
On the Efficient Design and Testing of
Dependable Systems Software

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines
Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Oliver Schwahn, M.Sc.

aus Heppenheim an der Bergstraße

Referenten:
Prof. Neeraj Suri, Ph.D.

Prof. Karthik Pattabiraman, Ph.D.

Tag der Einreichung: 15. Februar 2019

Tag der mündlichen Prüfung: 29. März 2019

Darmstadt, 2019

D17

Oliver Schwahn: On the Efficient Design and Testing of Dependable Systems Software
Darmstadt, Technische Universität Darmstadt
Tag der mündlichen Prüfung: 29.03.2019

Jahr der Veröffentlichung der Dissertation auf TUprints: 2019

URN: urn:nbn:de:tuda-tuprints-85772

Alle Rechte vorbehalten.
© 2019

On the
Efficient Design and Testing of
Dependable Systems Software

by

Oliver Schwahn

Erklärung

Hiermit versichere ich, die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Alle
Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich gemacht.
Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde
vorgelegen.

Darmstadt, 15. Februar 2019

Oliver Schwahn

v

Abstract

Modern computing systems that enable increasingly smart and complex applica-
tions permeate our daily lives. We strive for a fully connected and automated
world to simplify our lives and increase comfort by offloading tasks to smart de-
vices and systems. We have become dependent on the complex and ever growing
ecosystem of software that drives the innovations of our smart technologies. With
this dependence on complex software systems arises the question whether these
systems are dependable, i.e., whether we can actually trust them to perform their
intended functions. As software is developed by human beings, it must be expected
to contain faults, and we need strategies and techniques to minimize both their
number and the severity of their impact that scale with the increase in software
complexity.

Common approaches to achieve dependable operation include fault acceptance
and fault avoidance strategies. The former gracefully handle faults when they occur
during operation, e.g., by isolating and restarting faulty components, whereas the
latter try to remove faults before system deployment, e.g., by applying correctness
testing and software fault injection (SFI) techniques. On this background, this
thesis aims at improving the efficiency of fault isolation for operating system kernel
components, which are especially critical for dependable operation, as well as at
improving the efficiency of dynamic testing activities to cope with the increasing
complexity of software.

Using the widely used Linux kernel, we demonstrate that partial fault isolation
techniques for kernel software components can be enhanced with dynamic runtime
profiles to strike a balance between the expected overheads imposed by the isolation
mechanism and the achieved degree of isolation according to user requirements.
With the increase in software complexity, comprehensive correctness and robustness
assessments using testing and SFI require a substantially increasing number of
individual tests whose execution requires a considerable amount of time. We study,
considering different levels of the software stack, if modern parallel hardware
can be employed to mitigate this increase. In particular, we demonstrate that SFI
tests can benefit from parallel execution if such tests are carefully designed and
conducted. We furthermore introduce a novel SFI framework to efficiently conduct
such experiments. Moreover, we investigate if existing test suites for correctness
testing can already benefit from parallel execution and provide an approach that
offers a migration path for test suites that have not originally been designed for
parallel execution.

vii

Zusammenfassung

Moderne Computersysteme, die immer intelligentere und komplexere Anwen-
dungen ermöglichen, durchdringen unseren Alltag. Wir streben eine vollständig
vernetzte und automatisierte Welt an, um unser Leben zu vereinfachen und un-
seren Komfort zu erhöhen, indem Aufgaben auf intelligente Geräte und Systeme
verlagert werden. Wir sind von dem komplexen und ständig wachsenden Software-
Ökosystem abhängig, das die Innovationen unserer intelligenten Technologien
vorantreibt. Mit dieser Abhängigkeit von komplexen Softwaresystemen stellt sich
die Frage, ob diese Systeme zuverlässig sind, d.h. ob wir tatsächlich darauf ver-
trauen können, dass sie ihre beabsichtigten Funktionen ausführen. Da Software
von Menschen entwickelt wird, muss davon ausgegangen werden, dass sie Feh-
ler enthält, und wir benötigen Strategien und Techniken, um deren Anzahl und
Schweregrad zu verringern, die mit der zunehmenden Komplexität skalieren.

Übliche Ansätze, um einen zuverlässigen Betrieb zu erreichen, umfassen Feh-
lerakzeptanz- und Fehlervermeidungsstrategien. Die Ersteren tolerieren Fehler,
wenn sie während des Betriebs auftreten, z.B. durch Isolieren und Neustarten
fehlerhafter Komponenten, während die Letzteren versuchen, Fehler vor dem Ein-
satz des Systems zu entfernen, z.B. durch Anwenden von Korrektheitstest- und
Softwarefehlerinjektionstechniken (SFI-Techniken). Vor diesem Hintergrund zielt
diese Dissertation darauf ab, die Effizienz der Fehlerisolierung für Betriebssystem-
kernelkomponenten zu verbessern, die für einen zuverlässigen Betrieb besonders
wichtig sind, und die Effizienz dynamischer Testaktivitäten zu verbessern, um der
zunehmenden Komplexität von Software Rechnung zu tragen.

Wir zeigen, dass Techniken zur partiellen Fehlerisolierung für Kernel-Software-
komponenten durch dynamische Laufzeitprofile erweitert werden können, um den
erwarteten Overhead durch den Isolationsmechanismus und den erreichten Isolie-
rungsgrad gemäß den Benutzeranforderungen zu balancieren. Mit zunehmender
Software-Komplexität erfordern umfassende Korrektheits- und Robustheitsbewer-
tungen mit Korrektheitstests oder Software-Testverfahren und SFI eine wesentlich
höhere Anzahl von Einzeltests, deren Durchführung einen erheblichen Zeitauf-
wand erfordert. Wir untersuchen unter Berücksichtigung verschiedener Ebenen
des Software-Stacks, ob moderne parallele Hardware eingesetzt werden kann, um
diesen Anstieg abzumildern. Wir zeigen insbesondere, dass SFI-Tests von einer
parallelen Ausführung profitieren können, wenn diese Tests sorgfältig entworfen
werden. Wir führen außerdem ein neues SFI-Framework ein, um solche Experi-

ix

Zusammenfassung

mente effizient durchzuführen. Darüber hinaus untersuchen wir, ob vorhandene
Testsuites für Korrektheitstests bereits von der parallelen Ausführung profitieren
können und bieten einen Ansatz, der einen Migrationspfad für Testsuites bietet,
die ursprünglich nicht für die parallele Ausführung konzipiert wurden.

x

Acknowledgments

Working towards a PhD is a long and bumpy journey. I could never have made it
this far without the support and help of the many great people that shared parts
of the journey with me and that I met along the way. I am deeply grateful for the
great times and the support from all the people at DEEDS.

First of all, I would like to thank Neeraj Suri, my advisor and mentor. Thanks
for always supporting me, providing invaluable advice, and sharing your wisdom
not only in a professional context but also on matters with which we all struggle
from time to time in our daily lives. Although I have not found the pineapple tree
yet, I always appreciated your insightful advice. Thank you for always being open
to new ideas and for building this great research group where we can all pursue
our research interests with great freedom and work together with fantastic people.

I am also very grateful to Karthik Pattabiraman for accepting to be my exter-
nal reviewer as well as to Stefan Katzenbeisser, Guido Salvaneschi, and Thomas
Schneider for being on my committee.

A big thank you to Stefan, my long-term office co-inhabitant and friend without
whom I probably would never have started this journey. Thanks for always sup-
porting and believing in me and the work we did together. You always encouraged
me not to give up and to continue improving my work. I always appreciated your
good ideas and our discussions for shaping our joint projects and papers. Thank
you for fixing my, sometimes too lengthy, texts, for spending nights and weekends
on papers with me, and for introducing me to the large variety of hop beverages.

Thank you Nico, my young friend and latest office co-inhabitant. Thanks for
always being supportive and for the occasional cheer up when I need it. Thank
you for spending nights and weekends with me working on papers and broken im-
plementations. Hacking on code and finding creative solutions to arcane technical
problems together with you was always fun. Thanks for the great discussions, for
lifting the spirits after long days of work, and our after work and weekend sessions.

Thank you Habi, my friend and office co-inhabitant since ancient times, for
taking breaks when playing the drums. Thanks for our insightful discussions on
work, life, love, and technology. Understanding The Curve and The Peak brought
me closer to enlightenment. Brainstorming with you was always productive fun,
with you adding the formal and me adding a more practical perspective. Thanks
for always being supportive and tolerating my many quirks.

xi

Acknowledgments

Thank you Tsveti for letting me take over your seat in the office; it greatly
influenced my life for the last five years. Thanks for always being helpful and full
of energy. I enjoyed our technical discussions and the joint work with students. Of
course, our conversations over a cup of coffee were also always a delight.

A big thanks to Sabine for always being supportive and helping out whenever
possible, especially with the paperwork! I always enjoyed our talks over a cup of
coffee in the morning. Thanks for bringing Haley to work, she made me smile and
provided a good morning workout. Thank you Ute for always helping me out. I
enjoyed our crazy talk on random topics of daily life. We had great times tackling
the technical difficulties and server breakdowns together. Let’s hope we never have
to rely on that backup!

Thank you Salman for our nice talks and supporting me with my karma. It’s
great that you finally joined in for our black and delicious coffee after lunch. Thanks
Heng for fun times. It’s always cheering up talking to you and hearing about your
unique point of view. Thank you Patrick for being a nice and supportive guy,
although you resist drinking coffee with me. Thanks Yiqun for always being right
on time for a Mensa-tional lunch and reminding all of us not to miss it.

I would also like to thank all my other co-authors for the great work on joint
projects and papers and all the productive discussions we had over the years.
Thank you Roberto, Domenico, and Suman. Thanks to the great students I had the
pleasure to work with! Thank you Fabsi for helping out with my overly complicated
experiment setups. Another thanks to Alex for constructing overly complicated, but
POSIX compliant, shell scripts that often worked as intended. Thank you Paddy
for diving into the depths of Linux file systems. Thanks Arun for tackling outdated
LLVM versions and nasty libraries.

A special thanks to some former DEEDSians. Thank you Thorsten for the great
and productive discussions on assorted issues of work and daily life and for the
steady st(r)eam of special, and sometimes whimsical, deals and offers from all
around the Internet. An extra big thank you for the great evenings that lifted our
spirits after long and exhausting days of work. Thanks Hatem for always being
understanding and humorous, and for tolerating my (typical?) German quirks. I
enjoyed our conversations and our after work activities. Having after lunch coffee
with you was also fun; especially, since I finally managed to convince you of the
pleasures of drinking your coffee black. Thanks Daniel for introducing me to the
Grand Giraffe and the diverse applications of bananas for comparing scales.

There have been more former DEEDS members that I will never forget. Thanks to
Ahmed, who was an office co-inhabitant of mine for a short period, for enlightening
discussions about Eigenvalues. I was very impressed that your little cactus is still
doing fine in the other office. I also want to thank Kubi for wild and sometimes
exhausting discussions on cultural differences and similarities, politics, engineering,
and many many more topics. We always had good times riding the train home

xii

together in the evening and, of course, waiting for said train in case of DB humor.
Thank you Ruben for nice conversations and lunch time fun. Thanks Jesus, it’s
always a pleasure talking to you, even if it’s not about Doctor Who! Another
thanks to Zhazira and Giancarlo. Our time together was short, but nonetheless
appreciated.

I would also like to thank my friend Christian, we had quite an intense ride
together! It was great for as long as it lasted. Always keep the Rock’n’Roll in
your heart, and remember that in the end everything will be fine. Thanks to all
the other great people and friends I have been bumping into and connecting with
throughout my journey. The people you meet along the way make the journey
a great experience, especially in times of trouble and doubts. Thank you Jannik,
Christian (the other one), Markus, Magic Michi, Thommy, and all the others.

Finally, I would like to thank my family from the bottom of my heart! I could
never have made it without your love and support. You were always there for me
when I needed you, no questions asked. I am forever grateful! A big thank you to
my Mom and Dad for always being understanding and supportive in every possible
way. Thanks Brigitte and Fritz, I have always enjoyed paying you a spontaneous
visit. The Kischl were always delicious (the holes give the additional character)
and the funny sayings often cheered me up. Thank you Mef and Marc, BBQs,
Erdbeerbowle, and our discussions have always been fun. Who would have thought
that chicken on a can of beer is so delicious! Thanks Mätt and Stefanie, may the
honey production never stall. I like to remember all our adventures, for instance,
in Ye Old Carriage Inn. Thank you Christine and Manfred, I have always enjoyed
our discussions and having good wine (or rum) with you guys. Set sail and full
speed ahead!

Oliver Schwahn
Darmstadt, March, 2019

xiii

Contents

Erklärung v

Abstract vii

Zusammenfassung ix

Acknowledgments xi

1 Introduction 1

1.1 The Software Stack . 5

1.2 Dependable Software . 10

1.3 Research Questions and Contributions 15

1.4 Publications . 18

1.5 Organization . 19

2 Profiling Driven Partitioning of In-kernel Software Components 21

2.1 Overview . 21

2.2 Related Work . 24

2.2.1 Privilege Separation . 24

2.2.2 Refactoring . 25

2.2.3 Mobile/Cloud Partitioning . 26

2.2.4 Fault Tolerance . 26

2.3 System Model . 27

2.3.1 Software Component Model 27

2.3.2 Cost Model . 29

2.3.3 Isolation Degree . 30

2.4 Runtime Data Driven Partitioning . 31

2.4.1 Static Analyses: Call Graph and Node Weights 31

2.4.2 Dyn. Analyses: Edge Weights & Constrained Nodes 32

2.4.3 Partitioning as 0-1 ILP Problem 35

2.5 Evaluation . 37

2.5.1 Experimental Setup . 37

2.5.2 Instrumentation & Profiling . 39

2.5.3 Estimation of the Platform Overhead 41

2.5.4 Partitioning Results . 41

2.5.5 Split Mode Modules . 45

xv

Contents

2.5.6 Reliability of Split Mode Modules 47

2.6 Discussion . 49

2.7 Conclusion . 50

3 Accelerating Software Fault Injections 51

3.1 Overview . 51

3.2 PAIN Experiments . 53

3.2.1 Overview . 53

3.2.2 Research Questions . 54

3.2.3 System Model . 54

3.2.4 The SFI Fault Model . 56

3.2.5 Measures for Performance and Result Accuracy 56

3.2.6 Hypotheses . 57

3.2.7 Target System . 57

3.2.8 Fault Load . 58

3.2.9 Execution Environment . 58

3.3 PAIN Results and Analysis . 59

3.3.1 Initial Results . 59

3.3.2 The Influence of Timeout Thresholds 61

3.3.3 Discussion . 63

3.3.4 Threats to Validity . 66

3.3.5 Concluding Remarks . 66

3.4 FastFI Approach . 67

3.4.1 Overview . 67

3.4.2 FastFI Execution Model . 69

3.4.3 FastFI Fork Server: Control & Monitoring of Faulty Versions 72

3.4.4 Static Analysis & Version Library Generation 76

3.4.5 Limitations . 76

3.4.6 Implementation . 77

3.5 FastFI Evaluation . 77

3.5.1 Experimental Setup . 77

3.5.2 RQ 1: Sequential Speedup . 79

3.5.3 RQ 2: Parallel Speedup . 79

3.5.4 RQ 3: SFI Result Stability . 80

3.5.5 RQ 4: Build Time Overhead . 83

3.5.6 Discussion . 83

3.5.7 Concluding Remarks . 84

3.6 Related Work . 85

3.6.1 Fault Injection (FI) . 85

3.6.2 FI Test Throughput . 86

3.6.3 Test Parallelization . 86

xvi

Contents

3.6.4 Avoiding Redundant Code Execution 86

3.6.5 Result Validity with Parallel Execution 87

3.7 Conclusion . 87

4 Towards Parallel Testing for C 89

4.1 Overview . 89

4.2 Related Work . 91

4.2.1 Concurrent Test Execution for Latency Improvement 92

4.2.2 Improving Test Latencies without Concurrency 93

4.2.3 Test Interference Detection . 93

4.3 Empirical Study: C Software in Debian Buster 93

4.3.1 Programming Languages in the Debian Ecosystem 94

4.3.2 Test Frameworks . 95

4.3.3 Test Parallelization . 96

4.3.4 Threats to Validity . 98

4.4 Safe Concurrent Testing for C . 98

4.4.1 Preparation . 99

4.4.2 Detecting Potential Test Interference 99

4.4.3 Concurrent Test Execution . 101

4.4.4 Scheduling Concurrent Test Execution 103

4.5 Evaluation . 103

4.5.1 Experimental Setup . 104

4.5.2 RQ 1: Transmutation of Legacy Tests 105

4.5.3 RQ 2: Dependencies . 107

4.5.4 RQ 3: Achieved Speed-Ups . 108

4.5.5 RQ 4: Analysis Runtime Overhead and Amortization 112

4.5.6 Threats To Validity . 113

4.6 Discussion & Lessons Learned . 114

4.7 Conclusion . 115

5 Summary and Conclusion 117

List of Figures 123

List of Tables 125

Bibliography 127

xvii

1 Introduction

Computing systems and the services they provide have become ubiquitous in
our daily lives. They take on various shapes and sizes, from small embedded
systems to large scale servers, perform a multitude of tasks, and are continuously
updated with new functions, often by means of software updates. We strive for a
fully connected and automated world in which systems and devices function and
interact autonomously for simplifying our lives and increasing comfort. This vision
is driven by an ever growing ecosystem of software that enables the increasingly
complex functions and applications we demand. The Internet of Things (IoT) is one
of the latest manifestations of this trend where all kinds of devices and physical
objects, which were traditionally not interconnected, are infused with technology
and software to enable them to interact with their environment, other devices,
and online services. We rely on personal smart devices, such as smartphones
and smartwatches, being interconnected communication hubs with permanent
connections to the Internet, not only to access the functions of the IoT, but also to
drive and organize our daily lives. The worldwide number of connected devices
is growing rapidly [Cis18], with the estimated number increasing from about
17 billion devices in 2017 to over 27 billion devices in 2022 with over 50 % of
connections being directly between devices (machine-to-machine). Moreover, we
increasingly make use of smart, AI-powered (artificial intelligence) voice assistants,
for instance, to control functions in smart homes, whose market is continuously
growing with the top five areas in 2018 being security and safety systems (e.g.,
door locks), audiovisual (e.g., connected speakers), smart energy, and software
platforms [AY18]. All these smart technologies involve an extensive amount of
software that is orchestrated in a stack of software components with the upper
layers depending on the lower ones.

This trend of computerization and automation by means of software continues in
the area of safety critical systems including applications in medical, traffic control,
railways, aviation, spaceflight, and automotive. For instance, in 2009, certain
commercial airplanes required 6.5 million lines of software code to operate and
premium-class automobiles were estimated to require around 100 million lines of
code executing distributed among 70 to 100 processing units [Cha09]. In 2019, the
amount and complexity of software in cars alone likely increased manyfold with
cars offering many software-implemented features such as drive/steer by wire and
advanced driver assistance like traffic-aware cruise control, automatic lane keeping,

1

1 Introduction

and automatic emergency braking. As the automotive industry is on the verge of
developing self-driving cars, complexity in this area will increase even more.

In order to operate correctly and satisfy user expectations, computing systems
have to provide a certain level of performance and responsiveness. For many
systems this means to provide responses to user requests within a certain amount
of time to meet user expectations [Nie94]. But in the case of real-time systems,
responses heave to be provided or certain actions be taken within well specified time
frames [Wan17]. As innovative applications require more and more computing
power and the performance of individual processing units (CPUs) is already
at its peak, mainly due to physical constraints, hardware has become highly
parallel [Rup18] and provides multiple processing units, i.e., multi-core CPUs.
Consequently, modern systems and their software are being designed and adapted
to make use of the available parallel hardware, thereby further increasing their
complexity.

In most cases, an Operating System (OS), being in the lowest levels of the software
stack, manages the hardware and provides software services that simplify the
development of software at higher levels of the stack that implements the desired
functionality of our devices. Linux is a prominent example of a versatile OS kernel
that is used in many different application scenarios spanning embedded systems,
desktops, servers, and supercomputers. In addition to being the underlying kernel
for the Android smartphone OS, which, at the end of 2018, had over 86 % market
share [IDC19], Linux is running over 35 % of the top 10 million websites [QSu19b] in
early 2019. To support these versatile usage contexts the Linux code base grew from
9.7 MSLOC1 in July 2011 (Linux 3.0) to 17.4 MSLOC in December 2018 (Linux 4.20),
which corresponds to an increase in code base size of 1.8× in 7 years. Remarkably,
56 % (5.5 MSLOC) of code in 2011 was device driver code, which enables the
OS to utilize different hardware devices (e.g. hard drives, network adapters, and
peripherals), whereas in 2018, 66.1 % (11.5 MSLOC) of the code base was dedicated
to device drivers, which means that the amount of code required to support the
growing variety of hardware grows even faster (2.1×).

With our increasing dependence on complex software and its correct composi-
tion and orchestration, the question arises if we can actually and justifiably trust
these complex systems to operate correctly and perform the expected tasks, i.e.,
are they dependable? As the software is developed by human beings and the
development process itself is subject to many constraints such as development
cost budgets in commercial contexts, software must be expected to contain defects
(often termed “bugs”). Moreover, software re-use has become common, e.g., the

1MSLOC means million source lines of code and measures the number of physical non-empty, non-
commented source code lines. The numbers presented have been generated using David A.
Wheeler’s SLOCCount tool. The Linux kernel sources that were counted have been retrieved from
the official linux-stable Git repository at git.kernel.org using the Git tags v3.0 and v4.20.

2

git.kernel.org

usage of (commercial) off-the-shelf ((C)OTS) components, which most likely contain
unknown defects, and the integration of re-used software in different application
contexts can have unanticipated side effects. Software defects have a wide range of
consequences. They can lead to simple annoyances when a user has to reboot their
smartphone, but they can also lead to severe financial losses (e.g., when spacecraft
are lost [Lev04]) and, in case of safety critical systems, even cost human lives [LT93].
For safety critical systems, international standards, such as IEC 61508 [Int10] and
ISO 26262 [Int11], are in place that prescribe development processes and quality
assurance measures to limit safety risks.

To minimize both the number and impact of defects in deployed software, i.e., to
increase its dependability, various approaches are usually combined. One general
perspective is to limit the impact of faults or defects by compartmentalization and
isolation such that the effects of such defects are contained within one compartment.
Another perspective is to improve the software quality before deployment such that
the number and severity of defects is reduced and the robustness of the software is
increased.

In many systems, certain parts or components within the software stack are
more critical than others, and the latter should not be able to hinder the former
in performing their intended function, i.e., critical components should be isolated
from uncritical ones. In an OS, an application executing in low-privilege user mode
must not block an OS service executing in high-privilege kernel mode. However,
the failure of a critical software component such as the OS kernel leads to a failure
of the system as a whole. Hence, it is desirable to keep the amount of software
that executes in such a critical context to a minimum [Rus81], thereby evening out
the increase of complexity for these critical software components. Unfortunately,
complex systems have often been designed in a monolithic way without isolation
between critical and non-critical components or with critical components being
larger than necessary. The Linux kernel is a good example for this design as it
executes its over 17 MSLOC in kernel mode although certain parts such as device
drivers have been shown to contain considerably more defects than other kernel
code [Cho+01; Pal+11], which makes them attractive candidates for isolation in
user mode as is done in microkernel OS designs [Kle+09; Lie]. However, retrofitting
an originally monolithic design with additional isolation capabilities introduces
additional runtime overhead, potentially decreasing system performance to an
unacceptable level. There is usually a trade-off between achievable degree of
isolation and performance that requires careful balancing.

As performance considerations usually impose limitations on the achievable
degree of isolation, complementary techniques are still needed to find and remove
defects. Software (correctness) testing is a time consuming part of the software
development process and can be considered a quality assurance activity. Its goal
is to find, and ultimately remove, defects in the software under test (SUT) [Bei03;

3

1 Introduction

MSB12]. In dynamic correctness testing the SUT is executed and exposed to
known inputs and the resulting responses (outputs) are compared to the expected
responses. This process itself is usually automated using software (test harness).
Each pair of inputs and responses is considered a test case. Complex software
requires a large amount of test cases for thorough testing, with many software
projects including more code dedicated to testing than for the actual application
logic [GVS17]. Test execution by itself becomes a bottleneck with increasing
numbers of test cases as running more tests naturally requires more time, slowing
down the already time consuming testing process even further.

Fault Injection (FI) [HTI97] is a complementary technique for assessing and
improving the dependability of a system under faulty conditions. FI artificially
introduces faults, e.g., bit flips in main memory, while observing the reaction
of the system. FI is well established for assessing fault tolerance mechanisms
and is prescribed by international standards for safety-critical systems such as
ISO 26262 [Int11] for automotive systems. Whereas traditional FI aims at emu-
lating hardware faults, software fault injection (SFI) [DM06] aims at emulating
faults or defects within the software itself. SFI emulating representative residual
faults [CN13; Nat+13], i.e., defects that have not been found during testing and are
therefore present in deployed software, is especially useful for a realistic assessment
when software is re-used and OTS components are integrated. However, similarly
to classic testing, the increased complexity of software necessitates an increasing
number of FI experiments for a comprehensive assessment, slowing down the
overall software development pace.

On this general background, this thesis

1. develops a profiling driven approach for the bi-partitioning of in-kernel
software components to explore the trade-off between runtime performance
and degree of code isolation,

2. develops approaches and techniques to reduce the execution latencies for SFI
tests by avoiding unnecessary overheads caused by isolation mechanisms,
avoiding redundant work, and exploiting parallel hardware, and

3. investigates the potential for parallel testing of software for the reduction
of test execution latencies within a popular Linux-based OS ecosystem and
proposes strategies to further benefit from parallel hardware.

The developed approaches and techniques aim at improving the efficiency of
dependability improving activities during software development and of retrofitted
isolation for monolithic designs. The studies and experiments to develop and
evaluate these techniques have been conducted on software that can be broadly
considered to be at the lower levels of the software stack, such as the Linux kernel,
as these components are essential to the dependability of a system as a whole.

4

1.1 The Software Stack

CPU SoC SSD WiFi
Hardware

Kernel Mode

User Mode

Display Driver WiFi Driver

Networking

File Systems

Memory Management

Process Management

Power Mgmt…

…

libc libm pthread libssl libpcrelibz

Application

Language Frameworks

(Java VM+RE, Node.js,

Perl, Python Interpreter)

Tools & Utilities

(shell + basic commands,

compiler, linker, …)

Application Frameworks (Qt, GTK, Angular, …)

Application Application

Device Drivers

Kernel Services

and Subsystems

System Libraries

Basic System

Services

Application

Services

Figure 1.1: Illustration of a Software Stack Including Hardware Layer

In the remainder of this chapter, we give some background on the complexity of
the software stack in Section 1.1 and discuss some more background on dependable
systems and software in Section 1.2.

1.1 The Software Stack

In this section, we detail the notion of software stack and software components that
underlies the work presented in this thesis. Moreover, we argue why we consider
the lower levels of the stack especially important and interesting for research.

Figure 1.1 is a simplified illustration of an example software stack. For instance,
the stack for a web service executing on a typical multi-core x86 server may look
like this. At the very bottom, although not pure software in the strict sense2, is
the hardware platform on top of which the software runs. Immediately above
the hardware layer, the operating system (OS), more precisely the OS kernel, is
located. In general, the OS provides an abstraction from the hardware as well as
management and coordination of resources. It simplifies application development
and enforces security and resource usage policies. Basic system libraries (collections
of software functions) and utilities are usually also considered as being part of
the OS. At the very top of the stack are the applications, i.e., the functionality
that the system is intended to provide to the end users, for instance, the content

2Most hardware devices contain software of their own, so called firmware, to control the lowest
level of hardware functionality.

5

1 Introduction

management system of a website or an office application with graphical user
interface. Applications execute within one or more processes, possibly using
concurrent threads. The software layers between the OS and the applications are
often referred to as middleware. Middleware provides a multitude of functions and
frameworks that ease the development of application software beyond the basic
services of the OS itself. Examples for middleware include language runtimes for
interpreted languages such as Java, Python, Perl, or JavaScript, but also complete
frameworks for application development such as Qt3, GTK4, or Angular5.

Privilege Levels

The illustrated hardware platform supports two hardware-implemented privilege
levels for software execution that the OS makes use of: user mode and kernel
model. Software executing in kernel mode has the highest privileges and, therefore,
has unrestricted access to all resources of the system, including main memory
and hardware devices. The OS kernel executes in this mode which makes it a
highly critical component as a malfunction within the kernel can easily bring
down the system as a whole. All other software, i.e., everything except the kernel,
executes in user mode with restricted privileges with the consequence that user
mode software must rely on OS services to perform certain actions, e.g., access files
or hardware devices, which allows the OS to enforce security and resource usage
policies. Typically, user mode software invokes kernel services by performing
system calls that transfer control to the kernel, which then acts on behalf of the
calling software. System calls cross the boundary between user and kernel mode
and imply a performance penalty as additional actions must be taken by both
the hardware and the kernel. The processes that implement the applications are
usually isolated from each other with separate memory address spaces, which are
enforced by the OS with the help of hardware (memory management unit or MMU).
Note that the described architecture with two (or sometimes even more) hardware
privilege levels is highly relevant as many platforms (e.g., x86, ARM, RISC-V)
make use of variations of it. However, other architectures, for instance, without
separate hardware privilege levels and/or memory address space separation, are
often found in embedded devices using simple micro controllers.

Monolithic and Micro OS Designs

The illustrated software stack assumes a monolithic OS architecture, i.e., all services
of the OS execute together as part of the kernel at the highest privilege level and
in the same memory address space. The Linux kernel is a prominent example

3https://www.qt.io
4https://www.gtk.org
5https://angular.io

6

https://www.qt.io
https://www.gtk.org
https://angular.io

1.1 The Software Stack

for this architecture. An advantage of this design is that kernel components can
invoke each other’s services by means of simple function calls and large amounts
of data can be exchanged very efficiently without the need of copies by passing
memory addresses. Additional overheads of crossing the privilege boundary are
avoided. As already hinted at above, this design has the disadvantage of a large
and complex code base executing in privileged mode. Any software defect located
in this code base can potentially harm the system, for instance, by overwriting
memory areas of other kernel components or user applications and even damage
hardware by sending invalid commands. To support the ever growing diversity
of hardware, OSs in general rely on special extension components termed device
drivers (also loadable kernel modules in Linux) to establish the interaction between
the core kernel and the specific devices. Such device drivers can often be loaded
and unloaded on demand once new devices are connected or disconnected from
the system. For Linux, it has been shown by means of static code analysis that
device driver code overall contains more defects than other parts of the kernel
code [Cho+01; Pal+11], which is not surprising given the sheer amount (66 % of the
code base at the end of 2018) of driver code and the variety of supported devices..

An alternative OS design is based on the idea of microkernels [Kle+09; Lie].
Such designs follow the philosophy to minimize the amount of code inside the
kernel, and thereby running in privileged mode, to a bare minimum. Typically,
all device drivers and most other OS services, e.g., networking and file systems,
execute in user mode inside ordinary processes with separate memory address
spaces. By minimizing the amount of code executed in kernel mode, the likelihood
of that code including software defects is decreased accordingly and the so called
trusted computing base (TCB) [Rus81], i.e., the code one has to trust to work as
intended, is reduced. Microkernel designs are an extreme departure from classic
monolithic designs that have grown and been in use for years and require the
rewrite of large portions of software in the lower layers of the software stack. For
instance, device drivers, making up a majority of code in OSs, have to be rewritten,
as they are moved higher in the software stack. The same is true for many system
libraries that closely interact with the OS kernel. In addition, microkernel-based
systems have historically often suffered from degraded performance for certain
workloads compared to monolithic designs, which hindered their adoption outside
of specialized domains such as embedded systems.

The middle ground between the extremes of monolithic and microkernel designs
is to retrofit the capability to execute certain kernel components or parts of them
in user mode rather than inside the kernel [Gan+08; RS09]. Such an approach has
the advantage of backwards compatibility, i.e., most or all of the existing code can
be re-used. However, in order not run into prohibitive performance bottlenecks
with such a design, the trade-off between the amount of code that is removed
from kernel mode and the achievable performance, while remaining backwards

7

1 Introduction

Software

Component

Software

Component

Software

Component

In
te

rf
a
c
e

In
te

rf
a
c
e

In
te

rfa
c
e

In
te

rfa
c
e

Interaction Interaction

Internal State Internal StateInternal State

Shared State

Figure 1.2: Illustration of Interacting Software Components

compatible, must be carefully assessed and balanced. The imposed overhead of
such a solution depends on the usage profile of the targeted system, i.e., how
heavily the isolated component is actually used in operation.

Software Components

The software stack is built on top of the hardware by composing and orchestrating
different software components to achieve the overall desired functionality of the
system. A software component is a module or collection of code that bundles a
set of related functions. Often, such components can be internally subdivided into
finer-grained components. For instance, from a high level point of view the OS
can be seen merely as a software component in the overall system, but at closer
inspection, the OS by itself can be seen as a collection of interacting components,
such as device drivers.

Figure 1.2 provides a component-based view on a three component system. The
components interact through interfaces with each other, often have internal state
(e.g., local variables), and possibly also have shared state (e.g., global variables and
common files). Interfaces between components can take on many forms in practice,
depending on the nature of the software and the usage scenario. For instance, the
interface to a code library is often specified by the set of functions that are declared
public and are hence invokable from other components. However, an interface
can also include less explicit mechanisms, for instance, one component may read
and write a global memory variable provided by another component. In general,
explicit and well documented interfaces are preferable as this approach enables
portability, code re-use, and the integration of OTS components, which is often
economically attractive. In such a scenario, one component can be replaced with
another one that implements the same interfaces but, for instance, performs better
in the intended usage scenario. A prominent example is developing code against
the specification of an interface rather than for the use with a specific component.
For instance, applications that have been developed against the POSIX [IEE18]
specification rather than a specific OS implementation can often be easily ported

8

1.1 The Software Stack

across hardware and OS platforms, as long the targeted platform provides a POSIX
implementation.

Ideally, components are as independent from each other as possible (low cou-
pling), do not share state, and one component cannot adversely influence the
correct function of another component, e.g., by corrupting its internal state. This is,
for instance, asymmetrically the case between an OS kernel and the applications
running on top of it as the kernel controls the applications. Hence, the kernel
can terminate applications, but applications cannot uncontrollably shut down the
kernel, at least in a perfect world without malfunctions, faults, and defects. An
interesting aspect that we will discuss later in Section 1.2 is how defects in one
component affect other components and, consequently, the overall system and its
function.

Performance-centric Software

Performance and efficiency is a strong driver behind system design and has driven
many areas of technology for years. For instance, CPU designs have always been
adapted to enable ever increasing single core speed and when increasing single core
speed became infeasible, more and more additional, both physical and logical, cores
were (and still are) added [Rup18] to further increase performance. Contemporary
smartphones can easily incorporate 8 [Qua18] and desktop PCs even 12 [Adv19]
and more physical CPU cores. In order to harness all this computing power,
software across the whole stack has to evolve as well to make use of concurrency
and parallelism of modern platforms, increasing complexity and potentially raising
new problems [Cor08].

The Software at lower levels in the stack is particularly critical to good perfor-
mance as it provides the basic services and functions for the application software.
Interestingly, many of the lower software layers involve software that is developed
using the C programming language, likely because it has been used in practice for
a long time and is therefore very mature, but also because it allows for an efficient
and predictable use of available hardware resources as it provides programming
abstractions that are not too far away from how the underlying hardware is operat-
ing. OS kernels are often developed in C, with the Linux kernel being a prominent
example. However, C is also popular in other fields. A study of 100 000 Github
projects [Bis+13] showed that C was the most widely used language as over 60 % of
the code in the studied projects was written in C and it was also the most popular
language among developers (22 %). C is also prominently used in embedded
systems contexts. A survey of embedded systems developers in 2018 showed that
about 70 % [Bar18] of participating developers used C as their primary language.
Moreover, system that have to process many requests in a short amount of time
and where efficiency is therefore paramount also often rely on the C language. For

9

1 Introduction

instance, about 85 % of the top 10 million website run on server software (Apache
and Nginx) that is written in C [QSu19a] at the beginning of 2019. We will also
show later in Chapter 4 that C is in wide use within the Debian OS ecosystem.

The available hardware resources should also be leveraged during the software
development process. Parallel hardware requires thinking about the parallelization
of the automated portions of the software development process as well. If we can
develop software faster, software updates can bring new and smarter features to
our daily lives faster.

1.2 Dependable Software

In this section we discuss the notion of dependability and give background infor-
mation on related concepts and techniques that are of interest for this thesis. This
discussion is largely based on the taxonomy proposed by Avizienis et al. [Avi+04].

With the growth of software stacks in size and complexity, involving re-used
components from different sources, comes the question whether we can depend
on the systems we build. Dependable software and systems are those that have
the ability to provide services that can be justifiably trusted [Avi+04]. The key to
this definition is that it is necessary to justify this trust in a system. An alternative
point of view is that a system can be considered dependable if it has the ability to
avoid service failures that occur more frequently or have more severe consequences
than is deemed acceptable [Avi+04]. With this notion of acceptable failures comes
a criterion to decide whether a system is dependable or not as one can assess
the system according to a stated definition of acceptable, which is part of the
dependability specification of a system.

Dependability can be considered a higher level concepts that is composed of
multiple system attributes:

• Availability: The system is ready to provide correct service. Availability is
usually expressed in terms of the proportion of time a system is in operational
state and can accept service requests. For instance, if a given system is
supposed to operate in a period of 12 hours, but it is only operational for 6

hours during that period, its availability is 50 %.

• Reliability: The System provides correct service continually. Reliability
contains the notion of continuity, i.e., the provided service must be available
for a sustained time period. For instance, if a system fails often but only for
short periods of time within the time frame it is supposed to be operational, it
has high availability but low reliability. Reliability is often specified as mean
time to failure, i.e., the average time between consecutive failures.

10

1.2 Dependable Software

Fault Error Failure
activation propagation

Figure 1.3: The Threats to Dependability and Their Relationship

• Safety: The system does not harm its users or environment. A safe system is
designed to prevent severe consequences both during its normal operation as
well as in case of failures. Such systems enter a safe state if erroneous condi-
tions are detected. Safety-critical systems such as in automotive applications
have a particular focus on this attribute.

• Integrity: The system cannot be improperly altered. Neither by accident nor
on purpose can the system be changed to add, remove or alter implemented
services without being detected. For instance, a piece of hardware may be
sealed in especially durable enclosures or software may contain checksums
or cryptographic signatures to detect code alterations before execution.

• Maintainability: The system can be modified and repaired as necessary. In
case of malfunctions the system is accessible to repair activities, for instance,
individual components can be replaced with spare parts (in the case of
hardware) or updated versions (for software). New features can be added or
existing ones modified with ease, e.g., by means of software updates.

Dependability includes the notion of delivering correct service. Correctness
means that the system indeed implements the functions that it is intended for,
which are stated in the system’s functional specification. A system is robust if it is
able to gracefully handle inputs and environmental conditions that are beyond its
functional specification.

