
THESIS FOR THEDEGREE OFDOCTOR OFPHILOSOPHY

A Software Profiling Methodology for Design
and Assessment of Dependable Software

Martin Hiller

Department of Computer Engineering
School of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, SWEDEN, 2002

A Software Profiling Methodology for Design and Assessment of Dependable Software
Martin Hiller
ISBN 91-7291-215-4

Copyright c 2002 Martin Hiller, All Rights Reserved

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie 1897
ISSN 0346-718X

School of Computer Science and Engineering
Chalmers University of Technology
Technical Report 3D

Department of Computer Engineering
School of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Tel. +46(0)31-772 10 00
www.ce.chalmers se

Author email: hiller@ce.chalmers.se

Chalmers Reproservice
Göteborg, Sweden, 2002

A Software Profiling Methodology for Design and
Assessment of Dependable Software
Martin Hiller
Department of Computer Engineering, Chalmers University of Technology

Abstract

The advent of computerized consumer products, such as for example automobiles,
mobile systems, etc., has produced a large increase in the need for dependable (or
robust) systems. As cost is a relevant issue for such systems, the cost of dependabil-
ity has to be kept low. Furthermore, as the replication of software is virtually free
compared to the replication of hardware, the trend is to implement more and more
functions in software. This motivates the search for methodologies for cost efficient
design and assessment of dependable software.

An established approach for designing dependable softwareentails addition of
error detection mechanisms (EDM’s) and error recovery mechanisms (ERM’s). The
effectiveness of these mechanisms, however, is achieved only if their composition is
matched with their placement in locations where they are actually effective. It is the
development of a systematic methodology to profile softwarein order to compose
and locate EDM’s and ERM’s, that this thesis endeavors to achieve.

Presented in this thesis is a set of approaches for profiling software such that the
most vulnerable and/or critical modules and signals can be identified in a quantifi-
able way. The profiling methodology relies on the analysis oferror propagation and
error effect in modular software. The results obtainable with these profiles indicate
where in a given software system, errors tend to propagate and where they tend to
cause the most damage as experienced by the environment.

The main contribution of this thesis is a software profiling methodology that
encompasses development of the fault injection tool suite PROPANE (Propagation
Analysis Environment) and the analysis framework EPIC (Exposure, Permeability,
Impact, Criticality—the four main metrics introduced in the framework). The vision
is that this contribution can aid software developers in thedesign and assessment of
dependable software in the early stages of development.

Keywords: software profiling, error propagation analysis, error effect analysis, fault
injection, embedded software, dependability, fault tolerance

i

ii

List of Papers

This thesis is based on and extends the work and results presented in the following
papers and publications:

[A] Martin Hiller, Error Recovery Using Forced Validity Assisted by Executable
Assertions for Error Detection: An Experimental Evaluation, Proceedings of
the 25th EUROMICRO Conference, Vol. II, pp. 105–112, 1999

[B] Martin Hiller, Executable Assertions for Detecting Data Errors in Embedded
Control Systems, Proceedings of the International Conference on Dependable
Systems and Networks (DSN), pp. 24–33, 2000

[C] Martin Hiller, Arshad Jhumka, and Neeraj Suri,An Approach for Analysing
the Propagation of Data Errors in Software, Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pp. 161–170, 2001
Recipient of the William C. Carter Award

[D] Martin Hiller, Arshad Jhumka, and Neeraj Suri,On the Placement of Software
Mechanisms for Detection of Data Errors, Proceedings of the International
Conference on Dependable Systems and Networks (DSN), pp. 135–144, 2002

[E] Martin Hiller, Arshad Jhumka, and Neeraj Suri,PROPANE: An Environment
for Examining the Propagation of Errors in Software, Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA), ACM Soft-
ware Engineering Notes (SEN), Vol. 27, No. 4, pp. 81–85, 2002

[F] Martin Hiller, Arshad Jhumka, and Neeraj Suri,EPIC: A Framework for Er-
ror Propagation and Effect Analysis in Software, submitted for publication to
IEEE Transactions on Computers, 2002

[G] Martin Hiller, Arshad Jhumka, and Neeraj Suri,PROPANE: Analyzing the
Propagation of Errors in Software, submitted for publication toInternational
Journal on Automated Software Engineering, Kluwer Academic Publishers,
2002

iii

iv

The following publications are related but not covered in this thesis:

[H] Jörgen Christmansson, Martin Hiller, and Marcus Rimén,An Experimental
Comparison of Fault and Error Injection, Proceedings of the 9th International
Symposium on Software Reliability Engineering (ISSRE), pp. 369–378, 1998
Recipient of the Best Paper Award

[I] Arshad Jhumka, Martin Hiller, and Neeraj Suri,Assessing Inter-Modular Er-
ror Propagation in Distributed Software, Proceedings of the 20th Symposium
on Reliable Distributed Systems (SRDS), pp. 152–161, 2001

[J] Arshad Jhumka, Martin Hiller, and Neeraj Suri,On Systematic Design of Con-
sistent Executable Assertions for Distributed Embedded Software, Proceed-
ings of the ACM Joint Conference Languages Compilers and Tools for Em-
bedded Systems/Software and Compilers for Embedded Systems (LCTES/
SCOPES), pp. 74–83, 2002

[K] Arshad Jhumka, Martin Hiller, and Neeraj Suri,Component-Based Synthe-
sis of Dependable Embedded Software, Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT), Lecture notes on Computer Science (LNCS) 2469, pp. 111–128,
2002

[L] Arshad Jhumka, Martin Hiller, and Neeraj Suri,An Approach to Specify and
Test Component-Based Dependable Software, to appear inProceedings of
the 7th International Symposium on High Assurance Systems Engineering
(HASE), 2002

[M] Örjan Askerdal, Magnus Gäfvert, Martin Hiller, and NeerajSuri, A Control
Theory Approach for Analyzing the Effects of Data Errors in Safety-Critical
Control Systems, to appear inProceedings of the Pacific Rim International
Symposium on Dependable Computing (PRDC), 2002

Acknowledgments

Well, now the time has finally come when I can look back at my years as a graduate
student and exclaim “Yes! It’s over! I did it!”. But, to be honest, that would not be
entirely true. My graduate studies are over, that much is true. But I cannot really say
that “I did it!”, partially because, when I write this, I havenot yet had my defense.
Mostly, however, because I had a lot of help on the way. I should really say “Yes,
wedid it! Soon...”

I would probably not have made it this far without the help andsupport of my ad-
visor Professor Neeraj Suri. He showed me that research can actually be fun. Neeraj
has not only provided professional support and guidance, but has also succeeded
in creating a great social environment among his students inthe DEEDS group, of
which I see myself as a proud member.

I am also deeply indebted to my colleague Arshad Jhumka, who not only is
a smart fellow, but also a very nice one, and a close friend. Arshad has been of
invaluable help ever since we started our collaboration a few years back. Sail on, my
friend, you will find your own mooring soon!

The rest of the DEEDS group also deserves many thanks for creating a great
working atmosphere. Here we have the soccer and chess playing Örjan Askerdal.
I hope I have not ruined any more of your research topics. We also have Vilgot
Claesson/Klasson, the gadget maniac who always knows what’s hot and what’s not
in the realm of electronic stuff. The two most recent additions to the group (who
have been around for quite a while now) are the moose-huntingRobert Lindström,
who is something as exotic as a northerner who talks a lot, andthe cap-wearing
Andréas Johansson, who is the one in our group who can actually rival Vilgot in
gadget mania. Thanks a lot, lads!

Before joining the DEEDS group, I started out working for my former advisor
Professor Jan Torin. This was in the Software Fault Tolerance group headed by
Håkan Edler. Seniority was provided by Dr. Jörgen Christmansson who, together
with Dr. Marcus Rimén, formed a co-advisor team for me through my first two-and-
a-half years as a graduate student. I am very grateful for allthe help and support
you two gave me during this time! Also in this group was my colleague and former
room-mate Robert Feldt, who I brutally forced to read my early papers. Thank you,

v

vi

Robert, for all advice, stimulating discussions, commentsand much more over the
many years we were room-mates!

I would also like to mention the many students at the department that all add their
own distinctiveness to the great atmosphere: Counter-strikers, computer architects,
tele-tubbies, software dudes, hardware dudes, other dudes...you are too many to
name here!

My parents, Karin and Siegfried, are of course ultimately responsible for putting
me in this position. I guess they did not really know what theystarted when they
gave me my first computer, a Commodore C64, back in 1985. From then on it was
all down-hill. Also, in a supporting role, we have Mattias, the best little brother
(well, maybe not so little anymore...) anyone can possibly ask for!

Finally, my absolute favorite, Angela. You are the best! I love you!

The work presented in this thesis would of course not have been performed
without financial support. The main funder of this work was Volvo, via the DCN
(Dependable Computer Nodes) project in the research frameworkVolvo-Chalmers
Fordonsteknisk Forskning. The work was also partially supported by NUTEK (1P21-
97-4745), by Saab Endowment, and by EC DBench (IST-2000-25425).

Martin Hiller
Göteborg, September 2002

Contents

1 Introduction 1
1.1 The Fundamentals of Dependability 2

1.1.1 Dependability Attributes 2
1.1.2 Dependability Impairments 3
1.1.3 Dependability Means . 4
1.1.4 Fault Tolerance . 5
1.1.5 Fault Removal and Fault Forecasting 6

1.2 Goals, Activities and Problem Statements 7
1.2.1 Goals and Activities . 7
1.2.2 Problem Statements . 8

1.3 Main Contributions . 10
1.4 Thesis Structure . 12

2 Related Work 13
2.1 Fault Injection . 14

2.1.1 Simulation Based Fault Injection 14
2.1.2 Physical Fault Injection . 16
2.1.3 Software Implemented Fault Injection 16

2.2 Software Implemented Fault Tolerance 18
2.3 Error Propagation Analysis . 20

3 Assumed Models and Example Target System 23
3.1 Models and Assumptions . 24

3.1.1 System and Software Model 24
3.1.2 Fault and Error Model . 25

3.2 Target: Aircraft Arresting System25
3.2.1 System Overview . 26
3.2.2 Software Structure . 27
3.2.3 Failure Classification . 28
3.2.4 Adjustments for Example Studies 29

vii

viii Contents

4 Software Mechanisms for Handling Data Errors 33
4.1 Introduction . 34
4.2 Executable Assertions in Modular Software 36
4.3 Signal Classification: Taking an Abstract View on Data 37

4.3.1 Continuous Signals . 37
4.3.2 Discrete Signals . 41
4.3.3 Signal Modes . 42

4.4 Mechanisms for Error Detection and Recovery 42
4.5 Finding Locations and Defining Parameters 46
4.6 Evaluating the Capabilities of the Mechanisms 47

4.6.1 Software Instrumentation 48
4.6.2 Fault Injection Environment 50

4.7 Evaluation 1: Error Tolerance . 51
4.7.1 Setup of Evaluation 1 . 51
4.7.2 Results of Evaluation 1 . 53
4.7.3 Discussion of Evaluation 1 54

4.8 Error Detection Coverage and Error Propagation 55
4.9 Evaluation 2: Error Detection . 56

4.9.1 Setup of Evaluation 2 . 56
4.9.2 Results of Evaluation 2 . 57
4.9.3 Discussion of Evaluation 2 60

4.10 Summary and Conclusions . 63

5 PROPANE - The Propagation Analysis Environment 67
5.1 Introduction . 68
5.2 Target System Model . 69
5.3 Overview of the Tool . 70

5.3.1 Basic System Structure . 70
5.3.2 Work Process for Using PROPANE 73

5.4 Setup: Experiment Design and Target Instrumentation 75
5.4.1 Selecting Which Faults and Errors to Inject75
5.4.2 Faults and Fault Triggers 76
5.4.3 Error Types and Injection Locations 77
5.4.4 Triggering the Error Injections 78
5.4.5 Logging Variables, Memory Areas, Events 79
5.4.6 Environment Simulators and Test Cases 80
5.4.7 Target System Instrumentation 80
5.4.8 Setup Using Description Files 83

Contents ix

5.5 Injection: Running Experiments 83
5.6 Analysis: Obtaining Propagation Characteristics 85

5.6.1 Golden Run Comparisons 85
5.6.2 Channel Logs . 88
5.6.3 Injection Information . 88
5.6.4 Propagation Information 88

5.7 Example Results Generated by PROPANE 89
5.8 PROPANE’s Attributes and Comparison with Other FI-tools 95

5.8.1 Main Characteristics of PROPANE 95
5.8.2 Comparison Details . 96

5.9 Summary and Conclusions . 100

6 Error Propagation and Effect Analysis 103
6.1 Introduction . 104
6.2 Software and System Model . 105
6.3 EPIC: Generating Software Profiles 105

6.3.1 Error Permeability - Letting Errors Pass106
6.3.2 Ascertaining Propagation Paths 108
6.3.3 Assessing the Error Exposure of Modules and Signals . .. 112
6.3.4 Analyzing the Effect of Errors on System Output114
6.3.5 Identifying Candidate Locations for ERM’s and EDM’s .. 119

6.4 Obtaining Numerical Estimates of Error Permeability 121
6.5 Experimental Analysis: An Example System 123

6.5.1 Target Software System 123
6.5.2 System Analysis . 124
6.5.3 Experimental Setup . 127
6.5.4 Experimental Results and Obtained Profiles129

6.6 Selecting Locations for EDM’s . 132
6.6.1 Propagation-Based Selection of Locations 132
6.6.2 Adding the Effect Profile to the Selection Process 133

6.7 Comparing the Two Location Selections134
6.7.1 Memory and Execution Time Requirements 135
6.7.2 Error Detection Coverage 135

6.8 Discussion on Framework Limitations and Caveats 139
6.9 Summary and Conclusions . 140

x Contents

7 Summary and Conclusions 143
7.1 Summary of Research Contributions 144

7.1.1 Error Detection and Recovery Mechanisms 144
7.1.2 Evaluation of Mechanisms 144
7.1.3 Error Propagation and Effect Analysis 145
7.1.4 Evaluation of Analysis Framework 146
7.1.5 Tool for Analyzing Error Propagation 147

7.2 Conclusions . 148

8 Outlook on Future Work 151
8.1 The Future and Executable Assertions152
8.2 The Future and Software Analysis 152
8.3 The Future and PROPANE . 153
8.4 The Future and The Rest . 153

Bibliography 155

Appendix A. PROPANE – Details 165
A.1 Instrumentation of Target Systems165

A.1.1 Instrumenting for Probes 166
A.1.2 Instrumenting for Fault Injection 174
A.1.3 Instrumenting for Error Injection 177

A.2 Fully Automated Instrumentation of Target Systems 182
A.3 Interfacing with Environment Simulators 184
A.4 Adding Error Types and Error Triggers185
A.5 Description Files for PCD and PL 188

A.5.1 Database Descriptions . 188
A.5.2 Campaign Descriptions . 189
A.5.3 Experiment Descriptions 190

A.6 Analysis Scripts for PDE . 194
A.6.1 Error Margins for Golden Run Comparisons 196

A.7 Setup Scripts for PSC . 196
A.8 PROPANE Architecture . 199

A.8.1 The PROPANE Campaign Driver 199
A.8.2 The PROPANE Library . 201

CHAPTER1
Introduction

Basic research is what I’m doing when I don’t know what I’m doing.

— Wernher von Braun (1912–1977)

Since the invention of electrical computers in the middle ofthe 20th century,
they have been put to use in a number of areas. Computers started out as extremely
expensive resources used for computations of mathematicalproblems in research,
defense and industrial applications. From that time, computers have undergone a
dramatic change. They have become smaller, cheaper and easier to use. This has
made computers attractive not only for pure computational purposes, but also as
integral components in systems that are traditionally mechanical in nature. First,
they made their entrance in high-end systems such as spacecraft, aircraft and nuclear
power-plants. Now, they are steadily gaining acceptance inmore consumer-oriented
areas, such as automobiles. This chapter briefly describes the area of dependability
and introduces the fundamentals in general and the topics covered in this thesis in
particular.

1

2 Chapter 1. Introduction

1.1 The Fundamentals of Dependability

The fundamental concepts of dependability used throughoutthis thesis are adopted
directly from the compilation of concepts by made Laprie [Laprie (ed.), 1992]. This
section contains a short overview of the main terms and definitions used here.

The termdependabilityis defined as “the trustworthiness of a system such that
reliance can justifiably be placed on the service it provides”. What this means is that
a dependable system is one upon which the user (either human or non-human) can
place its trust in that the services provided by the system are correct. Dependability
of a system is characterized by a set ofattributes, compromised by a set ofimpair-
ments, and achieved and analyzed by a set ofmeans. The fundamental terms and
concepts of dependability described in the subsequent sections can be organized in
a taxonomy tree as shown in Fig. 1.1.

1.1.1 Dependability Attributes

The dependabilityattributescharacterize, and profile, the dependability of a given
system. These attributes are the following:

Availability is a measurement of how available the system is, i.e. the probability
that the system is operational and providing its service at any given time. The
higher the availability, the higher the probability that the system provides its
service at the time that service is requested.

Reliability is used to measure the probability that a system provides theservice it
was originally set to provide during a finite period of time. That is, the higher
the reliability, the higher the probability that the response given by a system
is correct.

Safety is the extent to which a system provides a service which is safe to its envi-
ronment, i.e., it does not endanger its user. Note that even though the system
may provide a service which was originally not intended, this service may still
be safe for the users. Therefore, the safety measure may be higher than the
reliability measure.

Confidentiality, Integrity, and Maintainability are attributes which are not ad-
dressed in this thesis and, thus, will not be described further at this point.

A system would have no trouble fulfilling all these attributes perfectly if it were
not for disturbing factors as described in the next section.

1.1. The Fundamentals of Dependability 3

Dependability

Impairments

Means

Attributes

Faults

Errors

Failures

Procurement

Validation

Availability

Reliability

Safety

Confidentiality

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Integrity

Maintainability

Figure 1.1: The taxonomy of dependability

1.1.2 Dependability Impairments

During the construction and the operation of a dependable system, events may occur
which reduce the trustworthiness of the system by introducing faults into the sys-
tem. For example, the developers may (inadvertently) design the system in such a
way that for certain conditions the system cannot provide its specified service, i.e.,
the system contains defects (which can be hardware and/or software defects). Dur-
ing system operation, external disturbances or aging of components may introduce
faults that, again, prevent the system from providing its intended service. The events
that may reduce the dependability of a system are referred toas theimpairmentsof
dependability.

The mere presence of faults is, however, not enough to reducethe dependability
of a system. A fault must be activated, i.e., the part of the system in which the fault
is located must be exercised in some way during system operation (e.g., faulty code
must be executed, defective memory locations must be referenced, etc.). If this is
happen, the result may be anerror. If a fault is viewed as a disease, an error can
be said to be a symptom of that disease. An error is defined as anerroneous state
in the system, i.e., the state is different from the state thesystem would have had if
the fault had not been present. An error which is activated may cause other errors
to occur in the system. This process is callederror propagation. If errors propagate
beyond the system barrier, i.e., if they are visible to the environment of the system,

4 Chapter 1. Introduction

a failure has occurred, as this prevents the system from providing proper services.
The causality chain,fault ! error ! failure, is also recursive in nature.

Thus, what can be seen as a failure at one level of the system can be seen as a fault
on the next higher level. Therefore, we get the following sequence:

...failure ! [fault ! error ! failure ℄ ! fault...

With this definition we can say that a dependable system is a system which is
able to break this chain at some point beforeSomething Very Badhappens, i.e.,
before the loss of equipment, investments or perhaps even human lives.

For the development of dependable systems, a set of means have been identified.
These are described in the next section.

1.1.3 Dependability Means

When developing dependable systems, there are a number of means by which de-
pendability can be achieved and analyzed, namely:

Fault Prevention is the process of preventing faults from occurring in the first
place. Examples of fault prevention activities may be the use of certain devel-
opment processes and methodologies.

Fault Tolerance is to actively handle the occurrence of faults and errors andrevert-
ing an erroneous system state into a state which is either correct (preferably)
or at least safe.

Fault Removal is the process of reducing the number and seriousness of faults (a
more popular term for this isdebugging). This phase often involves verifica-
tion and validation, diagnosis and correction.

Fault Forecasting is performed in order to get an estimate of the consequence faults
would have if they should occur.

The focus of this thesis is mainly onfault tolerancewith a little spice offault
removaland fault forecasting. The following sections will describe these means
more in detail.

1.1. The Fundamentals of Dependability 5

1.1.4 Fault Tolerance

If a system is able to function properly even in the presence of faults and errors, it
is considered to be fault tolerant. However, fault tolerance is not a binary property,
i.e., a system may be able to tolerate certain types of faults, whereas other types still
disrupt system operation. The basic model for the fault tolerance process is divided
into four phases (compiled from [Randellet al., 1978], [Anderson and Lee, 1982]
and [Lee and Anderson (ed.), 1990]):

1. Error Detection

2. Damage Assessment

3. Error Processing, and

4. Fault Treatment.

Error detectionis the action of detecting that an erroneous system state is actu-
ally present. After an error has been detected,damage assessmentis necessary to
see to what extent that error caused damage to the system and where that damage is
located. With the information gathered during damage assessment, the system can
then initiateerror processing, where an erroneous system state is transformed into a
good state in which no (detectable) errors are present. The combined actions in dam-
age assessment and error processing are callederror recovery. The last phase,fault
treatment, has the goal of preventing the same faults from being activated again. In
this phase faults are diagnosed and treatments are devised to passivate the identified
faults. Fault treatment is generally performed off-line and often involves several par-
ties. For instance, fault diagnosis may be performed by a Board of Inquiry and fault
passivation by the system designers.

The main focus of this thesis is on those parts of the fault tolerance process that
are incorporated into the system itself, namely, error detection and error recovery.
Illustrated in Fig. 1.2 are the phases error detection and error recovery in the con-
text of thefault ! error ! failure causality chain described in Section 1.1.2.
Illustrated here is that a system starts out without any active faults (however, design
faults are of course always present). Faults occur from external disturbances and
may disappear again. An activated fault may an error which potentially is detected
by the error detection mechanisms (EDM’s) of the system. After an error is detected,
the error recovery mechanisms (ERM’s) of the system try to convert the state of the
system into one which is error free. If recovery is only partially successful, errors
may still reside in the system state. These errors may subsequently lead to system
failure. Also, an unsuccessful error recovery will result in system failure. If recovery
is successful, the system can continue with normal operation.

6 Chapter 1. Introduction

Fault Error FailureNo
Faults

Detection & Recovery

Fault
appears

Fault
activated

Error
activated

Error
detected

Recovery
incomplete

Recovery
failed

Recovery successful

Fault disappears Error overwritten

Good Bad

Figure 1.2: Error detection and recovery mechanisms in the context of the
fault ! error ! failure causality chain

The focus of this thesis is on error detection and error recovery with regard to
data errors, i.e., erroneous values in system variables (asopposed to, for example,
control flow errors which alter the execution trajectory of asystem).

1.1.5 Fault Removal and Fault Forecasting

Once a dependable system has been constructed, it is time to assess how dependable
the system really is. For this, fault forecasting is used. Fault forecasting is the pro-
cess of estimating and ascertaining system performance when subjected to faults.
This activity is often combined with fault removal, i.e., the process of actively re-
moving faults (mainly design faults) from the system. The combination of the two is
referred to asvalidationof dependability. Traditionally, validating the dependability
of systems can be done either analytically or experimentally.

In analytical validation, a formal (often mathematical) representation of a system
is analyzed instead of the actual system itself. One way of doing this is by apply-
ing formal methods(see, e.g., [Clarke and Wing, 1996]), where techniques based
purely on mathematics and logic are used for describing system properties and ac-
tually proving these to be correct (or at least, without internal contradictions). As a
research area, formal methods is an active area which is perhaps still “growing up”.
In the dependability area, formal methods have been used, for example, in the veri-
fication of protocols (see [Echtle and Masum, 1996] and [Sinha and Suri, 1999]).

Experimental validation is based on testing the actual implementation of a sys-
tem. In order to experimentally validate for example the fault tolerance properties

1.2. Goals, Activities and Problem Statements 7

of a system, a common way to go about it is to artificially insert faults and/or errors
into the system in order to create conditions where the deployed mechanisms for
fault tolerance are activated. This is referred to asfault injectionand has been a pop-
ular method for testing and assessing dependability of systems. For more informa-
tion on fault injectionsee, e.g., [Chillarege and Bowen, 1989], [Arlatet al., 1990],
[Iyer, 1995], [Powellet al., 1995], and [Iyer and Tang, 1996].

Of course,testingis also a very important part of experimental validation. Here,
a system is subjected to a number of test cases (vectors of input data) in order to
detect any defects/faults that may be present. If the behavior of the system differs
from the expected behavior, then the reason may be that a fault changes the system
properties such that it fails to provide its intended service.

A very important, and hard, problem in experimental validation is identifying
which faults and errors to inject (if fault injection is used) and which test cases to
run (if testing is used).

The (probably) best, and most expensive, way to identify which faults and errors
to inject into a system when validating dependability is to analyse faults and error
that occur in reality, i.e., those that are experienced by and reported from systems
which actually operate on the field. Even though numerous such studies have been
performed (for an overview, see [Lyu (ed.), 1995], pp. 303–358 and 439–487), only
a few have had a focus on injection of software faults (see, e.g., [Iyer et al., 1990],
[Sullivan and Chillarege, 1991] and [Christmansson and Chillarege, 1996]).

In the identification of test cases for testing activities, formal methods can some-
times be helpful. In [Suri and Sinha, 1998], for example, formal methods were used
to help find test cases for validating dependable protocols.Also, in this example,
dependability validation was performed as a combination oftesting and fault injec-
tion.

1.2 Goals, Activities and Problem Statements

1.2.1 Goals and Activities

The main goal of the work presented in this thesis has been to find and evaluate
new construction methods for dependable computer nodes with little amount of re-
dundancy in embedded (and possibly distributed) control systems. In this respect,
the focus has been on software-based methods for fault tolerance and software ro-
bustness as well as analysis methods for software. These methods apply to control
systems in automobiles and other systems in which low production cost is crucial.
The research presented here has mainly contained the following two activities:

8 Chapter 1. Introduction

Activity 1 Finding and evaluating techniques and mechanisms for faulttolerance
suitable for low-cost (in the sense of both development costand production
cost) embedded control systems, and

Activity 2 Devising techniques for software analysis with regard to error propaga-
tion and error effect such that vulnerable and critical parts of software systems
can be identified such that suitable locations for placing error detection and re-
covery mechanisms can be selected.

A key driver for the research presented in this thesis has been that the results
should be applicable to systems with demands on low cost levels for development as
well as for production. This has led to the efforts inActivity 1 being concentrated on
techniques and mechanisms implemented in software. Even though software poten-
tially requires large amounts of resources for development, production is virtually
free of charge once development is complete. Therefore, software methods are very
attractive for development of dependable systems that are produced in very high vol-
umes (hundreds of thousands, or even millions) such as, e.g., the embedded control
systems in automobiles. Another reason for choosing software implemented fault
tolerance over hardware implemented fault tolerance is that software can be adapted
more easily to the application and to the environment. However, this property does
also bring with it some less attractive properties such as the fact that software mech-
anisms to a higher extent are application specific.

Another consequence of the low-cost driver is that it is not sufficient to describe
mechanisms for error detection and recovery alone. Deciding where in the software
system these mechanisms should be placed also becomes an important problem. As
cost is an issue, the amount of resources required in a systemshould be kept as low as
possible. Thus, being able to analyze software such that cost can be weighed against
obtained benefit (i.e., a cost-benefit analysis) would be very valuable. Therefore, the
efforts inActivity 2 have been geared towards the analysis of error propagation and
error effect. If one were able to identify those locations insoftware which attract
most propagating errors and also how these errors affect theservice of the system,
designing and placing mechanisms to tolerate those errors would be helped.

In the next section is a more detailed account of the problem statements that
guided the work presented in this thesis.

1.2.2 Problem Statements

The work started out with an effort to identify available software implemented mech-
anisms and techniques for fault tolerance in embedded control systems and to evalu-

1.2. Goals, Activities and Problem Statements 9

ate their weaknesses and strengths. Thus, we can state the following problem state-
ment:

PS1 What techniques and mechanisms exist for software implemented fault tol-
erance? What are their advantages and disadvantages when seen from the
point-of-view of an embedded control system? Especially when considering
production cost, overhead in hardware and software, and so on?

This problem statement was addressed in the early stages of the work that re-
sulted in this thesis, and these efforts are summarized in [Hiller, 1998], which con-
tains an overview of various software techniques for fault tolerance. Note that this
overview is not part of the contents of this thesis. Once thisstatement has been ad-
dressed, candidate mechanisms for further analysis and evaluation can be chosen.
When these candidates have been identified the following problem statement must
be considered:

PS2 How can developers be aided in developing the mechanisms andincorporating
them into the software of an embedded control system? To whatextent is
dependability improved by using the proposed mechanisms? That is, what
is the combined value of the error detection coverage and theerror recovery
coverage? How well do the mechanisms detect errors? That is,how high
is the probability of detecting errors (the error detectioncoverage) using the
mechanisms and how long is the error detection latency?

Having efficient software mechanisms for error detection and error recovery is
of course desirable. However, knowing where they would do the (in some sense)
most good is likely to prevent costly resources being spent on inefficient use of the
mechanisms. Thus, the final problem statement to be considered is:

PS3 How can a system designer identify the most suitable locations in software
systems for placing error detection and recovery mechanisms? Which parts
of a software system are most vulnerable to faults and errorsthat might be
present in the system? How do errors propagate through a software system?
Where do occurring errors cause the most damage? What role does the error
model play when analyzing software with regard to error propagation and
error effect? Can an analysis framework be developed to handle any negative
impact?

These problem statements have guided the work that is now presented in this
thesis, and, hopefully, some light can be shed upon these problems. The main con-
tributions and results are briefly described in the next section.

10 Chapter 1. Introduction

1.3 Main Contributions

The hope and vision is that the results presented in this thesis may in some way help
software developers to construct dependable systems by showing how a software
system can be equipped with mechanisms for error detection and error recovery.
The necessary prerequisites for putting EDM’s and ERM’s in software is illustrated
in Fig. 1.3. This figure illustrates that the system developer requires knowledge
about three things:

1. The type of errors that the system is supposed to be able to handle; their type,
how often they occur, etc. If the software designer has no knowledge of what
kind of threats the system is subject to, it is very hard to know how to obtain
any dependability. This would make both the development as well as the
assessment/analysis of the system difficult (if not impossible).

2. The mechanisms available for error detection and error recovery. When equip-
ping the software system with EDM’s and ERM’s it is of course important to
know the characteristics and properties of the mechanisms at ones disposal,
including their strengths and weaknesses. It is likely thatthe overall architec-
ture of the software is affected by the properties of the mechanisms.

3. The characteristics of the software with regard to vulnerabilities and hot-spots.
In order to place the mechanism where they are the most effective, it is impor-
tant to know where errors tend to propagate and where errors tend to do the
most damage. This will aid in using the available resource insuch a way that
the benefit is optimized (at least in the compiler-sense of the word).

The contributions put forward in this thesis address the latter two items, and they
are the following:

Error Detection and Recovery Mechanisms.Software mechanisms for error de-
tection and error recovery are developed. These mechanismsare based on the
concept ofexecutable assertions, operating at the signal/variable level and are
implemented as generalized software mechanisms that are instantiated with
parameters. The sets of parameters required for each signalare predefined ac-
cording to a certainsignal classificationand the values of the parameters are
set by the system designer.

Evaluation of Mechanisms. The presented error detection and recovery mecha-
nisms are evaluated with regard to coverage and latency using fault injection
experiments.

1.3. Main Contributions 11

Error
Model

EDM/ERM
design

Software
Profiles

Equipping Software with EDM's/ERM's

Type,
Occurrence

Implementation
Details

Vulnerabilities,
Hot-Spots

(EDM = Error Detection Mechanism, ERM = Error Recovery Mechanism)

Figure 1.3: The process of equipping software with mechanisms for error detection
and recovery

Error Propagation and Effect Analysis. A framework is presented which enables
system designers to profile software systems such that vulnerable and critical
modules and signals/variables can be identified. This framework is able to
produce two distinct quantitative profiles, namely: (i) a propagation profile,
and (ii) an effect profile. The propagation profile shows how errors propagate
through the software system, and the effect analysis shows to what extent
errors in the various signals/variables affect system output. The framework
introduces four basic measures: (i)Exposure, (ii) Permeability, (iii) Impact,
and (iv)Criticality, and thus is called EPIC.

Evaluation of Analysis Framework. The presented analysis framework is evalu-
ated on real software in order to illustrate its applicability.

Tool for Analyzing Error Propagation. A tool-suite called PROPANE, the Prop-
agation Analysis Environment, has been developed in order to demonstrate
the applicability of the presented analysis framework, EPIC. PROPANE can
perform fault and error injection and is capable of tracing the values of vari-
ables in software such that error propagation and error effect can be analyzed.
PROPANE can also log events which enables the evaluation of error detection
and recovery mechanisms. There are built-in extension possibilities, enabling
users to construct their own injectors and logging probes, making PROPANE
a versatile tool for software and dependability analysis.

12 Chapter 1. Introduction

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 reviews related work and results in the areas offault injection, software
implemented fault tolerance, anderror propagation analysis, and tries to show
where the work presented in this thesis fits in.

Chapter 3 introduces the software and system model and associated assumptions
used throughout this thesis. This chapter also describes the target system used
in the various evaluations performed in the thesis. The chosen target system is
an embedded system utilized for arresting aircraft, i.e., helping landing aircraft
to stop on short runways and aircraft carriers.

Chapter 4 contains a description of the executable assertions framework developed
for error detection and recovery. This chapter also contains an evaluation of
the mechanisms where the example aircraft arresting systemis equipped with
the described mechanisms and then subjected to fault injection in order to
estimate detection and recovery coverage as well as detection latency.

Chapter 5 presents PROPANE, the tool developed for error propagationand ef-
fect analysis and for evaluation of error detection and recovery mechanisms.
PROPANE is purely software based tool designed for running on desktop sys-
tems. This chapter also contains a comparison of PROPANE against other
contemporary tools.

Chapter 6 introduces EPIC, the developed framework for error propagation and
effect analysis. The framework is also demonstrated on the aircraft arresting
system system and its applicability illustrated. As the presented approach
for estimating the measures of EPIC is based on fault injection, the effect of
varying the underlying error model after analysis is examined.

Chapter 7 summarizes the work presented in this thesis and lists the main conclu-
sions to be drawn from the obtained results.

Chapter 8 provides an outlook on future work, open issues and questions yet to be
answered.

CHAPTER2
Related Work

If I have seen further, it is by standing on the shoulders of giants.

— Sir Isaac Newton (1642–1727)

This chapter contains an overview of previous work and results in the area of
dependable software for embedded systems. More specifically, the areas that most
closely relate to the work presented in this thesis, i.e., the areas offault injection,
software implemented fault tolerance, anderror propagation analysis. This chapter
also tries to show where in these areas the work presented in this thesis fits in.

13

14 Chapter 2. Related Work

2.1 Fault Injection

As mentioned in the introduction to this thesis, Chapter 1,fault injection is a popu-
lar method of testing and assessing dependability of constructed systems. The basic
approach in fault injection is to artificially insert faultsand/or errors into the system
and then analyse its behavior. More information on fault injection in general can be
found in, e.g., [Chillarege and Bowen, 1989], [Arlatet al., 1990], [Iyer, 1995], and
[Iyer and Tang, 1996]. Fault injection allows detailed studies of the complex inter-
action between faults and fault handling mechanisms. For example, fault injection
can be used to estimate the coverage of error detection mechanisms, i.e., the success
rate of the mechanisms. In [Powellet al., 1995], the authors show that ifninj faults
or errors are injected andndet of these are detected, an unbiased estimate of the de-
tection coverage,det, can be obtained withdet = ninjndet . This, however, assumes
that the fault/error models used for selecting the faults and/or errors to inject are
representative of the “real” faults and errors the system under consideration is sub-
ject to. The issue of representativeness has been, and stillis, a fairly open research
question, especially when considering software faults andtheir resulting errors.

The various fault injection techniques and tools that have been introduced over
the years can generally be divided into three categories:

1. Simulation Based Fault Injection

2. Physical Fault Injection

3. Software Implemented Fault Injection

The technique used in this thesis primarily fits into the Software Implemented
Fault Injection (SWIFI) category. Some of the studies performed, however, have a
whiff of Simulation Based Fault Injection, as the target is real software running in-
teracting with a simulated hardware environment (sensors and actuators). Therefore,
the focus here is mostly on SWIFI and a little on Simulation Based Fault Injection,
whereas Physical Fault Injection is covered very briefly.

Note that the termfault injection is not limited to injecting faults according to
the definition described in Chapter 1, where faults are seen as the root cause of
erroneous system states. This term is generalized to also cover error injection, i.e.,
instead of injecting defects, one injects erroneous systemstates directly.

2.1.1 Simulation Based Fault Injection

In early design stages of dependable systems, fault injection is often more easily
utilized on a model of the system, rather than the actual system itself. This presents

2.1. Fault Injection 15

several advantages over injecting faults into physical systems. The most important
of those advantages is probably the fact that it can be used very early in system
design. Thus, simulation based fault injection can facilitate the detection of design
faults in fault tolerance mechanisms, thereby reducing thecost of developing such
mechanisms (as costly prototype phases may be reduced or eliminated). Other ad-
vantages are that controllability of experiments and observability are very high, as
one has total control over injection time and location as well as data acquisition.

Among the drawbacks of this techniques is the fast increase of time-complexity
when running simulations. The more details are simulated, the more time is re-
quired for running the simulations. This in turn may have a limiting effect on what
can actually be included in a system simulation, thus limiting the accuracy of the
simulation.

Simulation based fault injection has mainly been used for evaluating the hard-
ware of dependable systems. The simulations are often divided into three levels of
abstraction (see [Iyer, 1995]): i) electrical, ii)logicaland iii) functional.

At the electrical level, circuits are simulated with currents and voltages and faults
are usually emulated by changing these physical properties. Fault injection is here
primarily used for analyzing the impact of physical causes to faults and errors.

At the logical level, systems are simulated as gates, i.e., at abstraction levels
above those of currents and voltages. At this level, larger systems, such as VLSI cir-
cuits and microprocessors, can be simulated and their dependability assessed. Fault
models used here are typically stuck-at-0, stuck-at-1 and inversion. Tools for in-
jecting faults at this level are, e.g., MEFISTO (see [Jennet al., 1994]) and VERIFY
(see [Siehet al., 1997]).

Simulations at the functional level are primarily used for evaluating architectures
and policies for large systems such as networks or large computer systems. The fault
models at this level are often based on the fault models of lower levels, such as bit-
manipulations in memory and registers, component failures, etc. As the simulations
are on an arbitrarily high level of abstraction, the fault model must be chosen accord-
ingly. At this level, we have tools like DEPEND (see [Goswamiand Iyer, 1991] and
[Goswami, 1997]) and Loki (see [Cukieret al., 1999] and [Chandraet al., 2000]).

The work on fault injection presented in this thesis is on thefunctional level of
simulation based fault injection. The tool presented in Chapter 5 can be used for
evaluation of simulated architectures, similar to the approach used by DEPEND.
The target systems used in the studies performed in this workalso have parts which
are simulated, such as, sensors and actuators, and the environment.

16 Chapter 2. Related Work

2.1.2 Physical Fault Injection

When prototypes or real implementations of a system exist, the dependability of
these can be evaluated and analyzed by injecting actual physical faults. This ap-
proach is important as it tests the actual implementations of fault handling mecha-
nism and, thus, implementation faults can potentially be caught here. The drawback
of this approach, though, is reduced controllability and observability, compared to
simulation based fault injection. Faults are commonly injected at pin-level, i.e., by
inserting faults at the pins of the circuits of the system, orby radiation, i.e., subject-
ing the target system to a radioactive source which creates upsets in the electronic
parts of the system.

Examples of studies where this approach to fault injection has been used are
[Arlat et al., 1990], [Walter, 1990], and [Madeiraet al., 1994] for pin-level fault in-
jection, and [Koga and Kolasinski, 1984] and [Gunnefloet al., 1989] for radiation
based fault injection. A comparison between various techniques for physical fault
injection can be found in [Folkesson, 1999].

Physical fault injection does not directly relate to the work presented in this
thesis and is mentioned just to give an overview of various fault injection techniques.

2.1.3 Software Implemented Fault Injection

By far the most versatile and now probably also the most widely used approach for
fault injection is Software Implemented Fault Injection, or SWIFI. This approach
uses software, rather than hardware, to inject faults into physical, and sometimes also
simulated, systems. Thus, the advantages of this approach are, among other things,
cost-effectiveness and flexibility, as no (or little) additional hardware is required.
The disadvantages include the fact that when using SWIFI forinjecting faults into
hardware system, controllability and observability are sometimes reduced compared
to simulation based fault injection, and the effects of physical faults may not always
be properly emulated on account of reduced reachability (SWIFI can only reach
those parts of the system which software can reach).

One of the first attempts of using SWIFI is reported in [Segallet al., 1988] and
[Bartonet al., 1990] where a tool called FIAT is presented. This tool is able to inject
faults into user code and data by flipping bits (that is, setting a bit from 1 to 0 or from
0 to 1) in the task image of a process, and the main driver in these studies was to
evaluate system architectures. These studies evaluated a real-time checkpointing
workload and showed that the obtained results are dependenton the underlying fault
classes used, i.e., changing the types of faults injected also changes the results (error
detection coverage in this case).

2.1. Fault Injection 17

The aim of FIAT is to be able to evaluate tolerance against both hardware faults
and software faults. Examples of other tools in this category are DEFINE (see
[Kao and Iyer, 1995]) and FTAPE (see [Tsai and Iyer, 1996]). In DEFINE, instruc-
tion level faults are injected by switching op-codes in the text segment of the target
system. Faults are also injected by manipulating bits in memory and on the ad-
dress bus of the system. The tool was designed to evaluate UNIX-networks and
their dependability. FTAPE was designed to evaluate entiresystems (as opposed to
low-level mechanisms)

There are SWIFI tools which focus on evaluating fault tolerance against hard-
ware faults only. For example, FERRARI (see [Kanawatiet al., 1995]) which in-
jects faults using the UNIX process handling system by spawning target processes
in a special trace mode enabling manipulation of process images, thereby facilitating
injection of transient faults and permanent faults. DOCTOR(see [Hanet al., 1995])
is another tool which injects faults by mutation (i.e., by changing the actual code that
is executed) and errors by bit manipulations and by disturbances in communication
between system components.

Another tool which has gained a lot of publicity in this category is Xception (see,
e.g., [Carreiraet al., 1995] and [Carreiraet al., 1998]). This tool uses the debug port
present on many modern microprocessors to inject faults anderrors. Xception is able
to perform op-code switches and bit-manipulations in the sub-parts of the system
(such as sub-units of the processor, address bus, memory andregister banks, etc.).

The work presented in this thesis has a focus on error propagation analysis (as
well as the classical error effect analysis) which requiresvery high observability.
The tools mentioned so far do not display an observability high enough to analyse
the propagation of (data) errors in software. There are tools, however, which do
that. For example, MAFALDA (see [Fabreet al., 1999]) is a tool for analyzing the
effects of software faults and to some extent the propagation of errors in real-time
micro-kernels. This tool requires some hardware support inorder to function and
performs its injection at the OS-level. From the available information, it is unclear
if MAFALDA has the logging functions required for detailed analysis of error prop-
agation. Another tool, NFTAPE (see [Stottet al., 2000]), on the other hand provides
a wide range of injection as well as logging facilities and can be used for detailed
analysis of error propagation. However, NFTAPE is designedto run on a LAN and
is designed with a separate control host and a target node.

The tool described and used primarily for propagation and effect analysis in this
thesis, PROPANE (see Chapter 5), is most closely related (infunctional terms) to
MAFALDA and NFTAPE and other tools which offer high observability and con-
trollability. PROPANE also has functionality which resembles that of DEPEND or

18 Chapter 2. Related Work

Loki in the sense that it can be used to inject faults and errors in simulations of
systems and architectures (as PROPANE uses standard executable code as its tar-
get). A more comprehensive comparison between PROPANE and the some of the
SWIFI-tools mentioned here is found in Chapter 5.

2.2 Software Implemented Fault Tolerance

With the increased demand for computer control in consumer products and inexpen-
sive dependable systems, it is only natural to want to use software for implementing
dependability mechanisms.

A common way of coping with faults and errors using software is to deploy
multiple, diverse versions of the software. These versionsmay be organized in a
variety of structures such as, for example, N-Version-Programming (NVP, described
in [Avizienis, 1985]) or Recovery Blocks (RB, described in [Randellet al., 1978]
and [Randell and Xu, 1995]). In addition, a number of combinations and enhance-
ments of these two basic structures have been suggested, such as Consensus Re-
covery Blocks (described in [Scottet al., 1983]) and Distributed Recovery Blocks
(described in [Kim, 1989]).

Other structures have also been introduced and presented. For instance, N-
Self-Checking-Programming (a unifying term of several real life implementations
described in [Laprieet al., 1987]), where software components are associated with
built-in tests checking the produced outputs, either individually (using acceptance
tests) or in pairs (using comparison tests). We also have N-Copy-Programming or
Retry Blocks (described in [Ammann and Knight, 1988]), where the main approach
is data diversity as opposed to code diversity.

However, systems using such structures will, generally, behigh-cost systems
as multiple, perhaps functionally equivalent, versions may have to be developed.
Furthermore, more powerful hardware is often needed, further increasing the cost of
these systems. Therefore, such structures are almost exclusively found in systems
that can carry such a high cost level, e.g., systems controlling aircraft, spacecraft
or nuclear power plants. Also, in [Randell and Xu, 1995] the authors state that “the
overall success of recovery block schemes rests to a great extent on the effectiveness
of the error detection mechanism used—especially on the acceptance tests”. This
makes the search for inexpensive error detection techniques valid also for structures
like recovery blocks.

