleaseSemaphore 11003 3.35
11 MmMapLockedPagesSpecifyCache 8178 2.49
12 MmPageEntireDriver 24 0.01
13 MmResetDriverPaging 23 0.01
14 KeGetCurrentThread 10 0.00
15 KeSetPriortyThread 10 0.00
16 ObfDereferenceObject 10 0.00
17 ObReferenceObjectByHandle 10 0.00
18 PsCreateSystemThread 10 0.00
19 PsTerminateSystemThread 10 0.00
20 ZwClose 10 0.00

Frequently Used Kernel Services

Our profiling approach reveals that the set of functions frequently used by
a DD at runtime is very small. Table 7.4 lists the 20 function calls that
account for 99.97% of all the imports called by the flpydisk.sys at runtime in
our experiments.
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Mendonca and Neves chose a set of 20 DDK functions for fault injection
experiments by inspecting the IAT tables of all the DDs belonging to several
Windows installations [Mendonca and Neves, 2007]. In contrast, our results
show that their static approach to select kernel APIs is irrelevant in such
dynamic environments, as the set of functions called at runtime is radically
different.

The targeted functions should be selected as a result of a profiling step
similar to the profiling presented in this chapter in order to focus testing onto
the services which are actually called by the DD in the operational phase.
We believe that such a procedure saves testing resources while increasing the
test adequacy and also the likelihood to find earlier the most relevant defects
for the operational mode.

7.4 Chapter Summary

By simultaneously monitoring the I/O call and the functional interfaces of
a selected DD we identified its execution path profile (EPP) as the set of
distinct code paths taken by the DD, without requiring access to its source
code.

As the captured code paths share a significant amount of similarity, they
can be grouped in equivalence classes. The equivalence classes represent
useful abstractions (execution hotspots) as they considerably simplify DD
testing; if one code path from a cluster is tested, then all other code paths
belonging to the same cluster are also considered tested. We also experimen-
tally showed which are the parameters of primary importance in building
clusters, namely the similarity metric and the clusterings’s cutoff threshold.

The monitoring of the functional call interface of a DD revealed also
another class of execution hotspots. This is represented by the set of intensely
used kernel services implemented in OS libraries, therefore external to the
monitored DD. The information (frequency, sequence, patterns, etc.) about
the execution hotspots of the kernel libraries involved in the communication
with the DDs might reveal fundamental defects in OS structures, as well as
lead to performance or reliability enhancements.
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Chapter 8

Conclusions and Future
Research

What have we achieved in this thesis, and which are the future
directions opened by the presented research efforts?

In this thesis we developed concepts and efficient methods for profiling the
operational behavior of OS DDs. This chapter concludes it by summarizing
the main contributions made, and discussing them from their applicability
perspective. In this light, we speculate on the possible uses of our techniques
in the DD development process for testing and debugging.

We believe that the work presented in this thesis opens up new interesting
research directions. Therefore, this chapter discusses the key issues, and
presents ideas for further enhancing the DD profiling methodology introduced
in this thesis.

141
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8.1 Overall Thesis Contributions

The main goal of the thesis was to develop mechanisms to permit an accu-
rate assessment of the operational behavior of OS DDs. Our research effort
was driven by the current need of profiling tools to improve the actual test
methodologies for kernel-mode DDs. Accordingly, this section discusses the
key contributions made by the research presented in this thesis. Driven by
the research questions listed in Section 1.2.1 and grouped by topic, the thesis
contributions are surveyed and their relevance is discussed.

8.1.1 Driver State Model and Test Space

As an effort to obtain the state space areas warranting focusing onto of
the existing test tools, this thesis has developed a new state-based model
describing a DD’s operational evolution. The introduced driver state model
is based only on the I/O request traffic available at the DD’s interface with
the OS kernel. The model is general enough to be representative for large
classes of DDs, and it is developed for the most popular OS families, namely
Microsoft Windows and UNIX/Linux. The driver state model in discussion
was presented in depth in Chapter 3.

