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A Software Profiling Methodology for Design and
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Martin Hiller
Department of Computer Engineering, Chalmers Univerditfezhnology

Abstract

The advent of computerized consumer products, such as éonge automobiles,
mobile systems, etc., has produced a large increase in dtefoedependable (or
robust) systems. As cost is a relevant issue for such systbeesost of dependabil-
ity has to be kept low. Furthermore, as the replication ofveafe is virtually free
compared to the replication of hardware, the trend is to @mgnt more and more
functions in software. This motivates the search for medhagles for cost efficient
design and assessment of dependable software.

An established approach for designing dependable softeraegls addition of
error detection mechanisms (EDM’s) and error recovery mesms (ERM’s). The
effectiveness of these mechanisms, however, is achievgdf cimeir composition is
matched with their placement in locations where they angadigteffective. It is the
development of a systematic methodology to profile softviam@der to compose
and locate EDM’'s and ERM’s, that this thesis endeavors teegeh

Presented in this thesis is a set of approaches for profitifigzare such that the
most vulnerable and/or critical modules and signals cardéstified in a quantifi-
able way. The profiling methodology relies on the analysisrodr propagation and
error effect in modular software. The results obtainabldwhese profiles indicate
where in a given software system, errors tend to propagatevhere they tend to
cause the most damage as experienced by the environment.

The main contribution of this thesis is a software profilingthodology that
encompasses development of the fault injection tool SURGPANE (Propagation
Analysis Environment) and the analysis framework EPIC @&xpe, Permeability,
Impact, Criticality—the four main metrics introduced iretramework). The vision
Is that this contribution can aid software developers indégign and assessment of
dependable software in the early stages of development.

Keywords: software profiling, error propagation analysis, error&fnalysis, fault
injection, embedded software, dependability, fault e
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CHAPTER

Introduction

Basic research is what I'm doing when | don’t know what I'mrdpi
— Wernher von Braun (1912-1977)

Since the invention of electrical computers in the middlehef 26" century,
they have been put to use in a number of areas. Computemsdstart as extremely
expensive resources used for computations of mathematichlems in research,
defense and industrial applications. From that time, cdergthave undergone a
dramatic change. They have become smaller, cheaper aret &asise. This has
made computers attractive not only for pure computationsp@ses, but also as
integral components in systems that are traditionally rapwal in nature. First,
they made their entrance in high-end systems such as spficaacraft and nuclear
power-plants. Now, they are steadily gaining acceptanoeare consumer-oriented
areas, such as automobiles. This chapter briefly deschieesréa of dependability
and introduces the fundamentals in general and the topiesred in this thesis in
particular.



2 Chapter 1. Introduction

1.1 The Fundamentals of Dependability

The fundamental concepts of dependability used througthisithesis are adopted
directly from the compilation of concepts by made Lapriegdtia (ed.), 1992]. This
section contains a short overview of the main terms and diefisi used here.

The termdependabilityis defined as “the trustworthiness of a system such that
reliance can justifiably be placed on the service it providé#ghat this means is that
a dependable system is one upon which the user (either huntenénuman) can
place its trust in that the services provided by the systentamrect. Dependability
of a system is characterized by a settfibutes compromised by a set ahpair-
ments and achieved and analyzed by a setr@fans The fundamental terms and
concepts of dependability described in the subsequenbeeatan be organized in
a taxonomy tree as shown in Fig. 1.1.

1.1.1 Dependability Attributes

The dependabilityattributescharacterize, and profile, the dependability of a given
system. These attributes are the following:

Availability is a measurement of how available the system is, i.e. theapriny
that the system is operational and providing its servicengigiven time. The
higher the availability, the higher the probability thae thystem provides its
service at the time that service is requested.

Reliability is used to measure the probability that a system providesdheace it
was originally set to provide during a finite period of timéhal is, the higher
the reliability, the higher the probability that the respergiven by a system
IS correct.

Safety is the extent to which a system provides a service which i tgaits envi-
ronment, i.e., it does not endanger its user. Note that dxangh the system
may provide a service which was originally not intendeds Harvice may still
be safe for the users. Therefore, the safety measure maygberthan the
reliability measure.

Confidentiality, Integrity, and Maintainability are attributes which are not ad-
dressed in this thesis and, thus, will not be described d¢umhthis point.

A system would have no trouble fulfilling all these attritaifmerfectly if it were
not for disturbing factors as described in the next section.
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— Faults
— Impairments —— Errors

— Failures
Fault Prevention

— Procurement {
Fault Tolerance

Dependability —— Means
Fault Removal
— Validation {
Fault Forecasting
— Availability
— Reliability
— Attributes ——
I— Safety

— Confidentiality

— Integrity

— Maintainability

Figure 1.1: The taxonomy of dependability

1.1.2 Dependability Impairments

During the construction and the operation of a dependalsiesy events may occur
which reduce the trustworthiness of the system by intrauutaults into the sys-
tem. For example, the developers may (inadvertently) detfig system in such a
way that for certain conditions the system cannot provigesjpecified service, i.e.,
the system contains defects (which can be hardware andtarase defects). Dur-
Ing system operation, external disturbances or aging ofpoo@nts may introduce
faults that, again, prevent the system from providing itsnded service. The events
that may reduce the dependability of a system are referrad tbeimpairmentsof
dependability.

The mere presence of faults is, however, not enough to ratiecgependability
of a system. A fault must be activated, i.e., the part of tretesy in which the fault
Is located must be exercised in some way during system oper@.g., faulty code
must be executed, defective memory locations must be refedg etc.). If this is
happen, the result may be amor. If a fault is viewed as a disease, an error can
be said to be a symptom of that disease. An error is defined agr@ameous state
in the system, i.e., the state is different from the statesttstem would have had if
the fault had not been present. An error which is activatey caaise other errors
to occur in the system. This process is cakembr propagation If errors propagate
beyond the system batrrier, i.e., if they are visible to tharenment of the system,
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afailure has occurred, as this prevents the system from providingepreervices.

The causality chainfault — error — failure, is also recursive in nature.
Thus, what can be seen as a failure at one level of the systefnecaeen as a fault
on the next higher level. Therefore, we get the followingusete:

.. failure — [fault — error — failure| — fault...

With this definition we can say that a dependable system is&sywhich is
able to break this chain at some point bef@emething Very Baflappens, i.e.,
before the loss of equipment, investments or perhaps evearmlives.

For the development of dependable systems, a set of meambbean identified.
These are described in the next section.

1.1.3 Dependability Means

When developing dependable systems, there are a numberamisnbg which de-
pendability can be achieved and analyzed, namely:

Fault Prevention is the process of preventing faults from occurring in thet firs
place. Examples of fault prevention activities may be theeafscertain devel-
opment processes and methodologies.

Fault Tolerance is to actively handle the occurrence of faults and errorsranelrt-
ing an erroneous system state into a state which is eithezatdpreferably)
or at least safe.

Fault Removal is the process of reducing the number and seriousness ¢ {aul
more popular term for this idebugging. This phase often involves verifica-
tion and validation, diagnosis and correction.

Fault Forecasting is performed in order to get an estimate of the consequents fa
would have if they should occur.

The focus of this thesis is mainly dault tolerancewith a little spice offault
removal and fault forecasting The following sections will describe these means
more in detail.
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1.1.4 Fault Tolerance

If a system is able to function properly even in the preseridauts and errors, it

Is considered to be fault tolerant. However, fault toleearscnot a binary property,
l.e., a system may be able to tolerate certain types of fautisreas other types still
disrupt system operation. The basic model for the faulrévlee process is divided
into four phases (compiled from [Randellal,, 1978], [Anderson and Lee, 1982]
and [Lee and Anderson (ed.), 1990]):

Error Detection
Damage Assessment
Error Processing, and
Fault Treatment.

HowbhRE

Error detectionis the action of detecting that an erroneous system statdus a
ally present. After an error has been detectfinage assessmeistnecessary to
see to what extent that error caused damage to the systemhend thiat damage is
located. With the information gathered during damage assest, the system can
then initiateerror processingwhere an erroneous system state is transformed into a
good state in which no (detectable) errors are present. dindined actions in dam-
age assessment and error processing are aaltedrecovery The last phasdault
treatment has the goal of preventing the same faults from being detivagain. In
this phase faults are diagnosed and treatments are dewipaedgivate the identified
faults. Fault treatment is generally performed off-linel aften involves several par-
ties. For instance, fault diagnosis may be performed by adBoBinquiry and fault
passivation by the system designers.

The main focus of this thesis is on those parts of the faudiréwice process that
are incorporated into the system itself, namely, errorclete and error recovery.
lllustrated in Fig. 1.2 are the phases error detection arat eecovery in the con-
text of thefault — error — failure causality chain described in Section 1.1.2.
lllustrated here is that a system starts out without anyeadtults (however, design
faults are of course always present). Faults occur fromreakalisturbances and
may disappear again. An activated fault may an error whidbm@lly is detected
by the error detection mechanisms (EDM'’s) of the systemerAdh error is detected,
the error recovery mechanisms (ERM’s) of the system try tived the state of the
system into one which is error free. If recovery is only plyi successful, errors
may still reside in the system state. These errors may subady lead to system
failure. Also, an unsuccessful error recovery will resalsystem failure. If recovery
Is successful, the system can continue with normal operatio
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Recovery successful

Detection & Recovery

Error Recovery Recovery

detected incomplete failed
Fault Fault Error
No appears activated activated
Fault Error
Faults
Fault disappears Error overwritten
Good Bad

Figure 1.2: Error detection and recovery mechanisms in thetegt of the
fault — error — failure causality chain

The focus of this thesis is on error detection and error regowith regard to
data errors, i.e., erroneous values in system variablespassed to, for example,
control flow errors which alter the execution trajectory alyatem).

1.1.5 Fault Removal and Fault Forecasting

Once a dependable system has been constructed, it is tirmsdssshow dependable
the system really is. For this, fault forecasting is usediltHarecasting is the pro-
cess of estimating and ascertaining system performance stigected to faults.
This activity is often combined with fault removal, i.e.getprocess of actively re-
moving faults (mainly design faults) from the system. Thebmation of the two is
referred to avalidation of dependability. Traditionally, validating the depentiap
of systems can be done either analytically or experimegntall
In analytical validation, a formal (often mathematicapmesentation of a system
Is analyzed instead of the actual system itself. One way wigdthis is by apply-
ing formal methodgsee, e.g., [Clarke and Wing, 1996]), where techniquesdbase
purely on mathematics and logic are used for describingesygiroperties and ac-
tually proving these to be correct (or at least, withoutrimé contradictions). As a
research area, formal methods is an active area which isjpesitill “growing up”.
In the dependability area, formal methods have been usedxémple, in the veri-
fication of protocols (see [Echtle and Masum, 1996] and [&iahd Suri, 1999]).
Experimental validation is based on testing the actual emgntation of a sys-
tem. In order to experimentally validate for example thdtfealerance properties
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of a system, a common way to go about it is to artificially ih$aults and/or errors
into the system in order to create conditions where the geglanechanisms for
fault tolerance are activated. This is referred téeast injectionand has been a pop-
ular method for testing and assessing dependability oésyst For more informa-
tion on fault injectionsee, e.g., [Chillarege and Bowen, 1989], [Agatal., 1990],
[lyer, 1995], [Powellet al., 1995], and [lyer and Tang, 1996].

Of coursetestingis also a very important part of experimental validationrdje
a system is subjected to a number of test cases (vectors wf dapa) in order to
detect any defects/faults that may be present. If the beha¥ithe system differs
from the expected behavior, then the reason may be thattacfaariges the system
properties such that it fails to provide its intended sezvic

A very important, and hard, problem in experimental valalatis identifying
which faults and errors to inject (if fault injection is ugeathd which test cases to
run (if testing is used).

The (probably) best, and most expensive, way to identifyctvifaults and errors
to inject into a system when validating dependability is malgse faults and error
that occur in reality, i.e., those that are experienced loyraported from systems
which actually operate on the field. Even though numerouk stigdies have been
performed (for an overview, see [Lyu (ed.), 1995], pp. 3@&B-and 439-487), only
a few have had a focus on injection of software faults (seg, Byeret al., 1990],
[Sullivan and Chillarege, 1991] and [Christmansson andl&kge, 1996)).

In the identification of test cases for testing activitiespial methods can some-
times be helpful. In [Suri and Sinha, 1998], for examplenfal methods were used
to help find test cases for validating dependable protocalso, in this example,
dependability validation was performed as a combinatiotesting and fault injec-
tion.

1.2 Goals, Activities and Problem Statements

1.2.1 Goals and Activities

The main goal of the work presented in this thesis has beemdoaind evaluate
new construction methods for dependable computer nodéslitié amount of re-

dundancy in embedded (and possibly distributed) contrelesys. In this respect,
the focus has been on software-based methods for faulataerand software ro-
bustness as well as analysis methods for software. Thed®dseapply to control

systems in automobiles and other systems in which low prtamucost is crucial.

The research presented here has mainly contained the fiofjdwo activities:
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Activity 1 Finding and evaluating techniques and mechanisms for falg@tance
suitable for low-cost (in the sense of both development aast production
cost) embedded control systems, and

Activity 2 Devising techniques for software analysis with regard torgoropaga-
tion and error effect such that vulnerable and criticalpaftsoftware systems
can be identified such that suitable locations for placimgretetection and re-
covery mechanisms can be selected.

A key driver for the research presented in this thesis has bes the results
should be applicable to systems with demands on low codsléwedevelopment as
well as for production. This has led to the effortAativity 1 being concentrated on
techniques and mechanisms implemented in software. Eweiglthsoftware poten-
tially requires large amounts of resources for developmamaduction is virtually
free of charge once development is complete. Thereforeyam methods are very
attractive for development of dependable systems thatradkiped in very high vol-
umes (hundreds of thousands, or even millions) such astleegembedded control
systems in automobiles. Another reason for choosing softwaplemented fault
tolerance over hardware implemented fault tolerance isstbfware can be adapted
more easily to the application and to the environment. Hawnehis property does
also bring with it some less attractive properties such agatt that software mech-
anisms to a higher extent are application specific.

Another consequence of the low-cost driver is that it is mfficent to describe
mechanisms for error detection and recovery alone. Dagmimere in the software
system these mechanisms should be placed also becomesataimproblem. As
costis an issue, the amount of resources required in a sg$teuld be kept as low as
possible. Thus, being able to analyze software such thataode weighed against
obtained benefit (i.e., a cost-benefit analysis) would bg valuable. Therefore, the
efforts inActivity 2 have been geared towards the analysis of error propagattn a
error effect. If one were able to identify those locationsaitware which attract
most propagating errors and also how these errors affeceivice of the system,
designing and placing mechanisms to tolerate those erroutdvibe helped.

In the next section is a more detailed account of the probletemments that
guided the work presented in this thesis.

1.2.2 Problem Statements

The work started out with an effort to identify availabletsedre implemented mech-
anisms and techniques for fault tolerance in embeddedaa@ystems and to evalu-
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ate their weaknesses and strengths. Thus, we can statdltwarfg problem state-
ment:

PS1 What techniques and mechanisms exist for software implesdefault tol-
erance? What are their advantages and disadvantages wdmrerrem the
point-of-view of an embedded control system? Especiallgnvbonsidering
production cost, overhead in hardware and software, and30 o

This problem statement was addressed in the early stagége efdrk that re-
sulted in this thesis, and these efforts are summarizedillefHL998], which con-
tains an overview of various software techniques for faaltrance. Note that this
overview is not part of the contents of this thesis. Oncedtasement has been ad-
dressed, candidate mechanisms for further analysis addagieam can be chosen.

When these candidates have been identified the followinglgmo statement must
be considered:

PS2 How can developers be aided in developing the mechanismmamgborating
them into the software of an embedded control system? To wittant is
dependability improved by using the proposed mechanismis&t i§, what
Is the combined value of the error detection coverage aneértioe recovery
coverage? How well do the mechanisms detect errors? Thhbvs,high
is the probability of detecting errors (the error detectimwerage) using the
mechanisms and how long is the error detection latency?

Having efficient software mechanisms for error detectiod emor recovery is
of course desirable. However, knowing where they would do(ih some sense)
most good is likely to prevent costly resources being spenbefficient use of the
mechanisms. Thus, the final problem statement to be coesider

PS3 How can a system designer identify the most suitable logatio software
systems for placing error detection and recovery mechaskVhich parts
of a software system are most vulnerable to faults and ethatsmight be
present in the system? How do errors propagate through aesefsystem?
Where do occurring errors cause the most damage? What retetde error
model play when analyzing software with regard to error pgagtion and

error effect? Can an analysis framework be developed tolbamy negative
impact?

These problem statements have guided the work that is nosemied in this
thesis, and, hopefully, some light can be shed upon theddgmns. The main con-
tributions and results are briefly described in the nextsect
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1.3 Main Contributions

The hope and vision is that the results presented in thissthesy in some way help
software developers to construct dependable systems hyirghdow a software
system can be equipped with mechanisms for error detectidneeror recovery.
The necessary prerequisites for putting EDM’'s and ERM'iitveare is illustrated
in Fig. 1.3. This figure illustrates that the system develagguires knowledge
about three things:

1. The type of errors that the system is supposed to be abbntdidy their type,
how often they occur, etc. If the software designer has novledge of what
kind of threats the system is subject to, it is very hard tovkhow to obtain
any dependability. This would make both the development aelé & the
assessment/analysis of the system difficult (if not imgmeki

2. The mechanisms available for error detection and eroavery. When equip-
ping the software system with EDM’s and ERM’s it is of coursgortant to
know the characteristics and properties of the mechanisroees disposal,
including their strengths and weaknesses. It is likely thatoverall architec-
ture of the software is affected by the properties of the rapiEms.

3. The characteristics of the software with regard to viahgities and hot-spots.
In order to place the mechanism where they are the most ig#edttis impor-
tant to know where errors tend to propagate and where erodsto do the
most damage. This will aid in using the available resourcgurh a way that
the benefit is optimized (at least in the compiler-sense efabrd).

The contributions put forward in this thesis address therdvo items, and they
are the following:

Error Detection and Recovery Mechanisms.Software mechanisms for error de-
tection and error recovery are developed. These mechamisimsed on the
concept oexecutable assertionsperating at the signal/variable level and are
implemented as generalized software mechanisms that stantrated with
parameters. The sets of parameters required for each signptedefined ac-
cording to a certairsignal classificatiorand the values of the parameters are
set by the system designer.

Evaluation of Mechanisms. The presented error detection and recovery mecha-
nisms are evaluated with regard to coverage and latency fesudt injection
experiments.



1.3. Main Contributions 11

Error EDM/ERM Software
Model design Profiles
Type, Implementation  Vulnerabilities,
Occurrence Details Hot-Spots

Equipping Software with EDM's/ERM's

(EDM = Error Detection Mechanism, ERM = Error Recovery Mechanism)

Figure 1.3: The process of equipping software with mecmagifor error detection
and recovery

Error Propagation and Effect Analysis. A framework is presented which enables
system designers to profile software systems such thatnaldleeand critical
modules and signals/variables can be identified. This fvaorieis able to
produce two distinct quantitative profiles, namely: (i) agmgation profile,
and (ii) an effect profile. The propagation profile shows howrs propagate
through the software system, and the effect analysis showeghat extent
errors in the various signals/variables affect systemwutfhe framework
introduces four basic measures: Exposure (ii) Permeability (iii) Impact
and (iv) Criticality, and thus is called EPIC.

Evaluation of Analysis Framework. The presented analysis framework is evalu-
ated on real software in order to illustrate its applic&pili

Tool for Analyzing Error Propagation. A tool-suite called PROPANE, the Prop-
agation Analysis Environment, has been developed in oaleemonstrate
the applicability of the presented analysis framework, EFRROPANE can
perform fault and error injection and is capable of tracing values of vari-
ables in software such that error propagation and erroctsfBn be analyzed.
PROPANE can also log events which enables the evaluatiomafdetection
and recovery mechanisms. There are built-in extensioniplsss, enabling
users to construct their own injectors and logging probesing PROPANE
a versatile tool for software and dependability analysis.
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1.4 Thesis Structure
The remainder of this thesis is structured as follows:

Chapter 2 reviews related work and results in the areaaott injection software
implemented fault tolerancanderror propagation analysisand tries to show
where the work presented in this thesis fits in.

Chapter 3 introduces the software and system model and associatathpisns
used throughout this thesis. This chapter also descrilegsihet system used
in the various evaluations performed in the thesis. Theamtarget system is
an embedded system utilized for arresting aircraft, igpihg landing aircraft
to stop on short runways and aircraft carriers.

Chapter 4 contains a description of the executable assertions framkeseveloped
for error detection and recovery. This chapter also coatamevaluation of
the mechanisms where the example aircraft arresting syistequipped with
the described mechanisms and then subjected to faultioject order to
estimate detection and recovery coverage as well as datdatency.

Chapter 5 presents PROPANE, the tool developed for error propagatiuh ef-
fect analysis and for evaluation of error detection andvegomechanisms.
PROPANE is purely software based tool designed for runnmdeasktop sys-
tems. This chapter also contains a comparison of PROPANBsigather
contemporary tools.

Chapter 6 introduces EPIC, the developed framework for error propagaand
effect analysis. The framework is also demonstrated onithealt arresting
system system and its applicability illustrated. As thespr#ed approach
for estimating the measures of EPIC is based on fault igecthe effect of
varying the underlying error model after analysis is exadin

Chapter 7 summarizes the work presented in this thesis and lists the coaclu-
sions to be drawn from the obtained results.

Chapter 8 provides an outlook on future work, open issues and questyiento be
answered.



CHAPTER

Related Work

If I have seen further, it is by standing on the shoulders ants.
— Sir Isaac Newton (1642-1727)

This chapter contains an overview of previous work and tesolthe area of
dependable software for embedded systems. More spegifitat areas that most
closely relate to the work presented in this thesis, i.e,ateas ofault injection
software implemented fault toleran@nderror propagation analysisThis chapter
also tries to show where in these areas the work presentégsithesis fits in.

13
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2.1 Fault Injection

As mentioned in the introduction to this thesis, Chaptdadlt injectionis a popu-
lar method of testing and assessing dependability of aectstl systems. The basic
approach in fault injection is to artificially insert faulsd/or errors into the system
and then analyse its behavior. More information on faukdtipn in general can be
found in, e.qg., [Chillarege and Bowen, 1989], [Ar&dtal., 1990], [lyer, 1995], and
[lyer and Tang, 1996]. Fault injection allows detailed $tsdof the complex inter-
action between faults and fault handling mechanisms. Famgike, fault injection
can be used to estimate the coverage of error detection msaig i.e., the success
rate of the mechanisms. In [Poweli al, 1995], the authors show thatsif,,; faults
or errors are injected and,.; of these are detected, an unbiased estimate of the de-
tection coverage;q.;, can be obtained with;.; = Z”” This, however, assumes
that the fault/error models used for selecting the fauli/@merrors to inject are
representative of the “real” faults and errors the systedeugonsideration is sub-
ject to. The issue of representativeness has been, an$ sélfairly open research
guestion, especially when considering software faultsthant resulting errors.

The various fault injection techniques and tools that haaenkintroduced over
the years can generally be divided into three categories:

1. Simulation Based Fault Injection
2. Physical Fault Injection
3. Software Implemented Fault Injection

The technique used in this thesis primarily fits into the Bafe Implemented
Fault Injection (SWIFI) category. Some of the studies panied, however, have a
whiff of Simulation Based Fault Injection, as the targetaalrsoftware running in-
teracting with a simulated hardware environment (senswsatuators). Therefore,
the focus here is mostly on SWIFI and a little on Simulatiors&hFault Injection,
whereas Physical Fault Injection is covered very briefly.

Note that the ternfault injectionis not limited to injecting faults according to
the definition described in Chapter 1, where faults are seeihe root cause of
erroneous system states. This term is generalized to al&v eogor injection i.e.,
instead of injecting defects, one injects erroneous systatas directly.

2.1.1 Simulation Based Fault Injection

In early design stages of dependable systems, fault iojecsi often more easily
utilized on a model of the system, rather than the actuaksydiself. This presents
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several advantages over injecting faults into physicalesys. The most important
of those advantages is probably the fact that it can be usgdealy in system

design. Thus, simulation based fault injection can fat#itthe detection of design
faults in fault tolerance mechanisms, thereby reducingctise of developing such
mechanisms (as costly prototype phases may be reducedvonatied). Other ad-
vantages are that controllability of experiments and oladmslity are very high, as
one has total control over injection time and location ad a®data acquisition.

Among the drawbacks of this techniques is the fast increagme-complexity
when running simulations. The more details are simulated,more time is re-
quired for running the simulations. This in turn may havenaiting effect on what
can actually be included in a system simulation, thus lmgitihe accuracy of the
simulation.

Simulation based fault injection has mainly been used fafuating the hard-
ware of dependable systems. The simulations are oftenedivilito three levels of
abstraction (see [lyer, 1995]): i) electrical, ii)logicad iii) functional.

At the electrical level, circuits are simulated with curieand voltages and faults
are usually emulated by changing these physical propeffaslt injection is here
primarily used for analyzing the impact of physical causeftilts and errors.

At the logical level, systems are simulated as gates, iteapstraction levels
above those of currents and voltages. At this level, largstesns, such as VLSI cir-
cuits and microprocessors, can be simulated and their dapéity assessed. Fault
models used here are typically stuck-at-0, stuck-at-1 awmersion. Tools for in-
jecting faults at this level are, e.g., MEFISTO (see [Jenal., 1994]) and VERIFY
(see [Sielet al., 1997]).

Simulations at the functional level are primarily used fealeating architectures
and policies for large systems such as networks or large gtanpystems. The fault
models at this level are often based on the fault models aéldevels, such as bit-
manipulations in memory and registers, component faijles As the simulations
are on an arbitrarily high level of abstraction, the faultdelomust be chosen accord-
ingly. At this level, we have tools like DEPEND (see [Goswand lyer, 1991] and
[Goswami, 1997]) and Loki (see [Cukiet al., 1999] and [Chandrat al., 2000]).

The work on fault injection presented in this thesis is onfthmetional level of
simulation based fault injection. The tool presented in@&a5 can be used for
evaluation of simulated architectures, similar to the apph used by DEPEND.
The target systems used in the studies performed in this aledkhave parts which
are simulated, such as, sensors and actuators, and thereneint.
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2.1.2 Physical Fault Injection

When prototypes or real implementations of a system exist,dependability of

these can be evaluated and analyzed by injecting actualcahyaults. This ap-

proach is important as it tests the actual implementatidriautt handling mecha-

nism and, thus, implementation faults can potentially hegbahere. The drawback
of this approach, though, is reduced controllability andesiability, compared to
simulation based fault injection. Faults are commonlyated at pin-level, i.e., by
inserting faults at the pins of the circuits of the systempyyradiation, i.e., subject-
ing the target system to a radioactive source which cregisstsi in the electronic
parts of the system.

Examples of studies where this approach to fault injectias been used are
[Arlat et al, 1990], [Walter, 1990], and [Madeirt al,, 1994] for pin-level fault in-
jection, and [Koga and Kolasinski, 1984] and [Gunn&fl@l.,, 1989] for radiation
based fault injection. A comparison between various tepes for physical fault
injection can be found in [Folkesson, 1999].

Physical fault injection does not directly relate to the kvpresented in this
thesis and is mentioned just to give an overview of variouf fajection techniques.

2.1.3 Software Implemented Fault Injection

By far the most versatile and now probably also the most wideed approach for
fault injection is Software Implemented Fault Injectiom, WIFI. This approach
uses software, rather than hardware, to inject faults inysigal, and sometimes also
simulated, systems. Thus, the advantages of this appreachraong other things,
cost-effectiveness and flexibility, as no (or little) addlital hardware is required.
The disadvantages include the fact that when using SWIRhfecting faults into
hardware system, controllability and observability anmebmes reduced compared
to simulation based fault injection, and the effects of ptaidaults may not always
be properly emulated on account of reduced reachability IE5\@&an only reach
those parts of the system which software can reach).

One of the first attempts of using SWIFI is reported in [Seggdl., 1988] and
[Bartonet al., 1990] where atool called FIAT is presented. This tool i®dblinject
faults into user code and data by flipping bits (that is, sgt# bit from 1 to O or from
0 to 1) in the task image of a process, and the main driver isetlséudies was to
evaluate system architectures. These studies evaluateal-ime checkpointing
workload and showed that the obtained results are dependehé underlying fault
classes used, i.e., changing the types of faults injecsedcilanges the results (error
detection coverage in this case).
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The aim of FIAT is to be able to evaluate tolerance againgt batdware faults
and software faults. Examples of other tools in this catgegoe DEFINE (see
[Kao and lyer, 1995]) and FTAPE (see [Tsai and lyer, 1996])DEFINE, instruc-
tion level faults are injected by switching op-codes in e segment of the target
system. Faults are also injected by manipulating bits in orgnand on the ad-
dress bus of the system. The tool was designed to evaluatX-détivorks and
their dependability. FTAPE was designed to evaluate estistems (as opposed to
low-level mechanisms)

There are SWIFI tools which focus on evaluating fault tabeeagainst hard-
ware faults only. For example, FERRARI (see [Kanawatl., 1995]) which in-
jects faults using the UNIX process handling system by sjpayvtarget processes
In a special trace mode enabling manipulation of procesgasighereby facilitating
injection of transient faults and permanent faults. DOCT{®&® [Haret al,, 1995])
is another tool which injects faults by mutation (i.e., bynbing the actual code that
is executed) and errors by bit manipulations and by disha&s in communication
between system components.

Another tool which has gained a lot of publicity in this caigegis Xception (see,
e.g., [Carreireet al,, 1995] and [Carreir&t al., 1998]). This tool uses the debug port
present on many modern microprocessors to inject faulteaods. Xception is able
to perform op-code switches and bit-manipulations in the marts of the system
(such as sub-units of the processor, address bus, memorggister banks, etc.).

The work presented in this thesis has a focus on error préipaganalysis (as
well as the classical error effect analysis) which requiresy high observability.
The tools mentioned so far do not display an observabilighl@nough to analyse
the propagation of (data) errors in software. There arestdwbwever, which do
that. For example, MAFALDA (see [Fabet al., 1999]) is a tool for analyzing the
effects of software faults and to some extent the propagaticerrors in real-time
micro-kernels. This tool requires some hardware suppoarder to function and
performs its injection at the OS-level. From the availabl®@imation, it is unclear
if MAFALDA has the logging functions required for detailedalysis of error prop-
agation. Another tool, NFTAPE (see [Stettal., 2000]), on the other hand provides
a wide range of injection as well as logging facilities and && used for detailed
analysis of error propagation. However, NFTAPE is desigoedin on a LAN and
Is designed with a separate control host and a target node.

The tool described and used primarily for propagation afeteanalysis in this
thesis, PROPANE (see Chapter 5), is most closely relatetufictional terms) to
MAFALDA and NFTAPE and other tools which offer high obserildp and con-
trollability. PROPANE also has functionality which resdesthat of DEPEND or
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Loki in the sense that it can be used to inject faults and emorsimulations of
systems and architectures (as PROPANE uses standard ablecabde as its tar-
get). A more comprehensive comparison between PROPANEhendame of the
SWIFI-tools mentioned here is found in Chapter 5.

2.2 Software Implemented Fault Tolerance

With the increased demand for computer control in consumayzts and inexpen-
sive dependable systems, it is only natural to want to usevaod for implementing
dependability mechanisms.

A common way of coping with faults and errors using softwarda deploy
multiple, diverse versions of the software. These versioay be organized in a
variety of structures such as, for example, N-Version-Roagning (NVP, described
in [Avizienis, 1985]) or Recovery Blocks (RB, described Randellet al.,, 1978]
and [Randell and Xu, 1995]). In addition, a number of comtiams and enhance-
ments of these two basic structures have been suggestddasuConsensus Re-
covery Blocks (described in [Scadt al., 1983]) and Distributed Recovery Blocks
(described in [Kim, 1989]).

Other structures have also been introduced and presentedingtance, N-
Self-Checking-Programming (a unifying term of several fda implementations
described in [Lapriet al., 1987]), where software components are associated with
built-in tests checking the produced outputs, either inldiglly (using acceptance
tests) or in pairs (using comparison tests). We also haveopi#®Programming or
Retry Blocks (described in [Ammann and Knight, 1988]), whtére main approach
Is data diversity as opposed to code diversity.

However, systems using such structures will, generallyhilgl-cost systems
as multiple, perhaps functionally equivalent, versionsy/rhave to be developed.
Furthermore, more powerful hardware is often needed, duiticreasing the cost of
these systems. Therefore, such structures are almoss®eatjufound in systems
that can carry such a high cost level, e.g., systems congadlircraft, spacecraft
or nuclear power plants. Also, in [Randell and Xu, 1995] tb#hars state that “the
overall success of recovery block schemes rests to a griesiten the effectiveness
of the error detection mechanism used—especially on thepsaace tests”. This
makes the search for inexpensive error detection techsigaiel also for structures
like recovery blocks.

Error detection may be provided using on-line tests of mdkdata in the form
of executable assertions. As stated in [Levesbal., 1990], error detection in the
form of executable assertions can potentially detect amy ar internal data caused
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by either software faults or hardware faults. Some of thé &ippearances of this
technique are found in [Hecht, 1976] and [Saib, 1978]. InjSHA78], the pro-
gramming languages PASCAL and FORTRAN were extended tadechnas-
sert instruction. Executable assertions test the validity & #alue of an indi-
vidual variable or a set of variables using predefined rules @an be used both
during software development to aid developers in findindtdan the system, as
described in [Mahmoodt al,, 1984], and when the system is operational as part of
fault-tolerance mechanisms, as described in [Rab&jat, 1996]. In addition to
on-line error detection, executable assertions may be disedg the development
of a system for testing purposes, as for instance in [André@89], and to assess
the vulnerability of the system.

In [Rosenblum, 1995], a tool called the Annotation PrePseoe (APP) is de-
scribed. This is a processing tool for assertions addrgssase-of-use and effec-
tiveness issues when dealing with assertions in C prograwsiaped for UNIX.
A similar approach was presented in [Yin and Bieman, 1994ine&thod for reduc-
ing the number of executables assertion using static arabyssource code was
presented in [Gough and Klaeren, 1997]. Here, the authsrs algue that using
inter-modular analysis can even further reduce the numbassertions required.
Here, preconditions are specified in interface descriptioihencapsulated objects
(software modules).

The main drawback of executable assertions is that theyightyhapplication
specific, meaning that in order to construct effective dsses, developers must
have extensive knowledge of the target system. Studiesanegtoret al,, 1990]
have shown that the ability to develop effective assertishgyhly individual among
software developers. Making the development of execui@sertions a part of the
normal system design process rather than a task that ispediowhen the system
enters a test phase or after the system has been made apedranay decrease the
effect of differences between individuals.

Rabéjac presented in [Rabéjaical., 1996] a development methodology for ex-
ecutable assertions. Unfortunately, no in-depth desonpf this method was pro-
vided. Stroph and Clarke presented in [Stroph and Clarke818ynamic accep-
tance tests, which are executable assertions with dynaomstraints. However,
their proposed scheme applies only to linear, causal, inveriant systems (which
implies that the systems may not have any state).

The work regarding error detection and recovery preseméthapter 4 of this
thesis attempts to make design and incorporation of exeleusssertions more rig-
orous by proposing mechanisms that are generic test rguiuhéch only have to
be instantiated with parameters. Also, the data to be testedtegorized accord-
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ing to a signal classification scheme which in turn dictatésctv mechanisms to
use. Another motivating factor behind this approach is ti&earthe assertions less
application specific.

2.3 Error Propagation Analysis

Error propagation analysis for logic circuits has been mfas many decades. Nu-
merous algorithms and techniques have been proposed, sutheaD-algorithm
in [Roth, 1980], the PODEM-algorithm in [Goel, 1981] and t&&N-algorithm in
[Fujiwara and Shimono, 1983] (which improves on the PODHYBathm).

Error propagation in hardware is also addressed in [ShirLandl988], where
a stochastic propagation model based on error propagati@s ts described. How-
ever, the authors do not cover locations for EDM's/ERM’ssadone is this thesis.
Also, the model is defined at the module level, i.e., if thesesveral signals linking
two modules together, these will not be considered indadigubut as a group.

An approach for dependability analysis, including errasgargation, based on
data flow analysis in HW-SW co-design is presented in [@setal., 1995]. Here,
a data flow model of the system (including only functionaluiegments) is extended
with information regarding fault occurrence, fault latgand detection probabilities
such that a dependability analysis can be performed. Thisaph works on a high-
level model of a system which is not yet divided into hardweaand software.

In [Voas and Morell, 1990], propagation analysis in sofvaras used for de-
bugging purposes. Here the propagation analysis aimeddubdimprobabilities of
source level locations propagating data-state erroreif were executed with erro-
neous initial data-states. The framework was further eddnn [Voas, 1992] and
[Morell et al., 1997] for analyzing source code under test in order to deter test
cases that would reveal the largest amount of defects. lag&fal, 1998], the
same framework was used for determining locations for ptaeissertions during
software testing, i.e., aiming to place simple assertiohere&v normal testing would
have difficulties finding defects.

Analysis based on control flow is described in [Geogheganfamnelsky, 1996].
Here, a software system is analyzed with regard to contral #iod, based on the
results of this analysis, flow checks are placed in order teal@rrors dynamically.
As this approach only deals with control flow errors, it isydifferent from ours
as we deal with data errors. The control flow approach willh@tdle detection of
data errors unless these change the control flow such tham ibe detected by the
obtained EDM’s.
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An investigation in [Michael and Jones, 1997] reported thate was evidence
of uniform propagation of data errors. That is, a data eromuaing at a location
| in a program would, to a high degree, exhibit uniform prop@&ga meaning that
for location| either all data errors would propagate to the system outpnbe of
them would.

Finding optimal combinations of hardware EDM'’s based oreexpental results
was described in [Steininger and Scherrer, 1997]. They aeedrage and latency
estimates for a given set of EDM’s to form subsets which mingd overlapping
between different EDM’s, thereby giving the best cost-perfance ratio.

In [Levesonet al., 1990], a study on the use of self-checks and voting for soft-

ware error detection concludes, among other things, tlaephent of self-checks
seemed to cause problems, i.e., self-checks that mightleeme effective failed on
account of being badly placed.

The work presented in Chapter 6 of this thesis contains aroapp for analyz-
ing how data errors propagate in modular software and howaffect the output
of the system. This way of software analysis, or softwardilprg, allows system
designers to perform a cost-benefit analysis to selectityasuitable for error de-
tection and recovery mechanisms. That is, the placememepsois going away
from ad hocand becomes more rigorous as propagation and effect osaraor be
guantified.
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CHAPTER

Assumed Models and Example
Target System

Things should be made as simple as possible, but not anyesimpl
— Albert Einstein (1879-1955)

In order to be able to produce general results in the areapafatable software,
one must first specify some model of the systems and softwanrsidered. This
chapter describes the model of the view on modular softwamribedded system
used in the work presented in this thesis along with undsglgissumptions on com-
munication between the software modules. This chaptenatismuces an example
system which is used as a target system to evaluate andatieighe techniques
presented in this thesis.
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3.1 Models and Assumptions

3.1.1 System and Software Model

The work in this thesis is based on the assumption of modafaware, i.e., discrete
software functions interacting to deliver the requisitedtionality. A module is
considered to be a generalized black-box module havingpteulbputs and outputs
(as illustrated in Fig 3.1).