Error detection may be provided using on-line tests of internal data in the form
of executable assertions. As stated in [Levesonet al., 1990], error detection in the
form of executable assertions can potentially detect any error in internal data caused

2.2. Software Implemented Fault Tolerance 19

by either software faults or hardware faults. Some of the first appearances of this
technique are found in [Hecht, 1976] and [Saib, 1978]. In [Saib, 1978], the pro-
gramming languages PASCAL and FORTRAN were extended to include anas-
sert instruction. Executable assertions test the validity of the value of an indi-
vidual variable or a set of variables using predefined rules and can be used both
during software development to aid developers in finding faults in the system, as
described in [Mahmoodet al., 1984], and when the system is operational as part of
fault-tolerance mechanisms, as described in [Rabéjacet al., 1996]. In addition to
on-line error detection, executable assertions may be usedduring the development
of a system for testing purposes, as for instance in [Andrews, 1979], and to assess
the vulnerability of the system.

In [Rosenblum, 1995], a tool called the Annotation PreProcessor (APP) is de-
scribed. This is a processing tool for assertions addressing ease-of-use and effec-
tiveness issues when dealing with assertions in C programs developed for UNIX.
A similar approach was presented in [Yin and Bieman, 1994]. Amethod for reduc-
ing the number of executables assertion using static analysis of source code was
presented in [Gough and Klaeren, 1997]. Here, the authors also argue that using
inter-modular analysis can even further reduce the number of assertions required.
Here, preconditions are specified in interface descriptions of encapsulated objects
(software modules).

The main drawback of executable assertions is that they are highly application
specific, meaning that in order to construct effective assertions, developers must
have extensive knowledge of the target system. Studies in [Levesonet al., 1990]
have shown that the ability to develop effective assertionsis highly individual among
software developers. Making the development of executableassertions a part of the
normal system design process rather than a task that is performed when the system
enters a test phase or after the system has been made operational, may decrease the
effect of differences between individuals.

Rabéjac presented in [Rabéjacet al., 1996] a development methodology for ex-
ecutable assertions. Unfortunately, no in-depth description of this method was pro-
vided. Stroph and Clarke presented in [Stroph and Clarke, 1998] dynamic accep-
tance tests, which are executable assertions with dynamic constraints. However,
their proposed scheme applies only to linear, causal, time-invariant systems (which
implies that the systems may not have any state).

The work regarding error detection and recovery presented in Chapter 4 of this
thesis attempts to make design and incorporation of executable assertions more rig-
orous by proposing mechanisms that are generic test routines which only have to
be instantiated with parameters. Also, the data to be testedis categorized accord-

20 Chapter 2. Related Work

ing to a signal classification scheme which in turn dictates which mechanisms to
use. Another motivating factor behind this approach is to make the assertions less
application specific.

2.3 Error Propagation Analysis

Error propagation analysis for logic circuits has been in use for many decades. Nu-
merous algorithms and techniques have been proposed, such as, the D-algorithm
in [Roth, 1980], the PODEM-algorithm in [Goel, 1981] and theFAN-algorithm in
[Fujiwara and Shimono, 1983] (which improves on the PODEM-algorithm).

Error propagation in hardware is also addressed in [Shin andLin, 1988], where
a stochastic propagation model based on error propagation times is described. How-
ever, the authors do not cover locations for EDM’s/ERM’s as is done is this thesis.
Also, the model is defined at the module level, i.e., if there are several signals linking
two modules together, these will not be considered individually, but as a group.

An approach for dependability analysis, including error propagation, based on
data flow analysis in HW-SW co-design is presented in [Csert´anet al., 1995]. Here,
a data flow model of the system (including only functional requirements) is extended
with information regarding fault occurrence, fault latency and detection probabilities
such that a dependability analysis can be performed. This approach works on a high-
level model of a system which is not yet divided into hardwareand software.

In [Voas and Morell, 1990], propagation analysis in software was used for de-
bugging purposes. Here the propagation analysis aimed at finding probabilities of
source level locations propagating data-state errors if they were executed with erro-
neous initial data-states. The framework was further extended in [Voas, 1992] and
[Morell et al., 1997] for analyzing source code under test in order to determine test
cases that would reveal the largest amount of defects. In [Voaset al., 1998], the
same framework was used for determining locations for placing assertions during
software testing, i.e., aiming to place simple assertions where normal testing would
have difficulties finding defects.

Analysis based on control flow is described in [Geoghegan andAvresky, 1996].
Here, a software system is analyzed with regard to control flow and, based on the
results of this analysis, flow checks are placed in order to detect errors dynamically.
As this approach only deals with control flow errors, it is very different from ours
as we deal with data errors. The control flow approach will nothandle detection of
data errors unless these change the control flow such that it can be detected by the
obtained EDM’s.

2.3. Error Propagation Analysis 21

An investigation in [Michael and Jones, 1997] reported thatthere was evidence
of uniform propagation of data errors. That is, a data error occurring at a location
l in a program would, to a high degree, exhibit uniform propagation, meaning that
for location l either all data errors would propagate to the system output or none of
them would.

Finding optimal combinations of hardware EDM’s based on experimental results
was described in [Steininger and Scherrer, 1997]. They usedcoverage and latency
estimates for a given set of EDM’s to form subsets which minimized overlapping
between different EDM’s, thereby giving the best cost-performance ratio.

In [Levesonet al., 1990], a study on the use of self-checks and voting for soft-
ware error detection concludes, among other things, that placement of self-checks
seemed to cause problems, i.e., self-checks that might havebeen effective failed on
account of being badly placed.

The work presented in Chapter 6 of this thesis contains an approach for analyz-
ing how data errors propagate in modular software and how they affect the output
of the system. This way of software analysis, or software profiling, allows system
designers to perform a cost-benefit analysis to select locations suitable for error de-
tection and recovery mechanisms. That is, the placement process is going away
from ad hocand becomes more rigorous as propagation and effect of errors can be
quantified.

22 Chapter 2. Related Work

CHAPTER3
Assumed Models and Example
Target System

Things should be made as simple as possible, but not any simpler.

— Albert Einstein (1879–1955)

In order to be able to produce general results in the area of dependable software,
one must first specify some model of the systems and software considered. This
chapter describes the model of the view on modular software in embedded system
used in the work presented in this thesis along with underlying assumptions on com-
munication between the software modules. This chapter alsointroduces an example
system which is used as a target system to evaluate and illustrate the techniques
presented in this thesis.

23

24 Chapter 3. Assumed Models and Example Target System

3.1 Models and Assumptions

3.1.1 System and Software Model

The work in this thesis is based on the assumption of modular software, i.e., discrete
software functions interacting to deliver the requisite functionality. A module is
considered to be a generalized black-box module having multiple inputs and outputs
(as illustrated in Fig 3.1).

.

.

.

.

.

.

Input 1

Input m Output n
M

Output 1

Figure 3.1: A generalized black-box software moduleM with m inputs andn out-
puts.

The fact that black-box knowledge is assumed means that the internals of the
modules is unknown and, thus, unchangeable. However, the techniques and methods
for design and analysis of dependable software presented inthis thesis are not limited
to black-box software. In fact, the techniques and methods are just as applicable to
white-box software.

A software module performs computations using the providedinputs to generate
the outputs. At the lowest level, such a black-box module maybe a procedure or a
function but could also conceptually be a basic block or particular code fragment
within a procedure or function (at a finer level of software abstraction).

Modules communicate with each other in some specified way using varied forms
of signaling, e.g., shared memory, messaging, parameter passing, etc., as pertinent
to the chosen communication model. All communication pathways are here called
signals, irrespective of the actual underlying communication paradigm. That is, a
signal is just an abstraction indicating some form of information and data exchange
between modules.

A number of black-box modules constitute a system and they are inter-linked via
signals, much like hardware components on a circuit board. Of course, this system
may be seen as a larger component or module in an even larger system. Signals can
originate internally from a module, e.g., as a calculation result, or externally from
the hardware itself, e.g., a sensor reading from a register.The destination of a signal
may also be internal, being part of the input set of a module, or external, for example
the value placed in a hardware register. A system with multiple inter-linked modules
is illustrated in Fig 3.2.

3.2. Target: Aircraft Arresting System 25

A

B

C

ED

System
input

signals

System
output
signals

Intermediate signals

Figure 3.2: A system consisting of 5 black-box inter-linkedmodules. Indicated are
system input signals, intermediate signals, andsystem output signals.

Software constructed as described above is found in numerous embedded sys-
tems. For example, most applications controlling physicalevents, such as in auto-
motive systems, are traditionally built up as such. The studies described and pre-
sented in this thesis mainly focus on software developed forembedded systems in
consumer products (high-volume and low-production-cost systems).

3.1.2 Fault and Error Model

The work in this thesis concentrates on data errors. Thus, how these errors have oc-
curred is not a main concern. The underlying faults may be software faults (defects),
hardware design faults, external disturbances, etc. In this respect, the error models
used in the experiments described in this thesis are all suchthat erroneous values are
created by manipulating the bits of the target variables or memory locations. It can
be argued that random bit-flips can mimic the effects of transient hardware faults,
as shown in [Riménet al., 1994]. More information regarding error models can be
found for each experiment as they are described in the thesis.

3.2 Target: Aircraft Arresting System

In order to evaluate and illustrate the mechanisms and techniques presented in this
thesis, a system following the model described in Section 3.1 is used as an example
system. The target is a system is used for arresting aircrafton short runways, as
found on, for instance, aircraft carriers or small airfields, and is designed according
to specifications found in [USAF, 1986].

26 Chapter 3. Assumed Models and Example Target System

Cable

Rotation
sensor

Pressure
sensor

Tape drum
(Master)

Tape drum
(Slave)

Runway

Communication link

Pressure
sensor

Pressure
valve

Pressure
valve

SlaveMaster

Figure 3.3: Overview of aircraft arrestment system used in example studies in this
thesis.

3.2.1 System Overview

The system consists of a cable strapped across the runway andis attached to two tape
drums, one on each side of the runway (see Fig 3.3). Two computer nodes control
the drums: i) a master node and ii) a slave node, one node for each drum. These two
computer nodes are connected via a serial link on which the master node transmits
commands to the slave node and the slave node transmits result information to the
master node. The processors used in these computers are Motorola 68HC11 running
at a clock speed of 7 MHz.

An incoming aircraft grabs hold of the cable with a hook attached to the fuse-
lage, and the cable immediately begins to rotate the tape drums as the aircraft travels
along the runway. Attached to the rotating drums are tooth wheels and optic sensors
measuring the number of teeth passing by the sensor. The sensors are periodically
read by the master node which can then, using the number of pulses generated by
the tooth wheels, calculate the length of the pulled out cable, the rotational speed of
the tape drums, as well as the current speed of the aircraft. The master node calcu-
lates the set point pressure that is to be applied to the drumsby means of hydraulic
pressure valves in order to slow the rotation, eventually bringing the aircraft to a
complete stop. The slave node receives its set point pressure value from the mas-
ter node and applies this to its drum. Pressure sensors on thevalves give feedback
to their respective nodes about the pressure that is actually being applied so that a
software-implemented PID-controller can keep the actual pressure as close to the set
point value as possible.

3.2. Target: Aircraft Arresting System 27

DIST_S

CLOCK

PRES_S

CALC

V_REG PRES_A

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

Pressure
sensor

HW
counter

2

3

4

5 2

1
1

1

2

1

2

3

1

2

3

1 1
1

2
1 1 1 Pressure

valve

Rotation
sensor

Figure 3.4: Software structure of the master node of the aircraft arrestment system.

3.2.2 Software Structure

In the studies performed for this thesis, focus was on the master node of the system.
The software of the master node is mainly composed of six modules of varying size
and input/output signal count (see Fig 3.4). The numbers shown at the inputs and
outputs in Fig 3.4 are used for numbering the signals. For instance,PACNTis input
#1 of DIST S, andSetValueis output #2 of CALC. The software is composed of
six modules of varying size and input/output signal count. System input is received
from a number of sensors at PRESS and DISTS, and system output is provided
to an actuator at PRESA. The remaining modules (CALC, VREG and CLOCK)
provide internal/intermediate signals.

The scheduling of the system is slotted, meaning that a main loop is running in-
definitely and this loop is divided into a number of slots. Theperiod of the iterations
is 1 millisecond and in each iteration of the loop the functions/modules belonging to
a certain slot will be executed and a slot-counter is then incremented. The module
specifics are:

CLOCK provides a millisecond-clock,mscnt. The system operates in seven 1-ms-
slots. In each slot, one or more modules (except for CALC) areinvoked. The
signalmsslot nbr tells the module scheduler the current execution slot. This
module has a period of 1 ms.

DIST S receivesPACNT and TIC1 from the rotation sensor attached to the tape
drum, andTCNT from the hardware counter modules. The rotation sensor
reads the number of pulses generated by a tooth wheel on the drum. DIST S

28 Chapter 3. Assumed Models and Example Target System

provides a total count of the pulses,pulscnt, generated during the entire ar-
restment, as well as two boolean values,slow speedandstopped, indicating
if the velocity is below a certain threshold (slow speed== TRUE) or if the
aircraft has stopped altogether (stopped== TRUE). This module has a period
of 1 ms.

CALC usesmscnt, pulscnt, slow speedandstoppedto calculate a set point value for
the pressure valves,SetValue, at six predefined checkpoints along the runway.
The distance between these checkpoints is constant, and they are detected
by comparing the currentpulscntwith pre-defined, internally storedpulscnt-
values corresponding to the different checkpoints. The current checkpoint
is stored ini. This module is the background task, i.e., it runs when other
modules are dormant. Thus, it has no period.

PRES S reads the pressure sensor measuring the pressure that is actually being
applied by the pressure valves, usingADC from the internal A/D-converter,
and provides this pressure value inIsValue. This module has a period of 7 ms.

V REG usesSetValueandIsValueto controlOutValue, the output value to the pres-
sure valve.OutValueis based onSetValueand then modified to compensate
for the difference betweenSetValueand IsValue, by means of a software-
implemented PID-controller. This module has a period of 7 ms.

PRES A usesOutValueto set the pressure valve via the hardware registerTOC2.
This module has a period of 7 ms.

The modules described above are the modules used for implementing the actual
service of the system. There are some more modules in the actual software handling
the communication on the serial link between the master nodeand the slave node.
However, these have been left out as they are not considered in the example studies
performed in this thesis.

The software of the slave node is in essence the same as that ofthe master node.
However, as the slave node does not itself calculate any set point pressure for its tape
drum (i.e., theSetValuesignal), and instead receives this from the master node, the
software of the slave node only contains the modules CLOCK, PRESS, V REG,
and PRESA.

3.2.3 Failure Classification

The specifications according to which the system is implemented [USAF, 1986] dic-
tate certain physical constraints, which the system must honor. These constraints are

3.2. Target: Aircraft Arresting System 29

that the retardation must not exceed a certain limit in orderto not affect either the
plane or the pilot in a negative way, and that the force applied to the aircraft by the
cable must not exceed certain limits in order to not endangering the aircraft. Also,
the length of the runway is limited. However, this constraint may vary from install-
ment to installment. The constraints are as follows:

1. Retardation (r). The retardation of the aircraft shall not have a negative effect
on the pilot. Constraint:r < 2.8g

2. Retardation force (Fret). The retarding force shall not exceed the structural
limitations of the aircraft. Constraint:Fret < Fmax.
The maximum allowed forces (Fmax) are defined for several aircraft masses
and engaging velocities in [USAF, 1986]. Force constraintsfor combinations
of masses and velocities other than those given in [USAF, 1986] are obtained
using interpolation and extrapolation.

3. Stopping distance (d). The braking distance of the aircraft shall not exceed
the length of the runway. Constraint:d < 335m

A violation of one or more of these constraints is defined as a failure. This is
a pessimistic failure classification, in the sense that not all runs which according to
this classification were failures would have turned out to becritical in reality. For
instance, in most cases a retardation of up to 3g will not significantly damage the
aircraft or injure the pilot. The duration of a typical, failure-free, arrestment ranges
from about 5 seconds (low kinetic energy) up to about 15 seconds (high kinetic
energy).

3.2.4 Adjustments for Example Studies

When performing experiments, real aircraft could obviously not be used. Instead, an
environment simulator was constructed which simulates thesensors and actuators,
and the incoming aircraft (see Fig. 3.5). One simplificationmade in the environment
simulator is that the slave node is removed. The simulator only considers the master
node. Thus, the set point pressure calculated for the pressure valve on the tape drum
of the master node is also used as the set point pressure for the other tape drum
(formerly handled by the slave node). Moreover, it is assumed that both tape drums
exhibit the same behavior. Thus, only the pressure sensor ofthe master tape drum is
simulated.

The environment simulator also simulates the incoming aircraft and takes the air-
craft mass (inkg) and incoming velocity (inm=s) as simulation parameters. During

30 Chapter 3. Assumed Models and Example Target System

Cable

Rotation
sensor

Tape drum
(Master)

Tape drum
(Slave)

Runway

Pressure
sensor

Pressure
valve

Master

Pressure
valve

Environment simulator

Aircraft mass (kg) Initial velocity (m/s)

Figure 3.5: The aircraft arrestment system and environmentsimulator

execution, the simulator feeds input data, in the form of sensor data, to the mas-
ter node and uses the output of the node, in the form of actuator data, to drive the
simulation.

As the slave node was not used by the environment simulator and the commu-
nication between the master node and the slave node was only informational as far
as the master node was concerned, it was decided to take out that part of the master
node software which handled the communication. This was done to gain more CPU
resource on the original hardware setup which could be used for evaluating error
detection and recovery mechanisms instead.

The setup described above was used for experiments conducted using the FIC3
tool (see [Christmansson and Rimén, 1997] and [Christmanssonet al., 1998]) which
was the main tool for evaluating the error detection and recovery mechanisms pro-
posed in Chapter 4. When using the target system with PROPANE(Propagation
Analysis Environment, described in Chapter 5), further adjustments had to be made
as PROPANE is a tool intended for use on desktop computers, asopposed to FIC3
which operated on an actual implementation of the target system. The actual soft-
ware of the master node was ported to run on a Windows-based computer. As the
scheduling is slot-based and non-preemptive there is, fromthe software viewpoint,
no difference in running on the actual hardware or running ona desktop computer.

3.2. Target: Aircraft Arresting System 31

Some glue software was developed to simulate registers for A/D-conversion, timers,
counter registers, etc., accessed by the application. The environment simulator was
also ported, so the environment experienced by the system inthe first setup and the
desktop setup was identical.

32 Chapter 3. Assumed Models and Example Target System

CHAPTER4
Software Mechanisms for
Handling Data Errors

Failure is not an option!

— Gene Krantz, NASA Flight Director, Apollo 13

Consumer products, such as automobiles, are safety-critical systems that tradi-
tionally require low-cost solutions to engineering problems. Thus, with increased
use of computer control in such systems, low-cost solutionsfor dependability are
required. To this end, this chapter describes software implemented approach for
error detection and error recovery focusing on handling data errors, i.e., erroneous
values in system state (signals and variables). The approach consist of a set of pa-
rameterized software mechanisms for detection and recovery of data errors. The
detection part of the mechanisms is based on the establishedconcept ofexecutable
assertions, and the recovery part is a “best-effort” approach calledforced validity.
In order to facilitate easy and rigorous insertion of the mechanisms into embedded
modular software, a signal classification scheme is introduced. This scheme lets a
system designer classify the signals of a software system and then choose appro-
priate mechanisms to protect them. The chapter also contains evaluations of the
proposed mechanisms.

33

34 Chapter 4. Software Mechanisms for Handling Data Errors

4.1 Introduction

Fault-tolerance is no longer required only in high-end systems such as aircraft, nu-
clear power plants or spacecraft. Consumer products, such as automobiles, are in-
creasingly dependent on electronics and software and require low-cost techniques
for achieving fault-tolerance. Low-cost in this sense means that these techniques are
inexpensive to develop and that the product is (relatively)inexpensive to produce.

The first step in tolerating the effects of faults is to detectthe symptoms of
faults, i.e. the errors. Several techniques and methods have been proposed for
error detection. An N-Version-Programming (NVP) style approach to error detec-
tion is achieved by running several versions or variants of the system in parallel
and then compare their results [Avizienis, 1985]. If the results differ, an error must
have occurred in at least one of the versions. This approach is very effective but
tends to be also very expensive. A more inexpensive way of error detection is to
explicitly check for errors in the system-state. Several techniques for such self-
tests have been proposed (e.g., [Mahmoodet al., 1984], [Rabéjacet al., 1996], and
[Stroph and Clarke, 1998]), but often little is known about their effectiveness.

Most self-tests are based on the concept of executable assertions (see, e.g.,
[Hecht, 1976] and [Saib, 1978]). Executable assertions areusually statements, that
can be made about the variables in a program and can potentially detect any error in
internal data caused by either software faults or hardware faults. These statements
are executed in on-line tests to see if they hold true. If theydo not, an error has
occurred and processes for assessment and recovery may be invoked. In addition to
on-line error detection, executable assertions may be usedduring the development of
a system for testing purposes [Andrews, 1979], and to assesssystem vulnerability.

Self-tests, as for instance executable assertions, also play major roles in software
fault tolerance structures such as Recovery Blocks (RB) [Randell and Xu, 1995] and
its variants (e.g., Consensus Recovery Blocks in [Scottet al., 1983] and Distributed
Recovery Blocks in [Kim, 1989]), and other structures (see,e.g., N-Self-Checking-
Components in [Laprieet al., 1987], and N-Copy-Programming or Retry Blocks in
[Ammann and Knight, 1988]).

The effectiveness of executable assertions is highly application dependent. In
order to develop tests with high error detection coverage, the developers require
extensive knowledge of the system. Introducing rigorous ways of defining the state-
ments used for executable assertions, or even better, providing generic mechanisms
that can be instantiated by parameters alone, reduce the importance of this drawback.

Once an error has been detected, attempts to recover the system can be initiated.
In the NVP-system mentioned above, errors are tolerated by masking them rather

4.1. Introduction 35

than actively changing an erroneous system state. However,as already established,
NVP-systems are very expensive and thus are not considered here. Instead, the focus
will be on recovery where an erroneous state is corrected, orat least made acceptable
(according to some specification).

In this chapter, parameterized mechanisms for detection and recovery of data
errors are introduced and evaluated with regard to their detection and recovery ca-
pabilities. The mechanisms operate at the signal level, meaning that only one sig-
nal/variable is tested in each individual test routine. Thedetection part of the mech-
anisms is based on the executable assertion concept. For each signal a set of validity
constraints are set up and if a signal does not comply to thoseconstraints, this is
considered to be an error. The proposed recovery part of the mechanisms is called
forced validityand attempts to remove an erroneous signal value by forcing it into
the valid domain of the signal. A basic process using an experience/heuristic ap-
proach for selecting where to incorporate the mechanisms into a software system is
also discussed.

In order to evaluate the error detection and recovery capabilities of the proposed
mechanisms a case study using error injection experiments on the target system de-
scribed in Chapter 3 was performed. In this study, two separate evaluations were
conducted: i) an evaluation of the error tolerance capabilities (i.e., the combination
of error detection and error recovery) of the proposed mechanisms, and ii) the error
detection capabilities (coverage and latency) of the mechanisms.

Even though the mechanisms may handle errors induced by software faults as
well as hardware faults, the case study concentrates on errors induced by hardware
faults.

The first evaluation shows that the failure rate for errors injected into the mon-
itored signals was reduced by 32.56%. However, for errors injected into random
locations in memory (including system stack and CPU registers) the reduction in
failure rate was only 4.69%.

The results of the second evaluation show that given that an error is present in a
monitored signal, and that this error leads to system failure, the detection probability
is over 99%. For errors injected into random locations in thememory areas of the
target system, the errors that caused system failure were detected with a probabil-
ity of over 81%. The presented technique is therefore a viable candidate for error
detection with reasonably high detection coverage if costshave to be kept low.

The remainder of this chapter is organized as follows: Section 4.2 describes the
adopted model for modular software. In Section 4.3 is the signal classification from
which the proposed error detection and recovery scheme in Section 4.4 is derived.
A basic approach for selecting locations and parameters is discussed in Section 4.5.

36 Chapter 4. Software Mechanisms for Handling Data Errors

T

T

T

M
T

T

T

Figure 4.1: A software module M with executable assertion atits inputs and outputs

Section 4.6 introduces the case study performed for evaluating the mechanisms. The
first evaluation is covered in Section 4.7. A discussion on error detection coverage
and error propagation in Section 4.8 precedes the second evaluation in Section 4.9.
Finally, Section 4.10 summarizes this chapter and draws conclusions.

4.2 Executable Assertions in Modular Software

In this thesis, the adopted system model is that of modular software where the dif-
ferent modules are interconnected using some kind of signaling (as described in
Chapter 3). Executable assertions operating at the signal level fit very well into this
system model. To illustrate this, consider the software module, M, in Fig. 4.1. This
module is equipped with tests at the input signals and at the output signals. These
tests are executable assertions, i.e., small snippets of code checking the validity of
the signals.

When input arrives, it is subjected to executable assertions determining whether
they are acceptable or not. Output from calculations may also be tested to see if
the results seem acceptable. Should an error be detected, measures can be taken to
recover from the error, and the signal can be returned to a valid state (although it
may still have a value different from what it would have had ifthe system had not
suffered from errors).

Error detection in the form of executable assertions can potentially detect any
error in internal data caused by either software faults or hardware faults (as stated
in [Levesonet al., 1990]). However, one of the main drawbacks of executable as-
sertions, and indeed of all kinds of acceptance tests, is that they are very application
specific. One way of lessening the impact of this specificity is to devise a rigorous
way of classifying the signals that are to be tested. Parameterized mechanisms can
then be devised for entire classes of signals and need not be tailor-fitted for each
individual signal. In the next section, we introduce an approach for dividing signals
in software into different classes.

4.3. Signal Classification: Taking an Abstract View on Data 37

Signals

Discrete

Continuous

Monotonic

Random

Random

Sequential

Static

Dynamic

Linear

Non-linear

Figure 4.2: The signal classification scheme

4.3 Signal Classification: Taking an Abstract View on Data

In this section we will present a scheme for classifying signals in software which
will help when determining the valid domain for the signals.For each class of
signals we will then devise a mechanism for error detection and error recovery. The
classification scheme used in this investigation is shown inFig. 4.2.

The two main categories in the classification scheme arecontinuousanddiscrete
signals. These categories have sub-categories that further classify the signal. For ev-
ery signal class we can set up a specific set of constraints, such as boundary values
and rate limitations, which are then used in the executable assertions. In order to en-
able a signal to have different behaviors during different modes of operation in the
system, a signal may have one set of constraints for each suchmode. Which set of
constraints are to be used is defined by the current mode of thesignal/system. Dur-
ing operation, signal values are repeatedly tested to checkwhether they violate the
defined constraints or not. If they do, an error has been detected and error recovery
can be initiated.

Next, we will discuss the two main signal classes in detail and set up the param-
eters that are used for constraining the behavior of the signals.

4.3.1 Continuous Signals

The continuous signals are often used to model signals in theenvironment that are
of continuous nature. Such signals are typically representations of physical signals
such as temperatures, pressures or velocities.

38 Chapter 4. Software Mechanisms for Handling Data Errors

(a) (b) (c)

Figure 4.3: Continuous signals: (a) random, (b) static monotonic (with wrap-
around), (c) dynamic monotonic

The continuous signals can be divided into monotonic and random continuous
signals. Monotonic signals must either increase or decrease their value monoton-
ically and cannot, for example, increase between the first and the second test and
then decrease between the second and the third test. However, they may be allowed
to remain unchanged between tests. The monotonic signals can have either a static
rate or a dynamic rate. A signal with static rate must either increase or decrease its
value with a given constant rate. A signal with dynamic rate,however, can change at
any rate that is within the specified range. The random continuous signals may de-
crease or increase (or remain unchanged) between tests (that is, they may randomly
increase or decrease between tests).

Also, a signal may be allowed to wrap around, i.e., when it hasreached its
maximum or minimum value, it may continue “on the other side”. This is visualized
in Fig. 4.3, which shows examples of the three types of continuous signals.

For the proposed error detection and recovery mechanisms, we assign to each
continuous signal a setPont containing seven different parameters:smax (maxi-
mum value),smin (minimum value),rmin;inr (minimum increase rate),rmax;inr
(maximum increase rate),rmin;der (minimum decrease rate),rmax;der (maximum
decrease rate), andw (wrap-around allowed/not allowed). The parameters are il-
lustrated in Fig. 4.4(a). Here we have, at timet0, a signal value ofs0. At time t,
i.e., the next sample tick of the signal, we have the signal value s. As illustrated in
Fig. 4.4(a),s is valid if s0 + rmin;inr � s � s0 + rmax;inr or s0 � rmax;der �s � s0 + rmin;inr. At this point we have only considered static parameters, but dy-
namic parameters, as in [Clegg and Marzullo, 1997] or [Stroph and Clarke, 1998],
may also be considered.

Each signal class imposes certain constraints on these parameters. For both stat-

4.3. Signal Classification: Taking an Abstract View on Data 39����
t' tt' t

��t' t

t' t

(c)

(b)

(e)(d)

smin + rmax,incr

smin + rmin,incr

smax - rmax,decr

smax - rmin,decr

smin

smax

s'

t' t

(a)

s' + rmax,incr

s' + rmin,incr

s' - rmax,decr

s' - rmin,decr

smin

smax

s'

s

ss'

ss

s
2smin + rmax,incr - smax

smin + rmin,incr��Valid ranges for s
(either for increase
or for decrease)

Valid ranges for s
(both for increase
and for decrease)

Seemingly valid
ranges for s that are
considered invalid.

s' s'

Figure 4.4: The parameters of continuous signals and reasons for constraining them

ically and dynamically increasing monotonic signals the change rate limits for de-
crease are set to zero (i.e.,rmax;der = rmin;der = 0). However, for statically in-
creasing monotonic signals, the change rate limits for increase are set to be identical
(i.e., rmax;inr = rmin;inr > 0), whereas for dynamically increasing monotonic
signals the change rate limits for increase differ (i.e.,rmax;inr > rmin;inr > 0).
For a monotonically decreasing signals, the opposite is setanalogously. For ran-
dom continuous signals, i.e., signals that can either increase or decrease between
consecutive samples, we have non-zero values for all changerate limits (i.e.,0 <rmin;inr � rmax;inr and0 < rmin;der � rmax;der).

In addition to these constraints there are several other constraints we put on
the parameters in order to deal with situations where validity of a signal value is
undecidable. Consider the case depicted in Fig. 4.4(b). Here we have a signal where
wrap-around is allowed and we have signal values0 = smin at time t0 (we have
chosen to show this example withs0 = smin as this makes the illustrations easier
to understand—the principle is, however, the same for any value of s0) and signal
values > smin at timet. We can see that the signal value has increased but the

40 Chapter 4. Software Mechanisms for Handling Data Errors

change is less than the minimum increase rate, i.e.,s < s0 + rmin;inr. This
alone would make us consider the signal value invalid. However, if we take into
account the fact that wrap-around is allowed, we can in this case see thats could be
considered valid if the increase so high that the value has actually wrapped around.
This situation could occur ifrmax;inr > (smax � smin). Therefore, in order
to avoid this situation, we set a constraint on the maximum increase rate such thatrmax;inr � (smax � smin). This means that the maximum allowed increase is the
entire range from the minimum value to the maximum value. If wrap-around is not
allowed, this constraint is actually implied. The same lineof argumentation can be
made for decrease rates, thus we set a constraint on the maximum decrease rate such
thatrmax;der � (smax � smin).

Allowing wrap-around generates more situations where ambiguities may arise.
Consider a case shown where we have a continuous random signal, i.e., it can in-
crease or decrease randomly between two consecutive samples of the signal. As-
sume that the signal has the values0 = smin at timet0 (again, this value is chosen
as the illustrating figures then are easier to understand—the principle is the same,
however, for any value ofs0) and the values such thats0 < s < s0 + rmin;inr at
time t. As long as the situation is as depicted in Fig. 4.4(c), wherethe valid ranges
at timet do not overlap at all, there are no ambiguities when checkingthe validity of
the value–it is always considered erroneous. In the situation depicted in Fig. 4.4(d)
the valid ranges at timet do overlap, buts can still safely be flagged as erroneous.

In the situation depicted in Fig. 4.4(e), we have valid ranges at timet that over-
lap and also “spill over”, i.e., the parameters of the signalare such that in this sit-
uation, wheres0 < s < s0 + rmin;inr, the values could still be considered
valid as it falls into the valid range if one assumes that the signal was decreased
instead of increased. Thus, there are ambiguities in deciding whether the signals
values here is valid or not. In order to avoid this situation, we put constraints on
the parameters. The ambiguities arise if we have random continuous signals where
wrap-around is allowed andsmax � rmax;der < smin + rmin;inr, i.e., whenrmax;der + rmin;inr > smax � smin. Therefore, we set a constraint such thatrmax;der + rmin;inr � smax � smin. A similar line of arguments can be derived
when smin + rmax;inr > smax � rmin;der. This situation instead yields the
constraintrmax;inr + rmin;der � smax � smin.

Now we have derived several constraints for the various classes of continuous
signals. In Table 4.1 is a summary of these constraints. It should be noted that the
situations that are labeled as ambiguous here can, by the designer of the executable
assertions, instead be considered valid (this is perhaps more of a policy issue rather
than a correctness issue).

4.3. Signal Classification: Taking an Abstract View on Data 41

Table 4.1: Parameter constraints for continuous signal classes
Signal class Parameter constraints

All smin � smax ^w = allowed/not allowed̂0 � rmin;inr � rmax;inr � smax � smin ^0 � rmin;der � rmax;der � smax � smin
Static Decreasing signals:
monotonic 0 = rmin;inr = rmax;inr ^0 < rmin;der = rmax;der

Increasing signals:0 = rmin;der = rmax;der ^0 < rmin;inr = rmax;inr
Dynamic Decreasing signals:
monotonic 0 = rmin;inr = rmax;inr ^rmin;der < rmax;der

Increasing signals0 = rmin;der = rmax;der ^rmin;inr < rmax;inr
Random rmax;der + rmin;inr � smax � smin ^rmax;inr + rmin;der � smax � smin

4.3.2 Discrete Signals

Discrete signals are allowed to take on a set of discrete values. They often contain
information on the settings of an operator panel or the operation mode of the system.
Actually, all signals containing some kind of state information, internal or external to
the system, may be classified as discrete signals. For instance, execution sequences
that must be followed in a certain order, or state machines with a number of states
and a number of transitions between the states, may be modeled as discrete signals.
The discrete signals are divided into sequential and randomsignals.

A sequential signal has constraints on how it may change its value from any
given other value, i.e., the order of change is restricted. Sequential signals are di-
vided into linear and non-linear signals. Linear signals must traverse their valid
domain in a fixed predefined order, one value after another. For instance, the exe-
cution sequence mentioned above could be modeled as a linearsignal. Non-linear
signals traverse their valid domain in predefined ways. Random signals are allowed
to make any transition from one value to another within the valid domain of the
signal.

For the proposed error detection mechanisms we assign to each signal a setPdis
containing the following parameters:D (the set of valid values) andT (d) (the set of
valid transitions from elementd in D; there is one such set for each element inD).

42 Chapter 4. Software Mechanisms for Handling Data Errors

v1 v2

v5 v4

v3

Figure 4.5: Example state diagram for a non-linear sequential discrete signal

A typical example of a discrete signal is the state variable of a state machine.
From any given state, the machine may transit to a (fixed) number of other states
(maybe including the current state). Consider for example the state machine shown
in Fig. 4.5. There are five states (v1 throughv5) and a number of transitions be-
tween these states. The valid domain is thereforeD = fv1; v2; v3; v4; v5g and
the transition sets areT (v1) = fv2; v4g, T (v2) = fv3; v4g, T (v3) = fv4g,T (v4) = fv5g, andT (v5) = fv1g.
4.3.3 Signal Modes

The behavior of a signal may differ between different phasesof operation of the
system. Therefore, a signal can have different modes. A specific set of constraints
is generated for each such mode, i.e. a signal with several modes has one parameter
setPont or Pdis for each mode. The set used in a certain modem is Pont(m) orPdis(m). Mode variables (m in this case) can be classified as discrete signals in
themselves, so that error detection may be implemented for them as well. Modes
may also be used to model certain dependencies between signals. That is, if the
behavior of signalA is limited due to the operational mode of signalB, these two
signals can be grouped by means of signal modes representingthis dependency.
Furthermore, using different modes may increase the possibility of detecting errors.

4.4 Mechanisms for Error Detection and Recovery

Error detection is performed using the configuration parameters of the signals to
build executable assertions. An error in a signal is detected as soon as the signal
violates the constraints given by the configuration parameters. For error recovery,
we have introduced an approach calledforced validity, which assigns a recovery
value within the valid domain of the signal that is either as close to the actual, but

4.4. Mechanisms for Error Detection and Recovery 43

erroneous, value (used for continuous signals) or a defaultvalue (used for discrete
values).

The executable assertions used for continuous values are described in Tables 4.2
and 4.3. The executable assertions for discrete values are described in Table 4.4. In
these tables,s is the current signal value,s0 is the previous signal value andsr is the
recovered signal value.

For continuous signals, the tests for detecting an erroneous value are divided into
three levels with increasing granularity (columnsTest Level 1, Test Level 2andTest
Level 3). If a condition at one level is evaluated totrue, the test continues with the
conditions at the next lower level. If a condition at one level is evaluated tofalse,
the test continues with the next test at the same level. If there are no more tests at
one level, the signal value is considered to be correct (according to the parameters
set for that particular signal). If a condition at level 3 is evaluated totrue then an
error has been detected and the corresponding expression for error recovery is used.

The first two tests for continuous signals have a special status, they are always
performed before any of the other tests are performed and should an error be detected
at this point, the remaining tests will be performed using the recovered signal as the
test value. That is, if a signal value abovesmax is being tested it will first be set tosmax before the remaining tests are performed.

The tests requiring a previous value,s0, are only performed from the second
sample point and on. This means that the first time a signal is checked it is only
made sure that it is within its maximum and minimum values.

Please note here that the last set of tests performed in case asignal has not
changed its value, i.e., whens = s0, covers the case when a signal is not allowed to
remain the same between two consecutive samples (unless, ofcourse, it already is
at its maximum or minimum value and is not allowed to wrap around). If a signal
is forced to either increase or decrease, there is choice to be made regarding the
recovery mechanisms for this error. The two options for recovery here are to either
increase or decrease the value. In our studies we have chosento always increase the
value if required. One may also consider more elaborate recovery schemes where
the decision of whether to increase or decrease the value depends on the direction
the signals had between the previous sample and the sample before that. However,
for simplicity, a history of only one sample is considered here.

The executable assertions for discrete signals are less complicated than those
for the continuous signals. Every sub-class of discrete signals has it’s own set of
error detection and recovery mechanisms, as shown in Table 4.4. The tests basically
check whether the signal value is in the valid domain,D, of the signal and that the
transition made from the previous signal value is valid. Thefirst time a discrete

44
C

ha
pt

er
4.

S
of

tw
ar

e
M

ec
ha

ni
sm

s
fo

r
H

an
dl

in
g

D
at

a
E

rr
or

s

Table 4.2: Expressions for error detection and recovery forcontinuous signals
Error Codes: E MaxV/E MinV = Signal above maximum/below minimum value, EMinIR/E MinDR = Signal change below minimum in-
crease/decrease rate, EMaxIR/E MaxDR = Signal change above maximum increase/decrease rate

Test Test Test Error Recovery
Level 1 Level 2 Level 3 Code (Forced Validity)

The following two tests are always performed. If an error is detected, the remaining tests are done with the recovered signal value instead of the
original signal value. The first time a signals is tested, these two tests are the only ones performed.s > smax E MaxV sr smaxs < smin E MinV sr smin

If a condition is true at one level, the test continues at the next level. If the condition is false, the test continues withthe next test at the same
level. If there are no more tests, the signal is considered tobe valid. These tests are performed only if there is a previous signal value, i.e., from
the second sample and on.s > s0 s� s0 > rmax;inr s0 � smin > rmax;der _ E MaxIR sr s0 + rmax;inrw = not allowed(s0 � smin) + (smax � s) > rmax;der E MaxDR sr (smax � rmax;der) + (s0 � smin)(s0 � smin) + (smax � s) < rmin;der E MinDR sr (smax � rmin;der) + (s0 � smin)s� s0 < rmin;inr s < smax _ E MinIR if smax � s0 � rmin;inrw = allowed sr s0 + rmin;inr

else ifw = allowedsr (smin + rmin;inr)� (smax � s0)

elsesr smaxs < s0 s0 � s > rmax;der smax � s0 > rmax;inr _ E MaxDR sr s0 � rmax;derw = not allowed(smax � s0) + (s� smin) > rmax;inr E MaxIR sr (smin + rmax;inr)� (smax � s0)(smax � s0) + (s� smin) < rmin;inr E MinIR sr (smin + rmin;inr) � (smax � s0)s0 � s < rmin;der s > smin _ E MinDR if s0 � smin � rmin;derw = allowed sr s0 � rmin;der
else ifw = allowedsr (smax � rmin;der) + (s0 � smin)
elsesr smin

This list of tests is continued in Table 4.3.

4.4.
M

echanism
s

forE
rror

D
etection

and
R

ecovery
45

Table 4.3: Expressions for error detection and recovery forcontinuous signals, continued
Error Codes: E MaxV/E MinV = Signal above maximum/below minimum value, EMinIR/E MinDR = Signal change below minimum in-
crease/decrease rate, EMaxIR/E MaxDR = Signal change above maximum increase/decrease rate

Test Test Test Error Recovery
Level 1 Level 2 Level 3 Code (Forced Validity)

This is a continuation of the list of tests in Table 4.2.s = s0 rmin;inr = 0 ^ s > smin _ E MinDR if s0 � smin � rmin;derrmax;inr = 0 ^ w = allowed sr s0 � rmin;derrmin;der > 0 else ifw = allowedsr (smax � rmin;der) + (s0 � smin)
elsesr sminrmin;der = 0 ^ s < smax _ E MinIR if smax � s0 � rmin;inrrmax;der = 0 ^ w = allowed sr s0 + rmin;inrrmin;inr > 0 else ifw = allowedsr (smin + rmin;inr)� (smax � s0)
elsesr smaxrmin;der > 0 ^ s < smax _ E MinIR if smax � s0 � rmin;inrrmin;inr > 0 w = allowed sr s0 + rmin;inr
else ifw = allowedsr (smin + rmin;inr)� (smax � s0)
elsesr smax

If the signal is forced to either increase or decrease, recovery may be to always increase or always decrease
if the signal has not changed. The policy chosen here is to always increase, as shown above. If the policy to
always decrease would be chosen instead, the recovery wouldbe performed as shown below.s > smin _ E MinDR if s0 � smin � rmin;derw = allowed sr s0 � rmin;der

else ifw = allowedsr (smax � rmin;der) + (s0 � smin)

elsesr smin

46 Chapter 4. Software Mechanisms for Handling Data Errors

Table 4.4: Error detection and recovery for discrete signals
Error Codes: E InvV = Invalid value, EInvT = Invalid transition

Signal Test Error Recovery
Class Code (Forced Validity)

Random s =2 D E InvV sr ddef 2 D
Linear s =2 D E InvV sr T (s0)
Sequential s 6= T (s0) E InvT
Non-linear s =2 D E InvV sr ddef 2 T (s0)
Sequential s =2 T (s0) E InvT

signal is tested, only the first test for each class is performed (i.e., only membership
in D is checked). Recovery of discrete signals is here made by setting the signal to
a default value either in the valid domain,D, or in the transition set of the previous
signal value,T (s0). Note that for linear sequential discrete signals, each transition
set,T , only contains one element. For discrete signals, the assertions are always
executed.

4.5 Finding Locations and Defining Parameters

A number of different methods may be used to determine which signals should be
monitored and where the executable assertions should be placed. From system de-
sign, the software should already be divided into functional blocks. In safety-critical
systems, FMECA (Failure Mode Effect and Criticality Analysis) is widely used as
a method for identifying the safety critical parts of the system and assessing the
consequences of failures in these parts.

Parameter information may be obtained by the characteristics of the system it-
self. For instance, sensors naturally have a time constant dictating the maximum
rate of change for the data provided by that sensor. Properties of the physical sur-
roundings of the systems are also a source of parameter values. For discrete signals,
typical sources of information are allowed settings on userpanels, or internal state
machines.

The process of gathering information for parameter values for executable asser-
tions forces developers to review the system they have developed. This may assist in
identifying contradicting specifications and/or parts that have not yet been properly
analyzed. The following is the process used in the case studypresented here for
equipping a system with the error detection and recovery mechanisms described in
this chapter:

4.6. Evaluating the Capabilities of the Mechanisms 47

1. Identify the input and output signals of the system.

2. Identify the signal pathways from each input signal through the system and to
one or more output signals.

3. Identify internally generated signals that have a directinfluence on intermedi-
ate and output signals.

4. Determine, e.g., by using FMECA, which of the identified signals are the most
crucial for flawless operation of the system and should therefore be guarded
by error detection and recovery mechanisms.

5. Classify each signal found in (4) according to the scheme described in Sec-
tion 4.3.

6. Determine values for the characterizing parameters of the signals. Remember
that a signal may behave differently for different modes of operation in the
system.