The Threats to Dependability

If a systems stops delivering correct service, we speak of a service failure. Such
failures are characterized by the exhibited failure modes, which can be ranked
according to their respective severity and be classified according to their domain,
detectability, consistency, and consequences. For instance, failures can be related
to service content and timing (domain), can be signaled or unsignaled, can be
consistent or inconsistent (Byzantine), and can have wide ranging consequences
from minor to catastrophic. Beyond failures that result from a service not adhering
to its specification, failures also occur if the service deviates from its intended
function. This is the case if the specification itself contains mistakes or is incomplete
with respect to what was intended. As intention is difficult to precisely capture
and express, this is where robustness issues arise.

11

1 Introduction

In general, failures are caused by a chain of events as illustrated in Figure 1.3 on
the previous page. The underlying cause of a failure is a fault, which is a flaw or
defect within or external to the system, e.g., in its design or program code (bug).
A fault remains dormant until it is activated (triggered), e.g., a defective piece of
code is executed. The activation of the fault leads to an error in the system state,
e.g., a wrong value in some program variable. Note that in order for an external
fault to cause an error within the system, the presence of an enabling internal fault
is a necessary precondition. If the error propagates to the interface of the system
and becomes observable to external entities (users), i.e., leads to a deviation from
correct service, a failure occurs. Such propagation may occur, for instance, when a
program uses a corrupted variable to perform further computations whose results
are part of the delivered service. Once an error has occurred, it may be detected
or undetected, with the latter being a latent error. The presence of an error does
not necessary lead to a failure as propagation to the interface is not guaranteed.
An error may reside in parts of the system state that are not related to the direct
delivery of correct service or an error may be overwritten before it can propagate.
The interplay of faults, errors, and failures becomes more complex when multiple
interacting systems or components are considered where a system A depends on
the services of another system B to deliver its own service. In such a scenario, the
chain of events may extend across multiple systems. A fault in system B may get
activated, leading to an error, which propagates and leads to a service failure. This
failure becomes an external fault for system A. Due to an internal fault of system
A, e.g., absence of input value validation, this may lead to an error in system A and
ultimately result in the failure of A.

Faults generally fall into three different (overlapping) groups: development
faults, which include all faults being introduced in the development phase, physical
faults, which include all faults that affect hardware, and interaction faults, which
include all external faults. Furthermore, they can be categorized, among others,
according to when they are introduced, during development or once the system
is in operation, whether they are internal or external of the system, whether they
occur in hard- or software, and whether they are permanent or transient. Note that
all development faults are permanent faults. The typical notion of software bug
or defect falls into the category of permanent, internal, software faults introduced
during development. As human beings are an integral part of the development and
maintenance process, all systems and components, including their specifications,
must be assumed to contain faults to some extent, which is why we need systematic
approaches to deal with them and mitigate their effects.

12

1.2 Dependable Software

The Means for Dependability

In order to build dependable systems, i.e., systems in whose services we can
justifiably trust, many approaches and techniques have been developed over the
past decades. These techniques commonly fall into one of the following four
distinct categories, commonly known as the means for dependability [Avi+04].
They focus on how to deal with faults, which are the underlying causes for failures,
to achieve dependable operation.

• Fault Prevention: Prevent the introduction of the fault in the first place.
By employing good engineering practices and adhering to development
standards, rules, and processes, the introduction of faults is minimized during
the development process. For instance, a suitable programming language for
the problem at hand is chosen, state-of-the-art development tools are used,
and developer qualification is improved.

• Fault Tolerance: Avert service failures despite the presence of faults. During
system operation the occurrence of faults is expected and error detection and
recovery mechanisms are employed. Often such schemes include redundancy
of components for both the detection and recovery from errors.

• Fault Removal: Reduce the amount and severity of faults. Faults are identi-
fied during the development process by means of static, e.g., model checking
or theorem proving, and dynamic, e.g., symbolic execution or testing, ap-
proaches. Identified faults are then removed before the system is deployed.

• Fault Forecasting: Estimate the number of faults, their future incidence
and consequences. Using statistical modelling and data on historic system
behavior as well as testing techniques, faults and their severity are estimated.

These four means can be grouped into two fundamental approaches or points
of view: fault avoidance and fault acceptance. Both fault prevention and removal
attempt to avoid faults, i.e., construct systems that are free from faults when in
operation. Fault avoidance approaches aim at the development process and, in
the case of software, the improvement of the design and code quality. In contrast,
fault tolerance and forecasting acknowledge the fact that there will be faults when
a system is in operation and plan for their occurrence. Such approaches try to
estimate and limit their impact by statistical modelling and adding additional
mechanisms that prevent or mitigate service failures, often relying on component
redundancy.

The scenarios and techniques considered in this thesis refer to both aspects as we
consider a fault containment (isolation) scenario for kernel software components (cf.
Chapter 2), which falls into the category of fault tolerance and therefore acceptance,

13

1 Introduction

Software

Component

Software

Component

Software

Component

In
te

rf
a
c
e

In
te

rf
a
c
e

In
te

rfa
c
e

In
te

rfa
c
e

Interaction Interaction

Internal State Internal StateInternal State

Shared State

Isolation Domain

Figure 1.4: Illustration of Interacting Software Components with Isolation

as well as dynamic testing scenarios, which fall into the category of fault removal
and therefore avoidance, namely fault injection for robustness assessments (cf.
Chapter 3) and correctness testing (cf. Chapter 4).

Fault containment or isolation techniques aim at preventing error propagation
beyond the boundaries of an isolation domain in case a dormant fault is activated.
Figure 1.4 illustrates an example of a system with three interacting software
components where a presumably faulty component is locked into its own isolation
domain. To contain faults and their effects within the isolation domain, the isolation
mechanism has to interpose on all interactions between domains as well as on
accesses to shared state to prevent state corruption. Indeed, isolating components
that share state from each other proves difficult and imposes noticeable overheads.
Once an error detection mechanism detects an error within the isolation domain,
the isolated component must be recovered to restore correct operation, e.g., by
restarting it.

By applying correctness testing to the faulty component, the contained (software)
fault could be found by rigorous testing if the test suite contains a test case
that is able to reveal the fault. If the fault leads to a deviation from specified (in
contrast to intended) correct service, a comprehensive test suite may contain a
fault triggering test input. The fault revealing test case can then be leveraged for
debugging purposes and the failure causing fault can ultimately be removed. If no
isolation technique is employed and the fault cannot be identified by correctness
testing, possibly the fault is not covered by the specification or the test suite is
not comprehensive. Software fault injection techniques can then be applied to
assess the robustness of the other two components against faulty behavior of the
faulty component. In this case, known faults would be injected in the middle
component and the interaction between the three components be observed to
assess if the error caused by the activation of the fault in the middle component
propagates to the other components possibly leading to their failure. In case such
error propagation is observed, a potential robustness issue has been identified
that can be further analyzed and ultimately be repaired to improve the robustness

14

1.3 Research Questions and Contributions

of the affected components. We have investigated error propagation in different
application contexts in earlier work, namely in mixed-criticality automotive systems
[Pip+15] and within OS kernels [Cop+17]. Both the comprehensive correctness
testing as well as the comprehensive robustness assessment using fault injection
requires a large number of individual tests, which is a time consuming process,
especially if both techniques are combined.

In contrast to our example, it is generally unknown if and where real systems
contain faults. Therefore, one cannot exactly quantify which benefits applying
either of these techniques would have before actually applying them. As we are
interested in building dependable systems, and all the above mentioned techniques
can be used together as building blocks, they should be used in conjunction.
Therefore investigating strategies to improve their efficiency is important in order
to overcome slow execution times that might otherwise prohibit their usage.

1.3 Research Questions and Contributions

This thesis is driven by the research questions stated below and the investigation
of said questions led to the contributions that are summarized below as well.
The common theme underlying all these questions is the desire to improve the
dependability of our complex software systems without harming their usability or
slowing down their development process. To that end, the first question investigates
fault containment (isolation) for OS level software. The second question aims at
improving the efficiency of dependability assessments using SFI for both OS-level
as well as higher level software. The third question investigates if similar techniques
that we applied for SFI can be used to improve the efficiency of (correctness) testing
during software development.

Research Question 1 (RQ 1): Can runtime profiling be leveraged for the partition-
ing of in-kernel software components to increase code isolation while balancing
performance overhead?

Many OSs employ a monolithic design, in which in-kernel software components,
such as device drivers, are not isolated from each other. Consequently, the failure
of one such component can affect the whole kernel. While microkernel OSs provide
such isolation for large parts of the OS, they have not been widely adopted, due
to performance and compatibility related issues, and monolithic kernels, such as
Linux, are still prevalent. Approaches offering a middle way between the full
isolation of microkernels and the absence of isolation in monolithic designs have
been proposed. Such approaches partition the targeted component and isolate
only one of the resulting parts. However, these approaches neglect the dynamic
usage properties of the targeted components that needs to be taken into account

15

1 Introduction

to find component partitionings that are favorable in terms of code isolation and
achievable performance.

Contribution 1 (C 1): Runtime profiling based approach to tailor partitioning to
performance needs

Although the proposed approaches for relocating in-kernel code to user mode
provide the mechanisms for split mode user/kernel operation of monolithic kernel
code, they do not provide guidance on what code to execute in which mode. To
this end, we develop a partitioning approach that combines static and dynamic
analysis techniques to assess the impact of code partitioning decisions on both
the degree of isolation and the expected performance overheads in Chapter 2,
which is based on material from [Sch+18b]. We make use of dynamically recorded
cost data, which we obtain by executing an instrumented variant of the target
kernel software component, to model the user/kernel partitioning problem for
existing kernel code as 0-1 integer linear programming (ILP) problem and employ
a linear solver to obtain partitionings that achieve the desired trade-off between
expected performance overhead and the size of the kernel mode code portion for
improved isolation. We implemented our approach for the widely used Linux
kernel and validate its utility by profiling and partitioning two device drivers and
a file system in a case study. We generate a spectrum of partitionings with different
balance factors between expected overheads and partition sizes to demonstrate the
adaptability of the obtained partitioning to user requirements. Using software fault
injection, we also demonstrate the impact of defects depending on whether they are
located in the user or the kernel partition and demonstrate the reliability benefits
of having larger user partition sizes. This contribution has been documented in the
publication “How to Fillet a Penguin: Runtime Data Driven Partitioning of Linux
Code” in TDSC 2018.

Research Question 2 (RQ 2): How can parallel hardware be exploited to increase
the efficiency of software fault injections?

With the increasing complexity of our software stack, a vast number of SFI experi-
ments are required for comprehensive assessments of the dependability of software
components or whole systems. As done in other areas of software engineering,
exploiting the increasingly powerful parallel hardware available in virtually all
desktop and server machines seems a natural approach to mitigate exploding
test numbers and the prolonged execution times they imply. However, parallel
execution bears the risk of influencing systems or components targeted for SFI in
unexpected ways and thereby subtly changing their behavior, which may lead to a
distortion of SFI test results. If SFI test results are not accurate when obtained from
accelerated parallel executions, they should not be used to assess the dependability

16

1.3 Research Questions and Contributions

of systems, especially if said systems are safety-critical, as false conclusions about
dependability properties may be drawn.

Contribution 2 (C 2): A framework for increasing the throughput of SFI tests by
parallel execution and avoiding redundant work

We investigate whether the parallel execution of SFI tests does accelerate the testing
process and whether such parallel SFI tests yield accurate results with respect
to traditional sequential test execution in Chapter 3, which is based on material
from [Sch+18a] and [Win+15b]. Moreover, we develop techniques to accelerate
SFI tests by further means beyond simple parallelization by replication. We first
conduct a study of PAIN (PArallel fault INjection) experiments on the Android OS.
In this study, we assess the trade-off between achievable increase in experiment
throughput and accuracy of obtained results. We indeed identify several causes for
significant deviations between sequential and parallel SFI tests and give guidance
on how to avoid the invalidation of results obtained from parallel experiments. Our
PAIN study makes use of our GRINDER platform for SFI tests that we developed
for the PAIN study and that we document in [Win+15a], but do not directly
include in this thesis. Applying the insights from our PAIN experiments on the OS
level, we develop FastFI, an alternative approach for accelerating SFI tests for FI
targets above the OS level. FastFI accelerates SFI testing by avoiding unnecessary
overheads caused by isolation mechanisms, avoiding re-executing redundant work,
exploiting parallel hardware, and reducing compilation times for faulty versions of
the targeted software component. This contribution has been documented in the
publications “No PAIN, No Gain? The Utility of PArallel Fault INjections” at ICSE
2015 and “FastFI: Accelerating Software Fault Injections” at PRDC 2018.

Research Question 3 (RQ 3): What is the state of parallel testing for C software and
can it be improved to reduce test suite execution latencies?

During software development, testing is a time consuming activity of which the
execution of test suites is an important part. With the rise of highly parallel
hardware, it is only natural to make use of this computing power to reduce the
latency of test suite execution. However, if test suites were not originally designed
for being executed in parallel or concurrently, the individual tests may interfere
with each other if executed in parallel, which can lead to result deviations compared
to sequential execution. To prevent such interferences, each individual test can
be provided with an isolated execution environment, but this entails performance
overheads that diminish the merit of the parallel execution. As tests evolve together
with the software they are meant to test, there is a large amount of testing code,
which can be re-used for parallel testing if the individual tests can be orchestrated
in a safe and efficient manner.

17

1 Introduction

Contribution 3 (C 3): An assessment of real world C software test suites and an
approach for safe concurrent execution of existing tests

We investigate the potential for parallel testing of C software, which is an important
building block of most software stacks, for the reduction of test suite executions
latencies in Chapter 4, which is based on material from [Sch+19]. We present an
analysis of the main software package repository of Debian Buster, which is one of
the most widely used Linux-based OS distributions. Our analysis shows that the
majority of code contained in the repository is written in C, that no test framework
dominates test implementations for C software packages, and that few test suite
implementations can benefit from out-of-the-box concurrent execution. Therefore,
we develop automated static analyses for existing C test suites to identify test
case interdependencies on files and shared global data to identify which parts of
a test suite can safely execute in parallel. We design and implement a new test
harness to use this information for the safe parallel execution of tests and explore
the trade-off between analysis overheads and execution latencies for different
parallelization alternatives using processes and threads. We demonstrate the utility
of our approach by applying it to nine projects from the Debian Buster software
repository. Our results show that test suites in C can benefit from parallel execution,
that threads do not perform significantly better than processes, and that our test
harness (and likely any specialized test tool) outperforms generic automation tools
like make. This contribution has been documented in the publication “Assessing
the State and Improving the Art of Parallel Testing for C” under submission at
ISSTA 2019.

1.4 Publications

The following publications have, in parts verbatim, been included in this thesis.

[Sch+18b] Oliver Schwahn, Stefan Winter, Nicolas Coppik, and Neeraj Suri.
“How to Fillet a Penguin: Runtime Data Driven Partitioning of Linux
Code”. In: IEEE Transactions on Dependable and Secure Computing
15.6 (Nov. 2018), pp. 945–958. doi: 10.1109/TDSC.2017.2745574

[Sch+18a] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri.
“FastFI: Accelerating Software Fault Injections”. In: 2018 IEEE
23rd Pacific Rim International Symposium on Dependable Computing
(PRDC). PRDC’18. Taipei, Taiwan, Dec. 2018, pp. 193–202. doi:
10.1109/PRDC.2018.00035

[Win+15b] Stefan Winter, Oliver Schwahn, Roberto Natella, Neeraj Suri, and
Domenico Cotroneo. “No PAIN, No Gain?: The Utility of PArallel
Fault INjections”. In: Proceedings of the 37th International Conference

18

https://doi.org/10.1109/TDSC.2017.2745574
https://doi.org/10.1109/PRDC.2018.00035

1.5 Organization

on Software Engineering. ICSE ’15. Florence, Italy: IEEE Press, 2015,
pp. 494–505. doi: 10.1109/ICSE.2015.67

[Sch+19] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri.
“Assessing the State and Improving the Art of Parallel Testing for
C”. in: ACM SIGSOFT International Symposium on Software Testing
and Analysis. 2019. [under submission]

The following publications are related to different aspects covered in this thesis,
but have not been included.

[Win+15a] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto Natella,
Neeraj Suri, and Domenico Cotroneo. “GRINDER: On Reusability
of Fault Injection Tools”. In: Proceedings of the 2015 IEEE/ACM
10th International Workshop on Automation of Software Test. AST ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 75–79.
doi: 10.1109/AST.2015.22

[Pip+15] Thorsten Piper, Stefan Winter, Oliver Schwahn, Suman Bidara-
halli, and Neeraj Suri. “Mitigating Timing Error Propagation in
Mixed-Criticality Automotive Systems”. In: Proceedings of the 2015
IEEE 18th International Symposium on Real-Time Distributed Comput-
ing. ISORC ’15. Washington, DC, USA: IEEE Computer Society,
2015, pp. 102–109. doi: 10.1109/ISORC.2015.13

[Cop+17] Nicolas Coppik, Oliver Schwahn, Stefan Winter, and Neeraj Suri.
“TrEKer: Tracing Error Propagation in Operating System Kernels”.
In: Proceedings of the 32Nd IEEE/ACM International Conference on
Automated Software Engineering. ASE 2017. Urbana-Champaign, IL,
USA: IEEE Press, 2017, pp. 377–387. doi: 10.1109/ASE.2017.
8115650

[CSS19] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. “MemFuzz: Us-
ing Memory Accesses to Guide Fuzzing”. In: 12th IEEE International
Conference on Software Testing, Verification and Validation. ICST 2019.
Xi’an, China, Apr. 2019. [accepted]

1.5 Organization

The rest of this thesis is structured as follows. In Chapter 2, we discuss our first
research question and develop and evaluate our approach that leverages runtime
profiling for the partitioning of in-kernel software components such as device
drivers to explore the trade-off between performance overhead and degree of code

19

https://doi.org/10.1109/ICSE.2015.67
https://doi.org/10.1109/AST.2015.22
https://doi.org/10.1109/ISORC.2015.13
https://doi.org/10.1109/ASE.2017.8115650
https://doi.org/10.1109/ASE.2017.8115650

1 Introduction

isolation. We continue in Chapter 3 with the discussion of our second research
question and develop techniques to reduce the execution latencies for software fault
injection tests by relying on parallel hardware and avoiding overheads from strong
isolation mechanisms and redundant work execution, while maintaining accurate
test results. We then discuss our third research question in Chapter 4 and investigate
the potential for parallel testing of software to improve test execution latencies
within the popular Linux-based Debian OS ecosystem and propose strategies to
further benefit from parallel hardware. Finally, Chapter 5 concludes this thesis by
providing a summary along with its contributions and key insights.

20

2 Profiling Driven Partitioning of

In-kernel Software Components

For the dependable and efficient operation of a system as a whole, the lower
levels of the software stack, and the operating system (OS) in particular, are
especially important, as they are the foundation on top of which our applications
and services are built. Fault containment is a useful strategy to improve software
dependability in the presence of residual defects in deployed software components.
However, in many modern OSs, there exists no isolation between different kernel
components, i.e., the failure of one component can affect the whole kernel and
consequently the whole system. While microkernel OSs provide user mode isolation
for large parts of the OS, their improved fault isolation has historically come at the
cost of performance. Despite significant improvements in modern microkernels,
monolithic OSs like Linux are still prevalent in many systems. To achieve fault
isolation in addition to high performance and code re-use in these systems, hybrid
approaches that relocate only fractions of kernel code into user mode have been
proposed. These approaches statically decide which code to isolate, neglecting
dynamic properties like invocation frequencies of the targeted components. We
propose to augment static code analyses with runtime profiling to achieve better
estimates of dynamic properties for common case operation. We assess the impact
of runtime data on the decision of what code to isolate and the impact of that
decision on the performance of such “microkernelized” systems. We extend existing
tools to implement automated code partitioning for existing monolithic kernel code
in an integer linear programming (ILP) framework and validate our approach in a
case study of two widely used Linux device drivers and a file system. The contents
of this chapter are, in parts verbatim, based on material from [Sch+18b].

2.1 Overview

Modern operating system (OS) implementations either follow a monolithic or a
microkernel architecture. Microkernel OSs strive to execute a bare minimum of
their overall code base in privileged kernel mode [Lie]. Code that handles resource
management, for instance, is separated in code that implements the actual resource
allocation and deallocation mechanism and code that implements the resource
allocation and deallocation policy. In microkernel OSs, only the former executes in

21

2 Profiling Driven Partitioning of In-kernel Software Components

kernel mode, which is sufficient to maintain non-interference of processes across
shared resources. Monolithic OSs, on the contrary, execute a much larger fraction
of their code base in kernel mode.

Traditionally, microkernel OSs were used for applications with high reliability
requirements for two reasons. First, a small kernel code base is easier to understand
and analyze, as the formal verification of the seL4 microkernel system demonstrates
[Kle+09; Kle+14]. Second, the effects of individual component failures at run time
are limited to the respective components due to the fine-grained isolation among
system components, which facilitates the implementation of sophisticated failover
mechanisms (e.g., [DH12; Her+09; Hru+12]).

Despite their reliability advantages over monolithic OSs, microkernels are seldom
found in mobile, desktop, or server systems, even though reliability is a key concern
for the latter. The reason for the dominance of monolithic systems in these areas lies
in the poor IPC performance of early microkernel implementations, which led to
significant overheads in operation. Although modern microkernels, such as the L4

family, feature highly optimized IPC implementations that reduce such overheads
to a negligible fraction, their adoption is still mostly limited to embedded systems.

Ironically, the reason behind the predominance of monolithic OSs in commodity
systems seems to be what is generally perceived as their major drawback. They
execute large and complex code bases in privileged kernel mode within a single
address space. For instance, Linux 4.7 comprised almost 22 million lines of code in
July 2016 [CK16]. Reliable figures are difficult to obtain for proprietary OSs, but
estimates for the Windows OS family are significantly higher [Wal12].

On the one hand, this massive complexity entails severe threats to the reliability
of OSs. As complex kernel code is difficult to develop and maintain, it is likely to
contain software defects. Moreover, defects are likely to escape testing and other
quality assurance measures since existing testing and verification techniques do
not scale well to complex software. Such residual defects in kernel code have a high
impact on system reliability if they get triggered during execution in privileged
mode because there is no limit to the degree by which they can affect processes and
system services. The risks of high software complexity have resulted in the proposal
of small trusted/reliable computing base architectures (e.g., [ED12; Hoh+04; Kle+09;
Rus81]) for systems with high security or dependability requirements.

On the other hand, a large existing code base (and developer community that
maintains it) also implies that the large amount of functionality it implements can
be reused at low effort. Therefore, convenience has outweighed performance as a
criterion for adopting a popular monolithic commodity OS over a microkernel OS.
Early approaches like SawMill Linux [Gef+00] proposed to address this problem by
manually integrating parts of Linux into the Exokernel and L4 OSs. Unfortunately,
porting components across OSs is not a one-time effort and requires repeated
manual adjustment as the forked code branches evolve. Ganapathy et al. developed

22

2.1 Overview

Figure 2.1: Overview of the partitioning process, exemplified for a device driver. The input
is the original driver source code and the output is a split mode version of the driver
that implements the isolation/performance trade-off suitable for the user’s application
scenario.

an approach that addresses this problem by automatically splitting the kernel code
of Linux at a per function granularity into user and kernel mode portions [Gan+08].
The splitting is guided by a static set of rules that determine which code to
allocate to which execution mode. While such automated splitting approaches
cannot be expected to achieve all advantages of real microkernel OSs to the same
degree, they still provide better isolation compared to a fully monolithic kernel
without constraining code reuse. Unfortunately, the automated synchronization of
data structures, locks, etc. between the user and kernel mode portions can entail
performance overheads that exceed IPC induced overheads of microkernels by far.

Intuitively, these overheads highly depend on the kernel code partitioning, i.e., the
decision which OS functions to execute in which mode. Moreover, the overheads
depend on the system’s application context. Function invocations across domains
(from kernel to user mode or vice versa) entail performance overheads per invocation,
making the performance of a partitioning dependent on dynamic system properties
induced by the system’s workload. The more frequent cross-domain invocations
caused by a workload, the higher the overheads. This chapter addresses the
central question how to achieve a favorable partitioning that minimizes both performance
overheads and the amount of code executing in kernel mode at the same time.

Figure 2.1 gives an overview of our proposed approach. We start from the
source code of some kernel component (e.g., a driver) as input and produce a split
mode version as output that is tailored to the user’s application scenario. First,
we extract static code properties, such as the static call graph, in a static analysis
phase. We then generate an instrumented component version which is used to
collect the dynamic usage profile under a typical workload. We then combine
the statically and dynamically obtained data to formulate and solve the kernel

23

2 Profiling Driven Partitioning of In-kernel Software Components

component partitioning as 0-1 integer linear programming (ILP) problem. Our ILP
formulation allows the fine-tuning of the trade-off between imposed overhead and
amount of code that remains in the kernel. As final step, we synthesize a split
mode version of the original component. The generated code for the split version is
not intended for manual inspection or modification. Code maintenance, debugging,
and evolution should still happen on the original code. Re-partitioning of evolved
code is a simple mechanical task with our automated partitioning tool chain.

As a brief summary, this chapter presents the following contributions.

• We propose to combine static and dynamic analyses to accurately assess the
performance costs that moving kernel code to user mode would cause. Our
assessment is automated and works on current Linux code.

• Using the dynamically recorded cost data, we model user/kernel mode
partitioning of existing kernel code as 0-1 ILP problem and use the GNU
Linear Programming Kit (GLPK) [Fre] to obtain a solution that achieves the
desired trade-off between performance overhead and the size of the kernel
mode code portion for improved isolation.

• We validate the utility of our approach by profiling and partitioning two de-
vice drivers and a file system in a case study and demonstrate the adaptability
of the obtained partitioning to user requirements.

After a discussion of related work in Section 2.2, we introduce our system model
for in-kernel software components and their partitioning in Section 2.3 and detail
our profiling-based partitioning approach in Section 2.4. In Section 2.5, we demon-
strate its utility by applying it to Linux kernel modules and compare the obtained
partitionings and their performance characteristics. Section 2.6 summarizes insights
gained from the results of our study and the required implementation work. Finally,
Section 2.7 concludes this chapter.

2.2 Related Work

Software partitioning, also compartmentalization or disaggregation, is an impor-
tant task in iterative software development and maintenance. Surprisingly, most
research in this field has focused on the design of isolation mechanisms (i.e., how
to isolate), whereas little work covers the actual partitioning process (i.e., what to
isolate). Software partitioning has been proposed for a number of different isolation
problems.

2.2.1 Privilege Separation

Privilege separation is a mechanism to prevent privilege escalation [PFH03], i.e., the
unauthorized acquisition of privileges through vulnerable programs. Privilege es-

24

2.2 Related Work

calation vulnerabilities result from security-insensitive design that does not respect
the principle of least privilege [SS75]. In execution environments that traditionally
only support(ed) coarse grained execution privileges and access control, such as
Unix and derivatives, implementing programs according to this principle has been
challenging. As a consequence, a large body of legacy software does not employ
newer, more fine-grained privilege separation mechanisms (e.g., [Wat+10]).

Privilege separation partitions programs into a monitor component, which exe-
cutes privileged operations, and an unprivileged slave component such that vulner-
abilities in the slave partition cannot lead to unauthorized execution of privileged
operations. Although a large variety of mechanisms to isolate the slave from
the monitor have been proposed in the literature [Col+11; Kil03; Li+14; MMH08;
MWC10; Wat+10], the partitioning into suitable compartments is usually performed
manually for few selected applications.

Privtrans [BS04] automates privilege separation for C programs based on user-
supplied source code annotations that mark sensitive data and functions to be
encapsulated by the monitor component. An automated data-flow analysis deter-
mines the monitor and slave partitions by propagating the annotations to all data
and functions operating on or derived from annotated elements.

Wedge [Bit+08] extends the Linux kernel by several isolation primitives to imple-
ment privilege separation. To assist application partitioning into isolated compart-
ments, the authors conduct dynamic binary instrumentation to derive interdepen-
dencies on shared memory between code blocks and their respective access modes
from execution traces.

Jain et al. observe that capabilities in Linux are too coarse-grained to enforce the
principle of least privilege for unprivileged users [Jai+14]. As a result, policies are
commonly implemented in setuid-root binaries, a potential source of vulnerabilities.
The authors present an extension of AppArmor which facilitates moving such
policies to the kernel with minimal overhead.

Liu et al. employ combined static and dynamic analysis to automatically decom-
pose an application into distinct compartments to protect user-defined sensitive
data, such as private keys, from memory disclosure vulnerabilities [Liu+15].

2.2.2 Refactoring

Refactoring denotes the restructuring of software to improve non-functional prop-
erties without altering its functionality [Fow99]. It comprises the decomposition
of monolithic software systems as well as changes in an existing modular struc-
ture. Call graphs, module dependency graphs, or data dependency graphs are
commonly used to represent software structures for refactoring (e.g., [CV95; DK99;
Sha+03; Ton01]). Whether nodes in such graphs should be merged, split, or remain
separate is usually decided by cohesion and coupling metrics [YC79] associated

25

2 Profiling Driven Partitioning of In-kernel Software Components

with the represented software structures, either by graph partitioning [Bav+; CV95;
Sha+03], cluster analysis [LA02; LZN04; MB07; Wig97], or search based techniques
[HHP02; MM06; PHY11].

2.2.3 Mobile/Cloud Partitioning

In order to enable sophisticated, computationally demanding applications to run
on resource and energy constrained mobile devices, the partitioning of such ap-
plications into more and less demanding compartments has been proposed in the
literature [Chu+11; MN10; Yan+13]. The former is then executed on the mobile
device itself whereas the latter is executed remotely on a server infrastructure with-
out draining the battery. Due to the dynamically changing operational conditions
of mobile devices (battery strength, bandwidth, etc.), most approaches combine
static and dynamic measures for partitioning, similar to the approach presented in
this chapter.

2.2.4 Fault Tolerance

A large number of approaches have been proposed to isolate critical kernel code
from less critical kernel extensions, as existing extension mechanisms were found
to threaten system stability in case of misbehaving extensions [Cho+01; Gan05;
GGP06; MN07; Pal+11; Sim03]. Similar to privilege separation, most work in
this field has focused on how to establish isolation between the kernel and its
extensions [Cas+09; Jo+10; Kan09; LeV+04; Mao+11; NB13; SBL03; SC13; Spe+06;
Tan+07; Wil+08; Zho+06], but only little work considers the problem of identifying
what to isolate for achieving improved fault tolerance at an acceptable degree of
performance degradation.

Ganapathy et al. target this question in the Microdrivers approach [Gan+08]
that proposes a split-mode driver architecture, which supports the automated
splitting of existing Linux device drivers into user and kernel compartments. The
splitting is based on static analyses of the driver code and a set of static rules for
classifying functions as either performance critical or uncritical. The approach
has been implemented in a tool called “Driverslicer”, a plugin for the CIL source
code transformation and analysis tool chain [Ker; Nec+02]. Renzelmann et al.
extend Microdrivers to support Java for reimplementing the user part of split
device drivers [RS09]. Butt et al. extend the Microdrivers architecture by security
aspects using dynamically inferred likely data structure invariants to ensure kernel
data structure integrity when data is transferred from the user part to the kernel
part [But+09].

In this chapter, we demonstrate that the addition of runtime information on
performance measures significantly improves the partitioning by avoiding static
worst-case approximations. We use this information to state partitioning as a

26

2.3 System Model

0-1 ILP problem, for which we obtain an optimal solution with respect to a given
isolation/performance trade-off.

2.3 System Model

We consider the problem of bi-partitioning a kernel software component S (e.g.,
kernel modules) into a user mode fraction Sυ and a kernel mode fraction Sκ for
split-mode operation to reduce kernel code size, where mode transitions occasion a
cost c. We detail our software component model, cost model, and code size notion
in the following subsections. This provides the foundations for stating kernel/user
mode partitioning as 0-1 ILP problem in Section 2.4.

2.3.1 Software Component Model

As we target kernel code for partitioning, we assume S to be written in a procedural
language like C. In procedural languages, a software component S comprises a
finite set of functions F(S) = { fi | i ∈ �}1. Any function f j can be referenced by
any other function fi of the same component and we denote such references by
fi f j. Our reference notion comprises direct (function calls) and indirect (passing
function pointers as arguments) references [Ryd79]. Using the reference relation on
functions, we obtain the call graph (F(S), R(S)), where F(S) represent vertices and
R(S) = {(a, b) ∈ F(S)× F(S) | a b} edges of the graph.

Kernel Interactions

As allocating functions in S that heavily interact with kernel functions external to S
to the user mode partition would significantly affect performance, we extend our
software component model to describe such interactions. We have to consider two
cases: (1) functions in S are invoked from other parts of the kernel not in S and
(2) functions in S invoke kernel functions external to S. Hence, we add a kernel
node K and corresponding edges for references from and to such functions not in S
to the call graph. We define the extended call graph as

(F′(S), R′(S)) = (F(S) ∪ {K},
R(S) ∪ {(K, f) | f ∈ Fentry(S)}

∪ {(e,K) | e ∈ Fext(S)}),

where Fext(S) ⊆ F(S) is the set of functions that reference any function declared
as extern in the program code of S, and Fentry(S) ⊆ F(S) is the set of all functions
on which the address-of operator (& in the C language) is used, i.e., functions

1We do not include 0 in �. In cases that include 0, we use �0.

27

2 Profiling Driven Partitioning of In-kernel Software Components

potentially invoked by component-external code. Note that K represents any
function that resides within the kernel but is external to S, including core kernel
functions as well as other in-kernel software components.

Data References

When loaded into memory, S resides in a memory address space A(S) = [⊥S,>S]

with lower and upper bound addresses ⊥S,>S ∈ �0. S’s data is contained in a
finite amount of memory allocations M(S) = {(a, l) | a ∈ A(S) ∧ l ∈ �} of that
address space, where a denotes the starting address of an allocation and l the length
of the allocated slot in bytes. No memory allocation can exceed the address space
boundaries:

∀(a, l) ∈ M(S), a + l ≤ >S

and memory allocations within an address space are disjoint:

∀(a, l), (a′, l′) ∈ M(S), a < a′ ⇒ a + l < a′.

We denote the reference (read/write access) of a function f ∈ F′(S) to allocated
memory m ∈ M(S) by f � m.

Note that interactions on shared memory are implicitly covered by our data
model, as we do not require component address spaces to be disjoint. We assume
that shared memory across differing address spaces is mapped to the same ad-
dresses in all address spaces and that memory allocation lengths are also the same
for shared memory.

Partitioning

By bi-partitioning S’s extended call graph (F′(S), R′(S)), we obtain two disjoint
sets F(Sυ) and F(Sκ) of functions, where functions f ∈ F(Sυ) reside in the user and
functions f ∈ F(Sκ) in the kernel mode partition. Note that the kernel node K is,
per definitions, always assigned to F(Sκ). Moreover, we obtain three disjoint sets of
edges:

R(Sυ) = {(a, b) | a, b ∈ F(Sυ)} and

R(Sκ) = {(a, b) | a, b ∈ F(Sκ)}

are the sets of edges internal to the user and the kernel mode partitions, whereas

Rcut(Sυ, Sκ) = {(a, b) ∈ R′(S) |
(a ∈ F(Sυ) ∧ b ∈ F(Sκ))

∨(a ∈ F(Sκ) ∧ b ∈ F(Sυ))}

28

2.3 System Model

is the set of edges cut by the partitioning, i.e., edges that represent inter-domain
function invocations. Neither nodes nor edges are lost during partitioning. So, we
define the set of all possible partitionings of a software component S as

PS ={(F(Sυ), F(Sκ)) |
F(Sυ) ∩ F(Sκ) = ∅

∧ F(Sυ) ∪ F(Sκ) = F′(S)

∧ R(Sυ) ∪ R(Sκ) ∪ Rcut(Sυ, Sκ) = R′(S)}.

(2.1)

The cost of the cut, and thereby the performance overhead of the partitioning, is
then given by the sum of the weights of all edges in Rcut(Sυ, Sκ) and the isolation
degree of a cut is expressed in terms of size of the Sκ partition; the smaller the
kernel components the better the isolation. We detail both edge weights and size
measures in the following.

2.3.2 Cost Model

To model the cost c associated with a partitioning p ∈ PS of a component S, we
first define a weight function w : R′(S)→ � that assigns a weight to each edge
of the extended call graph. The weight represents the expected overhead for
invoking the corresponding reference as inter-domain function call. The associated
overhead results from (a) mode switching overheads for changing the execution
mode, (b) copying function parameters and return values between modes, and
(c) synchronizing that part of the split component’s state that is relevant to both
partitions, i.e., memory locations m that are accessed from both partitions:

{m ∈ M(S) | ∃ fυ ∈ F(Sυ), fκ ∈ F(Sκ) :

fυ � m ∧ fκ � m}.

Points (b) and (c) both require copying data between the disjoint memory alloca-
tions M(Sκ) and M(Sυ) which imposes an overhead that depends on the amount
of data to copy. The overall weight for each edge is therefore computed according
to Equation (2.2), where t ∈ �0 denotes the number of expected invocations of
reference r ∈ R′(S), b : R′(S)→ � denotes the average number of bytes transmitted
upon a single invocation of a reference, and csys : �→ � denotes the estimated time
that mode switching and copying a number of bytes across partition boundaries
takes on system sys. We detail the assessment of accurate edge weights using
collected runtime data in Section 2.4.2.

w(r) = t · csys(b(r)) (2.2)

29

2 Profiling Driven Partitioning of In-kernel Software Components

The cost for a partitioning p ∈ PS is given by c : PS → � as stated in Equation (2.3),
i.e., the sum of edge weights of all cut edges. By minimizing c(p), we can find a
partitioning with minimal cut weight, i.e., a partitioning with minimal overhead
for inter-domain function calls.

c(p) = ∑
ri∈Rcut(Sυ,Sκ)

w(ri) (2.3)

2.3.3 Isolation Degree

All software components S that execute in kernel mode do not only operate
with the highest system privileges they also share the same address space, i.e.,
∀Si, Sj, A(Si) = A(Sj). Hence, defective or malicious code within such components
could arbitrarily alter any code or data in any other kernel components and,
ultimately, in the entire system. Isolation prevents the unintended alteration of a
software component’s data or code by another software component by enforcing
domain boundaries between components that, if at all, can only be crossed via well
defined interfaces. Intuitively, the degree of isolation in a system is higher the more
code is executing in unprivileged user mode within a separate address space, as
this code cannot directly access data or functionality in the kernel. We, therefore,
measure the degree of isolation by the amount of kernel code executing in user
mode, i.e., the user partition size.

To account for partition sizes, we assign all functions in the extended call graph
their source lines of code (SLOC) count as node weight with n : F′(S)→ �0. The
size of a partition is then given by the sum of its node weights. As the kernel node K
represents the entirety of kernel functions external to S which, by definition, cannot
be moved to the user mode partition, we define n(K) = 0 in order to include only
component S in our size notion. Although the user partition size is a more intuitive
measure for the isolation degree, we use the kernel partition size as a measure for
lack of isolation in the following. The formulation of both optimization objectives,
cut weight and partition size, as values to minimize facilitates their combination in
a single cost function for optimization as we show later in Section 2.4.3. Due to the
constraints on the node sets of user and kernel partition in Equation (2.1), both size
measures for isolation are equivalent.