Input1 — =—— Output 1

Inputm —— —— Output n

Figure 3.1: A generalized black-box software modulevith m inputs andn out-
puts.

The fact that black-box knowledge is assumed means thantemals of the
modules is unknown and, thus, unchangeable. However,¢haitpies and methods
for design and analysis of dependable software presentbsithesis are not limited
to black-box software. In fact, the techniques and methoelgust as applicable to
white-box software.

A software module performs computations using the providpdts to generate
the outputs. At the lowest level, such a black-box module g procedure or a
function but could also conceptually be a basic block oripaldr code fragment
within a procedure or function (at a finer level of softwarstsdction).

Modules communicate with each other in some specified waagusiried forms
of signaling, e.g., shared memory, messaging, parames$sinog etc., as pertinent
to the chosen communication model. All communication patysvare here called
signals, irrespective of the actual underlying commuincaparadigm. That is, a
signal is just an abstraction indicating some form of infation and data exchange
between modules.

A number of black-box modules constitute a system and theyngar-linked via
signals, much like hardware components on a circuit boafdcoOrse, this system
may be seen as a larger component or module in an even laggensySignals can
originate internally from a module, e.g., as a calculatiesuit, or externally from
the hardware itself, e.g., a sensor reading from a regisher.destination of a signal
may also be internal, being part of the input set of a modulexternal, for example
the value placed in a hardware register. A system with maltiger-linked modules
Is illustrated in Fig 3.2.
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L7~ Intermediate signals

s
s

| A / C System
System g output
input < signals
signals
B D ul E —

Figure 3.2: A system consisting of 5 black-box inter-linkeddules. Indicated are
system input signalgntermediate signalsandsystem output signals

Software constructed as described above is found in nurseraibedded sys-
tems. For example, most applications controlling physsants, such as in auto-
motive systems, are traditionally built up as such. Theistidescribed and pre-
sented in this thesis mainly focus on software develope@naoedded systems in
consumer products (high-volume and low-production-cgstesns).

3.1.2 Fault and Error Model

The work in this thesis concentrates on data errors. Thwe tihese errors have oc-
curred is not a main concern. The underlying faults may bevsoé faults (defects),
hardware design faults, external disturbances, etc. srédspect, the error models
used in the experiments described in this thesis are allthatkerroneous values are
created by manipulating the bits of the target variables @mary locations. It can
be argued that random bit-flips can mimic the effects of temsardware faults,
as shown in [Riméet al,, 1994]. More information regarding error models can be
found for each experiment as they are described in the thesis

3.2 Target: Aircraft Arresting System

In order to evaluate and illustrate the mechanisms and igeés presented in this
thesis, a system following the model described in Secti@ns3used as an example
system. The target is a system is used for arresting airorafhort runways, as
found on, for instance, aircraft carriers or small airfielasd is designed according
to specifications found in [USAF, 1986].
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Runway
Tape drum Cable Tape drum

(Master) (Slave)

Rotation [7| Pressure [7| Pressure Pressure Pressure
sensor sensor valve sensor valve
\\ v \ f

Communication link
Master Slave

Figure 3.3: Overview of aircraft arrestment system usedkan®le studies in this
thesis.

3.2.1 System Overview

The system consists of a cable strapped across the runway atached to two tape
drums, one on each side of the runway (see Fig 3.3). Two canpotdes control
the drums: i) a master node and ii) a slave node, one nodedbrdzam. These two
computer nodes are connected via a serial link on which theenaode transmits
commands to the slave node and the slave node transmits irdsuination to the

master node. The processors used in these computers arM@&BHC11 running

at a clock speed of 7 MHz.

An incoming aircraft grabs hold of the cable with a hook at&xt to the fuse-
lage, and the cable immediately begins to rotate the tapaglas the aircraft travels
along the runway. Attached to the rotating drums are tootbelhand optic sensors
measuring the number of teeth passing by the sensor. Therseare periodically
read by the master node which can then, using the number s¢pglenerated by
the tooth wheels, calculate the length of the pulled outesahk rotational speed of
the tape drums, as well as the current speed of the aircraéi.nTaster node calcu-
lates the set point pressure that is to be applied to the doymseans of hydraulic
pressure valves in order to slow the rotation, eventualigging the aircraft to a
complete stop. The slave node receives its set point peessine from the mas-
ter node and applies this to its drum. Pressure sensors aales give feedback
to their respective nodes about the pressure that is actoithg applied so that a
software-implemented PID-controller can keep the acttedgure as close to the set
point value as possible.
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Figure 3.4: Software structure of the master node of theadtrarrestment system.

3.2.2 Software Structure

In the studies performed for this thesis, focus was on théanasde of the system.
The software of the master node is mainly composed of six hegdf varying size
and input/output signal count (see Fig 3.4). The numbers/stai the inputs and
outputs in Fig 3.4 are used for numbering the signals. Foamte,PACNTIs input
#1 of DIST.S, andSetValues output #2 of CALC. The software is composed of
six modules of varying size and input/output signal counyst&m input is received
from a number of sensors at PRESand DISTS, and system output is provided
to an actuator at PREA. The remaining modules (CALC, REG and CLOCK)
provide internal/intermediate signals.

The scheduling of the system is slotted, meaning that a roamik running in-
definitely and this loop is divided into a number of slots. Pleeiod of the iterations
Is 1 millisecond and in each iteration of the loop the funtsionodules belonging to
a certain slot will be executed and a slot-counter is theremented. The module
specifics are:

CLOCK provides a millisecond-clocknscnt The system operates in seven 1-ms-
slots. In each slot, one or more modules (except for CALC)rareked. The
signalmsslot_nbr tells the module scheduler the current execution slot. This
module has a period of 1 ms.

DIST_S receivesPACNT and TIC1 from the rotation sensor attached to the tape
drum, andTCNT from the hardware counter modules. The rotation sensor
reads the number of pulses generated by a tooth wheel onuhe @IST.S
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provides a total count of the pulsgailscnt generated during the entire ar-
restment, as well as two boolean valuglew speedand stopped indicating

if the velocity is below a certain thresholdl¢w speed== TRUE) or if the
aircraft has stopped altogethestdpped== TRUE). This module has a period
of 1 ms.

CALC useanscnipulscnt slow speedandstoppedo calculate a set point value for
the pressure valveSetValueat six predefined checkpoints along the runway.
The distance between these checkpoints is constant, apdataedetected
by comparing the currengulscntwith pre-defined, internally storgoulscnt
values corresponding to the different checkpoints. Theectircheckpoint
Is stored ini. This module is the background task, i.e., it runs when other
modules are dormant. Thus, it has no period.

PRESS reads the pressure sensor measuring the pressure thatadlyabieing
applied by the pressure valves, usiABC from the internal A/D-converter,
and provides this pressure valud$ivalue This module has a period of 7 ms.

V_REG usesSetValueandlsValueto controlOutValue the output value to the pres-
sure valve.OutValueis based orSetValueand then modified to compensate
for the difference betweeBetValueand IsValug by means of a software-
implemented PID-controller. This module has a period of 7 ms

PRESA usesOutValueto set the pressure valve via the hardware regis@C?2
This module has a period of 7 ms.

The modules described above are the modules used for imptelg¢he actual
service of the system. There are some more modules in thal gcftware handling
the communication on the serial link between the master aodethe slave node.
However, these have been left out as they are not considetbd example studies
performed in this thesis.

The software of the slave node is in essence the same as thatokster node.
However, as the slave node does not itself calculate anys#tgressure for its tape
drum (i.e., theSetValuesignal), and instead receives this from the master node, the
software of the slave node only contains the modules CLOGE RS, V_REG,
and PRESA.

3.2.3 Failure Classification

The specifications according to which the system is impléatefy SAF, 1986] dic-
tate certain physical constraints, which the system musbhd hese constraints are
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that the retardation must not exceed a certain limit in otderot affect either the
plane or the pilot in a negative way, and that the force adgphethe aircraft by the
cable must not exceed certain limits in order to not endangehe aircraft. Also,
the length of the runway is limited. However, this constramay vary from install-
ment to installment. The constraints are as follows:

1. Retardations(). The retardation of the aircraft shall not have a negatifece
on the pilot. Constraintr < 2.8

2. Retardation forceH;.;). The retarding force shall not exceed the structural
limitations of the aircraft. Constrainf,..; < Fjuz.
The maximum allowed forced,,..) are defined for several aircraft masses
and engaging velocities in [USAF, 1986]. Force constraiotsombinations
of masses and velocities other than those given in [USARG1&& obtained
using interpolation and extrapolation.

3. Stopping distancedj. The braking distance of the aircraft shall not exceed
the length of the runway. Constraint: < 335n

A violation of one or more of these constraints is defined aailaré. This is
a pessimistic failure classification, in the sense that hotias which according to
this classification were failures would have turned out tahigcal in reality. For
Instance, in most cases a retardation of upgondl not significantly damage the
aircraft or injure the pilot. The duration of a typical, f&ié-free, arrestment ranges
from about 5 seconds (low kinetic energy) up to about 15 s#xdhigh kinetic

energy).

3.2.4 Adjustments for Example Studies

When performing experiments, real aircraft could obvigusit be used. Instead, an
environment simulator was constructed which simulatessérmesors and actuators,
and the incoming aircraft (see Fig. 3.5). One simplificatiwade in the environment
simulator is that the slave node is removed. The simulatlyr@msiders the master
node. Thus, the set point pressure calculated for the peesalye on the tape drum
of the master node is also used as the set point pressureefathler tape drum
(formerly handled by the slave node). Moreover, it is assiithat both tape drums
exhibit the same behavior. Thus, only the pressure sengbe@haster tape drum is
simulated.

The environment simulator also simulates the incomingairand takes the air-
craft mass (irkg) and incoming velocity (inn/s) as simulation parameters. During
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Environment simulator

Runway

Tape drum
(Slave)

Tape drum
(Master)

Rotation |9 Pressure |9 Pressure Pressure
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Figure 3.5: The aircraft arrestment system and environrsiemilator

execution, the simulator feeds input data, in the form oSeemlata, to the mas-
ter node and uses the output of the node, in the form of actdata, to drive the
simulation.

As the slave node was not used by the environment simulatbtheencommu-
nication between the master node and the slave node wasndotynational as far
as the master node was concerned, it was decided to takeabyatth of the master
node software which handled the communication. This wag doigain more CPU
resource on the original hardware setup which could be usedvialuating error
detection and recovery mechanisms instead.

The setup described above was used for experiments coddusitey the FIC
tool (see [Christmansson and Rimén, 1997] and [Christswaret al., 1998]) which
was the main tool for evaluating the error detection andvexgomechanisms pro-
posed in Chapter 4. When using the target system with PROP@&NX&pagation
Analysis Environment, described in Chapter 5), furtheusatipents had to be made
as PROPANE is a tool intended for use on desktop computemp@ssed to FIE
which operated on an actual implementation of the targgesysThe actual soft-
ware of the master node was ported to run on a Windows-baseguter. As the
scheduling is slot-based and non-preemptive there is, thensoftware viewpoint,
no difference in running on the actual hardware or running aesktop computer.
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Some glue software was developed to simulate registers/forcanversion, timers,
counter registers, etc., accessed by the application. Mhebament simulator was
also ported, so the environment experienced by the systéne ifirst setup and the
desktop setup was identical.
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CHAPTER

Software Mechanisms for
Handling Data Errors

Failure is not an option!
— Gene Krantz, NASA Flight Director, Apollo 13

Consumer products, such as automobiles, are safetyatréystems that tradi-
tionally require low-cost solutions to engineering probge Thus, with increased
use of computer control in such systems, low-cost solutfonglependability are
required. To this end, this chapter describes softwareamphted approach for
error detection and error recovery focusing on handling @ators, i.e., erroneous
values in system state (signals and variables). The appmatsist of a set of pa-
rameterized software mechanisms for detection and regmfedata errors. The
detection part of the mechanisms is based on the establcsimexdpt ofexecutable
assertionsand the recovery part is a “best-effort” approach cafteded validity
In order to facilitate easy and rigorous insertion of the hagisms into embedded
modular software, a signal classification scheme is inttedu This scheme lets a
system designer classify the signals of a software systairtteen choose appro-

priate mechanisms to protect them. The chapter also cenealuations of the
proposed mechanisms.

33
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4.1 Introduction

Fault-tolerance is no longer required only in high-end exyst such as aircraft, nu-
clear power plants or spacecraft. Consumer products, sueltamobiles, are in-
creasingly dependent on electronics and software andresfpw-cost techniques
for achieving fault-tolerance. Low-cost in this sense nsdhat these techniques are
inexpensive to develop and that the product is (relativielgkxpensive to produce.

The first step in tolerating the effects of faults is to detdwt symptoms of
faults, i.e. the errors. Several techniques and methods haen proposed for
error detection. An N-Version-Programming (NVP) style eggezh to error detec-
tion is achieved by running several versions or variantshef gystem in parallel
and then compare their results [Avizienis, 1985]. If theulessdiffer, an error must
have occurred in at least one of the versions. This appraagiry effective but
tends to be also very expensive. A more inexpensive way of eletection is to
explicitly check for errors in the system-state. Severahtéques for such self-
tests have been proposed (e.g., [Mahmebadl., 1984], [Rabéjaet al,, 1996], and
[Stroph and Clarke, 1998]), but often little is known abdit effectiveness.

Most self-tests are based on the concept of executabletiasse(see, e.g.,
[Hecht, 1976] and [Saib, 1978]). Executable assertionsispally statements, that
can be made about the variables in a program and can poledgdéct any error in
internal data caused by either software faults or hardwaukst These statements
are executed in on-line tests to see if they hold true. If theynot, an error has
occurred and processes for assessment and recovery maykednIn addition to
on-line error detection, executable assertions may bedis@ay the development of
a system for testing purposes [Andrews, 1979], and to asystsm vulnerability.

Self-tests, as for instance executable assertions, agoyjor roles in software
fault tolerance structures such as Recovery Blocks (RB)dflethand Xu, 1995] and
its variants (e.g., Consensus Recovery Blocks in [Setadt., 1983] and Distributed
Recovery Blocks in [Kim, 1989]), and other structures (&eg,, N-Self-Checking-
Components in [Lapriet al, 1987], and N-Copy-Programming or Retry Blocks in
[Ammann and Knight, 1988]).

The effectiveness of executable assertions is highly egidn dependent. In
order to develop tests with high error detection coveralge,developers require
extensive knowledge of the system. Introducing rigorougsind defining the state-
ments used for executable assertions, or even betterdomgwjeneric mechanisms
that can be instantiated by parameters alone, reduce tleeteimge of this drawback.

Once an error has been detected, attempts to recover tleensyah be initiated.
In the NVP-system mentioned above, errors are tolerated dskimg them rather
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than actively changing an erroneous system state. Howaevealready established,
NVP-systems are very expensive and thus are not consideredlhstead, the focus
will be on recovery where an erroneous state is correcteat,least made acceptable
(according to some specification).

In this chapter, parameterized mechanisms for detectionrecovery of data
errors are introduced and evaluated with regard to theeatien and recovery ca-
pabilities. The mechanisms operate at the signal levelnmgahat only one sig-
nal/variable is tested in each individual test routine. @atection part of the mech-
anisms is based on the executable assertion concept. Fosigaal a set of validity
constraints are set up and if a signal does not comply to thosstraints, this is
considered to be an error. The proposed recovery part of duhamisms is called
forced validityand attempts to remove an erroneous signal value by forcimgpi
the valid domain of the signal. A basic process using an éxpeg/heuristic ap-
proach for selecting where to incorporate the mechanisinsaisoftware system is
also discussed.

In order to evaluate the error detection and recovery cpadiof the proposed
mechanisms a case study using error injection experimentseotarget system de-
scribed in Chapter 3 was performed. In this study, two seépar@aluations were
conducted: i) an evaluation of the error tolerance capadslii.e., the combination
of error detection and error recovery) of the proposed mashes, and ii) the error
detection capabilities (coverage and latency) of the mashes.

Even though the mechanisms may handle errors induced hyagefffaults as
well as hardware faults, the case study concentrates orsenauced by hardware
faults.

The first evaluation shows that the failure rate for errojsated into the mon-
itored signals was reduced by 32.56%. However, for errgeciad into random
locations in memory (including system stack and CPU reggstide reduction in
failure rate was only 4.69%.

The results of the second evaluation show that given thatranis present in a
monitored signal, and that this error leads to system aijlilne detection probability
Is over 99%. For errors injected into random locations inrtteemory areas of the
target system, the errors that caused system failure weéeetdd with a probabil-
ity of over 81%. The presented technique is therefore a @iabhdidate for error
detection with reasonably high detection coverage if coat® to be kept low.

The remainder of this chapter is organized as follows: Seecti2 describes the
adopted model for modular software. In Section 4.3 is theadiglassification from
which the proposed error detection and recovery schemedtiofet.4 is derived.
A basic approach for selecting locations and parametelisgsissed in Section 4.5.
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Figure 4.1: A software module M with executable assertiatsahputs and outputs

Section 4.6 introduces the case study performed for evafudte mechanisms. The
first evaluation is covered in Section 4.7. A discussion aaorattetection coverage
and error propagation in Section 4.8 precedes the secohuatwa in Section 4.9.
Finally, Section 4.10 summarizes this chapter and drawslagsions.

4.2 Executable Assertions in Modular Software

In this thesis, the adopted system model is that of moduli@wace where the dif-
ferent modules are interconnected using some kind of signd@hs described in
Chapter 3). Executable assertions operating at the sigwall fit very well into this
system model. To illustrate this, consider the software uteydM, in Fig. 4.1. This
module is equipped with tests at the input signals and at titygub signals. These
tests are executable assertions, i.e., small snippetsdef dwecking the validity of
the signals.

When input arrives, it is subjected to executable assexrti@termining whether
they are acceptable or not. Output from calculations may béstested to see if
the results seem acceptable. Should an error be detectedurmas can be taken to
recover from the error, and the signal can be returned toid stdte (although it
may still have a value different from what it would have hathé system had not
suffered from errors).

Error detection in the form of executable assertions caerily detect any
error in internal data caused by either software faults odware faults (as stated
in [Levesonet al., 1990]). However, one of the main drawbacks of executable as
sertions, and indeed of all kinds of acceptance tests, islibg are very application
specific. One way of lessening the impact of this specifi@tyoidevise a rigorous
way of classifying the signals that are to be tested. Paenmet! mechanisms can
then be devised for entire classes of signals and need natilbefitted for each
individual signal. In the next section, we introduce an apph for dividing signals
in software into different classes.
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Figure 4.2: The signal classification scheme

4.3 Signal Classification: Taking an Abstract View on Data

In this section we will present a scheme for classifying algnn software which
will help when determining the valid domain for the signalBor each class of
signals we will then devise a mechanism for error detectimhexror recovery. The
classification scheme used in this investigation is showkign4.2.

The two main categories in the classification schemeanénuousanddiscrete
signals. These categories have sub-categories thatfutdssify the signal. For ev-
ery signal class we can set up a specific set of constrainth, asiboundary values
and rate limitations, which are then used in the executadsdertions. In order to en-
able a signal to have different behaviors during differentes of operation in the
system, a signal may have one set of constraints for eachnsadk. Which set of
constraints are to be used is defined by the current mode sighal/system. Dur-
ing operation, signal values are repeatedly tested to civkeither they violate the
defined constraints or not. If they do, an error has been tetemnd error recovery
can be initiated.

Next, we will discuss the two main signal classes in detall s&t up the param-
eters that are used for constraining the behavior of thealsgn

4.3.1 Continuous Signals

The continuous signals are often used to model signals ienligonment that are
of continuous nature. Such signals are typically repregems of physical signals
such as temperatures, pressures or velocities.
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(a) (b) (€)

Figure 4.3: Continuous signals: (a) random, (b) static nmmo (with wrap-
around), (c) dynamic monotonic

The continuous signals can be divided into monotonic andaancontinuous
signals. Monotonic signals must either increase or deerdasr value monoton-
ically and cannot, for example, increase between the firdtthe second test and
then decrease between the second and the third test. Howesxemay be allowed
to remain unchanged between tests. The monotonic signalsasee either a static
rate or a dynamic rate. A signal with static rate must eitheraase or decrease its
value with a given constant rate. A signal with dynamic rateyever, can change at
any rate that is within the specified range. The random coatia signals may de-
crease or increase (or remain unchanged) between tedtss(ttreey may randomly
increase or decrease between tests).

Also, a signal may be allowed to wrap around, i.e., when it teaxhed its
maximum or minimum value, it may continue “on the other sid#iis is visualized
in Fig. 4.3, which shows examples of the three types of caotis signals.

For the proposed error detection and recovery mechanisessgign to each
continuous signal a sdt,.,,; containing seven different parameters;,,, (maxi-
mum value),s,i, (Mminimum value), . ine (MINIMuUM increase rate)y,az incr
(maximum increase ratey,, i, decr (MINIMUM decrease rate),, oz decr (Maximum
decrease rate), and (wrap-around allowed/not allowed). The parameters are il-
lustrated in Fig. 4.4(a). Here we have, at timea signal value o&’. At time ¢,

l.e., the next sample tick of the signal, we have the signlaleva As illustrated in
Fig. 4.4(a),s is valid if 5" + Tminyiner < 8 < s + Tmaz,incr OF s — Tmaz,decr <
s < 8" + Tmin,iner- At this point we have only considered static parametertsgiypu
namic parameters, as in [Clegg and Marzullo, 1997] or [$trapd Clarke, 1998],
may also be considered.

Each signal class imposes certain constraints on thesmptes. For both stat-
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Figure 4.4: The parameters of continuous signals and redeogonstraining them

ically and dynamically increasing monotonic signals thargde rate limits for de-
crease are set to zero (i.8muz,decr = Tmin,deer = 0). However, for statically in-
creasing monotonic signals, the change rate limits foeiase are set to be identical
(i.e., "maz,incr = Tmin,iner > 0), Whereas for dynamically increasing monotonic
signals the change rate limits for increase differ (i§,az,incr > Tmin,iner > 0).
For a monotonically decreasing signals, the opposite imsakgously. For ran-
dom continuous signals, i.e., signals that can either as@eor decrease between
consecutive samples, we have non-zero values for all chagdimits (i.e.,0 <

T'min,incr < Tmazx,incr and0 < T'min,decr

< Tma:c,dem")-

In addition to these constraints there are several othest@nts we put on
the parameters in order to deal with situations where \gliof a signal value is
undecidable. Consider the case depicted in Fig. 4.4(b)e iWerhave a signal where
wrap-around is allowed and we have signal vadlie= s,,;, at timet' (we have
chosen to show this example with = s,,,;, as this makes the illustrations easier
to understand—the principle is, however, the same for ahyevaf s') and signal
values > s, at timet. We can see that the signal value has increased but the
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change is less than the minimum increase rate, s.e s’ + rmininer. This
alone would make us consider the signal value invalid. Haenew we take into
account the fact that wrap-around is allowed, we can in s see that could be
considered valid if the increase so high that the value htambiy wrapped around.
This situation could occur ifez iner > (Smaz — Smin). Therefore, in order
to avoid this situation, we set a constraint on the maximucneiase rate such that
Tmaz,incr < (Smaz — Smin). ThiS means that the maximum allowed increase is the
entire range from the minimum value to the maximum value. ripvaround is not
allowed, this constraint is actually implied. The same li@rgumentation can be
made for decrease rates, thus we set a constraint on the omraxda@crease rate such
that'rma:r,decr < (Smaz — Smin)-

Allowing wrap-around generates more situations where guoities may arise.
Consider a case shown where we have a continuous random, signat can in-
crease or decrease randomly between two consecutive sapfplee signal. As-
sume that the signal has the vakie= s,,;, at timet' (again, this value is chosen
as the illustrating figures then are easier to understand-ptimciple is the same,
however, for any value of') and the value such thats’ < s < s’ 4+ Tmininer at
time ¢t. As long as the situation is as depicted in Fig. 4.4(c), whieeevalid ranges
at timet do not overlap at all, there are no ambiguities when chedkiagalidity of
the value—it is always considered erroneous. In the sitnatepicted in Fig. 4.4(d)
the valid ranges at timedo overlap, but can still safely be flagged as erroneous.

In the situation depicted in Fig. 4.4(e), we have valid ranggtimet that over-
lap and also “spill over”, i.e., the parameters of the sigaral such that in this sit-
uation, wheres’ < s < s’ 4+ Tpin.iner, the values could still be considered
valid as it falls into the valid range if one assumes that tigead was decreased
instead of increased. Thus, there are ambiguities in degidihether the signals
value s here is valid or not. In order to avoid this situation, we pohstraints on
the parameters. The ambiguities arise if we have randonmnumnis signals where
wrap-around is allowed ansl,,; — Tmaz.decr < Smin + Tmin,iner, 1.€., When
Tmaz,decr + Tmingner > Smaz — Smin- 1herefore, we set a constraint such that
Tmaz,decr + Tmininer < Smaz — Smin- A SiMilar line of arguments can be derived
When s,in + Tmaz,iner > Smaz — Tmin,decr- 1NIS Situation instead yields the
ConStraintTmax,incr + Tmin,decr < Smaz — Smin-

Now we have derived several constraints for the varioussem®f continuous
signals. In Table 4.1 is a summary of these constraints.olshbe noted that the
situations that are labeled as ambiguous here can, by tigndesf the executable
assertions, instead be considered valid (this is perhaps ai@ policy issue rather
than a correctness issue).
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Table 4.1: Parameter constraints for continuous signakek

| Signal class | Parameter constraints |
All Smin S Smaz N
w = allowed/not allowed\
0 S Tmin,incr S Tmazx,incr S Smaz Smin N
0 < Tmindeer < Tmaz,decr < Smaz — Smin
Static Decreasing signals:
monotonic 0= min,incr = Tmazx,incr A
0 < T"min,decr = Tmaz,decr
Increasing signals:
0= T"min,decr = Tmaz,decr A
0 < T"min,incr = Tmaz,incr
Dynamic Decreasing signals:
monotonic 0= Tmin,incr = Tmaz,incr A
Tmin,decr < Tmaz,decr
Increasing signals
0 = T"min,decr = Tmax,decr A
Tminincr < Tmaz,incr
Random T"max,decr + Tmin,incr S Smaz — Smin N
Tmaz,iner + Tmin,decr < Smaz — Smin

4.3.2 Discrete Signals

Discrete signals are allowed to take on a set of discreteegallihey often contain
information on the settings of an operator panel or the dgeranode of the system.
Actually, all signals containing some kind of state infotiom, internal or external to
the system, may be classified as discrete signals. For gestarecution sequences
that must be followed in a certain order, or state machinéis anumber of states
and a number of transitions between the states, may be ndoaeldiscrete signals.
The discrete signals are divided into sequential and rargignals.

A sequential signal has constraints on how it may changealisevfrom any
given other value, i.e., the order of change is restrictegljuSntial signals are di-
vided into linear and non-linear signals. Linear signalsstrtuaverse their valid
domain in a fixed predefined order, one value after anotherinstance, the exe-
cution sequence mentioned above could be modeled as a $igeeal. Non-linear
signals traverse their valid domain in predefined ways. Bansignals are allowed
to make any transition from one value to another within thiedvdomain of the
signal.

For the proposed error detection mechanisms we assignhcepal a sefy; .
containing the following parameter$) (the set of valid values) arifl(d) (the set of
valid transitions from elementin D; there is one such set for each elemenbin
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vl > V2

v3

Figure 4.5: Example state diagram for a non-linear seqalediscrete signal

A typical example of a discrete signal is the state varialbla state machine.
From any given state, the machine may transit to a (fixed) murobother states
(maybe including the current state). Consider for exantmestate machine shown
in Fig. 4.5. There are five statesl(throughv5) and a number of transitions be-
tween these states. The valid domain is therefore= {v1, v2, v3, v4, v5} and
the transition sets ar€(vl) = {v2, v4}, T(v2) = {v3, vd}, T(v3) = {v4},
T(v4) = {vb}, andT'(v5) = {vl}.

4.3.3 Signal Modes

The behavior of a signal may differ between different phasfegperation of the
system. Therefore, a signal can have different modes. Afgpset of constraints
is generated for each such mode, i.e. a signal with severdésioas one parameter
set P.,; Or Py for each mode. The set used in a certain modes P, (m) or
Pyis.(m). Mode variables: in this case) can be classified as discrete signals in
themselves, so that error detection may be implementechén tas well. Modes
may also be used to model certain dependencies betweenssigriaat is, if the
behavior of signal is limited due to the operational mode of sigiglthese two
signals can be grouped by means of signal modes represahtsngependency.
Furthermore, using different modes may increase the pbistif detecting errors.

4.4 Mechanisms for Error Detection and Recovery

Error detection is performed using the configuration patarseof the signals to
build executable assertions. An error in a signal is deteagesoon as the signal
violates the constraints given by the configuration paramsetFor error recovery,
we have introduced an approach calfedced validity which assigns a recovery
value within the valid domain of the signal that is either kxse to the actual, but
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erroneous, value (used for continuous signals) or a devaiue (used for discrete
values).

The executable assertions used for continuous values secelad in Tables 4.2
and 4.3. The executable assertions for discrete valueseargided in Table 4.4. In
these tables;s is the current signal value] is the previous signal value ard is the
recovered signal value.

For continuous signals, the tests for detecting an erraealue are divided into
three levels with increasing granularity (colunifest Level 1Test Level 2andTest
Level 3. If a condition at one level is evaluatedfiaue, the test continues with the
conditions at the next lower level. If a condition at one lagesvaluated tof alse,
the test continues with the next test at the same level. tethee no more tests at
one level, the signal value is considered to be correct (dow to the parameters
set for that particular signal). If a condition at level 3 \mkiated totrue then an
error has been detected and the corresponding expressierrdorecovery is used.

The first two tests for continuous signals have a specialstéiey are always
performed before any of the other tests are performed andadha error be detected
at this point, the remaining tests will be performed usirgrgcovered signal as the
test value. That is, if a signal value aboyg,.. is being tested it will first be set to
smaz DEfOre the remaining tests are performed.

The tests requiring a previous valu€, are only performed from the second
sample point and on. This means that the first time a signdiaesked it is only
made sure that it is within its maximum and minimum values.

Please note here that the last set of tests performed in cagmal has not
changed its value, i.e., when= s’, covers the case when a signal is not allowed to
remain the same between two consecutive samples (unlessuide, it already is
at its maximum or minimum value and is not allowed to wrap adju If a signal
is forced to either increase or decrease, there is choice tmdde regarding the
recovery mechanisms for this error. The two options for vecp here are to either
Increase or decrease the value. In our studies we have ctwabwvays increase the
value if required. One may also consider more elaborateveggschemes where
the decision of whether to increase or decrease the vallendspmn the direction
the signals had between the previous sample and the saniple tieat. However,
for simplicity, a history of only one sample is consideredehe

The executable assertions for discrete signals are lesplicated than those
for the continuous signals. Every sub-class of discreteasgghas it's own set of
error detection and recovery mechanisms, as shown in Tahld He tests basically
check whether the signal value is in the valid domdm,of the signal and that the
transition made from the previous signal value is valid. Tih& time a discrete
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Table 4.2: Expressions for error detection and recovergdotinuous signals

Error Codes: E_MaxV/E_MinV = Signal above maximum/below minimum value,NEinIR/E_MIinDR = Signal change below minimum in-
crease/decrease rateMaAXIR/E_MaxDR = Signal change above maximum increase/decrease rate

Test
Level 1

Test
Level 2

Test
Level 3

Error
Code

Recovery
(Forced Validity)

The following two tests are always
original signal value. The first time

performed. If an erroretedted, the remaining tests are done with the recoveredlsiglue instead of the

a signals is testedsé¢hvo tests are the only ones perform

ed.

8 > Smax

E_MaxV

Sr < Smazx

s < Smin

E_MinV

Sr < Smin

If a condition is true at one level, the test continues at e tevel. If the condition is false, the test continues vifth next test at the same
level. If there are no more tests, the signal is considerdmt tealid. These tests are performed only if there is a previignal value, i.e., from
the second sample and on.

w = allowed

s> s s—s' > T"maz,incr s" — Smin > Tmaz,decr V E_MaxIR sp — s+ Tmazx,incr
w = nhot allowed
(sl — SMin) + (smaﬂﬁ — S) > T"maz,decr E_MaxDR Sr < (smaﬂc - Tmaa:,decr) + (SI — szn)
7 : 7
(8" = smin) + (Smaz — 8) < Timin,decr E.MINDR | s, < (Smaz — "min.decr) + (S — Smin)
s—s' < T'min,incr § < Smaz V E_MinIR if Smaz — 8’ 2 Tmin,iner
w = allowed Sp < 8"+ mininer
else ifw = allowed
Sp < (smin + 'rmin,z'ncr) - (Smam — Sl)
else
Sy < Smazx
s<s' s' — 8> Tmaz.decr | Smaz — 8 > Tmaz,iner V E-MaxDR | sr « s’ — Tmaz,decr
w = nhot allowed
(smam - 51) + (5 - Smin) > 'maz,incr E_MaxIR Sp (smin + Tmam,incr) - (smam - 5/)
7 H 7
(smam — S ) + (5 — Smin) < Tmin,incr E_MinIR Sp (smin + Tmin,incr) - (Sma:v — 8 )
s —s< Tmin,decr 8§ > Smin V E_MinDR if 5" — Smin > Tmin,decr

Sp s’ — Tmin,decr
else ifw = allowed

Sr < (smaﬂﬂ - Tmz'n,decr) + (SI - szn)
else

Sr < Smin

|| This list of tests is continued in Table 4.3.




Table 4.3: Expressions for error detection and recovergdatinuous signals, continued

Error Codes: E_MaxV/E_MinV = Signal above maximum/below minimum value,NinIR/E_MIinDR = Signal change below minimum inj
crease/decrease rateMaAXIR/E_MaxDR = Signal change above maximum increase/decrease rate

Tmin,incr > 0

w = allowed

Test Test Test Error Recovery
Level 1 Level 2 Level 3 Code (Forced Validity)
| This is a continuation of the list of tests in Table 4.2. |
s=s' T"min,incr = (U § > Smin V E_MinDR if s" — Smin > Tmin,decr
Tmaz,iner = 0A | w = allowed sr 4 8 — Tmin,decr
Trmin,decr > 0 else ifw = allowed
Sp £ (Sma;z: - rmin,decr) + (5, - smin)
else
Sr <= Smin
T"min,decr — UAN § < Smaz VY E_MinIR if Smaz — s’ > Tmin,incr
Tmaz,decr = 0A w = allowed sp < 8"+ Tmin,incr
Tmin,incr > 0 else ifw = allowed
Sp < (Smin + rmin,incr) — (smaz — 3/)
else
Sr < Smazx
Tmin,decr > UAN § < Smaz V E_MinIR if Smaz — ' > T"min,incr

’
Sy <= 8 + Tmin,incr
else ifw = allowed
Sy (smin + Tmin,incr) - (Smaﬂc - 5,)
else
Sy < Smazx

If the signal is forced to eit
if the signal has not changed. The policy chosen here is tayswncrease, as shown above. If the policy t
always decrease would be

her increase or decrease, mgaway be to always increase or always decreg

chosen instead, the recovery Weyldrformed as shown below.

O

S > Smin V
w = allowed

E_MinDR

if 8" — Smin Z Tmin,decr
’
37“_<_ $ — 'min,decr
else ifw = allowed
Sy (Sma;z: - rmin,decr) + (5, - smin)
else
Sr £ Smin

172]
D

A18A023Y pue UoI193)9Q 10415 10) SWSIUBYIBN bt
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Table 4.4: Error detection and recovery for discrete sgnal
[| Error Codes: E_InvV = Invalid value, EInvT = Invalid transition ||

Signal Test Error Recovery
Class Code (Forced Validity)
Random s¢ D EInW | s, < dger € D
Linear s¢ D EdnvwW | s, «+ T(s)
Sequential | s # T(s") | EJInvT
Non-linear | s ¢ D EInW | sp < dges € T(s)
Sequential | s ¢ T(s") | E_InvT

signal is tested, only the first test for each class is perarne., only membership
in D is checked). Recovery of discrete signals is here made bpgdéhe signal to
a default value either in the valid domaiP, or in the transition set of the previous
signal value,I'(s"). Note that for linear sequential discrete signals, eadafsitian
set, T, only contains one element. For discrete signals, the temserare always
executed.

4.5 Finding Locations and Defining Parameters

A number of different methods may be used to determine whgphats should be
monitored and where the executable assertions should bedol&rom system de-
sign, the software should already be divided into functitah@cks. In safety-critical
systems, FMECA (Failure Mode Effect and Criticality Anag)sis widely used as
a method for identifying the safety critical parts of thetsys and assessing the
consequences of failures in these parts.

Parameter information may be obtained by the charactsisfi the system it-
self. For instance, sensors naturally have a time constatatidg the maximum
rate of change for the data provided by that sensor. Pregenfithe physical sur-
roundings of the systems are also a source of parameteisv&loediscrete signals,
typical sources of information are allowed settings on yearels, or internal state
machines.

The process of gathering information for parameter valoegxXecutable asser-
tions forces developers to review the system they have olgedl This may assist in
identifying contradicting specifications and/or partst thave not yet been properly
analyzed. The following is the process used in the case siuelented here for
equipping a system with the error detection and recoveryhar@sms described in
this chapter:
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[EEY

. ldentify the input and output signals of the system.

2. ldentify the signal pathways from each input signal tigfothe system and to
one or more output signals.

3. Identify internally generated signals that have a dirgtience on intermedi-
ate and output signals.

4. Determine, e.g., by using FMECA, which of the identifieghsils are the most
crucial for flawless operation of the system and should thezebe guarded
by error detection and recovery mechanisms.

5. Classify each signal found in (4) according to the schepseribed in Sec-
tion 4.3.

6. Determine values for the characterizing parameterseo$iinals. Remember
that a signal may behave differently for different modes pérmation in the
system.

7. Decide on locations for the mechanisms.
8. Incorporate the mechanisms in the system.

This process is a very simple approach relying on the expezief the system
designer. In Chapter 6 of this thesis a more rigorous apjprbased on the analysis
of error propagation and effect is introduced. However,rfow we will use the
process presented here.

4.6 Evaluating the Capabilities of the Mechanisms

As an assessment of the effectiveness of the error deteatidrrecovery mecha-
nisms when employed in an embedded control system, we ctedlacseries of
evaluations using error injection. The first evaluatiorfigned to as€Evaluation 1}
focused on the obtained error tolerance if the proposed amesims are incorporated
into a system, and the second evaluation (referred Evakiation 3 focused on the
error detection capabilities of the mechanisms. The tagsem used is described
in Chapter 3. This section describes the special fittingstthd to be made to the
target system for using it with the experiment tool used is tiase study.

The software of the slave node is slightly different fromttbiethe master node.
No calculations of set point values for the applied presamegerformed. The slave
node simply receives a set point value from the master nobehwt then applies
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ms_slot_nbr i

—
CLOCK — mscnt

T >
pulscnt

CALC

Rotation DISTS | T
sensor - _‘

SetValue
Pressure PRES S L T V REG . PRES A Pressure
sensor - » T - = valve

IsValue OutValue

Figure 4.6: The selected signals and the locations of theegponding executable
assertions. liicvaluation 1 the signaimsslot.nbr was not included in the setup.

to its tape drum. The modules existing also in the slave ncel®RESS, V_REG,
CLOCK, and PRESA. The modules DISTS and CALC are not present.