7. Decide on locations for the mechanisms.

8. Incorporate the mechanisms in the system.

This process is a very simple approach relying on the experience of the system
designer. In Chapter 6 of this thesis a more rigorous approach based on the analysis
of error propagation and effect is introduced. However, fornow we will use the
process presented here.

4.6 Evaluating the Capabilities of the Mechanisms

As an assessment of the effectiveness of the error detectionand recovery mecha-
nisms when employed in an embedded control system, we conducted a series of
evaluations using error injection. The first evaluation (referred to asEvaluation 1)
focused on the obtained error tolerance if the proposed mechanisms are incorporated
into a system, and the second evaluation (referred to asEvaluation 2) focused on the
error detection capabilities of the mechanisms. The targetsystem used is described
in Chapter 3. This section describes the special fittings that had to be made to the
target system for using it with the experiment tool used in this case study.

The software of the slave node is slightly different from that of the master node.
No calculations of set point values for the applied pressureare performed. The slave
node simply receives a set point value from the master node, which it then applies

48 Chapter 4. Software Mechanisms for Handling Data Errors

DIST_S

CLOCK

PRES_S

CALC

ms_slot_nbr

pulscnt

mscnt

i

SetValue

IsValue

Pressure
sensor

Pressure
valve

Rotation
sensor

T

T

T

T

T

T
V_REG

OutValue

T PRES_A

Figure 4.6: The selected signals and the locations of the corresponding executable
assertions. InEvaluation 1, the signalmsslot nbr was not included in the setup.

to its tape drum. The modules existing also in the slave node are PRESS, V REG,
CLOCK, and PRESA. The modules DISTS and CALC are not present.

The system specifications in [USAF, 1986] set a number of physical constraints
within which the system must operate. These constraints aredescribed in Chapter 3.
In the experiments described in this chapter, this failure classification has been used
when obtaining coverage estimates of error detection mechanisms.

4.6.1 Software Instrumentation

Using the process described in Section 4.5, we identified 7 signals (of a total of
24 signals) in the target system that are service critical, i.e., essential for providing
proper service (see Fig. 4.6). The selected signals were classified according to our
classification scheme (see Table 4.5).

Table 4.5: Classification of signals in the target system
Signal Producer Consumer Test Location Class

SetValue CALC V REG V REG Co/Ra
IsValue PRESS V REG V REG Co/Ra
i CALC CALC CALC Co/Mo/Dy
pulscnt DIST S CALC DIST S Co/Mo/Dy
ms slot nbr CLOCK CLOCK CLOCK Di/Se/Li
mscnt CLOCK CALC CLOCK Co/Mo/St
OutValue V REG PRESA PRESA Co/Ra

In Table 4.5, theProduceris the originating module of a signal, theConsumeris

4.6. Evaluating the Capabilities of the Mechanisms 49

83 % 17 %
6503
bytes

1336
bytes

95 %852
bytes

44
bytes5 %

47 %

159
bytes

180
bytes

53 %

Code Static data Constants

Application Executable Assertions

Figure 4.7: The overhead in code size, static data (RAM) and constants (ROM)
incurred by the mechanisms.

the receiving module, and theTest Locationis where the executable assertions were
placed. Whether a mechanisms was placed at the producer or consumer side was just
a matter of finding the place where implementation would be the least complicated.
The Classis how the signal was classified (Co = continuous, Ra = random,Mo =
monotonic, St = static rate, Dy = dynamic rate, Di = discrete,Se = sequential, Li =
linear). In Fig. 4.6 are the selected signals and their corresponding mechanisms.

The overhead in memory resources of the instrumentation is shown in Fig. 4.7.
Here we can see that the code of the mechanisms gives an overhead of 17% or
1336 bytes. The mechanisms are implemented as generic code in a static library.
Thus, the relative overhead in code very much depends on the size of the actual
application as the absolute library size in bytes will not change. On the other hand,
the two overhead categoriesstatic dataandconstantsare dependent on the number
of mechanisms incorporated into the system and thus, the relative overhead will not
increase or decrease as much with the (inverse of) application size. In this example,
the static data gave an overhead of 5% or 44 bytes, compared tothe static data used
by the application, and the constants gave an overhead of 53%or 180 bytes, roughly
doubling the amount of ROM needed.

At this point it is important to mention that when instrumenting the target system
with mechanisms forEvaluation 1, it was found that there was too little space in the
on-chip FLASH memory in order to add all mechanisms, so one signal had to be left
unprotected. Signalmsslot nbr was selected as the victim as this was considered the
least critical of the seven signals. BetweenEvaluation 1andEvaluation 2, the target
system was modified so that all communication to the slave node was removed. This
could be done without changing the characteristics of the system as the slave node
was passive, i.e., it only received commands from the masternode and never sent
commands back to the master node. Thus, from the master node’s point-of-view,
there was no difference in functionality. Also, the environment simulator used only

50 Chapter 4. Software Mechanisms for Handling Data Errors

Cable

Rotation
sensor

Tape drum
(Master)

Tape drum
(Slave)

Runway

Pressure
sensor

Pressure
valve

Master

Pressure
valve

Environment simulator

Aircraft mass (kg) Initial velocity (m/s)

FIC3

Fault Injection Campaign Control Computer

Error injection

Figure 4.8: TheFIC3 and the target system - the tool provides input to the environ-
ment simulator and injects errors in the master node of the target

considered input from the master node and replicated that for the slave node drum.
Thus, the slave node did not really take part in arresting aircraft in the setup used
in the evaluations. Removing the communication between themaster and the slave
nodes freed resources in sufficient FLASH memory (and of course lowered the total
CPU load) such that the signalmsslot nbr could be equipped with a mechanism.

4.6.2 Fault Injection Environment

As seen in Fig. 4.8, the target system was hooked up to the fault injection tool FIC3
(the Fault Injection Campaign Control Computer, for details the reader is referred to
[Christmansson and Rimén, 1997] and [Christmanssonet al., 1998]).

The FIC3 is capable of injecting errors into the target system by means of SWIFI
(SoftWare Implemented Fault Injection). Specifically, before initiating an experi-
ment run, the FIC3 downloads error parameters to an injection interrupt routine in
the target system, which is then, during the experiment run,triggered by the FIC3
when the actual injection is to be performed. The error detection mechanisms report
detection by setting a digital output pin on the target processor high. This is detected
by the FIC3, which records and time-stamps the event. The injected errors consist of
modifications of the memory areas where variables and signalvalues are stored. Pre-

4.7. Evaluation 1: Error Tolerance 51

vious studies have shown that injecting bit-flips into a system using SWIFI closely
resembles the behavior of hardware failures (see [Riménet al., 1994]). The down-
loaded injection parameters for this type of error are the address and bit position.

An environment simulator acts as the barrier (i.e. cable andtape drums) and as
the incoming aircraft. This simulator is initialized usingtest case data (mass and
incoming velocity). The FIC3 triggers the simulator to start simulating an incoming
aircraft. The simulator then feeds the system with sensory data (rotation sensor and
pressure sensor) and receives actuator data (pressure value) from the system used
for calculating new sensory data. All input to and output from the environment
simulator is stored as experiment readouts and is subsequently analyzed for system
failure.

4.7 Evaluation 1: Error Tolerance

In Evaluation 1, the goal was to assess the total error tolerance obtained byincor-
porating the proposed mechanisms into an embedded system. Error tolerance here
is defined as the combination of error detection and error recovery, thus, if an error
has been tolerated, it was first detected and then successfully recovered. In this eval-
uation, tolerating an error was defined as being able to avoidsystem failure even if
an error was present in the system. It should be mentioned that a system without
specific error tolerance mechanisms often exhibits a certain level of error tolerance
(or robustness) due to the fact that errors can be overwritten or that the system has a
built-in resiliency against errors.

4.7.1 Setup of Evaluation 1

In order to evaluate the obtained error tolerance, i.e., thecombined effect of error
detection and error recovery, two error sets,ET1 andET2, were set up. Error setET1 contains 160 errors configured as random bit-flips in the stack area, the mem-
ory areas of the various modules or the internal registers ofthe processor. Most of
the errors were injected in the memory areas, as the mechanisms are geared towards
data errors. Errors in the stack will with a higher probability cause control flow er-
rors (i.e., errors that change the path of execution of a program). The errors injected
into memory were distributed according to size of the memoryareas of the modules.
Thus, a module with a larger memory area was subjected to moreerror injections
than a module with a smaller memory area. The errors in error setET1 are meant
to model transient hardware faults. Results in [Riménet al., 1994] indicate that ran-
dom bit flips in memory can mimic the effect of such faults. Thedistribution of

52 Chapter 4. Software Mechanisms for Handling Data Errors

errors inET1 is shown in Table 4.6.

Table 4.6: The distribution of errors in the error setET1
Memory Size # Errors # Injections

Area (bytes) ne ne � 25
Stack 1008 25 625
CALC 164 55 1375
CLOCK 12 15 375
PRESA 12 10 250
PRESS 2 5 125
DIST S 13 15 375
V REG 36 15 375
Registers 3 20 500

Total - 160 4000

The other error set,ET2, contains errors targeting the individual signals moni-
tored by the executable assertions. For each signal, five errors were selected giving
a total of 5�6 = 30 errors inET2. was subjected to These errors are bit flips in
the signals, modeling data errors. No particular assumption has been mad as to how
these data errors occur as the goal of the evaluation is to examine the error tolerance
capabilities of the mechanisms, i.e., how well the mechanisms performed, given that
there was an error which they potentially could detect and correct.

All errors were injected in the master node. For each error inthe error set, the
system was subjected to 25 test cases, i.e., incoming aircraft, with velocity ranging
uniformly from 40m=s to 70m=s, and mass ranging uniformly from 8000kg to
20000kg. ForET1, we have 160�25 = 4000 different combinations [m, v, e] of
mass, velocity and error and forET2 we have 30�25 = 750 combinations. All test
cases are such that if they are run on the target system without error injection, none
of the error detection mechanisms report detection. The twoerror sets were used
on two versions of the target system: one which did not include the error tolerance
mechanisms and one which did include them. Thus, a total of (4000 + 750)�2 = 9500
error injections were performed for the evaluation of errortolerance.

The error sets were generated by random assignment of errorsto the various
memory areas and signals. However, the same errors were usedfor both versions of
the system. The error injections were time triggered and were injected with a period
of 10 milliseconds (recall that most modules in the target system have a period of
7 milliseconds). Thus, errors may have been injected duringthe execution of the
executable assertions or the execution of the recovery mechanisms.

4.7. Evaluation 1: Error Tolerance 53

Table 4.7: The results from the injection experiments with error setET1
Memory # Inj. # Fails,Fo Success Rate # Fails,Fi Success Rate Reduction

Area (orig.) (orig.) (instr.) (instr.)

Stack 625 52 0.9168 49 0.9216 5.77%
CALC 1375 57 0.9585 46 0.9665 19.30%
CLOCK 375 10 0.9733 21 0.9440 -110.10%
PRESA 250 0 1.0000 0 1.0000 N/A
PRESS 125 3 0.9760 10 0.9200 -233.33%
DIST S 375 65 0.8267 43 0.8853 33.85%
V REG 375 5 0.9867 7 0.9813 -40.00%
Registers 500 277 0.4460 271 0.4580 2.17%

Total 4000 469 .8828 447 .8883 4.69%

Table 4.8: The results from the injection experiments with error setET2
Signal # Inj. # Fails,Fo Success Rate # Fails,Fi Success Rate Reduction

(orig.) (orig.) (instr.) (instr.)

i 125 48 0.6160 36 0.7120 25.00%
SetValue 125 4 0.9680 3 0.9760 25.00%
OutValue 125 1 0.9920 0 1.0000 100.00%
mscnt 125 9 0.9280 7 0.9440 22.22%
pulscnt 125 63 0.4960 39 0.6880 38.10%
IsValue 125 4 0.9680 2 0.9840 50.00%

Total 750 129 .8280 87 .8883 32.56%

4.7.2 Results of Evaluation 1

In Evaluation 1, errors were injected into two versions of the target system: the
original version, without error tolerance mechanisms, andone version instrumented
with error tolerance mechanisms incorporated. Specifically, two error sets,ET1 (see
Table 4.6) andET2, containing 160 errors and 30 errors respectively, were injected.
Each individual error was injected for 25 test cases in each system. Table 4.7 shows
a summary of the results for the errors inET1 and Table 4.8 shows a summary of
the results for the errors inET2. For each area or signal, the tables show the number
of injections and the number of resulting failures. The success rate is the normalized
fraction of successful runs performed by the system. The number of failures and
the success rate are shown for both systems. The reduction isa measure of how
well the instrumented system handled failures as compared to the original system,
and is calculated as 100%� (Fo�Fi)Fo . A 100%-reduction means that all failures in
the original system were handled in the instrumented system. A negative reduction
means that the number of failures increased in the instrumented system.

54 Chapter 4. Software Mechanisms for Handling Data Errors

4.7.3 Discussion of Evaluation 1

The results obtained in this evaluation are specific for the target system, the error
model and the test cases we have chosen. For other systems, error models, and/or
test cases the results may vary. Having said that, we can now start our discussion of
the results shown in the previous section.

We injected two sets of errors into our target system: one modeling random
hardware faults (ET1), where each error was a bit-flip in random areas of the system
memory and CPU registers, and one modeling data errors in specific signals (ET2),
targeting the signals which were fitted with error tolerancemechanisms.

The errors were injected periodically with a period of 10 milliseconds. The
target system has a main period of 7 milliseconds. Therefore, the errors are likely
to affect the system in a manner that cannot be said to model software faults, since
such faults would most likely induce data errors with a period matching that of the
system.

The results from error setET1 show that errors injected into the stack and the
registers caused approximately the same amount of failuresin both systems. It may
be argued that these errors are more severe than those injected into the memory area
of specific software modules and would very likely lead to control flow errors. The
proposed mechanisms are not aimed at detecting or recovering from such errors.

For the different software modules, the reduction in failures induced by random
hardware faults varies (error setET1, see Table 4.7). The low overall reduction for
errors injected randomly in the memory areas of the modules is mainly due to the
following reasons:

1. Errors occurred with a period not matching that of the system. This increased
the probability of errors occurring between the test of a signal and the usage
of that signal, thereby nullifying the effect of any recovery that may have been
performed.

2. Errors were injected into variables not covered by assertions and recovery
mechanisms. These errors are likely to affect the system in away that the
executable assertions cannot detect.

3. Errors were injected into variables belonging to the executable assertions and
recovery mechanisms. Since these mechanisms were inactivein the original
system, those errors did not cause any failures, whereas in the instrumented
system, where the executable assertions and recovery mechanisms were ac-
tive, they caused failures.

4.8. Error Detection Coverage and Error Propagation 55

The first point highlights a fundamental difference betweensoftware-based and
hardware-based fault-tolerance techniques. Whereas the hardware-based techniques
are always active and ready to handle errors, the software-based techniques are active
only at certain points in time. If a data error occurs betweenthe execution of a test
on the data and the usage that data, the software-based techniques cannot detect the
error, much less recover from it.

The second point shows that error detection and recovery mechanisms aimed at
specific signals and data areas are not effective against errors occurring in signals
not directly monitored by the mechanisms.

The last point shows the importance of separating the memoryareas of error de-
tection and recovery mechanisms from the memory areas of theapplication. Prefer-
ably, the mechanisms should also be located in other, more reliable, memory circuits.

The results from error setET2 (Table 4.8) show that when the errors directly
affect variables monitored by the mechanisms, the reduction in the number of re-
sulting failures is greater than if the errors affect randomly chosen variables. These
findings suggest that the locations of the detection and recovery mechanisms largely
influence the degree of their success, which is consistent with findings reported
in [Levesonet al., 1990]. Our results indicate that error detection and recovery
mechanisms should be located as close to the receiver of a signal as possible or
be performed when the receiver of a signal accesses the value.

Error tolerance is a combination of first detecting an error and then recovering
from it. The evaluation performed at this point is of this combination. As the results
show, the error tolerance does have room for improvement. Inan attempt to identify
whether it the detection capabilities of the proposed mechanisms are insufficient
and thus the reason behind the somewhat low reduction in system failure, another
evaluation was performed, focusing on error detection. This evaluation,Evaluation
2 is presented in the Section 4.9. First, however, a brief discussion on the process of
error propagation and its implications on error detection coverage.

4.8 Error Detection Coverage and Error Propagation

The detection coverage that may be obtained with these mechanisms is very depen-
dent on the characteristics of the errors that may occur. If we, given that an error
has occurred, define the probabilitiesPem = Prferror location is in a monitored
signalg, Pen = Prferror location is not in a monitored signalg = 1 � Pem,Pprop = Prferror propagates to a monitored signalg, andPds = Prfan er-
ror is detected given that the error is located in a monitoredsignalg. The total
probability of detecting an error that is present can than bewritten asPdetet =

56 Chapter 4. Software Mechanisms for Handling Data Errors(PenPprop + Pem)Pds. For a given system, the probabilityPds can be assessed
separately from the other probabilities and is independentof the probability distri-
butions for error occurrence and error location. A common way of performing such
an assessment is by conducting error injection experiments. The second evaluation
of the presented mechanisms is an attempt to assessPdetet andPds for a given target
system (see the following sections).

4.9 Evaluation 2: Error Detection

In Evaluation 2, the focus is the first part of the process of tolerating errors, i.e., error
detection. If an error cannot be detected, then error tolerance will not be obtained,
no matter how sophisticated the error recovery mechanisms.In this evaluation, error
detection was defined as successful if an injected error (or apropagated effect of it)
was detected during the active operation of the target system.

4.9.1 Setup of Evaluation 2

The experimental set-up for evaluating error detection capabilities calls for two error
sets for evaluation purposes. In order to assess the probability Pds, as defined in
Section 4.8, an error setED1 containing 112 errors was created. Each error inED1
is configured as a bit-flip in the monitored signals. Bit-flipscan be used to model
intermittent hardware faults, and it may be argued that using bit-flips in variables
only may also model other faults inducing data errors in variables. Since single-bit
errors are uniformly probable in all bit positions we chose to inject errors in each bit
position of each signal in order to get a good estimate of the detection probability.
Each signal is 16 bits long, hence, we have 7�16 = 112 errors in the error set (each
individual error was used as an error location).

The other error set,ED2, contains 200 errors configured as bit-flips in random
bit positions in random locations (addresses) in application RAM (417 bytes) and
stack (1008 bytes) areas, and is used to assess the total detection probabilityPdetet
as described in Section 4.8. These errors were selected froma uniform distribution
(both location and bit-position), and the sampling was performed with replacement.
Of the 200 errors, 150 were located in application RAM areas (i.e., no unused RAM
areas) and 50 in the stack area.

All errors were injected in the master node. For each error inthe error set, the
system was subjected to 25 test cases, i.e., incoming aircraft, with velocity ranging
uniformly from 40m=s to 70m=s, and mass ranging uniformly from 8000kg to
20000kg. ForED1 we have for each signal 16�25 = 400 different combinations

4.9. Evaluation 2: Error Detection 57

[m, v, e] of mass, velocity and error. For 7 signals we thus have a total of 7�400 =
2800 different combinations of [m, v, e]. And for ED2 we have 200�25 = 5000
combinations. All test cases are such that if they are run on the target system without
error injection, none of the error detection mechanisms report detection.

ForED1, eight different versions of the system were tested - one foreach of
the seven individual executable assertions and one in whichall seven executable
assertions were active simultaneously. For each system every combination of mass,
velocity and error was exercised, giving us a total of 2800�8 = 22400 experiment
runs with error injections forED1. The error setED2 was used only on the version
containing all seven executable assertions. Therefore we have 5000 experiment runs
with error injections forED2. The error injections were time triggered and were
injected with a period of 20 milliseconds (recall that most modules in the target
system have a period of 7 milliseconds). Thus, errors may have been injected during
the execution of the executable assertions. We say that we have successful error
detection if an error is detected at least once during the entire observation period (40
seconds). The detection probability is then the probability of detecting an error at
least once during the observation period. The detection latency is the time from the
first injection of an error to the first reported detection.

4.9.2 Results of Evaluation 2

In Table 4.9, we can see the estimates of the detection probabilities per signal, per
executable assertion, and totals, as obtained using error setED1. The measures are
calculated according to the formulas for coverage estimation in [Powellet al., 1995].
The measureP (d) = ndne (wherend is the number of runs in which errors were
detected andne is the number of runs in which errors were injected) is an estimate
of the probability that the error is detected during the observation time,P (d=f) =nd;failne;fail (where we only take into account those runs in which the system failed) is
an estimate of the probability that the error is detected given that a failure occurred,
andP (d=nf) = nd;nofailne;nofail (where we only take into account those runs in which the
system did not fail) is an estimate of the detection probability given that no failure
occurred. The relationn = nfail + nnofail is true for both errors and detections.
For the individual signals we havene = 400 and for the totals we havene = 2800.
The All column contains the results obtained when using the version of the software,
which had all seven executable assertions activated simultaneously. The table also
contains the 95% confidence intervals for the estimates of the detection probabilities.
We can use the measureP (d) as an estimate ofPds in the expression of the total
detection probability for the entire system (see Section 4.8). If a cell is empty in the

58
C

ha
pt

er
4.

S
of

tw
ar

e
M

ec
ha

ni
sm

s
fo

r
H

an
dl

in
g

D
at

a
E

rr
or

s

Table 4.9: Error detection probabilities (%) with confidence intervals at 95% for error setED1. No confidence intervals
can be estimated for measured detection probabilities of 100.0%.

Signal Measure EA1 EA2 EA3 EA4 EA5 EA6 EA7 All

P(d) 55.5�4.1 31.3�3.8 4.0�1.6 44.3�4.1 59.5�4.0
SetValue P(d/f) 92.6�3.7 72.4�6.4 1.5�1.7 87.9�4.7 97.1�2.4

P(d/nf) 36.6�4.9 10.5�3.1 5.3�2.3 22.8�4.2 39.7�5.0
P(d) 52.5�4.1 47.0�4.1 54.4�4.1

IsValue P(d/f) 89.6�7.3 93.3�6.2 100.0
P(d/nf) 47.4�4.4 41.1�4.3 47.2�4.4
P(d) 26.8�3.6 29.8�3.8 100.0 1.0�0.8 1.0�0.8 0.5�0.6 47.8�4.1 100.0

i P(d/f) 33.7�7.8 55.4�8.2 100.0 0.1�1.5 2.3�2.1 1.1�1.8 78.0�6.8 100.0
P(d/nf) 24.4�4.1 21.1�3.9 100.0 1.0�1.0 0.4�0.6 0.3�0.5 37.7�4.6 100.0
P(d) 50.3�4.1 42.8�4.1 0.3�0.4 12.5�2.7 0.3�0.4 100.0

pulscnt P(d/f) 38.1�5.3 34.5�4.8 0.3�0.5 0.0 0.7�1.2 100.0
P(d/nf) 66.9�6.0 58.3�6.9 0.0 16.5�3.5 0.0 100.0
P(d) 20.0�3.3 100.0 6.8�2.1 100.0

ms slot nbr P(d/f) 34.6�5.7 100.0 11.6�3.9 100.0
P(d/nf) 7.1�2.9 100.0 2.7�1.8 100.0
P(d) 8.3�2.3 12.3�2.7 100.0 17.5�3.1 100.0

mscnt P(d/f) 20.0�13.4 18.2�13.8 100.0 13.0�11.8 100.0
P(d/nf) 7.5�2.2 11.9�2.7 100.0 17.8�3.2 100.0
P(d) 1.0�0.8 11.3�2.6 4.0�1.6

OutValue P(d/f) 33.3�34.7 85.7�23.5 100.0
P(d/nf) 0.5�0.6 9.9�2.5 3.3�1.5

P(d) 20.1�1.2 27.1�1.4 14.9�1.1 1.9�0.4 14.4�1.1 14.4�1.1 25.0�1.3 74.0�1.4
Total P(d/f) 35.0�2.9 47.0�3.0 12.2�1.9 0.2�0.3 21.7�2.3 3.2�1.0 42.7�3.3 99.6�0.3

P(d/nf) 14.9�1.3 19.7�1.4 16.0�1.4 2.4�0.5 11.1�1.2 19.0�1.5 19.9�1.4 60.6�1.9

4.9. Evaluation 2: Error Detection 59

Table 4.10: Error detection latency for all errors in error setED1 (all times are in
milliseconds).

Signal Latency EA1 EA2 EA3 EA4 EA5 EA6 EA7 All

Min 160 570 50 20 20
SetValue Avg. 690 2445 1241 842 496

Max 6259 5588 6099 5297 6490
Min 10 10 20

IsValue Avg. 612 654 980
Max 8142 4466 6630
Min 311 270 80 3254 4686 3495 151 91

i Avg. 2125 2100 210 4111 5538 3891 1900 205
Max 11397 8272 401 4807 7601 4286 6499 421
Min 390 1182 1563 20 230 20

pulscnt Avg. 1371 1379 1563 273 230 293
Max 2284 2283 1563 1202 230 4246
Min 1172 20 1703 20

ms slot nbr Avg. 3654 32 3462 31
Max 8912 140 5738 101
Min 1112 1352 10 1091 20

mscnt Avg. 2050 1741 25 1673 23
Max 4196 3525 60 3415 61
Min 440 20 2413

OutValue Avg. 1344 1604 3375
Max 2704 6179 7781

Min 160 10 50 20 20 10 10 20
Total Avg. 1286 1725 248 593 126 163 1314 394

Max 11379 8912 6099 4807 7601 4286 64997781

table, this means that no detection was registered for that combination of signal and
executable assertion.

The values shown in boldface are those that correspond to the”correct” signal-
mechanism pair. For instance, the signalSetValueis directly monitored by mecha-
nismEA1, and the signalIsValueis directly monitored byEA2.

In Tables 4.10 and 4.11 are the detection latencies measuredduring our experi-
ments. The value is the time from the first injection of an error until the first regis-
tered detection, and it is measured in milliseconds. The tables show the minimum,
average and maximum values for the detection latencies. Again, the boldface values
correspond to the primary signal-mechanism pairs. In Table4.10 all detected errors
are considered, those leading to system failure as well as those not leading to system
failure, whereas in Table 4.11 only those errors that ultimately lead to system failure
are considered.

The results from the experiments with error setED2 are shown in Table 4.12.
The table contains detection coverage with 95% confidence intervals and detection

60 Chapter 4. Software Mechanisms for Handling Data Errors

Table 4.11: Error detection latency for those errors in error setED1 which caused
the target system to fail (all times are in milliseconds).

Signal Latency EA1 EA2 EA3 EA4 EA5 EA6 EA7 All

Min 170 570 982 20 20
SetValue Avg. 412 2240 982 782 351

Max 1652 5588 982 3184 5178
Min 40 10 20

IsValue Avg. 461 708 782
Max 2193 4466 4506
Min 311 310 80 3254 4897 3495 151 91

i Avg. 2397 2263 190 3254 5822 3495 1767 178
Max 6840 7992 401 3254 7601 3495 6499 360
Min 390 1182 1563 230 20

pulscnt Avg. 1367 1380 1563 230 297
Max 2284 2283 1563 230 4246
Min 1172 20 2213 20

ms slot nbr Avg. 3503 32 3533 31
Max 5748 110 5738 101
Min 1232 1382 20 1111 20

mscnt Avg. 1753 1850 24 1278 20
Max 2464 2604 40 1482 21
Min 851 20 2654

OutValue Avg. 1778 1143 3358
Max 2704 2394 4276

Min 170 40 80 3254 20 20 10 20
Total Avg. 1040 2035 212 3254 186 603 1288 289

Max 6840 7992 1563 3254 7601 3495 6499 5178

latencies in milliseconds. As with the measures for error set ED1, we used the
formulas in [Powellet al., 1995] to derive the probabilities shown in the table.

The probabilities shown in Table 4.12 are estimates ofPdetet, whereas the prob-
abilities shown in Table 4.9 are estimates ofPds (for more information on the def-
inition of these probabilities, see Section 4.8). In the following section, the results
presented here are discussed.

4.9.3 Discussion of Evaluation 2

The results obtained in this evaluation are specific for the target system, the error
model and the test cases we have chosen. For other systems, error models, and/or
test cases the results may vary. Having said that, we can now start our discussion of
the results shown in the previous section.

4.9. Evaluation 2: Error Detection 61

Table 4.12: Results from experiments with error setED2.
Area Detection Probability Detection Latency Detection Latency

(%, 95% conf. int.) (ms, totals) (ms, failures)

P(d) 12.8�0.9 Min 20 Min 20
RAM P(d/f) 81.1�6.8 Avg. 1359 Avg. 1203

P(d/nf) 11.1�0.9 Max 5608 Max 5608
P(d) 4.2�0.9 Min 20 Min 20

Stack P(d/f) 13.7�4.7 Avg. 250 Avg. 2077
P(d/nf) 2.9�0.8 Max 2684 Max 6449

P(d) 10.6�0.7 Min 20 Min 20
Total P(d/f) 39.4�5.2 Avg. 1086 Avg. 1298

P(d/nf) 9.2�0.7 Max 5608 Max 6449

Error Detection Probability, Pds
This section discusses the results regarding error detection coverage obtained with
error setED1 (see Table 4.9). The results are the estimated values for theprobabilityPds, i.e., the probability that an error is detected given that an error is present in one
of the monitored signals and therefore can be detected by themechanisms.

The overall detection probability was 74%, and if we consider the errors that
lead to failure, as defined in Chapter 3, the detection probability was over 99%.
Roughly, 60% of the errors that did not lead to failure were detected. If we examine
the individual executable assertions, we have detection probabilities ranging from
just over 11% up to 100%. The assertions that achieved a 100% detection probability
monitored signals that were all essentially counters by nature; they were periodically
incremented by some limited (small) amount. This makes errors easy to detect since
the freedom of change was very small in these signals. We mustremember that it
is possible, even probable, that we do not achieve a 100% detection probability for
other error models or test cases. However, the results suggest that these mechanisms
can be very effective in detecting errors.

The assertions monitoring signals representing continuous values in the environ-
ment have a lower detection probability. This can be explained by the fact that these
signals have more liberal constraints than the counter signals mentioned above. The
liberal constraints let those errors pass which in the valuedomain constitute a small
change in the signal, i.e., the errors most likely to remain undetected are those affect-
ing the least significant bits of the signal. In fact, for continuous signals, errors in the
least significant bits may be indistinguishable from noise in the sampling process.

The mechanismEA4, which is set to monitor the signalpulscnt, was not at all
effective in detecting errors in that signal that lead to failure as it did not detect any

62 Chapter 4. Software Mechanisms for Handling Data Errors

of those errors. Of the errors that didnot lead to failure, only 16% were detected.
The overall detection capability of this mechanism was verylow, only about 12%.
Errors in pulscnt were more easily detected by indirect mechanisms such asEA1and
EA2 (over 50% and over 42% respectively) that monitor signals which are affected
by the value ofpulscnt. This indicates that either are errors very hard to detect in
this signal, or the parameters of the mechanism are not optimal (or both). We can
therefore identifypulscnt/EA4 as an area where more work is needed in regard to
error detection.

The detection probability forEA7 in the signalOutValuewas roughly 11%,
whereas for all mechanisms it was 4%. This is mainly due to thefact that the behav-
ior of the target system is not entirely deterministic.

The results ofEvaluation 2shows that by using a number of error detection
mechanisms covering different parts of the system, a fairlyhigh total coverage may
be obtained.

Total Error Detection Probability, Pdetet
As shown in Section 4.8, the probability of detection given that an error is present in
a monitored signal is part of a larger expression for total error detection probability
for the entire system:Pdetet = (PenPprop + Pem)Pds. The value obtained forPds for the target system in our evaluation was 74% (see theTotal row in Table 4.9).
To obtainPdetet = 74% would mean that all the occurring errors, directly or
after propagation, are uniformly distributed over the monitored signals. This is most
likely not the case since there probably are some signals that are more dependent on
other parts of the system than the remaining signals. If, forexample, errors in our
target system with a high probability propagate to theSetValuesignal,Pdetet would
be closer to the detection probability for that signal, which here is roughly 59%.

From the experiments performed with error setED2 (in Table 4.12), we can see
that the overall detection coverage for all errors is about 10%. For errors that lead
to failures, we obtained detection coverage of 39%. The values differ a lot for the
two areas in which we injected errors. Generally, errors injected into the RAM area
of the application were detected with a higher probability than were those injected
into the stack area. An explanation for this may be that errors in the stack area
more often lead to control flow errors. The evaluated mechanisms are not aimed at
detecting such errors.

For the errors injected into the RAM area that eventually caused the system to
fail, the detection coverage was over 81%, whereas the totaldetection coverage was
just under 13%. We can see that if an error were of such nature that it would cause

4.10. Summary and Conclusions 63

system failure we can detect it with a fairly high probability using the presented
mechanisms.

Error Detection Latency

We can see in the results forED1 that the assertions which monitor signals that are
essentially counters in nature have the shortest average detection latency (see Ta-
bles 4.10 and 4.11). The three mechanisms that showed a 100% detection probabil-
ity were also the top three mechanisms when examining the error detection latency.

Looking at the individual mechanisms in Table 4.10 shows us that the detection
latencies are rather short. Most of the mechanisms had average latencies of well be-
low one second, only mechanismEA7had an average exceeding one second (1.604
seconds). The average detection latency for all mechanismswas 394 milliseconds.

If we take a closer look at the latencies for the errors that lead to failure (see
Table 4.10), we can see that most mechanisms have an average below 500 microsec-
onds. Again, only mechanismEA7has an average detection latency greater than one
second (1.143 seconds). We also clearly see thatEA4did not detect any of the er-
rors that eventually lead to failure. When all mechanisms are activated, the average
detection latency for errors leading to failures is 289 milliseconds.

The latencies for errors inED2 (see Table 4.12) are longer than the latencies
for errors inED1. This, however, is not very surprising since most of the errors inED2 were not located in the monitored signals and therefore had to propagate to the
monitored signals before the mechanisms could have a chanceof detecting them.
This propagation process increases the total time from injection to detection.

4.10 Summary and Conclusions

In this chapter we investigate the properties of error detection and recovery mech-
anisms derived from a proposed classification scheme for signals in modular soft-
ware. The mechanisms are parameterized test algorithms based on the concept of
executable assertions, and are instantiated individuallyfor each signal that is to be
monitored. Two evaluations were performed using error injection experiments. In
the first evaluation bit-flips were injected in all bit positions of the monitored signals
and in the second experiment bit-flip errors were injected inrandom bit positions in
memory, registers, and stack locations. The first experiment investigated the error
tolerance obtained from incorporating the proposed mechanism into an embedded
system. The second experiment investigated the error detection coverage and detec-
tion latencies obtained with the mechanisms.

64 Chapter 4. Software Mechanisms for Handling Data Errors

The results from the first evaluation show that the location of executable asser-
tions and recovery mechanisms is of the utmost importance tothe effectiveness of
the mechanisms. For errors injected into the monitored signals, the failure rate was
reduced with 32.56% in the used target system. However, errors that occur in data
areas not monitored by the error detection and recovery mechanisms are poorly han-
dled. The reduction in failure rate was only 4.69%. From the results one can also
conclude that the memory areas of the mechanisms should be separated from the
application memory or else the mechanisms will be as vulnerable to errors as the
signals they monitor.

The detection probability was defined to be the probability of an error being de-
tected at least once during the observation period. The detection latency was defined
to be the latency between the first injected error and the firstreported detection.

In the second evaluation, we achieved an overall detection probability for errors
in the monitored signals of 74%, and if we only take into account those errors that
lead to system failure we had a detection probability of over99%. The average
error detection latency when all mechanisms were activatedsimultaneously was 511
milliseconds. For errors that caused the system to fail, theaverage detection latency
was 289 milliseconds.

The second evaluation also showed that for errors in the memory areas of the
application, over 81% of all errors that caused system failure were detected. Errors
in the stack that caused system failure were detected with a probability of 13%. The
low detection probability for stack errors is likely due to the fact that errors in the
stack often cause control-flow errors, and the evaluated mechanisms are not aimed
at detecting such errors. The detection latencies were longer than those obtained in
the first experiment. This, however, is not surprising sincemost injected errors must
propagate to the monitored signals in order to be detected. This propagation process
increases the detection latency.

From the results shown in the evaluations of the proposed mechanisms, one can
conclude that the mechanisms are good candidates for software-implemented error
detection in low-cost embedded systems. They are based on anintuitive concept
and easy to implement and have the potential of providing high detection coverage
for data errors in software signals. Regarding the error recovery capabilities of the
forced validityconcept, this should be studied further. In the evaluations, the error
models used were quite aggressive (in that the errors were injected periodically, and
with a period not matching the period of the system), and other error models (with
error occurrence at only one point in time) should be used forfurther evaluations.

Also, the results indicate that the efficiency of the mechanisms, and indeed any
kind of error tolerance mechanisms, depends on where they are located. Thus, know-

4.10. Summary and Conclusions 65

ing how errors propagate through a software system can improve the possibility of a
system designer to obtain a high error detection probability, and thereby also a high
error recovery probability, in a given system.

66 Chapter 4. Software Mechanisms for Handling Data Errors

CHAPTER5
PROPANE - The Propagation
Analysis Environment

I didn’t think; I experimented.

— Wilhelm Röntgen (1845–1923)

In order to produce reliable software, it is important to have knowledge on how
faults and errors may affect the software. In particular, designing and placing ef-
ficient error detection mechanisms requires not only knowledge on which types of
errors to detect but also the effect these errors may have on the software, as well
as how they propagate through the software. This chapter presents the Propagation
Analysis Environment (PROPANE) which is a tool for profilingof and fault injec-
tion in software running on desktop computers. PROPANE supports the injection of
both software faults (by mutation of source code) and data errors (by manipulating
variable and memory contents). Various error types are provided out-of-the-box and
user-defined error types are supported. For logging, PROPANE can automatically
instrument a target system with probes for charting the values of variables and mem-
ory areas as well as for registering events during executionof the system under test.
A comparative evaluation of PROPANE with other contemporary tools demonstrate
the prominent advantages of PROPANE for its combination of portability, flexibility
and observability at a low cost.

67

68 Chapter 5. PROPANE - The Propagation Analysis Environment

5.1 Introduction

In order to develop software that functions in a non-harmfulmanner in the presence
of faults and errors (as defined in [Laprie (ed.), 1992]), onerequires knowledge of
the behavior of the software under these exceptional conditions. In particular, one
needs to know how faults and errors propagate to affect the execution of software.
Knowing propagation pathways may, for instance, be of greathelp when deciding
where to place error detection and recovery mechanisms.

Learning about error propagation characteristics of a software system requires
not only that one should be able to inject errors and monitor the effect these have on
system output, but also that one is able to monitor how these errors are transported
through the system. Thus, high observability is required for these activities. Ideally,
one should be able to observe every individual variable and data structure in the
software.

This chapter gives a detailed presentation of PROPANE, the Propagation Anal-
ysis Environment. which is a tool suite enabling the injection of faults and errors
into software running on a desktop computer (currently for Windows 2000/XP).
PROPANE supports varied ways of probing a system, i.e., tracing internal variables
and events during system operation, as well as injection of software faults and data
errors.

Fault injections are performed by instrumenting the sourcecode with both the
correct code and the defect that is to be injected. With everyfault, there is a fault-
trigger that decides which of the correct code or faulty codeto execute. All in-
serted faults are inactive by default—the experiment descriptions used for setting up
PROPANE specify which faults are to be activated.

Error injections are performed by using predefined error types (defined indi-
vidually for each target system), predefined locations in the software (equivalent to
software traps) and then in the experiment descriptions specifying combinations of
locations and error types. When the specified locations are reached during system
operation, the specified errors are injected based on error triggers specified in the
description files.

PROPANE can be useful in a number of situations. For instance, in Component-
Based Software Development (CBSD) generic configurable software components
are manufactured and assembled to form an entire system (inspired by the use of
generic hardware components for building hardware systems). These components
are often ported to several different hardware platforms. This limits generalized ver-
ification and validation use of tools that focus on specific hardware configurations.
PROPANE on the other hand has no such limitations as it is doesnot require any spe-

5.2. Target System Model 69

cial hardware assistance. Thus, software components may beverified and validated
with PROPANE before porting them to various target hardware. This argument will
of course also be valid for testing embedded software which in many cases may exist
before the hardware platform has been finalized.

In a comparison with other FI-tools (as detailed in Section 5.8), we comment
that very few other tools can provide the detailed data necessary for software prop-
agation analysis at a level comparable to PROPANE. Also, itsportability and flexi-
bility uniquely distinguish PROPANE as a simple, low-cost error propagation anal-
ysis tool. We emphasize that PROPANE, through its depictionof error propagation
paths, is primarily designed as a software design aid with complementary capability
of being used in the evaluation of effectiveness of error handling mechanisms.

The remaining chapter is structured as follows: In Section 5.2 we describe the
target system model for which PROPANE is aimed, and Section 5.3 will give an
overview of the tool. Section 5.4 details the concepts and structure of PROPANE
and also shows how experiments are set up. Experiment execution and data analysis
are covered in Sections 5.5 and 5.6, respectively. An example of actual PROPANE
usage is shown in Section 5.7. Once we have described the details of PROPANE
we can compare it to other FI-tools. Section 5.8 contains this comparison. Finally,
Section 5.9 summarizes this chapter and states the conclusions.

5.2 Target System Model

PROPANE aims at modular software, i.e., discrete software functions interacting
to deliver the requisite functionality. A module in this context is a generalized soft-
ware block having possibly multiple inputs and outputs. Modules communicate with
each other in some specified way using varied forms of signaling, e.g., shared mem-
ory, messaging, parameter passing, etc., as pertinent to the chosen communication
model. A detailed description of this model is described in Chapter 3.

Software constructed in such a modular way is found in numerous systems, such
as desktop systems as well as embedded systems. For example,most applications
controlling physical events such as in automotive systems are traditionally built up
as such. Our studies mainly focus on software developed for embedded systems in
consumer products (high-volume and low-production-cost systems).

PROPANE is designed with a focus on software for single-process user appli-
cations on desktop systems. However, this single process may be multi-threaded.
The PROPANE injection and logging mechanisms are generic and are provided in
a static C-library, thus allowing for a vast range of applications. For example, it
has been used in experimentally analyzing the propagation of data errors in the soft-

70 Chapter 5. PROPANE - The Propagation Analysis Environment

ware of an embedded control system simulated on a Windows-based desktop com-
puter [Hiller et al., 2001, Hilleret al., 2002(a), Jhumkaet al., 2001]. The require-
ment for using PROPANE is that the language used for the source code is able to
interface with libraries implemented in the C programming language.

Although the system model described in Chapter 3 is a black box model, and is
adopted in this thesis, PROPANE may be used in a white box approach as well, as
there is nothing in PROPANE that limits the kind of data that is logged, i.e., one may
log input and output signals of modules as well as their internal static and temporary
data areas. However, in this thesis, PROPANE has been primarily used in a black
box setting.

5.3 Overview of the Tool

This section provides an overview of how PROPANE is structured, and also its pro-
posed usage.

5.3.1 Basic System Structure

PROPANE is designed to run on a desktop system (such as Windows 2000/XP or
UNIX) and consists of a suite of tools, namely: the PROPANE System Instrumentor
(PSI), the PROPANE Setup Creator (PSC), the PROPANE Campaign Driver (PCD),
the PROPANE Library (PL), and the PROPANE Data Extractor (PDE). An overview
is shown in Fig. 5.1.

PL is used by the target system to gain access to the probing and injection func-
tionality of PROPANE and is written in the C programming language. PCD is re-
sponsible for handling the actual execution of experimentsand is in a sense the main
administrator of PROPANE. It has a user interface through which the user can con-
trol and follow the experiments. In order to be able to log variables and event and to
inject faults and errors the target source code must be instrumented. Given a descrip-
tion of the modular composition of the system including I/O and internal character-
istics of the various modules, and the original source code,PSI will automatically
generate instrumented versions of the source files and intermediate file used by PSC
to create experiment setups. PDE may be used during analysisto extract specific
data from the experiment readout files. PCD and PL are integrated with each other,
whereas PSI, PSC and PDE are stand-alone components of PROPANE. The envi-
ronment simulator, the target software and any user injectors and user triggers are
provided by the user. The environment simulator will act as astimuli generator for
the target software and may be partially controlled by the output generated by the

5.3. Overview of the Tool 71

 Target executable

PROPANE Library PL

Environment
simulator

Target software

User Error
Types

User Error
TriggersPROPANE

Campaign Driver

PCD

PCD invokes the target
executable to run experiments

Setup
files

Log
files

Readout
files

PROPANE
Data Extractor

PDE
Extracted

data

PROPANE
Setup Creator

PSC

PROPANE
System

Instrumentor

PSI

Instrumented
target source

Figure 5.1: An overview of PROPANE together with target software and environ-
ment simulator

target software (e.g., as in a control loop). The interactions between these two sub
parts of the target executable are user-defined.

An FI-experiment is set up with a number of description files containing details
on which faults and errors to inject, which variables and events to trace and so on.
There are three types of description files: database description files, campaign de-
scription files, and experiment description files. Adatabaseis a set ofcampaigns,
which in turn are sets ofexperiments. Eachexperimentcontains the set up of one
execution of the target system (one combination of input data and error injection).
The PSC aids in the creation of these files needed for controlling PROPANE. Given
information regarding errors and faults, probes, injection locations, etc., it will gen-
erate the requisite description files. The PSC will also generate description files
used by the PDE during analysis. Details on the description files are presented in
Section 5.4.

For each experiment specified in the description files, the PCD spawns a new
process running an executable file containing a complete specification for conduct-
ing one experiment. This executable contains the PL which performs the actual
injection of errors and logging of variables. The executable also has to contain ev-
erything necessary to run the target system and the environment simulator.