We define s : PS → �0 accordingly in Equation (2.4) for assigning a partitioning
p its lack of isolation degree. A partitioning p with minimal s(p) has the smallest
possible amount of code residing in the kernel mode partition and, thus, the largest
possible user mode partition, i.e., the highest isolation.

s(p) = ∑
fi∈F(Sκ)

n(fi) (2.4)

30

2.4 Runtime Data Driven Partitioning

2.4 Runtime Data Driven Partitioning

In order to obtain an ideal partitioning of a software component with respect to a
desired isolation/performance trade-off according to our system model, we need
to (1) perform a static code analysis to extract the component’s call graph, the node
weights (SLOCs), and the sets of possible data references from its program code,
(2) perform a dynamic analysis of the component to assign edge weights (expected
cross-mode invocation costs) to model the impact of partitioning on our objectives,
and (3) formulate our optimization objectives and constraints as ILP problem.

To implement the approach outlined in Figure 2.1 on page 23, we reuse and
extend the Microdrivers framework by Ganapathy, Renzelmann et al. [Gan+08;
RS09]. Originally, the framework only supported 32 bit (x86) Linux (v2.6.18), but
we updated it to support contemporary 64 bit (x86_64) Linux versions (v3.14+). Our
approach does not require modification of the Linux kernel beyond the component
to be partitioned and, hence, is applicable to off-the-shelf kernels. Only the
Microdrivers runtime and some parts of the tool chain may require updates for
porting the approach to other kernel versions. We detail the individual processing
steps in the following.

2.4.1 Static Analyses: Call Graph and Node Weights

We largely rely on the code analysis and transformation framework CIL [Ker;
Nec+02], which uses a simplified abstract representation of C code that can be
analyzed by custom plugins written in OCaml. First, we use CIL to extract the static
call graph from the input software component by identifying all defined functions
and all function call sites. Second, we modify the obtained call graph according
to our model and introduce the kernel node K and corresponding edges. We
handle indirect function invocations (via pointer) by adding edges to all functions
whose signatures are compatible with the invoked function pointer type. This
over-approximation introduces a number of false positives, i.e., edges that do not
represent possible function calls during runtime. However, we compensate for
these using the recorded runtime data from our dynamic analysis (cf. Section 2.4.2).
Figure 2.2 on the next page illustrates a resulting call graph, including node and
edge weights.

For obtaining the node weights (ni in Figure 2.2 on the following page), we
analyze the software component’s preprocessed C code and count the “physical”
source lines of code (SLOC) for each function. We adopt the common SLOC notion
and only include non-blank, non-comment lines. We implemented a Clang/LLVM
based tool for extracting accurate SLOC counts on a per function level. We chose
not to rely on CIL for this task in order not to distort the SLOC counts through CIL’s
code transformations, which generally increase the SLOC count disproportionately.

31

2 Profiling Driven Partitioning of In-kernel Software Components

Figure 2.2: Example call graph of a kernel software component S as used for partitioning.
Nodes A to F represent functions with statically determined weights ni; edges represent
possible function calls with dynamically determined weights ei. “Kernel Node” (K in
Section 2.3.1) represents all kernel functions outside component S.

To extract the set of possible data references for each function, we reuse the mar-
shaling (points-to) analysis of the Microdrivers framework, which is implemented
as part of a CIL plugin called “Driverslicer”. This is the same analysis that the
Microdrivers framework employs for generating the marshaling code needed for
synchronizing state between the user and kernel mode domains (see Section 2.3.2).
The analysis yields an over-approximation of possible data references for each
function, i.e., which data may be reachable from which functions. The analysis relies
on programmer supplied code annotations as discussed later in Section 2.4.2. We
refer the reader to the Microdrivers publications [Gan+08; RS09] for a detailed dis-
cussion of Driverslicer’s marshaling analysis. We use the results of this analysis in
the dynamic analysis phase for collecting runtime data as detailed in the following
section.

2.4.2 Dyn. Analyses: Edge Weights & Constrained Nodes

While static analyses are useful to obtain information related to the code structure,
their utility to approximate function invocation frequencies or sizes of (dynamic)
data structures is limited. For instance, invocation frequencies for function calls
inside a loop that depends on input data can only be sensibly estimated by a
dynamic analysis; the same is true for estimating the length/size of linked data
structures such as lists or buffers whose size depends on input data. We compensate
for this limitation by augmenting the statically obtained structure (call graph and
node weights) with data from dynamic profiling. For edge weights, relying on
recorded data from dynamic profiling yields more accurate results than static
over-approximations, as long as the workload used to conduct the profiling is
comparable to the system load encountered during actual operation.

32

2.4 Runtime Data Driven Partitioning

Figure 2.3: Dynamic analysis and ILP steps in the partitioning process. An instrumented
version of the original kernel module is built and executed under a given workload. The
collected runtime profile is used to determine the edge weights in our graph model that
is used for the ILP-based partitioning, which assigns all functions to either kernel or
user mode.

Edge Instrumentation

For collecting the data needed to compute the edge weights (wi in Figure 2.2)
according to our weight function w(r) (cf. Equation (2.2)), we instrument the
software component S and execute it to capture its dynamic behavior under a given
workload. A general overview of the dynamic analysis steps is given in the left
part of Figure 2.3.

We utilize the statically obtained call graph to identify relevant code locations
for instrumentation. To collect data for all call graph edges that start in a node
other than the kernel node K, i.e., edges (fi, f j) ∈ R′(S), fi , K, we instrument all
function call sites within S. For entry edges (fi, f j) ∈ R′(S), fi = K∧ f j ∈ Fentry(S),
the call sites are external to S. Hence, we instrument the function bodies of the
target functions f j for these edges. For functions that can be invoked from within S
as well as from K, we correct the collected entry edge data in a postprocessing step
to avoid false accounting for entry edges.

We insert code at the above described code locations to record per edge: (i) the
number of edge activations (function invocation frequency) (t in Equation (2.2)),
(ii) the estimated data amount that would be transmitted between functions in case
of an inter-domain call as arguments and return values (an addend in the calculation
of b in Equation (2.2)), (iii) the estimated data amount for the synchronization of
global data accessible from caller and callee (also contributing to b), and (iv) the
execution context in which the call occurs. Information on the execution context is
used to identify constrained nodes, i.e., nodes that cannot be moved to user mode,
as discussed later in Section 2.4.2.

33

2 Profiling Driven Partitioning of In-kernel Software Components

For the instrumentation, we employ aspect-oriented programming [Kic+97]
techniques and generate the instrumentation code as separate C source code with
our code generator tool, which is implemented as a CIL plugin. We use the AspeCt-
oriented C compiler [GJ10] to insert the instrumentation code into the component
during the build process. Aspect-oriented programming has the advantage that
the instrumentation code is written in the same language as the code that is being
instrumented, while both can be maintained as separate modules.

The inserted code implements a dynamic size estimation by walking through
data structures reachable from function parameters, global variables, and return
values, and summing up their sizes. Linked data structures and heap allocated
structures are handled correctly by following pointers and interpreting pointer
targets according to the pointed-to data type. The required data type information
for this estimation technique is obtained by reusing the points-to data from the
Microdrivers marshaling analysis. The analysis relies on programmer supplied
annotations to fill the gaps in the data type information inherent in the C language.
For instance, annotations are required to resolve void pointers to actual types or
to specify the length of dynamically allocated buffers. Effectively, we are refining
the static data type based overestimation of reachable data structures that the
Microdrivers analysis provides using actual data values observed during runtime.
For instance, if we observe a NULL pointer in a data structure, we do not consider the
pointer target’s data type for size estimation. The described approach is tailored
for use with the Microdrivers framework. If another framework is selected to
implement the split mode operation, the size estimation has to be adapted to reflect
the data synchronization approach of that framework.

Using the recorded invocation frequencies and data transmission estimates from
the dynamic analysis, we can derive the expected performance overhead that
cutting edges in R′(S) implies. As such overhead differs on different hardware
platforms (and also with different frameworks used for splitting), we express the
actual cost as a function csys of the amount of data to be copied. To determine
csys, we implemented a kernel module for conducting measurements on the target
platform, where the split mode component should ultimately execute. The module
measures and records the overhead that the transfer of different data amounts
causes in inter-domain function invocations. We fit a function onto the recorded
data and use it to estimate the overhead for the average data sizes recorded during
profiling. This completes the information required for calculating edge weights
according to Equation (2.2): t is the number of observed edge activations, csys(x) is
the fitted platform dependent function, and b(r) is the average number of bytes
transmitted.

34

2.4 Runtime Data Driven Partitioning

Constrained nodes

Due to the structure of commodity OSs, and in particular Linux, there are functions
(nodes) that have to remain in the kernel partition. The auxiliary node K, represent-
ing all functions external to S, must remain in the kernel partition by definition.
Another example are functions that may execute in interrupt context. This is an
inherent limitation of the Microdrivers framework, which synchronizes between
user and kernel mode via blocking functions and code running in interrupt context
cannot sleep [Lov]. Consequently, we must ensure that such non-movable functions
remain in the kernel partition. A number of possibilities exist to circumvent this
restriction, for instance by changing the synchronization mechanisms in Micro-
drivers or by employing mechanisms for user mode interrupt handling, such as
in VFIO [VFI16] or the Real-Time Linux patch set [RTw16]. As these only affect
the achievable partitioning result and not the partitioning approach, which is the
central topic of this chapter, we do not assess the impact of these options.

We denote Fmov(S) ⊆ F′(S) as the set of movable functions and Ff ix(S) ⊆ F′(S)
as the set of functions that are fixed in kernel mode. Both sets are disjoint and
Fmov(S)∪ Ff ix(S) = F′(S). We determine Ff ix(S) using the execution context records
from profiling. Every function fi that executed in interrupt context during profiling
and all functions f j that are reachable from fi are in Ff ix(S) (transitive closure).
Note that this approach may miss some unmovable functions if they were not
observed in interrupt context. Such false negatives can be mitigated in the resulting
partitioning, for instance, by providing alternate code paths that allow the execution
of interrupt functions within the kernel even though they were moved into the user
mode partition. However, we did not encounter any such cases in our case study.

A number of kernel library functions, e.g., string functions like strlen, have
equivalent functions in user mode libraries. These functions can be ignored for the
partitioning as a version of them exists in both domains. We therefore remove them
from our call graph model prior to partitioning. This is a performance optimization
for the resulting split mode components.

2.4.3 Partitioning as 0-1 ILP Problem

We express our partitioning problem as 0-1 ILP problem, as illustrated in the right
half in Figure 2.3. In general, stating a 0-1 ILP problem requires a set of boolean
decision variables, a linear objective function on the variables to minimize or maximize,
and a set of linear inequalities as problem constraints over the variables. Once stated
as ILP problem, a linear solver can be used to find an optimal partitioning.

35

2 Profiling Driven Partitioning of In-kernel Software Components

Decision Variables

We introduce the following two sets of boolean variables: xi, yi ∈ {0, 1}. For each
node fi in our call graph, a corresponding variable xi assigns fi to either the user
or kernel mode partition as follows:

∀ fi ∈ F′(S), xi = 0⇔ fi ∈ F(Sυ) ∧ xi = 1⇔ fi ∈ F(Sκ)

Additionally, a variable yi determines for each corresponding call graph edge ri

whether the edge is cut by the partitioning as follows:

∀ri ∈ R′(S), yi = 0⇔ ri < Rcut ∧ yi = 1⇔ ri ∈ Rcut.

Problem Constraints

Since variables xi and yi are boolean, we can express their relation using a boolean
exclusive-or (XOR) operation yk = xi ⊕ xj, where yk encodes if edges rk = (fi, f j)

are cut or not and xi, xj represent the partition assignments of the two adjacent
nodes. In order to express this relation as a linear equation system, we define four
constrains for each edge as given in Equations (2.5) to (2.8). The constraints encode
the boolean truth table for XOR, one equation per row in the truth table.

xi + xj − yk ≥ 0 (2.5)

xi − xj − yk ≤ 0 (2.6)

xj − xi − yk ≤ 0 (2.7)

xi + xj + yk ≤ 2 (2.8)

In addition to the XOR encoding, we need further constrains to fix non-movable
functions as discussed above in the kernel partition, i.e., ∀ fi ∈ Ff ix(S), xi = 0. We
achieve this by adding one additional constraint of the form given in Equation (2.9)
per non-movable function fi.

xi ≤ 0 (2.9)

Objective Function

We combine the cost (Equation (2.3)) and size (Equation (2.4)) functions from
Section 2.3 to a single objective function with a balance parameter λ ∈ [0, 1].
We compute the edge weights wi and node weights ni as described above for
all functions and edges in (F′(S), R′(S)). We then reformulate our minimization
objectives c(p) and s(p) as sums over normalized edge and node weights including
decision variables as defined in Equations (2.10) and (2.11). The node and edge
weights are normalized to the interval [0, 1] according to Equation (2.12) which also

36

2.5 Evaluation

normalizes both equations. The normalized weights represent percentages of the
overall weight present in the call graph.

c′(S) = ∑
ri∈R′(S)

||wi|| · yi (2.10)

s′(S) = ∑
fi∈F′(S)

||ni|| · xi (2.11)

||ai|| =
ai

∑n
j=1 aj

(2.12)

Combining Equations (2.10) and (2.11) into one linear function with a balance
parameter λ yields Equation (2.13), which is our final objective function for the ILP
solver.

obj(S) = λ · c′(S) + (1− λ) · s′(S) (2.13)

λ enables the tuning of the trade-off between the expected performance overhead
and the amount of code that resides in the user partition. Setting λ to a value near
1 prioritizes the minimization of the performance overhead, i.e., cut cost c(p). In
this case, a resulting partitioning can be expected to have a near zero cut cost, i.e.,
negligible performance overhead, but a large kernel partition. Setting λ to a value
near 0 prioritizes the minimization of the kernel partition, i.e., SLOC count s(p).
A partitioning in this case can be expected to have a kernel partition as small as
possible, but a high performance overhead.

2.5 Evaluation

We demonstrate the utility of our approach in a case study of three Linux kernel
modules: two device drivers (psmouse and 8139too) and one file system (romfs).
For the dynamic analyses, we expose the instrumented kernel modules to through-
put benchmarks and collect their runtime profiles. We derive the platform overhead
functions csys for our target systems from additional measurements and use them
with the obtained profiles for generating and comparing partitionings with different
isolation/performance trade-offs. We highlight general insights from this process
that are not limited to the scope of our case study.

2.5.1 Experimental Setup

We start by describing our experimental setup that we use for our evaluation. We
conduct our experiments on two different test machine setups:

(1) a physical machine setup that we term PHY

(2) a virtual machine setup that we term VM

37

2 Profiling Driven Partitioning of In-kernel Software Components

Both systems run Debian 8.4 (Jessy) as operating system with Linux 3.14.65 (long-
term support) in a 64-bit (x86_64) configuration. Our physical machine (PHY)
is equipped with a quad-core Intel i7-4790 CPU running at 3.6 GHz, 16 GiB of
RAM main memory, a 500 GB SSD, and a 200 GB HDD. Our virtual system (VM)
emulates a dual-core CPU and 1 GiB of RAM main memory, with the virtual CPU
cores being pinned to physical cores on the host machine and the guest RAM being
locked on the host. As virtualization platform, we employ QEMU/KVM 2.1.2 using
the just described physical machine as host. Note that we use the VM setup only
for psmouse experiments as we rely on QEMU’s ability to emulate mouse events.
The HDD is used for romfs experiments.

Test Module Selection

To demonstrate the applicability of our approach to general in-kernel components,
we select kernel modules that utilize distinct kernel interfaces and exhibit different
runtime characteristics for our evaluation. Table 2.1 on the facing page lists the
kernel modules we selected for that purpose. 8139too is the driver for RealTek
RTL-8139 Fast Ethernet NICs, which executes mostly in interrupt context and
interacts with the kernel’s networking subsystem. psmouse is the driver for most
serial pointing devices (mouse, trackpads), which executes largely in interrupt
context, has complex device detection and configuration logic, and interacts with
the kernel’s serial I/O and input subsystems. romfs is a read-only file system used
for embedded systems; it does not execute in interrupt context and interacts with
the kernel’s virtual file system and block I/O infrastructure.

Table 2.1 on the next page reports static size metrics for the selected test modules.
The SLOC columns list the physical source lines of code2 before and after code
preprocessing (as part of the build process). The Functions columns list the number
|F(S)| of functions implemented in the module (All) and the number |Fentry(S)| of
entry point functions (Entry). Column Extern lists the number of external functions
referenced, Lib lists the number of library functions that exist in both kernel and
user mode, and Calls lists the number |R′(S)| of calls (references). Judging by the
presented numbers, 8139too is the most complex of the modules with more code,
more functions, and a larger interface with the kernel, which results in a higher
coupling with other kernel subsystems than the other modules. The relatively high
number of entry functions for psmouse is due the driver’s heavy usage of function
pointers rather than a large exported interface (see Section 2.3.1 on page 27).

Workload Selection

As workloads, we apply throughput benchmarks with a duration of 60 s to all test
modules. For 8139too, we use netperf 2.6 in TCP_STREAM mode measuring the

2generated using David A. Wheeler’s SLOCCount

38

2.5 Evaluation

Table 2.1: Overview of the selected test modules. SLOC columns report original and
preprocessed line numbers. Function columns list the number of overall and entry
functions. The remaining columns list the number of external & library functions and
call sites.

SLOC Functions

Module Orig PreProc All Entry Extern Lib Calls

8139too 2087 38 042 123 35 69 19 378

psmouse 1390 20 779 59 26 42 2 214

romfs 927 27 448 42 14 25 4 96

network throughput. For psmouse, we use QEMU’s monitor and control interface
(QMP) to generate mouse move events measuring the event throughput. For romfs,
we use fio 2.2.9 to perform file read tests measuring read throughput. All work-
loads contain the module loading/unloading steps and all initialization/cleanup
operations, such as mount/umount for romfs and ifup/ifdown for 8139too.

2.5.2 Instrumentation & Profiling

We instrument all modules with our aspect-oriented instrumentation tool and
execute them in our test systems using the aforementioned workloads. The in-
strumented modules are only used to collect profiling data; they are removed
from the system once profiling is complete. We repeat the profiling runs 50 times
for each module, rebooting the systems before each run to avoid interferences
between runs. In addition to profiling runs, we also perform 50 runs with the non-
instrumented module as a baseline to determine the runtime overhead incurred by
the instrumentation and the split mode operation.

Instrumentation Overhead

In terms of binary module size, the instrumented module versions are about
12 to 42 times larger than the original ones. This is due to the aspect-oriented
instrumentation approach, which produces additional C code for each function call
site. We report performance measurements for the instrumented and the original
module versions in Table 2.4 on page 46 (first two rows) together with our overall
results. As apparent from columns Throughput, Ifup/Ifdown and Mount/Unmount,
the instrumentation does not impact throughputs or init/cleanup times. Module
load/unload times increase slightly for some modules, with a maximum increase
of factor 3.6 for loading 8139too. We therefore conclude:

39

2 Profiling Driven Partitioning of In-kernel Software Components

Table 2.2: Runtime profile overview. The first four columns list the number of activated
function nodes and call edges (absolute and relative); the last column reports the relative
amount of movable functions.

Activations Rel. Coverage

S F(S) R′(S) F(S) R′(S) Fmov(S)/F(S)

8139too 82 201 66.7 % 53.2 % 65.9 %
psmouse 36 81 61.0 % 37.9 % 83.1 %

romfs 36 84 85.7 % 87.5 % 83.3 %

Aspect-orientation provides a modular way to implement source code instrumenta-
tion on the abstraction level of the targeted programming language with overheads
small enough to allow production usage.

Runtime Profiles

Table 2.2 gives an overview of the observed runtime profiles. The Activations
columns list the number of functions and references that our workload activated,
whereas the Rel. Coverage columns report the relative amount of activations. The
last column reports the percentage of functions that our partitioner may move to
the user mode partition, i.e., the number |Fmov(S)| of nodes for which no constraints
apply (cf. Section 2.4.2). Our romfs workload achieves the highest coverage as this
module only contains the essentials for reading from the file system. The percentage
of constrained nodes is lowest here as romfs does not execute in interrupt context
and only needs a few functions fixed in the kernel to ensure correct operation
in split mode. The relatively low percentage of activated calls in psmouse is due
to the usage of function pointers as well as the high amount of device specific
detection and configuration logic, most of which is not needed for our emulated
QEMU mouse device. The few unmovable functions in this module execute in
interrupt context. 8139too has the lowest fraction of movable functions as this
driver primarily executes in interrupt context for network package handling. In
summary, there is significant potential for moving functions to user mode for
psmouse and romfs since only a small fraction of functions needs to be fixed in
the kernel. The potential for moving many functions without severe performance
implications is particularly high for psmouse and 8139too in the given usage
scenario as functions without activations can be moved to user mode without
affecting the performance under the respective common case usage.

40

2.5 Evaluation

1200

1220

1240

1260

0 20 40 60

Size [KiB]

T
im

e
[μ

s]

Measured Mean Time Fitted

Figure 2.4: Platform overhead csys for data sizes from 0 to 60 KiB measured for our physical
machine setup.

2.5.3 Estimation of the Platform Overhead

We estimate the platform overhead function csys for both our setups (PHY & VM)
using a split mode test module (cf. Section 2.4.2) that measures the time needed
for inter-domain function invocations with data of increasing sizes up to 60 KiB in
128 B steps. All data sizes recorded during profiling fall into this range. For each
size step, we measure 1000 inter-domain calls and use their average time as the
result for each step. We repeat the overall measurement process 10 times and fit a
linear function onto the average measurements as we are interested in getting a
mean overhead estimation.

Figure 2.4 illustrates the results for our PHY system and Figure 2.5 on the
following page for our VM system. The horizontal axis shows the size in KiB
whereas the vertical axis shows the measured time in microseconds. The fitted
linear function for our PHY setup can be written as csys(b) = 1205.2 + 0.00084 · b
(coefficient of determination r2 = 0.98), and the function for our VM setup as
csys(b) = 1259.7 + 0.00082 · b (with r2 = 0.97). For both systems, there is a consider-
able static overhead of about 1205 µs for PHY and about 1260 µs for VM associated
with every inter-domain function invocation. The actual data transfer entails a
much smaller overhead of about 0.8 µs per 1 KiB. In earlier experiments on Linux
3.14.40, we observed a static overhead of 1214 µs for PHY, indicating that csys results
may be reused across different revisions of the same kernel.

2.5.4 Partitioning Results

We use the GLPK IP/MIP solver v4.55 [Fre] for partitioning. We generate 13

partitionings per module using different λ values to investigate the effect on the

41

2 Profiling Driven Partitioning of In-kernel Software Components

1240

1260

1280

1300

1320

1340

0 20 40 60

Size [KiB]

T
im

e
[μ

s]

Measured Mean Time Fitted

Figure 2.5: Platform overhead csys for virtual machine.

resulting partitions. For 8139too, the solver needs on average about 1.3 MiB of
RAM with 362 decision variables (after problem preprocessing). For psmouse,
it uses about 0.8 MiB with 241 decision variables; romfs needs 0.4 MiB with 128

decision variables. The solver runtimes are negligible as they are reported with
0.0 s in all runs. These numbers demonstrate that, although 0-1 ILP problems are
generally NP-complete, our optimization-based partitioning approach is suitable
for realistic problem sizes.

If stated as 0-1 ILP problem, optimal partitioning of real-world kernel software
components can be achieved with modest computational overhead.

Figures 2.6a to 2.6c on the next page illustrate the sizes (s(p)) and cut costs (c(p))
of the generated partitions. The horizontal axes display the used λ values (being
identical for all modules) whereas the left vertical axes show the sizes for kernel
and user partitions (in SLOC); the right axes show the cut costs (in time units).
Note that the figures use different scales on the vertical axes, with Figure 2.6c using
seconds and the others using milliseconds. Moreover, Table 2.3 reports the exact
numbers for partition sizes and estimated cut costs for all three modules.

Obviously, the amount of fixed kernel code does not change with varying λ,
i.e., the minimal kernel partition size is bounded by the amount of non-movable
(interrupt) functions. Nonetheless, the overall kernel partition sizes decrease with
decreasing λ as the minimization of s(p) gains priority. The cost, however, increases
with decreasing kernel partition size as more and heavier graph edges are cut with
less priority on the minimization of c(p). As λ approaches 0.0, a high cost must be
payed even for small decreases in the kernel partition size.

42

2.5 Evaluation

0

200

400

600

800

1000

1200

1400

0

10

20

30

40

50

60

70

80

1.0
0.999 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.001 0.0

Balance Factor λ

P
ar

tit
io

n
S

iz
e

[S
LO

C
]

C
ut C

ost [m
s]

(a) 8139too

0

200

400

600

800

1000

0

10

20

30

40

50

60

70

80

1.0
0.999 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.001 0.0

Balance Factor λ

P
ar

tit
io

n
S

iz
e

[S
LO

C
]

C
ut C

ost [m
s]

(b) psmouse

0

100

200

300

400

500

600

700

0

200

400

600

800

1000

1200

1400

1.0
0.999 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.001 0.0

Balance Factor λ

P
ar

tit
io

n
S

iz
e

[S
LO

C
]

C
ut C

ost [s]

User Kernel Kernel, Fixed

(c) romfs

Figure 2.6: Development of partition sizes (left axis) and cut costs (right axis) for varying
λ values (decreasing left to right) for our three test modules. The kernel partition size
decreases with decreasing λ whereas cut costs increase, i.e., the more code is moved to
the user partition, the higher the performance impact.

43

2 Profiling Driven Partitioning of In-kernel Software Components

Table 2.3: Partitioning results for 8139too, psmouse, and romfs. Only distinct partitions
are reported along with the producing λ, the kernel and user partition sizes (SLOC) and
estimated cost of the respective partitioning.

8139too

λ Kern User Cost (ms)

1.0 1535 49 0.0
0.7 1134 450 0.0
0.5 647 937 26.6
0.4 639 945 27.8
0.3 549 1035 43.4
0.2 492 1092 63.9
0.0 450 1134 82.0

psmouse

λ Kern User Cost (ms)

1.0 1144 4 0.0
0.8 673 475 0.0
0.7 613 535 2.5
0.6 570 578 6.3
0.5 457 691 20.2
0.4 300 848 46.6
0.3 281 867 51.7
0.0 207 941 84.4

romfs

λ Kern User Cost (s)

1.0 722 9 0.0
0.999 513 218 0.024

0.3 132 599 2.1
0.1 54 677 577.5
0.0 27 704 1437.4

If interrupt handling in device drivers was revised to allow for execution in process
context, larger portions of their code could be isolated as user mode processes.

For all modules, the kernel partition is smallest at λ = 0 with highest cut cost.
For λ = 1, the opposite is the case as the kernel partition size is highest and the cut
cost is with a value of 0 the lowest. Decreasing λ from 1.0 to 0.999 allows the solver
to find a partitioning that not only has a low cut cost, but also a larger user mode
partition. This effect occurs as the solver solely minimizes the cut cost at λ = 1
without taking any node weights into account, i.e., any partitioning having minimal
cost (in our scenario 0) is optimal for the solver, irrespective of the SLOC counts
left in either partition. This is also the reason why even with λ = 1, we still have
some code fractions left in the user partition. Putting a little effort into node weight
minimization, however, is enough for the solver to move all “cheap” nodes. In
other words, all nodes that the solver can move “for free” under a given workload
are actually moved to the user partition. This gives the benefit of a higher isolation,
while a performance overhead must be paid only in rare occasions that are outside

44

2.5 Evaluation

the common case usage. Therefore, we recommend to not select λ = 1 but close
to 1. A similar effect does not occur when we increase λ from 0.0 to 0.001 as there
is no way to reduce cut costs without increasing the kernel partition size. Note
that not all generated partitions are distinct as different (neighboring) λ values may
result in the same partitioning. This is due to the node and edge weights being
discrete (a function can only be moved as a whole). Our partitioner produces 7

distinct partitionings for 8139too, 8 for psmouse, and 5 for romfs (cf. Table 2.3 on
the facing page).

For a known usage profile, significant portions of kernel software components can
be isolated at near zero performance overhead in the common case.

Although romfs appears to be the simplest module from the static metrics
presented in Table 2.1 on page 39, we expect especially large overheads as the cut
costs illustrated in Figure 2.6c on page 43 are very high compared to the other
two test modules. This is due to the nature of romfs, which moves large data
chunks with high call frequencies between disk and memory. Even the partitioning
with λ = 0.9 already has a cut cost of about 2.1 s. This effect is due to the edge
weight normalization (see Equation (2.12)), which is applied to formulate the overall
minimization problem for the solver. Workloads that lead to extreme hot spots in
terms of call frequencies and/or data amount in the runtime profile require finer
grained λ variations around 1.0 if the maximum size user partition with zero cost
should be found, since the hot spots in the profile dominate the partitioning cost.

Information on a software component’s dynamic usage profile is essential for an
accurate cost estimation.

After automatically generating a spectrum of partitionings with different λ

values using our approach, a system administrator can select a partitioning with
the performance/isolation trade-off that best fits the requirements of the intended
application scenario. Choosing the lowest λ value that meets required execution
latencies, for instance, yields best effort reliability.

2.5.5 Split Mode Modules

We synthesize and build split mode modules for all distinct partitionings that
we generated and expose them to our workloads for timing and throughput
measurements. Table 2.4 on the next page reports the results. We highlight
especially interesting numbers in bold face.

Overall, split modules with a cut cost of zero do not show different perfor-
mance compared to the original modules except for slightly increased loading

45

2 Profiling Driven Partitioning of In-kernel Software Components

Table 2.4: Performance measurements for the different versions of 8139too, psmouse, and
romfs. The reported results are averages of 50 experiment runs (standard deviation
in brackets). Columns Load, Unload, Ifup, Ifdown, Mount, and Unmount report
the durations of the respective operations in milliseconds. TP columns list workload
throughputs. Interesting data points are highlighted in bold.

8139too

Version Load Unload Ifup Ifdown TP (Mbit/s)

orig 5.0 (3.0) 45.6 (12.4) 44.5 (1.5) 7.6 (0.1) 94.1 (0.0)
instrumented 17.8 (4.9) 44.2 (12.9) 44.6 (1.6) 7.6 (0.1) 94.1 (0.1)
split, λ = 1.0 9.9 (0.1) 45.8 (13.7) 44.5 (1.4) 7.6 (0.1) 94.1 (0.0)
split, λ = 0.7 14.0 (0.1) 48.4 (13.7) 44.8 (1.5) 7.6 (0.1) 94.2 (0.0)
split, λ = 0.5 34.8 (0.3) 47.8 (12.5) 52.2 (1.4) 7.5 (0.1) 94.1 (0.0)
split, λ = 0.4 34.8 (0.3) 42.8 (11.6) 52.4 (1.2) 7.6 (0.1) 94.2 (0.0)
split, λ = 0.3 35.0 (0.2) 47.1 (12.2) 59.7 (1.2) 18.8 (0.2) 94.1 (0.0)
split, λ = 0.2 39.2 (0.3) 72.7 (12.0) 59.3 (1.5) 18.7 (0.2) 94.2 (0.0)
split, λ = 0.0 46.8 (1.4) 73.5 (14.2) 64.2 (1.4) 23.3 (0.2) 94.1 (0.2)

psmouse

Version Load Unload TP (Events/s)

orig 3.5 (1.5) 57.8 (23.1) 1060.3 (13.0)
instrumented 4.4 (1.3) 67.1 (19.4) 1064.2 (16.7)
split, λ = 1.0 5.6 (2.4) 62.6 (21.6) 1059.8 (9.7)
split, λ = 0.8 5.7 (1.8) 60.8 (24.4) 1057.7 (11.1)
split, λ = 0.7 5.5 (2.4) 63.6 (21.4) 1060.6 (9.4)
split, λ = 0.6 5.1 (1.6) 59.5 (23.5) 1056.6 (7.9)
split, λ = 0.5 5.4 (1.7) 62.8 (24.9) 1056.1 (10.4)
split, λ = 0.4 1545.3 (22.6) 63.8 (22.1) 1057.1 (10.7)
split, λ = 0.3 1540.0 (19.3) 65.1 (22.4) 1059.9 (7.8)
split, λ = 0.0 1537.8 (17.1) 114.5 (30.4) 1060.1 (8.5)

romfs

Version Load Unload Mount Unmount TP (MiB/s)

orig 2.8 (1.9) 39.6 (10.2) 1.1 (1.4) 101.7 (8.1) 33.76 (0.72)
instrumented 5.7 (3.3) 36.9 (8.3) 1.1 (1.2) 100.3 (9.0) 33.62 (0.59)
split, λ = 1.0 5.3 (0.1) 35.7 (11.2) 1.2 (1.6) 99.4 (9.3) 33.60 (0.53)

split, λ = 0.999 10.5 (0.2) 44.2 (11.1) 22.4 (1.1) 103.8 (11.8) 33.69 (0.55)
split, λ = 0.3 11.4 (0.3) 44.0 (10.2) 37.7 (1.5) 187.1 (11.2) 33.73 (0.62)
split, λ = 0.1 11.9 (0.2) 45.2 (9.2) 37.6 (1.2) 126.3 (9.5) 0.288 (0.00)
split, λ = 0.0 11.9 (0.3) 46.3 (12.1) 41.0 (0.8) 119.4 (9.3) 0.065 (0.00)

46

2.5 Evaluation

times caused by the initialization of the Microdrivers runtime. The measured
throughputs for the two interrupt heavy drivers (8139too and psmouse) remain
stable as interrupt routines are not touched due to earlier discussed Microdrivers
limitations. As soon as the estimated cut costs increase beyond zero, we observe a
modest impact on operation latencies for 8139too and romfs. Load times increase
for both modules as well as mount and unload times for romfs and ifup time for
8139too. The observed increases are due to the assignment of module and device
initialization/configuration functions to user mode.

For psmouse, an increase in times becomes apparent only in later partitionings:
starting with λ = 0.4, the module load times increase to 1.5 s as all the device
detection and initialization logic gets moved to user mode. Although our estimated
costs also make a jump for this partitioning, it is far smaller than the measured
overhead. We attribute this anomaly to side effects that our model does not account
for. psmouse initialization logic causes additional interrupts that interfere with the
user mode process executing the mouse logic, which leads to more context switches
and wait times for the user mode process.

All modules exhibit the largest performance decrease when the cut cost is
highest and the user mode partition is largest. The measured time and performance
impacts for 8139too and psmouse are not prohibitively high for use in production.
This is consistent with the estimated cut costs that remain below 100 ms. In
contrast, romfs suffers from a significant decrease of two orders of magnitude in
throughput starting from λ = 0.1 as the function that transfers contents between
disk and memory (romfs_readpage) is moved to user mode. This is expected as
the estimated cut cost becomes exceptionally high for large user mode partitions
with about 24 min for λ = 0.0. The decrease in umount times between splits with
λ = 0.3 and λ = 0.1 is a side effect of the observed throughput decrease. During
un-mounting, romfs cleans up per-file i-node data structures using a function that
is moved to user mode starting at λ = 0.3. Due to the lower throughput, fewer files
are read as part of our fixed duration workload. Hence, fewer i-nodes need to be
cleaned up and umount needs less time.

2.5.6 Reliability of Split Mode Modules

To assess the reliability gain of split mode modules, we conduct both a code
analysis and fault injection experiments. As memory safety bugs constitute an
important class of program bugs in C code, we focus on potentially invalid memory
accesses via pointers. We analyzed the source code of our test modules to identify
all code locations where pointers are dereferenced. In case of corrupted pointer
values, dereferences can lead to invalid memory accesses, which, depending on the
accessed memory location and whether it is a read or write access, can crash the
kernel. Figure 2.7 on the following page illustrates the relative amount of pointer

47

2 Profiling Driven Partitioning of In-kernel Software Components

0.0

0.2

0.4

0.6

0.8

1.0

1.0
0.999 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.001 0.0

Balance Factor λ

R
el

. #
 P

tr.
 D

er
ef

. K
er

ne
l

8139too psmouse romfs

Figure 2.7: Relative amount of pointer dereferences in the kernel mode partition across
different λ values. With decreasing λ, the size of the kernel mode partition decreases
(left to right) along with the amount of potentially dangerous pointer dereferences.

dereferences that are left in the kernel mode partition with decreasing kernel
mode size (decreasing λ). The smaller the kernel partition, the fewer potentially
dangerous pointer dereferences are left inside the kernel.

Overall, we found 507 dereferences in 8139too, 389 in psmouse, and 223 in romfs.
For the smallest kernel mode partition, the amount of dereferences falls below
31 % for 8139too and psmouse and for romfs even below 1 %. The dereferences
remaining in the kernel partition reside in non-movable functions. However, at
least 50 % of dereferences can be removed from the kernel partition at moderate
cost (see λ = 0.5) for all three modules.

To validate that invalid memory accesses are indeed a problem when they occur
inside the kernel but can be tolerated in the user partition, we conduct fault injection
experiments in which we inject NULL pointer values into the previously identified
pointer dereferences via code mutation, a fault type that kernel code is particularly
prone to [Pal+11]. We randomly selected 50 mutants per module, compiled them
and executed them with our workload for all previously generated partitionings.
With a total of 20 distinct splits across all mutants, this sums up to a total of 1000

experiments. Across all experiments, 46 % of injected faults got activated for romfs,
78 % for psmouse, and 70 % for 8139too. In all experiments with activated faults,
the kernel reacted with an Oops and required rebooting if the invalid memory
access resided in the kernel partition. However, if the invalid access resided in
the user partition, the user mode driver process reacted with a segmentation fault,
leaving the rest of the system unaffected. When the kernel partition size was largest
(λ = 1.0), we observed an Oops in 100 % of cases. However, if the kernel partition

48

2.6 Discussion

size was smallest (λ = 0.0), we observed Oopses only in 44 % of cases for psmouse,
6 % for 8139too, and 9 % romfs. We conclude that the more code we move into the
user partition the more potential invalid memory accesses can be isolated in the
user mode driver process, thereby improving system reliability.

2.6 Discussion

Our evaluation demonstrates that kernel components can be partitioned into user
and kernel compartments based on data recorded from runtime profiling while
allowing for a user-defined trade-off between isolation and run-time overhead. For
romfs, the cost for a minimal kernel component is prohibitively high, but other λ

values yield usable partitionings with overheads corresponding to the amount of
kernel functionality isolated. In the following, we summarize issues, insights, and
practical considerations from our implementation.

A basic assumption of the used Microdrivers framework is that data accesses
are properly synchronized in the original kernel module using locking primitives, so that
shared state in the split module needs to be synchronized only upon the start
and end of inter-domain function invocations and whenever a locking operation is
performed. In reality, however, locks are often avoided for performance reasons,
especially for small, frequently updated data fields such as the flags field in the
page struct, which the Linux kernel uses for page management. Here, atomic
access operations are commonly used. Atomic operations need special handling
in split mode modules as the accessed data must be synchronized immediately
upon access. For this reason, we left all accesses to certain fields of the page struct
in the kernel. For instance, the romfs_readpage function only started working in
user mode after we ensured that all page status bit accesses were left in the kernel,
which reads/writes these fields concurrently using CPU-specific atomic memory
operations.

State synchronization in the presence of interrupts has also proven challenging. Espe-
cially during device initialization and configuration, drivers issue device commands
that may result in immediate interrupts, i.e., the driver code interrupts itself. As
these commands are not automatically identified, the Microdrivers runtime is
unaware of the resulting control flow redirection to the interrupt service routine.
Therefore, no data synchronization is performed before the interrupt-causing oper-
ation is executed and, hence, the interrupt routine and user mode function may
operate on inconsistent copies of shared data. We encountered this issue with both
8139too and psmouse. Device configuration from user mode only worked after we
added additional synchronization points and left certain operations in the kernel.