The system specifications in [USAF, 1986] set a number ofiphlysonstraints
within which the system must operate. These constraintdeseribed in Chapter 3.
In the experiments described in this chapter, this faillasgification has been used
when obtaining coverage estimates of error detection nmesina.

4.6.1 Software Instrumentation

Using the process described in Section 4.5, we identifiedgats (of a total of
24 signals) in the target system that are service critical, €ssential for providing
proper service (see Fig. 4.6). The selected signals wessifitd according to our
classification scheme (see Table 4.5).

Table 4.5: Classification of signals in the target system

|| Signal | Producer | Consumer | TestLocation | Class ||
SetValue CALC V_REG V_REG Co/Ra
IsValue PRESS V_REG V_REG Co/Ra
i CALC CALC CALC Co/Mo/Dy
pulscnt DIST.S CALC DIST_S Co/Mo/Dy
msslotnbr | CLOCK CLOCK CLOCK Di/Se/Li
mscnt CLOCK CALC CLOCK Co/Mo/St
OutValue V_REG PRESA PRESA Co/Ra

In Table 4.5, thd°roduceris the originating module of a signal, tiknsumeis
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Figure 4.7: The overhead in code size, static data (RAM) amstants (ROM)
incurred by the mechanisms.

the receiving module, and thi@st Locations where the executable assertions were
placed. Whether a mechanisms was placed at the producemsuroer side was just

a matter of finding the place where implementation would ledeist complicated.
The Classis how the signal was classified (Co = continuous, Ra = randdm;
monotonic, St = static rate, Dy = dynamic rate, Di = discr&e,= sequential, Li =
linear). In Fig. 4.6 are the selected signals and their spording mechanisms.

The overhead in memory resources of the instrumentationows in Fig. 4.7.
Here we can see that the code of the mechanisms gives an agleohel 7% or
1336 bytes. The mechanisms are implemented as generic mkadstatic library.
Thus, the relative overhead in code very much depends onizbeot the actual
application as the absolute library size in bytes will nadrogee. On the other hand,
the two overhead categoristatic dataandconstantsare dependent on the number
of mechanisms incorporated into the system and thus, taeuwebverhead will not
increase or decrease as much with the (inverse of) applicaize. In this example,
the static data gave an overhead of 5% or 44 bytes, compatkd static data used
by the application, and the constants gave an overhead ob53%0 bytes, roughly
doubling the amount of ROM needed.

At this point it is important to mention that when instrumagtthe target system
with mechanisms foEvaluation 1 it was found that there was too little space in the
on-chip FLASH memory in order to add all mechanisms, so ogreasihad to be left
unprotected. Signahsslot.nbrwas selected as the victim as this was considered the
least critical of the seven signals. Betwdaraluation landEvaluation 2 the target
system was modified so that all communication to the slave m@ removed. This
could be done without changing the characteristics of tis¢tesy as the slave node
was passive, i.e., it only received commands from the mastide and never sent
commands back to the master node. Thus, from the mastersnpdiit-of-view,
there was no difference in functionality. Also, the enviment simulator used only
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Environment simulator
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Tape drum
(Master)
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Figure 4.8: The’ IC? and the target system - the tool provides input to the environ
ment simulator and injects errors in the master node of tigeta

considered input from the master node and replicated tihahé&slave node drum.
Thus, the slave node did not really take part in arrestingrair in the setup used
in the evaluations. Removing the communication betweemthster and the slave
nodes freed resources in sufficient FLASH memory (and ofsmlowered the total
CPU load) such that the signais slot.nbr could be equipped with a mechanism.

4.6.2 Fault Injection Environment

As seen in Fig. 4.8, the target system was hooked up to theifgedtion tool FIC
(the Fault Injection Campaign Control Computer, for dstéile reader is referred to
[Christmansson and Rimén, 1997] and [Christmansstai., 1998]).

The FIC is capable of injecting errors into the target system by meaSWIFI
(SoftWare Implemented Fault Injection). Specifically, dref initiating an experi-
ment run, the FI€ downloads error parameters to an injection interrupt neutn
the target system, which is then, during the experiment triggered by the FIE
when the actual injection is to be performed. The error dieteenechanisms report
detection by setting a digital output pin on the target pssoe high. This is detected
by the FIC, which records and time-stamps the event. The injectedsecamsist of
modifications of the memory areas where variables and sigthags are stored. Pre-
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vious studies have shown that injecting bit-flips into a eysusing SWIFI closely
resembles the behavior of hardware failures (see [Riet@h, 1994]). The down-
loaded injection parameters for this type of error are thoress and bit position.

An environment simulator acts as the barrier (i.e. cabletapd drums) and as
the incoming aircraft. This simulator is initialized usitgst case data (mass and
incoming velocity). The FI€triggers the simulator to start simulating an incoming
aircraft. The simulator then feeds the system with sensats (totation sensor and
pressure sensor) and receives actuator data (pressug) fralon the system used
for calculating new sensory data. All input to and outputfrthe environment
simulator is stored as experiment readouts and is subsiyjamalyzed for system
failure.

4.7 Evaluation 1: Error Tolerance

In Evaluation 1 the goal was to assess the total error tolerance obtainéucby
porating the proposed mechanisms into an embedded systeor.t@erance here
Is defined as the combination of error detection and erravesy, thus, if an error
has been tolerated, it was first detected and then sucdgssftbvered. In this eval-
uation, tolerating an error was defined as being able to amtem failure even if
an error was present in the system. It should be mentionadatbgstem without
specific error tolerance mechanisms often exhibits a celeael of error tolerance
(or robustness) due to the fact that errors can be overwitéhat the system has a
built-in resiliency against errors.

4.7.1 Setup of Evaluation 1

In order to evaluate the obtained error tolerance, i.e.ctimbined effect of error
detection and error recovery, two error s, andET>, were set up. Error set
ET; contains 160 errors configured as random bit-flips in theksdaea, the mem-
ory areas of the various modules or the internal registeteeprocessor. Most of
the errors were injected in the memory areas, as the meohsaie geared towards
data errors. Errors in the stack will with a higher proba&piGause control flow er-
rors (i.e., errors that change the path of execution of arproyj The errors injected
into memory were distributed according to size of the menaoeas of the modules.
Thus, a module with a larger memory area was subjected to arooe injections
than a module with a smaller memory area. The errors in eatdf¥®; are meant
to model transient hardware faults. Results in [Rimeéal., 1994] indicate that ran-
dom bit flips in memory can mimic the effect of such faults. Thstribution of
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errors inET; is shown in Table 4.6.

Table 4.6: The distribution of errors in the error 8T’

Memory Size # Errors | # Injections
Area (bytes) Ne ne - 25
Stack 1008 25 625
CALC 164 55 1375
CLOCK 12 15 375
PRESA 12 10 250
PRESS 2 5 125
DIST.S 13 15 375
V_REG 36 15 375
Registers 3 20 500
[Toal | - | 160 | 4000 |

The other error seEET5, contains errors targeting the individual signals moni-
tored by the executable assertions. For each signal, fieesanrere selected giving
a total of 56 = 30 errors INET,. was subjected to These errors are bit flips in
the signals, modeling data errors. No particular assumgbtas been mad as to how
these data errors occur as the goal of the evaluation is toiagahe error tolerance
capabilities of the mechanisms, i.e., how well the mecmasigerformed, given that
there was an error which they potentially could detect amcect

All errors were injected in the master node. For each errohenerror set, the
system was subjected to 25 test cases, i.e., incoming fainatith velocity ranging
uniformly from 40m /s to 70m/s, and mass ranging uniformly from 8089 to
20000kg. ForET;, we have 16025 = 4000 different combinations, v, e] of
mass, velocity and error and fBlT we have 3025 = 750 combinations. All test
cases are such that if they are run on the target system winiar injection, none
of the error detection mechanisms report detection. Theemnar sets were used
on two versions of the target system: one which did not ireltieé error tolerance
mechanisms and one which did include them. Thus, a total&q4 750) 2 = 9500
error injections were performed for the evaluation of etaberance.

The error sets were generated by random assignment of ¢éordne various
memory areas and signals. However, the same errors werdandmuth versions of
the system. The error injections were time triggered ane\wgected with a period
of 10 milliseconds (recall that most modules in the targsteay have a period of
7 milliseconds). Thus, errors may have been injected dutiegexecution of the
executable assertions or the execution of the recovery amésins.
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Table 4.7: The results from the injection experiments witioresetET,

Memory | #Inj. | #Fails,F, | Success Rate| # Fails,F; | Success Rate| Reduction
Area (orig.) (orig.) (instr.) (instr.)
Stack 625 52 0.9168 49 0.9216 5.77%
CALC 1375 57 0.9585 46 0.9665 19.30%
CLOCK 375 10 0.9733 21 0.9440 -110.10%
PRESA 250 0 1.0000 0 1.0000 N/A
PRESS 125 3 0.9760 10 0.9200 -233.33%
DIST.S 375 65 0.8267 43 0.8853 33.85%
V_REG 375 5 0.9867 7 0.9813 -40.00%
Registers| 500 277 0.4460 271 0.4580 2.17%
|| Total | 4000 | 469 | .8828 | 447 | .8883 | 4.69% ||

Table 4.8: The results from the injection experiments witlbresetET 5

Signal #1nj. | # Fails,Fo | Success Rate| # Fails,F; | Success Rate| Reduction
(orig.) (orig.) (instr.) (instr.)
i 125 48 0.6160 36 0.7120 25.00%
SetValue | 125 4 0.9680 3 0.9760 25.00%
OutValue | 125 1 0.9920 0 1.0000 100.00%
mscnt 125 9 0.9280 7 0.9440 22.22%
pulscnt 125 63 0.4960 39 0.6880 38.10%
IsValue 125 4 0.9680 2 0.9840 50.00%
| Total | 750 | 129 | .8280 | 87 | .8883 | 32.56% ||

4.7.2 Results of Evaluation 1

In Evaluation 1 errors were injected into two versions of the target systéme
original version, without error tolerance mechanisms, @mel version instrumented
with error tolerance mechanisms incorporated. Speciidalb error setsET; (see
Table 4.6) andT'», containing 160 errors and 30 errors respectively, weeztep.
Each individual error was injected for 25 test cases in egstem. Table 4.7 shows
a summary of the results for the errorsifT; and Table 4.8 shows a summary of
the results for the errors iIBT . For each area or signal, the tables show the number
of injections and the number of resulting failures. The sgeaate is the normalized
fraction of successful runs performed by the system. Thehaurof failures and
the success rate are shown for both systems. The reductemmisasure of how
well the instrumented system handled failures as comparéoktoriginal system,
and is calculated as 100%L A 100%-reduction means that all failures in
the original system were handled in the instrumented sysfemegative reduction
means that the number of failures increased in the instrtedesystem.
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4.7.3 Discussion of Evaluation 1

The results obtained in this evaluation are specific for #nget system, the error
model and the test cases we have chosen. For other systeorsnedels, and/or
test cases the results may vary. Having said that, we can taotwosir discussion of
the results shown in the previous section.

We injected two sets of errors into our target system: oneetiogl random
hardware faultsE'T ), where each error was a bit-flip in random areas of the system
memory and CPU registers, and one modeling data errors aifispggnals ET»),
targeting the signals which were fitted with error toleranmrhanisms.

The errors were injected periodically with a period of 10lisgiconds. The
target system has a main period of 7 milliseconds. Thergtheeerrors are likely
to affect the system in a manner that cannot be said to moftelase faults, since
such faults would most likely induce data errors with a pgneatching that of the
system.

The results from error s@&T; show that errors injected into the stack and the
registers caused approximately the same amount of faiilnfesth systems. It may
be argued that these errors are more severe than thosechjetd the memory area
of specific software modules and would very likely lead totoalrflow errors. The
proposed mechanisms are not aimed at detecting or recgvieoim such errors.

For the different software modules, the reduction in f&tumduced by random
hardware faults varies (error SBfT'y, see Table 4.7). The low overall reduction for
errors injected randomly in the memory areas of the modulesainly due to the
following reasons:

1. Errors occurred with a period not matching that of theesystThis increased
the probability of errors occurring between the test of aaignd the usage
of that signal, thereby nullifying the effect of any recoyénat may have been
performed.

2. Errors were injected into variables not covered by assertand recovery
mechanisms. These errors are likely to affect the systemwayathat the
executable assertions cannot detect.

3. Errors were injected into variables belonging to the atadale assertions and
recovery mechanisms. Since these mechanisms were inactive original
system, those errors did not cause any failures, whered® imstrumented
system, where the executable assertions and recovery mscisawere ac-
tive, they caused failures.
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The first point highlights a fundamental difference betwseftware-based and
hardware-based fault-tolerance techniques. Whereastdevhre-based techniques
are always active and ready to handle errors, the softwaseebtechniques are active
only at certain points in time. If a data error occurs betwienexecution of a test
on the data and the usage that data, the software-basedigethicannot detect the
error, much less recover from it.

The second point shows that error detection and recoverjhamsms aimed at
specific signals and data areas are not effective agairssesccurring in signals
not directly monitored by the mechanisms.

The last point shows the importance of separating the mearegs of error de-
tection and recovery mechanisms from the memory areas aipibiecation. Prefer-
ably, the mechanisms should also be located in other, mibables memory circuits.

The results from error s@&T, (Table 4.8) show that when the errors directly
affect variables monitored by the mechanisms, the redudtidhe number of re-
sulting failures is greater than if the errors affect ranjoomosen variables. These
findings suggest that the locations of the detection andrezganechanisms largely
influence the degree of their success, which is consistettt fividings reported
in [Levesonet al, 1990]. Our results indicate that error detection and regov
mechanisms should be located as close to the receiver oinal ag possible or
be performed when the receiver of a signal accesses the value

Error tolerance is a combination of first detecting an errat then recovering
from it. The evaluation performed at this point is of this donation. As the results
show, the error tolerance does have room for improvemeran ttempt to identify
whether it the detection capabilities of the proposed mashas are insufficient
and thus the reason behind the somewhat low reduction iemayfilure, another
evaluation was performed, focusing on error detections EkaluationEvaluation
2 is presented in the Section 4.9. First, however, a briedision on the process of
error propagation and its implications on error detectiovecage.

4.8 Error Detection Coverage and Error Propagation

The detection coverage that may be obtained with these mischa is very depen-
dent on the characteristics of the errors that may occur.elfgiven that an error
has occurred, define the probabiliti€s,, = Pr{error location is in a monitored
signal, P., = Pr{error location is not in a monitored signal= 1 — P.,,,
P,.op = Pr{error propagates to a monitored signabnd P;;, = Pr{an er-
ror is detected given that the error is located in a monitwigghall. The total
probability of detecting an error that is present can thawh#den asPy o =
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(PenPprop + Pem)Pys. For a given system, the probability;; can be assessed
separately from the other probabilities and is independéttie probability distri-
butions for error occurrence and error location. A commow @fgperforming such
an assessment is by conducting error injection experimditts second evaluation
of the presented mechanisms is an attempt to ag3gss; and P, for a given target
system (see the following sections).

4.9 Evaluation 2: Error Detection

In Evaluation 2 the focus is the first part of the process of tolerating sgnog., error
detection. If an error cannot be detected, then error toteravill not be obtained,
no matter how sophisticated the error recovery mechanibnikis evaluation, error
detection was defined as successful if an injected error pooagated effect of it)
was detected during the active operation of the targetsyste

4.9.1 Setup of Evaluation 2

The experimental set-up for evaluating error detectiorabdities calls for two error
sets for evaluation purposes. In order to assess the phtypaBj,, as defined in
Section 4.8, an error s&tD; containing 112 errors was created. Each err@iny

Is configured as a bit-flip in the monitored signals. Bit-flg@n be used to model
intermittent hardware faults, and it may be argued thatgubitflips in variables
only may also model other faults inducing data errors inaldés. Since single-bit
errors are uniformly probable in all bit positions we chaseject errors in each bit
position of each signal in order to get a good estimate of #teatfion probability.
Each signal is 16 bits long, hence, we havdl@ = 112 errors in the error set (each
individual error was used as an error location).

The other error sel2D», contains 200 errors configured as bit-flips in random
bit positions in random locations (addresses) in appbcaRAM (417 bytes) and
stack (1008 bytes) areas, and is used to assess the toiatet@obability Pjee.
as described in Section 4.8. These errors were selectedaftamiform distribution
(both location and bit-position), and the sampling wasqrened with replacement.
Of the 200 errors, 150 were located in application RAM areas 0o unused RAM
areas) and 50 in the stack area.

All errors were injected in the master node. For each erroheénerror set, the
system was subjected to 25 test cases, i.e., incoming fainaith velocity ranging
uniformly from 40m/s to 70m/s, and mass ranging uniformly from 8089 to
20000kg. ForED; we have for each signal 1@5 = 400 different combinations
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[m, v, e] of mass, velocity and error. For 7 signals we thus have & ¢6ta-400 =
2800 different combinations o#f, v, e¢]. And for EDs we have 20025 = 5000
combinations. All test cases are such that if they are ruherterget system without
error injection, none of the error detection mechanismentagetection.

For ED,, eight different versions of the system were tested - onee&uh of
the seven individual executable assertions and one in wdlickeven executable
assertions were active simultaneously. For each systemq egmbination of mass,
velocity and error was exercised, giving us a total of 2806 22400 experiment
runs with error injections foED¢. The error seED, was used only on the version
containing all seven executable assertions. Thereforeawe H000 experiment runs
with error injections forED». The error injections were time triggered and were
injected with a period of 20 milliseconds (recall that mostdules in the target
system have a period of 7 milliseconds). Thus, errors mag baen injected during
the execution of the executable assertions. We say that we sweccessful error
detection if an error is detected at least once during thesavibservation period (40
seconds). The detection probability is then the probgbdftdetecting an error at
least once during the observation period. The detecti@méatis the time from the
first injection of an error to the first reported detection.

4.9.2 Results of Evaluation 2

In Table 4.9, we can see the estimates of the detection piiblesbper signal, per
executable assertion, and totals, as obtained using &trBi13;. The measures are
calculated according to the formulas for coverage estonati [Powellet al., 1995].
The measure’(d) = 74 (whereng is the number of runs in which errors were
detected ané, is the number of runs in which errors were injected) is anrese
of the probability that the error is detected during the olet®on time,P(d/f) =
Z‘l—]{zj (where we only take into account those runs in which the systaled) is
an estimate of the probability that the error is detectedmyihat a failure occurred,
andP(d/nf) = % (where we only take into account those runs in which the
system did not fail) is an estimate of the detection prolitghiiven that no failure
occurred. The relation = nq;; + npepqe IS true for both errors and detections.
For the individual signals we have. = 400 and for the totals we have = 2800.
The All column contains the results obtained when using #rsign of the software,
which had all seven executable assertions activated simedusly. The table also
contains the 95% confidence intervals for the estimateseadétection probabilities.
We can use the measufd) as an estimate aP;, in the expression of the total

detection probability for the entire system (see Secti@). 4f a cell is empty in the
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Table 4.9: Error detection probabilities (%) with confidematervals at 95% for error sE1D. No confidence intervals

can be estimated for measured detection probabilities @020.

[ Signal | Measure || EAL EA2 EA3 EA4 | EA5 EAG EA7 All
P(d) 555:4.1 31.3t3.8 4.0L16 443541 || 59.554.0
Setvalue | P(d/f) 92.6+3.7 72464  15£1.7 87.9+4.7 || 97.142.4
P(d/nf) 36.6£4.9 105431  5.3t2.3 22.8+4.2 || 39.7£5.0
P(d) 52.554.1 470541 || 54.4E4.1
IsValue P(d/f) 89.6+7.3 93.3£6.2 100.0
P(d/nf) 47.4+4.4 41.1+4.3 || 47.2+4.4
P(d) 26.853.6  29.8:3.8 100.0 1.000.8 1.0:0.8 0506  47.8:4.1 100.0
i P(d/f) 33.747.8  55.4:8.2 100.0 0.1£15 2.3:21 1.:1.8  78.0:6.8 100.0
P(d/nf) 24.4+41  21.H3.9 100.0 1.041.0 0.4:0.6  0.3t0.5  37.74.6 100.0
P(d) 50.3t4.1  42.8:4.1  0.3t0.4 125527 0.3£0.4 100.0
pulscnt P(d/f) 38.145.3  34.5:4.8  0.3t0.5 0.0 0.741.2 100.0
P(d/nf) 66.9:6.0  58.3:6.9 0.0 16.5+3.5 0.0 100.0
P(d) 20.0:3.3 100.0 6.852.1 100.0
msslotnbr | P(d/f) 34.6+5.7 100.0 11.6+3.9 100.0
P(d/nf) 7.142.9 100.0 2.7+1.8 100.0
P(d) 83123 12327 100.0 17.553.1 100.0
mscnt P(d/f) 20.0+13.4 18.2-13.8 100.0 13.0+11.8 100.0
P(d/nf) 75422  11.9:2.7 100.0  17.8+3.2 100.0
P(d) 1.040.8 11.3t2.6 | 4.0t16
Outvalue | P(d/f) 33.3:34.7 85.7423.5 100.0
P(d/nf) 0.5+0.6 9.9425 || 3.3t15
P(d) 20.141.2 27.%1.4 1409t11  1.0t04 14411 14.4:1.1 250513 || 74.051.4
Total P(d/f) 35.042.9  47.0:3.0 12.201.9  0.2:0.3 21.7Z#23  3.2:1.0  42.73.3 || 99.6:0.3
P(d/nf) 14.941.3 19714 16.0:1.4 2.4:05 11.1#1.2 19.0:15  19.9-1.4 || 60.6+1.9
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Table 4.10: Error detection latency for all errors in erretED; (all times are in

milliseconds).
| Signal | Latency || EA1 | EA2 | EA3 | EA4 | EA5 | EA6 | EA7 || Al |

Min 160 570 50 20 20
SetValue Avg. 690 2445 1241 842|| 496
Max 6259 5588 6099 5297|| 6490
Min 10 10 20
IsValue Avg. 612 654 980
Max 8142 4466 || 6630
Min 311 270 80 3254 4686 3495 157 91
i Avg. 2125 2100 210 4111 5538 3891 190Q| 205
Max 11397 8272 401 4807 7601 4286 6499 421
Min 390 1182 1563 20 230 20
pulscnt Avg. 1371 1379 1563 273 230 293
Max 2284 2283 1563 1202 230 || 4246
Min 1172 20 1703 20
msslotnbr | Avg. 3654 32 3462 31
Max 8912 140 5738 101
Min 1112 1352 10 1091 20
mscnt Avg. 2050 1741 25 1673 23
Max 4196 3525 60 3415 61
Min 440 20 || 2413
OutValue Avg. 1344 1604 || 3375
Max 2704 6179 || 7781
Min 160 10 50 20 20 10 10 20
Total Avg. 1286 1725 248 593 126 163 1314 394
Max 11379 8912 6099 4807 7601 4286 64997781

table, this means that no detection was registered for tmabmation of signal and
executable assertion.

The values shown in boldface are those that correspond toneect” signal-
mechanism pair. For instance, the sigBatValuds directly monitored by mecha-
nismEA1, and the signalsValueis directly monitored byEA2

In Tables 4.10 and 4.11 are the detection latencies meadured) our experi-
ments. The value is the time from the first injection of an ewatil the first regis-
tered detection, and it is measured in milliseconds. Thiesakhow the minimum,
average and maximum values for the detection latenciesinAtlee boldface values
correspond to the primary signal-mechanism pairs. In Talle all detected errors
are considered, those leading to system failure as wells® thot leading to system
failure, whereas in Table 4.11 only those errors that ulitydead to system failure
are considered.

The results from the experiments with error BdD, are shown in Table 4.12.
The table contains detection coverage with 95% confiderteevelds and detection



60 Chapter 4. Software Mechanisms for Handling Data Errors

Table 4.11: Error detection latency for those errors inresstED which caused

the target system to fail (all times are in milliseconds).
|| Signal | Latency || EA1 | EA2 | EA3 | EA4 | EA5 | EA6 | EA7 || All ||

Min 170 570 982 20 20
SetValue Avg. 412 2240 982 782]| 351
Max 1652 5588 982 3184|| 5178
Min 40 10 20
IsValue Avg. 461 708 782
Max 2193 4466 || 4506
Min 311 310 80 3254 4897 3495 151 91
i Avg. 2397 2263 190 3254 5822 3495 1764| 178
Max 6840 7992 401 3254 7601 3495 6499 360
Min 390 1182 1563 230 20
pulscnt Avg. 1367 1380 1563 230| 297
Max 2284 2283 1563 23d| 4246
Min 1172 20 2213 20
msslotnbr | Avg. 3503 32 3533 31
Max 5748 110 5738 101
Min 1232 1382 20 1111 20
mscnt Avg. 1753 1850 24 1278 20
Max 2464 2604 40 1482 21
Min 851 20 || 2654
OutValue Avg. 1778 1143 || 3358
Max 2704 2394 || 4276
Min 170 40 80 3254 20 20 1 20
Total Avg. 1040 2035 212 3254 186 603 1288 289
Max 6840 7992 1563 3254 7601 3495 64995178

latencies in milliseconds. As with the measures for erroerEB,, we used the
formulas in [Powelket al., 1995] to derive the probabilities shown in the table.

The probabilities shown in Table 4.12 are estimateB,gf..;, whereas the prob-
abilities shown in Table 4.9 are estimatesif (for more information on the def-
inition of these probabilities, see Section 4.8). In thdokeing section, the results
presented here are discussed.

4.9.3 Discussion of Evaluation 2

The results obtained in this evaluation are specific for #ngett system, the error
model and the test cases we have chosen. For other systeorsnedels, and/or
test cases the results may vary. Having said that, we can taotwosir discussion of
the results shown in the previous section.
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Table 4.12: Results from experiments with errorBéds.

Area Detection Probability || Detection Latency || Detection Latency
(%, 95% conf. int.) (ms, totals) (ms, failures)
P(d) 12.8+0.9 || Min 20 || Min 20
RAM P(d/f) 81.1+6.8 || Avg. 1359 (| Avg. 1203
P(d/nf) 11.14+0.9 || Max 5608 || Max 5608
P(d) 4.2+0.9 || Min 20 || Min 20
Stack || P(d/f) 13.744.7 || Avg. 250 || Avg. 2077
P(d/nf) 2.9+0.8 || Max 2684 || Max 6449
P(d) 10.6+0.7 || Min 20 || Min 20
Total P(d/f) 39.4+5.2 || Avg. 1086 || Avg. 1298
P(d/nf) 9.2+0.7 || Max 5608 || Max 6449

Error Detection Probability, Py,

This section discusses the results regarding error detectiverage obtained with
error sefED; (see Table 4.9). The results are the estimated values fprobability
Py, i.e., the probability that an error is detected given tma¢@or is present in one
of the monitored signals and therefore can be detected byné#ohanisms.

The overall detection probability was 74%, and if we consitie errors that
lead to failure, as defined in Chapter 3, the detection pirbtyalvas over 99%.
Roughly, 60% of the errors that did not lead to failure wereedied. If we examine
the individual executable assertions, we have detectiobgtnilities ranging from
just over 11% up to 100%. The assertions that achieved a 1@@86ttbn probability
monitored signals that were all essentially counters byneathey were periodically
incremented by some limited (small) amount. This makeg&easy to detect since
the freedom of change was very small in these signals. We ranstmber that it
Is possible, even probable, that we do not achieve a 100%taetgrobability for
other error models or test cases. However, the results sutige these mechanisms
can be very effective in detecting errors.

The assertions monitoring signals representing contiawalues in the environ-
ment have a lower detection probability. This can be expldiny the fact that these
signals have more liberal constraints than the counteatsgnentioned above. The
liberal constraints let those errors pass which in the vdtreain constitute a small
change in the signal, i.e., the errors most likely to remaiiatected are those affect-
ing the least significant bits of the signal. In fact, for aonbus signals, errors in the
least significant bits may be indistinguishable from normsthe sampling process.

The mechanisnitA4, which is set to monitor the signaglulscnt was not at all
effective in detecting errors in that signal that lead téufa as it did not detect any



62 Chapter 4. Software Mechanisms for Handling Data Errors

of those errors. Of the errors that dwdt lead to failure, only 16% were detected.
The overall detection capability of this mechanism was Vewy; only about 12%.
Errors in pulscnt were more easily detected by indirect rapigdms such asAland
EA2 (over 50% and over 42% respectively) that monitor signalewhre affected
by the value ofpulscnt This indicates that either are errors very hard to detect in
this signal, or the parameters of the mechanism are not ap{on both). We can
therefore identifypulscnfEA4 as an area where more work is needed in regard to
error detection.

The detection probability foEA7 in the signalOutValuewas roughly 11%,
whereas for all mechanisms it was 4%. This is mainly due tdatiethat the behav-
lor of the target system is not entirely deterministic.

The results ofEvaluation 2shows that by using a number of error detection
mechanisms covering different parts of the system, a faidi total coverage may
be obtained.

Total Error Detection Probability, Pjeiect

As shown in Section 4.8, the probability of detection givieaittan error is present in
a monitored signal is part of a larger expression for totadresletection probability
for the entire systemPyeec: = (PenPprop + Pem)FPas- The value obtained for
Py, for the target system in our evaluation was 74% (seddtal row in Table 4.9).
To obtain Py.ee: = 74% would mean that all the occurring errors, directly or
after propagation, are uniformly distributed over the nbamaid signals. This is most
likely not the case since there probably are some signalsitbanore dependent on
other parts of the system than the remaining signals. Ifekample, errors in our
target system with a high probability propagate to$etValuesignal, P,.;..; would
be closer to the detection probability for that signal, vahinere is roughly 59%.

From the experiments performed with error B, (in Table 4.12), we can see
that the overall detection coverage for all errors is ab@3%1 For errors that lead
to failures, we obtained detection coverage of 39%. Theegdiffer a lot for the
two areas in which we injected errors. Generally, errorsaigd into the RAM area
of the application were detected with a higher probabilitsut were those injected
into the stack area. An explanation for this may be that sriorthe stack area
more often lead to control flow errors. The evaluated medmasiare not aimed at
detecting such errors.

For the errors injected into the RAM area that eventuallyseduhe system to
fail, the detection coverage was over 81%, whereas thedetattion coverage was
just under 13%. We can see that if an error were of such natatattwould cause
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system failure we can detect it with a fairly high probapilitsing the presented
mechanisms.

Error Detection Latency

We can see in the results fBYD; that the assertions which monitor signals that are
essentially counters in nature have the shortest averagetida latency (see Ta-
bles 4.10 and 4.11). The three mechanisms that showed a 1&@¥#iidn probabil-

ity were also the top three mechanisms when examining tloe éetection latency.

Looking at the individual mechanisms in Table 4.10 showdasthe detection
latencies are rather short. Most of the mechanisms hadgevéatencies of well be-
low one second, only mechanidgfA7 had an average exceeding one second (1.604
seconds). The average detection latency for all mechamsam$94 milliseconds.

If we take a closer look at the latencies for the errors thadl @ failure (see
Table 4.10), we can see that most mechanisms have an avelage3®0 microsec-
onds. Again, only mechanisBA7 has an average detection latency greater than one
second (1.143 seconds). We also clearly seeB/Aakdid not detect any of the er-
rors that eventually lead to failure. When all mechanisnesa&tivated, the average
detection latency for errors leading to failures is 289 iseitonds.

The latencies for errors IED> (see Table 4.12) are longer than the latencies
for errors iNED+. This, however, is not very surprising since most of thersrio
ED- were not located in the monitored signals and therefore t(vadapagate to the
monitored signals before the mechanisms could have a clambetecting them.
This propagation process increases the total time fronctioje to detection.

4.10 Summary and Conclusions

In this chapter we investigate the properties of error dete@nd recovery mech-
anisms derived from a proposed classification scheme faalsgn modular soft-

ware. The mechanisms are parameterized test algorithnesl lmesthe concept of
executable assertions, and are instantiated individdatlgach signal that is to be
monitored. Two evaluations were performed using errorctiipa experiments. In

the first evaluation bit-flips were injected in all bit posiis of the monitored signals
and in the second experiment bit-flip errors were injectegimom bit positions in

memory, registers, and stack locations. The first experinmsestigated the error
tolerance obtained from incorporating the proposed mashamto an embedded
system. The second experiment investigated the errortdwiamverage and detec-
tion latencies obtained with the mechanisms.
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The results from the first evaluation show that the locatibaxecutable asser-
tions and recovery mechanisms is of the utmost importanteet@ffectiveness of
the mechanisms. For errors injected into the monitoredassghe failure rate was
reduced with 32.56% in the used target system. Howevensetinat occur in data
areas not monitored by the error detection and recovery amegims are poorly han-
dled. The reduction in failure rate was only 4.69%. From #mults one can also
conclude that the memory areas of the mechanisms shouldpeased from the
application memory or else the mechanisms will be as vublerto errors as the
signals they monitor.

The detection probability was defined to be the probabilitsgroerror being de-
tected at least once during the observation period. Thetietdatency was defined
to be the latency between the first injected error and theréxirted detection.

In the second evaluation, we achieved an overall detectioiapbility for errors
in the monitored signals of 74%, and if we only take into aectdhose errors that
lead to system failure we had a detection probability of ®@%. The average
error detection latency when all mechanisms were activgitadltaneously was 511
milliseconds. For errors that caused the system to failatleeage detection latency
was 289 milliseconds.

The second evaluation also showed that for errors in the meareas of the
application, over 81% of all errors that caused systemranvere detected. Errors
in the stack that caused system failure were detected witbkapility of 13%. The
low detection probability for stack errors is likely due teetfact that errors in the
stack often cause control-flow errors, and the evaluatechamsms are not aimed
at detecting such errors. The detection latencies wereelahgn those obtained in
the first experiment. This, however, is not surprising simaest injected errors must
propagate to the monitored signals in order to be detected. pfopagation process
increases the detection latency.

From the results shown in the evaluations of the proposedhamesms, one can
conclude that the mechanisms are good candidates for sefimaplemented error
detection in low-cost embedded systems. They are based oniugiive concept
and easy to implement and have the potential of providing bigtection coverage
for data errors in software signals. Regarding the erraovexy capabilities of the
forced validityconcept, this should be studied further. In the evaluatithmes error
models used were quite aggressive (in that the errors weaaad periodically, and
with a period not matching the period of the system), andrath®r models (with
error occurrence at only one point in time) should be useduftiher evaluations.

Also, the results indicate that the efficiency of the meckasi and indeed any
kind of error tolerance mechanisms, depends on where tedgeated. Thus, know-
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ing how errors propagate through a software system can iragthe possibility of a
system designer to obtain a high error detection probgbdiid thereby also a high
error recovery probability, in a given system.
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CHAPTER

PROPANE - The Propagation
Analysis Environment

| didn't think; | experimented.

— Wilhelm Rontgen (1845-1923)

In order to produce reliable software, it is important todnémowledge on how
faults and errors may affect the software. In particulasiglang and placing ef-
ficient error detection mechanisms requires not only kndgdeon which types of
errors to detect but also the effect these errors may haveeosdftware, as well
as how they propagate through the software. This chapteepte the Propagation
Analysis Environment (PROPANE) which is a tool for profiliofjand fault injec-
tion in software running on desktop computers. PROPANE supjthe injection of
both software faults (by mutation of source code) and datas(by manipulating
variable and memory contents). Various error types areigeovout-of-the-box and
user-defined error types are supported. For logging, PR@Pédh automatically
instrument a target system with probes for charting theesbf variables and mem-
ory areas as well as for registering events during execuatione system under test.
A comparative evaluation of PROPANE with other contempptaols demonstrate
the prominent advantages of PROPANE for its combinatioroofgbility, flexibility
and observability at a low cost.

67
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5.1 Introduction

In order to develop software that functions in a non-harmfahner in the presence
of faults and errors (as defined in [Laprie (ed.), 1992]), oeopiires knowledge of
the behavior of the software under these exceptional dondit In particular, one
needs to know how faults and errors propagate to affect taeution of software.
Knowing propagation pathways may, for instance, be of gne§i when deciding
where to place error detection and recovery mechanisms.

Learning about error propagation characteristics of axso#t system requires
not only that one should be able to inject errors and moneeffect these have on
system output, but also that one is able to monitor how theseseare transported
through the system. Thus, high observability is requirediese activities. Ideally,
one should be able to observe every individual variable atd dtructure in the
software.

This chapter gives a detailed presentation of PROPANE, tbpdg@ation Anal-
ysis Environment. which is a tool suite enabling the in@etof faults and errors
into software running on a desktop computer (currently fand@ws 2000/XP).
PROPANE supports varied ways of probing a system, i.e.ingaaternal variables
and events during system operation, as well as injectioofbivare faults and data
errors.

Fault injections are performed by instrumenting the sowase with both the
correct code and the defect that is to be injected. With efaarly, there is a fault-
trigger that decides which of the correct code or faulty ctmexecute. All in-
serted faults are inactive by default—the experiment desons used for setting up
PROPANE specify which faults are to be activated.

Error injections are performed by using predefined erroesyfdefined indi-
vidually for each target system), predefined locations endbftware (equivalent to
software traps) and then in the experiment descriptionsifyjoey combinations of
locations and error types. When the specified locationsesmehed during system
operation, the specified errors are injected based on ermggets specified in the
description files.

PROPANE can be useful in a number of situations. For instancé@omponent-
Based Software Development (CBSD) generic configurablevaodé components
are manufactured and assembled to form an entire systepir@dsy the use of
generic hardware components for building hardware sy9gteifisese components
are often ported to several different hardware platfornigs Timits generalized ver-
ification and validation use of tools that focus on specificare configurations.
PROPANE on the other hand has no such limitations as it isnloa®quire any spe-
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cial hardware assistance. Thus, software components mesribed and validated
with PROPANE before porting them to various target hardwates argument will
of course also be valid for testing embedded software winichany cases may exist
before the hardware platform has been finalized.

In a comparison with other Fl-tools (as detailed in Sectid),5ve comment
that very few other tools can provide the detailed data rssecgdor software prop-
agation analysis at a level comparable to PROPANE. Als@atsability and flexi-
bility uniquely distinguish PROPANE as a simple, low-cosbe propagation anal-
ysis tool. We emphasize that PROPANE, through its depiatiogrror propagation
paths, is primarily designed as a software design aid withpgtementary capability
of being used in the evaluation of effectiveness of errodhag mechanisms.

The remaining chapter is structured as follows: In Secti@wvge describe the
target system model for which PROPANE is aimed, and SectidBnMl give an
overview of the tool. Section 5.4 details the concepts andctre of PROPANE
and also shows how experiments are set up. Experiment éxeeurd data analysis
are covered in Sections 5.5 and 5.6, respectively. An exawiphctual PROPANE
usage is shown in Section 5.7. Once we have described thiisdH#t& ROPANE
we can compare it to other Fl-tools. Section 5.8 contairs¢dbmparison. Finally,
Section 5.9 summarizes this chapter and states the comadusi

5.2 Target System Model

PROPANE aims at modular software, i.e., discrete softwanetfons interacting
to deliver the requisite functionality. A module in this ¢ext is a generalized soft-
ware block having possibly multiple inputs and outputs. Med communicate with
each other in some specified way using varied forms of siggaé.g., shared mem-
ory, messaging, parameter passing, etc., as pertineng tchibsen communication
model. A detailed description of this model is described iafter 3.