72 Chapter 5. PROPANE - The Propagation Analysis Environment

The reason for running experiments in individual processesis twofold:

A) Parallel execution may shorten the total time for executing sets of experiments.
This is especially true for systems that have excess computing capacity so that
there is ample idle time during the execution of a single experiment, primarily
multi-processor systems.

B) Each experiment begins execution from identically specified initial condi-
tions. This ensures that there are no residuals that make oneexperiment affect
another experiment. This is given that during an experimentthe different pro-
cesses do not compete over a (limited) shared resource, suchas file handles.

During the execution of the experiments, log files and readout files are created.
The log files contain information regarding the execution ofthe experiments, i.e.,
PROPANE performance and behavior information, and does notcontain any readout
data gathered from the target software. If the experiment could not be executed
successfully for some reason, the log files provide hints to potential problems. The
readout files contain the data obtained by the inserted probes and the performed
injections and are the basis for subsequent error propagation analysis. Details about
log files and readout files are provided in Section 5.5. The environment simulator is
designed by the user of the PROPANE tool, hence it follows theuser-specifications
on use and generation of description, log and readout files. The format of the files
read and/or written by the environment simulator is also user-definable.

PL requires interfacing to the environment simulator. However, if an environ-
ment simulator exists which does not comply with the interface specifications, a
wrapper layer is warranted which has the PROPANE interface on one side and the
environment simulator interface on the other, acting as a translator between the two
components. Thus, the environment simulator need not necessarily be an integrated
part of the target executable.

PDE will extract traces of the various logged variables and memory areas and
can conduct Golden Run Comparisons (i.e. comparing system traces obtained dur-
ing injection experiments with fault/error free referencetraces, details in Section 5.6)
to detect whether errors have occurred due to fault injection. Information regarding
propagation will be compiled and presented. Also, intermediate extracted data is
stored in special files which can subsequently be used in a customized analysis tools
which may take into account desired experiment specific information and/or aims,
such as coverage estimation of error handling mechanisms, failure classification or
other activities which may be target specific.

5.3. Overview of the Tool 73

Original
target

software

Fault
and error

data

Usage
profile
data

Results

ANALYSIS

INJECTION

Instrumented
target

software
SETUP

Log files

Readout files

Description files

Figure 5.2: The basic work process when using PROPANE.

5.3.2 Work Process for Using PROPANE

The typical work process when using PROPANE can basically bedivided into three
main phases, namely: 1) theSetupphase, 2) theInjectionphase, and 3) theAnalysis
phase (as illustrated in Fig. 5.2).

Setup phase:In theSetupphase, description files are generated and the target
system is instrumented. The inputs to this phase include theoriginal source code
of the target software, information on distribution and nature of faults and/or errors,
and information about target system usage. The fault and error information is used
for determining the fault and error sets to be injected in theexperiments. The usage
information forms the basis for determining the test cases used during the injec-
tions in order to provide the target system with a realistic operational profile. In the
setup phase, PSI is used for instrumenting the target software with probes for log-
ging variables, memory areas, and events, as well as with high-level software traps
for injecting faults/errors. Given basic information about errors and faults, probes,
injection details, etc., PSC generates the required description files for PCD/PL and
PDE. The description files contain information on which faults are to be injected,
which errors are to be injected at which locations, and whichtest cases are to be
used by the environment simulator during the execution. Details regarding theSetup
phase are provided in Section 5.4.

74 Chapter 5. PROPANE - The Propagation Analysis Environment

The output of the phase is a set of description files and the instrumented target
system. The description files contain information on which faults are to be injected,
which errors are to be injected at which locations, and whichtest cases are to be
used by the environment simulator during the execution. Theinstrumented target
system contains injection locations (which may be regardedas high-level software
traps) and probes logging the desired variables, memory areas and events.

Injection phase: During theInjection phase, the PROPANE Campaign Driver
(PCD) is set up with the description files generated in theSetupphase. The PCD
invokes the target executable as an individual process and generates readout files
containing detailed information on the results of the experiments. During the exper-
iment, the specified faults and/or errors are injected and the specified variables and
events are logged. Log-files are generated recording the actions of the PROPANE
tool itself. Details regarding theInjectionphase are provided in Section 5.5.

Faults are injected when the corresponding fault-triggersare activated. Fault
injection at this level means that a faulty piece of code is executed instead of the
correct piece.

Errors are injected based on the built-in error types, or on user-implemented
error types. Thus, it is possible to implement error models which are not included in
PROPANE. For example, if some parts of a system work unreliably under extreme
temperatures, a user error type could take this into consideration.

Error triggers are boolean expressions and an error is injected when its corre-
sponding error trigger is evaluated totrue. Error triggers may be based on time,
frequency or a probability distribution. In addition to thebuilt-in error triggers,
PROPANE also supports user-implemented error triggers. Aswas the case for user
error types, a user error trigger may take into account target specific information,
such as system state or the environment. In the example with the temperature-
induced error type, a corresponding error trigger may evaluate to true when the
temperature is below a lower threshold and above an upper threshold.

Analysis phase: The readout files generated in theInjection phase are ana-
lyzed in theAnalysisphase to evaluate metrics for the target systems. These metrics
may include coverage values, propagation information, etc. One aspect of analy-
sis is to compare traces from two different runs with each other, e.g., compare a
golden run(i.e. a reference run) with an injection run. The PROPANE Data Extrac-
tor compiles propagation information from the readout filesand also generates a set
of data-files containing data such as detailed results from Golden Run Comparisons
and injection information. These files can then be used for propagation analysis
at the variable-level. Further details regarding theAnalysisphase are provided in
Section 5.6.

5.4. Setup: Experiment Design and Target Instrumentation 75

5.4 Setup: Experiment Design and Target Instrumentation

Setting up experiments with PROPANE requires one to performthe following steps:

1. Select faults to inject.

2. Select error types, injection locations.

3. Select injection triggers (for errors).

4. Select variables, memory areas, and events to log.

5. Select test cases for the environment simulator.

6. Instrument target system software (using PSI)

7. Generate description files (using PSC)

The subsequent sections detail the specifics of the various steps of the setup
process for PROPANE.

5.4.1 Selecting Which Faults and Errors to Inject

Before any faults can be selected for injection, one must know which different faults
are possible to occur in the target system. Producing a set ofpossible faults may be
done in several ways. The quality of the results obtained from the experiments may
depend on how good this set of possible faults,Fp, is at representing the real world
faults that may occur in the target system. The set of possible faults is actually a
subset of the entire set of faultsF, i.e., Fp � F. From the set of possible faults,
one must select a fault setF* � Fp � F for injection in the target system.
Each faultf 2 F* is then manually inserted into the target system together with
an activation clause. That is, every faultf is inserted into the same executable of
the target system, and the experiment descriptions then specify which of these faults
that are to be activated during the execution of the experiment.

For errors, the situation is similar. There is an abstract set E containing all errors.
Then there is a setEp � E containing all the errors that the experimental environ-
ment is capable of reproducing. Then, one must select an error setE* � Ep � E
for use in the injection experiments. The selection of errors in E* depends on what
the objective of the error injections is. If the goal is to mimic the effects of faults, the
errors must be selected using the set of selected faultsF* . From the description of
the faults inF* , parameters for the errors that are to be injected are obtained. Other

76 Chapter 5. PROPANE - The Propagation Analysis Environment

goals may produce other errors. When the set of selected errors is obtained each
errore 2 E* is analyzed for type and location. The error types are specified in the
description files and the locations are specified in the target system by means of indi-
cators (high-level software traps) which tell the PROPANE library when the execu-
tion has reached a certain location. Upon reaching an indicated location, PROPANE
injects any errors specified for injection at that location.

Faults may be selected in a variety of ways, the PROPANE tool suite does not re-
ally have any preference in this regard. In [Christmansson and Rimén, 1997], a tool
was developed–the C Fault Locator (CFL)–which, given a C source file, locates all
lines that may be modified to contain a fault according to somefault classification.
CFL is designed to look for a subset of faults from the Orthogonal Defect Classifi-
cation (ODC) [Chillaregeet al., 1992]. The fault classes we have chosen to look for
are those of Assignment (A), Interface (I), and Checking (C). More details on CFL
and on how faults are selected are found in [Christmansson and Rimén, 1997].

Error selection can also be made in a variety of ways. One way is to let errors
mimic the effects of faults. This eliminates the task of physically instrumenting the
code since the system behavior may be the same as for faults. However, it may be
difficult to mimic every type of fault by injecting errors. For example, faults directly
affecting the control flow of a program may be hard to mimic using only error in-
jection into variables (as was the case in [Christmanssonet al., 1998]). Errors may
also be selected to resemble intermittent hardware faults or stuck-at faults.

5.4.2 Faults and Fault Triggers

The fault selection process will result in a setF containing a number of faults that
are to be injected into the target software. Each faultf 2 F has to be manually
inserted into the target software with corresponding faulttriggers (i.e., PROPANE
uses mutation of source code to inject faults). The fault triggers are binary switches
(On/Off) and will route the execution trajectory to executeeither the correct code or
the faulty code. The description files specify which fault triggers are activated (set to
On). Faults, in this context, are defects in the source code of the software. Given the
wide variety of possible software defects and the inherent complexity such defects
may exhibit, PROPANE supports user-defined fault cases.

Once each individual fault and its corresponding fault trigger has been inserted
into the target software, the activation of the faults during experiment execution is
done as specified in the description files. Thus, even though all faults are inserted
into the target software, only those that are of interest in agiven experiment are
actually activated. Hence, the target software has to be instrumented only once.

5.4. Setup: Experiment Design and Target Instrumentation 77

Table 5.1: PROPANE Error Types
Error Type Manipulation Level Description

Bit-flip Bit Flip one or more bits in the binary
representation of the error target.

Bit-set Bit Set one or more bits in the binary rep-
resentation of the error target.

Bit-clear Bit Clear one or more bits in the binary
representation of the error target.

Set-value Value Set a variable or memory location to
a certain value.

Set-max Value Set a variable to its maximum value
(as defined by the variable type).

Set-min Value Set a variable to its minimum value
(as defined by the variable type).

Factor Value Multiply the current value of a vari-
able with a certain factor.

Offset Value Add an offset to the current value of a
variable.

Factor-offset Value First multiply the current value of a
variable with a factor and then add an
offset.

Offset-factor Value First add an offset to the current value
of a variable and then multiply with a
factor.

User-defined User-defined User error injectors may inject any
kind of error.

5.4.3 Error Types and Injection Locations

The error selection process will generate a setE containing a number of errors se-
lected for injection during the experiments. Errors in PROPANE differ from faults
by not being bound to specific locations in the target system software. Each error
e2 E is an error type which can be injected into several locationsin the software.
For example, one error may be a bit-flip in bit #2 of the binary representation of
a variable. This error may then be injected into one or more locations (variables).
Thus, when defining an error setE for an experiment, one will not have to take into
account the locations at that point.

PROPANE supports a variety of error types, both for manipulating individual
bits of the binary representations of variable and memory contents and for assigning
altered numerical values to variables (as illustrated in Table 5.1).

Bit-level manipulations can be performed on individual variables or memory
areas (anything that is addressable within the scope of the target software). Value-
level manipulations can only be performed on individual variables. The Set-value

78 Chapter 5. PROPANE - The Propagation Analysis Environment

error type may also be used on larger memory areas (set a byte with a certain offset
from the start of the area to a certain value).

In addition to injecting errors based on the built-in error types, user-defined cus-
tomized error models are supported as well (this resembles the light-weight injectors
used in [Stottet al., 2000]).

Once all the error types have been defined, the locations where these error types
will be injected have to be selected. This will generate a setL where each element
l is a tuple containing the physical location in the source code where the high-level
software trap will be placed and the variable or memory area in which the error is to
be injected.

The injection locations have to be instrumented in the target software, whereas
the error types are defined only in the description files (of course, user error injectors
have to be implemented in source code). Thus, once the injection locations are in
place, any variety of error types can be injected using the same instrumentation. It
should be pointed out here that one error type may be associated with more than one
physical location, and vice versa one location may be associated with more than one
error type.

5.4.4 Triggering the Error Injections

Once all error types and error injection locations have beenselected, the error trig-
gers have to be defined. An error trigger tells PROPANE when and how often to
inject errors. The error triggers are basically boolean expressions dictating when a
particular combination of location and error type is activated.

A majority of the error triggers are based on the notion of time, either counted as
number of times an injection location is reached or based on the internal PROPANE
time. The PROPANE time is a clock which has a tick specified by the user (by
having the user call a special tick-function with a certain period). Accordingly, we
categorize error triggers with respect to timing and frequency of occurrence as well
as probability, as detailed in Table 5.2.

Permanent errors are emulated using theAlwayserror trigger, transient errors
are simulated by using theOnceerror trigger, and intermittent errors are simulated
with thePeriodor Probability error triggers.

User-defined error triggers are functions designed by the user and may use any
expression for triggering an injection. For instance, a user-defined error trigger
could make decisions based on the state of the system, similar to the technique used
in [Chandraet al., 2000, Cukieret al., 1999].

5.4. Setup: Experiment Design and Target Instrumentation 79

Table 5.2: PROPANE Error Triggers
Error Trigger Description

Always Injection performed every time the trap is reached.
Once-time Injection performed once when the trap is reached

and the PROPANE time is greater than or equal to
a certain value.

Once-cycle Injection performed once after the trap has been
reached a certain number of times.

Period-time Injection performed periodically with a certain
PROPANE time period. The first injection is when
the trap is reached and the PROPANE time is greater
than or equal to the period.

Period-cycle Injection performed periodically with the period be-
ing number of times the trap is reached. The first in-
jection is performed the first time the trap has been
reached the number of times specified as the period.

Probability Injection performed with a certain probability each
time the trap is reached. The uniform distribution is
used.

User-defined User-implemented triggers may choose any kind of
conditions for triggering an injection.

5.4.5 Logging Variables, Memory Areas, Events

The selection of probes to be used in the experiment is fully dictated by the objec-
tives of the experiments, i.e., the probes must be selected so that the data necessary
for obtaining the desired measures in the analysis phase arecollected. PROPANE
provides two kinds of logging probes: 1) variable probes, and 2) event probes.
The variable probes are used for logging the values of variables and memory areas,
whereas the event probes are used for logging certain pre-defined events.

The probes must be inserted into the target software and can be considered as
high-level software traps, analogous to fault triggers anderror injection locations.
For event probes, the actual event detection has to be implemented by the user, the
probe can only be used for adding an entry in the readout files.

The basic rule is that an entry in the readout files is made every time a logging
trap is reached. However, for variable probes this is only true when logging a mem-
ory area. When logging a variable, the current value of the logged item is compared
to the value it had the previous time it was logged. If the value has not changed, no
new entry will be made in the readout files. PROPANE supports two different kinds
of probes: variable probes and event probes. The variable probes are used for tracing
the value of a variable, and the event probes are used for logging the occurrences of
events. The target system must be instrumented with the probes.

80 Chapter 5. PROPANE - The Propagation Analysis Environment

Entries created by a variable probe contain the name of the probe, a time stamp
(the PROPANE time) and the value of the logged item and entries created by event
probes contain only the name of the probe and a time-stamp.

5.4.6 Environment Simulators and Test Cases

The test cases that are to be used for the experiments are highly application specific
and depend on the target system as well as the intended operational environment.
Since the environment simulator is developed separately from the PROPANE tool,
the parameters included in a test case may be different between different target sys-
tems, and are not limited by the tool. Generally, it is important to obtain a set of test
cases that closely resembles the intended usage profile of the target system. Using
test cases that are not representative of how the target system is used in reality will
obviously decrease the utility of the obtained results.

PROPANE enables the user to include the handling of environment simulator
and test cases in the setup of the tool, i.e., the files used forsetting up PROPANE
may also be used for setting up environment simulators with user-defined test cases.
As the link to the environment simulator is implemented specifically for each en-
vironment simulator by the user of PROPANE, there are no special requirements
on the interface of the simulator. Using a layer of wrappers as interface between
PROPANE and the environment simulators allows for virtually any simulator to be
linked with PROPANE.

The environment simulator may also be linked into the final executable. How-
ever, PROPANE does not explicitly require this. Actually, any kind of interac-
tion between the target software and the environment simulator may be handled
by PROPANE as this interaction is entirely designed and implemented by the user.
PROPANE only provides means for integrating control and handling of the environ-
ment simulator with the other experiment activities.

5.4.7 Target System Instrumentation

In order to make use of the support for probes and injections provided by PROPANE,
the target system must be instrumented, as mentioned previously. Instrumenting a
target system includes the following: 1) inserting probes to log variables and events,
2) inserting faults and fault triggers, and 3) inserting injection locations (a form of
high-level software traps) for error injection. In addition to these activities in the
target source code, PL must be linked together with the target system software and
user-implemented error types and error triggers (if required) have to be developed.
Instrumentation is currently a manual activity, i.e., probes and injection locations

5.4. Setup: Experiment Design and Target Instrumentation 81

Original code
double spherical_volume(double radius)

{

double volume;

volume = 4.0 * (PI * pow(radius, 3.0)) / 3.0;

return volume;

}

Instrumented code
double spherical_volume(double radius)

{

double volume;

propane_inject(IL_SPHERE_VOLUME, &radius, PROPANE_DOUBLE);

propane_log_var(P_RADIUS, &radius);

if(propane_fault_is_active(F_SPHERE_VOLUME_INTEGERS))

{

volume = 4 * (PI * pow(radius, 3)) / 3;

}

else

{

volume = 4.0 * (PI * pow(radius, 3.0)) / 3.0;

}

propane_log_var(P_VOLUME, &volume);

return volume;

}

This is injection location
IL_SPHERE_VOLUME.
The errors that are
injected here are
defined in the PROPANE
setup files.

Here is a variable
probe for tracing
the parameter
radius.

Here is a fault and its
fault trigger. The faulty
code or the correct
code is executed
depending on whether
the fault is activated in
the description files.

Here is a variable
probe for tracing
the result
variable volume.

Figure 5.3: An example of instrumented code.

have to be inserted manually into the target source code. However, efforts are cur-
rently being made to automate this part. A sample fragment ofinstrumented code
is shown in Fig. 5.3. This example shows a function for calculating the volume of a
sphere, given the radius. The instrumented code shows the added code lines in bold-
face. Here we have added an injection location, two variableprobes and inserted a
fault and corresponding fault trigger. We will not describethe details of the various
API functions provided by PL here, instead the reader is referred to Appendix A.

Although it is possible to do the instrumentation manually,it is recommended
that PSI be used for automatic instrumentation of source code. Currently there exist
two main methods for automatically instrumenting the source code: i) adding an-
notations to the original source code, and/or ii) specify the modular composition of
the system and for each module the I/O and internal characteristics. PSI will, given
this information, generate instrumented system source code, the PROPANE config-
uration source files (standard ANSI C files) used by PL and setup files used by PSC.
More information on instrumentation of the target system isfound in Appendix A.

82 Chapter 5. PROPANE - The Propagation Analysis Environment

COMPILE LINK

PROPANE
configuration

source file

Instrumented
target source

files

User error
types and
triggers

Object files

Instrumented
target system

executable

Environment
simulator

PSI
Original

target source
files

PROPANE
Instr. Setup

PL

Figure 5.4: The basic work-flow of target system instrumentation.

Information regarding the low-level characteristics (such as data type, identifier,
name, etc.) of probes, injection locations and faults are entered in a PROPANE
configuration source file (standard C-file, generated by PSI). In the description files,
the names are then used when referring to the probes, injection locations and faults.
Details about the PROPANE configuration source file are described in Appendix A.

An illustration of the work required for constructing an instrumented target sys-
tem executable is presented in Fig. 5.4. A description of thesystem composition
and the desired instrumentation, along with the original target source code is used
by PSI to generate the PROPANE configuration source file and instrumented target
source code. The configuration source file contains information needed in the PL,
such as probes, faults, locations, etc. This information isconstant information that
will remain the same between different experiments. The PROPANE configuration
source file, the instrumented target source files, and the user error types and error
triggers (written by the user) are compiled and linked together with PL to form the
instrumented target system executable. This executable isthen used by the PCD
when conducting experiments.

The environment simulator may also be linked into the final executable. How-
ever, PROPANE does not explicitly require this. Actually, any kind of interac-
tion between the target software and the environment simulator may be handled
by PROPANE as this interaction is entirely designed and implemented by the user.
PROPANE only provides integration of control and handling of the environment
simulator with the other experiment activities by means of wrapper functions for
initiating and shutting down the environment simulator. The wrapper functions are
called at the start and completion of each individual experiment, respectively.

5.5. Injection: Running Experiments 83

Database
Description

Campaign
Description

Campaign
Description

Campaign
Description

Experiment
Description

Experiment
Description

Experiment
Description

Simulator
setup file

Simulator
setup file

Simulator
setup file

Figure 5.5: Organization of description files for PROPANE setup.

5.4.8 Setup Using Description Files

A target system executable will contain logging probes, faults and fault triggers, and
injection locations. However, in order to activate probes,inject faults and/or errors, a
set of description files have to be written which contain experimental details. These
files are organized as illustrated in Fig 5.5.

At the top level, we have the Database Description containing information on
where the remaining setup files are found and where the obtained readouts are to
be stored. In theDatabase Descriptionis also a list of the campaigns that make
up the database. Each campaign has aCampaign Descriptioncontaining informa-
tion regarding the execution of the experiments, such as thename of the executable
file that shall be used and a listing of the experiments that make up the campaign.
For each experiment, there is anExperiment Descriptioncontaining details for the
experiment, such as which probes shall be activated, which injections shall be per-
formed (i.e., which error type(s) in which injection location(s)), and which setup
file (if any) is to be used for the configuration of the environment simulator. These
files may have different formats for each environment simulator and are specified by
the designer of the simulators. The file formats for the various description files are
detailed in Appendix A.

5.5 Injection: Running Experiments

Following the experiment setup and specification phase is the injection phase. For
every description file—Database Description, Campaign Descriptions, and Experi-

84 Chapter 5. PROPANE - The Propagation Analysis Environment

// The file begins with a section containing information
// regarding the various channels, namely channel names and
// entry structures.
#info: Experiment Readout File. Created Wed Dec 06 11:36:14 2000
// Channels created by variable probes
#channel vp.<probe name> VARIABLE_PROBE <type> <size>
#info vp.<probe name> [time, value]
// Channels created by event probes
#channel ep.<probe name> EVENT_PROBE
#info ep.<probe name> [time]
// Channels created by error injections
#channel ei.<location name> ERROR_INJECTION
#info ei.<location name> [time, value before, error, value after]
// Channels created by fault injections
#channel fi.<fault name> FAULT_INJECTION
#info fi.<fault name> [time]
// The entries always come after the channel information section
<channel name> <entry>

Figure 5.6: The format of channels in the Experiment ReadoutFiles.

ment Descriptions—a corresponding log file and a corresponding readout file will be
generated during the actual execution of experiments. The log files contain records
of the actions performed by PROPANE including error messages if anything should
go wrong during the execution of the experiments. The readout files contain data
obtained from probes, injections and simulators, and form the input for the analysis
phase.

The data gathered by the logging probes and injections is stored in theExper-
iment Readout Files(one for each Experiment Description). In these files, data
will be organized inchannels. Each channel contains the readouts produced by one
probe, one fault trigger or one injection location. The environment simulator may
also store data in the file. This data will also be stored in a channel, but the format is
defined by the user. An experiment readout file is formatted asillustrated in Fig. 5.6.

The PCD will supervise the automatic execution of all experiments that are
specified in the description files. During the actual execution, PCD will continu-
ously provide information on the current status and estimated completion time for
all experiments. At this stage, the user can choose to pause the execution, abort it
altogether or skip ahead one campaign.

5.6. Analysis: Obtaining Propagation Characteristics 85

5.6 Analysis: Obtaining Propagation Characteristics

In the analysis phase of an injection experiment, activities such as estimating cov-
erage values, extracting failure and error data, establishing propagation paths of the
errors, etc., are performed. To this end, PROPANE contains the Data Extractor
(PDE). PDE enables conducting Golden Run Comparison (GRC),compile propaga-
tion information, extract injection information, and create trace files of the channels
in the experiment readout files. For plotting channels, the trace files can be imported
into spreadsheet programs, such as MS Excel. This section describes details about
the actions performed by the PDE.

5.6.1 Golden Run Comparisons

A Golden Run Comparison (GRC) is performed by comparing the readouts pro-
duced by the Golden Run (GR), i.e., a reference run with no faults and/or errors in-
jected, with the readout produced by an injection run (IR), i.e., a run in which faults
and errors were actually injected. In a GRC, only channels produced by variable
probes are considered, as the propagation of data errors only is possible in variables
and memory areas.

The PDE treats the the first campaign in a series of campaigns (in a database
readout file) as the GR campaign and all others as IR campaigns. It is important that
the number of channels in each experiment in the GR campaign is the same as the
number of channels in the IR campaigns. If this is not the case, the GRC will not be
completed and error messages will be displayed.

During the comparison, each GR channel is compared to the corresponding IR
channel. The comparison is performed sample by sample and the first mismatch
between the GR and the IR is flagged as an error. The first mismatch will be marked
with the documented time stamp of that sample and the GRC for that channel is
ended. The comparison can be performed requiring total equality between GR chan-
nels and IR channels or using error margins.

The results of the GRC will be written in extraction result files—one such file
for each individual campaign (except for the GR campaign). An extraction result
file will contain one line of information for each experimentin the campaign. This
information includes for each channel the time stamp of the sample that was found
not to match the golden run and information about the the mismatch per se, i.e., the
golden run value and the injection run value.

From the GRC we will also get a summary of the error propagation showing how
errors propagated through the system. This information includes that propagation

86 Chapter 5. PROPANE - The Propagation Analysis Environment

5

II

I

Virtual sample

IR1

GR

IR2

t0 t1 t2 t3 t4 t5 t6 t7

1
2

3

4

4

4

5

5

6

6

6

7

7

7

8

8

Figure 5.7: An example of GRC performed by the PROPANE Data Extractor.

rate, i.e., how many of the injected errors propagated to various parts of the system
as well as how long time it took them.

Virtual Samples

The logging performed by the variable probes is such that only changes in the vari-
ables that are being probed are actually entered into the readout files. This reduces
the amount of data stored for each experiment, but requires some extra effort during
analysis in order to recreate the “ignored” samples since the kth sample for a GR
channel may not correspond in time to thekth sample of an IR channel.

Consider the example in Fig. 5.7; here we have the trace of a GRchannel and
the traces of two corresponding IR channels. There are two different scenarios that
can arise when comparing the samples of two corresponding channels:I) two sam-
ples correspond temporarily, andII) two samples do not correspond temporarily.
ScenarioI is illustrated in Fig. 5.7 where sample #4 for the GR channel (at timet3)
corresponds temporally with sample #4 (also at timet3) of IR channel 2. In the same
figure, scenarioII is illustrated by sample #4 of the GR channel not corresponding
temporally with sample #4 of IR channel 1.

In scenarioI , GRC is simply performed as a comparison between the values of
the two sample. ScenarioII , however, requires a little more work before a compar-
ison can be made. Here avirtual sampleis created using the time stamp of sample
#4 of the GR channel and the value of the previous IR sample, inthis case sample
#3 of IR channel 1. This can be done because we know that the samples only show
the changes of their channels, so at timet3, IR channel 1 must have had the same
value it had at the previous sample point. After the comparison between the virtual
sample and sample #4 of the GR channel is complete, sample #4 of IR channel 1 will

5.6. Analysis: Obtaining Propagation Characteristics 87

5

GR

IR

t0 t1 t2 t3 t4 t5 t6 t7

1
2

3

4

4 5

6

6

7

7
8

8

First mismatch outside error margin

Figure 5.8: Comparison of a Golden Run
and corresponding Injection Run using
absolute margins.

5

GR

IR

t0 t1 t2 t3 t4 t5 t6 t7

1
2

3

4

4 5

6

6

7

7
8

8

First mismatch outside error margin

Figure 5.9: Comparison of a Golden Run
and corresponding Injection Run using
relative margins.

be compared to sample #5 of the GR channel. Virtual samples would of course also
be created if the GR channel would “miss” a sample as comparedto the sequence of
samples in the IR channel.

Error Margins

PDE is capable of applying error margins to the comparison performed during a
GRC. With error margins, the two values that are compared do not have to be identi-
cal to be considered correct. This can be useful when comparing two channels which
inherently are “noisy”, i.e., slight variations when usingthe same test case may be
normal. Each channel can be given individual error margins and the margins can be
either absolute or relative (percentages).

An absolute margin will set upper and lower boundaries on theabsolute error
between the GR channel and the IR channel. For example, if a channel has an
absolute margin of 5 up and 10 down, and a golden run sample of that channel
has the value 100, then the injection run sample of that channel will be considered
correct as long as it is within the range 100 - 10 and 100 + 5, i.e. within 90 and 105.
If the golden run sample were instead 200, the range would be between 190 and 205.

A relative margin will set upper and lower bounds on the relative error between
the GR channel and the IR channel. For example, if we have a relative error margin
for a channel with 0.05 upwards and 0.10 downwards, and a golden run sample of
that channel has the value 100, then the injection run sampleof that channel will be
considered correct as long as it is within the range 100� (1.0 - 0.10) and 100� (1.0 +
0.05), i.e. within 90 and 105. If the golden run sample would instead be 200, the
range would be between 180 and 210.

In Figs. 5.8 and 5.9 the two types of margins are illustrated.Here we have a
Golden Run and a corresponding Injection Run. Fig. 5.8 illustrates a GRC using

88 Chapter 5. PROPANE - The Propagation Analysis Environment

absolute margins and Fig. 5.9 illustrates a GRC using relative margins. As can be
seen when comparing the two figures, given the same experiment readout file, errors
may be detected at different times depending on the type of error margin (if any)
used in the analysis. In this example, with absolute error margins an error will be
detected at sample #5, whereas with relative error margins,an error is not detected
until sample #6.

5.6.2 Channel Logs

Channel logs may be useful for doing a more detailed analysisof different channels
than the PDE can provide. However, one should bear in mind that one file will
be generated for each individual channel of each individualexperiment, i.e. for 10
experiments with 10 channels each, 100 channel logs containing the samples of the
individual channels will be generated. The files are delimited text files that are easily
imported into a spreadsheet tool, such as Microsoft Excel, where further analysis or
graphical representation may be performed.

5.6.3 Injection Information

When injection information files are generated, the PDE creates one file for each
campaign (except the GR campaign). The injection information files contain in-
formation for each injection run regarding the times at which errors were actually
injected This information is sometimes useful for filteringout values and events that
are logged before the actual injection, since these may not be of any interest.

5.6.4 Propagation Information

The Golden Run Comparison performed by the PDE will for each channel identify
the first discrepancy between the Golden Run and an InjectionRun. These discrep-
ancies can be ordered temporally to give a propagation signature for that particular
Injection Run. Every individual Injection Run produces such an error propagation
signature, i.e., a set of timestamps showing when the various variable probe channels
were erroneous the first time (in comparison with the Golden Run). This signature
shows where and when an error was injected and which channelswere subsequently
affected and the time at which the propagated error occurred.

The signatures from individual experiment runs can be combined into propaga-
tion graphs (directed graph with weights on the arcs) showing propagation times and
propagation rates. One propagation graph will be created for each unique channel in
which errors are injected. In the propagation graph, the channel in which errors were

5.7. Example Results Generated by PROPANE 89

DIST_S

CLOCK

PRES_S

CALC

V_REG PRES_A

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

Pressure
sensor

HW
counter

2

3

4

5 2

1
1

1

2

1

2

3

1

2

3

1 1
1

2
1 1 1 Pressure

valve

Rotation
sensor

Figure 5.10: Software structure of the example target system (an aircraft arrestment
system). For details, see Chapter 3.

injected will be a source node, i.e., all arcs connected to that node will be outgoing.
All experiment runs in which an error was injected into that source node will be used
to generate the remaining nodes (all channels that were affected at least once by a
propagating error will generate nodes) and the weights of the arcs (associated with
each arc is the number of errors that propagated along that path and the minimum,
average and maximum propagation times).

The propagation graph is also collapsed to a propagation summary. This is a
table showing, for each channel, the error count and error rate (i.e., a normalized
measure between 0 and 1 of how many errors propagated into that channel) as well
as the minimum, average and maximum propagation times.

5.7 Example Results Generated by PROPANE

This section presents example results obtained using PROPANE. The target system
used in this example is the aircraft arrestment system described in 3. To aid the
reader, the software structure shortly described here, as well.

The structure of the software is illustrated in Fig. 5.10. The numbers shown at
the inputs and outputs are used for numbering the signals. For instance,PACNT is
input #1 of DISTS, andSetValueis output #2 of CALC. The software is composed
of six modules of varying size and input/output signal count. The system receives
input from a number of sensors at PRESS and DISTS. The output of the system is
provided at PRESA. The remaining modules (CALC, VREG and CLOCK) provide
internal/intermediate signals. The module specifics are provided in Chapter 3.

In this example, bit-flip errors are injected in each of the signals (one at a time)
and all signals are monitored. For logging and injection, the target system was

90 Chapter 5. PROPANE - The Propagation Analysis Environment

1490 1500 1510 1520 1530 1540 1550 1690 1700
t (ms)

PACNT
pu

lsc
nt

i Set

Valu
e

Out
Valu

e
TOC2
ADC

IsV
alu

e

Figure 5.11: The propagation of an error injected into PACNT.

instrumented with high-level software traps. As a trap is reached during execution,
an error is injected and/or data logged. The traces obtainedduring execution have
millisecond resolution for every logged variable. Also, the software of the original
target system is ported to run on a desktop system, so the intrusion of the traps is
non-existent in this setup as it runs in simulated time.

First, a Golden Run (GR) was generated for each test case. Then, errors were
injected into the system input signalPACNT, which is 8 bits wide. Bit-flips were
injected in each bit position (which is the equivalent of injecting offsets of�1,�2,�4, �8, and so on). The bit-flips were injected at 10 different timeinstances dis-
tributed in half-second intervals between 0.5 seconds and 5.0 seconds from start of
arrestment (although only at one time in each IR). In order toget a realistic load on
the system and the modules, we subjected the system to 25 testcases: 5 masses and
5 velocities of the incoming aircraft uniformly distributed between 8000–20000kg,
and between 40–80m=s, respectively. Thus, 8�10�25 = 2000 injections were made
into PACNT. Of these 200 injection, 1840 were actually injected while an aircraft
was still being arrested, i.e., the system had not yet completed its operational run.
The remaining 160 errors were injected after the aircraft had stopped completely
and, thus, are not considered in this example.

In one of the injection runs, we injected a bit-flip inPACNT1500 milliseconds
after system startup, while an aircraft is being arrested. To find how this error prop-
agates through the system we compared the injection run witha golden run (using
PDE) as described in Section 5.6. Fig. 5.11 illustrates the data analysis performed
by PDE, showing when the other signals were affected by the injected error.

In Fig. 5.11 we can see that att = 1500 milliseconds,PACNTis erroneous. The
error propagates immediately through DISTS, rendering alsopulscnterroneous att = 1500 milliseconds. This error then immediately affectsi. At t = 1539 millisec-
onds, the error propagates out of CALC viaSetValueand then immediately through
V REG intoOutValue. At t = 1541 milliseconds, the error finally propagates out
of the system (viaTOC2) and affects the environment, leading to potential failure

5.7. Example Results Generated by PROPANE 91

PACNT

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t (ms)

va
lu

e
Golden Run
Injection Run

Figure 5.12: Plot of PACNT for a golden run and an injection run.

of the system. Att = 1548 milliseconds, the environment is affected so much that
that the input to the system (ADC) is starting to differ from the golden run, and att = 1693 milliseconds the applied pressure, as seen by the system (IsValue), is also
different.

From PDE we can also extract data from the individual channels (probes) and
plot them to see details about the propagation of errors. In Figs. 5.12 and 5.13 we
have the plots forPACNT and for SetValue, respectively. Each plot contains the
golden run and an injection run (the same as used in Fig. 5.11). The aircraft in the
injection run was arrested in a much shorter time than in the golden run due to the
high output value that resulted from the injected error. Thus, the injection run ends
at t = 3522 milliseconds (in both figures) as compared to the golden run which ends
at t = 4701 milliseconds.

In the plot forPACNT (Fig. 5.12), we clearly see that the golden run and the
injection run are equal up tot = 1500 milliseconds where the injection run has a
large dip in value. The value recovers almost instantaneously and the injection run
follows the golden run closely for another half-second. However, the damage has
already been done since the error propagated out of DISTS. We can see howSet-
Value(Fig. 5.13) is radically different from the golden run att = 1539 milliseconds
and never recovers throughout the remainder of the operational time.

Apart from the detailed results shown in Figs. 5.11, 5.12 and5.13 the PDE
also generates concise information pertaining to the propagation of the injected er-
rors in the system. For each signal that is subjected to errorinjections, a prop-

92 Chapter 5. PROPANE - The Propagation Analysis Environment

SetValue

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t (ms)

va
lu

e

Golden Run
Injection Run

Figure 5.13: Plot of SetValue for a golden run and an injection run.

agation graph and propagation summary will be generated. The PDE stores the
propagation graph in two different file formats: i)dot [Graphviz, web-link], and
ii) GML [GML, web-link]. As these formats are common for graph representation,
there is a range of applications that can be used for plottingand manipulating the
propagation graphs. In Fig. 5.14 we can see the propagation graph for errors in-
jected into the signalPACNTin the example system used in this section. The graph
is generated using thedot tool.

The propagation graph illustrates the propagation characteristics of the errors
injected into the signalPACNT. The label on an arc from one node to another tells
how many errors propagated along this arc (top value), and the minimum, average
and maximum propagation times (bottom values) for these errors. The graph shows
the temporal order between errors in different signals. Forexample, if we consider
the errors detected (during the Golden Run Comparison) ini, we can see that for
1120 of them, there were no errors detected earlier in other signals (although errors
were detected inpulscntat the same point in time), whereas for 691 of the detected
errors, there were errors detected earlier inpulscnt.

Using the same example experiment as above, we show the generated propa-
gation summary for errors inPACNT in Table 5.3. The summary is obtained by
collapsing all ingoing arcs of each node in the propagation graph. Thus, for exam-
ple, the summary fori is obtained by adding its two ingoing arcs in the propagation
graph, which gives us a total of 1811 errors. The propagationtimes are obtained
from the combined set of propagation times for the errors detected ini.

5.7.
E

xam
ple

R
esults

G
enerated

by
P

R
O

P
A

N
E

93

1840 errors

PACNT

i

1120
0/0/20 pulscnt

1840
0/0/20

slow_speed

18
0/0/0

OutValue

307
29/296/3303

SetValue

307
29/296/3303

151
10/1358/4020

691
10/10/20

617
1/252/3313

617
1/252/3313

214
10/1361/4030TOC2

1275
2/2/2

ADC

1257
7/10/315

8
5/5/5

IsValue

1192
138/144/145

10
88/88/88

292
43/2083/5261

mscnt

892
109/2081/5932

ms_slot_nbr

892
109/2081/5932

TCNT

892
109/2081/5932

TIC1

892
109/2081/5932

351
7/96/147

351
7/96/147

8
2/2/2

10
57/57/57

292
121/856/2801

292
121/856/2801

292
121/856/2801

292
121/856/2801

76
9/890/2349

Figure 5.14: Propagation graph (generated by thedot tool) for errors injected in PACNT.

94 Chapter 5. PROPANE - The Propagation Analysis Environment

Table 5.3: Propagation of errors injected into PACNT.
error count is the number of errors detected using Golden Run Comparisonand theerror
rate is the same information normalized. The propagation times are all in milliseconds.

Signal error count error rate tmin tavg tmax
PACNT 1840 1.000 0 0 0
pulscnt 1840 1.000 0 0 20
i 1811 0.984 0 4 20
OutValue 1275 0.693 1 613 4159
SetValue 1275 0.693 1 613 4159
TOC2 1275 0.693 3 615 4161
ADC 1265 0.688 10 629 4168
IsValue 1202 0.653 155 682 3467
slow speed 769 0.418 0 2004 5890
mscnt 1184 0.643 476 2982 6201
ms slot nbr 1184 0.643 476 2982 6201
TCNT 1184 0.643 476 2982 6201
TIC1 1184 0.643 476 2982 6201

In the summary shown in Table 5.3 we see the number of errors inPACNTthat
caused errors in other signals (count and rate), as well as the minimum, average and
maximum propagation time for these errors (the rows are ordered according to their
average propagation time). In this particular example we can see that all of the 1840
errors injected intoPACNT, propagated topulscntwith an average propagation time
of 0 milliseconds. 1275 errors made it all the way to the output signalTOC2with an
average propagation time of 615 milliseconds. From the software structure shown in
Fig. 5.10 we can see that errors in the signals listed belowTOC2in Table 5.3 (except
slow speed), must be indirect, since there is no direct path fromPACNT. Thus, errors
in this signal must have propagated out of the system into theenvironment and then
back into the system again.

The results presented give information on how errors propagate through the sys-
tem, identifying which modules and signals that may be in need of special mech-
anisms for protection against propagating errors. For example, from the results in
Table 5.3 we see that errors inPACNTmainly propagate through DISTS into CALC
usingpulscnt. From the propagation graph in Fig. 5.14 we see that propagation into
CALC is fast, whereas propagation out of CALC takes a little longer. Thus, CALC
seems to delay the propagation of errors. We also see that after CALC, error prop-
agation again is swift. These results would indicate that system reliability could
increase ifpulscntwere to be equipped with with EDM’s (error detection mech-
anisms) and ERM’s (error recovery mechanisms), as this would likely break the
propagation at an early stage.

5.8. PROPANE’s Attributes and Comparison with Other FI-tools 95

These examples demonstrate PROPANE’s capabilities for generating pertinent
information for propagation analysis. However, the level of detail required may gen-
erate very large amounts of raw data. In order to analyse thisraw data (further than
done by the PDE) and find likely propagation paths and vulnerable modules, addi-
tional actions can be performed to reduce the raw data into useful information. We
refer the reader to [Hilleret al., 2001, Hilleret al., 2002(a), Jhumkaet al., 2001],
where details of actual results, as well as two different data analysis frameworks
(with different objectives) are described.

5.8 PROPANE’s Attributes and Comparison with Other
FI-tools

FI has been used for various purposes for many years (see, e.g., [Arlat et al., 1990],
[Arlat et al., 1993], [Chillarege and Bowen, 1989], and [Iyer, 1995]). FI-tools may
inject errors in a number of ways, e.g., physical fault injection, radiation, etc. As
PROPANE uses SWIFI (SoftWare-Implemented Fault Injection) we will focus this
comparison on other tools in that area. Tables 5.4 and 5.5 is asummarized compar-
ison of the tools we have taken a closer look at. First, however, we will summarize
the main characteristics of PROPANE as described over the previous sections.

5.8.1 Main Characteristics of PROPANE

The goal of designing PROPANE was to provide an environment with four main
characteristics: 1) high flexibility regarding fault/error models and injection options,
2) high portability, 3) low-cost operation, and 4) high observability in target soft-
ware. These characteristics were achieved in the followingway:

Flexibility PROPANE’s main logging and injection functionality is provided in a
function library which makes it target independent. Thus, the range of appli-
cations where PROPANE can be used for error propagation analysis is vast.
Also, PROPANE has the capability to handle user-defined error types and in-
jection triggers. The fact that the final data analysis is performed by a separate
tool lets the user define exactly the kind of measures each experiment is to pro-
duce. Thus, raw data from one experiment may be used for multiple purposes.
The only requirement for using PROPANE is that the source language used in
the software system is able to interface with libraries implemented in C.

Portability PROPANE is entirely implemented in C. Furthermore, the PROPANE
System Instrumentor, the PROPANE Setup Creator, the PROPANE Library

96 Chapter 5. PROPANE - The Propagation Analysis Environment

and the PROPANE Data Extractor have no links to the OS making it very
easy to port them to other platforms as it only requires recompiling. The
PROPANE Campaign Driver is also implemented in C but has a minor link
to the OS and that is for spawning new processes. As all desktop operating
systems provide an API for process handling, this part will also be easy to
port.

Low-cost No external hardware or network is required in order for PROPANE to
be able to function properly (although the target system mayrequire it). This,
together with the high level of portability, makes PROPANE an attractive low-
cost alternative for error propagation analysis for many different platforms.

Observability PROPANE is capable of gathering detailed data on the internal vari-
ables and events of software systems during execution and fault injection. This
level of detail is necessary when analyzing the propagationof errors in order
to locate vulnerable software modules and/or variables andto identify likely
propagation paths.

Having described the main characteristics of the PROPANE environment, we
present a comparison with other contemporary FI-tools.

5.8.2 Comparison Details

Here we compare PROPANE with a number of other FI-tools. In Tables 5.4 and 5.5,
we first categorize the FI-tools into four main categories based on their aim and in-
jection capabilities, namely: 1) tools for evaluation of system architectures, 2) tools
for evaluation of systems when subjected to HW faults only, 3) tools for evaluating
systems when subjected to HW and SW faults, and 4) tools for evaluating software
and software components when subjected to errors in internal data (which may be
induced by both HW or SW faults). All tools in categories 1 through 3 are aimed at
evaluation at system level, i.e., the granularity of the observed results are at system
level (or node level for distributed systems). In order to investigate the error propa-
gation characteristics of software, it is imperative that the individual variables of the
software system can be observed during the experiments. Thetools in category 4
are all able to observe the target system at a very low level. As PROPANE is in this
category, we will focus our comparison on these tools.