While we do not consider security as a partitioning goal, we note that the
presented approach does not harm security: In a properly configured system, the
interface between the kernel and user components of a split mode driver is not

49

2 Profiling Driven Partitioning of In-kernel Software Components

accessible to unprivileged users. Consequently, the attack surface remains the same
as for the original driver. Moreover, moving vulnerable code from the kernel to
user space can reduce the severity of vulnerabilities. The user component can also
benefit from hardening and mitigation techniques that may not be available or
feasible in the kernel. A second consequence of our decision to not open the split
mode driver’s cross-domain interface to other users is that it cannot be reused,
for instance by other drivers or user mode programs. This restriction is intended,
as the generated interfaces are highly customized for a specific partitioning of
a specific kernel component and any reuse beyond that use case bears a risk of
misuse with fatal consequences.

2.7 Conclusion

Although microkernel OSs provide better isolation than monolithic OSs and mod-
ern implementations no longer suffer from the poor IPC performance of their
ancestors, monolithic OSs still dominate the commodity desktop, mobile and server
markets because of legacy code reuse and user familiarity. In order to benefit from
both the existing code bases of monolithic systems and the design advantages of
microkernel architectures, approaches to move kernel code portions of monolithic
OSs into user mode have been proposed. While these approaches provide the
mechanisms for split mode user/kernel operation of monolithic kernel code, they
do not provide guidance on what code to execute in which mode. To this end,
we propose a partitioning approach that combines static and dynamic analyses
to assess the impact of kernel code partitioning decisions on both the degree of
isolation and the expected performance overheads. Using collected data from
profiling runs, we derive solutions that are optimal with respect to a user-defined
isolation/performance prioritization.

We implement the approach for Microdrivers, an automated code partitioning
framework for Linux kernel code, and demonstrate its utility in a case study of two
widely used device drivers and a file system. Our results show that augmenting
static analyses with data obtained from dynamic analyses allows the estimation
of the performance impact and, therefore, the feasibility of a whole spectrum of
possible partitionings for production usage even before a split mode version is
synthesized.

For future work, we plan to address the shortcomings of existing code par-
titioning tools encountered during the implementation of our profiling-based
partitioning and add support for atomic access operations and user mode interrupt
handling. Furthermore, we plan to investigate more efficient alternatives for the
complex function wrapping and parameter marshaling of Microdrivers to improve
performance and the amount of movable functions.

50

3 Accelerating Software Fault

Injections

In Chapter 2, we were concerned with the isolation of faults or defects that may be
activated once software is deployed. However, testing activities during software
development are essential for identifying potential issues even before deploy-
ment. Software Fault Injection (SFI) is a widely used dynamic testing technique
to experimentally assess the dependability of software systems. To allow for a
comprehensive view on the dependability of an increasingly complex software,
SFI typically requires large numbers of experiments with potentially long execu-
tion times, which overall leads to long test latencies. To handle the increasing
complexity, we propose (1) to exploit the parallel hardware resources, which have
become available in virtually all desktop and server systems, for concurrent test
execution and (2) to avoid redundant work between multiple executions. To that
end, we investigate the efficiency and feasibility of conducting OS-level FI experi-
ments in parallel separate virtual machines (VMs) using our PAIN (PArallel fault
INjection) SFI framework. Moreover, leveraging the lessons learned from our PAIN
experiences, we propose FastFI, a novel SFI framework for efficient parallel SFI
experiments at higher levels of the software stack. Aiming at software levels above
the OS level, FastFI is suitable for SFI on system libraries as well as applications
and executes experiments in processes rather than VMs. The idea of parallel execu-
tion of experiments underlies the assumption that individual experiments do not
interfere with each other in ways that change or even invalidate the experimental
results. Consequently, in addition to providing increased SFI throughput, we
investigate if this assumption is justified and analyze the trade-off between result
accuracy and throughput increase for parallel SFI. We conduct our experiments
using real-world systems and applications. For PAIN, we conduct SFI experiments
in an Android OS scenario. For FastFI, we conduct experiments with PARSEC
applications. The contents of this chapter are, in parts verbatim, based on material
from [Sch+18a] and [Win+15b].

3.1 Overview

Modern software stacks are increasingly complex, due to the increasingly so-
phisticated application scenarios they are used in. To cope with this increase in

51

3 Accelerating Software Fault Injections

complexity, many software projects re-use existing “off-the-shelf” software compo-
nents. While software re-use is cost-effective, it can pose a risk for system reliability,
as even correct software can malfunction if it is used in a different context than
originally anticipated. A prominent example of such a problem was the Ariane 5 in-
cident. The inertial reference system that was safe for the Ariane 4 launcher turned
out to be unsafe for Ariane 5, which exhibited a higher horizontal acceleration
during the first 40 seconds after lift-off [Lio+96]. To test whether software faults
in some part of the software stack are critical to its overall dependability, software
fault injection (SFI) [CN13; DM06; Voa+97] is a widely used testing method.

SFI creates a number of faulty software versions, executes them, and monitors
their effects on the execution environment. How SFI generates faults is commonly
specified in terms of code patterns that are referred to as fault models (e.g., [CB89;
KIT93; Nat+13; Rod+99]) or mutation operators (mostly in the mutation testing
community, e.g., [Bud+80; DO91; JH11]). As these patterns can be applied more
often for larger code bases, more complex software yields higher numbers of faulty
versions and higher numbers of faulty versions result in longer SFI test latencies.
Hence, SFI-based dependability assessments require increasing numbers of exper-
iments to provide a comprehensive picture, with studies reporting tremendous
numbers of experiments [Arl+02; Di +12; KD00; Nat+13]. The problem of exploding
experiment numbers is reinforced by the emergence of simultaneous fault injec-
tions where multiple faults are combined and injected at once. Recent studies have
shown that some dependability issues can only be discovered by the combination
of multiple faults [Gun+11; JGS11; Lan+14; Win+13]. As a consequence, there is a
combinatorial explosion in the number of experiments, which poses a considerable
challenge in practice.

For coping with these high experiment numbers, two strategies are often adopted.
The first one being the reduction of experiments by selective execution, for instance,
by employing search or downsampling approaches based on heuristics [JGS11; JH08;
Nat+13; SAM08]. Such a reduction is obviously unsound, as it may miss relevant
(i.e., failing) tests. The second strategy is to utilize the computational power of
modern parallel hardware to execute multiple experiments at the same time on the
same host machine (e.g., [Dua+06; Las05; OU10]). Although parallelization could
be considered the less elegant approach, it has the advantage of being generally
applicable and does not require domain-specific knowledge as is usually the case
for downsampling techniques. Hence, it appears to be a promising solution that
can still be combined with downsampling or search strategies.

In the rest of this chapter, we first conduct parallel SFI experiments on the OS
level, using the widely adopted Android OS, in a full stack virtual environment with
strong isolation between individual experiments. We rely on our PAIN framework
and analyze if experiment throughput can be increased by this parallelization
strategy. We furthermore assess whether the parallel execution of the individual

52

3.2 PAIN Experiments

experiments affects the obtained experiment results and give guidance on how
to design such full stack parallel experiments to achieve both high experiment
throughput and result accuracy. We detail our methodology and setup in Section 3.2
and continue in Section 3.3 with the presentation of our experiment results and
their analysis.

We then present FastFI, our approach for the parallel execution of SFI experi-
ments for software above the OS layer that is based on the experiences and conclu-
sions from our PAIN experiments. In contrast to PAIN, FastFI uses lightweight
isolation between experiments and relies on parallel processes rather than VMs
for experiment execution. Beyond, the parallel execution of experiments, FastFI
employs further techniques to reduce the number executed experiments by not even
starting experiments for faults that cannot be reached during execution. FastFI
also tries to avoid re-executing redundant work within the targeted application. In
Section 3.4, we present the design and implementation of FastFI and continue with
its evaluation in Section 3.5 by applying it to PARSEC applications. Section 3.6
discusses work related to both our PAIN experiments as well as our FastFI design.
Finally, Section 3.7 concludes this chapter.

3.2 PAIN Experiments

In this section, we present the design of our PAIN experiments for the assessment
of the feasibility of conducting parallel OS-level SFI experiments for increased
throughput while maintaining result validity.

3.2.1 Overview

The attempt to parallelize SFI experiments relies on the assumption that the parallel
execution of experiments does not impact the results. We hypothesize that this
assumption is all but trivial. Even if great care is taken to avoid obvious sources
of interferences between experiments, e.g., isolating them in VMs, there are many
subtle factors related to timing and resource contention than may influence the
target system in unexpected ways, especially if the target system is by itself a
complex system such as an OS, thereby adversely influencing obtained results.
For instance in the domain of embedded, real-time, and systems software, studies
have shown that faults often show time-sensitive and non-deterministic behavior
[Arl+02; Cot+13a].

This is why we propose the PAIN (PArallel fault INjection) SFI framework
to conduct efficient and accurate parallel SFI experiments. The PAIN software
framework that we developed for running our experiments, which consists of
about 14 thousand source lines of code1, is publicly available at Github [DM] to

1generated using David A. Wheeler’s SLOCCount

53

3 Accelerating Software Fault Injections

allow other researchers to benefit from our experiences. With PAIN we assess both
the achievable parallel experiment throughput as well as the validity of obtained
results.

We continue in Section 3.2.2 by stating the research questions we are interested
in, followed by the description of our overall experimental design in Sections 3.2.3
to 3.2.6 and the description of our experimental methodology in Sections 3.2.7
to 3.2.9. Section 3.3 reports our experimental results and provides an analysis of the
observed effects, with Sections 3.3.3 to 3.3.5 summarizing our insights, discussing
threats to the validity, and concluding our PAIN study.

3.2.2 Research Questions

Our goal is to assess the feasibility of using virtual machines for the parallel
execution of SFI experiments on the lower levels of the software stack to increase
test execution efficiency, but without adversely affecting experiment results. To that
end, we investigate the following research questions.

RQ 1. Can the throughput of SFI experiments be increased by execution them in separate
VMs on the same host machine?

RQ 2. Can the execution of SFI experiments in parallel VMs on the same host machine
change the obtained experiment results?

RQ 3. Assuming the answer to both RQ 1 and RQ 2 is yes, can the experiment setup be
tuned for increased parallel throughput while avoiding result distortions?

3.2.3 System Model

We investigate the impact of VM-based parallelism in the context of robustness
assessments of OS kernels. We focus on device drivers in our experiments as they
have been shown to contain more defects than other kernel code [Cho+01; Pal+11]
as already mentioned in Chapter 2. Unfortunately, device driver failures have
severe consequences on the overall system as they often crash the OS [GGP06;
Sim03]. Injecting faults into drivers while observing kernel behavior helps to
identify critical faults and gives useful feedback for robustness improvements of
the kernel [Arl+02; NC01].

In our experiments, we automatically generate faulty device driver versions, load
them into the kernel, and execute a workload to exercise the driver code. The target
system is executed within a VM and all experiment control logic is run outside of
this VM to ensure that experiment control cannot be corrupted by injected faults.
Our PAIN framework distinguishes and detects the following failure modes:

• SC: System Crashes – detected by monitoring kernel messages

54

3.2 PAIN Experiments

• SE: Severe System Errors – detected by monitoring kernel and VM messages

• WF: Workload Failures – detected by monitoring application logs

• IHA: Init Hang Assumed – detected if system boot-up and initialization takes
longer than a timeout threshold

• SHA: System Hang Assumed – detected if workload execution did not start
after a timeout threshold

• WHA: Workload Hang Assumed – detected if workload execution takes longer
than given a timeout threshold

• SHD: System Hang Detected – detected by monitoring kernel internal metrics
of the target system

• WHD: Workload Hang Detected – detected by monitoring kernel internal met-
rics of the target system

The SC and SE detectors are external to the VM that executes the target system.
They read and analyze log messages emitted by the target system’s kernel and the
VM itself that executes the target system. An example for an SC failure is a kernel
panic and for an SE failure a crash of the VM itself.

In addition to these two detectors, our setup also employs timeout based external
detectors to detect hangs of the target system, i.e., periods without progress and
no other failure indication. Our detectors assume such hangs in various stages
of the experiment execution (IHA, SHA, WHA) if the execution of the respective
stages takes longer than the provided timeout thresholds. The timeout thresholds
have been calculated by measuring the execution time of the respective experiment
stages without faults injected and then adding an ample safety margin to the
measured values.

External detectors that rely on timeout values are known to have precision and
efficiency issues as their threshold values can easily be set to inefficiently high or
too small values, leading to wrong detections [Bov+11; CNR09; Zhu+12]. For that
reason, we also make use of two additional, more advanced internal hang detectors
similar to those from Zhu et al. [Zhu+12]. The two detectors execute within the
target system, with a light detector running as user process that monitors system
load statistics and a heavy detector that executes inside the target kernel. If the light
detector senses a potential stall, it triggers the heavy detector for a more accurate
assessment. The heavy detector then analyzes kernel internal metrics and, if an
actual hang is detected, triggers a controlled system crash. The tests performed by
both the light and heavy detectors are the same as those suggested by Zhu et al.
[Zhu+12]. Note however, that the improved hang detectors cannot be used for the
detection of hangs during system initialization because the internal detectors can
be loaded only after the target system is fully initialized.

55

3 Accelerating Software Fault Injections

3.2.4 The SFI Fault Model

In SFI, the fault model specifies the introduced corruptions. We consider the
injection of code mutations, i.e., changes in source code, in device drivers for
emulating residual software defects in device drivers; this is similar to recent studies
on software fault tolerance [NC01; SBL03] and on dependability benchmarking
[DM03; DVM04; VM03]. For that purpose, we rely on the SAFE tool from Natella
et al. [Nat+13], which is freely available [Nat13] for research purposes, to produce
realistic code mutations that were derived from actual software defects found in
commercial and open-source OSs [CC96; DM06].

As faulty drivers are notorious for seriously threatening system stability, the
target system needs to be executed in strict isolation such that:

1) Experiments cannot affect the host system or the experiment control logic

2) Subsequent experiments can always start from a clean state that is free from
any residual effects of previous experiments

These requirements results in high overheads for individual experiments and
decrease achievable experiment throughput when executed sequentially, which is
why parallelization is desirable to compensate for said overhead.

Moreover, parallelization should also mitigate the high volume of experiments
that are needed for comprehensive assessments, especially when higher order
faults, i.e., multiple faults at once, are employed. To emulate such a high volume
scenario, we repeatedly applied the SAFE tool to driver code that already was
mutated to produce higher order mutations as used in Higher-Order Mutation
Testing approaches [JH09].

3.2.5 Measures for Performance and Result Accuracy

Performance Measure

We (and others [Ban+10; Han+10]) argue that a higher throughput of SFI experi-
ments is worthwhile for achieving a higher coverage of fault conditions for testing.
Hence, experiment throughput, i.e., the executed average number of experiments
per hour, is the metric of interest.

Accuracy Measures

In contrast to the simple performance measure, we define the accuracy of SFI results
in statistical terms because SFI experiments on the OS layer are heavily influenced
by non-deterministic factors. For observing the effects of injected faults, the mutated
code has to be activated, i.e., actually executed, during an experiment [GT07]. As
hardware abstraction and mediation for hardware access are core functions of

56

3.2 PAIN Experiments

the kernel, there is usually no direct interface to individual driver functions for
programmers. Hence, a complex software layer interposes between device drivers
and user mode applications. Many functions, such as power management, are
hidden from user programs and activated by the OS upon commonly unpredictable
hardware events and task scheduling decisions.

We measure result accuracy along two dimensions. First, we want to assess if the
result distributions of failure modes change when we increase parallelism. For that
purpose, a binary measure indicating statistically significant deviations is adequate.
We rely on a χ2-test for independence (with a significance level of α = 0.001) to
decide whether observed result distributions for parallelized experiments differ
from the ones obtained from sequential experiment executions.

Second, we want to assess the stability and reproducibility of obtained results,
which is why we measure result heterogeneity for repeated experiments at the same
degree of parallelism as a comparative metric. We measure the variance of each
observed result distribution by interpreting it as a vector in n-dimensional space
and calculate the Euclidean distance from the mean of all observed distributions.
We then compute the mean value of all such distances for all repetitions with the
same configuration as the heterogeneity metric d.

3.2.6 Hypotheses

On this background, we formulate hypotheses derived from the research questions
stated in the beginning of this section. We only state the null hypotheses to be
tested; the alternative hypotheses are simply the negations of them.

Hypothesis H0 1. If the number of parallel experiments executing on the same host is
increased, the experiment throughput does not increase.

Hypothesis H0 2. If the number of parallel experiments executing on the same host
is increased, the observed result distribution of failure modes is independent from that
increase.

Hypothesis H0 3. If the number of parallel experiments executing on the same host is
increased, the heterogeneity among repeated experiments with the same configuration does
not increase.

3.2.7 Target System

We are conducting our experiments on the Android OS [Gooa], which is used in
numerous different contexts, most prominently on smartphones. We use Android
4.4.2 “KitKat” with a Linux 3.4 kernel from the official Google repositories [Gooc].
We run the system inside the Goldfish System-on-Chip emulator [Goob], which
is based on the QEMU emulation and virtualisation platform [Bel17] and ships

57

3 Accelerating Software Fault Injections

with the Android software development kit. We target the MMC driver, which
consists of 435 source lines of code, for the emulated SD card reader of the Goldfish
platform for our SFI experiments. We rely on a synthetic benchmark workload
for exercising the MMC driver, which is based on code from Roy Longbottom’s
Android benchmarks [Lon].

Our workload reads and writes files on the SD card to exercise the MMC driver
while generating additional CPU and memory load. We make use of code from the
DriveSpeed, the LinpackJava, and the RandMem benchmarks and configure them
to exercise the SD card driver for about 30 s. All three benchmarks run as parallel
threads and we use additional threads in the benchmark apps to detect workload
failures (WF), as application failures are signaled as Java exceptions and need to be
explicitly forwarded to our external failure detectors.

3.2.8 Fault Load

We apply the SAFE tool repeatedly to the MMC driver source code to generate
both first order and second order mutants. After the first SAFE application, we
generated 273 mutants. We then generate further 70 167 second order mutants by
applying SAFE a second time to each of the first order mutants. In total, this yields
70 440 faulty versions of the MMC driver.

For our experiments and analysis, we restrict ourselves to a subset of the gener-
ated mutants and randomly sample 400 mutants from the set of first and second
order mutants. We repeat all our experiment campaigns three times for each
experiment configuration to account for factors of non-determinism as we are using
a complex OS level setup.

3.2.9 Execution Environment

We run our parallel experiments on the same host machine. According to the
desired degree of parallelism, we replicate multiple instances of the Goldfish
emulator, which executes the target Android system, on a single host machine.
This approach to parallelization by replication reflects the assumption of non-
interference between individual tests that we are questioning and is the same
strategy employed in recent approaches to test parallelization [Ban+10; Han+10;
Mah+12; Yu+09; Yu+10].

We execute all our experiments on two different host platforms to avoid biasing
our results due to effects from a single platform:

• Desktop: A desktop machine running Ubuntu 13.10 with AMD quad-core
CPU (N = 4), 8 GiB main memory, and 500 GB hard drive with 7200 RPM

• Server: A server machine running CentOS 6.5 with two Intel Xeon octa-core
CPUs (N = 16), 64 GiB main memory, and 500 GB hard drive with 7200 RPM

58

3.3 PAIN Results and Analysis

In order to avoid result bias due to different CPU features and frequencies, we
disabled hyper threading in the Intel CPUs2, disabled power and performance
optimizing features such as frequency scaling, and set all CPU cores to the same
frequency of 1.8 GHz, which was the only common value that could be set on both
hosts.

The degree of parallelism Pn, i.e., the number of experiments executing in parallel
on the same host, was initially set to:

a) Pn = 1, i.e., sequential execution

b) Pn = 2N, with N being the total number of physical cores in the host

Note that, for brevity, we also write P1 for Pn = 1 and accordingly P2N for Pn = 2N.
2N is a common choice to maximize hardware utilization since using more instances
than available physical cores increases the chances of each core to be utilized while
some processes may be blocked, e.g., due to pending I/O operations. Increasing
Pn further often leads to overload situations that may degrade the overall system
performance drastically.

One workload, two host platforms, and two degrees of parallelism yield a
total of 4 distinct experiment configurations. For each of these, we execute an
experiment campaign of 400 experiments with three repetitions. Overall, we
execute 12 campaigns with 400 experiments each to investigate our stated research
questions. In total this sums up to 4800 individual experiments. We report the
results of our experiments in Section 3.3, and augment the described setup with
some additional experiments for further analysis.

3.3 PAIN Results and Analysis

In the following, we first present the results of our initial experiments and answer
our first two research questions by rejecting or accepting our stated hypotheses. We
then continue with further experiments to investigate our third research question
by fine-tuning our experiments and reiterating over our hypotheses.

3.3.1 Initial Results

The results of our initial experiments are documented in Tables 3.1a and 3.1b on
the next page as mean values over 3 repeated campaign runs. The Setup columns
describe the used host platform and the used degree of parallelism Pn. The Failure
Modes columns report the number of experiments that resulted in the respective
failure modes. Note that in addition to the failure modes defined in Section 3.2.3, we
report two additional modes as possible experiment outcomes: Invalid and NF (no

2The used AMD CPUs do not provide equivalent symmetric multithreading features (SMT).

59

3 Accelerating Software Fault Injections

Table 3.1: Results for our initial 12 experiment campaigns. The reported values are means
over 3 repeated runs.

(a) Mean Failure Mode Distributions

Setup Failure Modes

Host Pn Invalid NF SC SE WF SHD WHD SHA WHA IHA

Desktop 1 0.00 108.00 97.00 0.00 182.00 0.00 0.00 0.00 6.33 6.67

Server 1 0.00 114.67 97.00 0.00 183.00 5.33 0.00 0.00 0.00 0.00

Desktop 8 0.00 1.00 96.67 0.00 6.33 10.00 0.00 1.00 281.67 3.33

Server 32 0.00 65.00 97.00 0.00 179.00 5.00 0.00 0.00 48.00 6.00

(b) Performance and Accuracy Measures

Host Pn
Throughput Experiment d

(exp./h) Duration (s)

Desktop 1 12.5 286.97 2.02

Server 1 12.2 295.36 0.63

Desktop 8 56.1 493.77 3.50

Server 32 115.6 616.19 6.35

failure). The former is introduced to account for rare cases where the experiment
control prematurely aborts experiments due to unexpected errors within the logic
or issues on the host machine, such as memory shortage. The latter simply accounts
for experiments that completed without any indication of failures, i.e., cases where
the mutation within the MMC driver had no observable effect or was not activated.
The column Throughput reports the average number of experiments that completed
per hour. Experiment Duration reports how long a single experiment took and the d
column reports the Euclidean distance measure of heterogeneity that we defined in
Section 3.2.5.

Inspecting the achieved experiment throughput in Table 3.1b, we can see a clear
increase in the average throughput when parallelism is increased from P1 to P2N .
We therefore reject our Hypothesis 1. For the desktop host, we observe a speedup
of about 4.5× when going from P1 to P8. For the server host, we see a speedup
of about 9.5× when increasing parallelism from P1 to P32. It is interesting to note
that, despite the overall speedup, the average duration of individual experiments
increased, i.e., slowed down, for both hosts, by 1.7× for the desktop and by 2.1×
for the server host.

To test Hypothesis 2, we perform a χ2-test for independence to assess if the
result distributions are statistically independent from the degree of employed
parallelism, i.e., whether the distributions change when parallelism is increased

60

3.3 PAIN Results and Analysis

Table 3.2: χ2-test of independence for parallelism (P1 vs P2N) and initial result distributions
(cf. Table 3.1a).

Host p r Verdict

Desktop 0.0 0.90 reject
Server 4.3× 10

−41
0.40 reject

with the distribution for P1 as our baseline. Note that for our χ2-tests, we correct
the obtained p-values according to the Benjamini-Hochberg procedure [BH95] to
account for the risk of false discoveries when we perform multiple tests on the
same population. We report the results of our χ2-tests in Table 3.2. The p column
reports the obtained p-value from the statistical test and the r column reports
the normalized Pearson coefficients. r gives an indication of how “strong” the
correlation between the observed failure mode distributions for P1 compared to P2N

is. To conduct the χ2-test, we used the absolute numbers from the distributions and
not the mean values. As the obtained p-values are well below our chosen α = 0.001,
we reject our Hypothesis 2, i.e., parallelism and results are not independent.

Finally, we use our measure for heterogeneity d as defined in Section 3.2.5 to
test Hypothesis 3. We therefore compute, within the each set of 3 repeated runs,
the Euclidean distance of each original result distribution to the mean distribution
(reported in Table 3.1a) and report the mean of these distances as d in Table 3.1b on
the preceding page. Comparing d between P1 and P2N for both hosts, we see an
increase in heterogeneity of 1.7× for the desktop and 10.1× for the server host. We
therefore reject Hypothesis 3.

Considering these results, we answer both RQs 1 and 2 with yes and proceed in
the following with our investigation of RQ 3.

3.3.2 The Influence of Timeout Thresholds

In our initial experiments, we observed that the number of observed Invalid, SC,
SE, WHD, and SHA outcomes do not significantly differ across all configurations.
However, for WHA, and IHA outcomes, we observe major differences as exem-
plified by the 44.5× increase in WHA for the desktop host when going from P1

to P8, which corresponds to more than 70 % of experiments in an individual cam-
paign having this outcome. The affected failure modes are detected by detectors
involving timeout threshold values that have to be set as part of the experimental
setup. Given that we observed a slow down of individual experiments by a factor
of about two, we suspect these detections for the P2N case to be false positives due
to too restrictive timeout thresholds. We therefore generously increase the used
timeout thresholds by a factor of 3 for our WHA, SHA, and IHA detectors. The
increased timeout thresholds imply unnecessary long waiting times in cases of

61

3 Accelerating Software Fault Injections

Table 3.3: Results for our repeated experiments with increased timeout thresholds. The
reported values are means over 3 repeated runs.

(a) Mean Failure Mode Distributions

Setup Failure Modes

Host Pn Invalid NF SC SE WF SHD WHD SHA WHA IHA

Desktop 8 0.00 104.00 97.00 0.00 181.67 5.00 0.00 0.67 11.33 0.33

Server 32 0.00 114.00 97.00 0.00 181.67 6.67 0.00 0.67 0.00 0.00

(b) Performance and Accuracy Measures

Host Pn
Throughput Experiment d

(exp./h) Duration (s)

Desktop 8 47.0 587.25 5.41

Server 32 118.1 619.48 1.99

actual hangs, which may decrease overall experiment throughput if actual hangs
occur often enough. However, as we only observed few hang detections for P1, we
assume those to be rare.

We performed another 6 experiment campaigns with P2N , 3 repetitions per host
machine, with the adjusted thresholds and report the results in Tables 3.3a and 3.3b.
The result distributions in Table 3.3a show closer similarity to those of the P1

runs (cf. Table 3.1a). We performed additional χ2-tests with the new results as
documented in the upper two rows in Table 3.5 on page 64. Although we cannot
reject the independence of the parallelism degree and the result distribution for
the server host, we still can for the desktop host. Inspecting our heterogeneity
measure d in Table 3.3b, we see that while d decreased 3.2× for the server, it actually
increased 1.5× for the desktop. Along with increased result heterogeneity, we also
observe a 1.2× decrease in experiment throughput for the desktop host. Overall,
the server host shows no statistically significant correlation between Pn and result
distributions with adjusted timeout thresholds, while the desktop still does. The
differences in the failure distributions that lead to this indication are mainly due to
SHD, WHA, and IHA counts. We suspect that the desktop host is already in an
overload situation at P2N which is indicated by the decrease in throughput.

As the server host showed improved result accuracy without throughput de-
crease at P2N while the desktop did not, we want to investigate if the server host
shows similar degradation as the desktop if load is increased. Hence, we performed
12 additional experiment campaigns on the server at P36, P40, P44, and P48, with 3

repetitions each. The results are reported in Tables 3.4a and 3.4b on the facing page.
Note the relatively large increase in throughput is likely caused by optimizations in

62

3.3 PAIN Results and Analysis

Table 3.4: Results for our highly parallel (Pn > 2N) experiments on the server host. The
reported values are means over 3 repeated runs.

(a) Mean Failure Mode Distributions

Setup Failure Modes

Host Pn Invalid NF SC SE WF SHD WHD SHA WHA IHA

Server 36 0.00 113.67 97.00 0.00 181.67 7.00 0.00 0.33 0.33 0.00

Server 40 0.67 113.00 97.00 0.00 180.00 8.00 0.00 0.67 0.67 0.00

Server 44 0.00 112.00 97.00 0.00 180.33 6.67 0.00 1.33 2.33 0.33

Server 48 0.67 104.67 96.00 0.00 177.67 11.00 0.00 2.00 5.00 3.00

(b) Performance and Accuracy Measures

Host Pn
Throughput Experiment d

(exp./h) Duration (s)

Server 36 157.1 712.11 2.16

Server 40 154.1 834.14 1.98

Server 44 143.0 951.52 3.54

Server 48 102.5 1069.03 6.81

our experiment logic that were necessary to scale the experiments up to higher de-
grees of parallelism as we had to add logic to regularly clean the host of temporary
files leaked by our controller and the emulation platform. We performed additional
χ2-tests and report their results in Table 3.5 on the next page in the lower four rows.
The test results show that for parallelism degrees below P44 the result distributions
are independent from the parallelism degree, but for P48 they are not. Moreover,
we observe a large drop in throughput and an increase in heterogeneity for P48 (cf.
Table 3.4b). Despite the results for P36, P40 and P44 being more heterogeneous than
for P1, we still deem them acceptable compared to the increase in throughput.

3.3.3 Discussion

In the following, we summarize and discuss the main lessons learned from our
experience with conduction parallel FI experiments. A surprisingly important
aspect of our PAIN experience was:

It can be difficult to correctly setup and fine-tune parallel FI experiments and this
requires special care.

63

3 Accelerating Software Fault Injections

Table 3.5: χ2-test of independence for parallelism (P1 vs Pn) and additional result distribu-
tions.

Host Pn p r Verdict

Desktop 8 6.7× 10
−7

0.18 reject
Server 32 1.0 0.05 do not reject

Server 36 1.0 0.05 do not reject
Server 40 0.78 0.08 do not reject
Server 44 0.21 0.10 do not reject
Server 48 1.3× 10

−4
0.17 reject

The parallelization of the experiment execution had a significant impact on the
timing behavior and duration of individual experiments. Moreover, we observed
incorrect false positive detections of our timeout-based detectors in our initial
experiments. Although we did our best to find sensible timeout thresholds by
performing initial fault-free parallel runs, these fault-free runs could not account
for unexpected delays and interactions among VMs when executing faulty driver
versions. Furthermore, we had to invest considerable effort into the testing and
debugging of our PAIN framework that by itself is a complex and concurrent piece
of software.

The framework related issues, we had to deal with, included: resource leaks
(e.g., temporary files) of the used Android emulator, portability problems across
the server and desktop host, for instance, the server host had lower rusage limits
on processes and memory consumption that we could debug only after extensive
inspection of kernel log facilities, and synchronization and communication issues
between experiment control logic and emulator as the timing behavior of the
emulator was unreliable and sometimes messages were lost due to ordering issues.
Based on our own experience with these complexities, we advise others designing
similar parallel setups to pay very close attention to these aspects.

Revisiting the research questions we started from, our experiments indicate
that, while parallelism can improve throughput, it can also affect the obtained
results. Running experiments in parallel can significantly (RQ1) increase experiment
throughput, in our case we observed speedups up to 10× for the server host with
P32 (tripled timeouts). Hence, FI experiments can benefit from the available parallel
hardware resources. However, we also observed that:

The parallel execution of FI experiments can significantly improve throughput, but
at the same time adversely affect result accuracy.

64

3.3 PAIN Results and Analysis

Our analysis shows that there can be statistically significant differences between
the result distributions obtained from sequential compared to parallel experiment
execution (RQ2), i.e., using parallelism changes experiment outcomes. The same is
true for result stability among multiple repetitions as the heterogeneity potentially
increases with parallelism. Hence, there is a risk of such effects influencing the
conclusions drawn about dependability properties of a target system from such
experiments. In our experiments, performance interferences between concurrently
executing VMs changed the observed failure modes of some of the experiments
to hang failures, which were not easily reproducible across repetitions and led
to unstable result distributions. We observed these issues for higher degrees of
parallelism, for instance, for P3N (three times the number of cores) for our server
host. However, using a lower degree of parallelism for experiments does not lead
to statistically significant deviations for parallel executions compared to sequential
ones, for instance, on the server, we could run experiments at P32 without such
problems once the timeout thresholds were adjusted. This suggests that parallelism
does not in general harm result accuracy (RQ3) given that the parallelism degree is
sensibly chosen.

For maximizing experiment throughput and at the same time preserving the
accuracy of obtained results, they employed degree of parallelism has to be carefully
chosen. For instance, we achieved the best throughput on our server host at P36

with 157.1 experiments per hour. But with increasing degrees of parallelism,
the throughput decreased down to 102.5 at P48 and results became unstable and
inaccurate. This exemplifies that results start deviating once a system becomes
overloaded with too many parallel experiment instances:

If the degree of parallelism is carefully chosen to achieve the best experiment through-
put, adverse effects on the accuracy of the results can be averted.

Therefore, it must be considered an important task of the tester to ascertain a
suitable degree of parallelism for conducting parallel experiments. For instance,
it is a viable approach to conduct a number of preliminary experiment runs with
increasing degree of parallelism to determine at which point the system shows
indications of overload and therefore degraded experiment throughput. Although
our study was focused on FI experiments using VMs, the discussed issues also
occur in other forms of FI and testing in general, for instance, if testing frameworks
rely on fixed timeouts per test, and other complex systems involving unpredictable
or non-deterministic timing patterns, as often the case in concurrent software.

65

3 Accelerating Software Fault Injections

3.3.4 Threats to Validity

As with any empirical study, we must be careful when interpreting the obtained
results and drawing conclusions. We identified the following main threats to
validity: the selected injection target, the employed fault model, the used workload,
and the used measures for result accuracy.

As injection target, we used the Linux kernel of an Android OS. This system may
not be representative for all kinds of conceivable software systems, however, it is a
good representative for embedded, real-time and systems software, being important
targets for FI. In addition, being a real-world complex OS, this setup involves many
factors of non-determinism whose influence we were interested in investigating.
Examples of such factors include: I/O interactions, external hardware events,
concurrency, and non-determinism due to scheduling and memory management.

We use a fault model that mutates software code to inject representative software
defects as supported by extensive analyses and being widely accepted in practice
[ABL05; DM06; DR06; Nat+13]. We generated first and second order mutants
for having a large sampling base for our parallel experiments. Although the
representativeness of repeated mutations has not yet been investigated in detail,
using multiple fault injections is already used in practice [JGS11; JH09; Win+13].

We rely on existing performance benchmarks for the Android OS as workload.
Even though benchmarks may not necessarily be representative of user scenarios,
they are widely used in FI studies, in particular for dependability benchmark-
ing [KS08; NC01; VM03]. Moreover, previous studies have shown that stress-
ful workloads like performance benchmarks increase the likelihood of activating
faults [Tsa+99].

For our experiments and analysis, we rely on accuracy measures that are focused
on the observed distributions of failure modes. Said distributions are a highly
important aspect when conducting SFI experiments that often want to assess the
likelihood of failure modes with high severity [Avi+04; DM03; KD00; NC01]. More-
over, measurements of fault-tolerance properties, e.g., coverage or latency, depend
on the concrete failure types that are observed during experiments. Consequently,
it is important for dependability assessments to avoid distortions of the observed
failure mode distributions.

3.3.5 Concluding Remarks

With the increasing complexity of software, FI experiments become more complex
and require more injection experiments [Gun+11; JGS11; Lan+14; Win+13]. In
the previous sections of this chapter, we investigated if the parallel execution
of such experiments is a feasible strategy to cope with increasing number of
experiments, relying on our PAIN framework for PArallel fault INjections. Our
PAIN experiments on the Android OS showed that parallel execution in separate

66

3.4 FastFI Approach

VMs can significantly increase experiment throughput, but also adversely affect
the obtained results. We found that the degree of employed parallelism as well as
timeout thresholds for timeout-based failure detectors must be carefully chosen
to prevent resource contention and the timing of events from distorting result
distributions. If the machine that hosts the experiments gets overloaded, results
become inaccurate.

3.4 FastFI Approach

After we concluded our PAIN study in the previous sections, we now continue
with the presentation of our design an implementation of FastFI that is heavily
inspired by insights we gained from PAIN. In contrast to the PAIN framework,
which relies on VMs, FastFI employs processes to execute experiments on higher
levels of the software stack. FastFI combines multiple techniques to reduce the
overall execution latencies of SFI tests by:

1) not re-executing redundant code paths,

2) reducing the number of tests without fault activation, and

3) parallel execution of tests.

Section 3.4.1 gives an overview of FastFI and its workflow while the following
Section 3.4.2 details the FastFI execution model. Section 3.4.3 provides a detailed
discussion of the employed parallelization strategy and the required control logic.
Sections 3.4.4 and 3.4.5 discuss the required static analysis and technical limita-
tions of the approach. Section 3.4.6 provides a brief overview of our prototype
implementation. We then continue to our evaluation in Section 3.5.

3.4.1 Overview

For SFI tests, faulty versions of a given software are generated, which are then
executed separately and the outcome of their execution is monitored. These test
executions typically require external experiment logic for controlling which faulty
versions get executed and for monitoring test outcomes. Typical test outcomes
include successful execution, execution with error indication, and aborted (crashed)
execution. Note that each faulty version typically contains only one single fault to
allow for the isolated observation of the fault’s effects. For tests with fault combi-
nations (higher order faults), additional software versions need to be generated,
leading to a combinatorial explosion of the number of separate software versions.

With FastFI, the generated faulty versions of the software are not built and
executed separately, but they are integrated into one test executable. For that

67

3 Accelerating Software Fault Injections

Static Analysis Version Library Control Logic

FastFI. . .SFIinput.c

m1.patch

mX.patch

version_lib.c

mod_input.c

integrated
executable

Figure 3.1: Overview of the FastFI workflow. The input is the original source code and SFI
mutation patches. The final output is a FastFI-enabled integrated executable.

purpose, FastFI groups the faulty program versions by the functions in which
the faults are injected. Each fault is then included in the program as a faulty
version of the function that it modifies, rather than creating faulty versions of the
complete program as in existing SFI tools. Although the fault grouping granularity
could be changed from the function level to, e.g., basic block or even statement
level, function-based grouping appears to be the natural choice for procedural
languages and proves effective in our evaluation (see Section 3.5). The FastFI
runtime controls on demand which of the integrated faulty versions are executed
once the test execution reaches a point where a faulty function version can be
selected for execution. The executions of the different faulty versions are isolated
from each other by forking a new process for each faulty version. The FastFI
runtime includes all control and monitor logic needed to conduct SFI tests, i.e.,
no external logic is required to conduct a full set of tests with all generated faulty
software versions.