Software constructed in such a modular way is found in nuosesystems, such
as desktop systems as well as embedded systems. For examogleapplications
controlling physical events such as in automotive systemadraditionally built up
as such. Our studies mainly focus on software developednitsedded systems in
consumer products (high-volume and low-production-cgstesns).

PROPANE is designed with a focus on software for single-@seauser appli-
cations on desktop systems. However, this single procegsbmanulti-threaded.
The PROPANE injection and logging mechanisms are genedcaas provided in
a static C-library, thus allowing for a vast range of apglmas. For example, it
has been used in experimentally analyzing the propagafidata errors in the soft-
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ware of an embedded control system simulated on a Windoasebdesktop com-
puter [Hiller et al,, 2001, Hilleret al,, 2002(a), Jhumkat al., 2001]. The require-
ment for using PROPANE is that the language used for the sazode is able to
interface with libraries implemented in the C programmiaggduage.

Although the system model described in Chapter 3 is a blagknmdel, and is
adopted in this thesis, PROPANE may be used in a white booappras well, as
there is nothing in PROPANE that limits the kind of data tlsdbgged, i.e., one may
log input and output signals of modules as well as their mekstatic and temporary
data areas. However, in this thesis, PROPANE has been jisimaed in a black
box setting.

5.3 Overview of the Tool

This section provides an overview of how PROPANE is striedtuyand also its pro-
posed usage.

5.3.1 Basic System Structure

PROPANE is designed to run on a desktop system (such as Wa#000/XP or
UNIX) and consists of a suite of tools, namely: the PROPANEt&y Instrumentor
(PSI), the PROPANE Setup Creator (PSC), the PROPANE Camjpaiger (PCD),
the PROPANE Library (PL), and the PROPANE Data ExtractorER.[An overview
Is shown in Fig. 5.1.

PL is used by the target system to gain access to the probahogation func-
tionality of PROPANE and is written in the C programming laage. PCD is re-
sponsible for handling the actual execution of experimantsis in a sense the main
administrator of PROPANE. It has a user interface througlthwthe user can con-
trol and follow the experiments. In order to be able to logalales and event and to
inject faults and errors the target source code must baimstnted. Given a descrip-
tion of the modular composition of the system including /@l anternal character-
istics of the various modules, and the original source c&$d,will automatically
generate instrumented versions of the source files andanptiiate file used by PSC
to create experiment setups. PDE may be used during anédysidract specific
data from the experiment readout files. PCD and PL are irttsgjnaith each other,
whereas PSI, PSC and PDE are stand-alone components of MEDRAe envi-
ronment simulator, the target software and any user injg@ad user triggers are
provided by the user. The environment simulator will act asirauli generator for
the target software and may be partially controlled by thgpatugenerated by the
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Figure 5.1: An overview of PROPANE together with target waite and environ-
ment simulator

target software (e.g., as in a control loop). The interastibetween these two sub
parts of the target executable are user-defined.

An Fl-experiment is set up with a number of description filestaining details
on which faults and errors to inject, which variables andhévé¢o trace and so on.
There are three types of description files: database désarifiles, campaign de-
scription files, and experiment description files.dAtabases a set ofcampaigns
which in turn are sets aéxperiments Eachexperimentcontains the set up of one
execution of the target system (one combination of inpud dad error injection).
The PSC aids in the creation of these files needed for cangdiROPANE. Given
information regarding errors and faults, probes, injectarations, etc., it will gen-
erate the requisite description files. The PSC will also geredescription files
used by the PDE during analysis. Details on the descriptien &ire presented in
Section 5.4.

For each experiment specified in the description files, thB Bgawns a new
process running an executable file containing a completafg@ion for conduct-
ing one experiment. This executable contains the PL whicfopas the actual
injection of errors and logging of variables. The execwdadbo has to contain ev-
erything necessary to run the target system and the enveonhsimulator.



72 Chapter 5. PROPANE - The Propagation Analysis Environment

The reason for running experiments in individual processesofold:

A) Parallel execution may shorten the total time for exe@iets of experiments.
This is especially true for systems that have excess congpaépacity so that
there is ample idle time during the execution of a single erpent, primarily
multi-processor systems.

B) Each experiment begins execution from identically dSjpetiinitial condi-
tions. This ensures that there are no residuals that makexpegiment affect
another experiment. This is given that during an experirttentifferent pro-
cesses do not compete over a (limited) shared resourceasuil handles.

During the execution of the experiments, log files and rettilms are created.
The log files contain information regarding the executiortha experiments, i.e.,
PROPANE performance and behavior information, and doesordtiin any readout
data gathered from the target software. If the experimentdcoot be executed
successfully for some reason, the log files provide hintsotertial problems. The
readout files contain the data obtained by the inserted prabd the performed
injections and are the basis for subsequent error projmegatialysis. Details about
log files and readout files are provided in Section 5.5. Th@@mnent simulator is
designed by the user of the PROPANE tool, hence it followauder-specifications
on use and generation of description, log and readout files. fdrmat of the files
read and/or written by the environment simulator is alsa-deénable.

PL requires interfacing to the environment simulator. Hesveif an environ-
ment simulator exists which does not comply with the integfapecifications, a
wrapper layer is warranted which has the PROPANE interfacene side and the
environment simulator interface on the other, acting aamstator between the two
components. Thus, the environment simulator need not saglysbe an integrated
part of the target executable.

PDE will extract traces of the various logged variables amanory areas and
can conduct Golden Run Comparisons (i.e. comparing systead obtained dur-
ing injection experiments with fault/error free refereti@es, details in Section 5.6)
to detect whether errors have occurred due to fault injectioformation regarding
propagation will be compiled and presented. Also, intenatedextracted data is
stored in special files which can subsequently be used intaroimed analysis tools
which may take into account desired experiment specifiamédion and/or aims,
such as coverage estimation of error handling mechanisihgtef classification or
other activities which may be target specific.
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Figure 5.2: The basic work process when using PROPANE.

5.3.2 Work Process for Using PROPANE

The typical work process when using PROPANE can basicallyided into three
main phases, namely: 1) tis®tupphase, 2) thénjection phase, and 3) th&nalysis
phase (as illustrated in Fig. 5.2).

Setup phase:In the Setupphase, description files are generated and the target
system is instrumented. The inputs to this phase includetigaal source code
of the target software, information on distribution andunatof faults and/or errors,
and information about target system usage. The fault amd Eriormation is used
for determining the fault and error sets to be injected ingkgeriments. The usage
information forms the basis for determining the test casedwduring the injec-
tions in order to provide the target system with a realisperational profile. In the
setup phase, PSI is used for instrumenting the target saftwdh probes for log-
ging variables, memory areas, and events, as well as witilbigel software traps
for injecting faults/errors. Given basic information abewrors and faults, probes,
injection details, etc., PSC generates the required gtgxrifiles for PCD/PL and
PDE. The description files contain information on which faudre to be injected,
which errors are to be injected at which locations, and wikésh cases are to be
used by the environment simulator during the executionaiBetegarding th&etup
phase are provided in Section 5.4.
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The output of the phase is a set of description files and theumgnted target
system. The description files contain information on whahlts are to be injected,
which errors are to be injected at which locations, and wiést cases are to be
used by the environment simulator during the execution. ifegumented target
system contains injection locations (which may be regaatetigh-level software
traps) and probes logging the desired variables, memoaganed events.

Injection phase: During thelnjection phase, the PROPANE Campaign Driver
(PCD) is set up with the description files generated in3leéupphase. The PCD
invokes the target executable as an individual process andrgtes readout files
containing detailed information on the results of the expents. During the exper-
iment, the specified faults and/or errors are injected aadpecified variables and
events are logged. Log-files are generated recording th@enaadf the PROPANE
tool itself. Details regarding thimjectionphase are provided in Section 5.5.

Faults are injected when the corresponding fault-triggees activated. Fault
injection at this level means that a faulty piece of code iscexed instead of the
correct piece.

Errors are injected based on the built-in error types, or sgr-uimplemented
error types. Thus, it is possible to implement error moddigtvare not included in
PROPANE. For example, if some parts of a system work unigliabder extreme
temperatures, a user error type could take this into corside.

Error triggers are boolean expressions and an error ist@gechen its corre-
sponding error trigger is evaluated tme. Error triggers may be based on time,
frequency or a probability distribution. In addition to tbailt-in error triggers,
PROPANE also supports user-implemented error triggersvassthe case for user
error types, a user error trigger may take into account tagecific information,
such as system state or the environment. In the example hathieimperature-
induced error type, a corresponding error trigger may @taldotrue when the
temperature is below a lower threshold and above an uppestbid.

Analysis phase: The readout files generated in thgection phase are ana-
lyzed in theAnalysisphase to evaluate metrics for the target systems. Thesemetr
may include coverage values, propagation information, €mne aspect of analy-
sis is to compare traces from two different runs with eactelpth.g., compare a
golden run(i.e. a reference run) with an injection run. TROPANE Data Extrac-
tor compiles propagation information from the readout fdad also generates a set
of data-files containing data such as detailed results fradé&h Run Comparisons
and injection information. These files can then be used fopggation analysis
at the variable-level. Further details regarding &malysisphase are provided in
Section 5.6.
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5.4 Setup: Experiment Design and Target Instrumentation
Setting up experiments with PROPANE requires one to pertbeollowing steps:

1. Select faults to inject.

Select error types, injection locations.

Select injection triggers (for errors).

Select variables, memory areas, and events to log.
Select test cases for the environment simulator.

Instrument target system software (using PSI)

N o o M w0 D

Generate description files (using PSC)

The subsequent sections detail the specifics of the varieps ®f the setup
process for PROPANE.

5.4.1 Selecting Which Faults and Errors to Inject

Before any faults can be selected for injection, one musiknbich different faults
are possible to occur in the target system. Producing a geissible faults may be
done in several ways. The quality of the results obtaineoh fitte experiments may
depend on how good this set of possible faufts, is at representing the real world
faults that may occur in the target system. The set of pas$slits is actually a
subset of the entire set of faulks i.e.,F, C F. From the set of possible faults,
one must select a fault set* C F, C F for injection in the target system.
Each faultf € F* is then manually inserted into the target system togeth#r wi
an activation clause. That is, every fatilis inserted into the same executable of
the target system, and the experiment descriptions thexgpenich of these faults
that are to be activated during the execution of the experime

For errors, the situation is similar. There is an abstrade ®®ntaining all errors.
Then there is a séf, C E containing all the errors that the experimental environ-
ment is capable of reproducing. Then, one must select anseth* C E, C E
for use in the injection experiments. The selection of ermiE* depends on what
the objective of the error injections is. If the goal is to nurtine effects of faults, the
errors must be selected using the set of selected fatilt$-rom the description of
the faults inF*, parameters for the errors that are to be injected are @utai@ther
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goals may produce other errors. When the set of selectecsasr@btained each
errore € E* is analyzed for type and location. The error types are speldifi the
description files and the locations are specified in the taggem by means of indi-
cators (high-level software traps) which tell the PROPAMNIEry when the execu-
tion has reached a certain location. Upon reaching an itetidacation, PROPANE
injects any errors specified for injection at that location.

Faults may be selected in a variety of ways, the PROPANE totd does not re-
ally have any preference in this regard. In [ChristmansswhRimén, 1997], a tool
was developed-the C Fault Locator (CFL)—which, given a Gofile, locates all
lines that may be modified to contain a fault according to stamé classification.
CFL is designed to look for a subset of faults from the Orthmagdefect Classifi-
cation (ODC) [Chillaregest al., 1992]. The fault classes we have chosen to look for
are those of Assignment (A), Interface (I), and Checking (@Jre details on CFL
and on how faults are selected are found in [ChristmanssormRanén, 1997].

Error selection can also be made in a variety of ways. One way liet errors
mimic the effects of faults. This eliminates the task of pbagty instrumenting the
code since the system behavior may be the same as for faudtgeudr, it may be
difficult to mimic every type of fault by injecting errors. Fexample, faults directly
affecting the control flow of a program may be hard to mimiagsonly error in-
jection into variables (as was the case in [Christmans$ah, 1998]). Errors may
also be selected to resemble intermittent hardware fauktuck-at faults.

5.4.2 Faults and Fault Triggers

The fault selection process will result in a $etontaining a number of faults that
are to be injected into the target software. Each faut F has to be manually
inserted into the target software with corresponding faidgers (i.e., PROPANE
uses mutation of source code to inject faults). The faudgrs are binary switches
(On/Off) and will route the execution trajectory to execeiter the correct code or
the faulty code. The description files specify which fauiders are activated (set to
On). Faults, in this context, are defects in the source coteasoftware. Given the
wide variety of possible software defects and the inherentpiexity such defects
may exhibit, PROPANE supports user-defined fault cases.

Once each individual fault and its corresponding faultgeighas been inserted
into the target software, the activation of the faults dgr@xperiment execution is
done as specified in the description files. Thus, even tholidgaudts are inserted
into the target software, only those that are of interest givan experiment are
actually activated. Hence, the target software has to leumgnted only once.
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Table 5.1: PROPANE Error Types

[[ Error Type | Manipulation Level | Description |

Bit-flip Bit Flip one or more bits in the binary
representation of the error target.

Bit-set Bit Set one or more bits in the binary rep-
resentation of the error target.

Bit-clear Bit Clear one or more bits in the binarj
representation of the error target.

Set-value Value Set a variable or memory location tf
a certain value.

Set-max Value Set a variable to its maximum valug
(as defined by the variable type).

Set-min Value Set a variable to its minimum valug
(as defined by the variable type).

Factor Value Multiply the current value of a vari-|
able with a certain factor.

Offset Value Add an offset to the current value of g
variable.

Factor-offset Value First multiply the current value of g
variable with a factor and then add gp
offset.

Offset-factor Value First add an offset to the current valug
of a variable and then multiply with
factor.

User-defined User-defined User error injectors may inject anyf
kind of error.

5.4.3 Error Types and Injection Locations

The error selection process will generate asebntaining a number of errors se-
lected for injection during the experiments. Errors in PRAE differ from faults
by not being bound to specific locations in the target systeftware. Each error
e € E is an error type which can be injected into several locatiartbe software.
For example, one error may be a bit-flip in bit #2 of the binapresentation of
a variable. This error may then be injected into one or mocatlons (variables).
Thus, when defining an error gétfor an experiment, one will not have to take into
account the locations at that point.

PROPANE supports a variety of error types, both for manimdaindividual
bits of the binary representations of variable and memonyasts and for assigning
altered numerical values to variables (as illustrated iida.1).

Bit-level manipulations can be performed on individualiaales or memory
areas (anything that is addressable within the scope ofatlgettsoftware). Value-
level manipulations can only be performed on individualialales. The Set-value
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error type may also be used on larger memory areas (set a iita wertain offset
from the start of the area to a certain value).

In addition to injecting errors based on the built-in ersgrds, user-defined cus-
tomized error models are supported as well (this resemibelgght-weight injectors
used in [Stotet al.,, 2000]).

Once all the error types have been defined, the locationsathese error types
will be injected have to be selected. This will generate d_setere each element
| is a tuple containing the physical location in the sourcesomtiere the high-level
software trap will be placed and the variable or memory ane@hich the error is to
be injected.

The injection locations have to be instrumented in the tasgéware, whereas
the error types are defined only in the description files (ofse, user error injectors
have to be implemented in source code). Thus, once theimjeltications are in
place, any variety of error types can be injected using theesastrumentation. It
should be pointed out here that one error type may be assdarath more than one
physical location, and vice versa one location may be astxtiwith more than one
error type.

5.4.4 Triggering the Error Injections

Once all error types and error injection locations have ssbected, the error trig-
gers have to be defined. An error trigger tells PROPANE whehhaow often to
inject errors. The error triggers are basically boolearresgions dictating when a
particular combination of location and error type is adia

A majority of the error triggers are based on the notion o&tigither counted as
number of times an injection location is reached or basethemternal PROPANE
time. The PROPANE time is a clock which has a tick specifiedH®y user (by
having the user call a special tick-function with a certagmi@d). Accordingly, we
categorize error triggers with respect to timing and fregyeof occurrence as well
as probability, as detailed in Table 5.2.

Permanent errors are emulated using Ah@ayserror trigger, transient errors
are simulated by using th@nceerror trigger, and intermittent errors are simulated
with the Period or Probability error triggers.

User-defined error triggers are functions designed by tee arsd may use any
expression for triggering an injection. For instance, ar-defined error trigger
could make decisions based on the state of the system, istmilae technique used
in [Chandraet al,, 2000, Cukieret al., 1999].
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Table 5.2: PROPANE Error Triggers

[| Error Trigger | Description I
Always Injection performed every time the trap is reached.
Once-time Injection performed once when the trap is reached

and the PROPANE time is greater than or equal||to
a certain value.

Once-cycle Injection performed once after the trap has bgen
reached a certain number of times.
Period-time Injection performed periodically with a certair

PROPANE time period. The first injection is when
the trap is reached and the PROPANE time is greater
than or equal to the period.
Period-cycle Injection performed periodically with the period be
ing number of times the trap is reached. The first |p-
jection is performed the first time the trap has been
reached the number of times specified as the periad.
Probability Injection performed with a certain probability each
time the trap is reached. The uniform distribution ||s
used.

User-defined | User-implemented triggers may choose any kind||of
conditions for triggering an injection.

5.4.5 Logging Variables, Memory Areas, Events

The selection of probes to be used in the experiment is fuditated by the objec-
tives of the experiments, i.e., the probes must be select#iths the data necessary
for obtaining the desired measures in the analysis phaseodested. PROPANE
provides two kinds of logging probes: 1) variable probesy @h event probes.
The variable probes are used for logging the values of i@sadnd memory areas,
whereas the event probes are used for logging certain fireedesvents.

The probes must be inserted into the target software and eaorsidered as
high-level software traps, analogous to fault triggers amdr injection locations.
For event probes, the actual event detection has to be inepliexth by the user, the
probe can only be used for adding an entry in the readout files.

The basic rule is that an entry in the readout files is madeydirae a logging
trap is reached. However, for variable probes this is onlg twhen logging a mem-
ory area. When logging a variable, the current value of tggéal item is compared
to the value it had the previous time it was logged. If the gdlas not changed, no
new entry will be made in the readout files. PROPANE suppuertsdifferent kinds
of probes: variable probes and event probes. The variableprare used for tracing
the value of a variable, and the event probes are used fomnipdige occurrences of
events. The target system must be instrumented with theeprob
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Entries created by a variable probe contain the name of thigepia time stamp
(the PROPANE time) and the value of the logged item and entrieated by event
probes contain only the name of the probe and a time-stamp.

5.4.6 Environment Simulators and Test Cases

The test cases that are to be used for the experiments afg amgglication specific
and depend on the target system as well as the intended iopatagnvironment.
Since the environment simulator is developed separateiy the PROPANE tool,
the parameters included in a test case may be different batdifferent target sys-
tems, and are not limited by the tool. Generally, it is impottto obtain a set of test
cases that closely resembles the intended usage profile ¢drdpet system. Using
test cases that are not representative of how the targensystused in reality will
obviously decrease the utility of the obtained results.

PROPANE enables the user to include the handling of enviesireimulator
and test cases in the setup of the tool, i.e., the files usesketting up PROPANE
may also be used for setting up environment simulators vaér-defined test cases.
As the link to the environment simulator is implemented #peadly for each en-
vironment simulator by the user of PROPANE, there are noiapeequirements
on the interface of the simulator. Using a layer of wrappersngerface between
PROPANE and the environment simulators allows for virtualhy simulator to be
linked with PROPANE.

The environment simulator may also be linked into the finglcetable. How-
ever, PROPANE does not explicitly require this. Actuallpyekind of interac-
tion between the target software and the environment siomufaay be handled
by PROPANE as this interaction is entirely designed and amginted by the user.
PROPANE only provides means for integrating control andihag of the environ-
ment simulator with the other experiment activities.

5.4.7 Target System Instrumentation

In order to make use of the support for probes and injectioogged by PROPANE,
the target system must be instrumented, as mentioned psdyionstrumenting a
target system includes the following: 1) inserting prolme®y variables and events,
2) inserting faults and fault triggers, and 3) insertingeatijon locations (a form of
high-level software traps) for error injection. In additito these activities in the
target source code, PL must be linked together with the tayggtem software and
user-implemented error types and error triggers (if rexgl)ihave to be developed.
Instrumentation is currently a manual activity, i.e., @stand injection locations
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Original code

doubl e spherical _vol une( doubl e radius )
{
doubl e vol une;
volume = 4.0 * (Pl * pow( radius,
return vol uneg;
}
Instrumented code
doubl e spherical _vol ume( doubl e radius )
{

volume = 4.0 * (Pl * pow radius,
}
propane_l og_var ( P_VOLUME, &vol une );
return vol une;

3.0)) / 3.0;

Here is a variable doubl e vol ume:
probe for tracing o )
the parameter propane_i nj ect ( | L_SPHERE VOLUVE, &radi us,
radius. propane_|l og_var( P_RADI US, &radius );
i f( propane_fault_is_active( F_SPHERE VOLUVE_ | NTEGERS ) )
{
volume = 4 * (Pl * pow radius, 3)) / 3;
Here is a variable }
probe for tracing el se
the result
variable volume. {

This is injection location
IL_SPHERE_VOLUME.
The errors that are
injected here are

defined in the PROPANE
setup files.

PROPANE_DOUBLE ) ;

3.0)) / 3.0;

Here is a fault and its
fault trigger. The faulty
code or the correct
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code is executed

} depending on whether
the fault is activated in
the description files.

Figure 5.3: An example of instrumented code.

have to be inserted manually into the target source code.eMenvefforts are cur-

rently being made to automate this part. A sample fragmemstifumented code

Is shown in Fig. 5.3. This example shows a function for catag the volume of a

sphere, given the radius. The instrumented code shows tlegladde lines in bold-

face. Here we have added an injection location, two variplides and inserted a
fault and corresponding fault trigger. We will not describe details of the various
API functions provided by PL here, instead the reader igredeto Appendix A.

Although it is possible to do the instrumentation manuatlys recommended
that PSI be used for automatic instrumentation of source.cGdrrently there exist
two main methods for automatically instrumenting the sewode: i) adding an-
notations to the original source code, and/or ii) specifyriodular composition of
the system and for each module the 1/0O and internal charstatsr PSI will, given
this information, generate instrumented system source,dbé PROPANE config-
uration source files (standard ANSI C files) used by PL andhdidas used by PSC.
More information on instrumentation of the target systerfoisd in Appendix A.
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Figure 5.4: The basic work-flow of target system instrumigomna

Information regarding the low-level characteristics (sas data type, identifier,
name, etc.) of probes, injection locations and faults atered in a PROPANE
configuration source file (standard C-file, generated by.m$the description files,
the names are then used when referring to the probes, onpdoitations and faults.
Details about the PROPANE configuration source file are desttin Appendix A.

An illustration of the work required for constructing antinsnented target sys-
tem executable is presented in Fig. 5.4. A description ofstfgtem composition
and the desired instrumentation, along with the originejeasource code is used
by PSI to generate the PROPANE configuration source file astdumented target
source code. The configuration source file contains infaonateeded in the PL,
such as probes, faults, locations, etc. This informatiaroisstant information that
will remain the same between different experiments. The PRIE configuration
source file, the instrumented target source files, and theeusa types and error
triggers (written by the user) are compiled and linked tbgetvith PL to form the
instrumented target system executable. This executaliteers used by the PCD
when conducting experiments.

The environment simulator may also be linked into the fin&cetable. How-
ever, PROPANE does not explicitly require this. Actuallpyakind of interac-
tion between the target software and the environment siomufaay be handled
by PROPANE as this interaction is entirely designed and amginted by the user.
PROPANE only provides integration of control and handlirigh® environment
simulator with the other experiment activities by means o&pper functions for
initiating and shutting down the environment simulatore Mrapper functions are
called at the start and completion of each individual expent, respectively.
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Database

Description
Campaign Campaign Campaign
Description Description Description

Experiment Experiment Experiment
Description Description Description

Figure 5.5: Organization of description files for PROPANEipe

5.4.8 Setup Using Description Files

A target system executable will contain logging probeslt$aand fault triggers, and
Injection locations. However, in order to activate probejgct faults and/or errors, a
set of description files have to be written which contain expental details. These
files are organized as illustrated in Fig 5.5.

At the top level, we have the Database Description contgimformation on
where the remaining setup files are found and where the @atamadouts are to
be stored. In thdatabase Descriptions also a list of the campaigns that make
up the database. Each campaign h&ampaign Descriptiortontaining informa-
tion regarding the execution of the experiments, such asdh®e of the executable
file that shall be used and a listing of the experiments thatenug the campaign.
For each experiment, there is Brperiment Descriptiomontaining details for the
experiment, such as which probes shall be activated, whijeltions shall be per-
formed (i.e., which error type(s) in which injection loaat(s)), and which setup
file (if any) is to be used for the configuration of the envir@mhsimulator. These
files may have different formats for each environment sitouland are specified by
the designer of the simulators. The file formats for the wegidescription files are
detailed in Appendix A.

5.5 Injection: Running Experiments

Following the experiment setup and specification phaseeisnjlection phase. For
every description file—Database Description, Campaigrciasons, and Experi-
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/1 The file begins with a section containing information

/'l regarding the various channels, nanely channel nanmes and

/1 entry structures.

#i nfo: Experinent Readout File. Created Wed Dec 06 11:36:14 2000
/1 Channel s created by variabl e probes

#channel vp.<probe nane> VAR ABLE PROBE <type> <size>

#i nfo vp. <probe nane> [tine, val ue]

/'l Channels created by event probes

#channel ep. <probe nanme> EVENT_PROBE

#info ep. <probe name> [tine]

/1 Channels created by error injections

#channel ei.<location nanme> ERROR | NJECTI ON

#info ei.<location nane> [tine, value before, error, value after]
/1 Channels created by fault injections

#channel fi.<fault name> FAULT_| NJECTI ON

#info fi.<fault nane> [tine]

/1l The entries always cone after the channel information section
<channel nanme> <entry>

SN N S N S

Figure 5.6: The format of channels in the Experiment ReaHdes.

ment Descriptions—a corresponding log file and a correspgneadout file will be

generated during the actual execution of experiments. ddnéiles contain records
of the actions performed by PROPANE including error mess#gmnything should

go wrong during the execution of the experiments. The re@afil@s contain data
obtained from probes, injections and simulators, and férennput for the analysis
phase.

The data gathered by the logging probes and injections iedia theExper-
iment Readout Filegone for each Experiment Description). In these files, data
will be organized irchannels Each channel contains the readouts produced by one
probe, one fault trigger or one injection location. The emwment simulator may
also store data in the file. This data will also be stored inaanokl, but the format is
defined by the user. An experiment readout file is formattatissrated in Fig. 5.6.

The PCD will supervise the automatic execution of all expents that are
specified in the description files. During the actual exexytPCD will continu-
ously provide information on the current status and esgoh@bmpletion time for
all experiments. At this stage, the user can choose to paesexecution, abort it
altogether or skip ahead one campaign.
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5.6 Analysis: Obtaining Propagation Characteristics

In the analysis phase of an injection experiment, actwifach as estimating cov-
erage values, extracting failure and error data, estabggtropagation paths of the
errors, etc., are performed. To this end, PROPANE contdiasData Extractor
(PDE). PDE enables conducting Golden Run Comparison (G&@)pile propaga-
tion information, extract injection information, and cte#&race files of the channels
in the experiment readout files. For plotting channels, theetfiles can be imported
into spreadsheet programs, such as MS Excel. This sectsuribles details about
the actions performed by the PDE.

5.6.1 Golden Run Comparisons

A Golden Run Comparison (GRC) is performed by comparing gsslouts pro-
duced by the Golden Run (GR), i.e., a reference run with nltsfaumd/or errors in-
jected, with the readout produced by an injection run (IR), & run in which faults
and errors were actually injected. In a GRC, only channetslyred by variable
probes are considered, as the propagation of data errgrésqmbssible in variables
and memory areas.

The PDE treats the the first campaign in a series of campaigre database
readout file) as the GR campaign and all others as IR campdigasmportant that
the number of channels in each experiment in the GR campaitireisame as the
number of channels in the IR campaigns. If this is not the,dageGRC will not be
completed and error messages will be displayed.

During the comparison, each GR channel is compared to thhesponding IR
channel. The comparison is performed sample by sample an€irgh mismatch
between the GR and the IR is flagged as an error. The first nebrmall be marked
with the documented time stamp of that sample and the GRChédrdhannel is
ended. The comparison can be performed requiring totalliggbatween GR chan-
nels and IR channels or using error margins.

The results of the GRC will be written in extraction resule$i#—one such file
for each individual campaign (except for the GR campaignip ektraction result
file will contain one line of information for each experimentthe campaign. This
information includes for each channel the time stamp of #me@e that was found
not to match the golden run and information about the the mismper se, i.e., the
golden run value and the injection run value.

From the GRC we will also get a summary of the error propagatiomwing how
errors propagated through the system. This informatioludss that propagation
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Figure 5.7: An example of GRC performed by the PROPANE Datadgtor.

rate, i.e., how many of the injected errors propagated tmwarparts of the system
as well as how long time it took them.

Virtual Samples

The logging performed by the variable probes is such that dmhnges in the vari-
ables that are being probed are actually entered into tlimuediles. This reduces
the amount of data stored for each experiment, but requirae £xtra effort during
analysis in order to recreate the “ignored” samples sineé:th sample for a GR
channel may not correspond in time to #i& sample of an IR channel.

Consider the example in Fig. 5.7; here we have the trace of &l@Rnel and
the traces of two corresponding IR channels. There are tiiereint scenarios that
can arise when comparing the samples of two correspondiagnelts:l) two sam-
ples correspond temporarily, arid two samples do not correspond temporarily.
Scenarid is illustrated in Fig. 5.7 where sample #4 for the GR chanatetifnets)
corresponds temporally with sample #4 (also at tig)®f IR channel 2. In the same
figure, scenaridl is illustrated by sample #4 of the GR channel not correspandi
temporally with sample #4 of IR channel 1.

In scenarid, GRC is simply performed as a comparison between the values o
the two sample. Scenarlb, however, requires a little more work before a compar-
iIson can be made. Herevatual sampleis created using the time stamp of sample
#4 of the GR channel and the value of the previous IR sampleisncase sample
#3 of IR channel 1. This can be done because we know that thelesuonly show
the changes of their channels, so at titpelR channel 1 must have had the same
value it had at the previous sample point. After the comparisetween the virtual
sample and sample #4 of the GR channel is complete, samplR&4£bannel 1 will
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Figure 5.8: Comparison of a Golden Rurigure 5.9: Comparison of a Golden Run
and corresponding Injection Run usingnd corresponding Injection Run using
absolute margins. relative margins.

be compared to sample #5 of the GR channel. Virtual samplegdvad course also
be created if the GR channel would “miss” a sample as comparée sequence of
samples in the IR channel.

Error Margins

PDE is capable of applying error margins to the comparisafopaed during a
GRC. With error margins, the two values that are comparedtibave to be identi-
cal to be considered correct. This can be useful when congpasio channels which
inherently are “noisy”, i.e., slight variations when usitihg same test case may be
normal. Each channel can be given individual error margnasthe margins can be
either absolute or relative (percentages).

An absolute margin will set upper and lower boundaries onateolute error
between the GR channel and the IR channel. For example, ianeh has an
absolute margin of 5 up and 10 down, and a golden run sampleabfchannel
has the value 100, then the injection run sample of that c¥amiti be considered
correct as long as it is within the range 100 - 10 and 100 + 5wiitlin 90 and 105.
If the golden run sample were instead 200, the range wouletvegden 190 and 205.

A relative margin will set upper and lower bounds on the retag¢rror between
the GR channel and the IR channel. For example, if we haveaavelerror margin
for a channel with 0.05 upwards and 0.10 downwards, and agalsh sample of
that channel has the value 100, then the injection run saafipkat channel will be
considered correct as long as it is within the range-10® - 0.10) and 100(1.0 +
0.05), i.e. within 90 and 105. If the golden run sample woulstead be 200, the
range would be between 180 and 210.

In Figs. 5.8 and 5.9 the two types of margins are illustratelére we have a
Golden Run and a corresponding Injection Run. Fig. 5.8tiliies a GRC using
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absolute margins and Fig. 5.9 illustrates a GRC using velatiargins. As can be
seen when comparing the two figures, given the same expdrmeemtout file, errors
may be detected at different times depending on the typerof arargin (if any)
used in the analysis. In this example, with absolute erralgma an error will be
detected at sample #5, whereas with relative error margmgrror is not detected
until sample #6.

5.6.2 Channel Logs

Channel logs may be useful for doing a more detailed anabfsigferent channels
than the PDE can provide. However, one should bear in mindahe file will
be generated for each individual channel of each indiviexgkriment, i.e. for 10
experiments with 10 channels each, 100 channel logs camgatine samples of the
individual channels will be generated. The files are debohiext files that are easily
imported into a spreadsheet tool, such as Microsoft Exdegrevfurther analysis or
graphical representation may be performed.

5.6.3 Injection Information

When injection information files are generated, the PDEterseane file for each
campaign (except the GR campaign). The injection inforomafiles contain in-
formation for each injection run regarding the times at \Wwhecrors were actually
injected This information is sometimes useful for filterimgt values and events that
are logged before the actual injection, since these mayeaof hny interest.

5.6.4 Propagation Information

The Golden Run Comparison performed by the PDE will for ed@maoel identify
the first discrepancy between the Golden Run and an InjeBtion These discrep-
ancies can be ordered temporally to give a propagation signéor that particular
Injection Run. Every individual Injection Run produces Isuamn error propagation
signature, i.e., a set of timestamps showing when the v&xiatiable probe channels
were erroneous the first time (in comparison with the Goldan)RThis signature
shows where and when an error was injected and which chaweetssubsequently
affected and the time at which the propagated error occurred

The signatures from individual experiment runs can be cogtbinto propaga-
tion graphs (directed graph with weights on the arcs) shgwnepagation times and
propagation rates. One propagation graph will be creategdich unique channel in
which errors are injected. In the propagation graph, thamwhlan which errors were
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Figure 5.10: Software structure of the example target sygéa aircraft arrestment
system). For details, see Chapter 3.

injected will be a source node, i.e., all arcs connecteddbribde will be outgoing.

All experiment runs in which an error was injected into thairge node will be used
to generate the remaining nodes (all channels that weretedfat least once by a
propagating error will generate nodes) and the weightseftics (associated with
each arc is the number of errors that propagated along ttiatpa the minimum,

average and maximum propagation times).

The propagation graph is also collapsed to a propagatiommsuyn This is a
table showing, for each channel, the error count and erter(ra., a nhormalized
measure between 0 and 1 of how many errors propagated iritolthanel) as well
as the minimum, average and maximum propagation times.

5.7 Example Results Generated by PROPANE

This section presents example results obtained using PREPAhe target system
used in this example is the aircraft arrestment system itbescin 3. To aid the
reader, the software structure shortly described heregls w

The structure of the software is illustrated in Fig. 5.10.e Tlumbers shown at
the inputs and outputs are used for numbering the signalsins@ance PACNTis
input #1 of DISTS, andSetValuas output #2 of CALC. The software is composed
of six modules of varying size and input/output signal courtie system receives
input from a number of sensors at PRE&Nd DISTS. The output of the system is
provided at PRER\. The remaining modules (CALC,YREG and CLOCK) provide
internal/intermediate signals. The module specifics aveiged in Chapter 3.

In this example, bit-flip errors are injected in each of thgmals (one at a time)
and all signals are monitored. For logging and injectiorg thrget system was
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Figure 5.11: The propagation of an error injected into PACNT

instrumented with high-level software traps. As a trap &heed during execution,
an error is injected and/or data logged. The traces obtalnedg execution have
millisecond resolution for every logged variable. Alsog $oftware of the original
target system is ported to run on a desktop system, so thesioir of the traps is
non-existent in this setup as it runs in simulated time.

First, a Golden Run (GR) was generated for each test casen, €hers were
injected into the system input signBACNT, which is 8 bits wide. Bit-flips were
injected in each bit position (which is the equivalent okrtjng offsets of:1, 2,
+4, £8, and so on). The bit-flips were injected at 10 different timsances dis-
tributed in half-second intervals between 0.5 seconds ahdéconds from start of
arrestment (although only at one time in each IR). In ordeyetoa realistic load on
the system and the modules, we subjected the system to 2&agest: 5 masses and
5 velocities of the incoming aircraft uniformly distributdetween 8000—200G(,
and between 40-80 /s, respectively. Thus, 8.0- 25 = 2000 injections were made
into PACNT. Of these 200 injection, 1840 were actually injected whitea@craft
was still being arrested, i.e., the system had not yet camgblés operational run.
The remaining 160 errors were injected after the aircraft stapped completely
and, thus, are not considered in this example.

In one of the injection runs, we injected a bit-flip RACNT 1500 milliseconds
after system startup, while an aircraft is being arrestedind how this error prop-
agates through the system we compared the injection runangghiden run (using
PDE) as described in Section 5.6. Fig. 5.11 illustrates #ta dnalysis performed
by PDE, showing when the other signals were affected by fleetid error.

In Fig. 5.11 we can see that@at 1500 millisecondsPACNTIs erroneous. The
error propagates immediately through DLST rendering alspulscnterroneous at
t = 1500 milliseconds. This error then immediately affactét ¢ = 1539 millisec-
onds, the error propagates out of CALC datValueand then immediately through
V_REG intoOutValue At ¢t = 1541 milliseconds, the error finally propagates out
of the system (vialfOC2 and affects the environment, leading to potential failure
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Figure 5.12: Plot of PACNT for a golden run and an injection.ru

of the system. At = 1548 milliseconds, the environment is affected so much tha
that the input to the systenADC) is starting to differ from the golden run, and at
t = 1693 milliseconds the applied pressure, as seen by thensyisiValug, is also
different.

From PDE we can also extract data from the individual chan(@iobes) and
plot them to see details about the propagation of errors.iga.’5.12 and 5.13 we
have the plots foPACNT and for SetValue respectively. Each plot contains the
golden run and an injection run (the same as used in Fig. 5TIg aircraft in the
injection run was arrested in a much shorter time than in tideg run due to the
high output value that resulted from the injected error. s['tie injection run ends
att = 3522 milliseconds (in both figures) as compared to the gotda which ends
att = 4701 milliseconds.

In the plot for PACNT (Fig. 5.12), we clearly see that the golden run and the
injection run are equal up tb= 1500 milliseconds where the injection run has a
large dip in value. The value recovers almost instantarg@usl the injection run
follows the golden run closely for another half-second. ldegr, the damage has
already been done since the error propagated out of ASWe can see hoBet-
Value(Fig. 5.13) is radically different from the golden runtat 1539 milliseconds
and never recovers throughout the remainder of the opagadtione.