MAFALDA is aimed at evaluating the robustness of micro-kernels and inves-
tigating the effect of software faults and software errors on the operation of these
kernels. This means that the tool is able to inject at the OS-level. PROPANE is

5.8.
P

R
O

P
A

N
E

’s
A

ttributes
and

C
om

parison
w

ith
O

therF
I-tools

97

Table 5.4: Summarized comparison (part 1) of different FI-tools — see text in Section 5.8 for details.
Key: Obs Res= observation resolution,FIM = fault insertion method,Err Ty = error types (B = Bit manipulation, AB = Address bus, AR =
Arithmetic, U = User-defined),Err Tr = error triggers (B = Built-in, U = User-defined),Ext Req = external requirements,Instr = instrumentation
needs,LoD = level of detail of readout data

Tool Obs Res FIM Err Ty Err Tr Ext Req Instr LoD

Tool Category/Driver: Evaluate architecture (category 1)
DEPEND System, None Component B OS support, source Logging, Injection details and predefined
[Goswami, 1997] architecture level code of architec- injection system-level data.

errors ture simulation
Loki System, None B, U U Target source code, Logging, Injection details and predefined
[Chandraet al., 2000] architecture function library injection system/node-level data.
[Cukier et al., 1999]

Tool Category/Driver: Evaluate tolerance against HW faults (category 2)
FERRARI System Op code B, AB B UNIX No Injection details and predefined
[Kanawatiet al., 1995] switch data.
DOCTOR System Mutation B, B HW and OS support Logging Injection details and predefined
[Han et al., 1995] Communi- data.

cation
Xception System Op code B, AB B Processor with No Injection details and predefined
[Carreiraet al., 1995] architecture switch debugging port data.
[Carreiraet al., 1998] (e.g., BDM)

Tool Category/Driver: Evaluate tolerance against both HW and SW faults (category 3)
DEFINE UNIX-network Op code B, AB B UNIX, target Logging, Injection details, predefined
[Kao and Iyer, 1995] switch source code injection data and memory locations.

98
C

ha
pt

er
5.

P
R

O
P

A
N

E
-T

he
P

ro
pa

ga
tio

n
A

na
ly

si
s

E
nv

iro
nm

en
t

Table 5.5: Summarized comparison (part 2) of different FI-tools — see text in Section 5.8 for details.
Key: Obs Res= observation resolution,FIM = fault insertion method,Err Ty = error types (B = Bit manipulation, AB = Address bus, AR =
Arithmetic, U = User-defined),Err Tr = error triggers (B = Built-in, U = User-defined),Ext Req = external requirements,Instr = instrumentation
needs,LoD = level of detail of readout data

Tool Obs Res FIM Err Ty Err Tr Ext Req Instr LoD

Tool Category/Driver: Evaluate tolerance against both HW and SW faults (category 3, cont’d)
FIAT System Bit-flips B B HW and OS support, Injection Injection details and predefined
[Bartonet al., 1990] architecture in task target source code data.
[Segallet al., 1988] image
FTAPE System No B, Disk B HW and OS support No Injection details and predefined
[Tsai and Iyer, 1996] data.

Tool Category/Driver: Evaluate effect of SW faults and errors and error propagation (category 4)
MAFALDA Micro- Bit-flips B B HW support No info Injection details, predefined
[Fabreet al., 1999] kernels in text available data and special events.

segment
NFTAPE System down- User- B, AB, B, U LAN-based, target Logging, Injection details, predefined
[Stott et al., 2000] to variable defined AR, U source code, function injection data and user-defined data.

injectors library Events and individual variables
may be logged.

PROPANE System down- Mutation, B, AR, B, U Target source code, Logging Injection details and user
to variable User- U function library injection defined data. Events and

defined individual variables may be
injectors logged.

5.8. PROPANE’s Attributes and Comparison with Other FI-tools 99

aimed at software at the USER-level, hence it is not suited for these types of investi-
gations. However, as far as we know, MAFALDA lacks comprehensive logging fa-
cilities for examining the propagation of errors in a micro-kernel. NFTAPE is, in our
opinion, a very versatile tool which can perform the same investigations PROPANE
can. NFTAPE, just like PROPANE, has support for user-definedinjectors as well as
user-defined triggers, and is capable of observing the target system at the variable
level. As both tools have support for user-defined injectors, both may be extended
to handle physical fault injection as well as SWIFI. However, NFTAPE is designed
to run on a LAN, and has therefore a separate control host and atarget node.

PROPANE, is a single software package primarily designed torun on a single
node. This makes the setup time required for experiments using PROPANE very
short (e.g., the experiment in [Hilleret al., 2001], which also functions as the ex-
ample used in this chapter, was set up in just a few hours, where the main part of
the time was spent on instrumenting the target software). Also, the system require-
ments for using PROPANE are very low, the main requirements are set by the target
system. On account of the fact that PROPANE requires no special support from
either HW or the OS (PCD requires that the OS has an API for spawning new pro-
cesses), porting the tool to other platforms is an easy task which mainly just requires
a recompilation. This also makes PROPANE less expensive than NFTAPE.

Based on this comparison we can argue for the use of PROPANE inearly stages
of software development before HW platforms have been finalized or when the entire
system may be simulated on a single node. NFTAPE may be used when development
has come so far that functional setups of the entire target system are available. In
our opinion, the remaining tools listed here are not capableof generating data that
may be used in a detailed investigation of error propagationin software.

The injection and logging functionality of PROPANE is provided as a static
library, which is linked with the target system. This offersflexibility in choosing
target systems, facilitating wide applicability of the tool. For example, in addition to
the way it is used in the example provided in this chapter, it may be used in a manner
similar to DEPEND where entire system architectures are simulated.

In our opinion, PROPANE is well suited for use as a design stage tool which
gives valuable insights into the error propagation characteristics of a software system
such that resources for error detection and recovery efforts can be directed to those
parts which require it the most, i.e., those parts which let errors propagate and those
parts which attract propagating errors. This makes PROPANEa good complement
to other available analysis tools.

100 Chapter 5. PROPANE - The Propagation Analysis Environment

5.9 Summary and Conclusions

This chapter presents PROPANE, the Propagation Analysis Environment, which is a
software design-stage profiling tool developed for analyzing the propagation and ef-
fect of errors in software systems. PROPANE is a desktop environment and contains
support for conducting fault and error injections in targetsoftware systems. The tool
also provides support for automatically inserting probes into the target system en-
abling the logging of variables and events during injectionexperiments.

PROPANE is target system independent, i.e., it may be used onany target system
provided that one can execute it in a desktop environment. Also, PROPANE does not
require any HW or OS support and is easily ported to other operating systems (the
current version is available for Windows 2000/XP-based computers). As PROPANE
is implemented using ANSI C, porting it is mostly just a question of recompiling for
the desired environment.

The injection capabilities include fault injection by mutation of source code as
well as SWIFI-based injection of errors. PROPANE supports user-defined injectors
and triggers which makes it capable of supporting other injection techniques than
SWIFI (for example, physical fault injection).

PROPANE supports observations down to the variable level, i.e., individual vari-
ables may be logged during injection experiments. This enables the detailed exam-
ination of error propagation in software and is a valuable help in finding vulnerable
software modules and/or variables.

For analysis, the toolkit contains the PROPANE Data Extractor (PDE), which
can perform Golden Run Comparisons for each channel createdby a variable in the
readout files. The results will be stored in a text file with a spreadsheet format that
is easily imported into other tools for further analysis. The results from the GRC
are also compiled to show where errors propagate through thesystem and how long
time it takes.

PDE can also extract injection information from the readoutfiles and store this in
separate files, and create channel logs for each individual channel of each individual
experiment if a more detailed analysis or graphical representation is desired. Also,
PDE creates propagation graphs and summaries which visualize the propagation
characteristics of the software system.

To demonstrate the tool we have shown detailed results from an injection exper-
iment performed on an actual embedded control system used for arresting aircraft
(similar to the cable-and-hook systems found on aircraft carriers).

In a comparison with other FI-tools, we comment that PROPANEis unique in
the level of its provision of detailed data necessary for error propagation analysis.

5.9. Summary and Conclusions 101

Also, the portability and flexibility uniquely distinguishPROPANE as a simple, low-
cost error propagation analysis tool which lends itself forearly analysis of software
systems. It complements other, more expensive, tools whichcan be used later during
development.

102 Chapter 5. PROPANE - The Propagation Analysis Environment

CHAPTER6
Error Propagation and Effect
Analysis

Probable impossibilities are to be preferred to improbablepossibilities.

— Aristotle (384–322 B.C.)

This chapter presents a novel approach for profiling software by analyzing the
propagation and effect of data errors in software. The concept of error permeability
is introduced as a basic measure upon which we define a set of related measures.
These measures guide us in the process of analyzing i) the vulnerability of software
to find the modules and signals that are most likely exposed topropagating errors,
and ii) find the modules and signals which, when erroneous, tend to cause more
damage than others from a systems operation point-of-view.Based on the analysis
performed with error permeability and its related measures, we discuss how to se-
lect suitable locations for error detection mechanisms (EDM’s) and error recovery
mechanisms (ERM’s). A method for experimental estimation of error permeability,
based on fault injection, is described and the software of a real embedded control
system analyzed to show the type of results obtainable by theanalysis framework.
The results highlight the utility of the developed framework in being useful for ana-
lyzing error propagation and error effect such that knowledge is gained regarding the
vulnerability of the software system at hand, and for driving the process for effective
placement of EDM’s and ERM’s.

103

104 Chapter 6. Error Propagation and Effect Analysis

6.1 Introduction

Software based functionality in embedded control systems usually comprises nu-
merous discrete modules interacting with each other to provide a specific task or
service. With an error (as defined in [Laprie, 1995]) presentin a software module,
there is a likelihood that this error can propagate to other modules with which it in-
teracts. Knowing where errors propagate in a system is of particular importance for
a number of development activities. Propagation analysis may be used to find the
module which are most exposed to errors in a system, and to ascertain how different
modules affect each other in the presence of errors. In addition to knowing propaga-
tion characteristics it is also important to know where errors are likely to do the most
damage. Note that those errors which are likely to propagateare not always those
that are most likely to cause great damage. Thus, it is important to do an analysis of
both these notions to identify the most vulnerable parts of asystem. Furthermore,
error propagation analysis and error effect analysis also gives an insight on locations
in the system that would be best suited for placement of errordetection mechanisms
(EDM’s) and associated error recovery mechanisms (ERM’s).

Apart from the technical issues that can be addressed using propagation and ef-
fect analysis, there are also issues pertaining to project and resource management.
Error propagation and effect analysis may be used as a means of obtaining infor-
mation for use in decisions on where additional resources for dependability devel-
opment are necessary and to determine where they would be most cost effective.
Software is common not only in applications such as aircraftor other high-cost sys-
tems, but also in consumer-based cost-sensitive systems, such as cars. These systems
often require both development costs and production costs to be kept low. Analyz-
ing error propagation and error effects can also complementother analysis activities,
for instance FMECA (Failure Mode Effect and Criticality Analysis). Consequently,
modules and signals found to be vulnerable and/or critical during propagation and
effect analysis might be given more attention during designactivities. Thus, error
propagation and effect analysis, as a means of both system analysis and resource
management, may be a very useful design-stage tool in such systems.

In this chapter, an approach for analyzing error propagation and error effect in
software based systems is presented. The basic intent of this framework is soft-
ware level data errors, thus considering distributed software functions resident on
either single or distributed hardware nodes. The approach adopts a black-box view
on modular software and introduces the measureerror permeabilityas well as a
set of related measures, and subsequently a methodology is defined for using these
measures to obtain information on error propagation and error effect, and also for

6.2. Software and System Model 105

identifying candidate locations for placement of error detection and recovery mech-
anisms. The basic definition of error permeability is the probability of an error in
an input signal of a given module permeating to one of the output signals of that
module (there is one permeability value assigned to each pair of input/output sig-
nals of each module of the software system). The related measures are divided
into three categories coveringexposure, impactandcriticality. Thus, the combined
framework is called EPIC (Exposure, Permeability, Impact and Criticality). EPIC
provides a consolidated and comprehensive software profiling framework building
upon the individual framework components introduced in [Hiller et al., 2001] and
[Hiller et al., 2002(a)].

The remainder of this chapter is organized as follows: In Section 6.2 we briefly
describe the assumed system model (details are found in Chapter 3). The EPIC
framework is described in Section 6.3 and methods for estimating numerical values
of the introduced metrics are discussed in Section 6.4. In Section 6.5 the framework
is illustrated on an example target system and estimates areproduced for the various
metrics which are then used in Section 6.6 to select locations for Executable Asser-
tions (which are also evaluated with regard to detection coverage). Some limitations
and caveats are identified and discussed in Section 6.8. Finally, Section 6.9 contains
a summary and conclusions.

6.2 Software and System Model

The framework presented in this chapter assumes software systems to be constructed
according to Chapter 3. In short, the framework assumes software built up of discrete
black-box software modules inter-linked with some form of signaling (for informa-
tion and data exchange, e.g., shared memory or message passing).

6.3 EPIC: Generating Software Profiles

The EPIC framework aims at providing a means of profiling software such that suit-
able locations for error detection and recovery mechanismscan be identified. To
achieve this, EPIC charts the propagation and effect of errors, i.e., how errors prop-
agate through a software system and their effect on system operations. Our focus
here is on data errors – erroneous values in the internal variables and signals of a
system.

A data error has a probability of affecting the system such that further errors are
generated during operation. If one could obtain knowledge of the error propagation

106 Chapter 6. Error Propagation and Effect Analysis

.

.

.

.

.

.

Input 1

Input m Output n
M

Output 1

Figure 6.1: A basic black-box software module withm inputs andn outputs

characteristics of a particular system, this would aid the development of techniques
and mechanisms for detecting and eventually correcting theerror.

Such knowledge can translate to improved effectiveness of error detection and
handling and the consequent cost/performance-ratio of these mechanisms, as the
efforts can be concentrated to those areas of the system to where errors tend to prop-
agate. The results obtained using the EPIC framework are useful even with minimal
knowledge of the distribution of the occurring errors, i.e., if one does not know
which errors are most likely to appear. Having such knowledge would certainly im-
prove the value of the results, but performing the analysis without it still provides
qualitative insights on system error susceptibility.

This section will describe the framework starting with the conceptual basis of
error permeability. Upon this we will define a set of measures and techniques which
can be used for generating two distinct profiles of a softwaresystem: i) error propa-
gation profile and ii) error effect profile.

6.3.1 Error Permeability - Letting Errors Pass

In our approach, we introduce the measure oferror permeability, and based on it
we define a set of related measures that cumulatively providean insight on the error
propagation and effect characteristics and vulnerabilities of a system.

Consider the software module in Fig. 6.1 (at this point only discrete software
modules are considered). Starting with a simple definition of error permeability,
refinements will follow successively. For each pair of inputand output signals, the
error permeabilityis defined as the conditional probability of an error occurring on
the output given that there is an error on the input. Thus, forinput i and outputk of
a moduleM , theerror permeability, PMi;k , is defined as follows:0 � PMi;k = Prferror in outputkjerror in inputig � 1 (6.1)

This measure indicates howpermeablean input/output pair of a software module
is to errors occurring on that particular input. One major advantage of this definition
of error permeability is that it is independent of the probability of error occurrence on

6.3. EPIC: Generating Software Profiles 107

the input. This reduces the need for having a detailed model of error occurrence. On
the other hand, error permeability is still dependent on theworkload of the module
as well as the type of the errors that can occur on the inputs. It should be noted
that if the error permeability of an input/output pair is zero, this does not necessarily
mean that the incoming error did not cause any damage. The error may have caused
a latent error in the internal state of the module that for some reason is not visible on
the outputs. In Section 6.4, we describe an approach for experimentally estimating
values for this measure.

Error permeability is the basic measure for characterizing error propagation,
upon which we develop related refined measures. This basic measure is defined at
the signal level, i.e., an error permeability value characterizes the propagation from
one input signal to one output signal in a given module. Goingto the module level
(Fig. 6.1), we define therelative permeability, PM , of a moduleM with m input
signals andn output signals, to be:0 � PM = � 1m � 1n�Xi Xk PMi;k � 1 (6.2)

Note that this does not necessarily reflect the overall probability that an error
is permeated from the input of the module to the output. Rather, it is an abstract
measure that can be used to obtain a relative ordering acrossmodules. If all inputs
are assumed to be independent of each other and errors on one input signal can
only generate errors on one output signal at a time, then thismeasure is the actual
probability of an error on the input permeating to the output. However, this is seldom
the case in most practical applications.

At this stage, one potential limitation of this measure is that it is not possible to
distinguish modules with a large number of input and output signals from those with
a small number of input and output signals. This distinctionis useful to ascertain as
modules with many input and output signals are likely to be central parts (almost like
hubs) of the system thereby attracting errors from different parts of the system. In
order to be able to make this distinction, we remove the weighting factor in Eq. 6.2,
thereby, in a sense, “punishing” modules with a large numberof input and output
signals. Thus, for a moduleM with m input signals andn output signals, we can
define thenon-weighted relative permeability, P̂M as follows:0 � P̂M = Xi Xk PMi;k � m � n (6.3)

Similar to the relative permeability, this measure does nothave a straightforward
real-world interpretation but is a measure that can be used during development to

108 Chapter 6. Error Propagation and Effect Analysis

A B

C D

E

AI1

CI1CI2

AO2

CI3

AO1
BI2

BI1

BO1

BO2BO3 DI1DI2

DI3

DO1

EI1

EI2

EO1

CO1

CO2

Figure 6.2: An example software system with five modules

obtain a relative ordering across modules. The larger this value is for a particular
module the more effort has to be spent in order to increase theerror containment
capability of that module (which is the same as decreasing the error permeability of
the module), for instance by using wrappers as in [Salles, 1999]. Note that, as the
maximum value of each individual permeability value is 1, the upper bound for this
measure is the product of the number of inputs (m) and outputs (n).

The two measures defined in Eqs. 6.2 and 6.3 are both necessaryfor analyzing
the modules of a system. For instance, consider the case where two modules,G and
H, are to be compared.G has few inputs and outputs, andH has many. Then, ifPG = PH , thenP̂G < P̂H . And vice versa, ifP̂G = P̂H , thenPG > PH .

6.3.2 Ascertaining Propagation Paths

So far, we have obtained error permeability factors for eachdiscrete software mod-
ule in a system. Considering every module individually doeshave limitations; this
analysis will give insights on which modules are likely (relatively) to transfer incom-
ing errors, but will not reveal modules likely to be exposed to propagating errors in
the system. In order to gain knowledge about the exposure of the modules to prop-
agating errors in the system we define the following process which now considers
interactions across modules.

Consider the example software system shown in Fig. 6.2. Herewe have five
modules,A throughE, connected to each other with a number of signals. Theith
input of moduleM is designatedIMi and thekth output of moduleM is designatedOMk . External input to the system is received atIA1 , IC2 andIC3 . The output produced
by the system isOE1 .

Once we have obtained values for the error permeability for each input/output
pair of each module, we can construct apermeability graphas illustrated in Fig. 6.3.

6.3. EPIC: Generating Software Profiles 109

A B

C D

E

AI1

AO1

AO2

CI1

CI2

CI3

CO1

CO2

DI2

DI3

DI1

BI2

BI1 BO1

BO3

BO2

DO1

EI2

EI1

EO1

AP2,1

AP1,1

CP1,1

CP1,2

CP1,3

CP2,1

CP2,2

CP2,3

BP3,1
BP3,2

BP2,2

BP2,1

BP1,2
BP1,1

DP1,1
DP1,2

DP1,3

EP1,1

EP1,2

Figure 6.3: Permeability graph for the example software system in Fig. 6.2

Each node in the graph corresponds to a particular module andhas a number of
incoming arcs and a number of outgoing arcs. Each arc has a weight associated with
it, namely the error permeability value. Hence, there may bemore arcs between
two nodes than there are signals between the corresponding modules. Actually,
the maximum number of outgoing arcs for a node is the product of the number of
incoming signals and the number of outgoing signals for the corresponding software
module (each input/output pair of a module has an error permeability value). Arcs
with a zero weight (representing non-permeability from an input to an output) can
be omitted. With this permeability graph we can perform two different propagation
analyses, namely:

A Backtrack from system output signals to system input signals in order to find
those paths which have the highest probability of error propagation (Output
Error Tracing), or

B Trace errors from system input signals to system output signals in order to
find which paths these errors will most likely propagate along (Input Error
Tracing).

Output Error Tracingis easily accomplished by constructing a set ofbacktrack
trees, one for each system output. These backtrack trees can be constructed quite
simply based on the following steps on the permeability graph, namely:

110 Chapter 6. Error Propagation and Effect Analysis

A1. Select a system output signal and let it be the root node ofthe backtrack tree.

A2. For each error permeability value associated with the signal, generate a child node that will be
associated with an input signal.

A3. For each child node, if the corresponding signal is not a system input signal, backtrack to
the generating module and determine the corresponding output signal. Use this signal and
construct the sub-tree for the child node from A2. If the corresponding signal is a system input
signal it will be a leaf in the tree. If the corresponding signal is an input signal to the same
module it will be a leaf in the tree (as opposed to other leaveswhich are system input signals).
We do not follow the recursion that is generated by the feedback.

A4. If there are more system output signals, go back to A1.

This will, for each system output, give us a backtrack tree where the root corre-
sponds to the system output, the intermediate nodes correspond to internal outputs
and the leaves correspond to system inputs (or module inputsreceiving feedback
from its own module). Also, all vertices in the tree have a weight corresponding
to an error permeability value. Once we have obtained this tree, finding the propa-
gation paths with the highest propagation probability is simply a matter of finding
which paths from the root to the leaves have the highest weight.

Input error tracing is achieved similarly. However, instead of constructing a
backtrack tree for each system output, we construct atrace treefor each system
input, as follows:

B1. Select a system input signal and let it be the root node of the trace tree.

B2. Determine the receiving module of the signal and for eachoutput of that module, generate a
child node. This way, each child node will be associated withan output signal.

B3. For each child node, if the corresponding signal is not a system output signal, trace the signal
to the receiving module and determine the corresponding input signal. Use this signal and
construct the sub-tree of the child node from B2. If the corresponding signal is a system output
signal it will be a leaf in the tree. If the input signal is the same module that generated the
output signal (i.e. we have a module feedback) then follow this feedback once and generate the
sub-trees for the remaining outputs. We do not follow the recursion generated by this feedback.

B4. If there are more system input signals, go back to B1.

6.3. EPIC: Generating Software Profiles 111

BI1

BO1

AO1

AI1

AI1

AO1

BO2

BI1
AO1

AI1

AI1

CO1

AO2
CI2

CI3

AI1

BO1

BO3

AO1

AI1

AO2
CI2

CI3

DO1

CO2

EO1

AP2,1

AP1,1
CP1,1

CP1,2
CP1,3

CP2,1
CP2,2

CP2,3
BP3,1

BP3,2

BP2,2
BP2,1

BP1,2

BP1,1

DP1,1
DP1,2

DP1,3

EP1,1
EP1,2

AP1,1
AP1,1

AP1,1

BP1,1

BP1,2
AP2,1

Figure 6.4: Backtrack tree of system output signalOE1 of the example system.

This procedure results in a set of trace trees - one for each system input. In a
trace tree, the root will represent a system input, the leaves will represent system
outputs, and the intermediate branch nodes will represent internal inputs. Thus, all
vertices will be associated with an error permeability value. From the trace trees we
find the propagation pathways that errors on system inputs would most likely take
by finding the paths from the root to the leaves having the highest weights.

The case when an output of a module is connected to an input of the same
module is handled in the way described in step A3 of the backtrack tree genera-
tion script. If we would use recursive sub-tree generation we would get an infi-
nite number of sub-trees with diminishing probabilities. As all permeability values
are� 1, the sub-tree with the highest probability is the one which only goes one
pass through the feedback loop and this path is included in the permeability tree.
In [Fujiwara and Shimono, 1983], [Goel, 1981] and [Roth, 1980] similar techniques
have been utilized for hardware error propagation analysis.

The backtrack tree for system outputOE1 of the example system is shown in
Fig. 6.4. Here we observe the double line betweenIB1 andOB1 . This notation implies
that we have a local feedback in moduleB (OB1 is connected toIB1) and represents
breaking up of the propagation recursion.

The weight for each path is the product of the error permeability values along
the path. For example, in Fig. 6.4, the path fromOE1 to IA1 going straight fromOA1
(connected toIB2) to OB2 (the leftmost path in the tree) has the probabilityP =PA1;1 � PB2;2 � PE1;1. This is the conditional probability that, given an error inOE1 and

112 Chapter 6. Error Propagation and Effect Analysis

CP1,1
CP2,1

BP3,1

BP3,2

BP2,1

BP1,2

DP1,1
DP1,2

DP1,3
EP1,1

EP1,2

AP1,1
AP2,1

EO1

EO1

BI1

EI1
DI1

EI2
EO1

EO1
EI2

EP1,1

DI3

EI2

EO1
EO1

EI2

DI2

CI1

DI1
EI1

BI2

AI1

EP1,2
EP1,2

EP1,2
DP1,1

BP2,2

Figure 6.5: Trace tree for system input signalIA1 of the example system.

the error originated fromIA1 , it propagated directly throughOB2 which is connected
to IE1 and then toOE1 .

If we have knowledge regarding the probability of errors appearing on the in-
put signals we can use these probabilities as additional weights on the paths. For
example, if the probability of an error appearing onIA1 is Pr(IA1), then theP can
be adjusted with this factor, giving usP 0 = Pr(IA1) � PA1;1 � PB2;2 � PE1;1. This is the
probability of an error appearing on system inputIA1 , propagating through module
B directly viaOB2 to system outputOE1 .

The trace tree for system inputIA1 is shown in Fig. 6.5. Here we can see which
propagation path from system input to system output has the highest probability. As
for backtrack trees, the probability of a path is obtained bymultiplying the error
permeability values along the path. For example, in Fig. 6.5, the probability of an
error in IA1 propagating to moduleC and via its outputOC2 to moduleD and from
there via moduleE to system outputOE1 isP = PA1;2 �PC1;2 �PD3;1 �PE1;1. Again, if we
know thatPr(IA1) is the probability of an error appearing onIA1 , then we can adjustP to getP 0 = Pr(IA1) � PA1;2 � PC1;2 � PD3;1 � PE1;1.
6.3.3 Assessing the Error Exposure of Modules and Signals

Using the backtrack and trace trees enables determining twospecific aspects: (a)
the paths in the system that errors will most likely propagate along to get to certain
output signals, and (b) which output signals are most likelyaffected by errors occur-

6.3. EPIC: Generating Software Profiles 113

ring on the input signals. With this knowledge we can start selecting locations for
the EDM’s and ERM’s that we may want to incorporate into our system based on
system reliability/safety requirements.

One problem remains though: once we have the most probable propagation
paths, we still have to find the modules along that path that are the best to target
with EDM’s and ERM’s. Earlier, in Eqs. 6.2 and 6.3, we had defined two measures,
relative permeabilityandnon-weighted relative permeability, that can guide us in
this search.

These measures only consider the permeability values of discrete modules – cou-
plings across modules are disregarded. Using the permeability graph, we now define
a set of measures that explicitly consider coupling and aid determining locations for
EDM’s and ERM’s. To find modules most likely to be exposed to propagating er-
rors, we want to have some knowledge of the amount of errors that a module may
be subjected to. For this we define theerror exposure, XM , of a moduleM as:XM = 1NXweight of all incoming arcs ofM (6.4)

whereN is number of incoming arcs andM is the node in the permeability graph,
representing software moduleM . This measure does not consider any correlation
that may exists between two or more incoming arcs. Since we use this as a relative
measure, this is not a concern for us. Theerror exposureis the mean of the weights
of all incoming arcs of a node and is bounded as1N . Analogous to thenon-weighted

relative permeability, we can also define thenon-weighted error exposure, X̂M , of
a moduleM as: X̂M = Xweight of all incoming arcs ofM (6.5)

This measure does not have a real-world interpretation either – it is used only
during system analysis to obtain a relative ordering between modules. The two ex-
posure measures (Eqs. 6.4 and 6.5) along with the previouslydefined permeability
measures (Eqs. 6.2 and 6.3) will be the basis for the analysisperformed to obtain in-
formation upon which to base a decision about locating EDM’sand ERM’s. As was
the case for the two relative permeability measures, the twoexposure measures,er-
ror exposureandnon-weighted error exposure, are used for distinguishing between
nodes with a small number of incoming arcs and those with a large number.

The error exposure measures defined in Eqs. 6.4 and 6.5 indicate which modules
will most probably be the ones exposed to errors propagatingthrough the system.
If we want to analyse the system at the signal level and get indications on which
signals might be the ones that errors most likely will reach and propagate through,

114 Chapter 6. Error Propagation and Effect Analysis

we can define a measure which is the equivalent of the error exposure defined in
Eq. 6.4, but is only calculated for one signal at a time. In thebacktrack trees we can
easily see which error permeability values are directly associated with a signalS. We
define the setSp as composed of all unique arcs going to the child nodes of all nodes
generated by the signalS. A signal may generate multiple nodes in a backtrack tree
(see for instance signalOB1 in the backtrack tree in Fig. 4). However, in the setSp,
the permeability values associated with the arcs emanatingfrom those nodes will
only be counted once. Thesignal error exposure, XSs , of signalS is then calculated
as: XSs = Xall permeability values inSp (6.6)

The interpretation for the signal error exposure is the sameas for the error ex-
posure of a module, but at a signal level. That is, the higher asignal error exposure
value, the higher the probability of errors in the system being propagated through
that signal.

It may be difficult to give strict rules for selecting the EDM and ERM locations.
A discussion on how to identify candidate locations is provided in Section 6.3.5,
and an example study demonstrating the actual process depicted is provided in Sec-
tion 6.5.

We have now defined a basic analytical framework for ascertaining measures
pertaining to error propagation and software vulnerability. In the following sections
we augment the framework with measures for analyzing the effect of errors on the
final output of the system as well as for obtaining a measure ofcriticality of signals.
The knowledge gained in the propagation analysis combined with the knowledge
gained in the impact analysis will help in finding suitable locations for EDM’s and
ERM’s.

6.3.4 Analyzing the Effect of Errors on System Output

When selecting locations for EDM’s and ERM’s, it may be insufficient to only take
into account the propagation characteristics of data errors for a given software sys-
tem. Errors that may have a low probability of propagating may still cause severe
damage should propagation occur. Taking this into account we now define measures
which let us analyse to what extent errors in a signal (systeminput signal or interme-
diate signal) affect the system output, i.e., what is theimpactof errors on the system
output signals.

As errors in a source signal can propagate along many different paths to the
(destination) system output signal we must consider this inour definition of impact.

6.3. EPIC: Generating Software Profiles 115

In order to calculate the impact of errors in a signalSs on a system output signalOSys we must first generate animpact tree, which is a generalization of the trace
tree described in Section 6.3.2. Instead of generating a trace tree with a system input
as root node, we use the signal of interest in our analysis as the root, in this caseSs.
An impact tree is generated using the following steps:

C1. Select a signalSs and let it be the root node of the impact tree.

C2. Determine the receiving module of the signal and for eachoutput of that module, generate a
child node. This way, each child node will be associated withan output signal.

C3. For each child node, if the corresponding signal is not a system output signal, trace the signal
to the receiving module and determine the corresponding input signal. Use this signal and
construct the sub-tree of the child node from C2. If the corresponding signal is a system output
signal it will be a leaf in the tree. If the input signal is the same module that generated the
output signal (i.e. we have a module feedback) then follow this feedback once and generate the
sub-trees for the remaining outputs. We do not follow the recursion generated by this feedback.

C4. Repeat the procedure from C1 for each signal (system input and intermediate signals) in the
system.

Once we have generated the impact tree for a given signalSs, we generate all the
propagation paths from the root to the leaves containing system output signalOSys
(there may be leaves which are generated by other system output signals). Each path
has a weight associated with it which is the product of all permeability values along
that path. We defineSs ; OSys, theimpactof (errors in)Ss onOSys, as0 � Ss ; OSys = 1�Yi (1� wk) � 1 (6.7)

wherewk is the weight of pathk fromSs toOSys. If one could assume independence
over all paths, the impact measure would be the conditional probability of an error
in Ss propagating all the way toOSys. However, as independence can rarely be
assumed we will treat this as a relative measure by which different signals can be
ranked. The general interpretation of this measure is that the higher the impact, the
higher the risk of an error in the source signal generating anerror in the output of
the system. Thus, when placing EDM’s and ERM’s one may consider placing such
mechanisms at signals which have a high impact even though they may have a low
error exposure (meaning that errors in this signal are relatively rare but, should they
occur, are likely to be costly).

116 Chapter 6. Error Propagation and Effect Analysis

BP3,1

BP3,2

BP2,1

BP1,2

DP1,1
EP1,1

EP1,2

EO1

EO1

BI1

EI1
DI1

EI2
EO1

EO1
EI2

EP1,1

DI1
EI1

BI2

EP1,2
DP1,1

BP2,2

Figure 6.6: Impact tree for intermediate signalIB2 .

In Eq. 6.7, the measure only considers one system output signal. If a system has
multiple output signals, the corresponding impact value which considers all output
signals can be defined as:0 � Ss ; OSys = 1�Yi (1� (Ss ; OSysi)) � 1 (6.8)

whereSs ; OSysi is the impact of signalSs on system output signalOSysi , i.e., theith system output signal.
To further illustrate the concept of impact, again considerthe example shown in

Fig. 6.2. Suppose that we would like to calculate the impact of errors in signalIB2
on system outputOE1 . First, we will generate an impact tree as shown in in Fig. 6.6.

The impact tree shown in Fig. 6.6 is actually the left sub treeof the trace tree for
system input signalIA1 shown in Fig. 6.5. In order to calculate the impact of errors
in IB2 on system outputOE1 we generate all the propagation paths from the root to
the leaves. In this case, with only one system output, all leaves are considered. This
gives us four paths as shown in Table 6.1.

Using the weights of the paths we can now calculateIB2 ; OE1 , i.e., the impact
of (errors in)IB2 onOE1 , asIB2 ; OE1 = 1� 4Yi=1(1�wi) == 1� (1� w1)(1� w2)(1� w3)(1 � w4)
wherewi are the weights listed in Table 6.1.

6.3. EPIC: Generating Software Profiles 117

Table 6.1: The four paths generated from the impact tree of signalsIB2
Path/ProductPB2;1PB1;2PE1;1 = w1PB2;1PB1;3PD1;1PE2;1 = w2PB2;2PE1;1 = w3PB2;3PD1;1PE2;1 = w4

The concept of impact as described above considers the impact on system output
generated by errors in system input signals and intermediate signals. However, when
a system has multiple output signals, these are not necessarily all equally important
for the operation of the system, i.e., some output signals may be more critical than
others. For cost-efficiency, one may wish to concentrate resources for dependability
on the most critical system output signals and therefore needs to know which signals
in the system that are “best” (in a loose sense) to equip with EDM’s/ERM’s.

Each system output signalOSysi is assigned a criticalityCOSysi , which is a value

between 0 and 1, where 0 denotesnot at all critical and 1 denoteshighest possible
criticality. These criticality values are assigned by the system designer, for example
from the specifications of the system or from results from experimental vulnerability
analyses.

The criticality of system input signals and intermediate signals is calculated us-
ing the assigned criticality values of the system output signals and the various im-
pact values calculated for the various signals. Each signalSs has a certain impact,Ss ; OSysi , on system outputOSysi , as calculated according to Eq. 6.7. The
criticality of Ss as experienced by system outputOSysi , Cs;i, is calculated as0 � Cs;i = COSysi � (Ss ; OSysi) � 1 (6.9)

Once we have the criticality ofSs with regard to each system output signalOSysi
we can subsequently compute a total criticality value. We define thecriticality Cs
of signalSs as0 � Cs = 1�Yi (1� Cs;i) == 1�Yi (1� COSysi � (Ss ; OSysi)) � 1 (6.10)

For each signal, the criticality measure indicates how “expensive” errors are with

118 Chapter 6. Error Propagation and Effect Analysis

regard to the total system operation, i.e., the higher the criticality value, the higher
the likelihood of the system not being able to deliver its intended service, should
an error occur in the signal. The notion of criticality as defined here also takes into
account the “cost” associated with errors in system outputsas defined by the system
designer. Thus, while the impact measures are independent of the project policies
regarding dependability, the criticality values may change when the project policies
for software development change.

Note that if the system only has one output signal, then the obtained criticality
will only function as a constant scaling factor of the impactvalues, i.e., the relative
order among the signals of the system will not change. Thus, calculating criticality
values is essential only when there are multiple output signals in a system and these
are of different “importance”.

At this point, we have only definedimpactandcriticality at the signal level. Go-
ing up in abstraction levels, we can now define equivalent measures which are based
on the signal level measures, but consider entire modules instead. If we consider a
moduleM in a system withi output signals, we can define the impact ofM on a
given system output signalOSysi , M ; OSysi , as follows:0 � M ; OSysi = 1�Yj (1� (OMj ; OSysi)) � 1 (6.11)

whereOMj ; OSysi is the impact of (errors in) the output signalOMj of M on

system output signalOSysi . For each output signal ofM , there is one such impact
value. In order to get a measure for the impact ofM on the system output as a whole
we can defineM ; OSys, themodule impactof M on system output, as follows:M ; OSys = 1�Yi (1� (M ; OSysi)) == 1�Yi (1� (1�Yj (1� (OMj ; OSysi)))) == 1�Yi Yj (1� (OMj ; OSysi)) � 1 (6.12)

Going from impact to criticality is not a big step. Instead ofusing the individual
impact values of the outputs of a module, the corresponding criticality values for the
chosen system output signal are used. The criticality of module M , with regard to
system outputOSysi can thus be defined as:

6.3. EPIC: Generating Software Profiles 1190 � CMi = 1�Yj (1� COMj ;i) � 1 (6.13)

whereCOMj ;i is the criticality of outputOMj with regard to system output signalOSysi . A total measure regarding all system output signals is thenreferred to as the
module criticality, CM , of M and is defined as:0 � CM = 1�Yj (1� COMj) == 1�Yj (1� (1�Yi (1� COMj ;i))) == 1�Yj (1� (1�Yi (1� COSysi � (OMj ; So;i)))) == 1�Yi Yj (1� COSysi � (OMj ; OSysi)) � 1 (6.14)

Note that the difference between impact and criticality (see Eq. 6.8 and Eq. 6.10
for signals, and Eq. 6.12 and Eq. 6.14 for modules) is the criticality factorCOSysi of

system output signalOSysi which is defined by the system designer. Thus, criticality
is a biased version of the impact.

We have now defined a number of measures for analyzing the propagation of
errors and the effect of errors on system output. In the following section we discuss
how the various measures obtained in the error effect analysis together with the
values obtained in the error propagation analysis can be used to identify candidate
locations for EDM’s and ERM’s.

6.3.5 Identifying Candidate Locations for ERM’s and EDM’s

The EPIC framework introduced in Section 6.3 contains a number of various mea-
sures for analyzing the propagation and effect of errors in software, namely:� error permeability for input/output pairs (PMi;k , Eq. 6.1),� relative error permeability for modules (weighted,PM , and non-weighted,P̂M , Eqs. 6.2 and 6.3, respectively),� error exposure for modules (weighted,XM , and non-weighted,̂XM , Eqs. 6.4

and 6.5, respectively),

120 Chapter 6. Error Propagation and Effect Analysis� error exposure for signals (XSs , Eq. 6.6),� impact for signals (Ss ; OSys, Eqs. 6.7 and 6.8),� criticality for signals (Cs, Eq. 6.10),� impact for modules (M ; OSys, Eq. 6.12), and finally,� criticality for modules (CM , Eq. 6.14).

In this section we will discuss how candidate locations for EDM’s and ERM’s
may be identified based on the results from the propagation analysis and the effect
analysis. It is hard to develop a generalized heuristic for identifying the locations.
However, the following rules of thumb or recommendations can be made:� The higher the error exposure values of a module, the higher the probability

that it will be subjected to errors propagating through the system if errors
are indeed present. Thus, it may be more cost effective to place EDM’s in
those modules than in those with lower error exposure. An analogous way of
reasoning is valid also for the signal error exposure.� The higher the error permeability values of a module, the lower its ability
to contain errors. Thus, there is an increase in the probability of subsequent
modules being subjected to propagating errors if errors should pass through
the module. Therefore, it may be more cost effective to placeERM’s in those
modules than in those with lower error permeability.� The higher the criticality (or impact if the system only has one output signal)
of a signal, the higher the probability of an error in that signal causing dam-
age from a system point-of-view. Thus, it may be more cost effective to equip
those signals with EDM’s and ERM’s which have the highest criticality (im-
pact). An analogous way of reasoning is valid also for the module criticality
(impact).

When selecting locations, these rules may not individuallyyield the same result.
Consider the case where a signal has alow exposurebut ahigh criticality. The low
exposure means that there is a low probability of errors propagating to that signal.
However, the high criticality means that, should an error find its way into that signal,
there is a high probability of that error causing damage which propagates beyond the
system barrier into the environment. Thus, one may select signals with low exposure
and high criticality as candidate locations for EDM’s and ERM’s.

6.4. Obtaining Numerical Estimates of Error Permeability 121

One way of having a more manageable approach in a project may be to setup
certain conditions which must be met by the software. For example, one may wish
to set a minimum level of error containment for all modules, which can be accom-
plished by setting a maximum level on error permeability values and error exposure
values. Thus, if a module exceeds this limit, this indicatesthat more resources have
to be allocated to that module to increase its error containment capabilities. The
same argument can be used for error exposure. If a module or signal is highly ex-
posed, this indicates that more resources are required either to protect the exposed
modules or signal, or to increase the error containment capabilities of the module or
signal responsible for the high degree of exposure.

From a criticality (impact) point-of-view, a project may also set up criticality
threshold limits. For example, one may wish to set a maximum level of impact for
the various signals. Signals exceeding this threshold limit indicate that the error
containment from that signal out to the system output signals is not high enough. As
the criticality values of signals are based on the criticality values assigned to system
output signals, these can only be indirectly adjusted via the impact values.

The results from the analysis may also aid in the design of EDM’s. For example,
a situation with low error exposure and high criticality (impact) indicates that any
EDM in that location would have to be highly specialized as errors are infrequent
and likely to be hard to detect. The opposite situation, i.e., high exposure and low
criticality (impact) indicates that a coarser EDM in that location may suffice.

Next, we describe how to obtain experimental estimates of the measures and use
of our framework on actual software of an embedded control system.

6.4 Obtaining Numerical Estimates of Error Permeability

Obtaining numerical values for the error permeability may prove to be quite dif-
ficult, given that many factors, such as error occurrence probabilities, operational
profiles, etc., have to be taken into account. This may renderit impossible to get the
“real” value of the error permeability values of a software system. Thus, a method
of estimating these values is needed. In this section we describe an experimental
method based on fault/error injection for obtaining estimates of error permeabil-
ity values. However, other approaches, such as data flow analysis and other static
compiler-assisted approaches, might be investigated in the future.

Our method for experimentally estimating the error permeability values of soft-
ware modules is based on fault injection (FI). FI artificially introduces faults and/or
errors into a system and has been used for evaluation and assessment of dependabil-
ity for several years (see, e.g., [Chillarege and Bowen, 1989], [Arlat et al., 1990],

122 Chapter 6. Error Propagation and Effect Analysis

.

.

.

Input 1

Input m

M
.
.
.

.

.

.

Input 2

Input i

Output 1
Output 2

Output k
Output m

ninj

nerr

Figure 6.7: A software module where errors are injected intoinput i and outputk is
observed to detect permeated errors.

and [Fabreet al., 1999]). A comprehensive survey of experimental analysis of de-
pendability appears in [Iyer and Tang, 1996].

For analysis of raw experimental data, we make use of so-called Golden Run
Comparisons (GRC). A Golden Run (GR) is a trace of the system executing without
any injections being made, hence, this trace is used as reference and is stated to
be “correct”. All traces obtained from the injection runs (IR’s, where injections
are conducted), are compared to the GR, and any difference indicates that an error
has occurred. The main advantage of this approach is that it does not require any
a priori knowledge of how the various signals are supposed to behave,which makes
this approach less application specific.

Experimentally estimating values for error permeability of a module is done by
injecting errors in the input signals of the module and logging its output signals. We
only inject one error in one input signal at a time. Consider the module illustrated
in Fig 6.7. Suppose, for moduleM , we injectninj distinct errors in inputi, and
at outputk observenerr differences compared to the GR’s, then we can directly
estimate the error permeabilityPMi;k to benerrninj (see more on experimental estimation
in [Cukier et al., 1999] and [Powellet al., 1995]).

Since the propagation of errors may differ based on the system workload, it
is generally preferred to have realistic input distributions than randomly generated
inputs. This generates permeability estimates that are closer to the “real” values than
randomly chosen inputs would.

The type of injected errors can also affect the estimates. Ideally, one would inject
errors from a realistic set, with a realistic distribution.However, as the measures in
our framework are mainly used as relative measures, the relevance of the realism
provided by the error model is decreased, assuming that the relative order of the
modules and signals when analyzing permeability is maintained.

6.5. Experimental Analysis: An Example System 123

DIST_S

CLOCK

PRES_S

CALC

V_REG PRES_A

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

Pressure
sensor

HW
counter

2

3

4

5 2

1
1

1

2

1

2

3

1

2

3

1 1
1

2
1 1 1 Pressure

valve

Rotation
sensor

Figure 6.8: Software structure of the example target system(an aircraft arrestment
system). For details, see Chapter 3.

6.5 Experimental Analysis: An Example System

For an actual application of our proposed methodology on an embedded control sys-
tem, we have conducted an example study. This study illustrates the results obtained
using the EPIC framework and experimental estimates for error permeability val-
ues. First we will shortly describe the target system used inthe example, then we
will do the pre-experimental analysis of the software to getthe permeability graph,
trace trees and backtrack trees needed for the subsequent analysis. After that, the
experimental estimates of the measures of EPIC are produced.