Figure 3.1 provides an overview of the FastFI tool chain that generates a FastFI-
enabled test executable for a given software. The FastFI tool chain takes the original
source code and the code mutation patches from an SFI tool as input. Similarly to
our PAIN setup, we use SAFE [Nat+13] as SFI tool in our evaluation, but FastFI
is independent of the actual SFI tool used. The only constraints are that the code
patches generated by the SFI tool modify only one source code function at a time,
as FastFI groups faults on a per-function level, and that the patch files adhere to
the commonly used (unified) diff format as understood by the GNU patch3 tool.
The FastFI tool then performs the following steps on the provided inputs:

1. Static source code analysis for function extraction and fault grouping

2. Generation of a code library with all faulty function versions

3. Insertion of the FastFI fork server control logic into the original functions

3http://savannah.gnu.org/projects/patch

68

http://savannah.gnu.org/projects/patch

3.4 FastFI Approach

(e)

F1

F2

F3

F4

F′′5

. . .

(d)

F1

F2

F3

F4

F′5

. . .

(c)

F1

F2

F3

F′′4

F6

. . .

(b)

F1

F2

F3

F′4

F5

. . .

(a)

F1

F2

F3

F4

F5

. . .

Common
Prefix

Figure 3.2: Traditional Execution Model. Fi denote functions and F′i denote faulty versions
of a function.

The output is a modified version of the original source code with the FastFI fork
server control logic inserted and a library of all faulty function versions as well
as copies of the original, unmodified functions. The final output after the usual
software build process is the integrated FastFI-enabled test executable.

3.4.2 FastFI Execution Model

FastFI introduces a novel, more efficient execution model for SFI tests that is
enabled by the integration of all faulty software versions into one integrated
executable. Both the traditional and the novel FastFI model are discussed and
contrasted in the following.

Traditional Execution

In the traditional execution model for SFI tests, each faulty software version is an
executable of its own that has to be compiled and executed separately. Figure 3.2
illustrates an example for the execution of 5 tests in the form of function-level
execution traces. The Fi are the functions executed. Faulty versions are marked
with prime symbols, e.g., F′4 denotes a faulty version of function 4 and F′′4 denotes
another faulty version of the same function. Trace (a) represents the execution of
the original, fault-free software whereas traces (b) and (c) represent executions with
faulty versions of F4 and traces (d) and (e) with faulty versions of F5. Each execution
trace can contain only one faulty version of any function. However, the same faulty
version of a function can obviously be invoked more than once during an execution.
All the different traces share a common execution prefix up to the point where a
faulty function is invoked for the first time. In the illustrated example, F1 to F3

69

3 Accelerating Software Fault Injections

F1

F2

F3

F4 F′4 F′′4 F′′′4

F5 F6 F5

.

F5 F′5 F′′5 F′′′5

.

Common Prefix

Figure 3.3: FastFI Execution Model. Fi denote functions and F′i denote faulty versions of a
function. Dashed arrows represent process forks.

is the common execution prefix for all 5 traces. For traces (a), (d), and (e), the
common prefix is F1 to F4 as the first invocation of a faulty function happens later
in the execution. After the invocation of a faulty function, the different executions
may deviate drastically depending on the injected fault type and on whether it is
activated during execution of the faulty function, as faults may arbitrarily change
the program state. For instance in trace (c), F6 is invoked after the fault in F′′4
was activated instead of F5 as in the fault-free execution (a) or after execution
of the faulty function F′4 in (b). Hence, although there is a common execution
prefix between tests, there is generally no common postfix once a fault has been
activated. However, re-executing the common prefix for each individual test is
time-consuming redundant work that can be avoided using FastFI as detailed in
the following section.

FastFI Execution

The essential difference to the traditional execution model is that FastFI does not
re-execute the common execution prefixes for all faulty versions and selects the
faulty versions to be executed on demand during runtime. The FastFI execution
model is enabled by the integration of all faulty versions into one executable.
Figure 3.3 illustrates an example for the execution of 7 tests as function-level
execution traces similar to the illustration for the traditional model in Figure 3.2.
The common prefix F1 to F3 is only executed once in this model by the master
process, which is represented by the leftmost execution trace. The master process

70

3.4 FastFI Approach

controls the execution of the faulty versions but never executes a faulty version
of any function itself. Instead the master process creates, i.e., forks, (illustrated
by dashed arrows) new child processes that execute the faulty versions on its
behalf. Each faulty version is executed in its own process. In the example, once
the master execution reaches F4, for which three faulty versions exist, the FastFI
runtime forks a new process before the faulty version F′4 is invoked. Since the
fork system call creates an exact copy of the calling process, the new process starts
its execution right were the master process called fork and invokes F′4. Because
F′4 now executes in its own process, it cannot interfere with the execution of the
master process. Both processes are isolated from each other by means of operating
system process isolation, which, for instance, guarantees memory isolation such
that the fault executing child process cannot write to the master process’ memory.
However, there is still the possibility of interference via external resources that are
not covered by OS process isolation such as the shared file system. Therefore, the
FastFI runtime does not only perform a fork but also takes actions to minimize
the chance for interferences via open files by file descriptor manipulation and I/O
redirection upon forking.

Once the child process that executes the faulty version has finished, the master
process either continues with the execution of the next faulty version, if available,
or proceeds with its own fault-free execution. In the example, the master continues
with the execution of F′′4 and afterwards F′′′4 in their own processes and then
proceeds in its own execution by invoking the original F4. When the master
process eventually finishes, the master’s execution corresponds to the execution
of a fault-free software version and all faulty versions that were reachable have
been executed. Since software functions that are not reachable during execution,
for instance, if the provided program input does not trigger all of them, are never
executed by the master process, they do not impose additional test latencies. This
is an improvement over the traditional execution model, because it is generally
not known a priori which faulty versions are reachable during execution. Hence,
FastFI automatically reduces the amount of faulty software versions to execute to
the amount that is reachable and, thereby, avoids the execution of superfluous tests.

In addition to the test latency reduction due to the efficient execution of common
prefixes and the automatic reduction of the number of faulty versions that need to
be executed, FastFI reduces latencies further by allowing for the parallel execution
of faulty versions of the same function. In the example in Figure 3.3, all faulty
versions of F4 can be executed in parallel. The same is true for F5. As faulty
versions need to be executed in their own processes in any case, there is no
additional cost associated in executing them in parallel. The following section
details the parallelization strategy employed as well as the control logic required to
implement the FastFI execution model and the monitoring of the child processes
executing faulty versions.

71

3 Accelerating Software Fault Injections

F

fork_monitor_faulty

FV2FV1 FV3

.

join_master

fork_monitor_faulty

FV5FV4 FV6

.

join_master

. . .

FORIG

Parallel Group 1

(par_group)

Parallel Group 2

(par_group)

Figure 3.4: FastFI Parallel Execution. The example illustrates the execution of all versions
of function F using parallelism degree Pn = 3 from the perspective of the master process.

3.4.3 FastFI Fork Server: Control & Monitoring of Faulty Versions

We denote the control logic that is responsible for implementing the FastFI execu-
tion model, which we described in the previous section, as the FastFI fork server.
The fork server replaces the function body of all functions for which faulty versions
exist. For each such function, distinctive fork server code is generated that controls
which version gets executed and which degree of parallelism is employed.

Parallelization Strategy

FastFI parallelizes the execution of faulty versions by grouping all versions of each
function into groups of size Pn where Pn denotes the degree of parallelism used,
i.e., the number of faulty versions that may execute in parallel. Pn is a runtime
parameter that can be chosen by the user for each run of the integrated FastFI
executable. Each of the parallel groups is executed concurrently by forking all Pn

versions at once. Before executing the next group, the previous group has to finish.
Figure 3.4 illustrates an example for the execution of some function F, which is
executed with parallelism degree Pn = 3. Once function F is invoked by the master

72

3.4 FastFI Approach

process for the first time, all its versions need to be executed before the master
process can eventually execute the fault-free version FORIG. Hence, the master
executes all parallel groups for F sequentially until all groups have been executed.
However, the members of each group are executed in parallel.

The faulty version groups are generated by dividing the list of all versions into
consecutive non-overlapping chunks of size Pn. The last group generated may be
smaller than Pn if the number of versions is not evenly divisible by Pn. The total
execution time of all faulty versions of a function is determined by the longest
execution times among the versions executed within each parallel group. The total
execution time is minimized if all members of a group have similar execution times.
Therefore, the list of all versions should ideally be ordered according to expected
execution times before chunking. Since this information is generally not know
ahead of time, i.e., before actual execution, we order the version list according
to the mutation operators that were applied to generate the faulty versions. In
our experience, faulty versions that have been generated by the same mutation
operators often show a tendency to result in similar execution times.

Control Logic

The FastFI fork server control logic replaces the function body of each function for
which faulty versions exist. The original function versions are saved in the version
library for each function and can still be invoked by both the master process as
well as fault executing processes.

The listing in Figure 3.5 provides a simplified description of the FastFI fork server
logic for some function foo in the form of C-like pseudo code. The fork server
logic starts in lines 2 to 5 by verifying if the FastFI execution model should be used
or if the user requested a traditional execution in which only one version, which
is chosen by the user, gets executed. Both the execution mode and the requested
version to execute are runtime parameters that can be configured by the user upon
each execution of the integrated FastFI executable. This feature allows testers to
investigate the behavior of individual faulty versions in detail without the overhead
of re-compilation. In the traditional execution mode (discussed in Section 3.4.2),
there is no distinction between a master and a fault executing process and no
integrated monitoring is in place. In order to actually invoke a requested function
version, the version is looked up in the version library and called dynamically as
shown in lines 3 and 4.

The FastFI execution model is implemented by the logic in lines 6 to 22. The
logic has to distinguish between three execution states as the master and all forked
processes share the same code:

(1) in fault executing process (lines 6 to 10),

73

3 Accelerating Software Fault Injections

1 ret_type foo(args) {
2 if (in_single_version_mode) {
3 return call_version(
4 foo, args, requested_version);
5 }
6 if (forked) { // in faulty execution (1)
7 if (is_active(foo))
8 return call_version(foo, args, CUR_ACT);
9 else

10 return call_version(foo, args, ORIG);
11 } else if (!forked && already_done(foo)) {
12 // master: all versions done (2)
13 return call_version(foo, args, ORIG);
14 } else {
15 // master: exec faulty versions (3)
16 for (par_group in parallel_groups(foo)) {
17 fork_monitor_faulty(par_group);
18 join_master(par_group);
19 }
20 set_already_done(foo);
21 return call_version(foo, args, ORIG);
22 }
23 }
24

25 ret_type fork_monitor_faulty(par_group) {
26 for (cur_version in par_group) {
27 if (fork() == MONITOR) {
28 if (fork() == MUTANT) {
29 // run faulty version
30 forked = true;
31 CUR_ACT = cur_version;
32 setup_env();
33 return call_version(
34 foo, args, CUR_ACT);
35 } else {
36 // monitor faulty version
37 results = observe_wait(cur_version);
38 log(results);
39 exit_monitor();
40 }
41 }
42 }
43 }

Figure 3.5: Pseudo Code of the FastFI Fork Server Control and Monitor Logic.

74

3.4 FastFI Approach

(2) in master process after all faulty function versions have been executed (lines 11

to 13), and

(3) in master process upon the first function invocation (lines 14 to 22).

In state (1), the invocation of the correct version within a fault executing process is
implemented; in state (2), the invocation of only the original, fault-free versions is
guaranteed for the master process; in state (3), the actual selection and forking of
faulty versions takes place.

In state (1), the logic has to distinguish whether a faulty version of the function
(foo in the example) is active in the current process (line 7). If so, the correct
faulty version from the library is invoked; if not, the original version is called. This
guarantees that each fault executing process executes only one faulty version of
any function.

State (3) corresponds to the situation exemplified in Figure 3.4 and discussed in
Section 3.4.3, i.e., the actual forking of the parallel version groups happens here.
The master process iterates over all version groups par_group (lines 16 to 19) and
invokes the helper function fork_monitor_faulty for each of them, resulting in
the execution of the faulty versions. Each loop iteration waits at the end until the
execution of the current group finishes before starting the next iteration. After all
faulty versions have been executed, the master process marks the function as done
(line 20) to prevent redundant re-executions. As last step, the original function
version is invoked (line 21) which finishes the fork server execution and advances
the fault-free execution of the master process.

The actual forking logic is implemented in fork_monitor_faulty (lines 25 to 43).
The function iterates over all Pn members cur_version of the current version group
par_group. For each version cur_version, two processes, MONITOR and MUTANT, are
created via fork calls. The MONITOR process, which has not been discussed so far,
is required to perform reliable monitoring of the fault executing process. This
monitoring needs to occur in a separate process since the fault executing process
itself may behave erratically and, for instance, crash or hang indefinitely. The
MONITOR process is created first (line 27) such that the MUTANT process becomes its
child (line 28). Therefore, MONITOR can exercise process control over MUTANT. For
instance, it can terminate MUTANT and it can observe crashes and exits of MUTANT. The
MONITOR logic is shown in lines 36 to 39. MONITOR waits until the MUTANT process,
which executes cur_version, finishes execution, or terminates it if execution takes
longer than a user-specified timeout to ensure progress, fetches observed results
and logs them for later analysis.

The MUTANT control logic is shown in lines 29 to 34. First, MUTANT marks itself as
fault executing process (line 30) and remembers which version it is supposed to
execute (line 31). Next, it performs additional environment setup steps (line 32) such
as I/O redirection. As last step, MUTANT finally invokes the faulty function version

75

3 Accelerating Software Fault Injections

for the first time (line 33). At this point, MUTANT continues with the independent
execution using the faulty version CUR_ACT upon each function invocation (foo in
this example).

3.4.4 Static Analysis & Version Library Generation

FastFI requires knowledge about the static structure of both the input source code
as well as the SFI mutation patches in order to be able to correctly replace function
bodies, generate the FastFI fork server code, and to generate the library of faulty
versions. To that end, FastFI relies on an existing static analysis framework to
extract the necessary information about all functions present in the input source
code. FastFI requires information about where functions reside in the source code,
their function signature, and function parameter names. In a static analysis step,
FastFI builds an analysis database with the required information for later use in
the workflow as described in Section 3.4.1.

The mutation patches are parsed and information about modified source code
lines are extracted. This information is then used to search the analysis database to
match mutation patches to the functions that they mutate, i.e., the faults are grouped
according to the source code function where they will reside. Once the grouping
is complete, FastFI generates the library of faulty source code functions. For that
purpose, each mutation patch is applied to the source code and the resulting faulty
function is extracted, given a unique name, and added to the library. After each
patch application, the original source version is restored to produce faulty versions
that contain exactly one fault. As a final step, an unmodified version of each
function is added to the library as well.

3.4.5 Limitations

We discuss technical limitations that may impede the application of FastFI in
the following. Since FastFI relies on the fork system call as specified by POSIX,
FastFI can be used only in environments where fork or a compatible system call
is available. Moreover, an invocation of fork must leave both the calling and the
created child process in a well defined state from which independent executions
of parent and child processes are possible. This is not the case for multi-threaded
processes as only the calling thread survives a fork invocation and the created
process has only limited abilities to invoke further system services.

Software may behave differently under the FastFI execution model under certain
circumstances. If the software’s behavior depends on explicit process attributes,
such as the process identifier (PID), its behavior may change as FastFI creates new
processes with possibly changed attributes (e.g., different PIDs). Software that
relies on explicit time information, e.g., by using timers or explicit time duration,
may behave differently as FastFI effectively pauses the execution of the master

76

3.5 FastFI Evaluation

process while faulty versions are executed. Moreover, software that contains severe
defects such as invalid memory accesses in the original program may have different
effects in FastFI as the memory layout between the generated executables differs.

FastFI isolates the execution of faulty software versions by means of OS process
isolation. This leaves external resources that are not covered by process isolation
as possible sources of interferences. While FastFI handles open files, additional
measures need to be taken to also handle hardware devices or network connections.

3.4.6 Implementation

We developed a prototype of FastFI for software that is written in the C lan-
guage and executes in a POSIX compliant environment. Our prototype relies on
Coccinelle [INR18; Pad+08] as static analysis framework for C source code. It is
mainly developed in Python and can, as the evaluation in Section 3.5 demonstrates,
efficiently handle real world software despite the fact that it is not yet optimized
for performance.

Please note that, although our prototype currently only supports software written
in C, FastFI itself is not limited to C software. Software written in other languages,
such as C++ or Rust, can also benefit from FastFI.

3.5 FastFI Evaluation

In order to evaluate the applicability and performance of FastFI for real world
software, we investigate the following research questions using our prototype
implementation for C software.

RQ 1 How much can FastFI reduce overall test execution latencies for se-
quential SFI tests?

RQ 2 How does the execution speedup achieved by FastFI develop with
increasing degree of parallelism?

RQ 3 Do SFI test results remain stable across runs with increasing degree of
parallelism when using FastFI?

RQ 4 How large is the build time overhead of integrated FastFI builds com-
pared to traditional separate builds?

3.5.1 Experimental Setup

Execution Environment

We conduct our experiments on a machine with up to date Debian Buster (Linux 4.16,
x86_64) as operating system. The machine is equipped with an AMD Ryzen 7 CPU

77

3 Accelerating Software Fault Injections

Table 3.6: Overview of the PARSEC applications used in the evaluation.

Application Description Mutants

blackscholes Numerical financial computations 416

dedup Data stream compression 662

ferret Content-based image similarity search 6157

x264 Video stream encoding and compression 13368

with 8 physical and 16 logical cores running at 3.40 GHz, 32 GiB of main memory,
and a 1 TiB SSD.

Evaluation Targets

We apply FastFI to four applications from the widely used PARSEC benchmark
suite 3.0 provided by Princeton University [Bie11; Pri09]. Table 3.6 gives a brief
overview of the selected applications. We selected these four applications since
they are representative for different application domains and they are written in
C, which our current prototype implementation targets. We use the “simmedium”
workloads that ship with PARSEC to exercise the applications. These workloads are
of a moderate size, which allows us to execute our experiments within a reasonable
time frame (within days).

Execution Steps

To investigate our research questions, we take the following steps for all selected
evaluation targets.

We first apply the SAFE software fault injection tool [Nat+13; Nat13] to gener-
ate mutation patches. SAFE applies 13 different mutation operators to generate
representative software faults. An overview of the generated mutants is given in
Table 3.6. Each mutant creates a faulty software version that needs to be executed
for SFI tests.

Next, we perform the static analysis of the input source code using Coccinelle
to generate the analysis database as described in Section 3.4.4. We then analyze
the generated mutation patches and perform the function level fault grouping.
Afterwards, we generate the library of faulty versions by applying the mutation
patches and extracting the resulting modified functions as well as saving the
original, unmodified function version. Then, the original function bodies are
replaced with the generated FastFI fork server code as described in Section 3.4.3.
As final step, we build the integrated executable with the PARSEC default build
configuration “gcc-serial” that results in non-multithreaded executables.

78

3.5 FastFI Evaluation

We perform our experiments using the generated integrated executables in our
execution environment. We repeat each experiment 3 times and report averages.

3.5.2 RQ 1: Sequential Speedup

To determine the impact of FastFI on sequential SFI execution latency, we compare
the performance of FastFI without any parallelization (Pn = 1) to the performance
achieved by separately executing each faulty version. For the separate executions
baseline, we make use of our single version mode as described in Section 3.4.3, i.e.,
we still use the integrated executables generated by FastFI. However, the faulty
version to execute is picked prior to execution, and only one faulty version is
chosen for each program execution. Consequently, executions in this mode do
not benefit from the ability of FastFI to avoid redundant code execution and the
execution flow corresponds to a traditional SFI execution model as described in
Section 3.4.2.

As shown in the leftmost column of Figure 3.6, FastFI can achieve speedup factors
from 1.3 to 3.6, depending on the benchmark. In the absence of parallelization,
these speedups are the result of avoiding redundant code execution. FastFI avoids
redundant code execution in two ways: (1) By efficiently executing common prefixes
and (2) by automatically reducing the number of faulty versions that need to be
executed. The reduction in the number of faulty versions is shown in Figure 3.7.
For three out of four benchmarks, FastFI automatically executes fewer faulty
versions than the traditional execution model as unreachable faulty versions are
not executed. The maximum reduction can be observed for ferret where FastFI
reduces the number of faulty versions down to 47.9 %. This substantial reduction
is also reflected in ferret’s speedup factor of 3.6. Moreover, despite executing
the same number of faulty versions, FastFI achieves a speedup of 1.3 over the
traditional execution model for the blackscholes benchmark. This reduction is
the effect of FastFI’s efficient common prefix execution.

FastFI’s ability to avoid the execution of both “dead” faulty versions and redundant
path prefixes significantly speeds up sequential test execution. We achieved a best
case speedup of 3.6×.

3.5.3 RQ 2: Parallel Speedup

To investigate how the speedup achieved by FastFI develops with increasing
degrees of execution parallelism, we configure FastFI to run up to 32 faulty
versions in parallel. Note that changing the degree of parallelism is handled by the
FastFI runtime code and does not require recompilation (see Section 3.4.3). The

79

3 Accelerating Software Fault Injections

 2
.3 3
.6

 1
.5

 1
.3

 4
.8

 5
.5

 2
.5

 2
.4

 7
.4

 8
.2

 3
.9

 4
.3

14
.1

13
.1

 5
.8 7

.2

20
.6

18
.5

 7
.610

.6

23
.2

26
.0

 9
.811

.3

0

10

20

30

1 2 4 8 16 32

Degree of Parallelism

S
pe

ed
up

 F
ac

to
r

blackscholes dedup ferret x264

Figure 3.6: FastFI speedup relative to traditional execution model for increasing degrees
of parallelization (Pn). Error bars indicate minimum and maximum speedup.

speedups relative to traditional execution for the different degrees of execution
parallelism are shown in Figure 3.6. FastFI achieves increasing speedups with an
increasing degree of parallelism. When executing 16 faulty versions in parallel,
which corresponds to the number of logical cores on the machine we use for our
evaluation, FastFI achieves a speedup of 7.6 to 20.6 compared to the traditional
execution model. Relative to FastFI execution without parallelism, the speedups
range from 5.0 to 8.9. When going beyond the number of available cores by
executing 32 faulty versions in parallel, FastFI achieves speedups ranging from
9.8 to 26.0 relative to the traditional execution model, or 6.5 to 10.0 over FastFI
execution without parallelism. These results show that parallel FastFI execution
enables significant speedups over traditional SFI execution as well as over FastFI
execution without parallelization. By optimizing the FastFI fork server architecture
to allow for dynamic parallel groups (see Section 3.4.3), we believe that even higher
speedups can be achieved.

FastFI’s ability to execute multiple faulty versions at the same time in parallel
processes significantly speeds up parallel test execution. We achieved a best case
speedup of 26× for 32 parallel instances.

3.5.4 RQ 3: SFI Result Stability

To determine whether increasing degrees of parallelism affect SFI result stability,
we configure FastFI to run up to 32 faulty versions in parallel and compare

80

3.5 FastFI Evaluation

100 %

75.7 %

47.9 %

67.8 %

 -
16

1

-3
 2

06

-4
 3

06

0

25

50

75

100

blackscholes dedup ferret x264

Benchmark

%
 o

f V
er

si
on

s
E

xe
cu

te
d

Figure 3.7: Percentage of faulty versions executed during (sequential) FastFI execution.
The reduction is due to FastFI’s ability to avoid execution of unreachable versions.

SFI test outcomes. We consider the common four classes of SFI test outcomes:
“Crash”: application crash, “Error”: termination with error indication, “Success”:
termination without error indication, and “Timeout”: application did not finish in
time. From an application perspective, these failure modes match the crash and
hang oracles that are most commonly applied for SFI and robustness tests [KDD08].
We set the timeout values to 3 times the duration of a fault-free execution for
each benchmark to account for increased individual execution latencies in parallel
testing that we observed in ourPAIN experiments.

Figure 3.8 shows the SFI test outcomes for different degrees of parallelism. The
rightmost columns labeled with “s” show results from the sequential single version
execution mode that corresponds to a traditional execution. The higher count of
successful tests for this mode is due to the fact that all faulty versions are executed
independent of whether the faults are reachable. Such “dead” versions always
result in success as their execution always corresponds to a fault-free execution.
Since FastFI avoids the execution of such “dead” versions, the success count for
FastFI runs is lower.

For all benchmarks, the results are stable for up to 16 parallel executions. When
executing 32 faulty versions in parallel, results remain stable for the blackscholes
benchmark. For the other three benchmarks, the number of crashes and errors
remain stable but the number of successful tests drops and the number of time-
outs increases compared to lower degrees of parallelism. Moreover, for the x264
benchmark, the number of successful executions and timeouts varies between test
runs at this degree of parallelism. As this effect only occurs when running at a
degree of parallelism well in excess of the available computational resources on
the machine we use for our experiments, we expect that spurious timeouts at this

81

3 Accelerating Software Fault Injections

x264, (others) x264, (successes)

ferret, (others) ferret, (successes)

dedup, (others) dedup, (successes)

blackscholes, (others) blackscholes, (successes)

1 2 4 8 16 32 s 1 2 4 8 16 32 s

0

100

200

300

0

100

200

300

400

500

0

1000

2000

3000

4000

5000

0

5000

10000

0

10

20

30

0

25

50

75

0

300

600

900

0

200

400

600

800

Mode

C
ou

nt

Crash Error Success Timeout

Figure 3.8: SFI test results for different modes of execution and degrees of parallelism. The
x axis labels indicate the employed degree of parallelism (Pn) for FastFI execution. The
“s” label indicates the sequential single version mode execution. Error bars indicate
standard deviation.

82

3.5 FastFI Evaluation

degree of parallelism can be avoided by choosing a higher timeout threshold, at
the cost of increased SFI test latency as we showed in the PAIN experiments.

SFI test results obtained with parallel FastFI execution remain stable if timeout
threshold are sensibly chosen and the parallelism degree does not overload the host
platform.

3.5.5 RQ 4: Build Time Overhead

To investigate how large the overhead for creating integrated FastFI executables
is, we build the same set of faulty versions twice: once with FastFI and once
by building separate executables for each faulty version. In the latter case, we
utilize incremental compilation. Therefore, for each faulty version, one compilation
unit is recompiled and the final executable is linked. This is a typical approach
for building faulty program versions for SFI tests. User times for building with
FastFI relative to the traditional model are shown in Figure 3.9. Note that the
recorded times include the application of the mutation patches and, for FastFI,
code generation. FastFI offers substantially lower build times compared to the
traditional approach: FastFI builds take between 7.2 % and 20.8 % of the user time
required for building separate executables for each faulty version. This corresponds
to a speedup between 4.8 and 13.9. For x264, this speedup reduces the build time
from almost 6 h to 35 min. The reason for this advantage is that FastFI avoids
redundant recompilation: The traditional approach incurs substantial overhead due
to always recompiling entire compilation units, even though only a single function
differs from the fault-free version. Since FastFI works at function granularity, it
avoids this overhead by design.

Integrated FastFI executables containing all faulty versions can be built signifi-
cantly faster than traditional single version executables. We achieved a best case
build time speedup of 13.9×.

3.5.6 Discussion

Our investigation of FastFI with regard to our four research questions shows
that FastFI can be applied to real world software and it is effective at avoiding
redundant code re-execution, enabling sequential speedups of up to 3.6 over a
traditional execution model. Our results also show that FastFI enables further
speedups through parallelization, which can be even further improved by using
different parallelization strategies than the one implemented in our prototype.

83

3 Accelerating Software Fault Injections

0.111

0.208

0.0716

0.0959

-2
3.

2s

-1
m

 1
0s

-1
2m

 3
1s

-5
h

24
m

 0
5s

0.00

0.05

0.10

0.15

0.20

blackscholes dedup ferret x264

Benchmark

R
el

at
iv

e
U

se
r

T
im

e

Figure 3.9: FastFI user build times relative to user build times for separate executables.
The absolute reduction in overall user build times is given within the bars.

FastFI therefore enables the effective utilization of modern parallel computing
hardware for SFI tests. We find that neither sequential nor parallel FastFI execution
adversely affects SFI test result stability unless the degree of parallelism exceeds
the available computational resources, in which case spurious timeouts commonly
arise as we also observed in PAIN experiments. Such issues can be addressed by
adjusting timeout thresholds at the cost of potentially higher execution latencies.
Finally, our investigation shows that FastFI enables faster compilation of faulty
versions due to the finer, function-level granularity our approach offers. Overall
FastFI reduces latencies for both the compilation of faulty software versions and
their execution.

3.5.7 Concluding Remarks

With the increasing complexity of our software, we have to conduct an exploding
number of SFI experiments for assessing the dependability of said software. There-
fore, we developed FastFI a novel approach that is inspired by the insights from
our PAIN study and that combines several techniques to accelerate the execution of
a large volume of SFI experiments. To that end, FastFI (1) avoids redundant code
execution, (2) avoids the execution of “dead” faulty versions, (3) executes tests in
parallel, and (4) reduces build times for faulty versions. Based on our evaluation of
FastFI on benchmark programs from the PARSEC suite, we conclude that FastFI is
applicable to real world software from various application domains, enables both
sequential execution speedup as well as effective parallelization, and substantially

84

3.6 Related Work

reduces build times. Relying in the insights from PAIN, FastFI experiments can be
easily dine-tuned to avoid result accuracy issues.

In future work, we plan to extend FastFI in several directions. Different paral-
lelization strategies, such as replacing the fixed chunks currently used by FastFI
with work stealing, may result in improved CPU utilization and a further reduction
in SFI test latencies. Our current prototype is limited to programs written in C and
we are planning to support C++ as well. Moreover, we plan to extend FastFI to
support concurrent software.

3.6 Related Work

In the following, we discuss prior work that is related to both our PAIN and FastFI
approaches for accelerated execution of SFI tests.

3.6.1 Fault Injection (FI)

FI has been employed extensively across the whole software stack as well as at
the hardware level in different scenarios, including applications in embedded,
safety-critical, real-time, and operating systems. For instance, Arlat et al. [Arl+02]
applied FI to a microkernel OS that is composed of OTS components. Ng and Chen
[NC01] identified and fixed issues in their file cache design using FI. Others have
used FI to conduct dependability benchmarking to design alternative of software
components for web servers [DVM04], database systems [VM03], and operating
systems [DM03; KD00]. Much work concerned with FI investigates metrological
aspects to avoid drawing false conclusion about a system’s dependability in the
presence of many complex factor influencing FI experiments. A number of ap-
proaches have been proposed to limit the intrusiveness of FI techniques, by relying
on already existing debugging mechanisms provided by the hardware [Aid+01;
CMS98] and by minimizing modifications in the target software [Sto+00]. Skarin
et al. [SBK10] assessed the metrological compatibility of results produced from
these alternative techniques with limited intrusion. Kouwe et al. [KGT14] assessed
the result distortion because of injected faults that show no effect on the system
and are under-represented. As distributed systems are commonly affected by
non-determinism and clock skew issues, the repeatability of FI experiments in
this context has been evaluated [Cha+04; Cot+13b]. Irrera et al. [Irr+13] evaluated
whether VMs can be used for FI experiments without adversely impacting certain
system metrics. Although they drew a positive conclusion, the conducted experi-
ments showed that using VMs had a noticeable impact on some of the metrics they
recorded.

85

3 Accelerating Software Fault Injections

3.6.2 FI Test Throughput

A number of studies have advocated the potential benefits of parallelizing FI
experiments [Ban+10; BC12; Han+10; Mah+12] using virtual machines [Ban+10;
Han+10] or OS processes [BC12] to isolate the experiments. Although virtual
machines provide execution environments with stronger isolation, the run time
overheads that virtual machines incur can cause performance interferences, which
can equally distort the results of fault injection experiments as we showed in our
PAIN experiments. As a consequence, we chose to restrict FastFI’s isolation for
concurrently executing experiments to lightweight processes, which makes it a
suitable approach for FI testing above the OS level.

3.6.3 Test Parallelization

As in many other areas of technology, the idea of parallel testing has been driven
by emerging parallel hardware and system designs [Sta00]. Parallel test execution
has been used to improve the throughput in regression testing [Kap01] and in
MapReduce-based unit testing on cluster hardware [Par+09], but also to test a
complex CORBA implementation across different platforms [Las05]. Other recent
approaches advocated the Testing-as-a-Service (TaaS) paradigm that fits well into
the Cloud computing landscape for dynamic testing [Yu+09; Yu+10] as well as for
static testing (i.e., program analysis) [CBZ10; Cio+10; Mah+12; SP10].

Until recently, many approaches parallelized test executions under the assump-
tion that these tests are independent and do not influence each other [Dua+06;
Mis+07; OU10; Par+09]. This assumption has proven incorrect for a number of
test suites [CMd17; Zha+14]. Newer approaches take possible test dependencies
into consideration and use this information to determine which tests need to exe-
cute in sequence to prevent spurious results [Bel+15; Gam+17; LZE15]. In FastFI,
concurrently executing program versions do not interfere as external resources
are carefully handled by the runtime. As soon as a faulty version is selected for
execution, a new process is forked to guarantee memory protection via address
space isolation. Possible interference on shared persistent file storage are prevented
by means of I/O redirection. Thus, the isolation across parallel SFI tests is stronger
than what is commonly assumed for parallel correctness tests, but weaker than the
VM-based isolation than we use with PAIN for parallel fault injections to reduce
the risk of performance interference that we encountered with PAIN.

3.6.4 Avoiding Redundant Code Execution

FastFI saves execution time by avoiding redundant and unnecessary code execu-
tions. We are only aware of one work that makes a similar attempt to reduce test
suite execution latency. VmVm [BK14] analyzes which data is modified by each

86

3.7 Conclusion

individual test case in a test suite and makes sure that the test suite executor only
resets that part of the system state between tests, so that heavier isolation mech-
anisms can be avoided. The authors report an average execution time reduction
of 62 %. In contrast to VmVm, FastFI avoids (a) the execution of code paths that
are redundant for many tests and (b) the execution of faulty program versions, for
which the fault would not get activated. These redundancies are peculiarities of FI
tests and usually do not apply for other types of tests, such as unit tests targeted by
VmVm. FastFI also does not attempt to reduce isolation between tests, but utilizes
this isolation to safely execute tests concurrently to gain additional speed-up from
parallel hardware.

3.6.5 Result Validity with Parallel Execution

Prior work that exemplified the benefits of parallel FI [Ban+10; BC12; Han+10;
Mah+12], did not investigating whether parallelism affects the validity of test
results as we do with PAIN as well as FastFI. Often, especially if conducted in
VMs, FI experiments are assumed to be inherently independent and therefore
easy to parallelize ad infinitum. However, there are possibly adverse effects
due to parallelization as performance isolation between VMs cannot easily be
guaranteed [Gup+06; SC09] as was also the case in some of our PAIN experiments.
Software executing in different VMs can suffer from performance interference, for
instance, if the host runs out of memory or the CPU is overloaded, leading to
different system behavior compared to execution outside a VM that can even affect
the system’s security [HL13; Nov+13].

3.7 Conclusion

Due to increasingly complex software stacks and application scenarios, together
with emerging SFI techniques that combine multiple faults, we have to cope with
an explosion in the number of SFI experiments to be conducted for comprehensive
dependability assessments of said software. The parallel execution of SFI experi-
ments seems to be a promising approach to compensate for this large volume of
required experiments. However, with the parallel execution of such experiments,
the question arises whether the obtained experimental results remain stable and
valid with the increasing degrees of parallelism that modern hardware enables.

Therefore, we started by assessing whether we can achieve higher experiment
throughput by performing OS-level SFI experiments in parallel VMs using our PAIN
framework. Moreover, we assessed if the obtained result distributions change with
the introduction of parallelism. To that end, we defined measures for experiment
performance and for result accuracy for evaluating. We applied our methodology
to study the effects of faulty drivers in the Android OS. Our results show that

87

3 Accelerating Software Fault Injections

PAIN can considerably improve experiment throughput, but at the same time lead
to result inaccuracies. These inaccuracies were related to the chosen degree of
parallelism as well as to timeout thresholds for failure detection. In our analysis
of PAIN experiments, we provide insights and guidelines that others can use to
fine-tune their parallel setups and avoid the mistakes we initially made.

Based on our experience with PAIN and parallel execution in VMs, we developed
FastFI, a novel SFI execution approach that relies on processes for experiment
execution and accelerates the overall SFI process by (1) avoiding redundant code
execution, (2) avoiding the execution of “dead” faulty versions, (3) parallelization
of test execution, and (4) reducing build times for faulty versions. Applying FastFI
to PARSEC applications, we achieve speedups of up to 3.6× in sequential execution
and up to 26× in parallel execution. The number of executed faulty versions
could be reduced by up to 52.1 %. FastFI can reduce build times to as little as
7.2 % of conventional SFI approaches. FastFI achieves these improvements while
maintaining result stability and is therefore a viable approach for reducing SFI test
latencies in real world settings.

88

4 Towards Parallel Testing for C

Testing is a time consuming activity performed during software development.
In Chapter 3, we showed that the efficiency, i.e., execution latency, of SFI tests
can be significantly improved by exploiting parallel hardware. But the execution
of functional and correctness tests as well as the analysis of their results is also
an important part of testing activities. With increasingly parallel hardware, the
execution latency of a test suite strongly depends on the degree of concurrency with
which test cases are executed. However, if test cases have not been designed for
such concurrent execution, they may interfere, which can lead to result deviations
compared to traditional sequential execution. To prevent such interferences, each
test case can be provided with an isolated execution environment, but this entails
performance overheads that diminish the merit of parallel testing. In this chapter,
we present a large-scale analysis of the Debian Buster package repository, showing
that existing test suites in C projects make limited use of parallelization. We
then present an approach to (a) analyze the potential of existing C test suites for
safe concurrent execution, i.e., result invariance compared to traditional sequential
execution, and (b) execute tests concurrently with different parallelization strategies
using processes or threads if it is found to be safe in step (a). To demonstrate
the utility of our approach, we apply it to nine projects from the Debian software
repositories and analyze the potential for concurrent execution. The contents of
this chapter are, in parts verbatim, based on material from [Sch+19].

4.1 Overview

Dynamic software testing, i.e., the controlled execution of software and the com-
parison of its behavior against specified behavior, is widely applied to identify
software defects. To obtain high test throughput and limit the influence of human
error, dynamic software tests are themselves commonly implemented as software
for test automation. As the amount of test code has exceeded that of the applica-
tion logic by far for numerous projects [GVS17], its execution time is critical for
the performance of various steps in software development and maintenance. For
maintainability and selective execution, the test code is organized as collections
of test cases in test suites. With the increasing parallelism of modern processors,
test execution times can only benefit from increasing computational power if test
suites are designed for concurrent execution. The total execution time of a test suite

89

4 Towards Parallel Testing for C

τseq

τ1

seq

par

τn

τpar

τ2

τ1 τ2 τn

Figure 4.1: Illustration of the intended achievement. Execution time for the parallel case
τpar is defined by the longest executing test case, whereas for the sequential case τseq it is
defined by the sum of all test case execution times.

consisting of test cases t1 . . . tn with execution times τ1 . . . τn would be reduced
from ∑n

i=1 τi in the sequential case to the execution of the longest running test
max({τ1 . . . τn}), as illustrated by Figure 4.1, if two conditions hold: (a) sufficient
parallel processing units are available, and (b) all tests in a test suite are independent.

Unfortunately, this assumption of test case independence within a test suite has
proven problematic [Zha+14]. Even sequential executions of a test suite can lead to
differing test case results across different permutations of their execution order. The
major root causes behind test dependencies found in existing software projects have
been identified as (a) shared global memory and (b) shared files [Zha+14]. While
the former has been identified as the most common reason for test dependencies
(62.7 % of all dependencies analyzed in [Zha+14]), it is only problematic if test
executions share the same memory address space. Isolating tests in individual pro-
cesses would, therefore, solve a substantial portion of the problem, but reportedly
induces significant overheads on test executions [BK14]. As shared files affect any
tests operating on the same file system, file dependencies need to be identified
irrespective of address space isolation.