Apart from the detailed results shown in Figs. 5.11, 5.12 &8 the PDE
also generates concise information pertaining to the graiman of the injected er-
rors in the system. For each signal that is subjected to amjections, a prop-
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Figure 5.13: Plot of SetValue for a golden run and an injectim.

agation graph and propagation summary will be generatece PIIDE stores the
propagation graph in two different file formats: dpt [Graphviz, web-link], and

i) GML [GML, web-link]. As these formats are common for graph repreation,
there is a range of applications that can be used for plotimdy manipulating the
propagation graphs. In Fig. 5.14 we can see the propagateghdor errors in-
jected into the signdPACNTIin the example system used in this section. The graph
IS generated using thaot tool.

The propagation graph illustrates the propagation chamatts of the errors
injected into the signadPACNT. The label on an arc from one node to another tells
how many errors propagated along this arc (top value), amaninimum, average
and maximum propagation times (bottom values) for thesw®riT he graph shows
the temporal order between errors in different signals. éxample, if we consider
the errors detected (during the Golden Run Comparisomn)we can see that for
1120 of them, there were no errors detected earlier in otgeals (although errors
were detected ipulscntat the same point in time), whereas for 691 of the detected
errors, there were errors detected earligouiscnt

Using the same example experiment as above, we show theaggshgropa-
gation summary for errors iIRACNT in Table 5.3. The summary is obtained by
collapsing all ingoing arcs of each node in the propagati@ply Thus, for exam-
ple, the summary foris obtained by adding its two ingoing arcs in the propagation
graph, which gives us a total of 1811 errors. The propagdtioas are obtained
from the combined set of propagation times for the erroreaed ini.
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Table 5.3: Propagation of errors injected into PACNT.

error count is the number of errors detected using Golden Run Compagisdriheerror

rate is the same information normalized. The propagation tinnestin milliseconds.
| Signal | errorcount | errorrate | tmin | tavy | tmax |

PACNT 1840 1.000 0 0 0

pulscnt 1840 1.000 0 0 20

i 1811 0.984 0 4 20

OutValue 1275 0.693 1 613 4159

SetValue 1275 0.693 1 613 4159

TOC2 1275 0.693 3 615 4161

ADC 1265 0.688 10 629 4168

IsValue 1202 0.653 155 682 3467

slow_speed 769 0.418 0 2004 5890

mscnt 1184 0.643 476 | 2982 6201

ms.slot.nbr 1184 0.643 476 | 2982 6201

TCNT 1184 0.643 476 | 2982 6201

TIC1 1184 0.643 476 | 2982 6201

In the summary shown in Table 5.3 we see the number of errd?A@NTthat
caused errors in other signals (count and rate), as welkamiiimum, average and
maximum propagation time for these errors (the rows arereddaccording to their
average propagation time). In this particular example weses that all of the 1840
errors injected intd?’ACNT, propagated tpulscntwith an average propagation time
of 0 milliseconds. 1275 errors made it all the way to the ougiggnal TOC2with an
average propagation time of 615 milliseconds. From thevso# structure shown in
Fig. 5.10 we can see that errors in the signals listed b&lO@2in Table 5.3 (except
slow speed, must be indirect, since there is no direct path fle&CNT. Thus, errors
in this signal must have propagated out of the system intetkeonment and then
back into the system again.

The results presented give information on how errors pragesatiprough the sys-
tem, identifying which modules and signals that may be indnefespecial mech-
anisms for protection against propagating errors. For @kanirom the results in
Table 5.3 we see that errorsPACNTmainly propagate through DIST into CALC
usingpulscnt From the propagation graph in Fig. 5.14 we see that projmamggito
CALC is fast, whereas propagation out of CALC takes a litbleger. Thus, CALC
seems to delay the propagation of errors. We also see tleat@G&LC, error prop-
agation again is swift. These results would indicate thatesy reliability could
increase ifpulscntwere to be equipped with with EDM’s (error detection mech-
anisms) and ERM’s (error recovery mechanisms), as this dvibkely break the
propagation at an early stage.
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These examples demonstrate PROPANE’s capabilities fogrgéng pertinent
information for propagation analysis. However, the lealetail required may gen-
erate very large amounts of raw data. In order to analysealislata (further than
done by the PDE) and find likely propagation paths and vubieranodules, addi-
tional actions can be performed to reduce the raw data irgtubimformation. We
refer the reader to [Hilleet al,, 2001, Hilleret al., 2002(a), Jhumkat al., 2001],
where details of actual results, as well as two different gatalysis frameworks
(with different objectives) are described.

5.8 PROPANE's Attributes and Comparison with Other
Fl-tools

Fl has been used for various purposes for many years (sed/elgt et al.,, 1990],
[Arlat et al,, 1993], [Chillarege and Bowen, 1989], and [lyer, 1995])-tédls may
inject errors in a number of ways, e.g., physical fault itig radiation, etc. As
PROPANE uses SWIFI (SoftWare-Implemented Fault Injegtisa will focus this
comparison on other tools in that area. Tables 5.4 and 5.Susanarized compar-
iIson of the tools we have taken a closer look at. First, howeawve will summarize
the main characteristics of PROPANE as described over thaqus sections.

5.8.1 Main Characteristics of PROPANE

The goal of designing PROPANE was to provide an environmatit feur main
characteristics: 1) high flexibility regarding fault/ermmodels and injection options,
2) high portability, 3) low-cost operation, and 4) high obsdility in target soft-
ware. These characteristics were achieved in the followiag:

Flexibility PROPANE’s main logging and injection functionality is prded in a
function library which makes it target independent. Thhs, tange of appli-
cations where PROPANE can be used for error propagatiorysisat vast.
Also, PROPANE has the capability to handle user-defined ¢ypes and in-
jection triggers. The fact that the final data analysis iégpered by a separate
tool lets the user define exactly the kind of measures eadriexent is to pro-
duce. Thus, raw data from one experiment may be used forgteufiurposes.
The only requirement for using PROPANE is that the sourcguage used in
the software system is able to interface with libraries enpénted in C.

Portability PROPANE is entirely implemented in C. Furthermore, the PRSP
System Instrumentor, the PROPANE Setup Creator, the PRE&PADrary
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and the PROPANE Data Extractor have no links to the OS makingry
easy to port them to other platforms as it only requires rqmting. The
PROPANE Campaign Driver is also implemented in C but has amnlink
to the OS and that is for spawning new processes. As all deskierating
systems provide an API for process handling, this part &b de easy to
port.

Low-cost No external hardware or network is required in order for PROP to
be able to function properly (although the target system raguire it). This,
together with the high level of portability, makes PROPANEa#ractive low-
cost alternative for error propagation analysis for marifeent platforms.

Observability PROPANE is capable of gathering detailed data on the inteana
ables and events of software systems during execution aftarfgection. This
level of detail is necessary when analyzing the propagatfa@rrors in order
to locate vulnerable software modules and/or variablestandentify likely
propagation paths.

Having described the main characteristics of the PROPAN& @ment, we
present a comparison with other contemporary Fl-tools.

5.8.2 Comparison Details

Here we compare PROPANE with a number of other FI-tools. bida5.4 and 5.5,
we first categorize the Fl-tools into four main categoriesdolon their aim and in-
jection capabilities, namely: 1) tools for evaluation o§®m architectures, 2) tools
for evaluation of systems when subjected to HW faults onlyp8Is for evaluating
systems when subjected to HW and SW faults, and 4) tools fduating software
and software components when subjected to errors in irtdata (which may be
induced by both HW or SW faults). All tools in categories lotlgh 3 are aimed at
evaluation at system level, i.e., the granularity of theeolsd results are at system
level (or node level for distributed systems). In order westigate the error propa-
gation characteristics of software, it is imperative tihat individual variables of the
software system can be observed during the experiments.toblein category 4
are all able to observe the target system at a very low lev@ PROPANE is in this
category, we will focus our comparison on these tools.

MAFALDA is aimed at evaluating the robustness of micro-ldsnand inves-
tigating the effect of software faults and software erramstloe operation of these
kernels. This means that the tool is able to inject at the &8k PROPANE is



Table 5.4: Summarized comparison (part 1) of differentdellds — see text in Section 5.8 for details.

Key: Obs Res= observation resolution-IM = fault insertion methodErr Ty = error types (B = Bit manipulation, AB = Address bus, AR =
Arithmetic, U = User-defined)err Tr = error triggers (B = Built-in, U = User-definedExt Req = external requirementsnstr = instrumentation

needs)].oD = level of detail of readout data

Tool | ObsRes | FIM | ErTy [ErTr | Ext Req | Instr | LoD |
Tool Category/Driver: Evaluate architecture (category 1)
DEPEND System, None Component| B OS support, source | Logging, | Injection details and predefineg
[Goswami, 1997] architecture level code of architec- injection | system-level data.
errors ture simulation
Loki System, None B,U U Target source code,| Logging, | Injection details and predefined
[Chandraet al., 2000] architecture function library injection | system/node-level data.
[Cukier et al., 1999]
Tool Category/Driver: Evaluate tolerance against HW faults (category 2)
FERRARI System Opcode | B, AB B UNIX No Injection details and predefineg
[Kanawatiet al.,, 1995] switch data.
DOCTOR System Mutation | B, B HW and OS support, Logging | Injection details and predefineg
[Hanet al,, 1995] Communi- data.
cation
Xception System Op code | B, AB B Processor with No Injection details and predefineg
[Carreiraet al., 1995] architecture switch debugging port data.
[Carreiraet al., 1998] (e.g., BDM)
Tool Category/Driver: Evaluate tolerance against both HW and SW faults (category 3)

DEFINE UNIX-network | Op code | B, AB B UNIX, target Logging, | Injection details, predefined
[Kao and lyer, 1995] switch source code injection | data and memory locations.
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Table 5.5: Summarized comparison (part 2) of differentdélls — see text in Section 5.8 for details.

Key: Obs Res= observation resolutionFIM = fault insertion methodErr Ty = error types (B = Bit manipulation, AB = Address bus, AR
Arithmetic, U = User-defined)Err Tr = error triggers (B = Built-in, U = User-definedxt Req = external requirementsnstr = instrumentation
needsl oD = level of detail of readout data
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Tool | ObsRes | FIM | ErTy | ErTr | Ext Req | Instr | LoD
Tool Category/Driver: Evaluate tolerance against both HW and SW faults (category 3, cont’d)
FIAT System Bit-flips B B HW and OS support,| Injection | Injection details and predefined
[Bartonet al, 1990] | architecture in task target source code data.
[Segallet al, 1988] image
FTAPE System No B, Disk | B HW and OS support | No Injection details and predefined
[Tsai and lyer, 1996] data.
Tool Category/Driver: Evaluate effect of SW faults and erras and error propagation (category 4)
MAFALDA Micro- Bit-flips B B HW support No info Injection details, predefined
[Fabreet al., 1999] kernels in text available | data and special events.
segment
NFTAPE System down-| User- B, AB, B,U LAN-based, target Logging, | Injection details, predefined
[Stott et al., 2000] to variable defined AR, U source code, function injection | data and user-defined data.
injectors library Events and individual variables
may be logged.
PROPANE System down-| Mutation, | B, AR, | B, U Target source code, | Logging | Injection details and user
to variable User- U function library injection | defined data. Events and
defined individual variables may be
injectors logged.

98




5.8. PROPANE's Attributes and Comparison with Other FI-tools 99

aimed at software at the USER-level, hence it is not suitethiese types of investi-
gations. However, as far as we know, MAFALDA lacks compreinanlogging fa-
cilities for examining the propagation of errors in a migernel. NFTAPE is, in our
opinion, a very versatile tool which can perform the samestigations PROPANE
can. NFTAPE, just like PROPANE, has support for user-definggttors as well as
user-defined triggers, and is capable of observing thettaggtem at the variable
level. As both tools have support for user-defined inje¢tbagh may be extended
to handle physical fault injection as well as SWIFI. HoweW¥FTAPE is designed
to run on a LAN, and has therefore a separate control host target node.

PROPANE, is a single software package primarily designeditioon a single
node. This makes the setup time required for experimentgguBROPANE very
short (e.g., the experiment in [Hillet al, 2001], which also functions as the ex-
ample used in this chapter, was set up in just a few hours, eMiner main part of
the time was spent on instrumenting the target softwarejo,Ahe system require-
ments for using PROPANE are very low, the main requirememgtset by the target
system. On account of the fact that PROPANE requires no apsgpport from
either HW or the OS (PCD requires that the OS has an API for speganew pro-
cesses), porting the tool to other platforms is an easy tésghwnainly just requires
a recompilation. This also makes PROPANE less expensiveNFEAPE.

Based on this comparison we can argue for the use of PROPAN& iy stages
of software development before HW platforms have been fiedlor when the entire
system may be simulated on a single node. NFTAPE may be usedgvelopment
has come so far that functional setups of the entire targgesyare available. In
our opinion, the remaining tools listed here are not capabgenerating data that
may be used in a detailed investigation of error propagatiGoftware.

The injection and logging functionality of PROPANE is prded as a static
library, which is linked with the target system. This offdlaxibility in choosing
target systems, facilitating wide applicability of the tobor example, in addition to
the way it is used in the example provided in this chapteray fme used in a manner
similar to DEPEND where entire system architectures areilsited.

In our opinion, PROPANE is well suited for use as a designestagl which
gives valuable insights into the error propagation charestics of a software system
such that resources for error detection and recovery sft@m be directed to those
parts which require it the most, i.e., those parts whichrietre propagate and those
parts which attract propagating errors. This makes PROPANB&od complement
to other available analysis tools.
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5.9 Summary and Conclusions

This chapter presents PROPANE, the Propagation Analysisdiment, which is a
software design-stage profiling tool developed for analyzhe propagation and ef-
fect of errors in software systems. PROPANE is a desktop@mvient and contains
support for conducting fault and error injections in targeftware systems. The tool
also provides support for automatically inserting prob#s the target system en-
abling the logging of variables and events during injeceaperiments.

PROPANE is target system independent, i.e., it may be usadytarget system
provided that one can execute it in a desktop environmerso, AROPANE does not
require any HW or OS support and is easily ported to otheratjmgy systems (the
current version is available for Windows 2000/XP-based paters). As PROPANE
Is implemented using ANSI C, porting it is mostly just a quasiof recompiling for
the desired environment.

The injection capabilities include fault injection by miita of source code as
well as SWIFI-based injection of errors. PROPANE supposerwefined injectors
and triggers which makes it capable of supporting otherctiga techniques than
SWIFI (for example, physical fault injection).

PROPANE supports observations down to the variable leee],individual vari-
ables may be logged during injection experiments. This lesahe detailed exam-
ination of error propagation in software and is a valuable refinding vulnerable
software modules and/or variables.

For analysis, the toolkit contains the PROPANE Data Extra(fDE), which
can perform Golden Run Comparisons for each channel crégtad/ariable in the
readout files. The results will be stored in a text file with eegpsheet format that
Is easily imported into other tools for further analysis. eTiesults from the GRC
are also compiled to show where errors propagate througsytem and how long
time it takes.

PDE can also extract injection information from the readibes$ and store this in
separate files, and create channel logs for each individwaadrel of each individual
experiment if a more detailed analysis or graphical repriesien is desired. Also,
PDE creates propagation graphs and summaries which zsutle propagation
characteristics of the software system.

To demonstrate the tool we have shown detailed results fromj@ction exper-
iment performed on an actual embedded control system useatrigsting aircraft
(similar to the cable-and-hook systems found on aircrafies).

In a comparison with other FI-tools, we comment that PROPAN&nique in
the level of its provision of detailed data necessary foorepropagation analysis.
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Also, the portability and flexibility uniquely distinguighROPANE as a simple, low-
cost error propagation analysis tool which lends itselfefarly analysis of software
systems. It complements other, more expensive, tools vdaiolbe used later during
development.
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CHAPTER

Error Propagation and Effect
Analysis

Probable impossibilities are to be preferred to improbaptessibilities.
— Avristotle (384-322 B.C.)

This chapter presents a novel approach for profiling sofivigr analyzing the
propagation and effect of data errors in software. The qunaierror permeability
Is introduced as a basic measure upon which we define a sefatddeneasures.
These measures guide us in the process of analyzing i) thenaldility of software
to find the modules and signals that are most likely exposqutdpagating errors,
and ii) find the modules and signals which, when erroneous] te cause more
damage than others from a systems operation point-of-vBaged on the analysis
performed with error permeability and its related measunesdiscuss how to se-
lect suitable locations for error detection mechanismsNESDand error recovery
mechanisms (ERM’s). A method for experimental estimatibarmr permeability,
based on fault injection, is described and the software @éahembedded control
system analyzed to show the type of results obtainable bwartag/sis framework.
The results highlight the utility of the developed framelwvor being useful for ana-
lyzing error propagation and error effect such that knogéeid gained regarding the
vulnerability of the software system at hand, and for dguine process for effective
placement of EDM’s and ERM’s.

103
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6.1 Introduction

Software based functionality in embedded control systesumlly comprises nu-
merous discrete modules interacting with each other toigeoa specific task or
service. With an error (as defined in [Laprie, 1995]) preserat software module,
there is a likelihood that this error can propagate to othedutes with which it in-
teracts. Knowing where errors propagate in a system is dicpiar importance for
a number of development activities. Propagation analysig be used to find the
module which are most exposed to errors in a system, and éotaschow different
modules affect each other in the presence of errors. Iniaddd knowing propaga-
tion characteristics it is also important to know where exiare likely to do the most
damage. Note that those errors which are likely to propageagenot always those
that are most likely to cause great damage. Thus, it is irapbtd do an analysis of
both these notions to identify the most vulnerable parts ®fsdem. Furthermore,
error propagation analysis and error effect analysis alss@n insight on locations
in the system that would be best suited for placement of detaction mechanisms
(EDM’s) and associated error recovery mechanisms (ERM’s).

Apart from the technical issues that can be addressed usipggation and ef-
fect analysis, there are also issues pertaining to projgttr@source management.
Error propagation and effect analysis may be used as a méaigamning infor-
mation for use in decisions on where additional resourcesidpendability devel-
opment are necessary and to determine where they would becosiseffective.
Software is common not only in applications such as airaaftther high-cost sys-
tems, but also in consumer-based cost-sensitive systaptsas cars. These systems
often require both development costs and production codie kept low. Analyz-
ing error propagation and error effects can also complewtbetr analysis activities,
for instance FMECA (Failure Mode Effect and Criticality Apsis). Consequently,
modules and signals found to be vulnerable and/or critioahd propagation and
effect analysis might be given more attention during desigtivities. Thus, error
propagation and effect analysis, as a means of both systaipsenand resource
management, may be a very useful design-stage tool in ssténsy.

In this chapter, an approach for analyzing error propagadiod error effect in
software based systems is presented. The basic intentsofrémework is soft-
ware level data errors, thus considering distributed sso#wfunctions resident on
either single or distributed hardware nodes. The approdopta a black-box view
on modular software and introduces the measirer permeabilityas well as a
set of related measures, and subsequently a methodologyined for using these
measures to obtain information on error propagation anol effect, and also for
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identifying candidate locations for placement of erroredéibn and recovery mech-
anisms. The basic definition of error permeability is thebatulity of an error in
an input signal of a given module permeating to one of the wwusgnals of that
module (there is one permeability value assigned to eachopamput/output sig-
nals of each module of the software system). The related unessre divided
into three categories coverirexposureimpactandcriticality. Thus, the combined
framework is called EPIC (Exposure, Permeability, Impaw &riticality). EPIC
provides a consolidated and comprehensive software mgfitamework building
upon the individual framework components introduced inllgHiet al, 2001] and
[Hiller et al,, 2002(a)].

The remainder of this chapter is organized as follows: IrtiSe®&.2 we briefly
describe the assumed system model (details are found int€h3p The EPIC
framework is described in Section 6.3 and methods for esitigp@umerical values
of the introduced metrics are discussed in Section 6.4. ttiBe6.5 the framework
is illustrated on an example target system and estimatgeageced for the various
metrics which are then used in Section 6.6 to select locationExecutable Asser-
tions (which are also evaluated with regard to detectiore@ye). Some limitations
and caveats are identified and discussed in Section 6.8ly-fBaction 6.9 contains
a summary and conclusions.

6.2 Software and System Model

The framework presented in this chapter assumes softwarerss to be constructed
according to Chapter 3. In short, the framework assumewadtbuilt up of discrete
black-box software modules inter-linked with some formighgling (for informa-
tion and data exchange, e.g., shared memory or messageg)assi

6.3 EPIC: Generating Software Profiles

The EPIC framework aims at providing a means of profilingwafe such that suit-
able locations for error detection and recovery mechanisamsbe identified. To
achieve this, EPIC charts the propagation and effect ofgrr@., how errors prop-
agate through a software system and their effect on systaratgns. Our focus
here is on data errors — erroneous values in the internalblas and signals of a
system.

A data error has a probability of affecting the system suahfilrther errors are
generated during operation. If one could obtain knowledgbeerror propagation
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Figure 6.1: A basic black-box software module withinputs and» outputs

characteristics of a particular system, this would aid tixetbpment of techniques
and mechanisms for detecting and eventually correctingitos.

Such knowledge can translate to improved effectivenessrof detection and
handling and the consequent cost/performance-ratio cketmeechanisms, as the
efforts can be concentrated to those areas of the systemeti@\glrors tend to prop-
agate. The results obtained using the EPIC framework afalese&n with minimal
knowledge of the distribution of the occurring errors, ,ii€.one does not know
which errors are most likely to appear. Having such knowdedquld certainly im-
prove the value of the results, but performing the analysibowt it still provides
qualitative insights on system error susceptibility.

This section will describe the framework starting with tlenceptual basis of
error permeability Upon this we will define a set of measures and techniqueshwhic
can be used for generating two distinct profiles of a softvegistem: i) error propa-
gation profile and ii) error effect profile.

6.3.1 Error Permeability - Letting Errors Pass

In our approach, we introduce the measureewbdr permeability and based on it
we define a set of related measures that cumulatively prandasight on the error
propagation and effect characteristics and vulneradslitf a system.

Consider the software module in Fig. 6.1 (at this point oriscbte software
modules are considered). Starting with a simple definitibercor permeability,
refinements will follow successively. For each pair of inpat output signals, the
error permeabilityis defined as the conditional probability of an error ocauron
the output given that there is an error on the input. Thusinjouti and outpuk of
a moduleM, theerror permeability ngg Is defined as follows:

0 < P} = Pr{errorin outputk|error in inputi} < 1 (6.1)

This measure indicates hgvermeablean input/output pair of a software module
is to errors occurring on that particular input. One majoraandage of this definition
of error permeability is that it is independent of the prabittof error occurrence on
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the input. This reduces the need for having a detailed mdaeror occurrence. On
the other hand, error permeability is still dependent ornvibekload of the module
as well as the type of the errors that can occur on the inpatshduld be noted
that if the error permeability of an input/output pair isaghis does not necessarily
mean that the incoming error did not cause any damage. Ttersay have caused
a latent error in the internal state of the module that foresoeason is not visible on
the outputs. In Section 6.4, we describe an approach forexeetally estimating
values for this measure.

Error permeabilityis the basic measure for characterizing error propagation,
upon which we develop related refined measures. This basasume is defined at
the signal level, i.e., an error permeability value chamares the propagation from
one input signal to one output signal in a given module. Gainthe module level
(Fig. 6.1), we define theelative permeability P, of a moduleM with m input
signals and: output signals, to be:

1 1
0 < PM = (g'g)ZZPff <1 (6.2)
1k

Note that this does not necessarily reflect the overall gmiibathat an error
is permeated from the input of the module to the output. Rathés an abstract
measure that can be used to obtain a relative ordering acrodsles. If all inputs
are assumed to be independent of each other and errors ompuurtesignal can
only generate errors on one output signal at a time, themibesure is the actual
probability of an error on the input permeating to the outpidwever, this is seldom
the case in most practical applications.

At this stage, one potential limitation of this measure & ihis not possible to
distinguish modules with a large number of input and outmriads from those with
a small number of input and output signals. This distinctgonseful to ascertain as
modules with many input and output signals are likely to bere parts (almost like
hubs) of the system thereby attracting errors from diffepants of the system. In
order to be able to make this distinction, we remove the wgigtiactor in Eq. 6.2,
thereby, in a sense, “punishing” modules with a large nunab@nput and output
signals. Thus, for a modulEl with m input signals anch output signals, we can
define thenon-weighted relative permeabiljty’’ as follows:

OSPM=ZZPZ%§m-n (6.3)
ik

Similar to the relative permeability, this measure doedwawt a straightforward
real-world interpretation but is a measure that can be usedgl development to
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Figure 6.2: An example software system with five modules

obtain a relative ordering across modules. The larger thlisevis for a particular
module the more effort has to be spent in order to increaserioe containment
capability of that module (which is the same as decreasiagtior permeability of
the module), for instance by using wrappers as in [Salle89]L9Note that, as the
maximum value of each individual permeability value is & tipper bound for this
measure is the product of the number of input¥ &nd outputsrg).

The two measures defined in Egs. 6.2 and 6.3 are both necdssanalyzing
the modules of a system. For instance, consider the case whkemodulesG and
H, are to be comparedG has few inputs and outputs, aktihas many. Then, if
PG = PH thenP% < P¥. And vice versa, ifP® = P¥ thenP% > P,

6.3.2 Ascertaining Propagation Paths

So far, we have obtained error permeability factors for ehistrete software mod-
ule in a system. Considering every module individually dioage limitations; this
analysis will give insights on which modules are likely &talely) to transfer incom-
ing errors, but will not reveal modules likely to be exposegtopagating errors in
the system. In order to gain knowledge about the exposutgeafiodules to prop-
agating errors in the system we define the following procdsiswnow considers
interactions across modules.

Consider the example software system shown in Fig. 6.2. Wer&ave five
modules,A throughE, connected to each other with a number of signals. ifhe
input of moduleM is designated and thek™ output of moduleM is designated
OM . External input to the system is received At IS’ andI§ . The output produced
by the system i©¥.

Once we have obtained values for the error permeability &ohenput/output
pair of each module, we can construgiexmeability graptas illustrated in Fig. 6.3.
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Figure 6.3: Permeability graph for the example softwaréesgsn Fig. 6.2

Each node in the graph corresponds to a particular modulehasda number of
incoming arcs and a number of outgoing arcs. Each arc hasghirassociated with
it, namely the error permeability value. Hence, there maynoee arcs between
two nodes than there are signals between the correspondooiylles. Actually,

the maximum number of outgoing arcs for a node is the produttieonumber of

incoming signals and the number of outgoing signals for treesponding software
module (each input/output pair of a module has an error palbitiey value). Arcs

with a zero weight (representing non-permeability from @put to an output) can
be omitted. With this permeability graph we can perform twitedent propagation
analyses, namely:

A Backtrack from system output signals to system input sggimabrder to find
those paths which have the highest probability of error @gagion Qutput
Error Tracing), or

B Trace errors from system input signals to system outputassgm order to
find which paths these errors will most likely propagate gldmput Error
Tracing).

Output Error Tracingis easily accomplished by constructing a sebatktrack
trees one for each system output. These backtrack trees can k&ucted quite
simply based on the following steps on the permeability lgraamely:
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Al. Select a system output signal and let it be the root nodleeobacktrack tree.

A2. For each error permeability value associated with tgeadi generate a child node that will be
associated with an input signal.

A3. For each child node, if the corresponding signal is noystesn input signal, backtrack to
the generating module and determine the correspondinguibsignal. Use this signal and
construct the sub-tree for the child node from A2. If the esponding signal is a system input
signal it will be a leaf in the tree. If the corresponding sibis an input signal to the same
module it will be a leaf in the tree (as opposed to other leaxt@sh are system input signals).
We do not follow the recursion that is generated by the feekiba

A4. If there are more system output signals, go back to Al.

This will, for each system output, give us a backtrack treenslthe root corre-
sponds to the system output, the intermediate nodes comddp internal outputs
and the leaves correspond to system inputs (or module inpa&sving feedback
from its own module). Also, all vertices in the tree have aghgicorresponding
to an error permeability value. Once we have obtained this, fiinding the propa-
gation paths with the highest propagation probability @y a matter of finding
which paths from the root to the leaves have the highest weigh

Input error tracingis achieved similarly. However, instead of constructing a
backtrack tree for each system output, we construithee treefor each system
input, as follows:

B1l. Select a system input signal and let it be the root nodeeofrace tree.

B2. Determine the receiving module of the signal and for eadput of that module, generate a
child node. This way, each child node will be associated aitloutput signal.

B3. For each child node, if the corresponding signal is notséesn output signal, trace the signal
to the receiving module and determine the correspondingtisjgnal. Use this signal and
construct the sub-tree of the child node from B2. If the cgmanding signal is a system output
signal it will be a leaf in the tree. If the input signal is thense module that generated the
output signal (i.e. we have a module feedback) then follog/fredback once and generate the
sub-trees for the remaining outputs. We do not follow theirgion generated by this feedback.

B4. If there are more system input signals, go back to B1.
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Figure 6.4: Backtrack tree of system output sigfél of the example system.

This procedure results in a set of trace trees - one for eastlerayinput. In a
trace tree, the root will represent a system input, the kavié represent system
outputs, and the intermediate branch nodes will represgaitnial inputs. Thus, all
vertices will be associated with an error permeability galérom the trace trees we
find the propagation pathways that errors on system inputgdvoost likely take
by finding the paths from the root to the leaves having thedsgtveights.

The case when an output of a module is connected to an inputeofame
module is handled in the way described in step A3 of the backttree genera-
tion script. If we would use recursive sub-tree generatiamwould get an infi-
nite number of sub-trees with diminishing probabilitiess &l permeability values
are < 1, the sub-tree with the highest probability is the one whioly @oes one
pass through the feedback loop and this path is includederpémmeability tree.
In [Fujiwara and Shimono, 1983], [Goel, 1981] and [Roth, @R8milar techniques
have been utilized for hardware error propagation analysis

The backtrack tree for system outpQt® of the example system is shown in
Fig. 6.4. Here we observe the double line betwg€mndO#£. This notation implies
that we have a local feedback in mod@&O?P is connected td{®) and represents
breaking up of the propagation recursion.

The weight for each path is the product of the error permidabialues along
the path. For example, in Fig. 6.4, the path fraifi to I;* going straight fromD{!
(connected td ) to OF (the leftmost path in the tree) has the probability =
P - PP, - PE|. This is the conditional probability that, given an errorOtff and
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Figure 6.5: Trace tree for system input sigfidlof the example system.

the error originated froni*, it propagated directly througfZ which is connected
to I and then taO¥.

If we have knowledge regarding the probability of errorsespg on the in-
put signals we can use these probabilities as additionajhision the paths. For
example, if the probability of an error appearing Bhis Pr(I{*), then theP can
be adjusted with this factor, giving &8 = Pr(I{}) - P{, - Pf, - PF|. Thisis the
probability of an error appearing on system ingl, propagating through module
B directly viaOZ to system outpu©?¥.

The trace tree for system inpiif' is shown in Fig. 6.5. Here we can see which
propagation path from system input to system output hasitjeest probability. As
for backtrack trees, the probability of a path is obtainedmyitiplying the error
permeability values along the path. For example, in Fig, & probability of an
error in I{* propagating to modul€ and via its outputD§ to moduleD and from
there via moduléE to system outpubf’ is P = Pf%, - P{, - P, - P Again, if we
know thatPr(I{1) is the probability of an error appearing fl, then we can adjust
PtogetP' = Pr(I{')- P - P0y - PP, - PE.

6.3.3 Assessing the Error Exposure of Modules and Signals

Using the backtrack and trace trees enables determiningspeoific aspects: (a)
the paths in the system that errors will most likely propagdbng to get to certain
output signals, and (b) which output signals are most likdfigcted by errors occur-
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ring on the input signals. With this knowledge we can stalgécmg locations for
the EDM’s and ERM’s that we may want to incorporate into owstegn based on
system reliability/safety requirements.

One problem remains though: once we have the most probabpagation
paths, we still have to find the modules along that path thatitze best to target
with EDM’s and ERM's. Earlier, in Eqgs. 6.2 and 6.3, we had deditwo measures,
relative permeabilityand non-weighted relative permeabiljtyhat can guide us in
this search.

These measures only consider the permeability values akedésmodules — cou-
plings across modules are disregarded. Using the perrnigaaph, we now define
a set of measures that explicitly consider coupling and atdrchining locations for
EDM’s and ERM’s. To find modules most likely to be exposed togagating er-
rors, we want to have some knowledge of the amount of erratsattimodule may
be subjected to. For this we define #reor exposure X, of a moduleM as:

1 . . :
XM — N Zwelght of all incoming arcs di (6.4)

whereN is number of incoming arcs ard is the node in the permeability graph,
representing software moduM. This measure does not consider any correlation
that may exists between two or more incoming arcs. Since wehis as a relative
measure, this is not a concern for us. Emmr exposurds the mean of the weights
of all incoming arcs of a node and is bounded]%,asAnalogous to th@on-weighted

relative permeabilitywe can also define theon-weighted error exposur& ™, of
a moduleM as:

XM = 3" weight of all incoming arcs o/ (6.5)

This measure does not have a real-world interpretatiorereiht is used only
during system analysis to obtain a relative ordering betwaedules. The two ex-
posure measures (Egs. 6.4 and 6.5) along with the previaasiged permeability
measures (Egs. 6.2 and 6.3) will be the basis for the anglgsisrmed to obtain in-
formation upon which to base a decision about locating EDdvid ERM’s. As was
the case for the two relative permeability measures, thesxposure measuresi-
ror exposureandnon-weighted error exposurare used for distinguishing between
nodes with a small number of incoming arcs and those withgelaumber.

The error exposure measures defined in Eqgs. 6.4 and 6.5t@aavtéch modules
will most probably be the ones exposed to errors propagdairaugh the system.
If we want to analyse the system at the signal level and getatidns on which
signals might be the ones that errors most likely will reactl propagate through,
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we can define a measure which is the equivalent of the errarsexp defined in
Eqg. 6.4, but is only calculated for one signal at a time. Inldhektrack trees we can
easily see which error permeability values are directlpeaisged with a signab. We
define the se$), as composed of all unique arcs going to the child nodes obalks
generated by the sign8l A signal may generate multiple nodes in a backtrack tree
(see for instance signal? in the backtrack tree in Fig. 4). However, in the Set

the permeability values associated with the arcs emanétimg those nodes will
only be counted once. Trsignal error exposureX ?, of signalSis then calculated
as:

X7 = all permeability values itf), (6.6)

The interpretation for the signal error exposure is the samor the error ex-
posure of a module, but at a signal level. That is, the higlsgral error exposure
value, the higher the probability of errors in the systermgegiropagated through
that signal.

It may be difficult to give strict rules for selecting the EDMAERM locations.
A discussion on how to identify candidate locations is pided in Section 6.3.5,
and an example study demonstrating the actual processel@sgrovided in Sec-
tion 6.5.

We have now defined a basic analytical framework for aseenigimeasures
pertaining to error propagation and software vulnerahilit the following sections
we augment the framework with measures for analyzing thexetf errors on the
final output of the system as well as for obtaining a measuogitidality of signals.
The knowledge gained in the propagation analysis combinéd tive knowledge
gained in the impact analysis will help in finding suitabledtons for EDM’s and
ERM's.

6.3.4 Analyzing the Effect of Errors on System Output

When selecting locations for EDM’s and ERM'’s, it may be ifigignt to only take
into account the propagation characteristics of data £fmra given software sys-
tem. Errors that may have a low probability of propagating/rsi@l cause severe
damage should propagation occur. Taking this into accoentaw define measures
which let us analyse to what extent errors in a signal (systeot signal or interme-
diate signal) affect the system output, i.e., what isithactof errors on the system
output signals.

As errors in a source signal can propagate along many ditfgraths to the
(destination) system output signal we must consider thisimdefinition of impact.
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In order to calculate the impact of errors in a sigfalon a system output signal
0O%Ys we must first generate ampact tree which is a generalization of the trace
tree described in Section 6.3.2. Instead of generatinga trae with a system input
as root node, we use the signal of interest in our analysiseaobt, in this casé.
An impact tree is generated using the following steps:

C1. Select asignad; and let it be the root node of the impact tree.

C2. Determine the receiving module of the signal and for eadput of that module, generate a
child node. This way, each child node will be associated aitloutput signal.

C3. For each child node, if the corresponding signal is ngtséesn output signal, trace the signal
to the receiving module and determine the correspondingtisjgnal. Use this signal and
construct the sub-tree of the child node from C2. If the gpoading signal is a system output
signal it will be a leaf in the tree. If the input signal is thense module that generated the
output signal (i.e. we have a module feedback) then follog/fdredback once and generate the
sub-trees for the remaining outputs. We do not follow theirgion generated by this feedback.

C4. Repeat the procedure from C1 for each signal (systent ampliintermediate signals) in the
system.

Once we have generated the impact tree for a given signale generate all the
propagation paths from the root to the leaves containingesysutput signa)>¥*
(there may be leaves which are generated by other systemtaigpals). Each path
has a weight associated with it which is the product of alimeability values along
that path. We definé, ~» O°Y%, theimpactof (errors in)S, on 0¥, as

0< 8~ 0% =1-J[(1—wy) <1 (6.7)
2

whereuwy, is the weight of patlt from S, to O°¥*. If one could assume independence
over all paths, the impact measure would be the conditioragbility of an error
in S, propagating all the way t®°%*. However, as independence can rarely be
assumed we will treat this as a relative measure by whiclergifit signals can be
ranked. The general interpretation of this measure is Heahigher the impact, the
higher the risk of an error in the source signal generatingraor in the output of
the system. Thus, when placing EDM’s and ERM’s one may cengthcing such
mechanisms at signals which have a high impact even thowghntiay have a low
error exposure (meaning that errors in this signal areivelgitrare but, should they
occur, are likely to be costly).
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Figure 6.6: Impact tree for intermediate sig@Zl.

In Eg. 6.7, the measure only considers one system outpulsida system has
multiple output signals, the corresponding impact valuéctviconsiders all output
signals can be defined as:

0< Sy~ 0% =1-[[1—(Ss ~ 07%)) <1 (6.8)

2

whereS; ~ Ofys is the impact of signab; on system output signﬂfys, i.e., the
ith system output signal.
To further illustrate the concept of impact, again constlerexample shown in
Fig. 6.2. Suppose that we would like to calculate the impéetrmrs in signall
on system outpubf . First, we will generate an impact tree as shown in in Fig. 6.6
The impact tree shown in Fig. 6.6 is actually the left sub tiethe trace tree for
system input signal{* shown in Fig. 6.5. In order to calculate the impact of errors
in IP on system outpu®¥ we generate all the propagation paths from the root to
the leaves. In this case, with only one system output, alieleare considered. This
gives us four paths as shown in Table 6.1.
Using the weights of the paths we can now calculdte~» Of, i.e., the impact
of (errors in)I? onOF, as

IQB«»O{E = 1—ﬁ(1—wz~):
1=1
= 1—(1—=w)(1—we)(1l—ws3)(l—wy)

wherew; are the weights listed in Table 6.1.
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Table 6.1: The four paths generated from the impact treegofbds 1.
| Path/Product |

P2E51P1E,32P1]?1 = w1

P’ PPy P P = wo

szpﬁ = Ws

Pl PP Py, = wy

The concept of impact as described above considers the irmpagstem output
generated by errors in system input signals and internesdighals. However, when
a system has multiple output signals, these are not nedgsdbhequally important
for the operation of the system, i.e., some output signalg Imeamore critical than
others. For cost-efficiency, one may wish to concentrateuress for dependability
on the most critical system output signals and therefordsieeknow which signals
in the system that are “best” (in a loose sense) to equip WIIME/ERM'’s.