As an inherent development following the introduction of the driver
model, in the same chapter we have defined the total state space that a
DD can (theoretically) visit at runtime. Subsequently, Chapter 4 experimen-
tally investigates which subset of the total state space is actually sojourned
by existent Windows DDs. Termed operational state space (OSS), the vis-
ited subset of states represents only a small fraction of the total state space,
as experimentally showed by the presented case studies on actual Windows
DDs. The OSS therefore represents the area of the DD’s state space which
needs to primarily be covered by test tools in order to ensure adequacy and
accuracy of the test outcomes. Moreover, the small size of the OSS hints that
substantial test resources can be saved in contrast to the more traditional
test methods.

Overall, the development of the driver state model and the highlighting
of the operational state space for guiding subsequent test tools represent the
contribution C1 of our work, as defined in the introductory chapter of this
thesis (Section 1.2.2).

Resultant publication

• Constantin Sârbu, Andréas Johansson, Falk Fraikin and Neeraj Suri,
Improving Robustness Testing of COTS OS Extensions, in Proceed-
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ings of the 3rd International Service Availability Symposium (ISAS),
Helsinki, in Springer Verlag’s LNCS 4328, pp. 120 – 139, 2006

8.1.2 Operational Profile

While the value of the OSS resides in its ability to discriminate between the
visited and the non-visited DD states from the total state space, a more useful
concept for testing is the operational profile (OP). The OP of a DD represents
the set of DD states present in the OSS to whom occurrence and temporal
quantifiers are assigned to. That is, each DD state is associated with a certain
probability of occurrence in the field. In the OP the state transitions are also
assigned with traversal probabilities. The state and transition probabilities
are obtained via the operational mode quantifiers introduced in Chapter 5.

The same chapter contains in-depth case studies on several Windows XP
and Vista DDs, illustrating the methodology used to obtain OPs for actual
OS DDs. Actually, the body of our experimental work contains over fifty XP
and Vista DDs, exercised using more then 260 workloads.

Chapter 6 describes several applications of the DD OPs for testing. En-
abled by the operational quantifiers, the test prioritization via OP is in-
vestigated, followed by a comprehensive inter-workload comparison. The
workload comparison allows for accurate estimations of the field workloads,
alleviating the problem of finding realistic test workloads.

Next, several experimental issues are addressed, such as the overhead
induced by our monitoring mechanisms, the effort required to obtain DD
OPs and the threats to validity of our experimental procedures. Moreover,
Chapter 6 discusses the significant test space reduction introduced by the
OP versus the OSS of a given DD.

Concluding, the introduction of the operational mode quantifiers and the
test prioritization methods using DD OPs, alongside with the extensive case
studies presented in the chapters 5 and 6 represent the thesis contributions
C3, C4, C6, C7 and C8. For a detailed description of these contributions,
see Section 1.2.2 of this thesis.

Resultant publications

• Constantin Sârbu, Andréas Johansson, Falk Fraikin and Neeraj Suri,
Improving Robustness Testing of COTS OS Extensions, in Proceed-
ings of the 3rd International Service Availability Symposium (ISAS),
Helsinki, in Springer Verlag’s LNCS 4328, pp. 120 – 139, 2006

• Constantin Sârbu and Neeraj Suri, On Building (and Sojourning)
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the State-space of Windows Device Drivers, State-space Exploration
for Automated Testing Workshop (SSEAT), Seattle, 2008

• Constantin Sârbu, Andréas Johansson, Neeraj Suri and Nachiappan
Nagappan, Profiling the Operational Behavior of OS Device Drivers, in
Proceedings of 19th International Symposium on Software Reliability
Engineering (ISSRE), Seattle / Redmond, pp. 127 – 136, 2008

• Constantin Sârbu, Andréas Johansson, Neeraj Suri and Nachiappan
Nagappan, Profiling the Operational Behavior of OS Device Drivers,
submitted to the Empirical Software Engineering Journal, a special
issue for the ISSRE 2008 best four papers (in review), 2009

8.1.3 Execution Path Profile

The OSS and the OP of a DD are built exclusively using the I/O request
traffic between the respective DD and the OS kernel, without using source-
code information of any of the involved OS kernel components. The central
unit around which the concept of DD OP revolves is the driver state defini-
tion, termed as driver mode. The driver mode indicate the routines of the
DD in execution at any time instant, but cannot precisely indicate where a
defect is located if the DD crashes while executing in the respective mode.
Therefore, for debugging purposes, we introduced in Chapter 7 the concepts
of call strings (CS) and execution path profile (EPP).