6.5.1 Target Software System

The target system is an embedded control system used for arresting aircraft on short
runways and aircraft carriers and is described in detail in Chapter 3. To aid the
reader, the software structure shortly described here, as well.

The structure of the software is illustrated in Fig. 6.8. Thenumbers shown at
the inputs and outputs are used for numbering the signals. For instance,PACNT is
input #1 of DISTS, andSetValueis output #2 of CALC. The software is composed
of six modules of varying size and input/output signal count. The system receives
input from a number of sensors at PRESS and DISTS. The output of the system is
provided at PRESA. The remaining modules (CALC, VREG and CLOCK) provide
internal/intermediate signals. The module specifics are provided in Chapter 3.

The system specifications [USAF, 1986] set a number of physical constraints
within which the system must operate. These constraints aredescribed in Chapter 3.

124 Chapter 6. Error Propagation and Effect Analysis

CALC

CLOCK

DIST_S

PRES_S
V_REG

PRES_A

ms_slot_nbr

mscnt

i

pulscnt

slow_speed

stopped

SetValue

OutValue

TOC2ADC

TCNT

TIC1

PACNT

IsValue

APRESP _
1,1REGVP _

1,2
REGVP _

1,1

CALCP2,3
CALCP2,4

CALCP2,5

CALCP2,1
CALCP2,2

CALCP1,3

CALCP1,4

CALCP1,5

CALCP1,2

CALCP1,1

SDISTP _
1,1

SDISTP _
2,1

SDISTP _
3,1

SDISTP _
1,2

SDISTP _
1,3

SDISTP _
2,2

SDISTP _
2,3

SDISTP _
3,2

SDISTP _
3,3

CLOCKP1,1

CLOCKP2,1

SPRESP _
1,1

Figure 6.9: Permeability graph of the target system shown inFig. 6.8

In the experiments described in this chapter, this failure classification has been used
when obtaining coverage estimates of error detection mechanisms.

Now we have presented the target system used in our comparisons. The next
section will briefly describe the propagation analysis framework with associated
measures used for systematic placement of EA’s and subsequent sections contain
the comparison itself.

6.5.2 System Analysis

Prior to running the experiments, the permeability graph and the backtrack trees
and trace trees for the target system were generate as per theprocess described in
Sections 6.3. The permeability graph is shown in Fig. 6.9.

In the graph (Fig. 6.9) we can see the various permeability values (labels on the
arcs) that will have to be calculated. The numbers used in thenotation refer to the
numbers of the input signals and output signals respectively, as shown in Fig. 6.8.
For instance,PCALC2;1 is the error permeability from input 2 (mscnt) to output 1 (i)
of module CALC. From the permeability graph in Fig. 6.9 we cannow generate
the backtrack tree for the system output signalTOC2, using the steps described in
Section 6.3.2. This tree is shown in Fig. 6.10.

6.5.
E

xperim
entalA

nalysis:
A

n
E

xam
ple

S
ystem

125

mscnt
mscnt

ms_slot_nbr
ms_slot_nbr

ms_slot_nbr
ms_slot_nbr

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

pulscnt
pulscnt

PACNT
PACNT

TCNT
TCNT

TIC1
TIC1

PACNT
PACNT

TCNT
TCNT

TIC1
TIC1

PACNT
PACNT

TCNT
TCNT

TIC1
TIC1

slow_speed
slow_speed

stopped
stopped

i
i

IsValue
IsValue

ADC
ADC

CLOCKP1,1

CLOCKP2,1

CALCP2,2

SDISTP _
1,1

SDISTP _
1,2

SDISTP _
1,3

SDISTP _
2,1

SDISTP _
2,2

SDISTP _
2,3

SDISTP _
3,1

SDISTP _
3,3

CALCP2,3
CALCP2,4

CALCP2,5

CALCP2,1

mscnt
mscnt

ms_slot_nbr
ms_slot_nbr

ms_slot_nbr
ms_slot_nbr

pulscnt
pulscnt

PACNT
PACNT

TCNT
TCNT

TIC1
TIC1

PACNT
PACNT

TCNT
TCNT

TIC1
TIC1

PACNT
PACNT

TCNT
TCNT

TIC1
TIC1

slow_speed
slow_speed

stopped
stopped

CLOCKP1,1

CLOCKP2,1

SDISTP _
1,1

SDISTP _
1,2

SDISTP _
1,3

SDISTP _
2,1

SDISTP _
2,2

SDISTP _
2,3

SDISTP _
3,1

SDISTP _
3,2

SDISTP _
3,3

CALCP1,3
CALCP1,4

CALCP1,5

i
i

CALCP1,1

SPRESP _
1,1

REGVP _
1,2

REGVP _
1,1

APRESP _
1,1

CALCP1,2
SDISTP _

3,2

Figure 6.10: Backtrack tree for system output signalTOC2

126 Chapter 6. Error Propagation and Effect Analysis

SDISTP _
1,1

SDISTP _
3,1

CALCP2,3

CALCP2,5
CALCP1,3

pulscnt
pulscnt

i
i

slow_speed
slow_speed

stopped
stopped

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

i
i

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

i
i

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

PACNT
PACNT

REGVP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

APRESP _
1,1

REGVP _
1,1

REGVP _
1,1

REGVP _
1,1

CALCP2,1

SDISTP _
2,1

CALCP2,4
CALCP1,4

CALCP1,5

CALCP2,1
REGVP _

1,1

REGVP _
1,1

APRESP _
1,1

CALCP2,1

Figure 6.11: Trace tree for system input signalPACNT

ADC
ADC

IsValue
IsValue

OutValue
OutValue

TOC2
TOC2

SPRESP _
1,1

REGVP _
1,2

APRESP _
1,1

Figure 6.12: Trace tree for
system input signalADC

pulscnt
pulscnt

i
i

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

SetValue
SetValue

OutValue
OutValue

TOC2
TOC2

REGVP _
1,1

APRESP _
1,1

CALCP2,1
REGVP _

1,1

APRESP _
1,1

CALCP2,3
CALCP1,3

Figure 6.13: Impact tree for intermediate sig-
nal pulscnt.

As illustrated with a double line in the backtrack tree (Fig.6.10), we have a
special relation between the leaves formsslot nbr and for i and their respective
parent. This is because the parent node is also eithermsslot nbr or i. Thus, we
have an output signal which is connected back to the originating module giving us a
recursive relation. In those cases where errors only can enter a system via its main
inputs, these branches of the backtrack-trees can be disregarded.

In Figs. 6.11 and 6.12, we have the trace trees for system input signalPACNT
and system input signalADC, respectively, as obtained by the processes defined in
Section 6.3.2. The trees for inputsTIC1 andTCNT are very similar to the tree for
PACNTso they will not be shown here.

As described in Section 6.3.2, we do not follow the recursiongenerated by a
feedback from a module to itself. In module CALC we have a feedback in signali,
and as can be seen in Fig. 6.11, we do not have a child node fromi that isi itself.

6.5. Experimental Analysis: An Example System 127

In order to calculate impact values for the various signals,we generated their
respective impact trees. Depicted in Fig. 6.13, we have the impact tree of the signal
pulscnt(other impact trees have been left out, but are easily generated by the inter-
ested reader). The impact tree shown in Fig. 6.13 is actuallythe left sub tree of the
trace tree for system input signalPACNTshown in Fig. 6.11. In order to calculate
the impact of errors inpulscnton system outputTOC2we generate all the propaga-
tion paths from the root to the leaves. In this case, where we have only one system
output, all leaves are considered.

At this point we have generated all trees and graphs requiredfor our analysis
of the software. The next step is to estimate numerical values for the individual
permeability values such that we can use the analysis results to identify the modules
and signals in the system which should be equipped with EDM’sand ERM’s.

6.5.3 Experimental Setup

For estimating error permeability values, we used the Propagation Analysis Environ-
ment (PROPANE, see Chapter 5). This tool enables fault and error injection, using
SWIFI (SoftWare Implemented Fault Injection), in softwarerunning on a desktop
(currently for Windows 2000/XP). The tool is also capable ofcreating traces of in-
dividual variables and different pre-defined events duringthe execution. Each trace
of a variable from an injection experiment is compared to thecorresponding trace in
the Golden Run. Any discrepancy is recorded as an error.

For logging and injection, the target system was instrumented with high-level
software traps. As a trap is reached during execution, an error is injected and/or data
logged. The traces obtained during execution have millisecond resolution for every
logged variable. Also, we ported the software to run on a desktop system, so the
intrusion of the traps is non-existent in our setup as it runsin simulated time.

In this study, the aim was to produce an estimate of theerror permeabilityof the
modules of the target system. As described in Section 6.4 we produced a Golden
Run (GR) for each test case. Then, we injected errors in the input signals of the
modules and monitored the produced output signals. For eachinjection run (IR)
only one error was injected at one time, i.e., no multiple errors were injected.

The input signals signals are all 16 bits wide, exceptPACNT which is 8 bits
wide. We injected bit-flips in each bit position at 10 different time instances dis-
tributed in half-second intervals between 0.5 seconds and 5.0 seconds from start of
arrestment (although only at one time in each IR). In order toget a realistic load on
the system and the modules, we subjected the system to 25 testcases: 5 masses and
5 velocities of the incoming aircraft uniformly distributed between 8000–20000kg ,

128 Chapter 6. Error Propagation and Effect Analysis

Table 6.2: Estimated error permeability values of the input/output pairs
Input ! Output Name Value

ms slot nbr!ms slot nbr PCLOCK1;1 1.000

ms slot nbr!mscnt PCLOCK1;2 0.000
PACNT! pulscnt PDIST S1;1 0.957
TIC1! pulscnt PDIST S2;1 0.000

TCNT! pulscnt PDIST S3;1 0.000
PACNT! slow speed PDIST S1;2 0.010

TIC1! slow speed PDIST S2;2 0.000
TCNT! slow speed PDIST S3;2 0.000

PACNT! stopped PDIST S1;3 0.000
TIC1! stopped PDIST S2;3 0.000
TCNT! stopped PDIST S3;3 0.000

ADC! IsValue PPRES S1;1 0.000
i! i PCALC1;1 1.000

mscnt! i PCALC2;1 0.000
pulscnt! i PCALC3;1 0.494

slow speed! i PCALC4;1 0.000
stopped! i PCALC5;1 0.013
i! SetValue PCALC1;2 0.056

mscnt! SetValue PCALC2;2 0.530
pulscnt! SetValue PCALC3;2 0.000

slow speed! SetValue PCALC4;2 0.892
stopped! SetValue PCALC5;2 0.000

SetValue! OutValue PV REG1;1 0.885
IsValue! OutValue PV REG2;1 0.896

OutValue! TOC2 PPRES A1;1 0.875

and between 40–80m=s , respectively. Thus, for each input signal, we conducted
16�10�25 = 4000 injections (2000 forPACNT).

The raw data obtained in the IR’s was used in a Golden Run Comparison where
the trace of each signal (input and output) was compared to its corresponding GR
trace. The comparison stopped as soon as the first differencebetween the GR trace
and the IR trace was encountered. In our experimental setup—real software running
in simulated time, in a simulated environment, and on simulated hardware—this
is a valid way of comparing traces even for continuous signals where fluctuations
between similar runs in a real environment may be normal.

When calculating the individual error permeability values, we only took into
account the direct errors on the outputs. We did not count errors originating from
errors that propagated via one of the other outputs and then came back to the original
input producing an error in the first output.

6.5. Experimental Analysis: An Example System 129

Table 6.3: Estimated relative permeability, error exposure and impact values of the
modules

Module PM P̂M XM X̂M M ; TOC2
CLOCK 0.500 1.000 1.000 1.000 0.410
DIST S 0.107 0.966 - - 0.698
PRESS 0.000 0.000 - - 0.784
CALC 0.299 2.986 0.165 2.473 0.784
V REG 0.890 1.781 0.247 1.479 0.875
PRESA 0.875 0.875 0.890 1.781 -

6.5.4 Experimental Results and Obtained Profiles

In the target system, we have 25 input/output pairs for whichwe produced an es-
timate of the error permeability measure (see Eq. 6.1) usingthe method from Sec-
tion 6.4. These estimated values are shown in Table 6.2, and they form the basis for
subsequent results, which are calculated as described in Section 6.3.

In Table 6.3, we obtain weighted and non-weighted relative permeability values
(PM andP̂M , respectively), weighted and non-weighted error exposurevalues (XM
andX̂M) and module impact values (M ; TOC2) for each module.

The modules DISTS and PRESS have no error exposure values as they only
receive system input signals, i.e., from external sources.This does not mean that
these modules will never be exposed to errors on their inputs, but rather that the
error exposure is dependent on the probability of errors occurring in the various
external data sources. The modules with the highest non-weighted error exposure are
the CALC module and the VREG module. This indicates that these two modules
are central in the system and that they are good candidates for error detection and
recovery mechanisms.

The module PRESA has no impact value since the impact is calculated with
regard to its output. One could perhaps say that this module has an impact of 1.0, as
an error in its output signal (TOC2) is guaranteed to generate an error in the system
output signal (alsoTOC2). When calculating module impact, one may also view the
environment as a module and calculate its impact on system output. In this case, the
system input signals are viewed as the outputs of the environment and calculations
are performed as described in Eq. 6.12. The system only has one output signal. Thus,
no criticality values are calculated as these would only be scaled impact values.

From the backtrack tree in Fig. 6.10, we can generate 22 propagation paths from
the system output signal to an input signal. Each of these paths has a total weight,
which is the product of the permeability values of the arcs inthe path. Ordering the

130 Chapter 6. Error Propagation and Effect Analysis

Table 6.4: The three non-zero propagation paths and their weights
Path/Product WeightPCALC1;1 PCALC1;2 PV REG1;1 PPRES A1;1 0.04337PDIST S1;1 PCALC3;1 PCALC1;2 PV REG1;1 PPRES A1;1 0.02050PDIST S1;2 PCALC4;2 PV REG1;1 PPRES A1;1 0.00691

Table 6.5: Estimated signal error exposures and impacts onTOC2
Signal (s) XSs s ; TOC2

PACNT - 0.027
TCNT - 0.000
TIC1 - 0.000
ADC - 0.000
OutValue 1.781 0.875
i 1.507 0.043
SetValue 1.478 0.774
ms slot nbr 1.000 0.000
pulscnt 0.957 0.021
TOC2 0.875 -
slow speed 0.010 0.691
IsValue 0.000 0.784
mscnt 0.000 0.410
stopped 0.000 0.001

paths according to their total weight gives us some knowledge of the more probable
paths for error propagation. Table 6.4 depicts the three paths that acquired weights
greater than zero (the paths along which errors might propagate).

In Table 6.5, we have both exposure values,XSs , and impact values,s ; TOC2,
of the various signals of the target system. SignalTOC2has no impact value asso-
ciated with it as this is the system output signal (one could say that the impact is 1.0
in this case). Having this granularity (i.e., signal level information) will help us in
deciding which signals we should equip with EDM’s or ERM’s.

The information in Table 6.5 is depicted graphically in Figs. 6.14 and 6.15. Here
we can clearly see the difference between the two profiles of the system. The thick-
ness of a line now depicts the value of the respective measure–the thicker the line,
the higher the value. A dashed line indicates a zero value anda dashed-dotted line
indicates that no value is assigned to that signal (either because the signal is a system
input or output signal).

In Figs. 6.14 and 6.15, an example of how the rules-of-thumb for selection of
locations for EDM’s and ERM’s can yield different results ishighlighted. Consider

6.5. Experimental Analysis: An Example System 131

CLOCK
CLOCK

CALC
CALC

PRES_A
PRES_A

V_REG
V_REG

PRES_S
PRES_S

DIST_S
DIST_S

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

2

3

4

5 2

1
1

1

2

1

2

3

1

2

3

1 1
1

2
1 1 1

Highest exposure

Lowest exposure

Zero exposure

No exposure
value assigned

Figure 6.14: Propagation analysis:Exposureprofile

V_REG
V_REG PRES_A

PRES_A

CALC
CALC

CLOCK
CLOCK

DIST_S
DIST_S

PRES_S
PRES_S

ms_slot_nbr

pulscnt

slow_speed

stopped

PACNT

TIC1

TCNT

mscnt

i

SetValue

IsValue
OutValue TOC2

ADC

1

2

3

4

5 2

1
1

1

2

1

2

3

1

2

3

1 1
1

2
1 1 1

Highest impact

Lowest impact

Zero impact

No impact
value assigned

Figure 6.15: Effect analysis:Impactprofile

the signalIsValuegoing from PRESS to V REG. With the propagation analysis,
we obtained a zero error exposure value (see Fig. 6.14) indicating that errors never
(or at least rarely) propagate into this signal. This suggests thatIsValuemay not be
the best selection for an EDM or ERM. On the other hand, with the effect analy-
sis, we obtained a very high error impact value. This means that an error inIsValue
could have a high impact should it occur and may cause severe system failure, which
would suggest thatIsValuemay be a very good location for an EDM or ERM. Thus,
the propagation analysis and the effect analysis may yield different sets of loca-
tions for EDM’s and ERM’s and corresponding input to system designers regarding
cost/benefit trade-offs and implications of EDM/ERM placement and design.

132 Chapter 6. Error Propagation and Effect Analysis

Table 6.6: EA-locations based on propagation profile (the P-set)
Signal Producer Consumer Test location

SetValue CALC V REG V REG
i CALC CALC CALC
pulscnt DIST S CALC DIST S
OutValue V REG PRESA PRESA

6.6 Selecting Locations for EDM’s

In this section we will select locations for EDM’s and evaluate the coverage ob-
tained. We will start by assuming that errors are only introduced to the system via
its main input signals (i.e., by faulty sensor readings etc.) and then adopt a more
severe error model where errors are introduced in random memory locations and
signals throughout the system. This will illustrate how propagation analysis and
effect analysis complement each other.

The mechanisms we have chosen to use for this study are so called Executable
Assertions (EA’s) and are commonly used in embedded software (see, for example,
[Saib, 1978], [Mahmoodet al., 1984], and [Rabéjacet al., 1996]). EA’s are usually
small snippets of code which are executed on-line to check that certain constraints
on the values of variables are not violated, such as minimum and maximum values
and rate change limitations. The specific EA’s used in this chapter are generic pa-
rameterized mechanisms aimed at individual signals and aredescribed in Chapter 4.

6.6.1 Propagation-Based Selection of Locations

Here we assume that errors are introduced only through the system input signals
and that they are transients, i.e., an error originally appears only for a very short
time (one calculation round of the selected target system).Thus, we only take into
into account those signals which are in the way of propagating errors from the input
signals.

As the EA’s we have chosen for our system are aimed at individual signals, we
take a closer look at individual permeability values and thesignal error exposure
values (see Tables 6.2 and 6.5, respectively) in order to select the signals to equip
with EA’s.

The experimentally ascertained exposure ofIsValueis zero, meaning that errors
in ADC are unlikely to propagate through PRESS. Thus, although the permeability
of errors fromIsValueto OutValueis quite high (0.896), we do not selectIsValueas
a location for an EA.

6.6. Selecting Locations for EDM’s 133

Table 6.7: EA-locations based on both propagation and effect analysis (the P&E-set)
Signal Producer Consumer Test location

SetValue CALC V REG V REG
IsValue PRESS V REG V REG
i CALC CALC CALC
pulscnt DIST S CALC DIST S
ms slot nbr CLOCK CLOCK CLOCK
mscnt CLOCK CALC CLOCK
OutValue V REG PRESA PRESA

We do not selectmsslot nbr as errors in this signal do not propagate intomscnt.
We do not selectTOC2 either, as this is a hardware register and any errors here
would most probably come from theOutValuesignal. We do not selectmscntas this
signal has a zero error exposure. We do not selectslow speedas this signal has a
low error exposure, and the mechanisms we have chosen are notparticularly geared
at detecting errors in boolean values.

Based on the results obtained here, we select the following signals as locations
for EA’s: SetValue, i, OutValue, andpulscnt. The first three are selected based on
their high signal error exposure values and the last one as this is the signal which
is most likely to be affected by errors in system input. The selection of EA’s is
summarized in Table 6.6 and we will refer to this set of locations as the P-set.

In theSignal-column are the names of the signals we have selected to equipwith
EA’s. TheProducer- andConsumer-columns contain the names of the source and
sink module, respectively. TheTest-column contains the name of the module where
the EA was physically placed (this was selected based on perceived implementation
simplicity).

6.6.2 Adding the Effect Profile to the Selection Process

So far, we have only used the profile generated by propagationanalysis to determine
locations for EA’s. This may be sufficient as long one assumesthat errors will only
enter the system via system input signals. In this section wewill, in addition to the
profile provided by the propagation analysis, also make us ofthe profile provided by
the error effect analysis of the software system. We will also adopt a more “severe”
error model where errors are introduced not only via system input signals but also
in intermediate signals and/or internal variables and memory structures.

Thus, we will now consider not only where errors tend to propagate but also
what effect errors have (regardless of whether these errorsare likely to occur or

134 Chapter 6. Error Propagation and Effect Analysis

Table 6.8: EA-setup and sum of ROM/RAM requirements
Signal EA P-set P&E-set ROM RAM

(bytes) (bytes)

SetValue EA1
p p

50 14
IsValue EA2 -

p
50 14

i EA3
p p

25 13
pulscnt EA4

p p
25 13

ms slot nbr EA5 -
p

37 13
mscnt EA6 -

p
25 13

OutValue EA7
p p

50 14

Total ROM/RAM (bytes) 150/54 262/94

not). Previously we had ascertained that signalsSetValue, i, pulscntandOutValue
were to be guarded by EA’s because of their high exposure to propagating errors. If
we now take into account the impact of the signals on system output, we see that
signalsIsValue, mscntandslow speedmay be considered for being guarded by EA’s
as well as these have very high impact values (see Table 6.5).The mechanisms we
have chosen are implemented in such a way that it is difficult to detect errors in a
boolean value, thus setting an EA on the signalslow speedis not efficient in this
case. Therefore, when taking into account also the impact values of the signals we
can decide to place EA’s onIsValueandmscntas well. Also, as the permeability-
value of msslot nbr is 1, and the assumed error model now introduces errors in
the entire memory space of the system (as opposed to only system input signals as
was the case before) we also select that signal. The new selection is summarized in
Table 6.7 and we will refer to this set of locations as the P&E-set.

In Table 6.7, for each signal, theProducercolumn indicates the module where
the signal originates and theConsumercolumn where the signal is used. TheTest
location column indicates which of these two was chosen as the module where the
corresponding EA was placed.

6.7 Comparing the Two Location Selections

This section will compare the two sets of selected locationswith regard to resources
required and also with regard to the coverage obtained when the systems is subjected
to errors at system input signals and in random locations.

6.7. Comparing the Two Location Selections 135

6.7.1 Memory and Execution Time Requirements

For comparison of resource requirements using the -approach and the PA-approach,
Table 6.8 presents a summary of the two sets of locations/mechanisms and their
respective requirements on memory resources (ROM containsconstant parameters
defining allowed behavior, and RAM contains run-time data).As expected, the re-
quirements for the P-set,fEA1, EA3, EA4, EA7g, is less than the requirements for
the P&E-set,fEA1, EA2, EA3, EA4, EA5, EA6, EA7g, as the former is a subset of
the latter (as seen in Table 6.8). Specifically, there is a 40%reduction in memory
requirements when for the P-set over the P&E-set.

The overhead in terms of execution time is also reduced. The tool used for
obtaining these results does not provide a means for measuring execution time, thus
we were not able to quantitatively assess the reduction. However, the EA’s are all
functions which are executed sequentially, i.e. the software is not executed in a truly
parallel manner as only one processor is used. Also, they areinvoked with roughly
the same period and require roughly the same execution time for each invocation.
Thus, the reduction in execution time overhead is likely to be in the order of the
reduction in number of EA’s, i.e., about 40%.

6.7.2 Error Detection Coverage

In this section we compare the two sets of EA’s with regard to error detection cover-
age, and we do this using two distinct error models: one whereerrors are introduced
at the system input signals only, and one where errors are introduced in random
locations in memory.

Errors in System Input Signals

After having added the EA’s to the system, we performed a set of injection exper-
iments. In these experiments we used the same tool (PROPANE)and setup as we
used for obtaining the estimates of the individual error permeability values (as de-
scribed in Section 6.5.3), i.e., we injected transient single-bit errors in system input
signals.

In Table 6.9 we summarize the results from the injection experiments. The re-
sults are shown for each input signal that was targeted during the experiments. Thenerr column shows how many errors that were active after injection (e.g., we in-
jected a total of 2000 errors inPACNT, and of those 1856 were active, i.e., injected
before the arrestment of an aircraft was not completed). ThevariousEAxcolumns
show the obtained coverage for each individual EA (a dash indicates zero coverage),

136 Chapter 6. Error Propagation and Effect Analysis

Table 6.9: Obtained detection coverage for errors injectedin system input - P-based
and P&E-based placements

Signal nerr EA1 EA2 EA3 EA4 EA5 EA6 EA7 Total

Member of P-set
p

-
p p

- -
p

Member of P&E-set
p p p p p p p

PACNT 1856 0.218 0.105 - 0.975 - - 0.005 0.975
TIC1 3712 - - - - - - - -
TCNT 3712 - - - - - - - -

All 9280 0.062 0.040 - 0.195 - - < 0.001 0.195

calculated asndetnerr . TheTotalcolumn is the combined coverage considering all EA’s.
Each row contains the data for errors injected into one signal except forAll which
shows the coverage obtained for the various EA’s considering all signals. The rows
containing tick-marks indicate which EA’s were part of the P-set and which were
part of the P&E-set (a tick-mark,

p
, indicates membership).

As was indicated by the obtained zero error permeability of the PRESS module,
no errors propagated from input signalADC to intermediate signalIsValue. There-
fore, no errors could be detected by any of the EA’s.

In Table 6.9 we can see that only those errors that were injected intoPACNTwere
detected. This is on par with the results obtained in the propagation analysis which
showed that errors injected into those signals with a very low probability propagated
into any of the signals that were selected to be guarded with an EA. Those errors that
propagate are likely to be hard to detect by the selected mechanisms. However, 97.5
percent of the errors injected intoPACNTwere detected. All errors detected by EA1
(SetValue), EA2 (IsValue) or EA7 (OutValue) were also detected by EA4 (pulscnt).

It may seem odd that EA2, which guardsIsValue, has a non-zero coverage for
errors inPACNT, while no errors injected intoADC could propagate intoIsValue.
This, however, is a result of errors inPACNTpropagating all the way through the
system and out beyond the system barrier where they eventually affect the environ-
ment to such a degree thatADC is affected in a way the PRESS module cannot fully
mask or contain, and the errors are then detected by the EA guarding IsValue.

From Table 6.9 we can observe that the coverage obtained withthe P&E-set of
EA’s (EA1 through EA7) is the same as that obtained with the P-set set of EA’s
(EA1, EA3, EA4, and EA7).

From this we can conclude that if errors can only enter a system via its inputs
signals, making a selection of EA locations based on the propagation profile only is
sufficient from an error detection point of view. From Table 6.8 we can see that this

6.7. Comparing the Two Location Selections 137

Table 6.10: Detection coverage for errors injected periodically in system RAM and
stack for both sets of EA’s

RAM Stack Total
Measure P&E P P&E P P&E Ptot 0.128 0.056 0.042 0.018 0.106 0.046fail 0.811 0.418 0.137 0.031 0.394 0.253nofail 0.111 0.038 0.029 0.017 0.092 0.033

P&E = Propagation & Effect analysis, P = Propagation analysis only

may reduce the resource requirements. The next step in our comparison will inves-
tigate the effect of varying error model on the obtained error detection coverage.

Errors in Random Locations in Memory

Now we take both sets of EA’s–the one selected using only the profile provided by
propagation analysis (Table 6.6) and the one using profiles provided by both the
propagation and the effect analysis (Table 6.7)–and compare them using a more
severe error model. We still use single bit flips to generate data errors, but now
the target will not only be system input signals but also intermediate signals and
module state (a total of 150 locations in RAM and 50 locationsin the stack) of
the system. The errors are injected not only at one point in time but periodically
with a period of 20 milliseconds. The same 25 test cases were used giving us a
total of 200�25 = 5000 runs with injections. An error is said to be detectedif it
is detected at least once during the arrestment. These experiments were performed
on a real setup of the arrestment system (real hardware, realsoftware, simulated
environment—not a simulation run on a desktop computer) using the FIC3-tool (see
[Christmansson and Rimén, 1997] and [Christmanssonet al., 1998] for details).

The results are summarized in Table 6.10. TheRAM-column contains the cov-
erage values for errors injected into the RAM areas of the modules, and theStack-
column the coverage values for errors injected into the stack area. TheTotal-column
contains the coverage for all errors. The measuretot is the total coverage of the
EA-set. The measurefail is the coverage when considering only those errors that
led to system failure (according to the classification of Section 6.5), nofail is for
errors that did not lead to system failure. The same data is depicted in Fig 6.16.

In the columns marked withP&E in Table 6.10 we can see the coverage values
obtained for the EA’s selected by utilizing both the propagation profile and the effect
profile. The coverage values for the system equipped with theEA’s selected using
only the propagation profile are shown in the columns markedP.

138 Chapter 6. Error Propagation and Effect Analysis

0,1
28

0,8
11

0,1
11

0,0
42

0,1
37

0,0
29

 0,1
06

0,3
94

0,0
92

0,0
56

0,4
18

0,0
38

0,0
18

0,0
31

0,0
17

0,0
46

0,2
53

0,0
33

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

C
ov

er
ag

e

P&E P

RAM Stack Total

ctot cfail cnofail ctot cfail cnofail ctot cfail cnofail

Comparison of Error Detection Coverage
(Periodic bit-flips in memory)

Figure 6.16: Comparison of coverage values

The first observation we make when comparing the results for the two sets is
that the coverages for the P-set of EA’s is lower than the coverage obtained using the
P&E-set of EA’s. For errors injected into RAM the coverage isjust over half that
obtained using the full set of EA’s and for errors in stack thedecrease is even greater.
This indicates that using only the propagation profile may prove a weakness if errors
are introduced not only via the inputs of a system, but also via internal variables and
structures.

The results illustrate the important distinction between permeability/exposure
and impact/criticality, where the former is used for profiling software with regard
to its error propagation characteristics and the latter to profile software with regard
to the effect errors would have if they were present in different parts of the system.
This fact is also highlighted and discussed in conjunction with Figs. 6.14 and 6.15.

From these results we can conclude that if errors are introduced not only via
the system input signals, selecting locations for EDM’s andERM’s based on the
propagation profile alone is insufficient. The effect profilemust also be considered.
Even though the profiles have been generated with an error model that introduces
errors only in the inputs of the modules, the combination of the propagation profiles
and the effect profile lessens the impact of this. That is, theprofiles are useful even
in situations where the system under consideration is subjected to an error model
which is different from the one used for profiling.

6.8. Discussion on Framework Limitations and Caveats 139

6.8 Discussion on Framework Limitations and Caveats

In this chapter we have presented an analysis framework for error propagation and
effect analysis. We have also used it in an example study illustrating its ability
to indicate locations for EDM’s and ERM’s. However, there are limitations to the
framework which we highlight in this section.

One limitations is that, when defining the basicerror permeabilitymeasure, we
have only considered direct influence between one input signal and one output signal
of a module. It may be (and in most practical cases, probably is) the case that
the probability of an error propagating from a given input signal to a given output
signal of a module is not independent of errors on other inputsignals. Thus, the
error permeabilityvalues may differ when multiple input signals are erroneousas
compared to when only one input signal is erroneous.

Moreover, the framework currently only considers error propagation and error
effect in a “direct” manner, i.e., we only take into account errors that propagate from
their original locations to system output directly. This means that we do not consider
errors which might at one point propagate out of the system, affect the environment
(the controlled entity) and then get fed back into the systemvia the system input
signals. It could be argued that, if the controlled environment has an inherent inertia
(i.e., minor perturbations on the output signals of the control system do not affect
the environment very much), the probability for this is small. Thus, this may not
present a serious problem, however, one should bear this possibility in mind.

Also, at this point we have in our experiments only considered the basic error
modeltransient bit flips, i.e., an error was introduced by flipping the value of one bit
in one calculation round. Should other error models be used,the results obtained by
propagation and effect analysis may need to be re-estimatedusing the basic approach
outlined in EPIC. Even though the usage of two distinct profiles lessens the impact
of varying error models, one should aim at using an error model as close to the one
assumed for the “real” environment in which the system is designed to operate.

We have not specifically considered cross-linked modules inthe system, i.e.,
situations where the outputs of a moduleM1 are used as inputs to another moduleM2 and vice versa. Such a setup may prove to have an amplifying ora dampening
effect and may have to be modeled separately.

Future work on the EPIC framework will address the limitations mentioned here.
The initial focus, however,will be on the limitation of single input errors and error
models, i.e., we plan to investigate how the results provided by the EPIC frame-
work is affected when multiple input signals are erroneous simultaneously and when
changing the error model to something other than transient bit-flips.

140 Chapter 6. Error Propagation and Effect Analysis

6.9 Summary and Conclusions

In this chapter we have presented the EPIC framework for analysis of the propaga-
tion and effect of data errors in software. The system model assumed in this frame-
work is that software is composed of a set of modules which take in data as signals
and produce output, also as signals. Specifically, the main contributions described
here are:

Software Profiling: The EPIC framework is able to produce distinct profiles of a
given modular software system allowing the assessment of the vulnerability of
software modules and signals to upcoming data errors. Theseprofiles are i) an
error propagation based profile, and ii) an error effect based profile. We intro-
duced the basic measureerror permeabilitydefined on a input/output signal
pair basis from which a set of related measures (both at the signal level and the
module level) can be calculated. The framework has four basic measures all
related to data errors: i) exposure, ii) permeability, iii)impact, and iv) critical-
ity. The first two measures relate to the analysis of error propagation, whereas
the last two measure relate to the analysis of error effect. Thus, the framework
is capable of providing a software designer with two distinct profiles regard-
ing the software system at hand, upon which design decisionsregarding error
detection and recovery can be based. As the framework assumes a black-box
view of the software, its applicability is not limited to software developed
in-house, i.e., it can also be used for software which is provided in libraries
where only interface specifications are provided (e.g. COTScomponents).

Placement of Error Detection and Recovery Mechanisms:Using the profiles
obtained by using the EPIC framework, we have shown how one may interpret
the results, using a set of guide-lines, in order to identifyand select locations
in a software system appropriate for error detection mechanisms (EDM’s) and
error recovery mechanisms (ERM’s). These methods can also pinpoint critical
signals and paths in a system. Trade-offs regarding these location selection
guide-lines that might have to be considered are also discussed.

Experimental Estimation Method: We have described an experimental method
based on fault injection for obtaining estimates for the error permeability val-
ues. This method is based on transient bit-flips occurring atsingle input sig-
nals of the various software modules of the software system.Propagation to
the output signals of the given module is detected by doing a comparison with
“error-free” reference runs (Golden Run Comparisons).

6.9. Summary and Conclusions 141

Example Study: We have conducted an experimental assessment on the soft-
ware of an embedded control system for aircraft arrestment.The results
clearly show that using the presented framework generates knowledge on er-
ror propagation and error effect giving insights into software vulnerabilities
that are very useful when designing dependable systems, especially regard-
ing the selection of locations for EDM’s and ERM’s. The results also illus-
trate that by incorporating less efficient detection and recovery mechanisms
in locations which have high error exposure instead of very efficient mecha-
nisms which are seldom exposed to errors one would most likely get a better
cost/performance ratio. An important conclusion that can be made from the
obtained results is that in addition to the software profiles, the assumed error
model should also be considered in the selection of locations for EDM’s and
ERM’s.

Discussion on limitations:We have identified and discussed some limitations and
caveats of the EPIC framework. This discussion also suggests directions for
future work regarding the EPIC framework.

Concluding this chapter, we state that the presented analysis framework, EPIC,
provides means for software profiling which may provide knowledge pertinent to
dependability engineering in software systems, such that the project resources avail-
able can be allocated in a cost-efficient manner.

142 Chapter 6. Error Propagation and Effect Analysis

CHAPTER7
Summary and Conclusions

By three methods we may learn wisdom: First, by reflection, which is
noblest; second, by imitation, which is easiest; and third by experience,
which is the bitterest.

— Confucius (around 551–479 B.C.)

This thesis investigates some aspects of techniques and mechanisms for analyz-
ing and designing dependable software for embedded controlsystems. Specifically,
mechanisms for the detection and recovery of data errors in variables/signals of em-
bedded software is investigated, as well as methods for analyzing the propagation
and effect of data errors. Furthermore, a tool for analyzingpropagation and effect
of data errors is described. This chapter briefly summarizesthe contributions put
forward in this thesis and attempts to draw conclusions fromthe obtained results.

143

144 Chapter 7. Summary and Conclusions

7.1 Summary of Research Contributions

Here are brief summaries of the results and contribution in this thesis. More detailed
accounts can be found in the respective chapters as indicated.

7.1.1 Error Detection and Recovery Mechanisms

In Chapter 4, mechanisms for error detection and recovery are described and eval-
uated. Error detection is based on the concept ofexecutable assertions, i.e., pieces
of code checking the validity of a certain variable/signal given a set of constraints.
A violation of the specified constraints is defined as an errorand when such a vio-
lation is detected, the mechanisms applyforced validityto the variable/signal, i.e.,
replacing the erroneous data value with one which is as closeto the original value as
possible but still within the valid domain of that variable/signal.

In order to lessen the impact of lack-of-experience on behalf of the system de-
signer regarding the use of software implemented mechanisms for data error detec-
tion and correction, the presented mechanisms are designedas generalized mecha-
nisms which are instantiated with parameters. The parameters for each signal are
predefined according to a certainsignal classificationwhere each class requires a
certain set of parameters. At the top-most level, signals are divided intocontinuous
anddiscretesignals. Below that, there are sub-classes which further narrow down
the required set of parameters or put constraints on them. The actual values of the
parameters are set by the system designer using, e.g., FMECA(Failure Mode, Effect
and Criticality Analysis) or other specifications.

The main limitation for the proposed mechanisms is for discrete signals which
do not have any restrictions in transition between values, i.e., one can only check
that the current value of the signal is actually within the defined domain, and not
the transitions between the values. Such signals may not be very common if the
valid domain contains more than two values. However, a typical, and common,
special case is a boolean signal which can be eithertrueor false. As a transition in a
boolean signal is in most cases triggered by other signals, checking multiple values
within the same test or assertion is likely to detect more errors.

7.1.2 Evaluation of Mechanisms

In order to evaluate the effectiveness of the mechanisms forerror detection and re-
covery presented in Chapter 4, two evaluations were conducted. The chosen exam-
ple target system was an aircraft arresting system, i.e., a system which aids landing

7.1. Summary of Research Contributions 145

aircraft to stop on short runways. This particular system was implemented as a ca-
ble strapped across the runway. A landing aircraft grabs hold of that cable using a
hook and the system then pulls the aircraft opposite to the direction of movement in
order to slow it down to a complete halt. More information on this target is found in
Chapter 3.

In Evaluation 1, the combined effects of error detection and error recovery(i.e.,
error tolerance) was the focus. The most critical signals ofthe system were identified
and equipped with mechanisms. The system was then run with 25different test
cases (combinations of aircraft mass and engaging velocity) while being subjected
to error injections in the monitored signals and random locations in memory, stack
and registers. The results of this evaluation showed that the failure rate for errors
injected into the monitored signals was decreased by 32.56%, while the decrease
in failure rate for errors in random memory, stack and registers was only roughly
4.69%.

The focus ofEvaluation 2was on error detection only. Again, the target system
was equipped with mechanisms (this time with recovery turned off) and run for the
same 25 test cases as before. Errors were injected into the monitored signals and in
random locations in memory and stack areas. The results showed that, on a whole,
errors in the monitored signals were detected with a probability of 74%. If only
those errors that subsequently lead to system failure were taken into account, the
probability of detection was 99.6%. For errors in memory locations, the overall
detection probability was only 12.8% and for errors that lead to system failure it
was 81.1%. Errors in stack were detected with an overall probability of 4.2% and a
probability of 13.7% if only those errors that lead to systemfailure were taken into
account.

The results of the two evaluations performed show that they are best at deal-
ing with errors in the monitored signals. Handling errors innon-monitored areas
requires these errors to propagate into the monitored areasin order to be detected
and recovered. Thus, from the results here one can conclude that in order to make
error detection and recovery as efficient as possible (with regard to the cost of these
mechanisms) it is important to know how errors propagate andwhat their subsequent
effect on system output is.

7.1.3 Error Propagation and Effect Analysis

The results obtained in the evaluation of the error detection and recovery mecha-
nisms made it clear that in order obtain a high coverage, not only the effectiveness
of the mechanisms is important, but also, how error propagate. That is, not only must

146 Chapter 7. Summary and Conclusions

the available mechanisms be good at detecting and recovering errors, they must also
be placed at locations where errors occur or propagate. Thisis especially important
if a limited amount of resources is available for dependability purposes (which is
the case for most consumer and/or low-cost systems). Analyzing the propagation
of errors allows the profiling of software with regard to weaknesses and hot-spots–
locations in the software which let errors pass through and/or location which attract
propagating errors.

A propagation profile of a software system can in some cases beinadequate for
selecting where to place error detection and recovery mechanisms. A location which
attracts errors with a very small probability may be such that should an error occur
at that location it would cause very much damage. Thus, the propagation profile of a
software system has to be complemented with an effect profile, showing how much
damage an error in different locations could cause.

In Chapter 6, an analysis framework is presented which enables system designers
to profile software systems such that vulnerable modules andsignals/variables can
be identified. The framework introduces four basic measures: (i) Exposure, (ii) Per-
meability, (iii) Impact, and (iv)Criticality, and thus is called EPIC. This framework
is able to produce the two distinct quantitative profiles mentioned above, namely:
(i) a propagation profile (usingexposureandpermeability), and (ii) an effect profile
(using impactandcriticality). The propagation profile shows how errors propagate
through the software system, and the effect analysis shows to what extent errors in
the various signals/variables affect system output.

EPIC is mainly focused towards black-box modular software,i.e., modular soft-
ware where only the I/O-characteristics and basic functionality is known and the
internals of the modules is either unknown or unchangeable.

A fault-injection approach for estimating the measures of the framework is also
introduced. Here, errors are injected into each individualinput signal of a module
and the output signals are observed for any differences compared to reference runs
(i.e., using classical Golden Run Comparison).

7.1.4 Evaluation of Analysis Framework

The analysis framework, EPIC, presented in Chapter 6 is evaluated on real software
in order to illustrate its applicability. The target systemis again the aircraft arresting
system used in the evaluation of the error detection and recovery mechanisms. The
introduced approach for estimating the various measures inthe EPIC framework was
used and two distinct profiles created. Using the profiles, two sets of mechanisms for
error detection were created. One set was selected based on the propagation profile

7.1. Summary of Research Contributions 147

only and contained four mechanisms, and one set was selectedbased on both the
propagation profile and the effect profile and contained seven mechanisms.

Two versions of the target system were created, one for each set of mechanisms.
The two versions were then subjected to error injection withtwo different error
models: i) errors are introduced at the system input signalsonly, and ii) error are
introduced in random locations in memory and stack areas. The results show that
the error detection coverage obtained for the first error model was the same for both
sets of error detection mechanisms. Thus, in this case the first set is to be preferred
as it consumes less resources than the second set (four mechanisms versus seven
mechanisms). For the second error model, the error detection coverage was higher
for the second set of mechanisms than the first set. In this case errors were introduced
in random locations in memory and the second set of mechanisms monitored also
those signals into which errors were not likely to propagate. Thus, low probability
errors were detected more easily by the second error set thanthe first.

The results of the experiment with EPIC show that software profiling with regard
to error propagation and error effect can facilitate rigorous selection of locations for
error detection and recovery mechanisms. It also shows thatthe error model one
assumes the system will be subject to during operation does greatly affect the error
detection coverage obtained for a given setup of mechanisms. This shows that a
propagation profile alone may not always for be sufficient andthat other profiles
have to be used.

7.1.5 Tool for Analyzing Error Propagation

To be able to perform the evaluation of EPIC, a tool-suite called PROPANE, the
Propagation Analysis Environment, was developed. PROPANEis a so called SWIFI
(SoftWare Implemented Fault Injection) tool, i.e., it injects faults and errors into its
target using software, and is capable of tracing the values of variables in software
such that error propagation and error effect can be analyzed. PROPANE can also
log events which enables the evaluation of error detection and recovery mechanisms.
There are vast extension possibilities, enabling users to construct their own injectors
and logging probes, making PROPANE a very versatile tool.

The results that can be obtained from PROPANE “out-of-the-box” contain basic
propagation analysis in the form of propagation graphs and propagation summaries.
However, PROPANE will also compile the raw readouts from experiments such that
further analysis can be performed using other tools. For instance, in the evaluation
of EPIC, Matlab and MS Excel were used for the final analysis and generation of
estimates of the measures.

148 Chapter 7. Summary and Conclusions

PROPANE is a pure software-based tool, implemented in ANSI C, which facil-
itates porting it to different platforms. At this point in time, PROPANE is available
for WIN32-systems (such as Windows 2000/XP). The injectionand logging func-
tions are packaged in a static library which is linked together with the target system.
Therefore, PROPANE can be used together with a vast range of applications of var-
ied types.

7.2 Conclusions

As software is more and more becoming that part of a computer system which de-
fines its functionality, and as computer systems are used more frequently in con-
sumer and other low-cost products, the demands for inexpensive dependability is
increasing. Therefor, the search for techniques and methods for designing and an-
alyzing dependable software for computer nodes in embeddedsystems is an active
area. Thus, as stated in Chapter 1, the main goal of the work presented in this thesis
has been to find and evaluate new construction methods for dependable computer
nodes with little amount of redundancy in (possibly distributed) control systems.