Each system output signéllfys is assigned a criticality’ sy, which is a value

between 0 and 1, where 0 denotest at all critical and 1 deﬁotehighest possible
criticality. These criticality values are assigned by the system desiftpr example
from the specifications of the system or from results fromeexpental vulnerability
analyses.

The criticality of system input signals and intermediagmnals is calculated us-
ing the assigned criticality values of the system outpubalg and the various im-
pact values calculated for the various signals. Each si§pnalas a certain impact,
S, ~ 0¥, on system outpuO;**, as calculated according to Eq. 6.7. The
criticality of S, as experienced by system out;@ﬁys, Cs.;, is calculated as

0<Cyy = (Ss ~ 07%) <1 (6.9)

o7y
K3

Once we have the criticality &, with regard to each system output sigﬁlﬁys
we can subsequently compute a total criticality value. Wendahecriticality C's
of signalS; as

0<C = 1-]]JA-Csy) =
= 1-J[(1— Cysws - (Ss ~ 0¥")) <1 (6.10)

1

For each signal, the criticality measure indicates how émgove” errors are with
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regard to the total system operation, i.e., the higher thieaity value, the higher
the likelihood of the system not being able to deliver itemted service, should
an error occur in the signal. The notion of criticality as defl here also takes into
account the “cost” associated with errors in system outgsidefined by the system
designer. Thus, while the impact measures are independé¢m project policies
regarding dependability, the criticality values may ctemgien the project policies
for software development change.

Note that if the system only has one output signal, then thaimdd criticality
will only function as a constant scaling factor of the impealues, i.e., the relative
order among the signals of the system will not change. Thalsulating criticality
values is essential only when there are multiple outputadggim a system and these
are of different “importance”.

At this point, we have only definacthpactandcriticality at the signal level. Go-
ing up in abstraction levels, we can now define equivalentsomes which are based
on the signal level measures, but consider entire modustead. If we consider a
moduleM in a system withi output signals, we can define the impact\dfon a
given system output signé)fys, M ~» Ofys, as follows:

0< M~ O/ =1-J[(1— (OM ~ 0¥)) < 1 (6.11)
j

WhereO;.” ~> Ofys is the impact of (errors in) the output sigrﬁg‘” of M on

system output signa])fys. For each output signal &fl, there is one such impact
value. In order to get a measure for the impad¥iobn the system output as a whole
we can defind/ ~» O°Y%, themodule impacbf M on system output, as follows:

M~ 0% = 1-T[(1— (M ~ 0*)) =

7

= 1-J[a-a-TI- (0 ~ 057)) =

i J
= 1-J[II( - ©OM ~ 05)) < 1 (6.12)
i

Going from impact to criticality is not a big step. Insteadusing the individual
impact values of the outputs of a module, the corresponditigatity values for the
chosen system output signal are used. The criticality ofuteodl, with regard to
system outpuOf Y% can thus be defined as:
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0 <G =1-J[1~ Coum,) <1 (6.13)
j -
whereC,u ; is the criticality of outputOj-” with regard to system output signal
j bl

Ofys. A total measure regarding all system output signals is te&erred to as the
module criticality C™, of M and is defined as:

0<C¥ = 1-]J(—Com) =
_ 1_f[(1— (1—1:[(1—%;%,@-))) =
_ 1_ﬁ(1_ (1—H(1 ~ Cpsus - (0" ~ S,)))) =
- 1—f[H(1—CO;yS (0} ~ 0")) <1 (6.14)

Note that the difference between impact and criticalitye (8g. 6.8 and Eq. 6.10
for signals, and Eq. 6.12 and Eq. 6.14 for modules) is thecality factorC s, of

system output signal)fys which is defined by the system designer. Thus, criticality
IS a biased version of the impact.

We have now defined a number of measures for analyzing thegatpn of
errors and the effect of errors on system output. In thevioflg section we discuss
how the various measures obtained in the error effect asalggether with the
values obtained in the error propagation analysis can be taslentify candidate
locations for EDM’s and ERM'’s.

6.3.5 ldentifying Candidate Locations for ERM’s and EDM'’s

The EPIC framework introduced in Section 6.3 contains a raemobvarious mea-
sures for analyzing the propagation and effect of erroreftware, namely:

e error permeability for input/output pair:PZ(”, Eq. 6.1),

o rg:lative error permeability for modules (weighte®# , and non-weighted,
PM Egs. 6.2 and 6.3, respectively),

e error exposure for modules (weighte¥i , and non-weightedX ™, Egs. 6.4
and 6.5, respectively),
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e error exposure for signalsX(’, Eq. 6.6),

impact for signals§, ~ O°Y*, Egs. 6.7 and 6.8),

criticality for signals C., Eq. 6.10),
impact for modules/ ~» O°Y%, Eq. 6.12), and finally,

e criticality for modules C, Eq. 6.14).

In this section we will discuss how candidate locations f&MMEs and ERM’s
may be identified based on the results from the propagatialysia and the effect
analysis. It is hard to develop a generalized heuristicdentifying the locations.
However, the following rules of thumb or recommendations loa made:

e The higher the error exposure values of a module, the hidiigepitobability
that it will be subjected to errors propagating through tixstesm if errors
are indeed present. Thus, it may be more cost effective wed@M’s in
those modules than in those with lower error exposure. Afogoas way of
reasoning is valid also for the signal error exposure.

e The higher the error permeability values of a module, theeloits ability
to contain errors. Thus, there is an increase in the prababil subsequent
modules being subjected to propagating errors if errorsildhgass through
the module. Therefore, it may be more cost effective to pleR&’s in those
modules than in those with lower error permeability.

e The higher the criticality (or impact if the system only haw@utput signal)
of a signal, the higher the probability of an error in thatnsilgcausing dam-
age from a system point-of-view. Thus, it may be more cosiotiffe to equip
those signals with EDM’s and ERM’s which have the highediaaiity (im-
pact). An analogous way of reasoning is valid also for the utedriticality
(impact).

When selecting locations, these rules may not individuatyd the same result.
Consider the case where a signal hdsvaexposureout ahigh criticality. The low
exposure means that there is a low probability of errors ggapng to that signal.
However, the high criticality means that, should an erra¥ fis way into that signal,
there is a high probability of that error causing damage Wwhropagates beyond the
system barrier into the environment. Thus, one may selgoats with low exposure
and high criticality as candidate locations for EDM’s and\ER
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One way of having a more manageable approach in a project may &etup
certain conditions which must be met by the software. Fongia, one may wish
to set a minimum level of error containment for all modulesjala can be accom-
plished by setting a maximum level on error permeabilityyealand error exposure
values. Thus, if a module exceeds this limit, this indicakes more resources have
to be allocated to that module to increase its error contammnaapabilities. The
same argument can be used for error exposure. If a modulgmalss highly ex-
posed, this indicates that more resources are requireer édlprotect the exposed
modules or signal, or to increase the error containmentislpes of the module or
signal responsible for the high degree of exposure.

From a criticality (impact) point-of-view, a project maysal set up criticality
threshold limits. For example, one may wish to set a maximewallof impact for
the various signals. Signals exceeding this threshold lindicate that the error
containment from that signal out to the system output sgjisatot high enough. As
the criticality values of signals are based on the critigalalues assigned to system
output signals, these can only be indirectly adjusted \eartipact values.

The results from the analysis may also aid in the design of EDFbr example,
a situation with low error exposure and high criticality fiact) indicates that any
EDM in that location would have to be highly specialized a®ms are infrequent
and likely to be hard to detect. The opposite situation, high exposure and low
criticality (impact) indicates that a coarser EDM in thatdtion may sulffice.

Next, we describe how to obtain experimental estimateseofrtbasures and use
of our framework on actual software of an embedded contretiesy.

6.4 Obtaining Numerical Estimates of Error Permeability

Obtaining numerical values for the error permeability magve to be quite dif-

ficult, given that many factors, such as error occurrencéabiities, operational

profiles, etc., have to be taken into account. This may remdapossible to get the
“real” value of the error permeability values of a softwaystem. Thus, a method
of estimating these values is needed. In this section weridesan experimental
method based on fault/error injection for obtaining estameof error permeabil-
ity values. However, other approaches, such as data flowssand other static
compiler-assisted approaches, might be investigateceifutiare.

Our method for experimentally estimating the error pernigalvalues of soft-
ware modules is based on fault injection (FI). FI artifigialitroduces faults and/or
errors into a system and has been used for evaluation arsbassat of dependabil-
ity for several years (see, e.g., [Chillarege and Bowen9]L9&\rlat et al., 1990],
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Figure 6.7: A software module where errors are injectedimpot: and output is
observed to detect permeated errors.

and [Fabreet al,, 1999]). A comprehensive survey of experimental analysideo
pendability appears in [lyer and Tang, 1996].

For analysis of raw experimental data, we make use of see&iolden Run
Comparisons (GRC). A Golden Run (GR) is a trace of the systerouting without
any injections being made, hence, this trace is used asneferand is stated to
be “correct”. All traces obtained from the injection run&'d, where injections
are conducted), are compared to the GR, and any differenloeates that an error
has occurred. The main advantage of this approach is thatg dot require any
a priori knowledge of how the various signals are supposed to behdorety makes
this approach less application specific.

Experimentally estimating values for error permeabilifyaonodule is done by
injecting errors in the input signals of the module and loggts output signals. We
only inject one error in one input signal at a time. Considher module illustrated
in Fig 6.7. Suppose, for moduld, we injectn;,; distinct errors in input, and
at outputk observen,,, differences compared to the GR’s, then we can directly
estimate the error permeablllf?M to be 7<= (see more on experimental estimation
in [Cukier et al, 1999] and [Powelét al, 1995])

Since the propagation of errors may differ based on the ysterkload, it
is generally preferred to have realistic input distribndhan randomly generated
inputs. This generates permeability estimates that asecto the “real” values than
randomly chosen inputs would.

The type of injected errors can also affect the estimatesally one would inject
errors from a realistic set, with a realistic distributid#iowever, as the measures in
our framework are mainly used as relative measures, thearate of the realism
provided by the error model is decreased, assuming thatetaéve order of the
modules and signals when analyzing permeability is maiethi
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Figure 6.8: Software structure of the example target syggemaircraft arrestment
system). For details, see Chapter 3.

6.5 Experimental Analysis: An Example System

For an actual application of our proposed methodology omaeelded control sys-
tem, we have conducted an example study. This study ilkestthe results obtained
using the EPIC framework and experimental estimates far grermeability val-
ues. First we will shortly describe the target system usettienexample, then we
will do the pre-experimental analysis of the software totgetpermeability graph,
trace trees and backtrack trees needed for the subsequaysian After that, the
experimental estimates of the measures of EPIC are produced

6.5.1 Target Software System

The target system is an embedded control system used fatiagaircraft on short
runways and aircraft carriers and is described in detail mager 3. To aid the
reader, the software structure shortly described hereglis w

The structure of the software is illustrated in Fig. 6.8. Thenbers shown at
the inputs and outputs are used for numbering the signalsinE@nce PACNTIis
input #1 of DISTS, andSetValuas output #2 of CALC. The software is composed
of six modules of varying size and input/output signal courtie system receives
input from a number of sensors at PRE&Nd DISTS. The output of the system is
provided at PRE®\. The remaining modules (CALC,YEG and CLOCK) provide
internal/intermediate signals. The module specifics aveiged in Chapter 3.

The system specifications [USAF, 1986] set a number of phlsionstraints
within which the system must operate. These constraintdeseribed in Chapter 3.
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Figure 6.9: Permeability graph of the target system showign6.8

In the experiments described in this chapter, this faillesgification has been used
when obtaining coverage estimates of error detection nmesing.

Now we have presented the target system used in our compsurishe next
section will briefly describe the propagation analysis fearark with associated
measures used for systematic placement of EA's and subsegeetions contain
the comparison itself.

6.5.2 System Analysis

Prior to running the experiments, the permeability grapt e backtrack trees
and trace trees for the target system were generate as peroitess described in
Sections 6.3. The permeability graph is shown in Fig. 6.9.

In the graph (Fig. 6.9) we can see the various permeabilityegx(labels on the
arcs) that will have to be calculated. The numbers used imdiation refer to the
numbers of the input signals and output signals respegtiasl shown in Fig. 6.8.
For instance,Pf{‘LC is the error permeability from input 2nscnj to output 1 ()
of module CALC. From the permeability graph in Fig. 6.9 we cemw generate
the backtrack tree for the system output sigh@C2 using the steps described in
Section 6.3.2. This tree is shown in Fig. 6.10.
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As illustrated with a double line in the backtrack tree (Fégl0), we have a
special relation between the leaves fosslot nbr and fori and their respective
parent. This is because the parent node is also eittssiot. nbr ori. Thus, we
have an output signal which is connected back to the origigahodule giving us a
recursive relation. In those cases where errors only car ardystem via its main
inputs, these branches of the backtrack-trees can be disest)

In Figs. 6.11 and 6.12, we have the trace trees for system sigonal PACNT
and system input sign@DC, respectively, as obtained by the processes defined in
Section 6.3.2. The trees for input$C1 and TCNT are very similar to the tree for
PACNTso they will not be shown here.

As described in Section 6.3.2, we do not follow the recurgienerated by a
feedback from a module to itself. In module CALC we have a lieedt in signal,
and as can be seen in Fig. 6.11, we do not have a child node fitzahisi itself.
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In order to calculate impact values for the various signaks,generated their
respective impact trees. Depicted in Fig. 6.13, we haventipact tree of the signal
pulscnt(other impact trees have been left out, but are easily gexteley the inter-
ested reader). The impact tree shown in Fig. 6.13 is acttiadlyeft sub tree of the
trace tree for system input signBACNTshown in Fig. 6.11. In order to calculate
the impact of errors ipulscnton system outputOC2we generate all the propaga-
tion paths from the root to the leaves. In this case, whereave bnly one system
output, all leaves are considered.

At this point we have generated all trees and graphs req@iredur analysis
of the software. The next step is to estimate numerical gafae the individual
permeability values such that we can use the analysis sasulientify the modules
and signals in the system which should be equipped with ERMEGEERM’s.

6.5.3 Experimental Setup

For estimating error permeability values, we used the Ryafpan Analysis Environ-
ment (PROPANE, see Chapter 5). This tool enables fault amod ijection, using
SWIFI (SoftWare Implemented Fault Injection), in softwatmning on a desktop
(currently for Windows 2000/XP). The tool is also capableating traces of in-
dividual variables and different pre-defined events dutivgexecution. Each trace
of a variable from an injection experiment is compared tocibreesponding trace in
the Golden Run. Any discrepancy is recorded as an error.

For logging and injection, the target system was instruggentith high-level
software traps. As a trap is reached during execution, @n srinjected and/or data
logged. The traces obtained during execution have mitisdaesolution for every
logged variable. Also, we ported the software to run on a tgskystem, so the
intrusion of the traps is non-existent in our setup as it tarsmulated time.

In this study, the aim was to produce an estimate ottiner permeabilityof the
modules of the target system. As described in Section 6.4reguped a Golden
Run (GR) for each test case. Then, we injected errors in et isignals of the
modules and monitored the produced output signals. For mgettion run (IR)
only one error was injected at one time, i.e., no multiplesrwere injected.

The input signals signals are all 16 bits wide, exdBACNT which is 8 bits
wide. We injected bit-flips in each bit position at 10 diffetéime instances dis-
tributed in half-second intervals between 0.5 seconds ahddconds from start of
arrestment (although only at one time in each IR). In ordeyetioa realistic load on
the system and the modules, we subjected the system to 2&asest: 5 masses and
5 velocities of the incoming aircraft uniformly distribuktdetween 8000—200G( ,
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Table 6.2: Estimated error permeability values of the ifquiput pairs

l Input — Output | Name [ Value ||
msslotnbr — msslotnbr | POFOYF | 1.000
ms.slot nbr — mscnt P( TOTR 0.000
PACNT — pulscnt PD“T S [ 0.957
TIC1 — pulscnt PDfST -5 1 0.000
TCNT — pulscnt PPIST=S"] 0.000
PACNT — slow_speed PD“T S ] 0.010
TIC1 — slow_speed PDIST S 1 0.000
TCNT — slow_speed PDZIST -5 | 0.000
PACNT — stopped PD;ST -5 | 0.000
TIC1 — stopped PDIST S ] 0.000
TCNT — stopped PD“T S ] 0.000
ADC — IsValue PPRES -5 [ 0.000
i — PCALC 1.000
mscnt— i PCALC 0.000
pulscnt— i PCALC 0.494
slow_speed- i PC{‘LC 0.000
stopped— i PCALC 0.013
i — SetValue PCALC 0.056
mscnt— SetValue PCALC 0.530
pulscnt— SetValue P:,ff;‘LC 0.000
slow_speed— SetValue PEALC 0.892
stopped— SetValue PS?LC 0.000
SetValue— OutValue PK [REC 0.885
IsValue— OutValue Py [RPG 0.896
OutValue— TOC2 pPEES-A4 1 0.875

and between 40-8@ /s, respectively. Thus, for each input signal, we conducted
16-10- 25 = 4000 injections (2000 fdPACNT).

The raw data obtained in the IR’s was used in a Golden Run Cosmpawvhere
the trace of each signal (input and output) was compared tooiresponding GR
trace. The comparison stopped as soon as the first diffeteztoeeen the GR trace
and the IR trace was encountered. In our experimental sateg@-software running
in simulated time, in a simulated environment, and on sitedldnardware—this
Is a valid way of comparing traces even for continuous sgymdiere fluctuations
between similar runs in a real environment may be normal.

When calculating the individual error permeability valuage only took into
account the direct errors on the outputs. We did not counrwriginating from
errors that propagated via one of the other outputs and tinae back to the original
input producing an error in the first output.
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Table 6.3: Estimated relative permeability, error expesamd impact values of the
modules

[ Module | PM | PM [ XM | XM [ M ~ TOC2 ||
CLOCK [ 0.500 | 1.000 | 1.000 [ 1.000 0.410

DIST.S | 0.107 | 0.966 0.698
PRESS | 0.000 | 0.000 - - 0.784
CALC 0.299 | 2.986 | 0.165 | 2.473 0.784

V_REG | 0.890  1.781 | 0.247 | 1.479 0.875
PRESA | 0.875| 0.875 | 0.890 | 1.781 -

6.5.4 Experimental Results and Obtained Profiles

In the target system, we have 25 input/output pairs for whwehproduced an es-
timate of the error permeability measure (see Eq. 6.1) usiagnethod from Sec-
tion 6.4. These estimated values are shown in Table 6.2 hayddrm the basis for
subsequent results, which are calculated as describedinsé.3.

In Table 6.3, we obtain weighted and non-weighted relatemmgability values
(PM andPM, respectively), weighted and non-weighted error exposaitges (X
and X ™) and module impact valued{ ~» TOC2) for each module.

The modules DISTS and PRESS have no error exposure values as they only
receive system input signals, i.e., from external sourddss does not mean that
these modules will never be exposed to errors on their inguisrather that the
error exposure is dependent on the probability of errorsioo in the various
external data sources. The modules with the highest noghiesi error exposure are
the CALC module and the \REG module. This indicates that these two modules
are central in the system and that they are good candidatesrfo detection and
recovery mechanisms.

The module PRE& has no impact value since the impact is calculated with
regard to its output. One could perhaps say that this moddeah impact of 1.0, as
an error in its output signalfOC2 is guaranteed to generate an error in the system
output signal (alsG@OC2. When calculating module impact, one may also view the
environment as a module and calculate its impact on systépubun this case, the
system input signals are viewed as the outputs of the envieon and calculations
are performed as described in Eq. 6.12. The system only leagudput signal. Thus,
no criticality values are calculated as these would onlydadesl impact values.

From the backtrack tree in Fig. 6.10, we can generate 22 getioa paths from
the system output signal to an input signal. Each of thedesgads a total weight,
which is the product of the permeability values of the arcthanpath. Ordering the
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Table 6.4: The three non-zero propagation paths and théghige

I Path/Product | Weight ||
PUATO pUALO py FHG pP TS A 0.04337
PDI.ST .SP( ALC PCAL( PV REG PPRES_A 0.02050
PDI.ST $PCALC PV REG PPREb A 0.00691

Table 6.5: Estimated signal error exposures and impacisa2
| Signal(s) | X | s ~ TOC2 ||

PACNT 0.027
TCNT - 0.000
TIC1 - 0.000
ADC - 0.000

OutValue 1.781 0.875
i 1.507 0.043
SetValue 1.478 0.774
msslot.nbr | 1.000 0.000

pulscnt 0.957 0.021
TOC2 0.875 -

slow_speed | 0.010 0.691
IsValue 0.000 0.784
mscnt 0.000 0.410

stopped 0.000 0.001

paths according to their total weight gives us some knovdeafghe more probable
paths for error propagation. Table 6.4 depicts the threlespiiat acquired weights
greater than zero (the paths along which errors might pitpag

In Table 6.5, we have both exposure valugs, and impact values, ~+ TOC2
of the various signals of the target system. Sigh@lC2has no impact value asso-
ciated with it as this is the system output signal (one coaidtbat the impactis 1.0
in this case). Having this granularity (i.e., signal levdormation) will help us in
deciding which signals we should equip with EDM’s or ERM’s.

The information in Table 6.5 is depicted graphically in Figd4 and 6.15. Here
we can clearly see the difference between the two profileseosystem. The thick-
ness of a line now depicts the value of the respective meahgrehicker the line,
the higher the value. A dashed line indicates a zero valueaatakhed-dotted line
indicates that no value is assigned to that signal (eithesule the signal is a system
input or output signal).

In Figs. 6.14 and 6.15, an example of how the rules-of-thuantsélection of
locations for EDM’s and ERM’s can yield different resultshighlighted. Consider
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ms_slot_nbr i
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CLOCK = | owest exposure
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1
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Figure 6.14: Propagation analysExposureprofile
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‘ — —— Zero impact
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Figure 6.15: Effect analysismpactprofile

the signallsValuegoing from PRESS to V_.REG. With the propagation analysis,
we obtained a zero error exposure value (see Fig. 6.14)atwdgcthat errors never
(or at least rarely) propagate into this signal. This sutpyéstisValuemay not be
the best selection for an EDM or ERM. On the other hand, withdfiect analy-
sis, we obtained a very high error impact value. This meaausah error insValue
could have a high impact should it occur and may cause seystens failure, which
would suggest thdsValuemay be a very good location for an EDM or ERM. Thus,
the propagation analysis and the effect analysis may yi#ldrent sets of loca-
tions for EDM’s and ERM'’s and corresponding input to systezsidgners regarding
cost/benefit trade-offs and implications of EDM/ERM plaegrnand design.
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Table 6.6: EA-locations based on propagation profile (tlsety-

[[ Signal | Producer | Consumer | Test location ||

SetValue CALC V_REG V_REG
i CALC CALC CALC

pulscnt DIST.S CALC DIST.S
OutValue V_REG PRESA PRESA

6.6 Selecting Locations for EDM’s

In this section we will select locations for EDM’s and evdkiséhe coverage ob-
tained. We will start by assuming that errors are only intil to the system via
its main input signals (i.e., by faulty sensor readings)etmd then adopt a more
severe error model where errors are introduced in randomanmehocations and
signals throughout the system. This will illustrate how gagation analysis and
effect analysis complement each other.

The mechanisms we have chosen to use for this study are sd &tecutable
Assertions (EA's) and are commonly used in embedded saft{sae, for example,
[Saib, 1978], [Mahmooet al,, 1984], and [Rabéjaet al,, 1996]). EAs are usually
small snippets of code which are executed on-line to cheakdértain constraints
on the values of variables are not violated, such as minimuognaaximum values
and rate change limitations. The specific EAs used in thaptér are generic pa-
rameterized mechanisms aimed at individual signals andesmeribed in Chapter 4.

6.6.1 Propagation-Based Selection of Locations

Here we assume that errors are introduced only through tsterayinput signals
and that they are transients, i.e., an error originally appenly for a very short
time (one calculation round of the selected target systdinlis, we only take into
into account those signals which are in the way of propagamors from the input
signals.

As the EA's we have chosen for our system are aimed at indavisignals, we
take a closer look at individual permeability values and slggal error exposure
values (see Tables 6.2 and 6.5, respectively) in order &xistie signals to equip
with EA’.

The experimentally ascertained exposurésdalueis zero, meaning that errors
in ADC are unlikely to propagate through PRESThus, although the permeability
of errors fromlsValueto OutValueis quite high (0.896), we do not seldsWalueas
a location for an EA.
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|| Signal | Producer | Consumer | Test location ||
SetValue CALC V_REG V_REG
IsValue PRESS V_REG V_REG
i CALC CALC CALC
pulscnt DIST_S CALC DIST_S
msslotnbr | CLOCK CLOCK CLOCK
mscnt CLOCK CALC CLOCK
OutValue V_REG PRESA PRESA
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Table 6.7: EA-locations based on both propagation andtedfeysis (the P&E-set)

We do not seleans slot nbr as errors in this signal do not propagate imtscnt
We do not selectOC2either, as this is a hardware register and any errors here
would most probably come from ti@utValuesignal. We do not selechscntas this
signal has a zero error exposure. We do not selest speedas this signal has a
low error exposure, and the mechanisms we have chosen goamictilarly geared
at detecting errors in boolean values.

Based on the results obtained here, we select the followgmals as locations
for EAs: SetValuei, OutValue andpulscnt The first three are selected based on
their high signal error exposure values and the last oneigsstlthe signal which
iIs most likely to be affected by errors in system input. Thied@n of EAS is
summarized in Table 6.6 and we will refer to this set of lowadi as the P-set.

In the Signatcolumn are the names of the signals we have selected to eghip
EAs. TheProducer and Consumeicolumns contain the names of the source and
sink module, respectively. Theestcolumn contains the name of the module where
the EA was physically placed (this was selected based orpertimplementation
simplicity).

6.6.2 Adding the Effect Profile to the Selection Process

So far, we have only used the profile generated by propagatialysis to determine
locations for EA's. This may be sufficient as long one assutinatserrors will only
enter the system via system input signals. In this sectiowillein addition to the
profile provided by the propagation analysis, also make tiseoprofile provided by
the error effect analysis of the software system. We wilb @dopt a more “severe”
error model where errors are introduced not only via systgpntisignals but also
in intermediate signals and/or internal variables and nrgrsiouctures.

Thus, we will now consider not only where errors tend to pgata but also
what effect errors have (regardless of whether these eamardikely to occur or
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Table 6.8: EA-setup and sum of ROM/RAM requirements

Signal EA P-set P&E-set ROM RAM
(bytes) | (bytes)
SetValue EA1 v v 50 14
IsValue EA2 - v 50 14
i EA3 Vv Vv 25 13
pulscnt EA4 v v 25 13
ms.slot.nbr EA5 - V4 37 13
mscnt EAB - Vv 25 13
OutValue EA7 v v 50 14

[| Total ROM/RAM (bytes) [ 150/54 || 262/94 || | |

not). Previously we had ascertained that sigi&d$valuei, pulscntand OutValue
were to be guarded by EA's because of their high exposurecjpagiating errors. If
we now take into account the impact of the signals on systetpuguwe see that
signalslsValue mscntandslow speedmay be considered for being guarded by EA's
as well as these have very high impact values (see Table Ba&)mechanisms we
have chosen are implemented in such a way that it is difficuttetect errors in a
boolean value, thus setting an EA on the sigslalv.speedis not efficient in this
case. Therefore, when taking into account also the impdagesaf the signals we
can decide to place EAs disValueandmscntas well. Also, as the permeability-
value of msslotnbr is 1, and the assumed error model now introduces errors in
the entire memory space of the system (as opposed to ongnsysput signals as
was the case before) we also select that signal. The newisalé&summarized in
Table 6.7 and we will refer to this set of locations as the PSE-

In Table 6.7, for each signal, tieroducercolumn indicates the module where
the signal originates and tl@onsumercolumn where the signal is used. Thest
location column indicates which of these two was chosen as the moduézenthe
corresponding EA was placed.

6.7 Comparing the Two Location Selections

This section will compare the two sets of selected locatwitis regard to resources
required and also with regard to the coverage obtained wieesyistems is subjected
to errors at system input signals and in random locations.
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6.7.1 Memory and Execution Time Requirements

For comparison of resource requirements using the -appraaad the PA-approach,
Table 6.8 presents a summary of the two sets of location$lfameems and their
respective requirements on memory resources (ROM contaimstant parameters
defining allowed behavior, and RAM contains run-time da#sg.expected, the re-
quirements for the P-sefEAL, EA3, EA4, EAZ, is less than the requirements for
the P&E-set{EAL, EA2, EA3, EA4, EA5, EAG, EAY, as the former is a subset of
the latter (as seen in Table 6.8). Specifically, there is a #88action in memory
requirements when for the P-set over the P&E-set.

The overhead in terms of execution time is also reduced. ®bkeused for
obtaining these results does not provide a means for megsexecution time, thus
we were not able to quantitatively assess the reduction. edery the EA's are all
functions which are executed sequentially, i.e. the sofviganot executed in a truly
parallel manner as only one processor is used. Also, theynasked with roughly
the same period and require roughly the same execution tmeaich invocation.
Thus, the reduction in execution time overhead is likely ¢oiro the order of the
reduction in number of EA's, i.e., about 40%.

6.7.2 Error Detection Coverage

In this section we compare the two sets of EA's with regardtoraletection cover-
age, and we do this using two distinct error models: one wheogs are introduced
at the system input signals only, and one where errors aredunted in random
locations in memory.

Errors in System Input Signals

After having added the EA's to the system, we performed a fSetj@ction exper-
iments. In these experiments we used the same tool (PROPANESetup as we
used for obtaining the estimates of the individual errompeability values (as de-
scribed in Section 6.5.3), i.e., we injected transientIshinif errors in system input
signals.

In Table 6.9 we summarize the results from the injection grpents. The re-
sults are shown for each input signal that was targeted gltinie experiments. The
ner» COlUMN shows how many errors that were active after injacfeg., we in-
jected a total of 2000 errors IPACNT, and of those 1856 were active, i.e., injected
before the arrestment of an aircraft was not completed). vBneusEAXx columns
show the obtained coverage for each individual EA (a daskanes zero coverage),
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Table 6.9: Obtained detection coverage for errors injertegstem input - P-based
and P&E-based placements

[ Signal | ne,r || EAL | EA2 | EA3 | EA4 | EA5 | EA6 | EA7 [ Total ||
Member of P-set Vv - N Vv - - v
Member of P&E-set Vv Vv Vv Vv Vv Vv Vv
PACNT | 1856 0.218 | 0.105 - | 0.975 - - 0.005 || 0.975
TIC1 3712 - - - - - - - -
TCNT | 3712 - - - - - - - -
[ Al | 9280 | 0.062 | 0.040 | - ] 0.195 | - ] - | <0.001 ] 0.195 ||

calculated aéhllﬁi TheTotal column is the combined coverage considering all EAs.
Each row contalns the data for errors injected into one sigxeept forAll which
shows the coverage obtained for the various EA's consigaihsignals. The rows
containing tick-marks indicate which EA's were part of thesé? and which were
part of the P&E-set (a tick-mark/, indicates membership).

As was indicated by the obtained zero error permeabilitheRRESS module,
no errors propagated from input sigelDC to intermediate signdkValue There-
fore, no errors could be detected by any of the EA’s.

In Table 6.9 we can see that only those errors that were agestoPACNTwere
detected. This is on par with the results obtained in theggapon analysis which
showed that errors injected into those signals with a vempmobability propagated
into any of the signals that were selected to be guarded wii¥a Those errors that
propagate are likely to be hard to detect by the selected amexihs. However, 97.5
percent of the errors injected iINRACNTwere detected. All errors detected by EAL
(SetValug EA2 (IsValug or EA7 (OutValug were also detected by EApfIscn).

It may seem odd that EA2, which guar¥s/alue has a non-zero coverage for
errors iNPACNT, while no errors injected intdDC could propagate intésValue
This, however, is a result of errors PACNT propagating all the way through the
system and out beyond the system barrier where they evinéiffact the environ-
ment to such a degree thaDC s affected in a way the PRES module cannot fully
mask or contain, and the errors are then detected by the EliggdsValue

From Table 6.9 we can observe that the coverage obtainedh@tR&E-set of
EAs (EA1 through EAY) is the same as that obtained with theePset of EA's
(EA1L, EA3, EA4, and EAY).

From this we can conclude that if errors can only enter a sysia its inputs
signals, making a selection of EA locations based on thegmaion profile only is
sufficient from an error detection point of view. From Tabl8 @/e can see that this
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Table 6.10: Detection coverage for errors injected pecaity in system RAM and
stack for both sets of EAs

RAM Stack Total
Measure || P&E [ P P&E | P P&E | P
Ctot 0.128 | 0.056 || 0.042 | 0.018 || 0.106 0.046
Ctail 0.811 | 0.418 || 0.137 | 0.031 || 0.394 0.253
Cmofail || 0-111 | 0.038 || 0.029 | 0.017 || 0.092 0.033

|| P&E = Propagation & Effect analysis, P = Propagation analyss only ||

may reduce the resource requirements. The next step in oysarsson will inves-
tigate the effect of varying error model on the obtained redeiection coverage.

Errors in Random Locations in Memory

Now we take both sets of EAs—the one selected using only tbfle provided by
propagation analysis (Table 6.6) and the one using profilegiged by both the
propagation and the effect analysis (Table 6.7)—and coenff&m using a more
severe error model. We still use single bit flips to generati @rrors, but now
the target will not only be system input signals but alsormidiate signals and
module state (a total of 150 locations in RAM and 50 locationshe stack) of
the system. The errors are injected not only at one pointie tout periodically
with a period of 20 milliseconds. The same 25 test cases wa¥d giving us a
total of 200 25 = 5000 runs with injections. An error is said to be detectad
Is detected at least once during the arrestment. Theseimgraes were performed
on a real setup of the arrestment system (real hardware sofafare, simulated
environment—not a simulation run on a desktop computengusie FIC-tool (see
[Christmansson and Rimén, 1997] and [Christmanstal.,, 1998] for details).

The results are summarized in Table 6.10. Rfdvcolumn contains the cov-
erage values for errors injected into the RAM areas of theutesg and theStack
column the coverage values for errors injected into thekstaea. Thelotalcolumn
contains the coverage for all errors. The measweis the total coverage of the
EA-set. The measure,; is the coverage when considering only those errors that
led to system failure (according to the classification oft®ec6.5), ¢, 4 is for
errors that did not lead to system failure. The same datgpisidel in Fig 6.16.

In the columns marked witR&E in Table 6.10 we can see the coverage values
obtained for the EA's selected by utilizing both the progageprofile and the effect
profile. The coverage values for the system equipped witlefig selected using
only the propagation profile are shown in the columns mafked
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Comparison of Error Detection Coverage
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Figure 6.16: Comparison of coverage values

The first observation we make when comparing the resultshitwo sets is
that the coverages for the P-set of EAs is lower than therameobtained using the
P&E-set of EAs. For errors injected into RAM the coveragguist over half that
obtained using the full set of EA's and for errors in stackdberease is even greater.
This indicates that using only the propagation profile mayera weakness if errors
are introduced not only via the inputs of a system, but alaanternal variables and
structures.

The results illustrate the important distinction betweennpeability/exposure
and impact/criticality, where the former is used for profijlisoftware with regard
to its error propagation characteristics and the latterdadilp software with regard
to the effect errors would have if they were present in défeérparts of the system.
This fact is also highlighted and discussed in conjunctiath wigs. 6.14 and 6.15.

From these results we can conclude that if errors are intedivnot only via
the system input signals, selecting locations for EDM’s &RiM’s based on the
propagation profile alone is insufficient. The effect proffilast also be considered.
Even though the profiles have been generated with an erroelntioak introduces
errors only in the inputs of the modules, the combinatiorhefgiropagation profiles
and the effect profile lessens the impact of this. That isptioéiles are useful even
in situations where the system under consideration is stdgeto an error model
which is different from the one used for profiling.
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6.8 Discussion on Framework Limitations and Caveats

In this chapter we have presented an analysis frameworkrfor propagation and
effect analysis. We have also used it in an example studgtifiting its ability
to indicate locations for EDM’s and ERM’s. However, there &mitations to the
framework which we highlight in this section.

One limitations is that, when defining the basitor permeabilitymeasure, we
have only considered direct influence between one inpuabkagrd one output signal
of a module. It may be (and in most practical cases, probab)lyhe case that
the probability of an error propagating from a given inpgnsil to a given output
signal of a module is not independent of errors on other igmytals. Thus, the
error permeabilityvalues may differ when multiple input signals are erroneasis
compared to when only one input signal is erroneous.

Moreover, the framework currently only considers errorpgaigation and error
effect in a “direct” manner, i.e., we only take into accoumbes that propagate from
their original locations to system output directly. Thisane that we do not consider
errors which might at one point propagate out of the systdigtahe environment
(the controlled entity) and then get fed back into the syst&amnthe system input
signals. It could be argued that, if the controlled envirentrhas an inherent inertia
(i.e., minor perturbations on the output signals of the mrgystem do not affect
the environment very much), the probability for this is simdlhus, this may not
present a serious problem, however, one should bear thedydig in mind.

Also, at this point we have in our experiments only considdbe basic error
modeltransient bit flipsi.e., an error was introduced by flipping the value of one bit
in one calculation round. Should other error models be ubedesults obtained by
propagation and effect analysis may need to be re-estimated the basic approach
outlined in EPIC. Even though the usage of two distinct pesfiessens the impact
of varying error models, one should aim at using an error maslelose to the one
assumed for the “real” environment in which the system isghesl to operate.

We have not specifically considered cross-linked modulethensystem, i.e.,
situations where the outputs of a modd&, are used as inputs to another module
M, and vice versa. Such a setup may prove to have an amplifyiagdampening
effect and may have to be modeled separately.

Future work on the EPIC framework will address the limitaanentioned here.
The initial focus, however,will be on the limitation of siegnput errors and error
models, i.e., we plan to investigate how the results praviog the EPIC frame-
work is affected when multiple input signals are erroneamikaneously and when
changing the error model to something other than transiéfis.
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6.9 Summary and Conclusions

In this chapter we have presented the EPIC framework foryaisabf the propaga-
tion and effect of data errors in software. The system maosi&lmed in this frame-
work is that software is composed of a set of modules which aklata as signals
and produce output, also as signals. Specifically, the natributions described
here are:

Software Profiling: The EPIC framework is able to produce distinct profiles of a
given modular software system allowing the assessmeneafutimerability of
software modules and signals to upcoming data errors. Tirefiees are i) an
error propagation based profile, and ii) an error effect hagsefile. We intro-
duced the basic measueeror permeabilitydefined on a input/output signal
pair basis from which a set of related measures (both atgimaldievel and the
module level) can be calculated. The framework has fourchasiasures all
related to data errors: i) exposure, ii) permeability,impact, and iv) critical-
ity. The first two measures relate to the analysis of erropagation, whereas
the last two measure relate to the analysis of error efféntisTthe framework
Is capable of providing a software designer with two digtimofiles regard-
ing the software system at hand, upon which design deciseeding error
detection and recovery can be based. As the framework assaimiack-box
view of the software, its applicability is not limited to $efire developed
in-house, i.e., it can also be used for software which isigiexVin libraries
where only interface specifications are provided (e.g. C@diSponents).