The call strings are sequences of calls to functions implemented in kernel
libraries which are external to the DD. In this thesis we consider the call
strings as abstractions of the code paths taken at runtime by the given DD.
The set of all CSs forms the execution path profile of the DD. The EPP
contains many repeating CSs indicating common source code paths taken
multiple times by the running DD in the operational phase.

Beside identical CS, our experiments showed that many CS share a high
degree of similarity. Hence, using string similarity metrics, we grouped simi-
lar CSs into equivalence classes. Each equivalence class (or cluster) represents
an execution hotspot, thus indicating possible performance and robustness
bottlenecks warranting more attention from testers.

The introduced concepts of code paths and the execution path profiling
methods presented in Chapter 7 are viable code profiling mechanisms, usable
also in absence of source code. They represent the contributions C2, C5 and
C8 of this thesis (see Section 1.2.2 for detailed descriptions thereof).
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Resultant publications

• Constantin Sârbu, Andréas Johansson and Neeraj Suri, Execution
Path Profiling for OS Device Drivers: Viability and Methodology, in
Proceedings of the 5rd International Service Availability Symposium
(ISAS), Tokyo, in Springer Verlag’s LNCS 5017, pp. 90 – 109, 2008

• Constantin Sârbu, Nachiappan Nagappan and Neeraj Suri, On
Equivalence Partitioning of Code Paths inside OS Kernel Components,
in Proceedings of the First International Workshop on Software Tech-
nologies for Future Dependable Distributed Systems (STFSSD), Tokyo,
2009 (to appear)

8.2 Applications of Driver Profiling

Our metrics provide a useful quantification of the runtime behavior of a DD.
As our OP quantifiers are statistical in nature, their relevance is directly
proportional to the completeness of the workload used for obtaining them.
Therefore, the choice of the workload used when building the OP is impor-
tant and the monitoring phase should be long and diverse enough such that
relevant behavior is captured. Such behavior is best captured if the monitor-
ing is performed in the field, for instance during beta-testing or post-release
monitoring. We have chosen commercial benchmarks to exercise our DDs as
we believe they generate a mix of I/O requests with enough variety to be
representative for the fashion DDs are used in the field.

Based on a non-intrusive state capture framework, our efforts provide
accurate metrics and guidance for profiling and quantifying the runtime be-
havior for diverse classes of kernel-mode DDs. The presented experiments
show the applicability of our approach into various phases of the DD devel-
opment process, mainly for testing and debugging. Next, we speculate on the
usability of our methods in this areas.

8.2.1 Testing

The empirical investigations detailed in this thesis show the applicability and
the relevance of our state quantifiers for DD testing, as they:

• reveal driver state sojourn patterns without access to source code
of the DDs;

• assist test prioritization decision based on quantified DD runtime
profiles;
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• reduce the space size for testing activities based on “tunable”
coverage scenarios;

• enable workload characterization and comparison for selecting
the most appropriate workload for in-house testing;

Subsequently, we detail the applicability of our DD profiling methodol-
ogy as guidance for various aspects of the testing process. First, we show
how the OP and EPP of a DD help reducing the overall cost of testing, by
supporting in test planning (test process prioritization, test case generation),
test progress (test coverage estimation) and field data collection.

Test Planning: Prioritization and Test Case Generation

From the test planning perspective, our approach provides a useful method-
ology to gain insight into the runtime behavior of the DD-under-test. It is not
intended as a tool for finding bugs. Its main purpose is to quantify a DD’s
state sojourn behavior in order to guide testing towards certain subroutines
or areas of code, but it does not directly reveal where the fault lies.