In this chapter, we explore several implementation alternatives (with different
degrees of memory isolation) to achieve safe parallel executions of existing sequen-
tial test suites for projects written in C. By safe parallel execution, we mean that
the results of test cases executed in parallel cannot differ from the results of their
original sequential execution order. We focus our work on C, the predominant
language in the Debian main package repository (as we will show in Section 4.3).
C also features the second highest test count across projects hosted on GitHub
according to a study of Kochhar et al. [Koc+13]. To check if tests can interfere in
parallel execution, we implemented two static analyses on LLVM IR, the intermedi-
ate representation used by the LLVM compiler infrastructure [LA04]. This means
that our analysis could also be applied to software written in other languages than

90

4.2 Related Work

C if a suitable LLVM front end exists. The decision to focus on existing test suites
is motivated by the large amount of existing sequential test code that is shipping
with widely used software.

As a brief summary, this chapter presents the following contributions.

• An analysis of Debian Buster’s main package repository showing that the
majority of code contained in the packages is written in C, that no test
framework dominates test implementations for C packages, and that few test
suite implementations benefit from concurrent execution in Section 4.3.

• We develop automated static analyses for C programs to identify test case
interdependencies on files and shared global data in order to identify which
parts of a test suite can safely execute in parallel in Section 4.4.

• We develop a test harness to use this information for safely executing tests in
parallel and explore the trade-off between address space isolation and parallel
test suite performance in different parallelization alternatives using processes
and threads for nine Debian source packages.

• We present the results of an in-depth analysis of nine software projects from
Debian Buster, for which we parallelize test execution using our dependency
analyses and test harness in Sections 4.5 and 4.6. Our results show that test
suites in C can benefit from even modest degrees of parallelism provided by
virtually every desktop or server hardware configuration, that threads do not
perform significantly better than processes, and that our test harness (and
likely any specialized test tool) outperforms generic automation tools like
make.

4.2 Related Work

The goal of our work is to assess if the concurrent execution of tests in C projects
can achieve better latencies without compromising test outcomes. Articles related
to our work fall in three categories:

1) Articles with the same objective and mechanism, i.e., the concurrent execu-
tion of tests for latency improvement.

2) Articles with the same objective, but different mechanisms, i.e., latency
improvements of test execution by other means.

3) Articles with similar mechanisms, i.e., test interference detection, but with
different objectives.

91

4 Towards Parallel Testing for C

In summary, only one existing approach (VmVm [BK14]) does not require the
execution of tests. Parallelization approaches based on dynamic analyses suffer
from the need to execute the test suite at least once. After the test suite has been
executed once, the test results are known and there is no benefit in obtaining the
same results again, no matter with which run time improvement. Hence, dynamic
approaches are only useful if there is a possibility for test results to differ across
repeated executions and if that is the case, the same effects that cause the test
results to differ may alter the analysis results that the parallelization is based on
as well. Therefore, we need to rely on static analyses to detect test interferences
for enabling safe concurrent execution. As we cannot reuse VmVm’s static analysis
because it operates on Java code, we develop static analyses of accesses to global
variables and shared files for C programs as LLVM compiler passes.

4.2.1 Concurrent Test Execution for Latency Improvement

Early approaches for concurrent test executions [Dua+06; Mis+07; OU10; Par+09]
assume test cases to be independent and do not analyze if their parallel execution
possibly alters test results. As test dependencies were found to affect permutations
of test sequences [LZE15; Zha+14], newer approaches address the possibility of test
dependencies.

ElectricTest [Bel+15] identifies dependencies in Java tests to determine which
tests need to execute in sequence to prevent spurious results. The dependencies
are derived from execution traces of shared resource accesses, which are gathered
during test execution. Lam et al. [LZE15] assess the impact of dynamically detected
test dependencies in Java projects on test parallelizability, achieving execution
speedups between 1.02× and 7.14× depending on the project and number of
CPUs.

CUT [Gam+17] executes unit tests in parallel and isolates them in separate virtual
machines or Docker containers to ensure that concurrently executing tests cannot
interfere. CUT relies on external input in the form of a directed acyclic dependency
graph, which can be provided by analyses like those presented in this chapter.

O!Snap [GGZ17] uses VM snapshots to speed up test execution. To avoid missing
libraries or setup steps for running the tests, O!Snap analyzes dependencies on the
software package level. Our approach is orthogonal, as it targets concurrency of
tests within a package, as opposed to concurrency across packages.

Candido et al. [CMd17] investigate how commonly concurrent test executions
are used in open source projects. Their results show that only 13 out of 110

investigated Java projects execute tests concurrently. The authors experimentally
assess the speedup (up to 75.9×) and the rate of spurious test failures (up to 96.3 %)
of naive parallelization that ignores dependencies, emphasizing the importance
of dependency analyses for test parallelization. Our complementary study for C

92

4.3 Empirical Study: C Software in Debian Buster

projects in the Debian Buster repository confirms the finding that few projects can
benefit from parallel testing out of the box.

4.2.2 Improving Test Latencies without Concurrency

The improvement of test execution latencies is a main driver behind entire research
directions within the testing community, such as test selection or prioritization. We
found only one project that, similar to parallelization, achieves latency improve-
ments without omission of tests. VmVm [BK14] reduces the execution latency of
sequential test suites by replacing costly per-test initialization and termination rou-
tines with lightweight reset routines that are sufficient to provide non-interference
across consecutive tests. To identify which part of the software under test’s (SUT)
state needs to be reset, VmVm uses a static analysis to identify heap memory that
is possibly accessed by multiple tests.

4.2.3 Test Interference Detection

Another reason for analyzing test interdependencies is the identification of bugs in
test code. If individual tests are supposed to be independent from each other, any
interdependency indicates a bug.

Muşlu et al. [MSW11] propose to execute tests in isolation to reveal dependencies
on other tests and report an actual bug in Apache Commons CLI using this
technique.

DTDetector [Zha+14] permutes the execution order of Java test suites to identify
unintended test dependencies via static fields. To keep the execution overhead
tractable, DTDetector samples permutations using different algorithms, one of
which uses test (in-)dependence information to filter permutations that cannot
reveal test dependencies. To gather dependency information, DTDetector executes
each test once in isolation.

PraDet [GBZ18] detects manifest test dependencies with a similar approach
as DTDetector, but reduces false positives by using an enhanced version of Elec-
tricTest’s [Bel+15] dependency detection.

PolDet [Gyo+15] detects state pollutions of shared state across Java tests by
identifying shared heap memory at run time and tracking accesses to the identified
regions. PolDet also tracks modifications to files, but relies on user input for
identifying which files are relevant and need to be tracked.

4.3 Empirical Study: C Software in Debian Buster

In our literature review (Section 4.2), we made the observation that all existing
work on test dependencies is focused on Java projects. While we do not speculate

93

4 Towards Parallel Testing for C

25
 %

11
 %

15
.6

 %

13
 %

35
.4

 %

0

2500

5000

7500

C C++ Perl Python Other

Project Language

P
ro

je
ct

 C
ou

nt

Figure 4.2: Number of packages in Debian Buster by their dominant language. The absolute
number is on the Y-axis, the relative number within the bars. Languages below 5 % are
grouped together as Other.

about the reason, we needed to confirm that it is not because testing of C code
is an irrelevant problem. For this purpose, we analyzed the entire main package
repository of the upcoming “Buster” release (version 10) of the Debian Linux
Distribution [Deb18] with three major objectives:

1) Assessing the amount of C code in the repository compared to other lan-
guages to confirm the relevance of our work

2) Assessing which test frameworks are most widely used to test C code in
the repository

3) Assessing to which extent parallel execution is able to improve test perfor-
mance for packages that already support it to some degree out-of-the-box

4.3.1 Programming Languages in the Debian Ecosystem

We started by downloading the source package index for “Buster” [Deb17], which
lists the source code packages and their download locations. We then downloaded
and unpacked all 25 684 source packages available in Buster. To determine both
the programming languages and the amount of source lines of code (SLOC) per
package, we used cloc [Dan18] and excluded markup languages such as XML or
JSON, as these are used for describing data rather than executable code.

Figure 4.2 shows the total number of packages by their predominant language,
i.e., the languages that contribute most SLOC to the respective packages, and the
relative contribution of each language to the entire repository. With almost 25 %,
C is the most prominent language across all packages. To affirm that this finding

94

4.3 Empirical Study: C Software in Debian Buster

28
.6

 %

12
 % 19

.3
 % 7.

3
%

5
%

27
.8

 %

0

50

100

150

200

250

C C/C++
Header

C++ Java Python Other

Language

M
S

LO
C

Figure 4.3: Millions of source lines of code (MSLOC) contained in the Debian Buster
repository by language. The absolute number is on the Y-axis, the relative number
within the bars. Languages below 5 % are grouped together as Other.

is not biased by differing amounts of code in the packages, we also accumulated
the SLOC number per language across all packages as shown in Figure 4.3. With
around 250 million SLOC, more than 28 % of the total code in the repository is
written in C. This number excludes code in header files, as cloc cannot distinguish
whether they belong to C or C++ code, and is, thus, a conservative estimate.

C is the dominant programming language in the Debian package ecosystem.

4.3.2 Test Frameworks

To analyze the use of test frameworks, we scanned the downloaded sources for
JUnit usage in the case of Java and for the presence of typical files and directives
of 34 different freely available test frameworks1 in the case of C. Figure 4.4 on the
next page summarizes our findings. We found that, with less than 5.5 %, only few
C projects make use of any of the test frameworks. This is in strong contrast to the
situation for Java, where over 65 % of projects use the de facto standard JUnit for
testing.

1For C projects we search for: libcbdd, AceUnit, AutomatedTestingFramework, Autounit, Cgreen,
CHEAT, Check, Cmocka, Cmockery, CppUTest, Criterion, CU, CTest, CUnit, CuTest, Cutter,
EmbeddedUnit, FCTX, GLibTesting, GUnit, lcut, LibU, MinUnit, Mut, NovaProva, OpMock, RCUNIT,
SeaTest, Sput, TestDept, TFUnitTest, Unity, tinytest, xTests

95

4 Towards Parallel Testing for C

5.
4

% 65
.8

 %

0

20

40

60

C Java

Language

%
 U

si
ng

 K
no

w
n

Te
st

 F
ra

m
ew

or
k

Figure 4.4: Usage of known test frameworks in C- vs. Java-dominated packages. The Y-axis
represents the percentage of packages using a framework relative to all packages with
the respective dominant language.

No test framework is commonly adopted for C software in the Debian package repos-
itories.

4.3.3 Test Parallelization

To detect if packages can benefit from parallel test execution, we identify all
packages that show indications for the presence of any tests by scanning for file and
folder names that include “test” as substring. By invoking typical build and test
execution targets of GNU make2, we then build each of these packages, execute their
test suites, and measure the tests’ execution times for varying degrees of execution
parallelism specified via make’s -j flag. We repeat our time measurements three
times per configuration to account for possible variations due to factors that are
not under our control.

Out of 6419 C packages in the repository, we identified 1617 to show indications
for the presence of tests. Out of these, 627 completed our measurement without
failure for all three runs. Most packages that failed did so in a consistent way for
all three runs (99.2 %). A remaining 8 packages exhibit flaky build or test behavior.
Half of them had test failures in the parallel case, despite successful sequential
test executions. We also observed such behavior among 10 packages that failed
consistently in each of the three repetitions.

From the 627 non-failing packages, only 177 (28 %) had shorter test execution
times for the parallel case in all runs. 261 packages (41.3 %) had equal or longer
test execution times compared to sequential execution. The remaining packages

2We also invoke typically found configuration steps such as autoconf or configure and try different
make targets for executing tests such as check or test.

96

4.3 Empirical Study: C Software in Debian Buster

1.00

1.37

2.00

3.00

4.00

0.10 1.00 1.86 10.00 100.00

Sequential Test Execution Time (s)

S
pe

ed
up

 F
ac

to
r

w
ith

 4
 P

ro
ce

ss
es

Achieved Time Difference (s)
for 4 Processes

1 60 120

Speedup with 8 Processes
over 4 Processes

[0.79,1.03] (1.03,1.27]

(1.27,1.52] (1.52,1.76]

Figure 4.5: Achievable test speedup for C software packages in Debian Buster. The dashed
lines indicate the median sequential test execution time and the median speedup achieved
with 4 processes. The size of the bubbles indicates the time difference between sequential
and 4-fold parallel execution. The color coding illustrates additional speedup achievable
by 8-fold parallelism.

did not yield clear results, with parallel test performance sometimes exceeding the
sequential case and sometimes vice versa.

The achieved test execution time speedup factors for the 177 benefiting packages
are shown in the bubble plot in Figure 4.5. From the plotted data we observe that
the degree by which projects benefit from parallel test execution varies greatly.
While it is not surprising that longer sequential execution times (on the x axis)
tend to coincide with bigger time savings (bubble size), it is remarkable that even
projects with short test suite execution times between 250 ms and 1 s can achieve
speedups well above the median of 1.37.

If the degree of parallelism for test execution is increased from 4 to 8, we observe
only modest additional speedup, as indicated by the bubble colors, for the majority

97

4 Towards Parallel Testing for C

of the projects. Almost 60 % fall in the lowest category and 30 % in the second
lowest. More than half of the projects in the lowest category have a speedup of 1 or
less, i.e., they do not benefit from increased parallelization.

Test parallelization via command line flags works for less than 39% of C packages
that use make for test execution. Most of these packages do not deterministically
benefit from 4-fold parallel test execution. Out of those that do, few can benefit from
further increased parallelism.

4.3.4 Threats to Validity

We do not claim that the results from our study apply for other ecosystems. With
Debian, our study targets a large ecosystem that forms the basis of many production
software stacks [Deb18]. The downside of this choice, which guarantees practical
relevance, are potential inaccuracies in our analyses resulting from the need to
scale them to an ecosystem of significant size and projects with limited support for
automated analyses. Our analysis of dominant languages relies on cloc’s accuracy,
which is widely used for SLOC counting. Our analysis of test frameworks depends
on the list of frameworks we searched for in the projects and the accuracy of our
search heuristics. Similarly, the conclusions from our test run time analysis may
depend on our build and test automation. Our conclusions are drawn from three
repetitions of the run time analysis. We have used the coefficient of variance as a
rough measure to detect massive instabilities, which we only found in one case
of averaged time differences for 8-fold parallelism and which we excluded from
the analysis. The exit codes observed were stable across the three conducted runs
in more than 99 % of the cases, which adds to our confidence in the absence of
massive deviations from the reported results.

4.4 Safe Concurrent Testing for C

Our empirical study has shown that only a small fraction of those C projects in De-
bian that invoke tests via make benefit from parallel test execution. In the following
we present an approach to (1) assist C developers with the implementation and
maintenance of concurrent test suites and (2) enable safe concurrent test executions
for legacy test suites that have been designed for sequential execution.

Figure 4.6 on the next page gives an overview of our approach. The three phases
of preparation, analysis, and safe concurrent test execution are discussed in the
following subsections.

98

4.4 Safe Concurrent Testing for C

Tests.c SUT.c

Clang +
Bitcode Linker

Linked.bc
LLVM

Backend

FDA SMA BM Binary
SUT
+

Tests

Conflict Graphs
(Files, Globals, System)

Black Lists

Test
Harness

Preparation Analysis Safe Concurrent Execution

1 2 3

Figure 4.6: To prepare for our analyses detailed in this section, the tests and the SUT have
to be compiled to bitcode and linked. After running our analyses 1 – 3 , which are
implemented as LLVM compiler passes, we obtain information on potential test conflicts.
These are leveraged by our test harness to derive safe parallel test schedules.

4.4.1 Preparation

We implement our analyses as LLVM optimizer passes performing a whole-program
analysis on the tests and the SUT. For this purpose, we require the tests and the
SUT to be compiled to LLVM bitcode and linked together. Everything that is not
linked in at the point at which our passes run is deemed external and any test
inter-dependencies due to external resources must be addressed via a blacklisting
mechanism discussed in Section 4.4.2.

Our analyses assume test cases to be self-contained, i.e., not to rely on external
inputs. External inputs are either generated by human testers or by external test
automation tools written in other languages. If the test suite relies on human input,
its potential performance gain from automated parallelization is limited. If input
data is generated by tools written in other languages, those parts of the test harness
would require an analysis engine for those languages. If any input generating code
can be linked with the LLVM-IR of the tests, our approach can include it in the
analysis.

4.4.2 Detecting Potential Test Interference

Concurrent test executions can interfere if two or more test cases access the same
data, at least one such access is modifying that data, and the test outcome of at
least one other test depends on that data. Which data is shared among concurrent
tests depends on their execution environment. Concurrently executing tests in
separate processes (as in the case of make in Section 4.3) share the same operating
system state (e.g., system wide configurations like the locale) and in particular the
same file system, but not the same memory. Dependencies on shared memory only
affect concurrent tests if they execute as threads within the same process context.
We developed separate static analyses to detect potential dependencies (due to

99

4 Towards Parallel Testing for C

global variables or file system usage) in a given test suite, because of these different
parallelization strategies they enable.

We chose a static approach for analyzing potential dependencies over a dynamic
approach since static analyses have the advantage that the analyzed tests do not
need to be executed. A dynamic analysis would already produce the desired test
results, limiting the utility of the approach to cases for which a repeated execution
of the same tests in the same configuration is desirable. Static analyses can be
integrated into the software build process which ensures that the used dependency
information always matches that of the produced test executables. This integration
is especially useful if a software project has many build-time configuration options,
which may influence test dependencies.

Analysis 1 : File Dependency Analysis (FDA)

To detect file dependencies, our analysis first checks whether certain known func-
tions that are used to interact with the file system, such as fopen, are reachable
from a test case by constructing the static call graph for the SUT and traversing
it for each test case’s SUT invocations. Then, for each call site of such a function
that is reachable from at least one test case, we traverse use-definition chains to
determine which (constant) file names may be passed to the function. A test case
t may access a file f if a call site of a file processing function is reachable from t
and f is a reaching definition for a function argument at that call site. We use the
same technique for mode arguments to distinguish read-only accesses from writing
accesses. The resulting file read and write sets Fr(t) and Fw(t) for each test case t
can be used to detect dependencies between any pair of test cases and we construct
an undirected test case conflict graph CF = (V, E) as follows:

• For each test case, we add a corresponding vertex to V.

• For each pair of vertices ti, tj ∈ V, we add an edge to E iff (Fr(ti) ∩ Fw(tj)) ∪
(Fr(tj) ∩ Fw(ti)) ∪ (Fw(ti) ∩ Fw(tj)) , ∅, i.e., when there is a possibility of
accesses to the same file including at least one write operation.

Analysis 2 : Shared Memory Analysis (SMA)

Analogous to Section 4.4.2, we construct the static call graph of the SUT and the
tests. We then follow the definition-use chains of all global variables of the SUT, as
well as function arguments in cases where global variable addresses are passed as
parameters, to identify which of them may be read or written in which test case. We
consider it sufficient to focus on global variables, because (1) global variables are
implicit heap allocations and shared among threads, (2) function-local variables are
allocated on the stack and are, thus, thread-local and not shared among concurrent

100

4.4 Safe Concurrent Testing for C

threads, (3) to share explicitly allocated heap data (e.g., via malloc), threads need to
communicate its addresses, which is only possible via previously shared memory.

Our analysis does not identify shared memory accesses to hard-coded constant-
value addresses. Such accesses constitute a severe risk to memory safety and must
be considered bad practice for commodity systems. For embedded systems there
may be cases of software containing hard coded addresses. For these scenarios,
our analysis would need to be augmented with a (straight-forward) mechanism to
analyze constant propagation.

The result of our analysis is a mapping that assigns to each function f in the
module its read and write sets of global variables Gr(f) and Gw(f). A test case
t may read or write a global variable g if any of the functions reachable from
that test case according to the static call graph may read or write g. Thus, the
set of global variables that may be read (or written) during execution of t can be
computed as Gr(t) =

⋃
Gr(fi) and Gw(t) =

⋃
Gw(fi) of all functions fi reachable

from t. The resulting read and write sets for each test case can then be used to
detect dependencies between any pair of test cases by constructing the conflict
graph CG for global variables analogous to CF above.

Analysis 3 : Blacklisting Mechanism (BM)

As previously mentioned, we rely on a blacklisting mechanism to model test de-
pendencies on shared system resources besides files and memory. This mechanism
takes a list of functions as input that access such shared resources, along with
additional information whether the access is reading or writing the shared resource.
We analyze the test cases and the SUT for call sites of these functions and create
read and write sets of shared resources for each function in the module, analogous
to how we handle global variables. We then reuse the static call graph constructed
during the shared memory analysis to determine which of the identified call sites
can be invoked during test execution. The resulting conflicts are added to CG,
thereby effectively modeling them as global variables.

4.4.3 Concurrent Test Execution

The orchestration of test executions is generally implemented in some test harness.
As we found in our empirical study in Section 4.3, C projects frequently use the
general purpose build automation tool make for this purpose. We implement
a custom test harness in our work to achieve the concurrent execution of test
cases. Our test harness supports different parallelization strategies that make use
of the dependency information extracted by our static analyses to prevent test
interferences.

In general, there are two options for concurrent test executions, which differ in
their risk of interfering test executions and their run time overhead: (a) executing

101

4 Towards Parallel Testing for C

t1

t4t2

t3
CPU1

CPU2

P1

P2

P3

P4

CPU1

CPU2

P1

P2
PM

PW

t1 t3

t2 t4

Figure 4.7: Multi-Process strategies PM and PW : For PM a clean process is started for each
test, whereas for PW the repeated process initialization overhead is saved by reusing
processes as long as tests do not have dependencies.

tests in parallel, isolated processes or (b) executing tests in parallel threads without
memory isolation.

Option (a) provides isolated address spaces, which eliminates memory interfer-
ences for parallel tests. Option (b) does not provide this isolation, but offers lower
overhead compared to (a) since thread management operations do not have to
create/switch address spaces for isolation. However, since option (b) lacks program
state isolation for each test, all tests must be analyzed for their interference potential
before they can be run in parallel. For either option we implement two execution
strategies in our test harness.

Multi-Process Strategies

Our first strategy merges all test cases into one program and forks a new process for
every test case (PM). The only difference of this harness compared to make is that
our implementation does not schedule two tests for concurrent execution if they
have file dependencies, as this may lead to deviating test results. The maximum
number of processes in PM is configurable to prevent resource contention from
adversely affecting test suite execution times, e.g., when the number of processes is
much larger than the number of CPUs in the system.

The other option for test parallelization with processes is a worker model that
forks a fixed number of processes, each of which executes several tests in sequence
(PW). This option avoids spawning new processes (similar to VmVm [BK14]) when
sequential tests do not have dependencies and, thus, cannot interfere. Tests with file
dependencies cannot execute in parallel, as previously explained in the discussion
of PM, and cannot execute sequentially within the same worker process if they have
dependencies on common globals.

Figure 4.7 illustrates the difference between PM and PW in an example of four
independent tests t1 . . . t4 executing on two processing units CPU1 and CPU2. For
PW , two processes P1 and P2 are spawned, whereas a new process is created for
each test in PM.

102

4.5 Evaluation

Multi-Thread Strategies

We employ two multi-thread strategies TM and TW analogous to PM and PW : TM

creates a new thread for each test case and TW uses worker threads. In addition to
the dependency restrictions described for processes, threads cannot be executed
concurrently or within the same worker thread if they have dependencies on global
variables. This restriction does not apply for processes, as they execute within
separate address spaces and do not have access to other processes’ global variables.

Multi-threaded strategies, therefore, require both dependency analyses, but are
expected to outperform their multi-process counterparts in terms of test execution
times, because of the lower overhead for thread creation and context switching.

4.4.4 Scheduling Concurrent Test Execution

We use CG and CF to schedule safe, concurrent test execution according to the four
parallelization strategies discussed above. For PM, scheduling relies only on CF.
PW , TM and TW all require both CF and CG. We use CF to partition the set of test
cases as follows: We greedily pick and remove maximal independent subsets of
test cases Ii from CF until CF is empty. For PM, these sets are directly used for
concurrent test execution: Test cases from the same set are executed concurrently in
different processes at the chosen degree of parallelism. Different sets are handled
sequentially, and test cases from different sets are never executed concurrently. In
the other cases (PW , TM, TW), we extract for each Ii the corresponding induced
subgraph from CG. The result is a set of conflict graphs Ci

G that encode potential
memory and environment conflicts among tests that do not have file conflicts.
These graphs are then used to identify sets of independent tests that can safely
execute concurrently (respectively, sequentially within the same process), analogous
to how CF is used in the case of potential file conflicts. By greedily constructing
independent sets from the vertices in each Ci

G, our test harness avoids executing
conflicting test cases in parallel in different threads of the same process (TM, TW)
or sequentially within the same worker (PW , TW).

4.5 Evaluation

In the following, we evaluate our approach by applying it to 9 real world software
projects. We investigate the following four research questions:

RQ 1 What are the steps involved to transmute legacy tests suites to enable
the application of our analyses as well as the subsequent concurrent
test suite execution with our test harness and how much manual effort
is required?

103

4 Towards Parallel Testing for C

Table 4.1: Evaluated Software Projects: Each project is listed with the amount of C code,
the number of all and analyzed test cases, the run time (in s) of the longest running test
case, and the sequential test suite execution time with both make and PM.

Name
Size Test Cases Seq. Time (s)

(C SLOC) Total Analyzed Longest Make PM

gnulib 204486 1130 908 4.0 23.5 12.0
libbsd 7182 16 12 55.9 56.2 55.9
libesedb 211882 22 22 <1ms 1.0 0.01

libgetdata 96532 1649 1637 9.5 52.5 34.1
librabbitmq 9833 6 6 <1ms 0.1 0.01

libsodium 26123 65 65 1.1 5.4 3.9
litl 2403 16 10 4.0 7.3 7.0
openssl 244048 548 29 0.9 2.8 2.6
sngrep 10381 10 10 1.8 11.6 11.3

RQ 2 What dependencies do our files and globals analyses detect and do they
originate in test code or in the core project code itself?

RQ 3 How high are the achieved speedups for parallel test suite execution
with make and our test harness, and do multi-thread execution strategies
achieve higher speedups than multi-process strategies?

RQ 4 How much execution time overhead do the proposed files and globals
dependency analyses impose and does the overhead amortize with the
achieved speedup from parallel execution?

4.5.1 Experimental Setup

We start with a brief description of our software project selection and how we
performed our experiments.

Software Project Selection

We investigate our research questions by applying our approach to 9 real world
software projects that are developed in the C programming language and that are
included in the Debian software repository and, therefore, available on virtually
every Debian-based OS installation. We selected the projects to cover a large range
of project sizes, test suite sizes, and sequential test execution times, as shown in
Table 4.1.

104

4.5 Evaluation

Experiment Execution

We ran our files and globals dependency analyses on each of the 9 selected projects
and recorded the resulting dependency graphs. We report the detected dependency
sources and the average execution times of 30 repeated analysis runs in Table 4.2 on
the following page. We executed the test suites of the 9 projects in 30 experiment
configurations, namely at 6 different degrees of parallelism (1, 2, 4, 8, 16 and 32)
and in 5 different execution modes (make, PM, PW , TM, and TW), to assess how
test suite execution latencies and achievable speedups change. We repeated these
experiments 30 times and discuss mean values throughout this section. With 30

experiment configurations, 30 repetitions, and 9 projects, we performed a total of
8100 experiments. To achieve a fair comparison, we executed the reduced test suites
(as discussed later in Section 4.5.2) for each execution mode. It is important to note
that the actual test suite results did not deviate between sequential make and our
multi-process and multi-thread execution modes, i.e. we observed the same test
results with our test harness as for sequential make.

Execution Environment

We conducted all our experiments on a machine with Debian Buster as operating
system with a Linux 4.17 (x86_64) kernel. The machine is equipped with an AMD
Ryzen 7 1700X CPU with 8 physical and 16 logical cores running at 3.40 GHz. The
machine has 32 GiB RAM of main memory and a 1 TiB SSD as storage medium.

4.5.2 RQ 1: Transmutation of Legacy Tests

To answer RQ 1, we report how we prepared the test suites of the 9 evaluated
projects (cf. Section 4.4.1) and which manual and automated steps were involved.

First, we manually identify the test suite and its test cases in the projects source
code. We exclude tests that rely on external tools or scripts written in languages
other than C as these are not accessible to our analysis, as well as tests that
deterministically fail in our execution environment or rely on external inputs (e.g.,
network or human input). To allow a fair comparison between process-based
and thread-based parallelization strategies, we also remove tests that cannot be
executed together within the same process by their very nature, e.g., because
they close standard file descriptors such as stdout or otherwise corrupt their
environment (e.g., sending process termination signals). We document the original
number (Total) and the number of test cases included in our study (Analyzed) in
Table 4.1 on the preceding page. Moreover, we verify that each test has its own
unique entry point to avoid naming collisions when merging them for analysis.
We integrated an automated, semantics preserving source code transformation
with Coccinelle [INR18; Pad+08] in our tool chain that handles the common case

105

4 Towards Parallel Testing for C

Table 4.2: Preparation and Analysis Results: Column Diffstat lists the amount of required
manual code changes (lines added/removed/changed). Columns Files and Globals list
the number of conflict inducing files and globals found in total and inside test code.
Column BL lists the number of conflict inducing virtual globals created by blacklisting of
external functions. The analysis time columns list the mean time (over 30 runs) required
to find these conflicts.

Name
Diffstat Files Globals Analysis Time (ms)

+/-/! Tests Total Tests BL Total Files Globals

gnulib 130/0/65 5 5 5 4 15 86.35 556.35

libbsd 70/0/15 0 0 0 1 1 0.46 1.53

libesedb 6/1971/60 0 0 0 0 0 5.10 5.92

libgetdata 6253/875/264 36 36 1 0 4 15911.71 1106.98

librabbitmq 4/0/0 0 0 0 0 0 0.43 1.20

libsodium 80/0/4 0 0 0 0 9 4.74 80.64

litl 90/1/8 1 1 0 0 0 0.94 1.69

openssl 83/0/9 0 0 0 0 88 28.57 47.53

sngrep 708/0/16 0 0 0 0 0 0.87 1.97

of each test having its own main function by creating unique function names.
In cases where a #include directive is used to share code for the main function
(libgetdata, sngrep), we physically resolve the include before applying Coccinelle,
i.e. we directly insert the contents of the included file. Further manual and semi-
automated steps are sometimes required to allow Coccinelle to correctly parse and
process the C code. For instance, we had to resolve some preprocessor macros,
either manually or using the unifdef utility (libesedb, libgetdata, openssl).

Next, we adapt the project’s build system to produce a single bitcode file (for
analysis) and a single shared object file (for test execution with our test harness),
both containing the library and test code, for which we developed general purpose
scripts. To enable the linking into one file, we had to manually change the declara-
tions of some global symbols to static to prevent name collisions as C does not
support namespaces (gnulib, libgetdata, litl, sngrep), which means that each
globally visible symbol must be uniquely named. We then apply our analyses to
assess the parallelization potential of the test suite. We use the diagnostics output
of our analyses, including a list of reachable external functions, to construct a
blacklist (cf. Section 4.4.2) if necessary.

To allow the execution with our test harness, the assertion logic used in the tests
needs to be adapted to communicate test outcomes to our test harness. To that end,
we manually changed assertion macro definitions and implemented C headers to
replace functions like exit or abort, which both terminate process execution and

106

4.5 Evaluation

are often found as part of assertion logic in test suites to check test outcomes, to
support execution modes other than PM.

Of the 9 projects, only 2 (gnulib, libbsd) required blacklisting for external
functions. However, manual and semi-automated code modifications are usually
required before our approach can be fully applied. Table 4.2 on the facing page
reports the total amount of textual code modifications for each considered project
as diff statistic (number of added, removed, and modified text lines) from the
diffstat utility (Diffstat column). Apart from libesedb, libgetdata, and sngrep,
fewer than 200 text lines were touched. The higher number of changes for the three
projects is due to the manual resolution of includes and preprocessor macros as
discussed above, which is a straightforward mechanical task, but touches many
source code lines. Overall, we were able to convert the test suites in a matter of
a few days for each project, with the exception of gnulib and openssl, which
took longer as openssl’s test suite makes heavy use of the Perl scripting language
and gnulib includes many tests that touch low level system functionality such as
raw file descriptors and process management, which is the reason why we had
to exclude a higher number of tests for those projects. In general, we expect that
developers with intimate knowledge of a project and its tests could perform the
conversion task considerably faster than we were able to.

Porting legacy test suites to our approach is feasible with reasonable manual effort
and minor code modifications to the original test suites in most cases.

4.5.3 RQ 2: Dependencies

To assess which kinds of dependencies exist between different test cases and where
these dependencies originate, we examine the results of our files and globals
dependency analyses. Table 4.2 on the preceding page reports the number of
conflict inducing files and globals found for each of the studied projects.

We find file dependencies for three projects. For gnulib, the detected dependen-
cies correspond to files that are in fact accessed during test execution but these
accesses are benign (e.g., accesses to /dev/null, or attempts to open a non-existent
file). Our analysis could be enhanced with a whitelist to account for such benign
paths. We find substantially more conflicts for libgetdata as there is a small set
of hard-coded common file names used in virtually all test cases. This prevents
concurrent execution, for our approach as well as for the make-based execution
supported by libgetdata. In fact, libgetdata’s make-based test execution always
enforces fully sequential test suite execution, which will become more apparent
in Section 4.5.4. If we attempt to concurrently execute libgetdata’s tests while
ignoring these dependencies, we observe failing and hanging tests and in general

107

4 Towards Parallel Testing for C

flaky results across repeated test executions. For litl, we detect one file-based
conflict between two tests, in which both tests access the same file. Ignoring this
dependency causes flaky behavior in parallel make-based test execution. Since all
file dependencies we detect originate in test code, only the test suites would require
modifications to remove them and enable further parallelization.

Globals dependencies are more common than file dependencies among the
studied projects, and we detect them in five projects. Unlike file dependencies,
most of them originate in the core project code itself rather than in test code. Such
conflicts in the project code itself result from the use of global variables that are
used in project code that is reachable from more than one test case. We find
globals dependencies in only two test suites, namely in gnulib and libgetdata.
In both cases, several tests declare their own versions of global variables using the
same names (and types), which induces potential conflicts when we link several
tests together. We also observe conflicts in gnulib and libbsd resulting from our
blacklisting mechanism (BL column). In particular, both gnulib and libbsd have
tests that make assumptions about the absolute number of file descriptors, and
gnulib has several tests that call functions which alter the execution environment in
a manner that affects other threads in the same process (e.g., calling setrlimit or
changing the working directory). Our globals dependency analysis and blacklisting
mechanism allow us to safely parallelize these test suites despite such issues. Since
most globals dependencies originate in core project code itself, they are harder to
remove for the purpose of parallel test execution as test suite modifications are
insufficient in this case.

File dependencies occur in few projects and exclusively originate in test code, leading
to flaky test behavior when not accounted for in parallel test execution. Globals
dependencies are more common and frequently originate in the project itself.

4.5.4 RQ 3: Achieved Speed-Ups

To assess the achievable speedups from concurrent test executions, we analyze how
test suite execution times develop with increasing degrees of parallelism across the
different execution modes.

As we found in our study of the Debian software repository (cf. Section 4.3.3)
that some projects benefit from parallel make-based execution, we start by ana-
lyzing execution times obtained with make as our baseline. Figure 4.8 on the
facing page, illustrates the observed speedups using the � marker (y-axis, different
scales) compared to sequential make execution (cf. Table 4.2 on page 106 for absolute
sequential make execution times) for each project across increasing parallelism
degrees (x-axis). We observe that 3 projects (libbsd, libgetdata, librabbitmq)

108

4.5 Evaluation

litl openssl sngrep

libgetdata librabbitmq libsodium

gnulib libbsd libesedb

1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

0

50

100

150

200

1

2

3

4

2

4

6

1.000

1.004

1.008

1.012

0

10

20

1.0

1.5

2.0

2.5

1

2

3

4

5

1.0

1.2

1.4

1.0

1.2

1.4

1.6

1.8

Degree of Parallelism

S
pe

ed
up

 F
ac

to
r

make PM without Analysis Times P M with Analysis Times

Figure 4.8: Parallel make and PM speedups relative to sequential make-based execution. For
PM with analysis times, the file dependency analysis runtime was added to the test
execution time.

do not show meaningful speedups with increasing parallelism for make, whereas
the other 6 show speedups ranging from 1.02× to 5.95× (sngrep). libgetdata
does not benefit from parallel make as sequential execution is hard-coded in its
Makefile to respect its file dependencies. If we compare speedups achieved with
our PM mode (^ in Figure 4.8), being conceptually closest to make (but respecting
file dependencies), to make speedups, we see that our PM mode consistently out-
performs make with speedups over sequential make of 214× for the extreme case
of libesedb, having extremely short tests (similarly to librabbitmq). Leaving out
these extreme cases, we still see speedups over sequential make ranging from 1.01×
to 6.55× (sngrep). The maximum relative speedup between parallel make and PM

was seen for gnulib with 2.13×. Remarkably, even sequential PM execution is

109

4 Towards Parallel Testing for C

litl openssl sngrep

libgetdata librabbitmq libsodium

gnulib libbsd libesedb

1.0

1.5

2.0

2.5

3.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.995

1.000

1.0
1.1
1.2
1.3
1.4
1.5

0.4

0.6

0.8

1.0

0.8

0.9

1.0

1.1

1.00

1.01

1.02

1.03

0.85

0.90

0.95

1.00

Execution Mode

S
pe

ed
up

 F
ac

to
r

(W
ith

ou
t A

na
ly

si
s

T
im

es
)

PW TM TW

Figure 4.9: Geometric mean speedups relative to PM at different degrees of parallelism,
excluding analysis time overheads. Lines indicate minimum/maximum speedups.
Speedups are computed based exclusively on execution times without taking required
analysis times into account.

faster than sequential make execution (cf. Table 4.2 on page 106), which shows that
make imposes a non-negligible overhead, being over 11 s for gnulib and over 18 s
for libgetdata.

Comparing PM to TM and TW , we observe that only 3 projects consistently
benefit from multi-threaded test execution, which is illustrated in Figure 4.9 where
the achieved speedups over PM at respective degrees of parallelism for TM, TW ,
and PW are shown in the upper part (geometric mean and min/max). libesedb
and librabbitmq achieve a best case speedup of 1.9× for TM and 2.9× for TW ,
corresponding to less than 7 ms, whereas libgetdata achieves a minor speedup of
up to 1.03× for both TM and TW , corresponding to 950 ms. We attribute the better
multi-threaded performance for libesedb and librabbitmq to their extremely
short tests (<1ms) where process creation overhead outweigh actual test execution.
Similarly for libgetdata, we see the reason for the better TM performance in the
high number of short tests where over 95 % of tests are shorter than 5 ms. openssl

110

4.5 Evaluation

and libbsd, on the other hand, never benefit from TM or TW . All but the above 3

projects tend to perform worse in TM/TW than in PM with a mean speedup of 1 or
less with the extreme of libsodium with 0.4×.