Placement of Error Detection and Recovery MechanismsUsing the profiles
obtained by using the EPIC framework, we have shown how oryamberpret
the results, using a set of guide-lines, in order to iderdrig select locations
in a software system appropriate for error detection mashe(EDM’s) and
error recovery mechanisms (ERM’s). These methods can alpoipt critical
signals and paths in a system. Trade-offs regarding thes¢ido selection
guide-lines that might have to be considered are also disdus

Experimental Estimation Method: We have described an experimental method
based on fault injection for obtaining estimates for therepermeability val-
ues. This method is based on transient bit-flips occurrirgjrafle input sig-
nals of the various software modules of the software systerapagation to
the output signals of the given module is detected by doimgnaparison with
“error-free” reference runs (Golden Run Comparisons).
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Example Study: We have conducted an experimental assessment on the soft-
ware of an embedded control system for aircraft arrestmdrtie results
clearly show that using the presented framework generaiewlkdge on er-
ror propagation and error effect giving insights into seaftes vulnerabilities
that are very useful when designing dependable systemscialip regard-
ing the selection of locations for EDM’s and ERM’s. The résulso illus-
trate that by incorporating less efficient detection anavery mechanisms
in locations which have high error exposure instead of véfigient mecha-
nisms which are seldom exposed to errors one would mosy ldet a better
cost/performance ratio. An important conclusion that camitade from the
obtained results is that in addition to the software prafillke assumed error
model should also be considered in the selection of locationEDM'’s and
ERM's.

Discussion on limitations: We have identified and discussed some limitations and
caveats of the EPIC framework. This discussion also suggkstctions for
future work regarding the EPIC framework.

Concluding this chapter, we state that the presented asdigsnework, EPIC,
provides means for software profiling which may provide klemlge pertinent to
dependability engineering in software systems, such kiggptoject resources avail-
able can be allocated in a cost-efficient manner.
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CHAPTER

Summary and Conclusions

By three methods we may learn wisdom: First, by reflectionchvis
noblest; second, by imitation, which is easiest; and thirgekperience,
which is the bitterest.

— Confucius (around 551-479 B.C.)

This thesis investigates some aspects of techniques arttamems for analyz-
ing and designing dependable software for embedded caystéms. Specifically,
mechanisms for the detection and recovery of data errorariables/signals of em-
bedded software is investigated, as well as methods foyzngl the propagation
and effect of data errors. Furthermore, a tool for analyzrgpagation and effect
of data errors is described. This chapter briefly summaitizescontributions put
forward in this thesis and attempts to draw conclusions ftle@obtained results.
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7.1 Summary of Research Contributions

Here are brief summaries of the results and contributiohigithesis. More detailed
accounts can be found in the respective chapters as indicate

7.1.1 Error Detection and Recovery Mechanisms

In Chapter 4, mechanisms for error detection and recoverylescribed and eval-
uated. Error detection is based on the concemxeftutable assertionse., pieces
of code checking the validity of a certain variable/signizeg a set of constraints.
A violation of the specified constraints is defined as an eamar when such a vio-
lation is detected, the mechanisms apialsced validityto the variable/signal, i.e.,
replacing the erroneous data value with one which is as ¢totbee original value as
possible but still within the valid domain of that varialslighal.

In order to lessen the impact of lack-of-experience on baffahe system de-
signer regarding the use of software implemented mecharfisndata error detec-
tion and correction, the presented mechanisms are desaggdneralized mecha-
nisms which are instantiated with parameters. The paraméie each signal are
predefined according to a certasignal classificationvhere each class requires a
certain set of parameters. At the top-most level, signaslafided intocontinuous
anddiscretesignals. Below that, there are sub-classes which furthepwadown
the required set of parameters or put constraints on thera.attual values of the
parameters are set by the system designer using, e.g., FMEAIlAre Mode, Effect
and Criticality Analysis) or other specifications.

The main limitation for the proposed mechanisms is for dscsignals which
do not have any restrictions in transition between values, one can only check
that the current value of the signal is actually within théirtel domain, and not
the transitions between the values. Such signals may noetyecommon if the
valid domain contains more than two values. However, a &ipiand common,
special case is a boolean signal which can be eitheror false As a transition in a
boolean signal is in most cases triggered by other signaéssking multiple values
within the same test or assertion is likely to detect morersrr

7.1.2 Evaluation of Mechanisms

In order to evaluate the effectiveness of the mechanismerfor detection and re-
covery presented in Chapter 4, two evaluations were coadudthe chosen exam-
ple target system was an aircraft arresting system, i.g/sterm which aids landing
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aircraft to stop on short runways. This particular systers ingplemented as a ca-
ble strapped across the runway. A landing aircraft grabd bbthat cable using a
hook and the system then pulls the aircraft opposite to ttextibn of movement in
order to slow it down to a complete halt. More information bis target is found in
Chapter 3.

In Evaluation 1 the combined effects of error detection and error recotiezy,
error tolerance) was the focus. The most critical signate@bystem were identified
and equipped with mechanisms. The system was then run witifiZent test
cases (combinations of aircraft mass and engaging ve)oegityle being subjected
to error injections in the monitored signals and randomtlooa in memory, stack
and registers. The results of this evaluation showed tleafdiure rate for errors
injected into the monitored signals was decreased by 32.5%@%e the decrease
in failure rate for errors in random memory, stack and regssivas only roughly
4.69%.

The focus ofEvaluation 2was on error detection only. Again, the target system
was equipped with mechanisms (this time with recovery o and run for the
same 25 test cases as before. Errors were injected into thitkameal signals and in
random locations in memory and stack areas. The resultseshtivat, on a whole,
errors in the monitored signals were detected with a prabalof 74%. If only
those errors that subsequently lead to system failure vedentinto account, the
probability of detection was 99.6%. For errors in memoryatans, the overall
detection probability was only 12.8% and for errors thatlléa system failure it
was 81.1%. Errors in stack were detected with an overallaiiby of 4.2% and a
probability of 13.7% if only those errors that lead to systafture were taken into
account.

The results of the two evaluations performed show that thieybast at deal-
ing with errors in the monitored signals. Handling errormon-monitored areas
requires these errors to propagate into the monitored a@measler to be detected
and recovered. Thus, from the results here one can condhatiéntorder to make
error detection and recovery as efficient as possible (weigland to the cost of these
mechanisms) it is important to know how errors propagatendrat their subsequent
effect on system output is.

7.1.3 Error Propagation and Effect Analysis

The results obtained in the evaluation of the error detectiod recovery mecha-
nisms made it clear that in order obtain a high coverage, nigtthe effectiveness
of the mechanisms is important, but also, how error progadgédtat is, not only must
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the available mechanisms be good at detecting and recgvemiars, they must also
be placed at locations where errors occur or propagate.ig bspecially important
if a limited amount of resources is available for dependgbgurposes (which is
the case for most consumer and/or low-cost systems). Ainglythe propagation
of errors allows the profiling of software with regard to weakses and hot-spots—
locations in the software which let errors pass througharidtation which attract
propagating errors.

A propagation profile of a software system can in some cas@sbequate for
selecting where to place error detection and recovery nmesing. A location which
attracts errors with a very small probability may be such #fuld an error occur
at that location it would cause very much damage. Thus, thieggation profile of a
software system has to be complemented with an effect prefiwving how much
damage an error in different locations could cause.

In Chapter 6, an analysis framework is presented which esaylstem designers
to profile software systems such that vulnerable modulessayrdhls/variables can
be identified. The framework introduces four basic measuyieExposure (ii) Per-
meability, (iii) Impact and (iv) Criticality, and thus is called EPIC. This framework
is able to produce the two distinct quantitative profiles timered above, namely:
(i) a propagation profile (usingxposureandpermeability, and (ii) an effect profile
(usingimpactandcriticality). The propagation profile shows how errors propagate
through the software system, and the effect analysis showhat extent errors in
the various signals/variables affect system output.

EPIC is mainly focused towards black-box modular softwaee, modular soft-
ware where only the I/O-characteristics and basic funatignis known and the
internals of the modules is either unknown or unchangeable.

A fault-injection approach for estimating the measuresefftamework is also
introduced. Here, errors are injected into each individoplt signal of a module
and the output signals are observed for any differences amdpo reference runs
(i.e., using classical Golden Run Comparison).

7.1.4 Evaluation of Analysis Framework

The analysis framework, EPIC, presented in Chapter 6 iziated on real software
in order to illustrate its applicability. The target systenagain the aircraft arresting
system used in the evaluation of the error detection andreeganechanisms. The
introduced approach for estimating the various measurtte iEPIC framework was
used and two distinct profiles created. Using the profiles, dets of mechanisms for
error detection were created. One set was selected baséd propagation profile
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only and contained four mechanisms, and one set was seleatedl on both the
propagation profile and the effect profile and containedrsevechanisms.

Two versions of the target system were created, one for edaf mmechanisms.
The two versions were then subjected to error injection waith different error
models: i) errors are introduced at the system input sigomlg and ii) error are
introduced in random locations in memory and stack areag résults show that
the error detection coverage obtained for the first errorehaes the same for both
sets of error detection mechanisms. Thus, in this case #iesét is to be preferred
as it consumes less resources than the second set (four menbaversus seven
mechanisms). For the second error model, the error detectieerage was higher
for the second set of mechanisms than the first set. In thesayasrs were introduced
in random locations in memory and the second set of mechanisamitored also
those signals into which errors were not likely to propagdieus, low probability
errors were detected more easily by the second error setliadinst.

The results of the experiment with EPIC show that softwaodilprg with regard
to error propagation and error effect can facilitate rigierselection of locations for
error detection and recovery mechanisms. It also showsthieagrror model one
assumes the system will be subject to during operation de&etlyg affect the error
detection coverage obtained for a given setup of mechanisihgs shows that a
propagation profile alone may not always for be sufficient drad other profiles
have to be used.

7.1.5 Tool for Analyzing Error Propagation

To be able to perform the evaluation of EPIC, a tool-suitéedaPROPANE, the
Propagation Analysis Environment, was developed. PROPAMESo called SWIFI
(SoftWare Implemented Fault Injection) tool, i.e., it icie faults and errors into its
target using software, and is capable of tracing the valfiesrables in software
such that error propagation and error effect can be analyPEODPANE can also
log events which enables the evaluation of error detectolrecovery mechanisms.
There are vast extension possibilities, enabling usersristouct their own injectors
and logging probes, making PROPANE a very versatile tool.

The results that can be obtained from PROPANE “out-of-the-lzontain basic
propagation analysis in the form of propagation graphs aopggation summaries.
However, PROPANE will also compile the raw readouts fromesxpents such that
further analysis can be performed using other tools. Faait®, in the evaluation
of EPIC, Matlab and MS Excel were used for the final analysi generation of
estimates of the measures.
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PROPANE is a pure software-based tool, implemented in ANSVi@ich facil-
itates porting it to different platforms. At this point inme, PROPANE is available
for WIN32-systems (such as Windows 2000/XP). The injecaod logging func-
tions are packaged in a static library which is linked togethith the target system.
Therefore, PROPANE can be used together with a vast ranggpbtations of var-
ied types.

7.2 Conclusions

As software is more and more becoming that part of a compytters which de-

fines its functionality, and as computer systems are usee@ fnequently in con-

sumer and other low-cost products, the demands for inexgedependability is

increasing. Therefor, the search for techniques and metfardlesigning and an-
alyzing dependable software for computer nodes in embesggEdms is an active
area. Thus, as stated in Chapter 1, the main goal of the wedepted in this thesis
has been to find and evaluate new construction methods f@ndaple computer
nodes with little amount of redundancy in (possibly disitédxl) control systems.

The mechanisms for error detection and error recovery [@egpand evaluated
in Chapter 4 seem to be able to provide good error detectigarage for errors
in the monitored areas, although they do not perform anycate tests. Thus, ex-
ecutable assertions should be viewed as viable mechan@ndetection of data
errors in embedded software.

The recovery on the other hand seems to have room for impmvemOne
reason for the low recovery rate exhibited by these mechenisan be the error
model used in the evaluation. As this error model was a vegyesgive (almost
vicious) one where errors were injected periodically withrelation to the period
of the software, any recovery efforts are sure to have beeaimin many cases.
Further evaluation with other error models may show othsults. For example,
one evaluation to perform would be recovery of one singlereat one point in time
during the arresting of an aircraft.

From the results of the evaluation of the mechanisms onelsarcanclude that
adding error detection and recovery mechanisms to a givhwase system can
benefit greatly from having knowledge of the propagatiorratizristics of the soft-
ware. Therefore, the EPIC framework was introduced in Glrafat In experiments
with this framework, it was shown that it can generate saftwarofiles for error
propagation characteristics and for error effect charesties. Using these profiles,
a system developer can select locations in the softwarelwdhiould be considered
for placement of detection and recovery mechanisms, deations which attract
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or promote propagating errors and/or locations which, wéremneous, have a high
probability of affecting the output (and therefore the betig of the system.

The limitations of EPIC include the fact that the framewalbased on the no-
tion of error permeabilitywhich at this point only considers single errors individual
signals. That is, only one signal was assumed to erronecalsyabne time when
defining the expressions for the measures. In reality, ofssgumultiple signals can
be erroneous simultaneously. However, the profiling cdipiaki of EPIC should
still be useful for system developers.

Another limitation, or question-mark rather, regarding EB the issue of inter-
nal feedback loops across modules (cross-linked modushis point, the frame-
work handles feedback loops within a single module. Howef/érere is feedback
spanning multiple modules (i.e., a situation where the wugh a moduleM; is
used as input to another modWld, and vice versa) this may have to be handled
separately.

PROPANE, the tool developed for the evaluation of EPIC, aescdbed in
Chapter 5, is tool which can be useful on its own, without hgwio use the EPIC
framework. An example study performed with the tool showet basic propaga-
tion analysis can be performed with the tool. however, tihegopgation analysis is
at the signal level only, i.e., it may not scale so easily ihgnaignals are considered
in the analysis. On the other hand, the tool is automateddb awlegree that the
problems with scaling mainly are with regard to the amourdaié that is produced
in the evaluations. Thus, it is more of a hardware resouarage problem than a
problem with the approach used by the tool.
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CHAPTER

Outlook on Future Work

Science... never solves a problem without creating ten . more
— George Bernard Shaw (1856-1950)

In the process of investigating various questions and gryofind solutions
to problems, one of course always stumbles across new gnesind problems.
Unfortunately (or fortunately?), the time allotted for abPthesis is limited and
thus, some things have to either be skipped or have to wait amtopportunity
presents itself where these new questions and problemseaddressed. This
chapter contains a brief summary of the questions that hdm tout aside while
doing the work in this thesis. Hopefully, a chance to divelfar into these topics
will come up in the future.
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8.1 The Future and Executable Assertions

As shown by the results in this thesis, executable assesrtian be very efficient as
error detection mechanisms in software. The method usedifbedesign of these
methods is to have generic parameterized mechanisms dadtiate them for each
given variable/signal.

An interesting problem is whether the design of executasdeion can be fur-
ther automated. This problem has been addressed in [Jheihaka2002(a)] and
will be further investigated in the future.

The executable assertions in this thesis are aimed at thail/signals. Perhaps
a better result can be obtained if multiple signals are clamed together as intricate
relations between several values can be monitored? Aalimtiestigation of this is
also part of [Jhumkat al,, 2002(a)].

In [Askerdalet al, 2002], work on model based analysis of control systems has
been investigated. This is a path that should be furtherstigeed as this is inde-
pendent of the implementation details of the system and omhgiders the actual
functionality.

8.2 The Future and Software Analysis

Analyzing software to find weaknesses and create varioddgrof the character-
istics should be investigated further as this can providgbataintial help for system
designers when deciding upon design issues of depengatmiéthanisms, on re-
source allocations, on architectural and policy issues, et

An interesting question to investigate further is whethatis analysis of soft-
ware (source code, designs, etc.) can be used to identigniait weaknesses. If,
for example, a statistical correlation can be found betwsmsne static metric ob-
tained from the source code of a system and the measuresabtay the EPIC
framework, perhaps the dynamic analysis performed in ki@sis can be made stat-
ically instead? The benefits here would be shortened asdiyse and thus easier
adoption by industry.

Another take on static analysis is to investigate whethemeses oferror per-
meabilitycan be obtained by static analysis, for instance methodtereto data flow
analysis, can be used instead. Again, not having to run lodgesource demanding
experiments will probably make industry adopt such an aggranore easily.

At this point, EPIC is mainly focused towards single-noddétvgare. Even
though no explicit assumptions have been made that limiisesin a distributed
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setting, this has not been fully investigated. Thus, apglyhe proposed software
analysis methods on distributed systems should be partuiefendeavors.

The work up to this point has been focused on data errors anel@bility
and safety. Future directions should contain also contoal #rrors, and also gear
towards security (e.g., data integrity, confidentialitt). e

The analysis frame work presented in this thesis assumeschk-bbx view on
modular software. Relaxing this assumption to include gpay, or even white-
box, knowledge of software may perhaps make it possible duighe even further
information to software designers in the development amdpmsition of software
modules. This direction has been initialized in [Jhurekal.,, 2002(b)].

8.3 The Future and PROPANE

One aim for the future is to further develop PROPANE and malkevailable for
free (including source code) for academic use. This waytdbewould likely be
improved as more people take a look at its innards. Furthexnexperimental tech-
niques for dependability evaluations are distributed ¢shahmore people have easy
access to such methodologies.

Even though PROPANE can be augmented by the user to incluaiy any
kind of error model, it will be expanded to provide more birlerror types and error
triggers than it does today. For example, one may want tatigeset of different
errors in a given sequence or at various points in time (rgitgtione point in time
or periodical).

Another issue to further expand in PROPANE is automation. thdgd point,
PROPANE has automated the instrumentation, basic setperiment execution,
and analysis. However, each step has to be initiated mgnuBus, one aspect
that should be addressed is to make the total chain autgmatiche user provides
source code and basic description of the architecture adyteeem, and PROPANE
then automatically produces the propagation and effedtlggcand suggests main
locations where (increased) EDM and ERM capability sho@ddnsidered.

8.4 The Future and The Rest

Going to the distributed world opens up many areas which nohya closely re-
lated to the work presented in this thesis. For instance,nuanication protocols,
distributed fault tolerance and adaptive systems, salii&tation, etc.



154 Chapter 8. Outlook on Future Work

In the area of experimental validation of fault-toleranttesre are open issues
in representativeness of fault and error models used inrijeetion experiments.
Perhaps also other injection approaches can be devised.

There is really no end to the possibilities...
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Appendix A.
PROPANE — Details

In this appendix, details about instrumentation of targetesns and setup of exper-
iments for PROPANE are described. The PROPANE tool suigdf its described in
Chapter 5.

A.1 Instrumentation of Target Systems

In order to generate readouts and inject faults and errdezgat system has to be
instrumented. This instrumentation consists of insenpirapes for logging variables
and events as well as inserting injection locations fortfaahd errors. The basic
work-flow of target system instrumentation is depicted ig.A.1.

User error
types and
triggers

PROPANE

I:grogin’\jE configuration Object files
) . source file v
— PSl — Instrumented

COMPILE LINK —»{ target system

Original Instrumented executable
target source target source P L
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| Environment !
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- ~
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Figure A.1: The basic work-flow of target system instrumeaia

The PROPANE configuration source file contains static infdram required
during the execution of experiment by the PROPANE LibranhisTinformation
contains the static setup of variable probes, event prdaals, error injection lo-
cations, user error types, and user error triggers. As th@mation is constant,
it will remain the same between different experiments. Dwyigainformation re-
guired for experiment execution is provided in a set of dpsion files (described in
Section A.5 of this appendix).
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The PROPANE configuration source file and the instrumentegtaource files
are compiled and linked together with the PROPANE Librarjaion the instru-
mented target system executable. This executable is treshlmsthe PROPANE
Campaign Driver when conducting experiments.

Details about the PROPANE configuration source file is givene In order to fa-
cilitate manual construction in case a PROPANE user warte that. However, the
PROPANE tools suite contains the PROPANE System Instruonéthie PSI), which
can automatically generate instrumented source code arfRPANE configura-
tion source file. In general, there are four ways of instrungnthe target source
code: i) by going the hard-core programmer way and doingyévielg manually,
i) be using PSI generate the PROPANE configuration sourde @nd inserting
the probes in the target source manually, iii) by annotativeycode with variable
probes, event probes and error injection locations andl#teng PSI generate the
PROPANE configuration source file and instrumented targatceo and iv) speci-
fying the modular composition of the system and for each rfeodpecify 1/0 and
internal characteristics.

Method i) is clearly the most time consuming way to go, but megve fun for
some people. Method ii) is somewhat more pleasant as the RREPonfiguration
source file is generate automatically. Methods iii) and e af course the recom-
mended methods for instrumenting target systems. Methjad semi-automatic as
the locations for variable probes, event probes and erjection locations have to
be chosen manually. However, the actual insertion of theesponding calls to the
PL API is done by PSI. Method ii) on the other hand is fully amédic, i.e., PSI
chooses which variable probes to and error injection loaatito insert and where
to insert them. Note that event probes must be insertedrertaaually or by means
of annotations as PSI cannot detect locations where cexvaints are to be flagged.
Fault locations must always be inserted manually as thisiresjadditional (faulty)
code to be inserted into the target system.

This section describes how to instrument the target systang S| and how to
generate the PROPANE configuration source file manually.

A.1.1 Instrumenting for Probes

In order to be able to log variables and events, probes mussbded into the target
system. First we describe how to insert probes manuallyth@darget system and
how to create the necessary structures in the PROPANE caoatfigu source file

and then we describe how to annotate the target system sackatable probes
and event probes can be inserted using PSI.
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Manual insertion of probes

Probes are inserted in two steps. First, the required prohest be set up in the
PROPANE configuration source file. Then, special calls toRR©OPANE Library
must be made from the application in order to actually logwmable or event.

If variable probes are used, the PROPANE configuration sdilecmust contain
the following data items:

/* This variable contains the nunber of defined variable probes */
unsi gned int propane_no_of | og vars = n;

/[* This array contains information about the defined probes */
PROPANELogVar | nfo propane_| og_var_info[n] =

{

/* Each probe nmust be defined with a |ine as shown bel ow. */
{ handle, type, nane, size, channel },

b

/* This array is used by the PROPANE Li brary during run-tinme */
PROPANELogVar Dat a propane_| og_var _dat a[ n];

The variablepr opane_no_of | og_var s holds the number of defined vari-
able probes in the variable probe information and data srréyis very important
that the arrays contain exactly the number of entries asfsaem this variable.

The arraypr opane_I| og_var _i nf o contains information about the defined
variable probes that will not change over time. For everyaide probe that is
to be inserted into the system, there must be one entry camgathe following
information:

handle

probe type

e Name

size (size of logged data in bytes - only for probes of tiAROPANE _AREA)
channel

Thechannelwill be created automatically during the PROPANE Libraryuge
phase and is not entered in the PROPANE configuration sodeceltehandleis
an integer value and is used in the function call made fromatget system to the
PROPANE Library performing the actual logging of the valabl hehandlemust
be equal to the index in the array, i.e., the first probe mugt handle), the second
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handlel, and so on. The!” probe must have handle — 1). It is a good idea to
create a pre-processor constant (i.étdaf i ne constant) for each handle and then
use that constant instead of the actual numerical valudseirfiunction calls in the
target system. Thprobe typandicates the type of the variable that is logged by that
probe. Theprobe typemay be one of the following:

e PROPANE_CHAR- The variable is of typehar .

e PROPANE_UCHAR- The variable is of typensi gned char .

e PROPANE SHORT — The variable is of typshort .

e PROPANE_USHORT — The variable is of typensi gned short.
e PROPANE_| NT — The variable is of typée nt .

e PROPANE_UI NT — The variable is of typeinsi gned i nt .

e PROPANE LONG- The variable is of typéong.

e PROPANE_ULONG- The variable is of typensi gned | ong.

e PROPANE_FLOAT — The variable is of typél oat .

e PROPANE DOUBLE - The variable is of typeoubl e.

e PROPANE_AREA — The variable is a pointer to a memory area. This is a
special type which, for instance, may be used for injectimgre into random
locations in the memory areas of the target software.

Thenameof the probe may be any normal C-string not containing wipgs.
This name must then be used in the PROPANE description fieec(dbed in Sec-
tion A.5 of this appendix) to activate the probe during expent execution. The
sizevalue is only required for probes of typ¥ROPANE_ AREA. This value indicates
the size (in bytes) of the area. For all other probe typessiteewill be automatically
calculated during the setup process of the PROPANE Librarthay are standard
data types with defined sizes.

The arraypr opane_| og_var _dat a contains information about the defined
event probes that will be defined during the setup procedsedPROPANE Library
and may change during the execution of experiments. Thay amly has to be de-
clared in the PROPANE configuration source file, initiali@atwill be done during
the setup process of the PROPANE Library.

The following is an example showing how variable probes atndd in the
PROPANE configuration source file and how they are insertexdthe source code
of the target system. This example defines three variablgegroame®et Val ue,
| sVal ue,andt[].
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/* We have three variable probes. This is entered in the
* PROPANE configuration source file.
*/

#define P_SETVALUE (0)
#define P_| SVALUE (1)
#define P_T_ARRAY (2)

unsi gned i nt propane_no_of |log vars = 3;

PROPANELogVar | nf o propane_I| og_var _i nf o[ 3]

{
{ P_SETVALUE, PROPANE_INT, "SetValue", O, "y,
{ P_ISVALUE, PROPANE_INT, "InValue", O, oy
{ P_T_ARRAY, PROPANE_AREA, "t[]", si zeof (Type_t)*10, "" },

b

PROPANELogVar Dat a propane_| og_var _dat a[ 3] ;

When all the desired variable probes have been defined inRPRNE con-
figuration source file, they must be inserted into the targstesn. The function in
the API of the PROPANE Library that is used for variable phas the following
prototype:

PROPANERet ur nCode
propane_| og_var ( PROPANESi gnal | D handl e,
void * value );

The parametenandl e is the handle of the probe created in the PROPANE con-
figuration source file. The pointeral ue is the address to the variable that is to be
logged. As the type of the variable that is logged is provigtethe static informa-
tion in the PROPANE configuration source file, the same fonctan be used for
all types of variables. The function returns eitRBROPANE_CK if everything went
fine, orPROPANE_FAI LUREif something went wrong. Errors during this function
call can only occur if the contents of the probe informatiod data structures have
been corrupted. Here is an example of how the instrument&tiovariable probes
may look in the source code of the target system:

/* This is how the function calls are nade in the
* target system source code.

*/

i nt Set Val ue;

PROPANERet ur nCode probe_rc;
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probe_rc = propane_| og_var( PROBE_SETVALUE, &SetVal ue );
i f( PROPANE_OK == probe_rc )

{

/* Everything went fine!l */
}
el se
{

/* Somet hi ng went wrong! */
}

Note that the steps above are not sufficient for getting a iwgrkariable probe
during experiment execution, the probe must also be aetivat the Experiment
Description (see Section A.5 of this appendix).

The actions required for event probes are similar to thogeimed for variable
probes. The following structures for information and fotadhave to be declared in
the PROPANE configuration source file:

/* This variable contains the nunber of defined event probes */
unsi gned i nt propane_no_of | og_events = n;

/* This array contains information about the defined probes */
PROPANELogEvent | nfo propane_| og_event _info[n] =

{

/* Each probe nust be defined with a |ine as shown bel ow. */
{ handl e, name, channel },

b

/* This array is used by the library during run-tine */
PROPANELogEvent Dat a propane_| og_event _dat a[ n];

The variablepr opane_no_of | og_event s contains the number of defined
event probes in the event probe information and data arteigsvery important that
the arrays contain exactly the number of entries as spedaifitals variable.

The arraypr opane_| og_event _i nf o contains information about the de-
fined event probes that will not change over time. For eveenegprobe that is to be
inserted into the system, there must be one entry contathmdpllowing informa-
tion:

e handle
e Name
e channel
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The only difference between variable probes and event prisbm this point of
view is that event probes do not havéype That is, all events are considered to be
type-less. The remaining information works as describeddoable probes above.

The arraypr opane_I| og_event _dat a contains information about the de-
fined event probes that will be defined during the setup psooéshe PROPANE
Library and may change during the execution of experimenlss array only has
to be declared in the PROPANE configuration source file alitation will be done
during the setup process of the PROPANE Library.

The following shows how event probes are defined in the PROPédwhfigura-
tion source file and how they are inserted into the source obtlee target system.
This example defines two probdsAl det ect i on andEA2_det ecti on.

/* We have two event probes. This is entered in the
* PROPANE configuration source file.
*/

#defi ne P_EAl_DETECT (0)

#define P_EA2_ DETECT (1)

unsi gned int propane_no_of | og_events = 2;

PROPANELogEvent | nf o propane_| og event info[2] =

{
{ P_EA1_DETECT, "EA1l detection", "" },

{ P_EA2 DETECT, "EA2_detection", "" },
Hs

PROPANELogEvent Dat a propane_| og_event data[ 2];

When all the desired event probes have been defined in the RAROPonfig-
uration source file, they must be inserted into the targetesys The function in
the API of the PROPANE Library that is used for variable pmhas the following
prototype:

PROPANERet ur nCode
propane_I| og_event ( PROPANEEvent I D handl e );

This function only takes one parametéiand| e, which is the handle of the
probe created in the PROPANE configuration source file. Thetion returns either
PROPANE K if everything went fine, oPROPANE_FAI LURE if something went
wrong. Errors during this function call can only occur if tbentents of the probe
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information and data structures have been corrupted. ldene €xample of how the
instrumentation for event probes may look in the source cbdee target system.

[* This is how the function calls are nade in the
* target system source code.

*

PROPANERet ur nCode probe_rc;

/* Run Executable Assertion 1 */
i f( assertC( SetValue ) == ERROR DETECTED)
{ probe rc = propane_| og event( PROBE _EAl DETECT );
i f( PROPANE_OK == probe_rc )
{ /* Everything went fine! */
}
el se
{
/* Somet hi ng went wrong! */
}
}

Note that the steps above are not sufficient for getting a wgrkariable probe
during experiment execution, the probe must also be aetivat the Experiment
Description (see Section A.5 of this appendix).

PSI can be used to create the PROPANE Configuration sourcé&ditevariable
probes and event probes, all that is needed is entries inRRKEPRNE Instrumenta-
tion Setup file for PSI. In this file, a variable probe is spedfas follows:

/1l This is entry for a variabl e probe
>begi n vari abl e probe

>handl e <handl e>

>nanme <nane>

>t ype <probe type>

>sj ze <size_count> <size_type>
>end

Note that the target variable of the probe is not specified.hiEne link between
the probe and the actual variable that is to be logged has tadole manually, i.e.,
using PSI to generate the PROPANE configuration source ifileegjuires that the
calls to the PL API be inserted manually. An event probe isifijgd using an entry
in the PROPANE Instrumentation Setup file as follows:
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/1l This is entry for an event probe
>begi n event probe

>handl e <handl e>

>name <name>
>end

As was the case for the variable probes, the calls to the PLmt still be
inserted manually.

Annotated insertion of probes

By annotating the target system, PSI can be used to autathaiicsert calls to the
PL APl in the target source code and to generate the PROPANIigacation source
file. An annotation for variable probes and event probes mfollows:

/* This is an annotation for a variable probe */
[ *@>vprobe <handl e> <target> <type> <size_count> <size_type> */

/* This is an annotation for an event probe */
[ * @>epr obe <handl e> */

By having the annotations within ordinary C comments, adsah C compiler
can be used for the original target source code and the aromstavill not affect the
software. If the annotated source is run through PSI insteathstrumented version
of the file and entries in the PROPANE configuration sourcenfilebe generated.

The annotation for variable probes and event probes do netdnaeparate filed
for the name of the probe (remember that the handle and the n&mprobe need
not be the same). For variable probes PSI will automaticsditythe name of the
probe to the same as the name of the target and for event ptbleasame will be
the same as the handle.

For example, the annotations:

[ *@>vprobe P_SETVALUE Set Val ue PROPANE_I NT */
[ *@>vprobe P_I SVALUE | sVal ue PROPANE_I NT */
[ *@>vprobe P_T ARRAY t[] PROPANE_AREA 10 Type_t */

would generate the same structures in the PROPANE configaréile as those
shown for variable probes in the previous section on mamsaktion. Note that size
information is only necessary if the probed variable is eftypePROPANE AREA.

In that case, the size is specified with a number and a type.ntliher specifies
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how many items of the specified type the chosen target rapsesk the example
abovet [ ] is thus the size of 10 structures of typgpe t . One may also specify
the type as beinbyt es if no specially defined type exists.

When it comes to event probes, the annotations:

| * @>eprobe P_EA1 DETECT */
| * @>epr obe P_EA2_ DETECT */

would create similar structures in the PROPANE configuraiource file as those
shown for event probes in the previous section on manuaittiose The main dif-
ference is that the handle and the name of the event probbanilie same.

If several annotations were to be made for the same variaoleepor event
probe, only one entry will be made in the PROPANE configuraource file.
However, each annotation will generate a call to the PL ARhatsame place as
the annotation.

A.1.2 Instrumenting for Fault Injection

Fault injection with PROPANE requires three tasks:

1. Defining the faults in the PROPANE configuration source file
2. Inserting the faults and fault activation guards intotrget source code, and

3. Activating faults in theexperiment Description@lescribed in Section A.5 of
this appendix).

As the injected faults are modifications of the actual sowade of the target
system, the only limitation on what a fault can actually bedsby the imagination
of the experimenter. This, however, makes the instrumientaf the target system,
with regard to faults, a manual task. PSI can only be useddpeigting the neces-
sary data structures in the PROPANE configuration sourceXiléaults are always
present in the system at run-time, however, in an inactate s he faults that are to
be injected in an experiment are activated inExperiment Descriptions

If fault injection is used, each fault must be specified inRPROPANE configu-
ration source file using the following data items:

/* This variable contains the nunber of defined faults */
unsi gned int propane_no_of faults = n;

/* This array contains info about the defined faults */
PROPANEFaul t I nfo propane_fault_info[n] =

{
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/* EBach fault nust be defined with a |line as shown bel ow. */
{ handl e, name, channel },

The variableor opane_no_of _f aul t s contains the number of defined faults
in the fault information array. It is very important that theay contains exactly the
number of entries as specified in this variable.

The arraypr opane_f aul t _i nf o contains information about the defined
faults that will not change over time. For every fault, therest be one entry con-
taining the following information:

e handle
¢ Name
e channel

Thechannelwill be created automatically during the PROPANE Libraryuge
phase and is not entered in the PROPANE configuration sodeceltehandleis
an integer value and is used in the function call made fromatget system to the
PROPANE Library checking the fault activation guard. THandlemust be equal
to the index in the array, i.e., the first fault must have hafdithe second handle
1, and so on. The!" fault must have handlér — 1). It is a good idea to create
a pre-processor constant (i.e.#def i ne constant) for each handle and use that
instead of the numerical values in the function calls in H#rgdt system.

The nameof the fault may be any normal C-string not containing whpace.
This name must then be used in the PROPANE description fieesc({dbed in Sec-
tion A.5 of this appendix) to activate the fault during expent execution.

The following is an example showing how faults are definechanPROPANE
configuration source file.

/* W define two faults. This is entered in the
* configuration source file.
*/

#define F_001 (0)

#define F_002 (D

unsi gned int propane_no_of faults = 2;
PROPANEFaul t I nf o propane_fault_info[2] =

{
{ F 001, "Fault_f001", "", NULL },
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{ F_002, "Fault_f002", "", NULL },
b

When all the desired faults have been defined in the PROPANEgtmation
source file, the corresponding faulty code must be insentmlthe target system
and guarded by a fault activation guard. The function in tid &f the PROPANE
Library that is used as the activation guard has the follgvarototype:

PROPANERet ur nCode
propane_fault_is_active( PROPANEFaul t|I D handl e );

This function only takes one parametegndl e, which is the handle of the fault
defined in the PROPANE configuration source file. The funatearns eithe¢ Ou)
if the faultis notactivated (or the specified handle does not exist in the nmddion
structure), o 1u) if the faultis activated.

The following is an example showing how a fault is insertet e target sys-
tem, and how the fault activation guard is placed:

/* This is how the function calls are nmade in the
* target system source code.

*/

i nt Set Val ue

if( (lu) == propane fault is active( F_001 ) )

{
/* Fault F_001 is activated. Execute faulty code. */
}
el se
{
/* Fault F_001 is not activated. Execute correct code. */
}

Note that the steps above are not sufficient for injectinti$ahe faults that are
to be injected must also be activated in the Experiment Desun (see Section A.5
of this appendix).

Although the faults have to be manually inserted into thgetsource code,
PSI can be used to generate the required structures in th@ARRO configuration
source file by adding entries for faults in the PROPANE Instntation Setup as
follows:
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/1 This is an entry for a fault
>pegin fault |ocation

>handl e <handl e>

>pane <nane>
>end

The calls to the PL API as well as the fault code must still e=rted as de-
scribed above.

A.1.3 Instrumenting for Error Injection

Error injection with PROPANE requires the specificationaiif things:

Error types
Error triggers
Error targets, and

A wnPRE

Injection locations.

Error typesdescribe the types of errors that are to be injected and ansatly
specified in the Experiment Descriptions (see Section Athisfappendix). How-
ever, PROPANE allows the user to implement his or her owrr égypes, in case the
built-in types should not be sufficient. How this is done isatéed in Section A.4.

Error triggers say when a specific injection is to take place and, if applesab
with which period. The error triggers are normally specifiethe Experiment De-
scriptions (see Section A.5 of this appendix). However, as the case for error
types, PROPANE allows the user to implement his or her owardriggers, in
case the built-in triggers should not be sufficient. How thidone is described in
Section A.4.

Theerror targetis the variable (or rather, the memory location) where therer
IS to be injected, and the injection location is where theahpn itself is to be
performed. The target is specified in the call to the API fiomcbf the PROPANE
Library performing the actual error injection.

Injection locationsare logical locations in the target system where error injec
tions can take place. The link between these logical looatand the physical lo-
cations in the target source code are handled by the usennmstting the target
system. The same injection location may actually corredgonseveral physical
locations in the target source code.
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By dividing the setup of error injections into these fourtpathe number of
items that have to be specified can be reduced and the expéginfreedom is in-
creased. For example, if an error type is very common for ntdfigrent error
targets, it is sufficient to specify one error type and use énior type on all error
targets.

Manual insertion of error locations

If error injection is used, the configuration source file memttain the following
data items:

/* This variable contains the nunber of defined |ocations */
unsi gned i nt propane_no_of | ocations = n;

/* This array contains info about the defined | ocations */
PROPANELocat i onl nfo propane_| ocation_info[n] =
{
/* Each location nust be defined with a |line as shown bel ow. */
{ handle, name, filenane, file pointer },

The variablepr opane_no_of _| ocat i ons contains the number of defined
injection locations in the error information array. It issy@mportant that the array
contains exactly the number of entries as specified in thiabie.

The arraypr opane_Il ocat i on_i nf o contains information about the de-
fined injection locations that will not change over time. Ewery injection location,
there must be one entry containing the following informatio

e handle

e Name

e filename
e file pointer

The handleis an integer value and is used in the function call made froen t
target system to the PROPANE Library to perform the actuadrenjection. The
handlemust be equal to the index in the array, i.e., the first inpectocation must
have handl®, the second handle and so on. The!” injection location must have
handle(n — 1). Itis a good idea to create a pre-processor constant (#elei ne
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constant) for each handle and then use that constant instelae actual numerical
values in the function calls in the target system.