By prioritizing the test activities using the quantifiers proposed in this
thesis, testers can increase the likelihood of finding sooner the “expensive”
faults (i.e., the faults with higher probabilities to be activated post-release).
As our methods enable identification of the execution hotspots in terms of
both highly accessed DD routines (the OP) and in terms of often traversed
DD code paths (the EPP), the subsequent test process can be “tuned” to-
wards testing those areas first, or more thorough than other DD parts.

As the DD OP can be seen as a state machine representing the function-
ality of the DD for which it was captured, the OP can be used for automatic
test case generation. In the formal methods research area, the generation of
test cases using a state machine represents a hot research topic (for instance,
see Hamon et al. [2004, 2005]). Therefore, we believe that once an accurate
enough OP is available to describe the operational behavior of a DD, test
cases for it can be automatically constructed, hence significantly reducing
testing costs.

Another possibility to automatically obtain test cases via OP is the re-
use of the captured I/O requests and the sequences thereof to build new test
cases. Such I/O request sequences can be either “replayed” as-is on the DD
as a test case, or its parameters can be altered in a fashion that matches the
test purpose and then fed to the DD. Such an approach supposes that the
relevant parameters of each I/O request are stored in the monitoring phase.
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Test Progress Estimation

In many SW development projects testing is one of the last phases, directly
preceding the actual release of the final SW product onto the market. De-
lays in other project phases often shorten the time and resources available
for testing. This leads to unfortunate situations where the SW product is
released before a minimal coverage level of testing can be achieved.

While the classical question “When is the right moment to stop testing?”
still has only rule-of-thumb answers [Dalal and McIntosh, 1994; Huang and
Lyu, 2005; Huang and Boehm, 2006; Musa and Ackerman, 1989], our OP
model helps in quantitatively assessing at any moment in the testing phase
how much of the test space was covered, and how many resources are still
needed to reach the desired level of confidence. For instance, the cost of
covering a DD mode belonging to the OP can be obtained from knowledge
gained from the already tested modes. Using this, the duration and cost
of covering the remaining of the test space can be accurately ascertained
under the assumption that the test effort is equally distributed across the
DD modes belonging to the OP.

Field Data Collection

Beside DD profiling, our state-aware DD monitoring method is relevant for
field data collection as well. As many OS failures are currently caused by
faulty DDs, adding state information to the collected crash reports can aid
debugging by revealing the DD state history before a crash occurred. Cur-
rently, Microsoft collects crash reports as a part of Watson and CEIP projects
[Orgovan, 2008].

By adding a wrapper around a DD targeted for field data collection (sim-
ilarly to our filter driver), information about how the respective DD executes
in user’s setups can be gathered. This can be useful later on for various test
purposes including failure and use-case data collection. Such wrappers can
be placed as soon as the DD is in the beta-testing phase and even left after
the final release, as the I/O and computational overheads induced by such a
mechanism is relatively small (our filter driver’s overhead was less than 3%
– see Table 6.3).

8.2.2 Debugging

Beside helping in addressing test issues for DDs, our profiling methods enable
also new insights for debugging. Debugging is the process in which a defect
is first located and then fixed [Myers, 2004, chap. 7]. After debugging, parts
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of the testing process have to be repeated (regression tests), as the big fixes
might have introduced new faults.

If failure data captured in the field is available, it can be used to alleviate
the process of locating the defect that produced the respective failure. If our
OP is used, the process of locating the defect can be focused onto an I/O
dispatch routine instead of larger source code parts. Instead, if the EPP of
the DD is used, then the defect location can be identified in terms of the
code path that produced the failure. As source-code level access to the DD
is usually available for debugging, we believe that the insight provided by
our profiling mechanisms enable fast and accurate defect localization.

8.3 Lessons Learned

The work presented in this thesis has developed a basis for profiling the
runtime activity of DDs. First, we ascertained that despite of the low ob-
servability into the kernel, the operational activity of OS components can be
successfully monitored. The prerequisite is that the monitoring mechanisms
are themselves located in the kernel space, as user-space monitoring incurs
a very high computational overhead, mainly given by the high frequency of
context switching between user- and kernel-mode1.