The mechanisms for error detection and error recovery proposed and evaluated
in Chapter 4 seem to be able to provide good error detection coverage for errors
in the monitored areas, although they do not perform any intricate tests. Thus, ex-
ecutable assertions should be viewed as viable mechanisms for detection of data
errors in embedded software.

The recovery on the other hand seems to have room for improvement. One
reason for the low recovery rate exhibited by these mechanisms can be the error
model used in the evaluation. As this error model was a very aggressive (almost
vicious) one where errors were injected periodically with no relation to the period
of the software, any recovery efforts are sure to have been invain in many cases.
Further evaluation with other error models may show other results. For example,
one evaluation to perform would be recovery of one single error at one point in time
during the arresting of an aircraft.

From the results of the evaluation of the mechanisms one can also conclude that
adding error detection and recovery mechanisms to a given software system can
benefit greatly from having knowledge of the propagation characteristics of the soft-
ware. Therefore, the EPIC framework was introduced in Chapter 6. In experiments
with this framework, it was shown that it can generate software profiles for error
propagation characteristics and for error effect characteristics. Using these profiles,
a system developer can select locations in the software which should be considered
for placement of detection and recovery mechanisms, i.e., locations which attract

7.2. Conclusions 149

or promote propagating errors and/or locations which, whenerroneous, have a high
probability of affecting the output (and therefore the behavior) of the system.

The limitations of EPIC include the fact that the framework is based on the no-
tion of error permeabilitywhich at this point only considers single errors individual
signals. That is, only one signal was assumed to erroneous atany one time when
defining the expressions for the measures. In reality, of course, multiple signals can
be erroneous simultaneously. However, the profiling capabilities of EPIC should
still be useful for system developers.

Another limitation, or question-mark rather, regarding EPIC is the issue of inter-
nal feedback loops across modules (cross-linked modules).At this point, the frame-
work handles feedback loops within a single module. However, if there is feedback
spanning multiple modules (i.e., a situation where the output of a moduleM1 is
used as input to another moduleM2 and vice versa) this may have to be handled
separately.

PROPANE, the tool developed for the evaluation of EPIC, and described in
Chapter 5, is tool which can be useful on its own, without having to use the EPIC
framework. An example study performed with the tool showed that basic propaga-
tion analysis can be performed with the tool. however, this propagation analysis is
at the signal level only, i.e., it may not scale so easily if many signals are considered
in the analysis. On the other hand, the tool is automated to such a degree that the
problems with scaling mainly are with regard to the amount ofdata that is produced
in the evaluations. Thus, it is more of a hardware resource/storage problem than a
problem with the approach used by the tool.

150 Chapter 7. Summary and Conclusions

CHAPTER8
Outlook on Future Work

Science... never solves a problem without creating ten more.

— George Bernard Shaw (1856–1950)

In the process of investigating various questions and trying to find solutions
to problems, one of course always stumbles across new questions and problems.
Unfortunately (or fortunately?), the time allotted for a PhD thesis is limited and
thus, some things have to either be skipped or have to wait until an opportunity
presents itself where these new questions and problems can be addressed. This
chapter contains a brief summary of the questions that had tobe put aside while
doing the work in this thesis. Hopefully, a chance to dive further into these topics
will come up in the future.

151

152 Chapter 8. Outlook on Future Work

8.1 The Future and Executable Assertions

As shown by the results in this thesis, executable assertions can be very efficient as
error detection mechanisms in software. The method used here for design of these
methods is to have generic parameterized mechanisms and instantiate them for each
given variable/signal.

An interesting problem is whether the design of executable assertion can be fur-
ther automated. This problem has been addressed in [Jhumkaet al., 2002(a)] and
will be further investigated in the future.

The executable assertions in this thesis are aimed at individual signals. Perhaps
a better result can be obtained if multiple signals are considered together as intricate
relations between several values can be monitored? An initial investigation of this is
also part of [Jhumkaet al., 2002(a)].

In [Askerdalet al., 2002], work on model based analysis of control systems has
been investigated. This is a path that should be further investigated as this is inde-
pendent of the implementation details of the system and onlyconsiders the actual
functionality.

8.2 The Future and Software Analysis

Analyzing software to find weaknesses and create various profiles of the character-
istics should be investigated further as this can provide a substantial help for system
designers when deciding upon design issues of dependability mechanisms, on re-
source allocations, on architectural and policy issues, etc.

An interesting question to investigate further is whether static analysis of soft-
ware (source code, designs, etc.) can be used to identify potential weaknesses. If,
for example, a statistical correlation can be found betweensome static metric ob-
tained from the source code of a system and the measures obtained by the EPIC
framework, perhaps the dynamic analysis performed in this thesis can be made stat-
ically instead? The benefits here would be shortened analysis time and thus easier
adoption by industry.

Another take on static analysis is to investigate whether estimates oferror per-
meabilitycan be obtained by static analysis, for instance methods related to data flow
analysis, can be used instead. Again, not having to run long and resource demanding
experiments will probably make industry adopt such an approach more easily.

At this point, EPIC is mainly focused towards single-node software. Even
though no explicit assumptions have been made that limit itsuse in a distributed

8.3. The Future and PROPANE 153

setting, this has not been fully investigated. Thus, applying the proposed software
analysis methods on distributed systems should be part of future endeavors.

The work up to this point has been focused on data errors and onreliability
and safety. Future directions should contain also control flow errors, and also gear
towards security (e.g., data integrity, confidentiality) etc.

The analysis frame work presented in this thesis assumes a black-box view on
modular software. Relaxing this assumption to include gray-box, or even white-
box, knowledge of software may perhaps make it possible to provide even further
information to software designers in the development and composition of software
modules. This direction has been initialized in [Jhumkaet al., 2002(b)].

8.3 The Future and PROPANE

One aim for the future is to further develop PROPANE and make it available for
free (including source code) for academic use. This way, thetool would likely be
improved as more people take a look at its innards. Furthermore, experimental tech-
niques for dependability evaluations are distributed suchthat more people have easy
access to such methodologies.

Even though PROPANE can be augmented by the user to include virtually any
kind of error model, it will be expanded to provide more built-in error types and error
triggers than it does today. For example, one may want to inject a set of different
errors in a given sequence or at various points in time (not just at one point in time
or periodical).

Another issue to further expand in PROPANE is automation. Atthis point,
PROPANE has automated the instrumentation, basic setup, experiment execution,
and analysis. However, each step has to be initiated manually. Thus, one aspect
that should be addressed is to make the total chain automatic, i.e., the user provides
source code and basic description of the architecture of thesystem, and PROPANE
then automatically produces the propagation and effect profiles and suggests main
locations where (increased) EDM and ERM capability should be considered.

8.4 The Future and The Rest

Going to the distributed world opens up many areas which may not be closely re-
lated to the work presented in this thesis. For instance, communication protocols,
distributed fault tolerance and adaptive systems, self-stabilization, etc.

154 Chapter 8. Outlook on Future Work

In the area of experimental validation of fault-tolerance,there are open issues
in representativeness of fault and error models used in the injection experiments.
Perhaps also other injection approaches can be devised.

There is really no end to the possibilities...

Bibliography

[Ammann and Knight, 1988] Ammann P.E. and Knight J.C., “DataDiversity: An Approach
To Software Fault Tolerance”, IEEE Transactions on Computers, Vol. 37, No.
4, pp. 418–425, 1988

[Anderson and Lee, 1982] Anderson T. and Lee P.A., “Fault Tolerance Terminology Pro-
posals”, Proceedings of the 12th International Symposium on Fault-Tolerant
Computing, pp. 29–33, 1982

[Andrews, 1979] Andrews D.M., “Using Executable Assertions for Testing and Fault Toler-
ance”, Proceedings 9th International Symposium on Fault-Tolerant Computing,
pp. 102–105,1979

[Arlat et al., 1990] Arlat J., Aguera M., Amat L., Crouzet Y., Fabre J.-C.,Laprie J.-C.,
Martins E., and Powell D., “Fault Injection for Dependability Validation: A
Methodology and Some Applications”, IEEE Transactions On Software Engi-
neering, Vol. 16, No. 2, pp. 166–182, Feb., 1990

[Arlat et al., 1993] Arlat J., Costes A., Crouzet Y., Laprie J.-C., and Powell D., “Fault In-
jection and Dependability Evaluation of Fault Tolerant Systems”, IEEE Trans-
actions on Computers, Vol. 42, No. 8, pp. 913–923, 1993

[Askerdalet al., 2002] Askerdal̈O., Gäfvert M., Hiller M., and Suri N., “A Control Theory
Approach for Analyzing the Effects of Data Errors in Safety-Critical Control
Systems”,to appear inProceedings of the Pacific Rim International Symposium
on Dependable Computing (PRDC), 2002

[Avizienis and Chen, 1977] Avizienis A. and Chen L., “On The Implementation Of N-
Version Programming for Software Fault-Tolerance During Program Execu-
tion”, Proceedings of the 1977 International Conference onComputer Software
and Applications, pp. 149–155, 1977

[Avizienis, 1985] Avizienis A., “The N-Version Approach toFault-Tolerant Software”,
IEEE Transactions on Software Engineering, Vol. 11, No. 12,pp. 1491–1501,
1985

[Bartonet al., 1990] Barton J.H., Czeck E.W., Segall Z.Z., and Siewiorek D.P., “Fault In-
jection Experiments Using FIAT”, IEEE Transactions on Computers, Vol. 39,
No. 4, pp. 575–582, 1990

155

156 Bibliography

[Carreiraet al., 1995] Carreira J., Madeira H., and Silva J., “Xception: Software Fault In-
jection and Monitoring in Processor Functional Units”, International IFIP Con-
ference on Dependable Computing for Critical Applications(DCCA-5), pp.
135–149, 1995

[Carreiraet al., 1998] Carreira J., Madeira H., and Silva J.G., “Xception: ATechnique for
the Experimental Evaluation of Dependability in Modern Computers”, IEEE
Transactions on Software Engineering, Vol. 24, No. 2, pp. 125–136, Feb., 1998

[Chandraet al., 2000] Chandra R., Lefever R.M., Cukier M., and Sanders W.H., “Loki:
A State-Driven Fault Injector for Distributed Systems”, Proceedings of the In-
ternational Conference on Dependable Systems and Networks(DSN’00), pp.
237–242, 2000

[Chillarege and Bowen, 1989] Chillarege R. and Bowen N.S., “Understanding Large Sys-
tem Failures - A Fault Injection Experiment”, Proceedings of the 19th Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-19), pp. 356–363, 1989

[Chillaregeet al., 1992] Chillarege R., Bhandari I.S., Chaar J.K., Halliday M.J., Moebius
D.S., Ray B.K., and Wong M.-Y., “Orthogonal Defect Classification - A Con-
cept for In-Process Measurements”, IEEE Transactions on Software Engineer-
ing, Vol. 18, No. 11, pp. 943–956, 1992

[Chillaregeet al., 2002] Chillarege R., Goswami K., and Devarakonda M., “Error Propaga-
tion Decreases Confirming the Effect of Failure Acceleration in Fault Injection”
(to appear in) Proceedings of the 13th International Symposium on Software
Reliability Engineering (ISSRE-02), 2002

[Christmansson and Chillarege, 1996] Christmansson J. andChillarege R., “Generation of
an Error Set that Emulates Software Faults Based on Field Data”, Proceedings
of the 26th International Symposium on Fault-Tolerant Computing (FTCS-26),
pp. 304–313, 1996

[Christmansson and Santhanam, 1996] Christmansson J. and Santhanam P., “Error Injec-
tion Aimed at Fault Removal in Fault Tolerance Mechanisms”,Proceedings of
the 7th International Symposium on Software Reliability Engineering (ISSRE-
96), pp. 175–184, 1996

[Christmansson and Rimén, 1997] Christmansson J. and Rim´en M., “A Fault Injection Con-
trol Campaign Computer (FIC3)”, Technical Report CE/298, Department of
Computer Engineering, Chalmers University of Technology,1997

[Christmanssonet al., 1998] Christmansson J., Hiller M., and Rimén M., “An Experimen-
tal Comparison of Fault and Error Injection”, Proceedings of the 9th Interna-
tional Symposium on Software Reliability Engineering (ISSRE-98), pp. 369–
378, 1998

Bibliography 157

[Clarke and Wing, 1996] Clarke E. M. and Wing J. M. “Formal Methods: State of the Art
and Future Directions”, ACM Computing Surveys, Vol. 28, No.4, pp. 626–643,
1996

[Clegg and Marzullo, 1997] Clegg M. and Marzullo K., “Predicting Physical Processes in
the Presence of Faulty Sensor Readings”, Proceedings of the27th, International
Symposium on Fault-Tolerant Computing (FTCS-27), pp. 373–378, 1997

[Csertánet al., 1995] Csertán Gy., Pataricza A., and Selényi E., “Dependability Analysis
in HW-SW Codesign”, Proceedings of the International Computer Performance
and Dependability Symposium (IPDS’95), pp. 306–315, 1995.

[Cukieret al., 1999] Cukier M., Chandra R., Henke D., Pistole J., and Sanders W.H., “Fault
Injection Based on a Partial View of the Global State of a Distributed System”,
Proceedings of the Symposium on Reliable Distributed Systems (SRDS’99),
pp. 168–177, 1999

[Devarakondaet al., 1990] Devarakonda M., Goswami K., and Chillarege R., “Failure
Characterization of the NFS Using Fault Injection”, IBM Research Report, RC
16342, 12/5/90, 1990

[Echtle and Masum, 1996] Echtle K. and Masum A., “A multiple bus broadcast protocol
resilient to non-cooperative Byzantine faults”, Proceedings of the 26th Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-26), pp. 158–167, 1996

[Fabreet al., 1999] Fabre J.-C., Salles F., Rodriguez Moreno M., and Arlat J., “Assessment
of COTS Microkernels by Fault Injection”, Proceedings of the International
IFIP Conference on Dependable Computing for Critical Applications (DCCA-
7), pp. 25–44, 1999

[Folkesson, 1999] Folkesson P., “Assessment and Comparison of Physical Fault Injection
Techniques”, Ph.D. thesis, Technical Report No. 377, Department of Computer
Engineering, Chalmers University of Technology, Sweden, 1999

[Fujiwara and Shimono, 1983] Fujiwara H. and Shimono T., “Onthe Acceleration of Test
Generation Algorithms”, Proceedings of the 13th International Symposium on
Fault-Tolerant Computing (FTCS-13), pp. 98–105, 1983

[Geoghegan and Avresky, 1996] Geoghegan S. J. and Avresky D., “Method for Designing
and Placing Check Sets based on Control Flow Analysis of Programs”, Pro-
ceedings of the International Symposium on Software Reliability Engineering,
(ISSRE’96), pp. 256–265, 1996.

[GML, web-link] Information aboutGML, the Graph Modelling Language, and related
tools is found at http://www.infosun.fmi.uni-passau.de/Graphlet/GML

158 Bibliography

[Goel, 1981] Goel P., “An Implicit Enumeration Algorithm toGenerate Tests for Combi-
national Logic Circuits”, IEEE Transactions on Computers,Vol. 30, No. 3, pp.
215–222, 1981

[Goswami and Iyer, 1991] Goswami K.K. and Iyer R., “A Simulation-Based Study of a
Triple Modular Redundant System using DEPEND”, Proceedings of the 5th
International Tests, Diagnosis, Fault Treatment Conference, pp. 300–311, 1991

[Goswami, 1997] Goswami K.K., Iyer R.K., and Young L., “DEPEND: A Simulation-
Based Environment for System Level Dependability Analysis”, IEEE Trans-
actions on Computers, Vol. 46, No. 1, pp. 60–74, Jan., 1997

[Gough and Klaeren, 1997] Gough K.J. and Klaeren H., “Executable Assertions and Sep-
arate Compilation”, Proceedings of the Joint Modular Languages Conference
(JMLC’97), pp. 41–52, 1997

[Graphviz, web-link] Information about the tool suite to which dot belongs is found at
http://www.research.att.com/sw/tools/graphviz

[Gunnefloet al., 1989] Gunneflo U., Karlsson J., and Torin J., “Evaluation ofError Detec-
tion Schemes Using Fault Injection By Heavy-Ion Radiation”, Proceedings of
the 19th International Symposium on Fault-Tolerant Computing (FTCS-19), pp.
340–347, 1989

[Hanet al., 1995] Han S., Shin K.G., and Rosenberg H.A., “DOCTOR: An IntegrateD
SOftware Fault InjeCTiOn EnviRonment for Distributed Real-Time System”,
Proceedings of the International Computer Performance andDependability
Symposium (IPDS’95), pp. 204–213, 1995

[Hecht, 1976] Hecht H., “Fault-Tolerant Software for Real-Time Applications”, ACM
Computing Surveys, Vol. 8, No. 4, pp. 391–407, 1976

[Hiller, 1998] Hiller M., “Software Fault Tolerance Techniques from a Real-Time Sys-
tems Point of View: An Overview”,Technical Report CE/98-16, Department
of Computer Engineering, Chalmers University of Technology, Sweden, (avail-
able at http://www.ce.chalmers.se/staff/hiller/), 1998

[Hiller, 1999] Hiller M., “Error Recovery Using Forced Validity Assisted by Executable
Assertions for Error Detection: An Experimental Evaluation”, Proceedings of
the 25th EUROMICRO Conference, Vol. II, pp. 105–112, 1999

[Hiller, 2000(a)] Hiller M., “Executable Assertions for Detecting Data Errors in Embedded
Control Systems”, Proceedings of the International Conference on Dependable
Systems and Networks (DSN’00), pp. 24–33, 2000

Bibliography 159

[Hiller, 2000(b)] Hiller M., “A Tool for Examining the Behaviour of Faults and Er-
rors in Software”, Technical Report CE/00-19, Department of Computer
Engineering, Chalmers University of Technology, Sweden, (available at
http://www.ce.chalmers.se/staff/hiller/), 2000

[Hiller et al., 2001] Hiller M., Jhumka A., and Suri N., “An Approach for Analysing the
Propagation of Data Errors in Software”, Proceedings of theInternational Con-
ference on Dependable Systems and Networks (DSN’01), pp. 161–170, 2001

[Hiller et al., 2002(a)] Hiller M., Jhumka A., and Suri N., “On the Placement of Software
Mechanisms for Detection of Data Errors”, Proceedings of the International
Conference on Dependable Systems and Networks (DSN’02), pp. 135–144,
2002

[Hiller et al., 2002(b)] Hiller M., Jhumka A., and Suri N., “PROPANE: An Environment
for Examining the Propagation of Errors in Software”, Proceedings of the In-
ternational Symposium on Software Testing and Analysis (ISSTA’02), ACM
Software Engineering Notes (SEN), Vol. 27, No. 4, pp. 81–85,2002

[Horninget al., 1974] Horning J.J, Lauer H.C., Melliar-Smith P.M., and Randell B., “A Pro-
gram Structure for Error Detection And Recovery”, Lecture Notes in Computer
Science (LNCS), Vol. 16, pp. 172–187, 1974

[Hudaket al., 1993] Hudak J.J., Suh B.-H., Siewiorek D.P., and Segall Z.,“Evaluation and
Comparison of Fault-Tolerant Software Techniques”, IEEE Transactions on Re-
liability, Vol. 42, No. 2, pp. 190–204, June, 1993

[Iyer et al., 1990] Iyer R.K., Young L.T., and Iyer P.V.K., “Automatic Recognition of Inter-
mittent Failures: An Experimental Study of Field Data”, IEEE Transactions on
Computers, Vol. 39, No. 4, pp. 525–537, 1990

[Iyer, 1995] Iyer R.K., “Experimental Evaluation”, Special Issue FTCS-25 Silver Jubilee,
25th International Symposium on Fault-Tolerant Computing (FTCS-25), pp.
115–132, 1995

[Iyer and Tang, 1996] Iyer R.K. and Tang D., “Experimental Analysis of Computer System
Dependability”, Chapter 5 inFault-Tolerant Computer System Design(ed. D.K.
Pradhan), Prentice Hall, 1996

[Jennet al., 1994] Jenn E., Arlat J., Rimén M., Ohlsson J., and KarlssonJ., “Fault Injection
into VHDL Models: The MEFISTO Tool”, Proceedings of the 24th Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-24), pp. 66–75, 1994

[Jhumkaet al., 2001] Jhumka A., Hiller M., and Suri N., “Assessing Inter-modular Error
Propagation in Distributed Software”, Proceedings of the Symposium on Reli-
able Distributed Systems (SRDS’01), pp. 152–161, 2001

160 Bibliography

[Jhumkaet al., 2002(a)] Jhumka A., Hiller M., and Suri N., “On Systematic Design of
Consistent Executable Assertions for Distributed Embedded Software”, Pro-
ceedings of the ACM Joint Conference Languages Compilers and Tools
for Embedded Systems/Software and Compilers for Embedded Systems
(LCTES/SCOPES), pp. 74–83, 2002

[Jhumkaet al., 2002(b)] Jhumka A., Hiller M., and Suri N., “Component-Based Synthe-
sis of Dependable Embedded Software”, Proceedings of the 7th International
Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems
(FTRTFT’02), Lecture notes on Computer Science (LNCS) 2469, pp. 111–128,
2002

[Kanawatiet al., 1995] Kanawati G.A., Kanawati N.A., and Abraham J.A., “FERRARI: A
Flexible Software-Based Fault and Error Injection System”, IEEE Transactions
on Computers, Vol. 44, No. 2, pp. 248–260, February, 1995

[Kao, 1994] Kao W.L., “Experimental Study of Software Dependability”, Ph.D. thesis,
Technical report CRHC-94-16, Department of Computer Science, University
of Illinois at Urbana-Champaign, Illinois, 1994

[Kao and Iyer, 1995] Kao W.-l. and Iyer R.K., “DEFINE: A Distributed Fault Injection
and Monitoring Environment”, Proceedings of the IEEE Workshop on Fault-
Tolerant Parallel and Distributed Systems, pp. 252–259, 1995

[Kim, 1989] Kim K.H. and Welch H.O., “The Distributed Execution of Recovery Blocks:
An Approach to Uniform Treatment of Hardware and Software Faults in Real-
Time Applications”, IEEE Transaction on Computers, Vol. 38, No. 5, pp. 626–
636, 1989

[Knight and Leveson, 1986] Knight J.C. and Leveson N.G., “AnExperimental Evalua-
tion of the Assumption of Independence in Multiversion Programming”, IEEE
Transactions on Software Engineering, Vol. 12, No. 1, pp. 96–109, 1986

[Koga and Kolasinski, 1984] Koga R. and Kolasinski W., “Heavy-ion Induced Single Event
Upsets of Microcircuits; A Summary of the Aerospace Corporation Test Data”,
IEEE Transaction on Nuclear Science, Vol. 31, No. 6, pp. 1190–1195, 1984

[Laprieet al., 1987] Laprie J.-C., Arlat J., Béounes C., Kanoun K., and Hourtolle C.,
“Hardware- and Software-Fault Tolerance: Definition and Analysis of Archi-
tectural Solutions”, Proceedings of the 17th International Symposium on Fault-
Tolerant Computing (FTCS-17), pp. 116–121, 1987

[Laprie (ed.), 1992] Laprie J.-C. (ed.), “Dependability: Basic Concepts and Terminology”,
Dependable Computing and Fault-Tolerant Systems series, Vol. 5, Springer-
Verlag, 1992

Bibliography 161

[Laprie, 1995] Laprie J.-C., “Dependable Computing: Concepts, Limits, Challenges”, Pro-
ceedings of the 25th International Symposium on Fault-Tolerant Computing
(FTCS-25), pp. 42–54, 1995.

[Lee, 1978] Lee P.A., “A Reconsideration of the Recovery Block Scheme”, Computer Jour-
nal, Vol. 21, No. 4, pp. 306–310, 1978

[Lee and Anderson (ed.), 1990] Lee P.A and Andersson T. (ed.), “Fault Tolerance - Princi-
ples and Practice”, Dependable Computing and Fault-Tolerant Systems Series,
Vol. 3, Second Edition, Springer Verlag, 1990

[Levesonet al., 1990] Leveson N.G., Cha S.S., Knight J.C., and Shimeall T.J., “The Use
of Self Checks and Voting in Software Error Detection: An Empirical Study”,
IEEE Transactions on Software Engineering, Vol. 16, No. 4, pp. 432–443, 1990

[Lyu (ed.), 1995] Lyu M.R. (ed.), “Handbook of Software Reliability Engineering”, ISBN
0-07-039400-8, McGraw-Hill, 1995

[Madeiraet al., 1994] Madeira H., Rela M., Moreira F., and Silva J.G., “RIFLE: A General
Purpose Pin-level Fault Injector”, Proceedings of the 1st European Dependable
Computing Conference (EDCC-1), pp. 199–216, 1994

[Mahmoodet al., 1984] Mahmood A., Andrews D.M., and McCluskey E.J., “Executable
Assertions and Flight Software”, Proceedings of the 6th AIAA/IEEE Digital
Avionics Systems Conference (DASC-6), pp. 346–351, 1984

[McMillin and Ni, 1988] McMillin B.M. and Ni L.M., “Executable Assertions Develop-
ment for the Distributed Parallel Environment”, Proceedings of the 23th In-
ternational Symposium on Fault-Tolerant Computing (FTCS-23), pp. 228–237,
1993

[Michael and Jones, 1997] Michael C. C. and Jones R. C., “On the Uniformity of Error
Propagation in Software”, Proceedings of the International Conference on Com-
puter Assurance (COMPASS’97), pp. 68–76, 1997

[Morell et al., 1997] Morell L., Murrill B., and Rand R., “Perturbation Analysis of Com-
puter Programs”, Proceedings of the International Conference on Computer As-
surance (COMPASS’97), pp. 77–87, 1997

[Powellet al., 1995] Powell D., Martins E., Arlat J., and Crouzet Y., “Estimators for Fault
Tolerance Coverage Evaluation”, IEEE Transactions on Computers, Vol. 44,
No. 2, pp. 261–274, 1995

[Rabéjacet al., 1996] Rabéjac C., Blanquart J.-P., and Queille J.-P., “Executable Assertions
and Timed Traces for On-Line Software Error Detection”, Proceedings of the
26th International Symposium on Fault-Tolerant Computing (FTCS-26), pp.
138–147, 1996

162 Bibliography

[Randell, 1975] Randell B., “System Structure for SoftwareFault-Tolerance”, IEEE Trans-
actions on Software Engineering, Vol. 1, No. 2, pp. 220–232,1975

[Randellet al., 1978] Randell B., Lee P.A., and Treleaven P.C., “Reliability Issues in Com-
puting System Design”, Computing Surveys, Vol. 10, pp. 123–165, 1978

[Randell and Xu, 1995] Randell B. and Xu J., “The evolution ofthe recovery block con-
cept”, Chapter 1 inSoftware Fault Tolerance, Lyu M.R. (ed.), Wiley & Sons,
1995

[Riménet al., 1994] Rimén M., Ohlsson J., and Torin J., “On Microprocessor Error Behav-
ior Modeling”, Proceedings 24th International Symposium on Fault-Tolerant
Computing (FTCS-24), pp. 76–85, 1994

[Rosenblum, 1995] Rosenblum D.S., “A Practical Approach toProgramming with Asser-
tions”, IEEE Transactions on Software Engineering, Vol. 21, No. 1, pp. 19–13,
1995

[Roth, 1980] Roth J.P.,Computer Logic, Testing and Verification, Computer Press, 1980.

[Saib, 1978] Saib S.H., “Executable Assertions - An Aid To Reliable Software”, Proceed-
ings of the 11th Asilomar Conference on Circuits, Systems and Computers, pp.
277–281, 1978.

[Salles, 1999] Salles F., Rodriguez M., Fabre J.C., and Arlat J., “MetaKernels and Fault
Containment Wrappers”, Proceedings of the 29th International Symposium on
Fault-Tolerant Computing (FTCS-29), pp. 22–29, 1999.

[Scottet al., 1983] Scott R.K., Gault J.W., and McAllister D.F., “The Consensus Recovery
Block”, Proceedings of the Total System Reliability Symposium, pp. 74–85,
1983

[Segallet al., 1988] Segall Z., Vrsalovic D., Siewiorek D., Yaskin D., Kownacki J., Barton
J., Dancey R., Robinson A., and Lin T., “FIAT – Fault-Injection based Au-
tomated Testing environment”, Proceedings 18th International Symposium on
Fault-Tolerant Computing (FTCS-18), pp. 102–107, 1988

[Shin and Lin, 1988] Shin K. G. and Lin T.-H., “Modeling and Measurement of Error Prop-
agation in a Multimodule Computing System”, IEEE Transactions on Comput-
ers, Vol. 37, No. 9, pp. 1053–1066, 1988

[Steininger and Scherrer, 1997] Steininger A. and ScherrerC., “On Finding an Optimal
Combination of Error Detection Mechanisms Based on Resultsof Fault In-
jection Experiments”, Proceedings 27th International Symposium on Fault-
Tolerant Computing (FTCS-27), pp. 238–247, 1997

Bibliography 163

[Siehet al., 1997] Sieh V., Tschäche O. and Balbach F., “VERIFY: Evaluation of Reliability
Using VHDL-Models with Embedded Fault Descriptions”, Proceedings of the
27th International Symposium on Fault-Tolerant Computing (FTCS-27), pp.
32–36, 1997

[Sinha and Suri, 1999] Sinha P. and Suri N., “On the Use of Formal Techniques for Analyz-
ing Dependable Real-Time Protocols”, Proceedings of the Real-Time Systems
Symposium (RTSS’99), pp. 126–135, 1999

[Stottet al., 2000] Stott D.T., Floering B., Burke D., Kalbarczyk Z., andIyer R., “NF-
TAPE: A Framework for Assessing Dependability in Distributed Systems with
Lightweight Fault Injectors.”, Proceedings of the 4th International Computer
Performance and Dependability Symposium (IPDS’00), pp. 91–100, 2000

[Stroph and Clarke, 1998] Stroph R. and Clarke T., “Dynamic Acceptance Tests for Com-
plex Controllers”, Proceedings of the 24th EUROMICRO Conference, pp. 411–
417, 1998

[Sullivan and Chillarege, 1991] Sullivan M. and ChillaregeR., “Software Defects and their
Impact on System Availability - a Study of Field Failures in Operating Sys-
tems”, Proceedings of the 21st International Symposium on Fault-Tolerant
Computing (FTCS-21), pp. 2–9, 1991

[Suri and Sinha, 1998] Suri N. and Sinha P., “On the Use of Formal Techniques for Val-
idation”, Proceedings of the 28th International Symposiumon Fault-Tolerant
Computing (FTCS-28), pp. 390–399, 1998

[Tsai and Iyer, 1996] Tsai T.K. and Iyer R.K., “An Approach towards Benchmarking of
Fault-Tolerant Commercial Systems”, Proceedings of the 26th International
Symposium on Fault-Tolerant Computing (FTCS-26), pp. 314–325, 1996

[USAF, 1986] US Air Force - 99, “MIL-SPEC: Aircraft Arresting System BAK-12A/E32A;
Portable, Rotary Friction”, MIL-A-38202C, Notice 1, US Dept. of Defense,
Sept. 2, 1986

[Voas and Morell, 1990] Voas J. and Morell L. J., “Propagation and Infection Analysis
(PIA) Applied to Debugging”, Proceedings of Southeastcon’90, pp. 379–383,
1990

[Voas, 1992] Voas J., “PIE: A Dynamic Failure-Based Technique”, IEEE Transactions on
Software Engineering, Vol. 18, No. 8, pp. 717–727, 1992

[Voaset al., 1998] Voas J., Charron F., and Beltracchi L., “Error Propagation Analysis
Studies in a Nuclear Research Code”, Proceedings of the IEEEAerospace Con-
ference, Vol. 4, pp. 115–121, 1998

164 Bibliography

[Walter, 1990] Walter C.J., “Evaluation and Design of an Ultra-Reliable Distributed Archi-
tecture for Fault-Tolerance”, IEEE Transactions on Reliability, Vol. 39, No. 4,
pp. 492–499, 1990

[X-by-wire, 1998] X-By-Wire Team, “X-By-Wire: Safety Related Fault Tolerant Systems
in Vehicles”, Final Report, XbyWire-DB-6/6-24, Version 2.0.0, November 26,
1998

[Yin and Bieman, 1994] Yin H. and Bieman J.M., “Improving software Reliability with As-
sertion Insertion”, Proceedings of the International TestConference (ITC), pp.
831–839, 1994

Appendix A.
PROPANE – Details

In this appendix, details about instrumentation of target systems and setup of exper-
iments for PROPANE are described. The PROPANE tool suite itself is described in
Chapter 5.

A.1 Instrumentation of Target Systems

In order to generate readouts and inject faults and errors, atarget system has to be
instrumented. This instrumentation consists of insertingprobes for logging variables
and events as well as inserting injection locations for faults and errors. The basic
work-flow of target system instrumentation is depicted in Fig. A.1.

COMPILE LINK

PROPANE
configuration

source file

Instrumented
target source

files

User error
types and
triggers

Object files

Instrumented
target system

executable

Environment
simulator

PSI
Original

target source
files

PROPANE
Instr. Setup

PL

Figure A.1: The basic work-flow of target system instrumentation.

The PROPANE configuration source file contains static information required
during the execution of experiment by the PROPANE Library. This information
contains the static setup of variable probes, event probes,faults, error injection lo-
cations, user error types, and user error triggers. As this information is constant,
it will remain the same between different experiments. Dynamic information re-
quired for experiment execution is provided in a set of description files (described in
Section A.5 of this appendix).

165

166 PROPANE – Details

The PROPANE configuration source file and the instrumented target source files
are compiled and linked together with the PROPANE Library toform the instru-
mented target system executable. This executable is then used by the PROPANE
Campaign Driver when conducting experiments.

Details about the PROPANE configuration source file is given here in order to fa-
cilitate manual construction in case a PROPANE user wants todo that. However, the
PROPANE tools suite contains the PROPANE System Instrumentor (the PSI), which
can automatically generate instrumented source code and the PROPANE configura-
tion source file. In general, there are four ways of instrumenting the target source
code: i) by going the hard-core programmer way and doing everything manually,
ii) be using PSI generate the PROPANE configuration source code and inserting
the probes in the target source manually, iii) by annotatingthe code with variable
probes, event probes and error injection locations and thenletting PSI generate the
PROPANE configuration source file and instrumented target source, and iv) speci-
fying the modular composition of the system and for each module specify I/O and
internal characteristics.

Method i) is clearly the most time consuming way to go, but mayprove fun for
some people. Method ii) is somewhat more pleasant as the PROPANE configuration
source file is generate automatically. Methods iii) and iv) are of course the recom-
mended methods for instrumenting target systems. Method iii) is semi-automatic as
the locations for variable probes, event probes and error injection locations have to
be chosen manually. However, the actual insertion of the corresponding calls to the
PL API is done by PSI. Method ii) on the other hand is fully automatic, i.e., PSI
chooses which variable probes to and error injection locations to insert and where
to insert them. Note that event probes must be inserted either manually or by means
of annotations as PSI cannot detect locations where certainevents are to be flagged.
Fault locations must always be inserted manually as this requires additional (faulty)
code to be inserted into the target system.

This section describes how to instrument the target system using PSI and how to
generate the PROPANE configuration source file manually.

A.1.1 Instrumenting for Probes

In order to be able to log variables and events, probes must beinserted into the target
system. First we describe how to insert probes manually intothe target system and
how to create the necessary structures in the PROPANE configuration source file
and then we describe how to annotate the target system such that variable probes
and event probes can be inserted using PSI.

A.1. Instrumentation of Target Systems 167

Manual insertion of probes

Probes are inserted in two steps. First, the required probesmust be set up in the
PROPANE configuration source file. Then, special calls to thePROPANE Library
must be made from the application in order to actually log thevariable or event.

If variable probes are used, the PROPANE configuration source file must contain
the following data items:

/* This variable contains the number of defined variable probes */
unsigned int propane_no_of_log_vars = n;

/* This array contains information about the defined probes */
PROPANELogVarInfo propane_log_var_info[n] =
{

/* Each probe must be defined with a line as shown below. */
{ handle, type, name, size, channel },

...
};

/* This array is used by the PROPANE Library during run-time */
PROPANELogVarData propane_log_var_data[n];

The variablepropane_no_of_log_vars holds the number of defined vari-
able probes in the variable probe information and data arrays. It is very important
that the arrays contain exactly the number of entries as specified in this variable.

The arraypropane_log_var_info contains information about the defined
variable probes that will not change over time. For every variable probe that is
to be inserted into the system, there must be one entry containing the following
information:� handle� probe type� name� size (size of logged data in bytes - only for probes of typePROPANE_AREA)� channel

Thechannelwill be created automatically during the PROPANE Library setup-
phase and is not entered in the PROPANE configuration source file. Thehandleis
an integer value and is used in the function call made from thetarget system to the
PROPANE Library performing the actual logging of the variable. Thehandlemust
be equal to the index in the array, i.e., the first probe must have handle0, the second

168 PROPANE – Details

handle1, and so on. Thenth probe must have handle(n � 1). It is a good idea to
create a pre-processor constant (i.e., a#define constant) for each handle and then
use that constant instead of the actual numerical values in the function calls in the
target system. Theprobe typeindicates the type of the variable that is logged by that
probe. Theprobe typemay be one of the following:� PROPANE_CHAR – The variable is of typechar.� PROPANE_UCHAR – The variable is of typeunsigned char.� PROPANE_SHORT – The variable is of typeshort.� PROPANE_USHORT – The variable is of typeunsigned short.� PROPANE_INT – The variable is of typeint.� PROPANE_UINT – The variable is of typeunsigned int.� PROPANE_LONG – The variable is of typelong.� PROPANE_ULONG – The variable is of typeunsigned long.� PROPANE_FLOAT – The variable is of typefloat.� PROPANE_DOUBLE – The variable is of typedouble.� PROPANE_AREA – The variable is a pointer to a memory area. This is a

special type which, for instance, may be used for injecting errors into random
locations in the memory areas of the target software.

Thenameof the probe may be any normal C-string not containing white space.
This name must then be used in the PROPANE description files (described in Sec-
tion A.5 of this appendix) to activate the probe during experiment execution. The
sizevalue is only required for probes of typePROPANE_AREA. This value indicates
the size (in bytes) of the area. For all other probe types, thesize will be automatically
calculated during the setup process of the PROPANE Library as they are standard
data types with defined sizes.

The arraypropane_log_var_data contains information about the defined
event probes that will be defined during the setup process of the PROPANE Library
and may change during the execution of experiments. This array only has to be de-
clared in the PROPANE configuration source file, initialization will be done during
the setup process of the PROPANE Library.

The following is an example showing how variable probes are defined in the
PROPANE configuration source file and how they are inserted into the source code
of the target system. This example defines three variable probes namedSetValue,
IsValue, andt[].

A.1. Instrumentation of Target Systems 169

/* We have three variable probes. This is entered in the
* PROPANE configuration source file.
*/

#define P_SETVALUE (0)
#define P_ISVALUE (1)
#define P_T_ARRAY (2)

unsigned int propane_no_of_log_vars = 3;

PROPANELogVarInfo propane_log_var_info[3] =
{

{ P_SETVALUE, PROPANE_INT, "SetValue", 0, "" },
{ P_ISVALUE, PROPANE_INT, "InValue", 0, "" },
{ P_T_ARRAY, PROPANE_AREA, "t[]", sizeof(Type_t)*10, "" },

};

PROPANELogVarData propane_log_var_data[3];

When all the desired variable probes have been defined in the PROPANE con-
figuration source file, they must be inserted into the target system. The function in
the API of the PROPANE Library that is used for variable probes has the following
prototype:

PROPANEReturnCode
propane_log_var(PROPANESignalID handle,

void * value);

The parameterhandle is the handle of the probe created in the PROPANE con-
figuration source file. The pointervalue is the address to the variable that is to be
logged. As the type of the variable that is logged is providedin the static informa-
tion in the PROPANE configuration source file, the same function can be used for
all types of variables. The function returns eitherPROPANE_OK if everything went
fine, orPROPANE_FAILURE if something went wrong. Errors during this function
call can only occur if the contents of the probe information and data structures have
been corrupted. Here is an example of how the instrumentation for variable probes
may look in the source code of the target system:

/* This is how the function calls are made in the
* target system source code.
*/

int SetValue;
PROPANEReturnCode probe_rc;
...

170 PROPANE – Details

probe_rc = propane_log_var(PROBE_SETVALUE, &SetValue);
if(PROPANE_OK == probe_rc)
{

/* Everything went fine! */
}
else
{

/* Something went wrong! */
}

Note that the steps above are not sufficient for getting a working variable probe
during experiment execution, the probe must also be activated in the Experiment
Description (see Section A.5 of this appendix).

The actions required for event probes are similar to those required for variable
probes. The following structures for information and for data have to be declared in
the PROPANE configuration source file:

/* This variable contains the number of defined event probes */
unsigned int propane_no_of_log_events = n;

/* This array contains information about the defined probes */
PROPANELogEventInfo propane_log_event_info[n] =
{

/* Each probe must be defined with a line as shown below. */
{ handle, name, channel },

...
};

/* This array is used by the library during run-time */
PROPANELogEventData propane_log_event_data[n];

The variablepropane_no_of_log_eventscontains the number of defined
event probes in the event probe information and data arrays.It is very important that
the arrays contain exactly the number of entries as specifiedin this variable.

The arraypropane_log_event_info contains information about the de-
fined event probes that will not change over time. For every event probe that is to be
inserted into the system, there must be one entry containingthe following informa-
tion:� handle� name� channel

A.1. Instrumentation of Target Systems 171

The only difference between variable probes and event probes from this point of
view is that event probes do not have atype. That is, all events are considered to be
type-less. The remaining information works as described for variable probes above.

The arraypropane_log_event_data contains information about the de-
fined event probes that will be defined during the setup process of the PROPANE
Library and may change during the execution of experiments.This array only has
to be declared in the PROPANE configuration source file, initialization will be done
during the setup process of the PROPANE Library.

The following shows how event probes are defined in the PROPANE configura-
tion source file and how they are inserted into the source codeof the target system.
This example defines two probes,EA1_detection andEA2_detection.

/* We have two event probes. This is entered in the
* PROPANE configuration source file.
*/

#define P_EA1_DETECT (0)
#define P_EA2_DETECT (1)

unsigned int propane_no_of_log_events = 2;

PROPANELogEventInfo propane_log_event_info[2] =
{

{ P_EA1_DETECT, "EA1_detection", "" },
{ P_EA2_DETECT, "EA2_detection", "" },

};

PROPANELogEventData propane_log_event_data[2];

When all the desired event probes have been defined in the PROPANE config-
uration source file, they must be inserted into the target system. The function in
the API of the PROPANE Library that is used for variable probes has the following
prototype:

PROPANEReturnCode
propane_log_event(PROPANEEventID handle);

This function only takes one parameter,handle, which is the handle of the
probe created in the PROPANE configuration source file. The function returns either
PROPANE_OK if everything went fine, orPROPANE_FAILURE if something went
wrong. Errors during this function call can only occur if thecontents of the probe

172 PROPANE – Details

information and data structures have been corrupted. Here is an example of how the
instrumentation for event probes may look in the source codeof the target system.

/* This is how the function calls are made in the
* target system source code.
*/

PROPANEReturnCode probe_rc;
...
/* Run Executable Assertion 1 */
if(assertC(SetValue) == ERROR_DETECTED)
{

probe_rc = propane_log_event(PROBE_EA1_DETECT);
if(PROPANE_OK == probe_rc)
{
/* Everything went fine! */

}
else
{
/* Something went wrong! */

}
}

Note that the steps above are not sufficient for getting a working variable probe
during experiment execution, the probe must also be activated in the Experiment
Description (see Section A.5 of this appendix).

PSI can be used to create the PROPANE Configuration source file. For variable
probes and event probes, all that is needed is entries in the PROPANE Instrumenta-
tion Setup file for PSI. In this file, a variable probe is specified as follows:

// This is entry for a variable probe
>begin variable probe

>handle <handle>
>name <name>
>type <probe type>
>size <size_count> <size_type>

>end

Note that the target variable of the probe is not specified here. The link between
the probe and the actual variable that is to be logged has to bemade manually, i.e.,
using PSI to generate the PROPANE configuration source file still requires that the
calls to the PL API be inserted manually. An event probe is specified using an entry
in the PROPANE Instrumentation Setup file as follows:

A.1. Instrumentation of Target Systems 173

// This is entry for an event probe
>begin event probe

>handle <handle>
>name <name>

>end

As was the case for the variable probes, the calls to the PL APImust still be
inserted manually.

Annotated insertion of probes

By annotating the target system, PSI can be used to automatically insert calls to the
PL API in the target source code and to generate the PROPANE configuration source
file. An annotation for variable probes and event probes lookas follows:

/* This is an annotation for a variable probe */
/*@P>vprobe <handle> <target> <type> <size_count> <size_type> */

/* This is an annotation for an event probe */
/*@P>eprobe <handle> */

By having the annotations within ordinary C comments, a standard C compiler
can be used for the original target source code and the annotations will not affect the
software. If the annotated source is run through PSI instead, an instrumented version
of the file and entries in the PROPANE configuration source filewill be generated.

The annotation for variable probes and event probes do not have a separate filed
for the name of the probe (remember that the handle and the name of a probe need
not be the same). For variable probes PSI will automaticallyset the name of the
probe to the same as the name of the target and for event probes, the name will be
the same as the handle.