To underpin our observation that multi-threading is not worthwhile compared
to PM, we perform a one-sided Wilcoxon signed-rank test with the null hypothesis
that there is no execution time difference between PM and TM in the median and the
alternative hypothesis that the median difference between PM and TM is positive.
We perform the test for each project separately, pair the data points according
to the parallelism degree, and use a significance level of α = 0.05. For brevity,
we omit the exact statistics and p-values; however, we were only able to reject
the null hypothesis for the above mentioned 3 projects with p-values < 0.05 that
showed geometric means speedups larger than 1. Hence, we cannot find statistically
significant evidence that thread-based execution performs better than processes for
the majority of studied projects.

Worker-based execution in PW performs similar to TW with the exception of
libsodium and openssl where PW , with a geometric mean speedup close to 1,
performs better than TW . However, worker-based execution perform sometimes
slightly worse compared to other modes as tests have to be assigned to workers for
serial execution without prior knowledge of individual test case durations, which
can lead to suboptimal performance if multiple long running tests are assigned to
the same worker. This effect can be observed for gnulib, litl, and sngrep where
worker-based modes show slightly lower geometric mean speedups.

Two of the studied projects, libbsd and libgetdata, have comparatively long
test suite execution times (cf. Table 4.1 on page 104) without a clear performance
benefit of parallel execution. For libbsd a long running test case (arc4random) is
the reason. For libgetdata file dependencies between virtually all test cases are the
reason. To investigate the performance impact of such implementation decisions,
we created variants where the long running test case of libbsd is restructured into
4 C functions that our analysis and test harness can recognize as test cases and
the file dependencies in libgetdata have been removed by introducing unique
filenames using a simple sed invocation. These very simple changes enable parallel
execution in PM mode with maximum speedups over make of up to 2.34× or 32.2 s
for libbsd and 5.3× or 42.4 s for libgetdata.

Using PM, we achieve parallel speedups of more than 2× over parallel and more
than 6× over sequential make. Even sequentially, PM consistently outperforms
make, indicating that the use of a dedicated tool is preferable over make. Multi-
threaded parallel execution is advantageous in only few cases with limited benefits.

111

4 Towards Parallel Testing for C

4.5.5 RQ 4: Analysis Runtime Overhead and Amortization

To assess the run time overhead of our analyses, we run them on each project
and measure the execution times. In the following, we consider the mean values
of 30 repeated measurements for each project, which we report in the Analysis
Time columns of Table 4.2 on page 106. Both our analyses finish in less than 1 s
in all cases except for libgetdata, where our file analysis needs almost 16 s and
our globals analysis 1.1 s to complete. This effect results from the high number
of file dependencies and test cases in libgetdata (cf. Table 4.1 on page 104 and
Table 4.2 on page 106). Reducing the number of file dependencies, as we did for
the modified libgetdata variant discussed in Section 4.5.4, the file analysis time is
reduced considerably by 16×. Overall, our file pass completed in less than 10 ms
for 6 out of the remaining 8 cases and needed less than 87 ms for the other two.
Except for libgetdata, our globals pass completed in less than 560 ms in all cases
with gnulib taking the longest due to its large codebase and number of test cases.
In all remaining 7 cases, our globals pass finishes in under 81 ms and in 5 cases in
less than 10 ms.

To put the analysis run times into perspective, we relate them to the parallel
test execution speedups that we achieve over make. We add the required analysis
times for each project to the test execution time for our approach. As shown in
Figure 4.8 on page 109 using the + marker, when adding the time required for
file dependency analysis, PM (x-axis) still outperforms make-based test execution
(� marker) for all projects across all degrees of parallelism. In the extreme case of
libesedb the speedup is still up to 101× and for sngrep 6.55× over make. Looking
at absolute time savings of PM compared to make at respective parallelism degrees,
we observed the best case for gnulib with 11.5 s saving. For our modified version
of libgetdata, we saved up to 41.4 s. Overall, we observed savings between 15 ms
and 1500 ms for 7 projects and savings above 2.5 s for the remaining 2 (excluding
our two modified variants).

To assess the impact of the globals analysis time on the viability of the three
modes that require it (TM, TW , PW), we add file and globals analysis times to the
test execution time for these modes and compute the resulting speedup relative to
PM with added file dependency analysis time. As shown in Figure 4.10 on the next
page, this results in a best case speedup of just 1.15× over PM for librabbitmq in
TW . However, no project exhibits a mean speedup significantly over 1.0× in any
of TM, TW or PW . For libsodium and openssl, using either of the thread-based
modes TM or TW effectively halves the performance when taking the additional
analysis time into account.

112

4.5 Evaluation

litl openssl sngrep

libgetdata librabbitmq libsodium

gnulib libbsd libesedb

0.6

0.7

0.8

0.9

1.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.990

0.995

1.000

0.8

0.9

1.0

1.1

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.980

0.985

0.990

0.995

1.000

0.85

0.90

0.95

1.00

Execution Mode

S
pe

ed
up

 F
ac

to
r

(W
ith

 A
na

ly
si

s
T

im
es

)

PW TM TW

Figure 4.10: Geometric mean speedups relative to PM at different degrees of parallelism
with analysis time overheads included. Lines indicate minimum/maximum speedups.
Speedups are computed with PM times including file dependency analysis overhead as
baseline and both file and globals analysis overhead included for PW , TM, and TW .

The observed file analysis overheads are low enough to pay off for parallel test ex-
ecution with PM in all cases. The performance advantages of TM, TW , and PW

execution are not sufficient to justify the increased overhead for the globals analysis.

4.5.6 Threats To Validity

Our analyses and conclusions depend on the selection of software projects and
may not generalize to other software. We performed all our experiments on one
platform (hardware and software), which may bias our results towards that single
platform. We use platform supplied means for our time measurements and depend
on their precision and accuracy.

113

4 Towards Parallel Testing for C

4.6 Discussion & Lessons Learned

As we observed in our experiments, relying on make for test suite execution requires
longer sequential execution times and achieves lower parallel speedups compared
to our test harness. libesedb is an extreme example for this effect where make
requires 2 orders of magnitude more execution time than PM. make’s overhead can
be saved by using tools that are tailored to test suite orchestration rather than a
generic build automation tool like make. Hence, we recommend using specialized
tools for test suite management. Such specialized tools should support the parallel
execution of tests, as we observe parallel speedups with PM in 7 out of 9 cases.

The observed performance of the multi-thread parallelization strategies was
similar to the multi-process strategies. We expected to see both larger and more
consistent differences in the execution times for PM and TM as both strategies
spawn a new execution entity for each test, but thread creation is commonly
considered a lighter operation than process forking. The 3 cases where we could
observe a consistent performance advantage of multi-threading were those (1) that
had very short test run times where the creation/cleanup of the execution entity
dominates the overall execution time or (2) where a highly sequential execution
was enforced in all modes (e.g., due to file conflicts) and the speedups achieved
through parallelism could not compensate for the creation overhead of execution
entities. As the analysis overhead required for multi-threaded execution eats up
the small time savings these modes offer, we recommend PM as the default choice
for parallelization. The same considerations apply for the execution with a worker
model (PW , TW) as we could not observe a clear performance benefit esp. when
analysis overhead is taken into account.

For choosing a suitable parallel execution mode, the nature of the tests must
be considered. Tests that persistently change their process environment without
cleanup, e.g., changing working directories or changing environment variables,
cannot safely execute in the same process. As tests are often designed with
the implicit assumption that they execute in their own process, cleanup code
is commonly omitted. Such tests are inherently unsuited for multi-threaded or
worker-based execution and they need to be removed for modes other than PM or
cleanup code needs to be added, if possible. An extreme case, for which a cleanup is
usually not possible, are tests that destroy their process, e.g., by explicitly aborting
process execution, sending process signals, or causing segmentation faults. We
opted to exclude such tests in our evaluation which is the reason for the reduction
of test cases we report.

The achievable execution speedups depend on the parallelization potential of
the test suite. The more test cases there are, the fewer dependencies they have, and
the more similar the individual test case execution times are, the higher are the
achievable speedups. Ideally, test suites would be designed with these goals in

114

4.7 Conclusion

mind. However, our study of the Debian repository and our evaluation indicate
that only a fraction of C projects ship with test suites that already benefit from
parallel execution. Hence, a migration path to parallel test suites is desirable to tap
into the full potential of modern hardware for testing. Our approach offers such
a migration path as we demonstrated in our evaluation that existing test suites
can be converted with acceptable effort to benefit from parallel execution. We
furthermore demonstrated (for libgetdata) that by mechanically removing file
dependencies identified by our analysis, the achievable speedups can be increased
considerably. The locations of conflicting globals and files we found suggest that
existing test suites have further parallelization potential as a non-negligible number
of dependencies originate in test code (cf. Table 4.2 on page 106).

The execution time savings we observed in our evaluation range from the order
of tens of milliseconds to tens of seconds. These seem to be moderate savings in
absolute numbers. However, when scaling to larger test suites or when conducting
analyses on the ecosystem scale, these savings quickly accumulate to massive
execution time savings. For instance, for conducting our experiments with gnulib
in this chapter, we executed its test suite 30 times for each of the 6 degrees of
parallelism. The total execution time for these experiments was about 35 min when
executed with make, and only about 19 min when executed with PM, which is
almost a reduction by half.

4.7 Conclusion

In our study of the Debian “Buster” software repository, we found that C is
the predominant language (28.6 % of total SLOC) and that only a fraction of
C projects benefit from trivial parallel test execution using make. We showed
that our approach of static dependency analysis with multi-thread and multi-
process execution strategies is applicable to real world software in a study of nine
software projects. We identified file dependencies in three and globals dependencies
in five projects. All file dependencies originated in test code but most globals
dependencies originated in the project code itself, suggesting that file dependencies
can be removed by test suite modifications whereas globals dependencies cannot.
Moreover, we can efficiently execute tests in parallel, even in the presence of such
dependencies using our static analyses and test harness. We achieved test execution
speedups over make of up to 210× in extreme cases and 2.1× in other cases with
our multi-process strategy PM. PM outperforms make even in the sequential case,
indicating that the use of a dedicated test orchestration tool is preferable over make.
Multi-thread strategies did not show a consistent performance benefit for most
projects we studied and offer no advantage when accounting for analysis time.

115

5 Summary and Conclusion

Computing systems have become ubiquitous in our daily lives. They take on
surprising shapes and sizes, from small embedded systems to large scale servers,
perform a multitude of tasks, and continue to be applied for new and innovative
purposes. We are often hardly conscious of their presence, their full capabilities,
and their inner workings. We as a society strive for a fully connected and automated
world to simplify our lives and increase comfort. This vision is driven by an ever
growing ecosystem of software that enables the increasingly complex functions and
applications we demand. To cope with the demand for smarter and more complex
applications, software and systems developers are relying on the re-use of old
components as well as on off-the-shelf components. These components need to be
correctly composed and orchestrated together with newly developed components.
In this scenario, the question arises whether we can trust these complex systems
and software stacks, we have become so reliant on, to operate correctly and perform
the expected tasks. Software is developed by human beings under constraints such
as development cost budgets. Hence, software must be expected to contain defects
or bugs, with a wide range of consequences when triggered that can be particularly
severe in the case of safety-critical systems.

Various approaches are commonly combined to improve the dependability of
our software. For instance, isolation mechanisms are employed to limit the effects
a triggered defect can have. Dynamic correctness testing is commonly used to
establish a certain level of confidence that a software is performing the intended
tasks according to its specification. An alternative technique is SFI testing that is
used to assess and improve the robustness of a system by exposing it to anomalous
conditions or by inserting artificial software defects while observing and diagnosing
the resulting behavior. However, due to the increase in software complexity, such
testing approaches suffer from an exploding number of tests which leads to long
latencies when software is assessed.

This thesis investigated these issues from three points of view: First, from a
fault isolation perspective with the goal of balancing the performance overheads
with amount of isolated code. Second, from a software fault injection perspective
with the goal to assess if and how the increasing computational power of modern
hardware and other techniques can be leveraged to mitigate the increasing number
of SFI tests. And third, from a software testing perspective with the similar goal
to assess if parallel hardware can already be used by real-world test suites and to

117

5 Summary and Conclusion

provide strategies to further increase the utility of such hardware. In summary,
this thesis investigated the following research questions along with the resulting
contributions.

Research Question 1 (RQ 1): Can runtime profiling be leveraged for the partition-
ing of in-kernel software components to increase code isolation while balancing
performance overhead?

The most widely used OSs, with Linux being a prominent example, employ a
monolithic kernel design where all kernel internal components execute together
in high-privilege mode without any isolation between components. This design,
while having good performance properties, potentially endangers the whole system
as defects in any in-kernel component can affect the whole kernel. To preserve
backwards compatibility to the large existing codebase and improve dependability,
approaches that “microkernelize” existing kernel components by moving fractions
of their code to user mode have been proposed. Unfortunately, these conversion
approaches do not take dynamic properties, such as code invocation frequencies,
of the targeted components into account. This information, however, is vital to
generate component partitionings that are favorable in terms of both code isolation
and achievable performance.

Contribution 1 (C 1): Runtime profiling based approach to tailor partitioning to
performance needs

In Chapter 2, we have presented a largely automated approach that provides the
needed guidance to generate partitionings of existing in-kernel software compo-
nents into user and kernel partitions that respect a user configured balance between
the amount of code that is isolated in user mode and the expected performance over-
head this isolation entails. We re-use an already existing framework that provides
us with the mechanisms for such hybrid split mode components. Our approach
combines static code analysis with dynamic runtime profiling. For profiling, we
generate an instrumented variant of the targeted component that is then exercised.
We model the user/kernel mode partitioning problem as a binary ILP problem and
rely on a linear solver to find an optimal solution with respect to the configured
balance factor. In general, the more code is relocated to user mode, the better the
isolation properties but the worse the expected performance. We implemented
our approach for the Linux kernel and validated its applicability by profiling and
partitioning two device drivers and a file system. In our evaluation, we generated a
large spectrum of partitionings for each targeted component with varying balance
factors for the expected isolation performance trade-off. We synthesized hybrid
split mode version for all partitionings and measured the achieved performance.
This demonstrates that our approach is adaptable to use specified requirements

118

as the overhead one is prepared to pay for improved isolation is freely choosable.
Finally, we used software fault injection experiments to demonstrate the impact of
defects depending on their location, i.e., whether they are located in the user or
the kernel partition, thereby showing dependability benefits of having larger user
partition sizes as the kernel indeed crashed if the injected defects were activated in
kernel mode.

Research Question 2 (RQ 2): How can parallel hardware be exploited to increase
the efficiency of software fault injections?

With increasing software complexity comes the need to execute vast numbers
of SFI experiments for comprehensive robustness assessments. Exploiting the
capabilities of parallel hardware is an obvious mitigation approach for the increased
experiment campaign durations. However, SFI test results obtained from parallel
experiments must be as accurate as sequential executions to be useful, which is
often automatically assumed but may not necessarily be the case in practice. If SFI
test results are not accurate when obtained from parallel executions, they should
not be used for dependability assessments.

Contribution 2 (C 2): A framework for increasing the throughput of SFI tests by
parallel execution and avoiding redundant work

In Chapter 3, we presented our study of PAIN experiments and introduced FastFI,
leveraging the gained insights. We conducted our PAIN, i.e., PAralell fault INjection,
experiments on the Android OS using the MMC device driver. As the attempt to
parallelize SFI experiments relies on the assumption that the parallel execution
of experiments does not impact the results, our goal was to investigate if the
parallel execution of SFI experiments does indeed increase the throughput and if
this supposed increase in throughput comes at a cost in terms of degraded result
accuracy. Consequently, we assessed the supposed trade-off between achievable
increase in experiment throughput and the accuracy of obtained results. We indeed
were able to find several causes that can lead to a significant deviation of parallel
SFI results compared to results obtained from sequential experiments and provide
guidance on how to avoid such issues. We found that the degree of employed
parallelism and the choice of timeout thresholds for timeout-based failure detectors
must be carefully chosen to prevent resource contention and the timing of events
from distorting result distributions. If the machine that hosts the experiments is
overloaded or timeout thresholds are set too low, results start deviating.

We then introduced FastFI, which is our SFI framework for applications above
the OS layer that leverages the insights from the PAIN study. FastFI accelerates
SFI testing on multiple levels by combining different techniques and strategies.
It relies on lightweight process-based isolation, avoiding unnecessary overheads

119

5 Summary and Conclusion

from heavier isolation mechanisms, such as VMs; it avoids the execution of a large
fraction of “dead” mutants, i.e., faulty component versions whose fault cannot
be reached during execution; it avoids the re-execution of redundant common
prefixes across faulty versions; it employs parallel execution of faulty versions; and
it significantly accelerates the compilation process of faulty versions as all faulty
versions are integrated into a common executable. Our evaluation demonstrated
that FastFI is applicable to real applications and that results remain accurate if,
similar to our PAIN experiments, timeout thresholds and degree of parallelism are
sensibly chosen.

Research Question 3 (RQ 3): What is the state of parallel testing for C software and
can it be improved to reduce test suite execution latencies?

Testing is one of the most time consuming activities in software development,
of which the dynamic execution of test suites is an important part to assess the
correct function of the software under test. Relying on parallel hardware to
reduce the latency of test suite executions is an obvious strategy to accelerate the
overall testing process. However, there is a large body of testing code that was
not originally designed for parallel or concurrent execution. If individual test
cases interfere with each other when executed in parallel, the results obtained
from such parallel executions may deviate significantly from those obtained from
sequential execution, rendering the test results useless. Such interferences may
be prevented by execution each test in an isolated environment, such as inside
a VM, but isolation imposes performance overheads that diminish the benefit of
the parallel execution. Therefore, it is preferable to rely on lightweight isolation
mechanisms and orchestrate individual tests in a safe and efficient manner to
prevent said issues.

Contribution 3 (C 3): An assessment of real world C software test suites and an
approach for safe concurrent execution of existing tests

In Chapter 4, we investigated the potential for parallel test execution for C software,
being an important building block across the software stack. We presented an
analysis of the main software package repository of the Debian Buster OS, which
is a widely used Linux-based OS distribution. In this analysis, we inspected the
source code of a large fraction of software that is by default included in the Debian
OS. Our results show that the C language is the predominant language both in
terms of software packages that use C as their main language as well as by the
total number of source lines of code contained in the entire repository. The analysis
furthermore showed that there is no test framework that dominates C software
packages, in fact we could not identify the use of any such framework for most
packages. This is in strong contrast to Java-based packages, which commonly use

120

the JUnit framework. Finally, our data showed that few test suite implementations
can benefit from out-of-the-box concurrent execution. We therefore continued
with the development of an automated static analysis for existing C test suites
that identifies test case interdependencies on files and shared global data and can
be integrated into the software build process. We designed a new test harness
to use the dependency information obtained from our static analysis for the safe
parallel execution of independent tests and to explore the trade-off between analysis
overheads and execution latencies for different parallelization alternatives using
processes and threads. We demonstrated the utility of our approach by applying
it to nine projects from the Debian Buster software repository, analyzing their
existing tests and executing them in parallel orchestrated by our test harness.
The observed measurements indicate that C test suites can benefit from parallel
execution, but thread-based execution does not perform significantly better than
processes, in particular when analysis overheads are considered, and that our test
harness outperforms generic automation tools like make.

With our growing dependence on increasingly complex software systems and
smart devices, it is of utmost importance that we assess and ensure their depend-
ability. To that end, numerous techniques have been developed over the past
decades for improving software dependability. These techniques must be efficiently
applicable to increasingly complex systems. We have considered fault isolation,
software fault injection, and software testing techniques, and developed approaches
to improve efficiency for each of them. Such approaches increase the practicality of
applying dependability-improving techniques to large, complex software systems
that may otherwise be out of reach, thereby contributing to software dependability.

121

List of Figures

1.1 Illustration of a Software Stack Including Hardware Layer 5

1.2 Illustration of Interacting Software Components 8

1.3 The Threats to Dependability and Their Relationship 11

1.4 Illustration of Interacting Software Components with Isolation . . . 14

2.1 Overview of the Partitioning Process for a Device Driver 23

2.2 Example Call Graph of a Kernel Component 32

2.3 Dynamic Analysis and ILP in the Partitioning Process 33

2.4 Platform Overhead csys for PHY Setup 41

2.5 Platform Overhead csys for VM Setup 42

2.6 Partition Sizes and Cut Costs . 43

2.7 Relative Amount of Pointer Dereferences in Kernel Partition 48

3.1 Overview of the FastFI Workflow . 68

3.2 Traditional Execution Model . 69

3.3 FastFI Execution Model . 70

3.4 FastFI Parallel Execution . 72

3.5 FastFI Fork Server . 74

3.6 Speedup Relative to Traditional Execution Model 80

3.7 Percentage of Executed Faulty Versions 81

3.8 SFI Test Results . 82

3.9 FastFI Relative User Build Times . 84

4.1 Illustration of Intended Achievement 90

4.2 Number of Packages by Dominant Language 94

4.3 Source Lines of Code by Language . 95

4.4 Usage of Known Test Frameworks: C vs. Java Packages 96

4.5 Test Speedups for C Packages in Debian Buster 97

4.6 Overview of Analysis and Concurrent Execution Approach 99

4.7 Overview of Multi-Process Strategies 102

4.8 Parallel Speedups Relative to Sequential Execution 109

4.9 Mean Speedups Relative to PM, without Analysis Overhead 110

4.10 Mean Speedups Relative to PM, with Analysis Overhead 113

123

List of Tables

2.1 Overview of Selected Test Modules 39

2.2 Runtime Profile Overview . 40

2.3 Partitioning Results . 44

2.4 Performance Measurements for Partitioned Modules 46

3.1 Initial PAIN results . 60

3.2 Initial χ2-test Results . 61

3.3 PAIN Results with Increased Timeouts 62

3.4 Highly Parallel PAIN Results . 63

3.5 Additional χ2-test Results . 64

3.6 PARSEC Benchmark Applications . 78

4.1 Overview of Evaluated Software Projects 104

4.2 Preparation and Analysis Results of Evaluated Software Projects . . 106

125

Bibliography

[ABL05] J.H. Andrews, L.C. Briand, and Y. Labiche. “Is mutation an appropriate
tool for testing experiments?” In: Proceedings of the 27th international
conference on Software engineering. ICSE’05. 2005, pp. 402–411. doi: 10.
1145/1062455.1062530.

[Adv19] Advanced Micro Devices, Inc. AMD Processor Specifications. 2019. url:
https://www.amd.com/en/products/specifications/processors

(visited on 02/10/2019).

[Aid+01] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. “GOOFI: Generic
Object-Oriented Fault Injection Tool”. In: 2001 International Conference
on Dependable Systems and Networks. 2001, pp. 83–88. doi: 10.1109/
DSN.2001.941394.

[Arl+02] J. Arlat, J.C. Fabre, M. Rodríguez, and F. Salles. “Dependability of
COTS Microkernel-Based Systems”. In: IEEE Transactions on Computers
51.2 (2002), pp. 138–163. doi: 10.1109/12.980005.

[Avi+04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
“Basic concepts and taxonomy of dependable and secure computing”.
In: IEEE Transactions on Dependable and Secure Computing 1.1 (Jan. 2004),
pp. 11–33. doi: 10.1109/TDSC.2004.2.

[AY18] Sonny Ali and Zia Yusuf. Mapping the Smart-Home Market. 2018. url:
https://www.bcg.com/publications/2018/mapping-smart-home-

market.aspx (visited on 02/10/2019).

[Ban+10] Takayuki Banzai, Hitoshi Koizumi, Ryo Kanbayashi, Takayuki Imada,
Toshihiro Hanawa, and Mitsuhisa Sato. “D-Cloud: Design of a Soft-
ware Testing Environment for Reliable Distributed Systems Using
Cloud Computing Technology”. In: 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. 2010, pp. 631–636. doi:
10.1109/CCGRID.2010.72.

[Bar18] Barr Group. Embedded Systems Safety & Security 2018 Survey. Survey.
2018.

127

https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1145/1062455.1062530
https://www.amd.com/en/products/specifications/processors
https://doi.org/10.1109/DSN.2001.941394
https://doi.org/10.1109/DSN.2001.941394
https://doi.org/10.1109/12.980005
https://doi.org/10.1109/TDSC.2004.2
https://www.bcg.com/publications/2018/mapping-smart-home-market.aspx
https://www.bcg.com/publications/2018/mapping-smart-home-market.aspx
https://doi.org/10.1109/CCGRID.2010.72

Bibliography

[Bav+] G. Bavota, A De Lucia, A Marcus, and R. Oliveto. “Software Re-
Modularization Based on Structural and Semantic Metrics”. In: Proc.
of the 17th Working Conference on Reverse Engineering. WCRE ’10. doi:
10.1109/WCRE.2010.29.

[BC12] Radu Banabic and George Candea. “Fast black-box testing of sys-
tem recovery code”. In: Proceedings of the 7th ACM european conference
on Computer Systems. EuroSys’12. 2012, pp. 281–294. doi: 10.1145/
2168836.2168865.

[Bei03] Boris Beizer. Software Testing Techniques. 2nd ed. Dreamtech Press,
2003.

[Bel+15] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. “Effi-
cient dependency detection for safe Java test acceleration”. In: Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE’15. New York, New York, USA: ACM Press, 2015, pp. 770–
781. doi: 10.1145/2786805.2786823.

[Bel17] Fabrice Bellard. QEMU. 2017. url: https://www.qemu.org.

[BH95] Yoav Benjamini and Yosef Hochberg. “Controlling the False Discov-
ery Rate: A Practical and Powerful Approach to Multiple Testing”.
In: Journal of the Royal Statistical Society. Series B (Methodological) 57.1
(1995), pp. 289–300.

[Bie11] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD the-
sis. Princeton University, Jan. 2011.

[Bis+13] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère. “Popularity,
Interoperability, and Impact of Programming Languages in 100,000

Open Source Projects”. In: 2013 IEEE 37th Annual Computer Software
and Applications Conference. July 2013, pp. 303–312. doi: 10.1109/
COMPSAC.2013.55.

[Bit+08] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. “Wedge:
Splitting Applications into Reduced-privilege Compartments”. In:
Proc. of the 5th USENIX Symposium on Networked Systems Design and
Implementation. NSDI’08. USENIX Association, 2008.

[BK14] Jonathan Bell and Gail Kaiser. “Unit Test Virtualization with VMVM”.
In: Proceedings of the 36th International Conference on Software Engineer-
ing. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 550–561. doi:
10.1145/2568225.2568248.

[Bov+11] Antonio Bovenzi, Marcello Cinque, Domenico Cotroneo, Roberto
Natella, and Gabriella Carrozza. “OS-Level Hang Detection in Com-
plex Software Systems”. In: Int. J. Crit. Comput.-Based Syst. 2.3/4 (Sept.
2011), pp. 352–377.

128

https://doi.org/10.1109/WCRE.2010.29
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2786805.2786823
https://www.qemu.org
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1145/2568225.2568248

Bibliography

[BS04] David Brumley and Dawn Song. “Privtrans: Automatically Partition-
ing Programs for Privilege Separation”. In: Proc. of the 13th USENIX
Security Symposium. USENIX Security ’04. 2004.

[Bud+80] Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Frederick
G. Sayward. “Theoretical and Empirical Studies on Using Program
Mutation to Test the Functional Correctness of Programs”. In: Proc.
POPL. 1980, pp. 220–233.

[But+09] Shakeel Butt, Vinod Ganapathy, Michael M Swift, and Chih-Cheng
Chang. “Protecting Commodity Operating System Kernels from Vul-
nerable Device Drivers”. In: Proc. of the Annual Computer Security Ap-
plications Conference. ACSAC ’09. 2009. doi: 10.1109/ACSAC.2009.35.

[Cas+09] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
“Fast Byte-granularity Software Fault Isolation”. In: Proc. of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles. SOSP ’09.
ACM, 2009. doi: 10.1145/1629575.1629581.

[CB89] R. Chillarege and N. Bowen. “Understanding large system failures-
a fault injection experiment”. In: [1989] The Nineteenth International
Symposium on Fault-Tolerant Computing. Digest of Papers. 1989, pp. 356–
363. doi: 10.1109/FTCS.1989.105592.

[CBZ10] George Candea, Stefan Bucur, and Cristian Zamfir. “Automated Soft-
ware Testing as a Service”. In: Proceedings of the 1st ACM symposium on
Cloud computing. SOCC’10. 2010, pp. 155–160. doi: 10.1145/1807128.
1807153.

[CC96] J. Christmansson and R. Chillarege. “Generation of an error set that
emulates software faults based on field data”. In: Proceedings of Annual
Symposium on Fault Tolerant Computing. June 1996, pp. 304–313. doi:
10.1109/FTCS.1996.534615.

[Cha+04] Ramesh Chandra, Ryan M Lefever, Kaustubh R Joshi, Michel Cukier,
and William H Sanders. “A global-state-triggered fault injector for
distributed system evaluation”. In: IEEE Transactions on Parallel and
Distributed Systems 15.7 (2004), pp. 593–605. doi: 10.1109/TPDS.2004.
14.

[Cha09] Robert N. Charette. “This Car Runs on Code”. In: IEEE Spectrum 46 (3
2009).

[Cho+01] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler. “An Empirical Study of Operating Systems Errors”. In: Proc.
of the eighteenth ACM Symposium on Operating Systems Principles. SOSP
’01. 2001, pp. 73–88. doi: 10.1145/502034.502042.

129

https://doi.org/10.1109/ACSAC.2009.35
https://doi.org/10.1145/1629575.1629581
https://doi.org/10.1109/FTCS.1989.105592
https://doi.org/10.1145/1807128.1807153
https://doi.org/10.1145/1807128.1807153
https://doi.org/10.1109/FTCS.1996.534615
https://doi.org/10.1109/TPDS.2004.14
https://doi.org/10.1109/TPDS.2004.14
https://doi.org/10.1145/502034.502042

Bibliography

[Chu+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. “CloneCloud: Elastic Execution Between Mobile De-
vice and Cloud”. In: Proc. of the Sixth Conference on Computer Systems.
EuroSys ’11. ACM, 2011. doi: 10.1145/1966445.1966473.

[Cio+10] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and
George Candea. “Cloud9: A Software Testing Service”. In: SIGOPS
Oper. Syst. Rev. 43.4 (Jan. 2010), pp. 5–10.

[Cis18] Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017–2022.
White Paper, ID 1543280537836565. Nov. 26, 2018. url: https://www.
cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white-paper-c11-741490.html

(visited on 02/10/2019).

[CK16] Jonathan Corbet and Greg Kroah-Hartman. Linux Kernel Development:
How Fast It is Going, Who is Doing It, What They Are Doing and Who is
Sponsoring the Work. 25th Anniversary. The Linux Foundation, Aug.
2016.

[CMd17] Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. “Test Suite
Parallelization in Open-source Projects: A Study on Its Usage and
Impact”. In: Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering. ASE 2017. Urbana-Champaign, IL,
USA: IEEE Press, 2017, pp. 838–848.

[CMS98] João Carreira, Henrique Madeira, and João Gabriel Silva. “Xception: A
technique for the experimental evaluation of dependability in modern
computers”. In: IEEE Transactions on Software Engineering 24.2 (1998),
pp. 125–136. doi: 10.1109/32.666826.

[CN13] D. Cotroneo and R. Natella. “Fault Injection for Software Certification”.
In: IEEE Security Privacy 11.4 (2013), pp. 38–45. doi: 10.1109/MSP.
2013.54.

[CNR09] D. Cotroneo, R. Natella, and S. Russo. “Assessment and Improvement
of Hang Detection in the Linux Operating System”. In: 2009 28th
IEEE International Symposium on Reliable Distributed Systems. Sept. 2009,
pp. 288–294. doi: 10.1109/SRDS.2009.26.

[Col+11] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
Tim Deegan, Peter Loscocco, and Andrew Warfield. “Breaking Up
is Hard to Do: Security and Functionality in a Commodity Hypervi-
sor”. In: Proc. of the Twenty-Third ACM Symposium on Operating Systems
Principles. SOSP ’11. ACM, 2011. doi: 10.1145/2043556.2043575.

130

https://doi.org/10.1145/1966445.1966473
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://doi.org/10.1109/32.666826
https://doi.org/10.1109/MSP.2013.54
https://doi.org/10.1109/MSP.2013.54
https://doi.org/10.1109/SRDS.2009.26
https://doi.org/10.1145/2043556.2043575

Bibliography

[Cop+17] Nicolas Coppik, Oliver Schwahn, Stefan Winter, and Neeraj Suri.
“TrEKer: Tracing Error Propagation in Operating System Kernels”.
In: Proceedings of the 32Nd IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE 2017. Urbana-Champaign, IL, USA:
IEEE Press, 2017, pp. 377–387. doi: 10.1109/ASE.2017.8115650.

[Cor08] Jonathan Corbet. The big kernel lock strikes again [LWN.net]. May 13,
2008. url: https://lwn.net/Articles/281938/.

[Cot+13a] Domenico Cotroneo, Michael Grottke, Roberto Natella, Roberto Pietran-
tuono, and Kishor S Trivedi. “Fault Triggers in Open-Source Soft-
ware: An Experience Report”. In: 2013 IEEE 24th International Sympo-
sium on Software Reliability Engineering (ISSRE). 2013, pp. 178–187. doi:
10.1109/ISSRE.2013.6698917.

[Cot+13b] Domenico Cotroneo, Roberto Natella, Stefano Russo, and Fabio Scip-
pacercola. “State-Driven Testing of Distributed Systems”. In: Proc.
OPODIS’13. 2013, pp. 114–128.

[CSS19] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. “MemFuzz: Using
Memory Accesses to Guide Fuzzing”. In: 12th IEEE International Con-
ference on Software Testing, Verification and Validation. ICST 2019. Xi’an,
China, Apr. 2019. [accepted].

[CV95] A. Cimitile and G. Visaggio. “Software Salvaging and the Call Domi-
nance Tree”. In: Journal of Systems and Software 28.2 (Feb. 1995), pp. 117–
127. doi: 10.1016/0164-1212(94)00049-S.

[Dan18] Al Danial. cloc. Jan. 2018. url: https://github.com/AlDanial/cloc
(visited on 01/26/2018).

[Deb17] Debian Project. Debian Buster Source Package Index. en. July 2017. url:
http://ftp.debian.org/debian/dists/buster/main/source/

Sources.gz (visited on 07/18/2017).

[Deb18] Debian Wiki Team. Debian Derivatives Census. 2018. url: https://
wiki.debian.org/Derivatives/Census (visited on 01/31/2019).

[DH12] Björn Döbel and Hermann Härtig. “Who Watches the Watchmen?
- Protecting Operating System Reliability Mechanisms”. In: Proc. of
the Eighth USENIX Conference on Hot Topics in System Dependability.
HotDep’12. USENIX Association, 2012.

[Di +12] Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan
Karlsson, and Roger Johansson. “On the Impact of Hardware Faults–
An Investigation of the Relationship between Workload Inputs and
Failure Mode Distributions”. In: Proc. of the 31st International Confer-
ence on Computer Safety, Reliability, and Security. SAFECOMP’12. 2012,
pp. 198–209. doi: 10.1007/978-3-642-33678-2_17.

131

https://doi.org/10.1109/ASE.2017.8115650
https://lwn.net/Articles/281938/
https://doi.org/10.1109/ISSRE.2013.6698917
https://doi.org/10.1016/0164-1212(94)00049-S
https://github.com/AlDanial/cloc
http://ftp.debian.org/debian/dists/buster/main/source/Sources.gz
http://ftp.debian.org/debian/dists/buster/main/source/Sources.gz
https://wiki.debian.org/Derivatives/Census
https://wiki.debian.org/Derivatives/Census
https://doi.org/10.1007/978-3-642-33678-2_17

Bibliography

[DK99] Arie van Deursen and Tobias Kuipers. “Identifying Objects Using Clus-
ter and Concept Analysis”. In: Proc. of the 21st International Conference
on Software Engineering. ICSE ’99. ACM, 1999. doi: 10.1145/302405.
302629.

[DM] DEEDS/TUD and Mobilab/UniNa. PAIN Software Framework. url:
https://github.com/DEEDS-TUD/PAIN.git.

[DM03] Joao Duraes and Henrique Madeira. “Multidimensional characteriza-
tion of the impact of faulty drivers on the operating systems behavior”.
In: IEICE Transactions on Information and Systems 86.12 (2003), pp. 2563–
2570.

[DM06] J. A. Duraes and H. S. Madeira. “Emulation of Software faults: A
Field Data Study and a Practical Approach”. In: IEEE Transactions on
Software Engineering 32.11 (2006), pp. 849–867. doi: 10.1109/TSE.2006.
113.

[DO91] R. A. DeMillo and A. J. Offutt. “Constraint-based automatic test data
generation”. In: IEEE Transactions on Software Engineering 17.9 (Sept.
1991), pp. 900–910.

[DR06] H. Do and G. Rothermel. “On the use of mutation faults in empirical
assessments of test case prioritization techniques”. In: IEEE Transac-
tions on Software Engineering 32.9 (2006), pp. 733–752. doi: 10.1109/
TSE.2006.92.

[Dua+06] Alexandre Duarte, Walfredo Cirne, Francisco Brasileiro, and Patricia
Machado. “GridUnit: Software Testing on the Grid”. In: Proceedings of
the 28th International Conference on Software Engineering. ICSE ’06. New
York, NY, USA: ACM, 2006, pp. 779–782. doi: 10.1145/1134285.
1134410.

[DVM04] Joao Duraes, Marco Vieira, and Henrique Madeira. “Dependability
Benchmarking of Web-Servers”. In: Computer Safety, Reliability, and
Security. Vol. 3219. Lecture Notes in Computer Science. 2004, pp. 297–
310.

[ED12] Michael Engel and Björn Döbel. “The Reliable Computing Base: A
Paradigm for Software-Based Reliability”. In: Workshop on Software-
Based Methods for Robust Embedded Systems. 2012.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[Fre] Free Software Foundation. GLPK (GNU Linear Programming Kit). url:
https://www.gnu.org/software/glpk/ (visited on 08/01/2016).

132

https://doi.org/10.1145/302405.302629
https://doi.org/10.1145/302405.302629
https://github.com/DEEDS-TUD/PAIN.git
https://doi.org/10.1109/TSE.2006.113
https://doi.org/10.1109/TSE.2006.113
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1145/1134285.1134410
https://doi.org/10.1145/1134285.1134410
https://www.gnu.org/software/glpk/

Bibliography

[Gam+17] Alessio Gambi, Sebastian Kappler, Johannes Lampel, and Andreas
Zeller. “CUT: Automatic Unit Testing in the Cloud”. In: Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2017. New York, NY, USA: ACM, 2017, pp. 364–367.
doi: 10.1145/3092703.3098222.

[Gan+08] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakrishnan, Michael
M Swift, and Somesh Jha. “The Design and Implementation of Mi-
crodrivers”. In: Proc. of the 13th international conference on Architectural
support for programming languages and operating systems. ASPLOS XIII.
2008. doi: http://doi.acm.org/10.1145/1346281.1346303.

[Gan05] Archana Ganapathi. Why Does Windows Crash? Tech. rep. CSD-05-1393.
UC Berkeley, May 2005.

[GBZ18] A. Gambi, J. Bell, and A. Zeller. “Practical Test Dependency Detec-
tion”. In: 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). Apr. 2018, pp. 1–11. doi: 10.1109/
ICST.2018.00011.

[Gef+00] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J.
Elphinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and
Lars Reuther. “The SawMill Multiserver Approach”. In: Proc. of the
9th Workshop on ACM SIGOPS European Workshop: Beyond the PC: New
Challenges for the Operating System. EW 9. ACM, 2000. doi: 10.1145/
566726.566751.