Second, DDs are located on the critical and inherently slow I/O path,
thus compelling the monitoring components and any probes inserted into
these paths to be defect-free and fast. For instance, in the layered driver
architecture of Windows, an I/O request originating from an user-mode ap-
plication must be passed by each driver to the next-lower one, until the
hardware peripheral responsible for performing the actual I/O operation is
reached. As they are acting within the kernel, the inserted probes must in-
teract as little as possible with other OS structures, such that the probability
of probe failures to propagate to critical OS entities is minimized.

Third, to ensure the validity of the obtained OPs and EPPs, the com-
pleteness of the captured communication flow versus has to be ensured. In
the situation when the captured flow does not exactly match the actual flow
(i.e., I/O requests are lost), the obtained DD profiles are useless. We learned
that the critical issue in guaranteeing the logs completeness is the kernel
buffer used to store the monitored traffic before it is saved to an actual log
file. If the buffer size is small and the messages produced by the monitoring

1The context switch is an essential feature of a multitasking OS, enabling multiple tasks
to share a single CPU resource. Transiting between user- and kernel-mode usually require
context switches, during which the context of the running thread is saved and a new thread
is started, after its state is loaded. Therefore, context switching is considered costly.
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probe are issued at a very fast rate, the buffer might overflow, causing lost
messages. As unbounded buffers are not allowed in kernel space, one possi-
bility (used in our experimental work) is to keep the size of the monitoring
messages as small as possible, to reduce the risk to overflow the buffer.

8.4 Open Ends - Basis for Future Work

While the work presented in this thesis addressed the research questions
driving it towards making the discussed contributions, it also opened new
and interesting research perspectives along its way. In the following, we
briefly present some of the most promising ones.

Forcing the DD into a Specified Mode

One of the research questions we plan to further investigate is how to forcibly
bring the DD into the modes of interest. As DDs perform in an arbitrary
thread context and under the permanent influence of interrupts from the
hardware devices, their runtime behavior is hard to predict. Especially for
the modes where more than one dispatch routine is active this is not a trivial
endeavor, as the DD might finish the processing for one I/O request before
the other ones start. For instance, in Figure 6.1, the mode 010100 cannot be
reached if the WRITE operation finishes before CLOSE is received. Hence, a
simple test case that first calls WRITE followed immediately after by CLOSE
might not necessarily bring the driver into the desired mode.

A possible solution might be to use the same workload that generated the
driver’s OP profile also for testing. As soon as a predecessor of the desired
mode is reached, the parameters of the intercepted IRPs have to be changed
on-the-fly and then fed to the DD iff the malformed IRP leads the DD into
the mode of interest. This approach requires the development of mechanisms
that detects the current state and keeps track of it at runtime. Such idea
might work if the actual mechanisms for changing the IRP structure’s pa-
rameters and state awareness are kept to a very low overhead in order not
to disrupt the sequencing of I/O requests.

Profile-driven Test Tool

Using the lessons learnt from our DD monitoring approach, we are also con-
sidering to develop a technique for tuning an existing DD test tool to primar-
ily cover the execution hotspots. The selection of test cases should consider
the information obtained from a prior DD profiling phase in order to reduce
the overall testing overhead. This will also help an early identification of the
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insufficiently tested DD modes and assess their impact on DD robustness, to-
gether with an investigation of the possibility to correlate known OS failures
to DD OPs.

Profile Detail Level

We intend to perform a detailed analysis of the presented state-based DD
model in order to answer the question if increasing the detail richness of the
collected data would actually help improve the accuracy of the model while
keeping the abstraction level of a black-box.

Workload Choice

Another potential research direction is a quantitative study of driver-relevant
workloads that considers using the profiling mechanisms introduced in this
thesis to characterize workloads from a DD’s perspective. This information
would guide the choice of adequate workloads for specific test scenarios.

Code Paths vs. Program Control Graph

We also intend to map the obtained code paths to the control flow graphs of
the DDs. This serves as validation of our black-box profiling methodology by
quantifying its capacity to disclose the followed code paths. At the same time,
we conjecture that this evaluative approach provides for a proper comparison
of the available black- and white-box test methods for DDs from the code
coverage perspective.
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