The nameof an injection location may be any normal C-string not comnie
white space. This name must then be used in the PROPANE pigserfiles (de-
scribed in Section A.5 of this appendix) when defining whigjections are to be
made during experiment execution.

Thefilenameandfile pointerwill be created automatically during the setup pro-
cess of the PROPANE Library and are not entered in the PROPZdxiEguration
source file.

The following is an example of how event probes are definederPROPANE
configuration source file and how they are subsequentlytedarto the source code
of the target system.

/* We have two error injection |locations. This is entered in the
* configuration source file.
*/

#define EL_CALC (0)

#define EL_V_REG (1)

unsi gned i nt propane_no_of | ocations = 2;

PROPANELocat i onl nfo propane_l ocation_info[2] =
{

{ EL_CALC, "Location_CALC', "", NULL},

{ EL_V_REG "Location_V_REG', "", NULL},

1

When all the desired locations for error injections havenbdefined in the
PROPANE configuration source file, the corresponding haylell software traps
must be inserted into the target system, i.e., the logiczdtions defined in the
PROPANE configuration source file have to be linked to phydamzations in the
target source code. The function in the API of the PROPANEdripthat is used
for error injections has the following prototype:

PROPANERet ur nCode

propane_i nj ect ( PROPANELocat i onl D handl e,
void * val ue,
PROPANEVal ueType type );

The parametehandl e is the handle of the injection location created in the
PROPANE configuration source file. The pointeal ue is the address to the vari-
able that is to be subjected to error injection, i.e., theretigrget. The parameter
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t ype tells PROPANE the type of the error target. This is neededum®etargets of
different types require different actions for error injeat For instance, injecting an
offset of+5 into an integer is different from injecting the same offsgbia floating-
point value. The various types available in PROPANE arertsestt in Section A.1.1
of this appendix. The function returns eitieROPANE K if everything went fine,
or PROPANE_FAI LURE if something went wrong. Errors during this function call
can only occur if the contents of the information and datacstires for the injection
locations have been corrupted.

If, in the experiment descriptions, several errors are ddfin for the same in-
jection location, all of these errors will be injected wittetsame call to the injection
function. Also, note that the same injection location mayubed for several error
targets, and that each logical injection location may spoad to several physical
location.

Here is an example of how the instrumentation for an err@ctipn may look
in the source code of the target system:

[* This is how the function calls are nade in the
* target system source code.
*/
i nt Set Val ue
PROPANERet ur nCode i nj ection_rc;

injection_rc = propane_inject( L_CALC,
&Set Val ue,
PROPANE_I NT ) ;
i f( PROPANE_COK == probe_rc )
{
/* Everything went fine! */
}
el se
{
/* Sonmet hi ng went w ong! */

}

Note that the steps above are not sufficient for injectingrerthe combinations
of error types, error triggers and locations (such a triglealled annjection must
also be specified in the Experiment Description (see Segtibrof this appendix).

Here, PSI can be used to create the PROPANE configurationesbla. All that
Is needed is entries in the PROPANE Instrumentation SetpoiilPSI. In this file,
an error injection location is specified using an entry alefd:
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/1 This is entry for an error injection |ocation
>pegin error |ocation

>handl e <handl| e>

>pane <nane>
>end

Note that the target data area of the error location is natispe here. The link
between the error location and the actual data area in winiohseare to be injected
has to be made manually, i.e., using PSI to generate the PRBRANfiguration
source file still requires that the calls to the PL API be ite®manually.

Annotated insertion of error locations

By annotating the target system, PSI can be used to autaihaiicsert calls to the
PL APl in the target source code and to generate the PROPANIigacation source
file. An annotation for error locations looks as follows:

/* This is an annotation for an error |ocation */
/| *@>el ocati on <handl e> <target> <type> */

By having the annotations within ordinary C comments, adsaah C compiler
can be used for the original target source code and the armmstavill not affect the
software. If the annotated source is run through PSI insteathstrumented version
of the file and entries in the PROPANE configuration sourcenfilebe generated.

The annotations for error locations do not have a separdtefbe the name
of the location (remember that the handle and the name ofaidocneed not be
the same). Instead, PSI will automatically set the nameefdbation same as the
handle. For example, the annotations:

[ *@>el ocati on EL_CALC Set Val ue PROPANE | NT */
[ *@>el ocation EL V REG | sVal ue PROPANE | NT */
would generate the same structures in the PROPANE configaréile as those
shown for error locations in the previous section on manasgrntion. Note that
size information is not provided in the annotation, not eldgpe of the target is
PROPANE_AREA. This is due to the fact that all information on the error tisat
injected at a particular location is provided in the exp@minsetup files, i.e., this is
dynamic information.

If several annotations were to be made for the same erraidoocanly one entry
will be made in the PROPANE configuration source file. Howggach annotation
will generate a call to the PL API at the same place as the atiaot




182 PROPANE — Details

A.2 Fully Automated Instrumentation of Target Systems

The previous sections describe how to instrument the smade of a target system
either completely manually or by using annotations, and tewse PSI to gener-
ate the PROPANE configuration source file. Fully automatstrumentation of a
target system with regard to variable probes and errorilmtsitan also be done by
PSI. All that is needed is a description of the modular contiposof the system
and for each module the I/O and internal characteristies, (ihe input and output
signals, and the internal static and temporary signal) alnst af source files that
implement the module. Each module in the system is specifigade PROPANE
Instrumentation Setup file as follows:

/1l This is entry for a nodule of the target system
>nmodul e
>name <nane>

>file <filel.c>
>file <file2.c>

>file <filen.c>

>i nput
>name <nanme>
>synbol <synbol nane>
>functi on <funcati on nane>
>type <type>
>poi nter (yes|no)

>end

>out put

>end

>st at e

>end

>t enpor ary

>end

>end

The parameters are the following:
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name — This is the name of the module. It is only used in the setup and
description files of PROPANE and does not require a correipgrsymbol
in the target source code.

fi | e — Each file containing source code that implements the mdtageo
be specified with &i | e parameter.

I nput — This subsection is used to specify an input signal of theuieod
out put — This subsection is used to specify an output signal of théuteo

st at e — This subsection is used to specify a state signal (i.e.ntamnal
static variable) of the module.

t enpor ar y — This subsection is used to specify a temporary signal ére.
internal non-static variable) of the module.

The signals of the module (inputs, outputs, states and tearipe) each are de-

fined using the following parameters:

e nane — This is the name of the signal.
e synbol — Thisis actual symbol in the target source code that imphtsthe

signal.

e functi on — This is the function (i.e., scope) in which the symbol can be

found. If no function is specified, PSI will look for the symbno all scopes
(including the global scope).

e t ype — This is the type of the signal. This can be one of the stantyges

used by PROPANE.

e poi nt er — This tells PSI whether the symbol is a pointer to a data area o

data area itself.

For each signal specified in in the module, PSI will add vagigirobes for

logging and error locations for injecting errors. Tianme of a signal will be the
basis of both the handles and the names of these probes andoeations. The
synbol and thet ype will be used to generate the necessary data structures in the
PROPANE configuration source file and as arguments of thetetbeariable probes

and error locations (i.e., the inserted calls to the PL APR.signals is set to be a

poi nt er, PSI will use the specified symbol directly instead of addangjto get

the address of a symbol when using it in the API calls.
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A.3 Interfacing with Environment Simulators

When executing target systems in a possibly artificial @mirent, an environment
simulator has to be provided that can provide stimuli to aaal iIeact on the out-
put produced by the target system. PROPANE can be used tmktontialization
and shut-down the environment simulator if the user pravidections which the
PROPANE Library calls during its setup process. These fanstmust have the
following interface:

PROPANERet ur nCode

ny_init_simulator( char * readout_directory,
unsi gned int experinent_id,
char * simconfig file);

PROPANERet ur nCode
my_shut down_si nul ator( void );

Three parameters are passed to the initialization funetrwhare taken from the
description files of the experiments (see Section A.5).rTéd@dout _di rectory
parameter is a string containing the path to where readoatsoabe stored. The
parameterexperi nment i d is the identifier of the current experiment. The pa-
rametersi m confi g _fil eis the name of the file with which the environment
simulator is to be initialized.

The shut-down function does not take any parameters. Thidifn is respon-
sible for shutting down any activity in the simulator andfpeming any required
clean-up (e.g., closing files that have been opened by thalimation function).

Both functions shall return eithd?PROPANE_CK if they are successful in ini-
tializing/shutting down the environment simulator, BROPANE _FAI LURE if an
error occurred. All necessary types and constants aredadvin the header file
pr opane. hincluded in the PROPANE tool suite.

There are no restrictions as to how the simulators are dedignhow the sim-
ulator setup file is formatted. PROPANE only calls the preddunctions with the
parameters and expects a return code as described abowg tfidse functions may
be implemented as an interface/wrapper level between PRBR&d the environ-
ment simulator, i.e., using the interface to PROPANE on otke @s the prototype
of the function) and the interface of the environment sirtaulan the other side (in
the body of the function).

In order to let PL know which functions to call, the followimgformation has to
be provided in the PROPANE configuration source file:
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/* Pointers to the initialization function and the shut-down
* function of the environnent sinulator.
*/
PROPANEENVSI m ni t Fptr propane_init_env_simfptr =
my_env_siminit_function;

PROPANEENV Si nShut downFpt r propane_shut down_env_sim fptr =
ny_env_si m shut down_functi on;

These data structures can be automatically added to the RREOEbnfiguration
source file by adding the following to the PROPANE Instruraéioh Setup file used
by PSI:

/1l This is the entry for the environnment sinmulator
>envi ronnment si nul at or

>name S| M TEST

>init my_env_siminit_function

>shut down ny_env_si m shut down_functi on
>end

The parametenane is used by PROPANE in the readout files to identify the
channel created by the environment simulator. The remgimmo parameters,ni t
andshut down, are used to specify the user provided functions.

A.4 Adding Error Types and Error Triggers

In addition to the built-in error types and error trigger®ypded by PROPANE,
a user may specify user error types (called error injectansl) user error triggers.
Both error injectors and error triggers are specified astions. Error injectors have
the following interface:

unsi gned char

my_error_injector( PROPANELocationl D | ocati on,
void * val ue,
PROPANEVal ueType type,
PROPANEError I D error _id,
doubl e parl
doubl e par2 );

The parameter ocat i on is the identifier of the injection location where this
trigger is used in this particular call. The target for injen is pointed to by al ue,
and the target type is specifiedtiy pe. This type is one of the standard PROPANE
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types. The parameter r or _i d is the identifier of the error that is to be injected.
The parameterpar 1 andpar 2 are used to send special parameters to the error
type. The interpretation of the parametpisr 1 andpar 2 is totally user-defined.
The function shall returd if the injection was successful, afdotherwise.

Error triggers have the following interface:

unsi gned char

nmy_error_trigger( unsigned int |ocation,
void * val ue,
PROPANEVal ueType type );

The parametel ocat i on is the identifier of the injection location where this
trigger is used in this particular call. The source valuetha trigger is pointed to
by val ue, and the type of the source is specified ype. This type is one of the
standard PROPANE types. The function shall retunhian error is to be injected,
l.e., if the trigger is released, afdotherwise.

User error injectors and user error triggers have to be pédan the PROPANE
configuration source file. Error injectors are specified wht following data struc-
tures:

unsi gned int propane_no_of user_injectors = n;

PROPANEUser | nj ector I nfo propane_user _injector_info[n] =

{

/* Each user injector nust be defined with a line as bel ow. */
{ handl e, name, function },

The variablepr opane_no_of user _i nj ect or s contains the number of
defined injectors in the injector information array. It igyw@mportant that the array
contains exactly the number of entries as specified in thiaie.

The arraypr opane_user _i nj ect or _i nf o contains information about the
defined injectors that will not change over time. For evemrusjector, there must
be one entry containing the following information:

e handle
e name
e function
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The handleis an integer value and is used to identify the injector mady
in PROPANE and must be equal to the index in the array, i.e. fitlst injector
must have handle, the second handlé, and so on. The'” injector must have
handle(n — 1). It is a good idea to create a pre-processor constant (#ele&i ne
constant) for each handle and then use that constant instele actual numerical
values in the function calls in the target system.

Thenameof a user injector location may be any normal C-string notammg
white space. This name must then be used in the PROPANE pligscrfiles (de-
scribed in Section A.5 of this appendix) when defining whiatoes to inject during
experiment execution.

Finally, thefunctionis the name of the function implementing the user injector.
This function is of course written by the user.

Error triggers are specified with the following data struetuin the PROPANE
configuration source file:

unsi gned int propane_no_of user_triggers = n;

PROPANEUser Tri gger | nfo propane_user _trigger_info[n] =
{

/* Each user trigger nust be defined with a Iine as bel ow */
{ handl e, name, function },

As can be seen, the structures are very similar to the stascused for user
Injectors, and the definitions of the various parametersetgally the same. Thus,
please see the explanation of the parameters in the usetoingructures for details.

Instead of entering the data structures required for ugestors and user triggers
manually into the PROPANE configuration source file, theolelhg entries in the
PROPANE Configuration Setup file can be used with PSI:

/1l This is an entry for a user injector
>user injector

>handl e <handl e>

>nanme <name>

>functi on <function>
>end

/[l This is an entry for a user trigger
>user trigger
>handl e <handl| e>
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>nane <nane>
>functi on <functi on>
>end

A.5 Description Files for PCD and PL

The PROPANE Campaign Driver and the PROPANE Library are petising a
number of description files as illustrated in Fig. A.2.

Figure A.2: Organization of description files for PROPANELge

This section will describe the format these descriptiorsfildote that as environ-
ment simulators are external to PROPANE, the format of tiiteeis not specified
by PROPANE, but rather the designer of the simulator or thexr 0§ PROPANE.
The description files are all plain ASCII text files and contaiset of parameters,
one parameter per line. If several parameters are specifiiteasame line in a file,
only the first one on that line will be recognized. All commarsdart with a>’in
the leftmost position of the line followed by the parametame. Lines not starting
with a ’>" are ignored by PCD and PL.

A.5.1 Database Descriptions

The top file in the hierarchy is tHeatabase DescriptionThis file is used for setting
up the PROPANE Campaign Driver in order to execute expetisndrne format of
this file is as follows:

>dat abase <identifier>
>work directory <directory>
>r eadout directory <di rectory>
>canpai gn <canpai gn description file>

The parameters are the following:
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e dat abase — This parameter is a numerical value which is used for giving
different databases individual identifications. The alotalue has no practical
meaning to PROPANE. It exists as a convenience to the user.

e Wor k di rectory — This parameter tells PROPANE where all the remain-
ing setup files can be found. This is also where all log files kgl stored
during execution of experiments.

e readout directory— This parameter tells PROPANE where to store all
obtained readouts.

e canpai gn — The name specified here will be used by PROPANE as the file
name of a&Campaign Description

The first three parameters (igkat abase,wor k di r ect or y, andr eadout
di r ect or y) have to be specified before any campaigns can be listed. RREP
will look in the specified work directory for th€Eampaign Descriptionseferred to
(with canpai gn) in the Database DescriptionDuring experiment execution, all
log files will be placed in the work directory and all readoulgdiwill be placed in
the readout directory. The file extension usedDatabase Descriptions . pdd.

A.5.2 Campaign Descriptions

The second level in the hierarchy contains @ampaign DescriptionsThese files
are also read by the PROPANE Campaign Driver, as was the ¢stheDatabase
Descriptions The format of these files is as follows:

>canpai gn <identifier>

>execut abl e <name>

>execution wi dth <nunber >

>experi nment <experinment description file>
>use <fil enane>

The parameters are the following:

e canpai gn — This parameter is a numerical value which is used for giving
different campaigns individual identifications. The attadue has no practi-
cal meaning to PROPANE. It exists as a convenience to the user

e execut abl e — This parameter tells PROPANE the name of the executable
file to be used during execution of experiments.
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e executi on w dt h — This parameter is the maximum number of exper-
iment processes that will be run simultaneously. On conmputdhere the
target executable does not take 100 percent of the CPU, & gidater than
1 may shorten the time required to execute the entire campaig

e experi ment — The name specified after this parameter will be used by
PROPANE as the file name of &xperiment Description

e use — This parameter tells PROPANE to use the specified file indingpoaign
setup process. This parameter works similar to#thac| ude pre-processor
directive in C.

The first three parameters (i.eanpai gn, execut abl e, andexecuti on
wi dt h) have to be specified before any experiments can be liste@PRRE will
look in the directory specified as the work directory in thatabase Description
to find any setup files referred to in til@@ampaign Description The Experiment
Descriptionslisted in the campaign will be used during the execution @rpents
in order to set up the PROPANE Library in the target execetabhe file extension
used forCampaign Descriptions . pcd.

A.5.3 Experiment Descriptions

The third level (and final) in the hierarchy consists of Exg@eriment Descriptions
These files are read by the PROPANE Library (linked to theetaeyecutable) in
order to set up a particular experiment. The file extensicd Usr Experiment
Descriptionsis . pxd and the format of these files is as follows:

>experi ment <identifier>

>si mul at or <fil enane>

>pr obe (<nanme>| ALL)

>error <nane> <type> <paraneter 1> (<paraneter 2>)
>error injection <l ocati on> <error nane> <type> <paraneter>
>fault injection <fault nane>

>use <fil enane>

The parameters are the following:

e experi nment — This parameter is a numerical value which is used for giv-
ing different experiments individual identifications. Taetual value has no
practical meaning to PROPANE. It exists as a conveniencegaiser.
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e si mul at or — If an Environment Simulator (or at least an interfacingeldy
has been linked to the target executable, this parametebearsed to tell
PROPANE the name of the setup file to be used in the initiadinadf the
Environment Simulator for this particular experiment.

e pr obe — This parameter is used to activate a probe that has beetenhgato
the source code of the target system. The user may choosévata@ach
probe individually (using multiplgpr obe parameters, one for each probe to
activate) or activate every available probe at by ugihg instead of a probe
name. Although variable probes and event probes are twndigntities in
PROPANE, the activation of them looks identical.

e error — This parameter defines a specific error type that may betagec
into the target system during the experiment. more infolwnategarding this
parameter is found below.

e error injection-—This parameter is used for setting up the injection of
an error during the experiment. More information regardimg parameter is
found below.

e fault injection-This parameter is used for activating a fault that has
been inserted into the source code of the target system.

e use — This parameter tells PROPANE to use the specified file in xipere
iment setup process. This parameter works similar to#hecl ude pre-
processor directive in C.

Theexper i nent parameter must be specified before any other parameters are
specified. Thesi nul at or parameter is optional (depending on whether an Envi-
ronment Simulator is linked to the target executable or.nBi)ring initialization,
the PROPANE Library will call an externally (i.e., user) pided function in order
to set up the Environment Simulator. The file name specifiéer af nul at or
is passed as a parameter to this function. If no probes aratsct usingpr obe,
the readout files generated during experiment executionneil contain any data
gathered by the probes in the target system. e parameter may help in modu-
larizing theExperiment Descriptionas one may choose to have, for instance, probe
activations and error types in separate files. If multiplpeginents are to use the
same set of probes and error types, they can allyast the same files for probe
activations and error type definitions. This increases thityato overview (and
change) the total setup.

Theer r or parameter has several information fields. Kmanme> field is the
alphanumeric name of the error type and follows the spetidica of nhormal C-
strings. The<t ype> can be one of the following:
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E_SETM N- Set error target to the minimum value that the type of thgetar
in question can hold. This error type does not take any paeme

E SETMAX- Set error target to the maximum value that the type of thgetar
In question can hold. This error type does not take any parme
E_SETVALUE — Set error target to a constant value. The constant value is
specified inkpar anet er 1>. <par anet er 2> is not used.

E_FACTOR- Multiply the current value of the error target with a factbhe
factor is specified irkpar anet er 1>. and<par anet er 2> is not used.
E OFFSET — Add an offset to the current value error target. The offset i
specified inkpar anet er 1>. <par anet er 2>is not used.

E FACTOR_AND_ OFFSET — First multiply the current value of the error tar-
get with a factor, specified Kpar anmet er 1>, and then add an offset, spec-
ified in<par aneter 2>.

E OFFSET_AND FACTOR- First add an offset to the current value of the
error target and then multiply with a factor. #par anmet er 1> the offset
Is specified, and the factor is specifiecdpar anet er 2>.

E BI TFLI P — Flip bits in the bit-vector representation of the errogédr
The bits to flip are specified as a bit-mask<par anet er 1>. This error
type does not usepar anet er 2>.

E_BI TSET — Set bits in the bit-vector representation of the errordarghe
bits to set are specified as a bit-maslipar anet er 1>. This error type
does not usepar anet er 2>,

E BI TCLEAR- Clear bits in the bit-vector representation of the erraget
The bits to clear are specified as a bit-maskjpar anet er 1>. This error
type does not usepar anet er 2>.

E SETVALUE_ A - The equivalent o SETVALUE but for variables that
are of typePROPANE_AREA. The value specified ikpar aneter 1> is
the offset from the start of the area, andar anet er 2> is the value to
which the memory location shall be set. The start of the asespécified in
the call to the injection function.

E _BI TFLI P_A - The equivalent oE_BI TFLI P but for variables that are
of type PROPANE_AREA. The value specified irpar anet er 1> is the
offset from the start of the area, arghar anet er 2> contains a bit-mask
indicating which bits to flip. The start of the area is spedifiethe call to the
injection function.

E BI TSET_A - The equivalent oE_BI TSET but for variables that are of
type PROPANE _AREA. The value specified idpar anet er 1> is the offset



A.5. Description Files for PCD and PL 193

from the start of the area, argbar anet er 2> contains a bit-mask indicat-
ing which bits to set. The start of the area is specified in #ild@the injection
function.

e E Bl TCLEAR_A - The equivalent oE_Bl TCLEAR but for variables that
are of typePROPANE_AREA. The value specified ikpar anet er 1> is
the offset from the start of the area, andar anet er 2> contains a bit-
mask indicating which bits to clear. The start of the aregyecsied in the
call to the injection function.

e E USER - Instead of using one of the built-in error injectors, therunay
implement his or her own injectors. These injectors are @mgnted as func-
tions and the name of the function is specifieckpar anet er 1>. This
error type does not usepar anet er 2>,

The parameteerror i njection specifies an actual injection to be per-
formed during the execution of an experiment. An injectienspecified with a
number of information fields. Thel ocat i on> specifies where the error is to
be injected, i.e., in which of the predefined injection lomas in the target system
this particular injection is to be made. Tker r or nane>is the name of an error
type specified as described above. &g/ pe> can be one of the following:

e | _ALWAYS-The error is injected every time the specified locationashed.
The information fielokpar anet er > is not used.

e | _ONCE _TI ME — The error will be injected once at the specified location
when the PROPANE timer reaches the value specifietpar anet er >.

e | _ONCE_CYCLE - The error will be injected once at the specified location
when that location has been reached a certain number of.tifimes number
Is specified irkpar anet er >.

e | PERI OD TI ME- The error will be injected periodically at the specified
location with a period specified ikpar anet er >. The period is counted
based on the PROPANE timer. The first injection will be madefitst time
the PROPANE timer reaches the specified period value.

e | PERI OD _CYCLE- The error will be injected periodically at the specified
location with a period specified kpar anet er >. The period is counted as
the number of times the location is reached. The first irgecwill be made
when the location has been reached as many times as spewcitiesl period
value.

e | PROBABI LI TY - The error will be injected at the specified location with
the probability specified irkpar anmet er >. The PROPANE Library uses
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the built in random number generator of the C Standard Lybfspecifically,
PROPANE uses the functioss and() andr and() ) to calculate a proba-
bility value for comparison with the specified probability.

e | USER- Instead of using one of the built-in error triggers, therusay im-
plement his or her own triggers. These triggers are impléeaeas functions
and the name of the function is specifiecipar anet er >.

A.6 Analysis Scripts for PDE

The PROPANE Data Extractor is used for analyzing and extrgctata in experi-
ment readouts. As it can perform a number of different tasksguires a description
file for analysis. One such description file per experimetaloEse to be analyzed is
required. The file extension used fnalysis Scriptss . pas and the format of the
file is as follows:

>anal ysis directory <directory>

>dat abase readouts <fil enane>

>gol den run conpari son (yes| no) [ (NONE| <error margins>)]
>propagation i nformati on (yes|no)

>canpai gn range <first> <last> <injection channel >
>i nt erest channel <channel nane>

>i njection information (yes| no)

>event information (yes| no) (<start>|start) (<end>|end)
>channel | ogs (yes| no)

Theanal ysi s directory tells PDE where the files generated by the anal-
ysis and extraction actions are to be placed. @héabase readouts is the
name of the top file in the readout hierarchy (i.e., thedr -file). After these to
parameters there are a number of parameters regardingdlysiaractions.

The parametegol den run conpari son tells PDE whether it shall per-
form Golden Run Comparisorns not (choose eitheyes or no). If this action is
chosen, one may then choose to es®r marginsby providing the name of the
file containing the error margin setup (the format of this Malescribed in Sec-
tion A.6.1). If no error margins are to be us®NE is specified instead.

Important: PDE always treats the first campaign listed in the databasso
file as the Golden Run campaign. All other campaigns will beagared to thi
one. Also, all campaigns (Golden Run as well as Injection)Rave to contai
the same number of experiments, and all experiments haventain the sam
channels (otherwise, the GRC will fail).
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The parametepr opagati on i nf or mati on is set toyes if propagation
graphs are requested. In this action, PDE will gather prapag information from
all experiments and generate propagations summaries apdgation graphs. In
order to produce propagation information, at least oagpai gn r ange and at
least onag nt er est channel have to be specified.

A canpai gn range is specified with three sub-parameters. Hife r st >
specifies the index of the campaign that is the first in theeanighe Golden Run
campaign (i.e., the first campaign referenced in the dagateaslout file) has index
Thus, the first injection campaign (i.e, the second refarenthe database readout
file) will have index1. The<I| ast > specifies the index of the last campaign in
the range. Th&i nj ecti on channel > is the name of the channel that is to be
considered the original injection location. All propagats will be measured with
this channel as starting point. PDE will generate propagatiformation for each
range specified in the description file.

In addition to the campaign ranges, PDE also needs to knoehndtiannels to
consider in the propagation analysis. For this, the parmmet er est channel
Is used. Each channel that is to be considered is specifietiast @&r est chan-
nel . Thus, the experiment readouts may contain a large numlmvasinels, while
a selection of these may be used in the propagation analysis.

If information regarding error injections (i.e., which ers that were injected,
locations, and injection times) is requested, theithgecti on i nf or mati on
parameter is set pes. This will generate one file for each campaign in the database
readout file (excluding the Golden Run campaign).

The parameteevent i nf ormati on tells PDE whether readouts generated
by event probes are to be extracted. If the parameter is gettpPDE will for each
campaign generate one file containing event informatioe&wh experiment in that
campaign. The sub-parameters tell PDE the range, in tinrewliach the event
information is requested. Thest art > parameter sets the timestamp at which
extraction is started. Setting this timestampstoar t will make PDE start at the
very beginning. Similarly, thecend> parameter tells PDE where to stop looking
for events. To have PDE go to the very end of the readouts;esed> to end.

The parametechannel | ogs tells PDE whether to generate log files of in-
dividual channels. If this parameter is setytes, then PDE will generate a file
which could easily be imported into a spreadsheet tool (asdlicrosoft Excel).
Warning: if channel logs are to be created, PDE will generate one filee&zh
channel and each experiment and each campaign (thus,efdneyfor instance, 10
campaigns with 10 experiments each, and in each experitnerg are 10 channels,
PDE will generate 1010- 10 = 1000 files).
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A.6.1 Error Margins for Golden Run Comparisons

When performing Golden Run Comparison, PDE can be set ugeterusr margins
for the individual variable probe channels (except RROPANE _AREA channels).
These error margins are specified in a separate error maegireich entry in that
file corresponds to the error margin of a channel. The forreatius the following:

>mar gi n <channel > <margi n type> <up> <down>

The<channel >isthe name of the variable probe channel that this errorimarg
Is intended for. The<mar gi n t ype> can be eitheABSOLUTE or RELATI VE,
and<up>/<down> are the limits used (the actual margin).

An absolute margin will set upper and lower boundaries oabs®lute error be-
tween the golden run (GR) channel and the injection run (HRnhoel. For example,
if a channel has an absolute margin of 5 up and 10 down, andlamgolin sample of
that channel has the value 100, then the injection run saafpleat channel will be
considered correct as long as it is within the range 100 - 0180 + 5, i.e. within
90 and 105. If the golden run sample were instead 200, theenangld be between
190 and 205.

A relative margin will set upper and lower bounds on the retag¢rror between
the GR channel and the IR channel. For example, if we haveaavwelerror margin
for a channel with 0.05 upwards and 0.10 downwards, and agaigh sample of
that channel has the value 100, then the injection run saafipleat channel will be
considered correct as long as it is within the range 1100 - 0.10) and 100(1.0
+ 0.05), i.e. within 90 and 105. If the golden run sample wanktead be 200, the
range would be between 180 and 210.

A.7 Setup Scripts for PSC

When setting up PROPANE, one may choose to create all désariges manually
as these are normal text files. However, as a large numbersofiggon files is
needed this may be a time consuming (and, frankly, not todtiegy task. For
this, we have the PROPANE Setup Creator which can generateikgon files and
analysis scripts given a smaller set of setup information.

#name <dat abase nane>
#wdi r <directory>
#rodir <di rectory>

#exec <fil enane>
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#wi dt h <numnber >

#prbcfg <fil enanme>

#errcfg <fil ename>

#errl st <error list file>

#1 ocl st <l ocation list file>
#t cl st <testcase list file>
#nt dl st <nethod list file>

Thedat abase nane is used for naming the various description files gener-
ated by PSC. All files will have a name starting with this namd #llowed by,
if needed, some running number and the corresponding fiensixtn for that file
type. For instance, if the name is setrtg_exp, then the database description
would get the namey_exp. pdd, the first campaign description would be called
my _exp_0000. pcd, the first experiment in the first campaign would be called
nmy_exp_0000_0000. pxd, and the analysis script for the PDE would be called
ny_exp. pas.

Thewdi r specifies the working directory, i.e., the directory whefeDP(see
parametemor ki ng di rect ory for database descriptions) will check for de-
scription files when running experiments. The descriptites fgenerated by PSC
will not automatically be placed there, this has to be donthbyuser.

Ther odi r specifies where readout files generated during experimetuex
tion should be placed by PCD and PL (see parante¢@dout di r ect ory for
database descriptions).

The executable file to be used for the setup is specified withnpaterexec.
The value specified here will be used with the paramexercut abl e in the cam-
paign descriptions generated by PSC. The execution widththe maximum num-
ber of processes spawned by PCD at any one time, is speciftadtiveiwi dt h
parameter which will be used with tlexecut i on wi dt h parameter in the gen-
erated campaign descriptions.

The parametergr bcf g ander r cf g specify which files to use for probes and
error definitions, respectively. The probe configuratioa $hall contain a list of
those probes which are to be activated during the expersrard thus, shall only
contain a list ofor obe parameters (see experiment description for a descripfion o
thepr obe parameter). Analogously, the error configuration file sbatitain a list
of those error definition to use in the injections of the ekpent. This file will,
therefore, only contain a list @r r or parameters (see experiment description for
a description of ther r or parameter). These two file, the probe configuration file
and the error configuration file will be included in the setuhvheuse parameter
in the experiment descriptions.
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The next four parameterserr| st, | ocl st, tclist, andnt dl st —are
names of files containing lists of errors, locations, tesesaand injection methods
to use, respectively. The errors specifiecemnr | st must be defined in the error
configuration file specified earlier. The locations listedsirhe defined in the instru-
mentation of the target system. The test cases listed wilideel as filenames with
thesi mul at or parameter of the generated experiment descriptions. Téiion
methods listed must be the methods described for experidesuriptions above.
All necessary parameters for each method have to be pravided

Using these for lists, PSC will create a setup where eachriexget is running
the target executable for one test case, injecting one @rrone locations using
one method. That is, if one specifies 10 errors, 10 locatib@gest-cases and 10
methods, PSC will create a setup containing 10- 10- 10 = 10000 individual ex-
periments. These will be organized in 100 - 10 = 1000 campaigns where in each
campaign, the same error is injected in all experiments. diffit@n to the injec-
tion campaigns, PSC will also create one Golden Run campagnone campaign
where the target system is run with the specified test casks@errors are injected.
These runs will be used as reference runs by PDE. The algoused for creating
description files is the following:

-- Create the database description file
creat e_dat abase_description();

-- Create the canpaign description for CGolden Run
creat e_gol den_canpai gn_descri ption();

-- Create one Golden Run for each test case
for each t in TEST CASE
create_gol den_experiment _description( t );
end for
campai gn_nunber := 0;
for each | in LOCATION
for each e in ERROR
for each min METHOD
-- Create one canpaign for each conbi nati on of
-- location, error and injection nethod.

campai gn_nunber := canpai gn_nunber + 1
creat e_canpai gn_descri ption( canpai gn_nunber )
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experi ment _nunber := 0;

for each TEST CASE
-- I'n each canpai gn, we have one experiment run
-- for each test case.

experi nment _nunber := experinent_nunber + 1
create_experinment _description( experinment_nunber, I, e, m t )
end for
end for
end for
end for

The filenames of the generate files will start with the nameifipd in thenanme
parameter described above and then have numerical valogsighe campaign
number and experiment number. For instance, the Golden Rupaign will be
namedry _exp_0000. pcd, and the third experiment of the fourth injection cam-
paign will be namedry _exp_0004_0003. pxd.

A.8 PROPANE Architecture

This section describes the internal architecture of théspEHrPROPANE that per-
form the actual experiments, i.e., the PROPANE CampaigreDi(PCD) and the
PROPANE Library (PL). We will first describe PCD and then coné with PL.

A.8.1 The PROPANE Campaign Driver

The PROPANE Campaign Driver is the main desktop part of th@PARNE tool
and consists of six objects (see Fig. A.3):

Menu Handler
Database Manager
Executor
Controller

Log Unit

Readout Unit

S T o
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Figure A.3: The internal architecture of the PROPANE Campdriver.

In Fig. A.3, the objects belonging to the PROPANE Campaigrddrare found
inside the dashed box. The other objects are external artksotibed here.

The Menu Handler is in charge of the menus presented to the Bsam here,
the user can load Database Descriptions, select campaigdsanitiate campaign
execution. When a Database Description is to be loaded, ldmaifhe specified
by the user is passed to the Database Manager, which readidetia@d sets up
the internal database. If the database is successfullypset list of the available
campaigns is returned to the Menu Handler. From this camgdag the user may
choose to select a subset of campaigns to execute or to exataampaigns.

When a set of campaigns has been selected for executiohcarisining infor-
mation about these campaigns is passed to the Executoh Wign starts the actual
execution. During the execution it displays an informasoreen and allows the user
to control the campaigns. For each campaign the Execu®updhe Controller and
starts a separate thread for the Controller.

The Controller reads information about the campaigns filoenDatabase Man-
ager and uses this information when executing the expetsndfor each Experi-
ment Description in a campaign, the Controller will spawreaviprocess in which
the target system executable file is executed. The Contudisses the Experiment
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Description and the Readout Directory on the PROPANE Liprathich is a part
of the executable. Executing each experiment in its ownge®guarantees that the
target system is reset for each experiment so that thengjantinditions are the same
for all experiments. Several processes may be startedtsin@ausly, depending on
the execution width specified in the description files.

During the execution of campaigns, the user may choose tb samntrol com-
mands via the Executor to the Controller in order to maniguthe execution of
campaigns. The user may choose to pause and continue exeautito skip the
current campaign or abort all campaigns.

The Database Manager, the Executor and the Controller alltwe support
units: the Log Unit and the Readout Unit. The Log Unit handles database log
files and campaign log files, and the Readout Unit handlesdtabdse readout file
and campaign readout files. The other units send entriesetbdy Unit and the
Readout Unit, which are then stored in the log files and theéaetfiles correspond-

ingly.

A.8.2 The PROPANE Library

The PROPANE Library is a function library enabling the PROEACampaign
Driver to communicate with the experiment processes. 4 afmtains everything
necessary for the user to instrument a target system faablarand event logging,
fault and error injection, and environment simulator cohtrThe library is to be
linked together with the target system and is mainly a passimponent. The exper-
iment executable may be executed manually outside of thieatari the Campaign
Driver in which case it asks on the console for the informaitowould otherwise
receive from the Campaign Driver.
The PROPANE Library consists of 5 objects (see Fig. A.4):

Experiment Handler
Probe Manager
Injector

Log Unit

Readout Unit

ok b e

In Fig. A.4, the objects belonging to the PROPANE Library fanend inside the
dashed box. The other objects are external and not desdrdred

The Experiment Handler is the main interface unit. It reegiinformation from
the Campaign Driver on which experiment to run and where totlpai generated
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From the PROPANE
Campaign Driver

Experiment Description
Readout Directory
______________________________________________________

' I
! I
I
! |[EXPERIMENT € '
: HANDLER X
1 : —
: Error Information | S?tup
! Injection Information Readout Data ' files
I I 1
: Log Entries : >
i INJECTOR HReadout Entries » LOGUNIT 1N
I
! I
| A ! Log
I .
' : Readout Data | files
' Probe Information | PROBE | READOUT L
i I 7| MANAGER [\] '| UNIT >
1 I I
! N . I
: Injection Calls | tmbe Calls \ Log Entries ! Reﬁdout
(I D | Lo |- ReadoutEntries | _ | fes
| 1
Target system
ji Log Entries
Simulator i Readout Entries
Setup File Environment
simulator Readout Data

Figure A.4: The internal architecture of the PROPANE Ligrar

readouts. The Experiment Handler reads the specified EwpatiDescription and
extracts the information needed for the experiment. In&drom regarding faults and
errors is passed to the Injector, information regardingvatetd probes is passed to
the Probe Handler, and the name of the simulator setup-fdadsed to the external
environment simulator. The Experiment Handler also itesahe Log Unit and the
Readout Unit so that the experiment log file and experimexdaoet file is generated.
Note that the experiment readout file is not the file in whiaghdlstual readout data
Is stored. This data is stored in a number of files, one for eaatlout collection
point (i.e., variable probe, event probe, decision pointn@ction location).

The Injector receives fault and error information from thg&riment Handler
and uses this information to set up the injections that abetperformed during the
experiment. Once it is activated, it will wait for the targgtstem to call either the
fault activation check routine or the error injection rogti When the fault activation
check routine is called, it will decide which path the exemutshall take, based on
fault activation information in the setup of the experimafithen the error injection
routine is called the errors specified for the location frolach the routine is called
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will be injected. Whenever an injection is performed, amentith readout data in
the readout file for the fault or the error location will be read

The Log Unit and the Readout Unit are support units and workuch the
same way as their equivalents in the PROPANE Campaign Ddveire., they han-
dle the experiment log file and the experiment readout filpaetsvely. These two
units are used by the internal PROPANE units but can also &e g the external
environment simulator if it is programmed to do so.
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(Gratuitous free space. Write notes, doodle, spill coffde.whatever you want!)