[GGP06] Archana Ganapathi, Viji Ganapathi, and David Patterson. “Windows
XP Kernel Crash Analysis”. In: Proc. of the 20th Conference on Large
Installation System Administration. LISA ’06. USENIX Association, 2006,
pp. 12–22.

[GGZ17] A. Gambi, A. Gorla, and A. Zeller. “O!Snap: Cost-Efficient Testing in
the Cloud”. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST). Mar. 2017, pp. 454–459. doi: 10.1109/
ICST.2017.51.

[GJ10] Weigang Gong and Hans-Arno Jacobsen. ACC: The AspeCt-oriented
C Compiler. 2010. url: https://sites.google.com/a/gapp.msrg.
utoronto.ca/aspectc (visited on 08/01/2016).

[Gooa] Google Inc. Android. url: https://www.android.com.

[Goob] Google Inc. Android Emulator. url: http://developer.android.com/
tools/help/emulator.html.

[Gooc] Google Inc. android Git repositories. url: https://android.googlesource.
com/.

133

https://doi.org/10.1145/3092703.3098222
https://doi.org/http://doi.acm.org/10.1145/1346281.1346303
https://doi.org/10.1109/ICST.2018.00011
https://doi.org/10.1109/ICST.2018.00011
https://doi.org/10.1145/566726.566751
https://doi.org/10.1145/566726.566751
https://doi.org/10.1109/ICST.2017.51
https://doi.org/10.1109/ICST.2017.51
https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc
https://sites.google.com/a/gapp.msrg.utoronto.ca/aspectc
https://www.android.com
http://developer.android.com/tools/help/emulator.html
http://developer.android.com/tools/help/emulator.html
https://android.googlesource.com/
https://android.googlesource.com/

Bibliography

[GT07] M. Grottke and K.S. Trivedi. “Fighting Bugs: Remove, Retry, Replicate,
and Rejuvenate”. In: IEEE Computer 40.2 (2007), pp. 107–109.

[Gun+11] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M.
Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. “FATE and DESTINI: A Frame-
work for Cloud Recovery Testing”. In: Proc. of the 8th USENIX Con-
ference on Networked Systems Design and Implementation. NSDI’11. 2011,
pp. 238–252.

[Gup+06] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat.
“Enforcing Performance Isolation Across Virtual Machines in Xen”. In:
Proc. Middleware. 2006, pp. 342–362.

[GVS17] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. “An Empir-
ical Study of Activity, Popularity, Size, Testing, and Stability in Contin-
uous Integration”. In: Proceedings of the 14th International Conference on
Mining Software Repositories. MSR ’17. Buenos Aires, Argentina: IEEE
Press, 2017, pp. 495–498. doi: 10.1109/MSR.2017.38.

[Gyo+15] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. “Reliable
Testing: Detecting State-polluting Tests to Prevent Test Dependency”.
In: Proceedings of the 2015 International Symposium on Software Testing
and Analysis. ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 223–
233. doi: 10.1145/2771783.2771793.

[Han+10] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, and M.
Sato. “Large-Scale Software Testing Environment Using Cloud Com-
puting Technology for Dependable Parallel and Distributed Systems”.
In: 2010 Third International Conference on Software Testing, Verification,
and Validation Workshops. 2010, pp. 428–433. doi: 10.1109/ICSTW.2010.
59.

[Her+09] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum.
“Fault Isolation for Device Drivers”. In: Proc. of the 2009 IEEE/IFIP
International Conference on Dependable Systems and Networks. DSN ’09.
June 2009. doi: 10.1109/DSN.2009.5270357.

[HHP02] Mark Harman, Robert M. Hierons, and Mark Proctor. “A New Rep-
resentation And Crossover Operator For Search-based Optimization
Of Software Modularization”. In: Proc. of the Genetic and Evolutionary
Computation Conference. GECCO ’02. Morgan Kaufmann Publishers
Inc., 2002.

[HL13] Qun Huang and Patrick PC Lee. “An experimental study of cascading
performance interference in a virtualized environment”. In: ACM
SIGMETRICS Performance Evaluation Review 40.4 (2013), pp. 43–52.

134

https://doi.org/10.1109/MSR.2017.38
https://doi.org/10.1145/2771783.2771793
https://doi.org/10.1109/ICSTW.2010.59
https://doi.org/10.1109/ICSTW.2010.59
https://doi.org/10.1109/DSN.2009.5270357

Bibliography

[Hoh+04] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan
S. Shapiro. “Reducing TCB Size by Using Untrusted Components:
Small Kernels Versus Virtual-machine Monitors”. In: Proc. of the 11th
Workshop on ACM SIGOPS European Workshop. EW 11. ACM, 2004. doi:
10.1145/1133572.1133615.

[Hru+12] T. Hruby, D. Vogt, H. Bos, and A. S. Tanenbaum. “Keep net working
- on a dependable and fast networking stack”. In: Proc. of the 42nd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. DSN ’12. June 2012. doi: 10.1109/DSN.2012.6263933.

[HTI97] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. “Fault Injection Techniques
and Tools”. In: Computer 30.4 (Apr. 1997), pp. 75–82.

[IDC19] IDC. Smartphone Market Share – OS (2016 – 2018). 2019. url: https:
//www.idc.com/promo/smartphone-market-share/os (visited on
02/01/2019).

[IEE18] IEEE and The Open Group. “IEEE Standard for Information Technology–
Portable Operating System Interface (POSIX(R)) Base Specifications,
Issue 7”. In: IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008)
(Jan. 2018), pp. 1–3951. doi: 10.1109/IEEESTD.2018.8277153.

[INR18] INRIA. Coccinelle Website. 2018. url: http://coccinelle.lip6.fr
(visited on 01/31/2019).

[Int10] International Electrotechnical Commission. IEC 61508: Functional Safety
of Electrical/Electronic/Programmable Electronic Safety-related Systems. 2010.

[Int11] International Organization for Standardization. ISO 26262: Road Vehi-
cles – Functional Safety. 2011.

[Irr+13] Ivano Irrera, João Durães, Henrique Madeira, and Marco Vieira. “As-
sessing the Impact of Virtualization on the Generation of Failure Pre-
diction Data”. In: 2013 Sixth Latin-American Symposium on Dependable
Computing. 2013, pp. 92–97. doi: 10.1109/LADC.2013.24.

[Jai+14] Bhushan Jain, Chia-Che Tsai, Jitin John, and Donald E. Porter. “Practi-
cal Techniques to Obviate Setuid-to-root Binaries”. In: Proc. of the Ninth
European Conference on Computer Systems. EuroSys ’14. ACM, 2014. doi:
10.1145/2592798.2592811.

[JGS11] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. “PREFAIL: A
Programmable Tool for Multiple-failure Injection”. In: Proceedings of
the 2011 ACM international conference on Object oriented programming
systems languages and applications. 2011, pp. 171–188. doi: 10.1145/
2048066.2048082.

135

https://doi.org/10.1145/1133572.1133615
https://doi.org/10.1109/DSN.2012.6263933
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1109/IEEESTD.2018.8277153
http://coccinelle.lip6.fr
https://doi.org/10.1109/LADC.2013.24
https://doi.org/10.1145/2592798.2592811
https://doi.org/10.1145/2048066.2048082
https://doi.org/10.1145/2048066.2048082

Bibliography

[JH08] Yue Jia and M. Harman. “Constructing Subtle Faults Using Higher Or-
der Mutation Testing”. In: 2008 Eighth IEEE International Working Con-
ference on Source Code Analysis and Manipulation. Sept. 2008, pp. 249–
258. doi: 10.1109/SCAM.2008.36.

[JH09] Yue Jia and Mark Harman. “Higher Order Mutation Testing”. In:
Information and Software Technology 51.10 (2009), pp. 1379–1393.

[JH11] Y. Jia and M. Harman. “An Analysis and Survey of the Development
of Mutation Testing”. In: IEEE Transactions on Software Engineering 37.5
(Sept. 2011), pp. 649–678.

[Jo+10] Heeseung Jo, Hwanju Kim, Jae-Wan Jang, Joonwon Lee, and Seungry-
oul Maeng. “Transparent Fault Tolerance of Device Drivers for Vir-
tual Machines”. In: IEEE Transactions on Computers 59.11 (Nov. 2010),
pp. 1466–1479. doi: 10.1109/TC.2010.61.

[Kan09] Antti Kantee. “Rump File Systems: Kernel Code Reborn”. In: Proc. of
the 2009 USENIX Annual Technical Conference. USENIX’09. 2009.

[Kap01] Gregory M Kapfhammer. “Automatically and Transparently Distribut-
ing the Execution of Regression Test Suites”. In: Proc. of the 18th Inter-
national Conference on Testing Computer Software. 2001.

[KD00] P. Koopman and J. DeVale. “The Exception Handling Effectiveness of
POSIX Operating Systems”. In: IEEE Transactions on Software Engineer-
ing 26.9 (2000), pp. 837–848. doi: 10.1109/32.877845.

[KDD08] Philip Koopman, Kobey DeVale, and John DeVale. “Interface robust-
ness testing: Experience and lessons learned from the ballista project”.
In: Dependability Benchmarking for Computer Systems 72 (2008), p. 201.

[Ker] Gabriel Kerneis. CIL (C Intermediate Language). url: https://github.
com/cil-project/cil (visited on 08/01/2016).

[KGT14] Erik van der Kouwe, Cristiano Giuffrida, and Andrew S. Tanen-
baum. “Evaluating Distortion in Fault Injection Experiments”. In: Proc.
HASE’14. 2014.

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-Oriented
Programming”. In: ECOOP’97 – Object-Oriented Programming. Ed. by
Mehmet Aksit and Satoshi Matsuoka. Vol. 1241. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 1997, pp. 220–242. doi:
10.1007/BFb0053381.

[Kil03] Douglas Kilpatrick. “Privman: A Library for Partitioning Applica-
tions”. In: Proc. of the FREENIX Track: 2003 USENIX Annual Technical
Conference. 2003.

136

https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1109/TC.2010.61
https://doi.org/10.1109/32.877845
https://github.com/cil-project/cil
https://github.com/cil-project/cil
https://doi.org/10.1007/BFb0053381

Bibliography

[KIT93] W. I. Kao, R. K. Iyer, and D. Tang. “FINE: A fault injection and mon-
itoring environment for tracing the UNIX system behavior under
faults”. In: IEEE Transactions on Software Engineering 19.11 (Nov. 1993),
pp. 1105–1118.

[Kle+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. “seL4: Formal Verification of an OS Kernel”. In: Proc.
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.
SOSP ’09. ACM, 2009. doi: 10.1145/1629575.1629596.

[Kle+14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. “Comprehensive
Formal Verification of an OS Microkernel”. In: ACM Transactions on
Computer Systems 32.1 (Feb. 2014). doi: 10.1145/2560537.

[Koc+13] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang. “An Empirical Study
of Adoption of Software Testing in Open Source Projects”. In: 2013
13th International Conference on Quality Software. July 2013, pp. 103–112.
doi: 10.1109/QSIC.2013.57.

[KS08] K. Kanoun and L. Spainhower. Dependability Benchmarking for Com-
puter Systems. Wiley-IEEE Computer Society, 2008.

[LA02] Timothy C. Lethbridge and Nicolas Anquetil. “Approaches to Cluster-
ing for Program Comprehension and Remodularization”. In: Advances
in Software Engineering. Ed. by Hakan Erdogmus and Oryal Tanir.
Springer-Verlag New York, Inc., 2002, pp. 137–157.

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization. CGO ’04. Palo Alto, California: IEEE
Computer Society, 2004.

[Lan+14] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri. “An
Empirical Study of Injected versus Actual Interface Errors”. In: Proc.
ISSTA. 2014, pp. 397–408.

[Las05] Alexey Lastovetsky. “Parallel testing of distributed software”. In: In-
formation and Software Technology 47.10 (2005), pp. 657–662.

[LeV+04] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. “Un-
modified Device Driver Reuse and Improved System Dependability via
Virtual Machines”. In: Proc. of the 6th Symposium on Operating Systems
Design & Implementation. OSDI’04. USENIX Association, 2004.

137

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2560537
https://doi.org/10.1109/QSIC.2013.57

Bibliography

[Lev04] Nancy G. Leveson. “Role of Software in Spacecraft Accidents”. In:
Journal of Spacecraft and Rockets 41.4 (July 2004), pp. 564–575. doi: 10.
2514/1.11950.

[Li+14] Yanlin Li, Jonathan McCune, James Newsome, Adrian Perrig, Bran-
don Baker, and Will Drewry. “MiniBox: A Two-way Sandbox for x86

Native Code”. In: Proc. of the 2014 USENIX Annual Technical Conference.
USENIX ATC ’14. USENIX Association, 2014.

[Lie] J. Liedtke. “On µ-Kernel Construction”. In: Proc. of the Fifteenth ACM
Symposium on Operating Systems Principles. SOSP ’95. doi: 10.1145/
224056.224075.

[Lio+96] Jacques-Louis Lions et al. Ariane 5 Flight 501 Failure. 1996.

[Liu+15] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
“Thwarting Memory Disclosure with Efficient Hypervisor-enforced
Intra-domain Isolation”. In: Proc. of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. CCS ’15. ACM, 2015. doi:
10.1145/2810103.2813690.

[Lon] Roy Longbottom. Roy Longbottom’s Android Benchmark Apps. url: http:
//www.roylongbottom.org.uk/android%20benchmarks.htm.

[Lov] Robert Love. Sleeping in the interrupt handler. url: http://permalink.
gmane.org/gmane.linux.kernel.kernelnewbies/1791 (visited on
02/01/2016).

[LT93] Nancy G. Leveson and Clark S. Turner. “An Investigation of the
Therac-25 Accidents”. In: Computer 26.7 (July 1993), pp. 18–41. doi:
10.1109/MC.1993.274940.

[LZE15] Wing Lam, Sai Zhang, and Michael D. Ernst. When tests collide: Evalu-
ating and coping with the impact of test dependence. Tech. rep. University
of Washington Department of Computer Science and Engineering,
2015.

[LZN04] Chung-Horng Lung, Marzia Zaman, and Amit Nandi. “Applications
of clustering techniques to software partitioning, recovery and restruc-
turing”. In: Journal of Systems and Software 73.2 (2004), pp. 227–244. doi:
http://dx.doi.org/10.1016/S0164-1212(03)00234-6.

[Mah+12] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A.
Stavrou. “A whitebox approach for automated security testing of
Android applications on the cloud”. In: Proc. of the 7th International
Workshop on Automation of Software Test. 2012, pp. 22–28. doi: 10.5555/
2663608.2663613.

138

https://doi.org/10.2514/1.11950
https://doi.org/10.2514/1.11950
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/2810103.2813690
http://www.roylongbottom.org.uk/android%20benchmarks.htm
http://www.roylongbottom.org.uk/android%20benchmarks.htm
http://permalink.gmane.org/gmane.linux.kernel.kernelnewbies/1791
http://permalink.gmane.org/gmane.linux.kernel.kernelnewbies/1791
https://doi.org/10.1109/MC.1993.274940
https://doi.org/http://dx.doi.org/10.1016/S0164-1212(03)00234-6
https://doi.org/10.5555/2663608.2663613
https://doi.org/10.5555/2663608.2663613

Bibliography

[Mao+11] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel-
dovich, and M. Frans Kaashoek. “Software Fault Isolation with API
Integrity and Multi-principal Modules”. In: Proc. of the Twenty-Third
ACM Symposium on Operating Systems Principles. SOSP ’11. ACM, 2011.
doi: 10.1145/2043556.2043568.

[MB07] O. Maqbool and H.A Babri. “Hierarchical Clustering for Software
Architecture Recovery”. In: IEEE Transactions on Software Engineering
33.11 (Nov. 2007), pp. 759–780. doi: 10.1109/TSE.2007.70732.

[Mis+07] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khur-
shid, and Darko Marinov. “Parallel Test Generation and Execution
with Korat”. In: Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering. ESEC-FSE ’07. New York, NY,
USA: ACM, 2007, pp. 135–144. doi: 10.1145/1287624.1287645.

[MM06] B.S. Mitchell and S. Mancoridis. “On the Automatic Modularization
of Software Systems Using the Bunch Tool”. In: IEEE Transactions on
Software Engineering 32.3 (Mar. 2006), pp. 193–208. doi: 10.1109/TSE.
2006.31.

[MMH08] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. “Improving
Xen Security Through Disaggregation”. In: Proc. of the Fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments. VEE ’08. ACM, 2008. doi: 10.1145/1346256.1346278.

[MN07] M. Mendonça and N. Neves. “Robustness Testing of the Windows
DDK”. In: Proc. of the 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks. DSN ’07. 2007.

[MN10] Antti P. Miettinen and Jukka K. Nurminen. “Energy Efficiency of
Mobile Clients in Cloud Computing”. In: Proc. of the 2nd USENIX
Conference on Hot Topics in Cloud Computing. HotCloud’10. 2010.

[MSB12] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. 3rd ed. John Wiley & Sons Inc., 2012.

[MSW11] Kivanç Muşlu, Bilge Soran, and Jochen Wuttke. “Finding Bugs by Iso-
lating Unit Tests”. In: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering.
ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp. 496–499. doi:
10.1145/2025113.2025202.

[MWC10] Adrian Mettler, David Wagner, and Tyler Close. “Joe-E: A Security-
Oriented Subset of Java”. In: Proc. of 17th Annual Network and Dis-
tributed System Security Symposium. NDSS ’10. 2010.

139

https://doi.org/10.1145/2043556.2043568
https://doi.org/10.1109/TSE.2007.70732
https://doi.org/10.1145/1287624.1287645
https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1145/1346256.1346278
https://doi.org/10.1145/2025113.2025202

Bibliography

[Nat+13] R. Natella, D. Cotroneo, J.A. Durães, and H.S. Madeira. “On Fault
Representativeness of Software Fault Injection”. In: IEEE Transactions
on Software Engineering 39.1 (Jan. 2013), pp. 80–96. doi: 10.1109/TSE.
2011.124.

[Nat13] Roberto Natella. SAFE: SoftwAre Fault Emulator tool. 2013. url: http:
//wpage.unina.it/roberto.natella/tools.html.

[NB13] Ruslan Nikolaev and Godmar Back. “VirtuOS: An Operating Sys-
tem with Kernel Virtualization”. In: Proc. of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. SOSP ’13. ACM, 2013. doi:
10.1145/2517349.2522719.

[NC01] Wee Teck Ng and Peter M Chen. “The Design and Verification of
the Rio File Cache”. In: IEEE Transactions on Computers 50.4 (2001),
pp. 322–337. doi: 10.1109/12.919278.

[Nec+02] George C Necula, Scott McPeak, Shree Prakash Rahul, and Westley
Weimer. “CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs”. In: Conference on Compiler Construction.
2002.

[Nie94] Jakob Nielsen. Usability Engineering. Academic Press Inc., 1994.

[Nov+13] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić,
and Ricardo Bianchini. “DeepDive: Transparently Identifying and
Managing Performance Interference in Virtualized Environments”.
In: Proc. of the 2013 USENIX Conference on Annual Technical Conference.
USENIX ATC’13. 2013, pp. 219–230.

[OU10] M. Oriol and F. Ullah. “YETI on the Cloud”. In: 2010 Third Interna-
tional Conference on Software Testing, Verification, and Validation Work-
shops. Apr. 2010, pp. 434–437. doi: 10.1109/ICSTW.2010.68.

[Pad+08] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.
“Documenting and Automating Collateral Evolutions in Linux Device
Drivers”. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2008. Eurosys ’08. Glasgow, Scotland UK:
ACM, 2008, pp. 247–260. doi: 10.1145/1352592.1352618.

[Pal+11] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia
Lawall, and Gilles Muller. “Faults in Linux: Ten Years Later”. In:
Proc. of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XVI. ACM,
2011, pp. 305–318. doi: 10.1145/1950365.1950401.

140

https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.1109/TSE.2011.124
http://wpage.unina.it/roberto.natella/tools.html
http://wpage.unina.it/roberto.natella/tools.html
https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1109/12.919278
https://doi.org/10.1109/ICSTW.2010.68
https://doi.org/10.1145/1352592.1352618
https://doi.org/10.1145/1950365.1950401

Bibliography

[Par+09] T. Parveen, S. Tilley, N. Daley, and P. Morales. “Towards a distributed
execution framework for JUnit test cases”. In: 2009 IEEE International
Conference on Software Maintenance. Sept. 2009, pp. 425–428. doi: 10.
1109/ICSM.2009.5306292.

[PFH03] Niels Provos, Markus Friedl, and Peter Honeyman. “Preventing Priv-
ilege Escalation”. In: Proc. of the 12th USENIX Security Symposium.
USENIX Security ’03. USENIX Association, 2003.

[PHY11] K. Praditwong, M. Harman, and Xin Yao. “Software Module Clustering
as a Multi-Objective Search Problem”. In: IEEE Transactions on Software
Engineering 37.2 (Mar. 2011), pp. 264–282. doi: 10.1109/TSE.2010.26.

[Pip+15] Thorsten Piper, Stefan Winter, Oliver Schwahn, Suman Bidarahalli,
and Neeraj Suri. “Mitigating Timing Error Propagation in Mixed-
Criticality Automotive Systems”. In: Proceedings of the 2015 IEEE 18th
International Symposium on Real-Time Distributed Computing. ISORC ’15.
Washington, DC, USA: IEEE Computer Society, 2015, pp. 102–109. doi:
10.1109/ISORC.2015.13.

[Pri09] Princeton University. The PARSEC Benchmark Suite. 2009. url: http:
//parsec.cs.princeton.edu/parsec3-doc.htm.

[QSu19a] Q-Success. Usage of web servers for websites. 2019. url: https://w3techs.
com/technologies/overview/web_server/all (visited on 02/11/2019).

[QSu19b] Q-Success. Usage statistics and market share of Unix for websites. 2019.
url: https://w3techs.com/technologies/details/os-unix/all/
all (visited on 02/11/2019).

[Qua18] Qualcomm Technologies, Inc. Qualcomm Snapdragon 845 Mobile Plat-
form. 2018. url: https://www.qualcomm.com/media/documents/
files/snapdragon- 845- mobile- platform- product- brief.pdf

(visited on 02/10/2019).

[Rod+99] Manuel Rodríguez, Frédéric Salles, Jean-Charles Fabre, and Jean Arlat.
“MAFALDA: Microkernel Assessment by Fault Injection and Design
Aid”. In: Proc. of the Third European Dependable Computing Conference on
Dependable Computing. Ed. by Jan Hlavička, Erik Maehle, and András
Pataricza. 1999, pp. 143–160.

[RS09] Matthew J Renzelmann and Michael M Swift. “Decaf: Moving Device
Drivers to a Modern Language”. In: Proc. of the 2009 USENIX Annual
Technical Conference. USENIX ’09. USENIX Association, 2009.

[RTw16] RTwiki Team. Real-Time Linux Wiki. 2016. url: https://rt.wiki.
kernel.org/index.php/Main_Page (visited on 08/01/2016).

141

https://doi.org/10.1109/ICSM.2009.5306292
https://doi.org/10.1109/ICSM.2009.5306292
https://doi.org/10.1109/TSE.2010.26
https://doi.org/10.1109/ISORC.2015.13
http://parsec.cs.princeton.edu/parsec3-doc.htm
http://parsec.cs.princeton.edu/parsec3-doc.htm
https://w3techs.com/technologies/overview/web_server/all
https://w3techs.com/technologies/overview/web_server/all
https://w3techs.com/technologies/details/os-unix/all/all
https://w3techs.com/technologies/details/os-unix/all/all
https://www.qualcomm.com/media/documents/files/snapdragon-845-mobile-platform-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-845-mobile-platform-product-brief.pdf
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page

Bibliography

[Rup18] Karl Rupp. 42 Years of Microprocessor Trend Data. Feb. 15, 2018. url:
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-

trend-data (visited on 02/12/2019).

[Rus81] J. M. Rushby. “Design and Verification of Secure Systems”. In: Proc. of
the Eighth ACM Symposium on Operating Systems Principles. SOSP ’81.
ACM, 1981. doi: 10.1145/800216.806586.

[Ryd79] B.G. Ryder. “Constructing the Call Graph of a Program”. In: IEEE
Transactions on Software Engineering SE-5.3 (May 1979), pp. 216–226.
doi: 10.1109/TSE.1979.234183.

[SAM08] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch.
“Sufficient Mutation Operators for Measuring Test Effectiveness”. In:
Proc. of the 30th international conference on Software engineering. ICSE’08.
2008, pp. 351–360. doi: 10.1145/1368088.1368136.

[SBK10] Daniel Skarin, Raul Barbosa, and Johan Karlsson. “Comparing and
Validating Measurements of Dependability Attributes”. In: 2010 Eu-
ropean Dependable Computing Conference. 2010, pp. 3–12. doi: 10.1109/
EDCC.2010.11.

[SBL03] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. “Improving
the Reliability of Commodity Operating Systems”. In: Proc. of the
Nineteenth ACM Symposium on Operating Systems Principles. SOSP ’03.
ACM. ACM, 2003, pp. 207–222. doi: 10.1145/945445.945466.

[SC09] Gaurav Somani and Sanjay Chaudhary. “Application performance
isolation in virtualization”. In: 2009 IEEE International Conference on
Cloud Computing. 2009, pp. 41–48. doi: 10.1109/CLOUD.2009.78.

[SC13] Y. Sun and T. c. Chiueh. “SIDE: Isolated and efficient execution of
unmodified device drivers”. In: Proc. of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. DSN ’13.
June 2013. doi: 10.1109/DSN.2013.6575348.

[Sch+18a] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri.
“FastFI: Accelerating Software Fault Injections”. In: 2018 IEEE 23rd
Pacific Rim International Symposium on Dependable Computing (PRDC).
PRDC’18. Taipei, Taiwan, Dec. 2018, pp. 193–202. doi: 10.1109/PRDC.
2018.00035.

[Sch+18b] Oliver Schwahn, Stefan Winter, Nicolas Coppik, and Neeraj Suri. “How
to Fillet a Penguin: Runtime Data Driven Partitioning of Linux Code”.
In: IEEE Transactions on Dependable and Secure Computing 15.6 (Nov.
2018), pp. 945–958. doi: 10.1109/TDSC.2017.2745574.

142

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data
https://doi.org/10.1145/800216.806586
https://doi.org/10.1109/TSE.1979.234183
https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1109/EDCC.2010.11
https://doi.org/10.1109/EDCC.2010.11
https://doi.org/10.1145/945445.945466
https://doi.org/10.1109/CLOUD.2009.78
https://doi.org/10.1109/DSN.2013.6575348
https://doi.org/10.1109/PRDC.2018.00035
https://doi.org/10.1109/PRDC.2018.00035
https://doi.org/10.1109/TDSC.2017.2745574

Bibliography

[Sch+19] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri. “As-
sessing the State and Improving the Art of Parallel Testing for C”. In:
ACM SIGSOFT International Symposium on Software Testing and Analy-
sis. 2019. [under submission].

[Sha+03] S.C. Shaw, M. Goldstein, M. Munro, and E. Burd. “Moral Dominance
Relations for Program Comprehension”. In: IEEE Transactions on Soft-
ware Engineering 29.9 (Sept. 2003), pp. 851–863. doi: 10.1109/TSE.
2003.1232289.

[Sim03] Daniel Simpson. Windows XP Embedded with Service Pack 1 Reliability.
Jan. 2003. url: http : / / msdn . microsoft . com / en - us / library /
ms838661(WinEmbedded.5).aspx (visited on 08/01/2016).

[SP10] Matt Staats and Corina Păsăreanu. “Parallel Symbolic Execution for
Structural Test Generation”. In: Proceedings of the 19th International
Symposium on Software Testing and Analysis. ISSTA ’10. 2010, pp. 183–
194. doi: 10.1145/1831708.1831732.

[Spe+06] Michael F. Spear, Tom Roeder, Orion Hodson, Galen C. Hunt, and
Steven Levi. “Solving the Starting Problem: Device Drivers As Self-
describing Artifacts”. In: Proc. of the 1st ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2006. EuroSys ’06. ACM, 2006.
doi: 10.1145/1217935.1217941.

[SS75] J. H. Saltzer and M. D. Schroeder. “The protection of information in
computer systems”. In: Proc. of the IEEE 63.9 (Sept. 1975), pp. 1278–
1308. doi: 10.1109/PROC.1975.9939.

[Sta00] E. Starkloff. “Designing a parallel, distributed test system”. In: Proc.
AUTOTESTCON’00. 2000, pp. 564–567.

[Sto+00] D.T. Stott, B. Floering, Z. Kalbarczyk, and R.K. Iyer. “NFTAPE: A
Framework for Assessing Dependability in Distributed Systems with
Lightweight Fault Injectors”. In: Proceedings IEEE International Com-
puter Performance and Dependability Symposium. IPDS 2000. 2000, pp. 91–
100. doi: 10.1109/IPDS.2000.839467.

[Tan+07] Lin Tan, E.M. Chan, R. Farivar, N. Mallick, J.C. Carlyle, F.M. David,
and R.H. Campbell. “iKernel: Isolating Buggy and Malicious De-
vice Drivers Using Hardware Virtualization Support”. In: Proc. of
the Third IEEE International Symposium on Dependable, Autonomic and
Secure Computing. DASC ’07. Sept. 2007. doi: 10.1109/DASC.2007.16.

[Ton01] P. Tonella. “Concept Analysis for Module Restructuring”. In: IEEE
Transactions on Software Engineering 27.4 (Apr. 2001), pp. 351–363. doi:
10.1109/32.917524.

143

https://doi.org/10.1109/TSE.2003.1232289
https://doi.org/10.1109/TSE.2003.1232289
http://msdn.microsoft.com/en-us/library/ms838661(WinEmbedded.5).aspx
http://msdn.microsoft.com/en-us/library/ms838661(WinEmbedded.5).aspx
https://doi.org/10.1145/1831708.1831732
https://doi.org/10.1145/1217935.1217941
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1109/IPDS.2000.839467
https://doi.org/10.1109/DASC.2007.16
https://doi.org/10.1109/32.917524

Bibliography

[Tsa+99] T.K. Tsai, M.C. Hsueh, H. Zhao, Z. Kalbarczyk, and R.K. Iyer. “Stress-
based and path-based fault injection”. In: IEEE Trans. on Computers
48.11 (1999), pp. 1183–1201.

[VFI16] VFIO Maintainers. VFIO - Virtual Function I/O. 2016. url: https :
/ / www . kernel . org / doc / Documentation / vfio . txt (visited on
08/01/2016).

[VM03] Marco Vieira and Henrique Madeira. “A dependability benchmark for
OLTP application environments”. In: Proc. of the 29th International Con-
ference on Very Large Data Bases - Volume 29. VLDB ’03. 2003, pp. 742–
753.

[Voa+97] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. “Predict-
ing How Badly “Good” Software Can Behave”. In: IEEE Software 14.4
(1997), pp. 73–83.

[Wal12] Henry M. Walker. The Tao of Computing. 2nd. Chapman & Hall/CRC,
2012.

[Wan17] Jiacun Wang. Real-Time Embedded Systems. John Wiley & Sons, Inc.,
2017.

[Wat+10] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kenn-
away. “Capsicum: Practical Capabilities for UNIX”. In: Proc. of the 19th
USENIX Security Symposium. USENIX Security ’10. USENIX Associa-
tion, 2010.

[Wig97] T.A Wiggerts. “Using Clustering Algorithms in Legacy Systems Re-
modularization”. In: Proc. of the Fourth Working Conference on Reverse
Engineering. WCRE ’97. Oct. 1997. doi: 10.1109/WCRE.1997.624574.

[Wil+08] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer, and
Fred B. Schneider. “Device Driver Safety Through a Reference Valida-
tion Mechanism”. In: Proc. of the 8th USENIX Symposium on Operating
Systems Design and Implementation. OSDI ’08. USENIX Association,
2008.

[Win+13] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj Suri.
“simFI: From Single to Simultaneous Software Fault Injections”. In:
2013 43rd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Networks. IEEE,
June 2013, pp. 1–12. doi: 10.1109/DSN.2013.6575310.

[Win+15a] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto Natella, Neeraj
Suri, and Domenico Cotroneo. “GRINDER: On Reusability of Fault
Injection Tools”. In: Proceedings of the 2015 IEEE/ACM 10th International
Workshop on Automation of Software Test. AST ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 75–79. doi: 10.1109/AST.
2015.22.

144

https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://doi.org/10.1109/WCRE.1997.624574
https://doi.org/10.1109/DSN.2013.6575310
https://doi.org/10.1109/AST.2015.22
https://doi.org/10.1109/AST.2015.22

Bibliography

[Win+15b] Stefan Winter, Oliver Schwahn, Roberto Natella, Neeraj Suri, and
Domenico Cotroneo. “No PAIN, No Gain?: The Utility of PArallel
Fault INjections”. In: Proceedings of the 37th International Conference
on Software Engineering. ICSE ’15. Florence, Italy: IEEE Press, 2015,
pp. 494–505. doi: 10.1109/ICSE.2015.67.

[Yan+13] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin
Chan. “A Framework for Partitioning and Execution of Data Stream
Applications in Mobile Cloud Computing”. In: ACM SIGMETRICS
Performance Evaluation Review 40.4 (Apr. 2013). doi: 10.1145/2479942.
2479946.

[YC79] Edward Yourdon and Larry L. Constantine. Structured Design: Fun-
damentals of a Discipline of Computer Program and Systems Design. 1st.
Prentice-Hall, Inc., 1979.

[Yu+09] Lian Yu, Le Zhang, Huiru Xiang, Yu Su, Wei Zhao, and Jun Zhu. “A
Framework of Testing as a Service”. In: 2009 International Conference
on Management and Service Science. Sept. 2009, pp. 1–4. doi: 10.1109/
ICMSS.2009.5302717.

[Yu+10] Lian Yu, Wei-Tek Tsai, Xiangji Chen, Linqing Liu, Yan Zhao, Liangjie
Tang, and Wei Zhao. “Testing as a Service over Cloud”. In: 2010 Fifth
IEEE International Symposium on Service Oriented System Engineering.
2010, pp. 181–188. doi: 10.1109/SOSE.2010.36.

[Zha+14] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam,
Michael D. Ernst, and David Notkin. “Empirically Revisiting the Test
Independence Assumption”. In: Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ISSTA’14. New York, New
York, USA: ACM Press, 2014, pp. 385–396. doi: 10.1145/2610384.
2610404.

[Zho+06] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob En-
nals, Matthew Harren, George Necula, and Eric Brewer. “SafeDrive:
Safe and Recoverable Extensions Using Language-based Techniques”.
In: Proc. of the 7th Symposium on Operating Systems Design and Imple-
mentation. OSDI ’06. USENIX Association, 2006.

[Zhu+12] Yian Zhu, Yue Li, Jingling Xue, Tian Tan, Jialong Shi, Yang Shen, and
Chunyan Ma. “What Is System Hang and How to Handle It”. In: Proc.
ISSRE’12. 2012, pp. 141–150.

145

https://doi.org/10.1109/ICSE.2015.67
https://doi.org/10.1145/2479942.2479946
https://doi.org/10.1145/2479942.2479946
https://doi.org/10.1109/ICMSS.2009.5302717
https://doi.org/10.1109/ICMSS.2009.5302717
https://doi.org/10.1109/SOSE.2010.36
https://doi.org/10.1145/2610384.2610404
https://doi.org/10.1145/2610384.2610404

	Erklärung
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 The Software Stack
	1.2 Dependable Software
	1.3 Research Questions and Contributions
	1.4 Publications
	1.5 Organization

	2 Profiling Driven Partitioning of In-kernel Software Components
	2.1 Overview
	2.2 Related Work
	2.2.1 Privilege Separation
	2.2.2 Refactoring
	2.2.3 Mobile/Cloud Partitioning
	2.2.4 Fault Tolerance

	2.3 System Model
	2.3.1 Software Component Model
	2.3.2 Cost Model
	2.3.3 Isolation Degree

	2.4 Runtime Data Driven Partitioning
	2.4.1 Static Analyses: Call Graph and Node Weights
	2.4.2 Dyn. Analyses: Edge Weights & Constrained Nodes
	2.4.3 Partitioning as 0-1 ILP Problem

	2.5 Evaluation
	2.5.1 Experimental Setup
	2.5.2 Instrumentation & Profiling
	2.5.3 Estimation of the Platform Overhead
	2.5.4 Partitioning Results
	2.5.5 Split Mode Modules
	2.5.6 Reliability of Split Mode Modules

	2.6 Discussion
	2.7 Conclusion

	3 Accelerating Software Fault Injections
	3.1 Overview
	3.2 PAIN Experiments
	3.2.1 Overview
	3.2.2 Research Questions
	3.2.3 System Model
	3.2.4 The SFI Fault Model
	3.2.5 Measures for Performance and Result Accuracy
	3.2.6 Hypotheses
	3.2.7 Target System
	3.2.8 Fault Load
	3.2.9 Execution Environment

	3.3 PAIN Results and Analysis
	3.3.1 Initial Results
	3.3.2 The Influence of Timeout Thresholds
	3.3.3 Discussion
	3.3.4 Threats to Validity
	3.3.5 Concluding Remarks

	3.4 FastFI Approach
	3.4.1 Overview
	3.4.2 FastFI Execution Model
	3.4.3 FastFI Fork Server: Control & Monitoring of Faulty Versions
	3.4.4 Static Analysis & Version Library Generation
	3.4.5 Limitations
	3.4.6 Implementation

	3.5 FastFI Evaluation
	3.5.1 Experimental Setup
	3.5.2 RQ1: Sequential Speedup
	3.5.3 RQ2: Parallel Speedup
	3.5.4 RQ3: SFI Result Stability
	3.5.5 RQ4: Build Time Overhead
	3.5.6 Discussion
	3.5.7 Concluding Remarks

	3.6 Related Work
	3.6.1 Fault Injection (FI)
	3.6.2 FI Test Throughput
	3.6.3 Test Parallelization
	3.6.4 Avoiding Redundant Code Execution
	3.6.5 Result Validity with Parallel Execution

	3.7 Conclusion

	4 Towards Parallel Testing for C
	4.1 Overview
	4.2 Related Work
	4.2.1 Concurrent Test Execution for Latency Improvement
	4.2.2 Improving Test Latencies without Concurrency
	4.2.3 Test Interference Detection

	4.3 Empirical Study: C Software in Debian Buster
	4.3.1 Programming Languages in the Debian Ecosystem
	4.3.2 Test Frameworks
	4.3.3 Test Parallelization
	4.3.4 Threats to Validity

	4.4 Safe Concurrent Testing for C
	4.4.1 Preparation
	4.4.2 Detecting Potential Test Interference
	4.4.3 Concurrent Test Execution
	4.4.4 Scheduling Concurrent Test Execution

	4.5 Evaluation
	4.5.1 Experimental Setup
	4.5.2 RQ1: Transmutation of Legacy Tests
	4.5.3 RQ2: Dependencies
	4.5.4 RQ3: Achieved Speed-Ups
	4.5.5 RQ4: Analysis Runtime Overhead and Amortization
	4.5.6 Threats To Validity

	4.6 Discussion & Lessons Learned
	4.7 Conclusion

	5 Summary and Conclusion
	List of Figures
	List of Tables
	Bibliography