For example, the annotations:

/*@P>vprobe P_SETVALUE SetValue PROPANE_INT */
/*@P>vprobe P_ISVALUE IsValue PROPANE_INT */
/*@P>vprobe P_T_ARRAY t[] PROPANE_AREA 10 Type_t */

would generate the same structures in the PROPANE configuration file as those
shown for variable probes in the previous section on manual insertion. Note that size
information is only necessary if the probed variable is of the typePROPANE_AREA.
In that case, the size is specified with a number and a type. Thenumber specifies

174 PROPANE – Details

how many items of the specified type the chosen target represents. In the example
above,t[] is thus the size of 10 structures of typeType_t. One may also specify
the type as beingbytes if no specially defined type exists.

When it comes to event probes, the annotations:

/*@P>eprobe P_EA1_DETECT */
/*@P>eprobe P_EA2_DETECT */

would create similar structures in the PROPANE configuration source file as those
shown for event probes in the previous section on manual insertion. The main dif-
ference is that the handle and the name of the event probe willbe the same.

If several annotations were to be made for the same variable probe or event
probe, only one entry will be made in the PROPANE configuration source file.
However, each annotation will generate a call to the PL API atthe same place as
the annotation.

A.1.2 Instrumenting for Fault Injection

Fault injection with PROPANE requires three tasks:

1. Defining the faults in the PROPANE configuration source file,

2. Inserting the faults and fault activation guards into thetarget source code, and

3. Activating faults in theExperiment Descriptions(described in Section A.5 of
this appendix).

As the injected faults are modifications of the actual sourcecode of the target
system, the only limitation on what a fault can actually be isset by the imagination
of the experimenter. This, however, makes the instrumentation of the target system,
with regard to faults, a manual task. PSI can only be used for generating the neces-
sary data structures in the PROPANE configuration source file. All faults are always
present in the system at run-time, however, in an inactive state. The faults that are to
be injected in an experiment are activated in theExperiment Descriptions.

If fault injection is used, each fault must be specified in thePROPANE configu-
ration source file using the following data items:

/* This variable contains the number of defined faults */
unsigned int propane_no_of_faults = n;

/* This array contains info about the defined faults */
PROPANEFaultInfo propane_fault_info[n] =
{

A.1. Instrumentation of Target Systems 175

/* Each fault must be defined with a line as shown below. */
{ handle, name, channel },

...
};

The variablepropane_no_of_faultscontains the number of defined faults
in the fault information array. It is very important that thearray contains exactly the
number of entries as specified in this variable.

The arraypropane_fault_info contains information about the defined
faults that will not change over time. For every fault, theremust be one entry con-
taining the following information:� handle� name� channel

Thechannelwill be created automatically during the PROPANE Library setup-
phase and is not entered in the PROPANE configuration source file. Thehandleis
an integer value and is used in the function call made from thetarget system to the
PROPANE Library checking the fault activation guard. Thehandlemust be equal
to the index in the array, i.e., the first fault must have handle 0, the second handle1, and so on. Thenth fault must have handle(n � 1). It is a good idea to create
a pre-processor constant (i.e., a#define constant) for each handle and use that
instead of the numerical values in the function calls in the target system.

Thenameof the fault may be any normal C-string not containing white space.
This name must then be used in the PROPANE description files (described in Sec-
tion A.5 of this appendix) to activate the fault during experiment execution.

The following is an example showing how faults are defined in the PROPANE
configuration source file.

/* We define two faults. This is entered in the
* configuration source file.
*/

#define F_001 (0)
#define F_002 (1)

unsigned int propane_no_of_faults = 2;

PROPANEFaultInfo propane_fault_info[2] =
{

{ F_001, "Fault_f001", "", NULL },

176 PROPANE – Details

{ F_002, "Fault_f002", "", NULL },
};

When all the desired faults have been defined in the PROPANE configuration
source file, the corresponding faulty code must be inserted into the target system
and guarded by a fault activation guard. The function in the API of the PROPANE
Library that is used as the activation guard has the following prototype:

PROPANEReturnCode
propane_fault_is_active(PROPANEFaultID handle);

This function only takes one parameter,handle, which is the handle of the fault
defined in the PROPANE configuration source file. The functionreturns either(0u)
if the fault is notactivated (or the specified handle does not exist in the information
structure), or(1u) if the fault is activated.

The following is an example showing how a fault is inserted into the target sys-
tem, and how the fault activation guard is placed:

/* This is how the function calls are made in the
* target system source code.
*/

int SetValue
...
if((1u) == propane_fault_is_active(F_001))
{

/* Fault F_001 is activated. Execute faulty code. */
...

}
else
{

/* Fault F_001 is not activated. Execute correct code. */
}

Note that the steps above are not sufficient for injecting faults. The faults that are
to be injected must also be activated in the Experiment Description (see Section A.5
of this appendix).

Although the faults have to be manually inserted into the target source code,
PSI can be used to generate the required structures in the PROPANE configuration
source file by adding entries for faults in the PROPANE Instrumentation Setup as
follows:

A.1. Instrumentation of Target Systems 177

// This is an entry for a fault
>begin fault location

>handle <handle>
>name <name>

>end

The calls to the PL API as well as the fault code must still be inserted as de-
scribed above.

A.1.3 Instrumenting for Error Injection

Error injection with PROPANE requires the specification of four things:

1. Error types

2. Error triggers

3. Error targets, and

4. Injection locations.

Error typesdescribe the types of errors that are to be injected and are normally
specified in the Experiment Descriptions (see Section A.5 ofthis appendix). How-
ever, PROPANE allows the user to implement his or her own error types, in case the
built-in types should not be sufficient. How this is done is described in Section A.4.

Error triggers say when a specific injection is to take place and, if applicable,
with which period. The error triggers are normally specifiedin the Experiment De-
scriptions (see Section A.5 of this appendix). However, as was the case for error
types, PROPANE allows the user to implement his or her own error triggers, in
case the built-in triggers should not be sufficient. How thisis done is described in
Section A.4.

Theerror target is the variable (or rather, the memory location) where the error
is to be injected, and the injection location is where the injection itself is to be
performed. The target is specified in the call to the API function of the PROPANE
Library performing the actual error injection.

Injection locationsare logical locations in the target system where error injec-
tions can take place. The link between these logical locations and the physical lo-
cations in the target source code are handled by the user instrumenting the target
system. The same injection location may actually correspond to several physical
locations in the target source code.

178 PROPANE – Details

By dividing the setup of error injections into these four parts, the number of
items that have to be specified can be reduced and the experimental freedom is in-
creased. For example, if an error type is very common for manydifferent error
targets, it is sufficient to specify one error type and use this error type on all error
targets.

Manual insertion of error locations

If error injection is used, the configuration source file mustcontain the following
data items:

/* This variable contains the number of defined locations */
unsigned int propane_no_of_locations = n;

/* This array contains info about the defined locations */
PROPANELocationInfo propane_location_info[n] =
{

/* Each location must be defined with a line as shown below. */
{ handle, name, filename, file pointer },

...
};

The variablepropane_no_of_locations contains the number of defined
injection locations in the error information array. It is very important that the array
contains exactly the number of entries as specified in this variable.

The arraypropane_location_info contains information about the de-
fined injection locations that will not change over time. Forevery injection location,
there must be one entry containing the following information:� handle� name� filename� file pointer

The handle is an integer value and is used in the function call made from the
target system to the PROPANE Library to perform the actual error injection. The
handlemust be equal to the index in the array, i.e., the first injection location must
have handle0, the second handle1, and so on. Thenth injection location must have
handle(n� 1). It is a good idea to create a pre-processor constant (i.e., a#define

A.1. Instrumentation of Target Systems 179

constant) for each handle and then use that constant insteadof the actual numerical
values in the function calls in the target system.

The nameof an injection location may be any normal C-string not containing
white space. This name must then be used in the PROPANE description files (de-
scribed in Section A.5 of this appendix) when defining which injections are to be
made during experiment execution.

Thefilenameandfile pointerwill be created automatically during the setup pro-
cess of the PROPANE Library and are not entered in the PROPANEconfiguration
source file.

The following is an example of how event probes are defined in the PROPANE
configuration source file and how they are subsequently inserted into the source code
of the target system.

/* We have two error injection locations. This is entered in the
* configuration source file.
*/

#define EL_CALC (0)
#define EL_V_REG (1)

unsigned int propane_no_of_locations = 2;

PROPANELocationInfo propane_location_info[2] =
{

{ EL_CALC, "Location_CALC", "", NULL},
{ EL_V_REG, "Location_V_REG", "", NULL},

};

When all the desired locations for error injections have been defined in the
PROPANE configuration source file, the corresponding high-level software traps
must be inserted into the target system, i.e., the logical locations defined in the
PROPANE configuration source file have to be linked to physical locations in the
target source code. The function in the API of the PROPANE Library that is used
for error injections has the following prototype:

PROPANEReturnCode
propane_inject(PROPANELocationID handle,

void * value,
PROPANEValueType type);

The parameterhandle is the handle of the injection location created in the
PROPANE configuration source file. The pointervalue is the address to the vari-
able that is to be subjected to error injection, i.e., the error target. The parameter

180 PROPANE – Details

type tells PROPANE the type of the error target. This is needed because targets of
different types require different actions for error injection. For instance, injecting an
offset of+5 into an integer is different from injecting the same offset into a floating-
point value. The various types available in PROPANE are described in Section A.1.1
of this appendix. The function returns eitherPROPANE_OK if everything went fine,
or PROPANE_FAILURE if something went wrong. Errors during this function call
can only occur if the contents of the information and data structures for the injection
locations have been corrupted.

If, in the experiment descriptions, several errors are defined in for the same in-
jection location, all of these errors will be injected with the same call to the injection
function. Also, note that the same injection location may beused for several error
targets, and that each logical injection location may correspond to several physical
location.

Here is an example of how the instrumentation for an error injection may look
in the source code of the target system:

/* This is how the function calls are made in the
* target system source code.
*/

int SetValue
PROPANEReturnCode injection_rc;
...
injection_rc = propane_inject(L_CALC,

&SetValue,
PROPANE_INT);

if(PROPANE_OK == probe_rc)
{

/* Everything went fine! */
}
else
{

/* Something went wrong! */
}

Note that the steps above are not sufficient for injecting errors, the combinations
of error types, error triggers and locations (such a tripletis called aninjection) must
also be specified in the Experiment Description (see SectionA.5 of this appendix).

Here, PSI can be used to create the PROPANE configuration source file. All that
is needed is entries in the PROPANE Instrumentation Setup file for PSI. In this file,
an error injection location is specified using an entry as follows:

A.1. Instrumentation of Target Systems 181

// This is entry for an error injection location
>begin error location

>handle <handle>
>name <name>

>end

Note that the target data area of the error location is not specified here. The link
between the error location and the actual data area in which errors are to be injected
has to be made manually, i.e., using PSI to generate the PROPANE configuration
source file still requires that the calls to the PL API be inserted manually.

Annotated insertion of error locations

By annotating the target system, PSI can be used to automatically insert calls to the
PL API in the target source code and to generate the PROPANE configuration source
file. An annotation for error locations looks as follows:

/* This is an annotation for an error location */
/*@P>elocation <handle> <target> <type> */

By having the annotations within ordinary C comments, a standard C compiler
can be used for the original target source code and the annotations will not affect the
software. If the annotated source is run through PSI instead, an instrumented version
of the file and entries in the PROPANE configuration source filewill be generated.

The annotations for error locations do not have a separate field for the name
of the location (remember that the handle and the name of a location need not be
the same). Instead, PSI will automatically set the name of the location same as the
handle. For example, the annotations:

/*@P>elocation EL_CALC SetValue PROPANE_INT */
/*@P>elocation EL_V_REG IsValue PROPANE_INT */

would generate the same structures in the PROPANE configuration file as those
shown for error locations in the previous section on manual insertion. Note that
size information is not provided in the annotation, not evenif type of the target is
PROPANE_AREA. This is due to the fact that all information on the error thatis
injected at a particular location is provided in the experiment setup files, i.e., this is
dynamic information.

If several annotations were to be made for the same error location only one entry
will be made in the PROPANE configuration source file. However, each annotation
will generate a call to the PL API at the same place as the annotation.

182 PROPANE – Details

A.2 Fully Automated Instrumentation of Target Systems

The previous sections describe how to instrument the sourcecode of a target system
either completely manually or by using annotations, and howto use PSI to gener-
ate the PROPANE configuration source file. Fully automated instrumentation of a
target system with regard to variable probes and error locations can also be done by
PSI. All that is needed is a description of the modular composition of the system
and for each module the I/O and internal characteristics (i.e., the input and output
signals, and the internal static and temporary signal) and alist of source files that
implement the module. Each module in the system is specified in the PROPANE
Instrumentation Setup file as follows:

// This is entry for a module of the target system
>module

>name <name>

>file <file1.c>
>file <file2.c>
...
>file <filen.c>

>input
>name <name>
>symbol <symbol name>
>function <funcation name>
>type <type>
>pointer (yes|no)

>end

>output
...

>end

>state
...

>end

>temporary
...

>end

>end

The parameters are the following:

A.2. Fully Automated Instrumentation of Target Systems 183� name – This is the name of the module. It is only used in the setup and
description files of PROPANE and does not require a corresponding symbol
in the target source code.� file – Each file containing source code that implements the modulehas to
be specified with afile parameter.� input – This subsection is used to specify an input signal of the module.� output – This subsection is used to specify an output signal of the module.� state – This subsection is used to specify a state signal (i.e., an internal
static variable) of the module.� temporary – This subsection is used to specify a temporary signal (i.e., an
internal non-static variable) of the module.

The signals of the module (inputs, outputs, states and temporaries) each are de-
fined using the following parameters:� name – This is the name of the signal.� symbol – This is actual symbol in the target source code that implements the

signal.� function – This is the function (i.e., scope) in which the symbol can be
found. If no function is specified, PSI will look for the symbol in all scopes
(including the global scope).� type – This is the type of the signal. This can be one of the standardtypes
used by PROPANE.� pointer – This tells PSI whether the symbol is a pointer to a data area or a
data area itself.

For each signal specified in in the module, PSI will add variable probes for
logging and error locations for injecting errors. Thename of a signal will be the
basis of both the handles and the names of these probes and error locations. The
symbol and thetype will be used to generate the necessary data structures in the
PROPANE configuration source file and as arguments of the inserted variable probes
and error locations (i.e., the inserted calls to the PL API).If a signals is set to be a
pointer, PSI will use the specified symbol directly instead of addinga & to get
the address of a symbol when using it in the API calls.

184 PROPANE – Details

A.3 Interfacing with Environment Simulators

When executing target systems in a possibly artificial environment, an environment
simulator has to be provided that can provide stimuli to and can react on the out-
put produced by the target system. PROPANE can be used to control initialization
and shut-down the environment simulator if the user provides functions which the
PROPANE Library calls during its setup process. These functions must have the
following interface:

PROPANEReturnCode
my_init_simulator(char * readout_directory,

unsigned int experiment_id,
char * sim_config_file);

PROPANEReturnCode
my_shutdown_simulator(void);

Three parameters are passed to the initialization functionand are taken from the
description files of the experiments (see Section A.5). Thereadout_directory
parameter is a string containing the path to where readouts are to be stored. The
parameterexperiment_id is the identifier of the current experiment. The pa-
rametersim_config_file is the name of the file with which the environment
simulator is to be initialized.

The shut-down function does not take any parameters. This function is respon-
sible for shutting down any activity in the simulator and performing any required
clean-up (e.g., closing files that have been opened by the initialization function).

Both functions shall return eitherPROPANE_OK if they are successful in ini-
tializing/shutting down the environment simulator, orPROPANE_FAILURE if an
error occurred. All necessary types and constants are provided in the header file
propane.h included in the PROPANE tool suite.

There are no restrictions as to how the simulators are designed or how the sim-
ulator setup file is formatted. PROPANE only calls the provided functions with the
parameters and expects a return code as described above. Thus, these functions may
be implemented as an interface/wrapper level between PROPANE and the environ-
ment simulator, i.e., using the interface to PROPANE on one side (as the prototype
of the function) and the interface of the environment simulator on the other side (in
the body of the function).

In order to let PL know which functions to call, the followinginformation has to
be provided in the PROPANE configuration source file:

A.4. Adding Error Types and Error Triggers 185

/* Pointers to the initialization function and the shut-down
* function of the environment simulator.
*/

PROPANEEnvSimInitFptr propane_init_env_sim_fptr =
my_env_sim_init_function;

PROPANEEnvSimShutdownFptr propane_shutdown_env_sim_fptr =
my_env_sim_shutdown_function;

These data structures can be automatically added to the PROPANE configuration
source file by adding the following to the PROPANE Instrumentation Setup file used
by PSI:

// This is the entry for the environment simulator
>environment simulator

>name SIM_TEST
>init my_env_sim_init_function
>shutdown my_env_sim_shutdown_function

>end

The parametername is used by PROPANE in the readout files to identify the
channel created by the environment simulator. The remaining two parameters,init
andshutdown, are used to specify the user provided functions.

A.4 Adding Error Types and Error Triggers

In addition to the built-in error types and error triggers provided by PROPANE,
a user may specify user error types (called error injectors)and user error triggers.
Both error injectors and error triggers are specified as functions. Error injectors have
the following interface:

unsigned char
my_error_injector(PROPANELocationID location,

void * value,
PROPANEValueType type,
PROPANEErrorID error_id,
double par1,
double par2);

The parameterlocation is the identifier of the injection location where this
trigger is used in this particular call. The target for injection is pointed to byvalue,
and the target type is specified intype. This type is one of the standard PROPANE

186 PROPANE – Details

types. The parametererror_id is the identifier of the error that is to be injected.
The parameterspar1 andpar2 are used to send special parameters to the error
type. The interpretation of the parameterspar1 andpar2 is totally user-defined.
The function shall return1 if the injection was successful, and0 otherwise.

Error triggers have the following interface:

unsigned char
my_error_trigger(unsigned int location,

void * value,
PROPANEValueType type);

The parameterlocation is the identifier of the injection location where this
trigger is used in this particular call. The source value forthe trigger is pointed to
by value, and the type of the source is specified intype. This type is one of the
standard PROPANE types. The function shall return1 if an error is to be injected,
i.e., if the trigger is released, and0 otherwise.

User error injectors and user error triggers have to be specified in the PROPANE
configuration source file. Error injectors are specified withthe following data struc-
tures:

unsigned int propane_no_of_user_injectors = n;

PROPANEUserInjectorInfo propane_user_injector_info[n] =
{

/* Each user injector must be defined with a line as below. */
{ handle, name, function },
...

};

The variablepropane_no_of_user_injectors contains the number of
defined injectors in the injector information array. It is very important that the array
contains exactly the number of entries as specified in this variable.

The arraypropane_user_injector_infocontains information about the
defined injectors that will not change over time. For every user injector, there must
be one entry containing the following information:� handle� name� function

A.4. Adding Error Types and Error Triggers 187

The handle is an integer value and is used to identify the injector internally
in PROPANE and must be equal to the index in the array, i.e., the first injector
must have handle0, the second handle1, and so on. Thenth injector must have
handle(n� 1). It is a good idea to create a pre-processor constant (i.e., a#define
constant) for each handle and then use that constant insteadof the actual numerical
values in the function calls in the target system.

Thenameof a user injector location may be any normal C-string not containing
white space. This name must then be used in the PROPANE description files (de-
scribed in Section A.5 of this appendix) when defining which errors to inject during
experiment execution.

Finally, thefunction is the name of the function implementing the user injector.
This function is of course written by the user.

Error triggers are specified with the following data structures in the PROPANE
configuration source file:

unsigned int propane_no_of_user_triggers = n;

PROPANEUserTriggerInfo propane_user_trigger_info[n] =
{

/* Each user trigger must be defined with a line as below. */
{ handle, name, function },
...

};

As can be seen, the structures are very similar to the structures used for user
injectors, and the definitions of the various parameters areactually the same. Thus,
please see the explanation of the parameters in the user injector structures for details.

Instead of entering the data structures required for user injectors and user triggers
manually into the PROPANE configuration source file, the following entries in the
PROPANE Configuration Setup file can be used with PSI:

// This is an entry for a user injector
>user injector

>handle <handle>
>name <name>
>function <function>

>end

// This is an entry for a user trigger
>user trigger

>handle <handle>

188 PROPANE – Details

>name <name>
>function <function>

>end

A.5 Description Files for PCD and PL

The PROPANE Campaign Driver and the PROPANE Library are set up using a
number of description files as illustrated in Fig. A.2.

Database
Description

Campaign
Description

Campaign
Description

Campaign
Description

Experiment
Description

Experiment
Description

Experiment
Description

Simulator
setup file

Simulator
setup file

Simulator
setup file

Figure A.2: Organization of description files for PROPANE setup.

This section will describe the format these description files. Note that as environ-
ment simulators are external to PROPANE, the format of thesefiles is not specified
by PROPANE, but rather the designer of the simulator or the user of PROPANE.
The description files are all plain ASCII text files and contain a set of parameters,
one parameter per line. If several parameters are specified on the same line in a file,
only the first one on that line will be recognized. All commands start with a ’>’ in
the leftmost position of the line followed by the parameter name. Lines not starting
with a ’>’ are ignored by PCD and PL.

A.5.1 Database Descriptions

The top file in the hierarchy is theDatabase Description. This file is used for setting
up the PROPANE Campaign Driver in order to execute experiments. The format of
this file is as follows:

>database <identifier>
>work directory <directory>
>readout directory <directory>
>campaign <campaign description file>

The parameters are the following:

A.5. Description Files for PCD and PL 189� database – This parameter is a numerical value which is used for giving
different databases individual identifications. The actual value has no practical
meaning to PROPANE. It exists as a convenience to the user.� work directory – This parameter tells PROPANE where all the remain-
ing setup files can be found. This is also where all log files will be stored
during execution of experiments.� readout directory – This parameter tells PROPANE where to store all
obtained readouts.� campaign – The name specified here will be used by PROPANE as the file
name of aCampaign Description.

The first three parameters (i.e,database,work directory, andreadout
directory) have to be specified before any campaigns can be listed. PROPANE
will look in the specified work directory for theCampaign Descriptionsreferred to
(with campaign) in the Database Description. During experiment execution, all
log files will be placed in the work directory and all readout files will be placed in
the readout directory. The file extension used forDatabase Descriptionsis .pdd.

A.5.2 Campaign Descriptions

The second level in the hierarchy contains theCampaign Descriptions. These files
are also read by the PROPANE Campaign Driver, as was the case with theDatabase
Descriptions. The format of these files is as follows:

>campaign <identifier>
>executable <name>
>execution width <number>
>experiment <experiment description file>
>use <filename>

The parameters are the following:� campaign – This parameter is a numerical value which is used for giving
different campaigns individual identifications. The actual value has no practi-
cal meaning to PROPANE. It exists as a convenience to the user.� executable – This parameter tells PROPANE the name of the executable
file to be used during execution of experiments.

190 PROPANE – Details� execution width – This parameter is the maximum number of exper-
iment processes that will be run simultaneously. On computers where the
target executable does not take 100 percent of the CPU, a width greater than
1 may shorten the time required to execute the entire campaign.� experiment – The name specified after this parameter will be used by
PROPANE as the file name of anExperiment Description.� use – This parameter tells PROPANE to use the specified file in the campaign
setup process. This parameter works similar to the#include pre-processor
directive in C.

The first three parameters (i.e,campaign, executable, andexecution
width) have to be specified before any experiments can be listed. PROPANE will
look in the directory specified as the work directory in theDatabase Description
to find any setup files referred to in theCampaign Description. The Experiment
Descriptionslisted in the campaign will be used during the execution experiments
in order to set up the PROPANE Library in the target executable. The file extension
used forCampaign Descriptionsis .pcd.

A.5.3 Experiment Descriptions

The third level (and final) in the hierarchy consists of theExperiment Descriptions.
These files are read by the PROPANE Library (linked to the target executable) in
order to set up a particular experiment. The file extension used for Experiment
Descriptionsis .pxd and the format of these files is as follows:

>experiment <identifier>
>simulator <filename>
>probe (<name>|ALL)
>error <name> <type> <parameter 1> (<parameter 2>)
>error injection <location> <error name> <type> <parameter>
>fault injection <fault name>
>use <filename>

The parameters are the following:� experiment – This parameter is a numerical value which is used for giv-
ing different experiments individual identifications. Theactual value has no
practical meaning to PROPANE. It exists as a convenience to the user.

A.5. Description Files for PCD and PL 191� simulator – If an Environment Simulator (or at least an interfacing layer)
has been linked to the target executable, this parameter canbe used to tell
PROPANE the name of the setup file to be used in the initialization of the
Environment Simulator for this particular experiment.� probe – This parameter is used to activate a probe that has been inserted into
the source code of the target system. The user may choose to activate each
probe individually (using multipleprobe parameters, one for each probe to
activate) or activate every available probe at by usingALL instead of a probe
name. Although variable probes and event probes are two distinct entities in
PROPANE, the activation of them looks identical.� error – This parameter defines a specific error type that may be injected
into the target system during the experiment. more information regarding this
parameter is found below.� error injection – This parameter is used for setting up the injection of
an error during the experiment. More information regardingthis parameter is
found below.� fault injection – This parameter is used for activating a fault that has
been inserted into the source code of the target system.� use – This parameter tells PROPANE to use the specified file in the exper-
iment setup process. This parameter works similar to the#include pre-
processor directive in C.

Theexperiment parameter must be specified before any other parameters are
specified. Thesimulator parameter is optional (depending on whether an Envi-
ronment Simulator is linked to the target executable or not). During initialization,
the PROPANE Library will call an externally (i.e., user) provided function in order
to set up the Environment Simulator. The file name specified after simulator
is passed as a parameter to this function. If no probes are activated usingprobe,
the readout files generated during experiment execution will not contain any data
gathered by the probes in the target system. Theuse parameter may help in modu-
larizing theExperiment Descriptionsas one may choose to have, for instance, probe
activations and error types in separate files. If multiple experiments are to use the
same set of probes and error types, they can all justuse the same files for probe
activations and error type definitions. This increases the ability to overview (and
change) the total setup.

Theerror parameter has several information fields. The<name> field is the
alphanumeric name of the error type and follows the specifications of normal C-
strings. The<type> can be one of the following:

192 PROPANE – Details� E_SETMIN – Set error target to the minimum value that the type of the target
in question can hold. This error type does not take any parameters.� E_SETMAX – Set error target to the maximum value that the type of the target
in question can hold. This error type does not take any parameters.� E_SETVALUE – Set error target to a constant value. The constant value is
specified in<parameter 1>. <parameter 2> is not used.� E_FACTOR – Multiply the current value of the error target with a factor. The
factor is specified in<parameter 1>. and<parameter 2> is not used.� E_OFFSET – Add an offset to the current value error target. The offset is
specified in<parameter 1>. <parameter 2> is not used.� E_FACTOR_AND_OFFSET– First multiply the current value of the error tar-
get with a factor, specified in<parameter 1>, and then add an offset, spec-
ified in <parameter 2>.� E_OFFSET_AND_FACTOR - First add an offset to the current value of the
error target and then multiply with a factor. In<parameter 1> the offset
is specified, and the factor is specified in<parameter 2>.� E_BITFLIP – Flip bits in the bit-vector representation of the error target.
The bits to flip are specified as a bit-mask in<parameter 1>. This error
type does not use<parameter 2>.� E_BITSET – Set bits in the bit-vector representation of the error target. The
bits to set are specified as a bit-mask in<parameter 1>. This error type
does not use<parameter 2>.� E_BITCLEAR – Clear bits in the bit-vector representation of the error target.
The bits to clear are specified as a bit-mask in<parameter 1>. This error
type does not use<parameter 2>.� E_SETVALUE_A - The equivalent ofE_SETVALUE but for variables that
are of typePROPANE_AREA. The value specified in<parameter 1> is
the offset from the start of the area, and<parameter 2> is the value to
which the memory location shall be set. The start of the area is specified in
the call to the injection function.� E_BITFLIP_A – The equivalent ofE_BITFLIP but for variables that are
of type PROPANE_AREA. The value specified in<parameter 1> is the
offset from the start of the area, and<parameter 2> contains a bit-mask
indicating which bits to flip. The start of the area is specified in the call to the
injection function.� E_BITSET_A – The equivalent ofE_BITSET but for variables that are of
typePROPANE_AREA. The value specified in<parameter 1> is the offset

A.5. Description Files for PCD and PL 193

from the start of the area, and<parameter 2> contains a bit-mask indicat-
ing which bits to set. The start of the area is specified in the call to the injection
function.� E_BITCLEAR_A – The equivalent ofE_BITCLEAR but for variables that
are of typePROPANE_AREA. The value specified in<parameter 1> is
the offset from the start of the area, and<parameter 2> contains a bit-
mask indicating which bits to clear. The start of the area is specified in the
call to the injection function.� E_USER – Instead of using one of the built-in error injectors, the user may
implement his or her own injectors. These injectors are implemented as func-
tions and the name of the function is specified in<parameter 1>. This
error type does not use<parameter 2>.

The parametererror injection specifies an actual injection to be per-
formed during the execution of an experiment. An injection is specified with a
number of information fields. The<location> specifies where the error is to
be injected, i.e., in which of the predefined injection locations in the target system
this particular injection is to be made. The<error name> is the name of an error
type specified as described above. The<type> can be one of the following:� I_ALWAYS– The error is injected every time the specified location is reached.

The information field<parameter> is not used.� I_ONCE_TIME – The error will be injected once at the specified location
when the PROPANE timer reaches the value specified in<parameter>.� I_ONCE_CYCLE – The error will be injected once at the specified location
when that location has been reached a certain number of times. This number
is specified in<parameter>.� I_PERIOD_TIME – The error will be injected periodically at the specified
location with a period specified in<parameter>. The period is counted
based on the PROPANE timer. The first injection will be made the first time
the PROPANE timer reaches the specified period value.� I_PERIOD_CYCLE – The error will be injected periodically at the specified
location with a period specified in<parameter>. The period is counted as
the number of times the location is reached. The first injection will be made
when the location has been reached as many times as specified in the period
value.� I_PROBABILITY – The error will be injected at the specified location with
the probability specified in<parameter>. The PROPANE Library uses

194 PROPANE – Details

the built in random number generator of the C Standard Library (specifically,
PROPANE uses the functionssrand() andrand()) to calculate a proba-
bility value for comparison with the specified probability.� I_USER – Instead of using one of the built-in error triggers, the user may im-
plement his or her own triggers. These triggers are implemented as functions
and the name of the function is specified in<parameter>.

A.6 Analysis Scripts for PDE

The PROPANE Data Extractor is used for analyzing and extracting data in experi-
ment readouts. As it can perform a number of different tasks,it requires a description
file for analysis. One such description file per experiment database to be analyzed is
required. The file extension used forAnalysis Scriptsis .pas and the format of the
file is as follows:

>analysis directory <directory>
>database readouts <filename>
>golden run comparison (yes|no) [(NONE|<error margins>)]
>propagation information (yes|no)
>campaign range <first> <last> <injection channel>
>interest channel <channel name>
>injection information (yes|no)
>event information (yes|no) (<start>|start) (<end>|end)
>channel logs (yes|no)

Theanalysis directory tells PDE where the files generated by the anal-
ysis and extraction actions are to be placed. Thedatabase readouts is the
name of the top file in the readout hierarchy (i.e., the.pdr-file). After these to
parameters there are a number of parameters regarding the analysis actions.

The parametergolden run comparison tells PDE whether it shall per-
form Golden Run Comparisonsor not (choose eitheryes or no). If this action is
chosen, one may then choose to useerror marginsby providing the name of the
file containing the error margin setup (the format of this fileis described in Sec-
tion A.6.1). If no error margins are to be used,NONE is specified instead.

Important: PDE always treats the first campaign listed in the database readout
file as the Golden Run campaign. All other campaigns will be compared to this
one. Also, all campaigns (Golden Run as well as Injection Run) have to contain
the same number of experiments, and all experiments have to contain the same
channels (otherwise, the GRC will fail).

A.6. Analysis Scripts for PDE 195

The parameterpropagation information is set toyes if propagation
graphs are requested. In this action, PDE will gather propagation information from
all experiments and generate propagations summaries and propagation graphs. In
order to produce propagation information, at least onecampaign range and at
least oneinterest channel have to be specified.

A campaign range is specified with three sub-parameters. The<first>
specifies the index of the campaign that is the first in the range. The Golden Run
campaign (i.e., the first campaign referenced in the database readout file) has index0.
Thus, the first injection campaign (i.e, the second reference in the database readout
file) will have index1. The<last> specifies the index of the last campaign in
the range. The<injection channel> is the name of the channel that is to be
considered the original injection location. All propagations will be measured with
this channel as starting point. PDE will generate propagation information for each
range specified in the description file.

In addition to the campaign ranges, PDE also needs to know which channels to
consider in the propagation analysis. For this, the parameterinterest channel
is used. Each channel that is to be considered is specified as aninterest chan-
nel. Thus, the experiment readouts may contain a large number ofchannels, while
a selection of these may be used in the propagation analysis.

If information regarding error injections (i.e., which errors that were injected,
locations, and injection times) is requested, the theinjection information
parameter is set toyes. This will generate one file for each campaign in the database
readout file (excluding the Golden Run campaign).

The parameterevent information tells PDE whether readouts generated
by event probes are to be extracted. If the parameter is set toyes, PDE will for each
campaign generate one file containing event information foreach experiment in that
campaign. The sub-parameters tell PDE the range, in time, for which the event
information is requested. The<start> parameter sets the timestamp at which
extraction is started. Setting this timestamp tostart will make PDE start at the
very beginning. Similarly, the<end> parameter tells PDE where to stop looking
for events. To have PDE go to the very end of the readouts, set<end> to end.

The parameterchannel logs tells PDE whether to generate log files of in-
dividual channels. If this parameter is set toyes, then PDE will generate a file
which could easily be imported into a spreadsheet tool (suchas Microsoft ExcelTM).
Warning: if channel logs are to be created, PDE will generate one file for each
channel and each experiment and each campaign (thus, if there are, for instance, 10
campaigns with 10 experiments each, and in each experiment there are 10 channels,
PDE will generate 10� 10 � 10 = 1000 files).

196 PROPANE – Details

A.6.1 Error Margins for Golden Run Comparisons

When performing Golden Run Comparison, PDE can be set up to use error margins
for the individual variable probe channels (except forPROPANE_AREA channels).
These error margins are specified in a separate error margin file. Each entry in that
file corresponds to the error margin of a channel. The format used is the following:

>margin <channel> <margin type> <up> <down>

The<channel> is the name of the variable probe channel that this error margin
is intended for. The<margin type> can be eitherABSOLUTE or RELATIVE,
and<up>/<down> are the limits used (the actual margin).

An absolute margin will set upper and lower boundaries on theabsolute error be-
tween the golden run (GR) channel and the injection run (IR) channel. For example,
if a channel has an absolute margin of 5 up and 10 down, and a golden run sample of
that channel has the value 100, then the injection run sampleof that channel will be
considered correct as long as it is within the range 100 - 10 and 100 + 5, i.e. within
90 and 105. If the golden run sample were instead 200, the range would be between
190 and 205.

A relative margin will set upper and lower bounds on the relative error between
the GR channel and the IR channel. For example, if we have a relative error margin
for a channel with 0.05 upwards and 0.10 downwards, and a golden run sample of
that channel has the value 100, then the injection run sampleof that channel will be
considered correct as long as it is within the range 100� (1.0 - 0.10) and 100� (1.0
+ 0.05), i.e. within 90 and 105. If the golden run sample wouldinstead be 200, the
range would be between 180 and 210.

A.7 Setup Scripts for PSC

When setting up PROPANE, one may choose to create all description files manually
as these are normal text files. However, as a large number of description files is
needed this may be a time consuming (and, frankly, not too exciting) task. For
this, we have the PROPANE Setup Creator which can generate description files and
analysis scripts given a smaller set of setup information.

#name <database name>
#wdir <directory>
#rodir <directory>
#exec <filename>

A.7. Setup Scripts for PSC 197

#width <number>
#prbcfg <filename>
#errcfg <filename>
#errlst <error list file>
#loclst <location list file>
#tclst <testcase list file>
#mtdlst <method list file>

Thedatabase name is used for naming the various description files gener-
ated by PSC. All files will have a name starting with this name and followed by,
if needed, some running number and the corresponding file extension for that file
type. For instance, if the name is set tomy_exp, then the database description
would get the namemy_exp.pdd, the first campaign description would be called
my_exp_0000.pcd, the first experiment in the first campaign would be called
my_exp_0000_0000.pxd, and the analysis script for the PDE would be called
my_exp.pas.

Thewdir specifies the working directory, i.e., the directory where PCD (see
parameterworking directory for database descriptions) will check for de-
scription files when running experiments. The description files generated by PSC
will not automatically be placed there, this has to be done bythe user.

Therodir specifies where readout files generated during experiment execu-
tion should be placed by PCD and PL (see parameterreadout directory for
database descriptions).

The executable file to be used for the setup is specified with parameterexec.
The value specified here will be used with the parameterexecutable in the cam-
paign descriptions generated by PSC. The execution width, i.e., the maximum num-
ber of processes spawned by PCD at any one time, is specified with thewidth
parameter which will be used with theexecution width parameter in the gen-
erated campaign descriptions.

The parametersprbcfg anderrcfg specify which files to use for probes and
error definitions, respectively. The probe configuration file shall contain a list of
those probes which are to be activated during the experiments and thus, shall only
contain a list ofprobe parameters (see experiment description for a description of
theprobe parameter). Analogously, the error configuration file shallcontain a list
of those error definition to use in the injections of the experiment. This file will,
therefore, only contain a list oferror parameters (see experiment description for
a description of theerror parameter). These two file, the probe configuration file
and the error configuration file will be included in the setup with theuse parameter
in the experiment descriptions.

198 PROPANE – Details

The next four parameters—errlst, loclst, tclist, andmtdlst—are
names of files containing lists of errors, locations, test cases and injection methods
to use, respectively. The errors specified inerrlst must be defined in the error
configuration file specified earlier. The locations listed must be defined in the instru-
mentation of the target system. The test cases listed will beused as filenames with
thesimulator parameter of the generated experiment descriptions. The injection
methods listed must be the methods described for experimentdescriptions above.
All necessary parameters for each method have to be provided.

Using these for lists, PSC will create a setup where each experiment is running
the target executable for one test case, injecting one errorin one locations using
one method. That is, if one specifies 10 errors, 10 locations,10 test-cases and 10
methods, PSC will create a setup containing 10� 10 � 10 � 10 = 10000 individual ex-
periments. These will be organized in 10� 10 � 10 = 1000 campaigns where in each
campaign, the same error is injected in all experiments. In addition to the injec-
tion campaigns, PSC will also create one Golden Run campaign, i.e., one campaign
where the target system is run with the specified test cases and no errors are injected.
These runs will be used as reference runs by PDE. The algorithm used for creating
description files is the following:

-- Create the database description file
create_database_description();

-- Create the campaign description for Golden Run
create_golden_campaign_description();

-- Create one Golden Run for each test case
for each t in TEST CASE
create_golden_experiment_description(t);

end for

campaign_number := 0;

for each l in LOCATION

for each e in ERROR

for each m in METHOD

-- Create one campaign for each combination of
-- location, error and injection method.
campaign_number := campaign_number + 1;
create_campaign_description(campaign_number)

A.8. PROPANE Architecture 199

experiment_number := 0;

for each TEST CASE
-- In each campaign, we have one experiment run
-- for each test case.
experiment_number := experiment_number + 1;
create_experiment_description(experiment_number, l, e, m, t)

end for

end for

end for

end for

The filenames of the generate files will start with the name specified in thename
parameter described above and then have numerical values shown the campaign
number and experiment number. For instance, the Golden Run campaign will be
namedmy_exp_0000.pcd, and the third experiment of the fourth injection cam-
paign will be namedmy_exp_0004_0003.pxd.

A.8 PROPANE Architecture

This section describes the internal architecture of the parts of PROPANE that per-
form the actual experiments, i.e., the PROPANE Campaign Driver (PCD) and the
PROPANE Library (PL). We will first describe PCD and then continue with PL.

A.8.1 The PROPANE Campaign Driver

The PROPANE Campaign Driver is the main desktop part of the PROPANE tool
and consists of six objects (see Fig. A.3):

1. Menu Handler

2. Database Manager

3. Executor

4. Controller

5. Log Unit

6. Readout Unit

200 PROPANE – Details

MENU
HANDLER

Setup
files

Log
files

Readout
files

DATABASE
MANAGER

EXECUTOR

CONTROLLER

LOG UNIT

READOUT
UNIT

Database
Description

Campaign
List

Database
Information

Campaign
Index List

Control
Commands

Campaign
Description

Log Entries
Readout Entries

Log Entries
Readout Entries

Log Entries
Readouts Entries

Experiment
process

Experiment
process

Experiment
process

IN: Commands

OUT: Information

Figure A.3: The internal architecture of the PROPANE Campaign Driver.

In Fig. A.3, the objects belonging to the PROPANE Campaign Driver are found
inside the dashed box. The other objects are external and notdescribed here.

The Menu Handler is in charge of the menus presented to the user. From here,
the user can load Database Descriptions, select campaigns,and initiate campaign
execution. When a Database Description is to be loaded, the filename specified
by the user is passed to the Database Manager, which reads thefile and sets up
the internal database. If the database is successfully set up, a list of the available
campaigns is returned to the Menu Handler. From this campaign list, the user may
choose to select a subset of campaigns to execute or to execute all campaigns.

When a set of campaigns has been selected for execution, a list containing infor-
mation about these campaigns is passed to the Executor, which then starts the actual
execution. During the execution it displays an informationscreen and allows the user
to control the campaigns. For each campaign the Executor sets up the Controller and
starts a separate thread for the Controller.

The Controller reads information about the campaigns from the Database Man-
ager and uses this information when executing the experiments. For each Experi-
ment Description in a campaign, the Controller will spawn a new process in which
the target system executable file is executed. The Controller passes the Experiment

A.8. PROPANE Architecture 201

Description and the Readout Directory on the PROPANE Library, which is a part
of the executable. Executing each experiment in its own process guarantees that the
target system is reset for each experiment so that the starting conditions are the same
for all experiments. Several processes may be started simultaneously, depending on
the execution width specified in the description files.

During the execution of campaigns, the user may choose to send control com-
mands via the Executor to the Controller in order to manipulate the execution of
campaigns. The user may choose to pause and continue execution, or to skip the
current campaign or abort all campaigns.

The Database Manager, the Executor and the Controller all use two support
units: the Log Unit and the Readout Unit. The Log Unit handlesthe database log
files and campaign log files, and the Readout Unit handles the database readout file
and campaign readout files. The other units send entries to the Log Unit and the
Readout Unit, which are then stored in the log files and the readout files correspond-
ingly.

A.8.2 The PROPANE Library

The PROPANE Library is a function library enabling the PROPANE Campaign
Driver to communicate with the experiment processes. It also contains everything
necessary for the user to instrument a target system for variable and event logging,
fault and error injection, and environment simulator control. The library is to be
linked together with the target system and is mainly a passive component. The exper-
iment executable may be executed manually outside of the control of the Campaign
Driver in which case it asks on the console for the information it would otherwise
receive from the Campaign Driver.

The PROPANE Library consists of 5 objects (see Fig. A.4):

1. Experiment Handler

2. Probe Manager

3. Injector

4. Log Unit

5. Readout Unit

In Fig. A.4, the objects belonging to the PROPANE Library arefound inside the
dashed box. The other objects are external and not describedhere.

The Experiment Handler is the main interface unit. It receives information from
the Campaign Driver on which experiment to run and where to put the generated

202 PROPANE – Details

EXPERIMENT
HANDLER

Setup
files

Log
files

Readout
files

PROBE
MANAGER

INJECTOR LOG UNIT

Experiment Description
Readout Directory

Simulator
Setup File

Log Entries
Readout Entries

Target system

READOUT
UNIT

Readout Data

Log Entries
Readout Entries

Log Entries
Readout Entries

Error Information
Injection Information

Probe Information

Injection Calls Probe Calls

Readout Data

Readout Data

From the PROPANE
Campaign Driver

Environment
simulator

Figure A.4: The internal architecture of the PROPANE Library.

readouts. The Experiment Handler reads the specified Experiment Description and
extracts the information needed for the experiment. Information regarding faults and
errors is passed to the Injector, information regarding activated probes is passed to
the Probe Handler, and the name of the simulator setup-file ispassed to the external
environment simulator. The Experiment Handler also initiates the Log Unit and the
Readout Unit so that the experiment log file and experiment readout file is generated.
Note that the experiment readout file is not the file in which the actual readout data
is stored. This data is stored in a number of files, one for eachreadout collection
point (i.e., variable probe, event probe, decision point, or injection location).

The Injector receives fault and error information from the Experiment Handler
and uses this information to set up the injections that are tobe performed during the
experiment. Once it is activated, it will wait for the targetsystem to call either the
fault activation check routine or the error injection routine. When the fault activation
check routine is called, it will decide which path the execution shall take, based on
fault activation information in the setup of the experiment. When the error injection
routine is called the errors specified for the location from which the routine is called

A.8. PROPANE Architecture 203

will be injected. Whenever an injection is performed, an entry with readout data in
the readout file for the fault or the error location will be made.

The Log Unit and the Readout Unit are support units and work inmuch the
same way as their equivalents in the PROPANE Campaign Driverdo, i.e., they han-
dle the experiment log file and the experiment readout file respectively. These two
units are used by the internal PROPANE units but can also be used by the external
environment simulator if it is programmed to do so.

204 PROPANE – Details

(Gratuitous free space. Write notes, doodle, spill coffee...do whatever you want!)

