
Efficient Dependability Assessment
of Systems Software

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation
zur Erlangung des akademischen Grades eines

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt von

Nicolas Coppik, M.Sc.

aus Frankfurt am Main

Referenten:
Prof. Dr. Matthias Hollick

Prof. Neeraj Suri, Ph.D.
Prof. Dr. Stefan Katzenbeisser

Tag der Einreichung: 15. April 2020
Tag der mündlichen Prüfung: 28. Mai 2020

Darmstadt, 2020
D17

Nicolas Coppik: Efficient Dependability Assessment of Systems Software
Darmstadt, Technische Universität Darmstadt
Tag der mündlichen Prüfung: 28.05.2020

Jahr der Veröffentlichung der Dissertation auf TUprints: 2020
URN: urn:nbn:de:tuda-tuprints-118290
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/11829

Veröffentlicht nach deutschem Urheberrecht.
© 2020

https://tuprints.ulb.tu-darmstadt.de/id/eprint/11829

Efficient
Dependability Assessment

of
Systems Software

by

Nicolas Coppik

Erklärung

Hiermit versichere ich, die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Alle
Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich gemacht.
Eigenzitate aus vorausgehenden wissenschaftlichen Veröffentlichungen werden in
Anlehnung an die Hinweise des Promotionsausschusses Fachbereich Informatik
zum Thema „Eigenzitate in wissenschaftlichen Arbeiten“ (EZ-2014/10) in Kapitel
„Collaborations and Contributions“ auf Seiten xi bis xii gelistet. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, 15. April 2020

Nicolas Coppik

v

Abstract

Computing systems and the various services and applications they enable have be-
come pervasive in our daily lives. We increasingly rely on these complex systems,
including many systems built on general purpose hardware and software, to con-
sistently provide important functionality. As we grow more and more dependent
on such systems, we need to ensure that they are, in fact, dependable and that we
can trust their ability to consistently provide the functionality we expect from them.
Therefore, we need techniques for assessing and improving the dependability of
such systems. To be practical, such techniques must not only be applicable to com-
plex software systems, they need to scale with their increasing sizes.

Common approaches to improve the dependability of software systems include
testing techniques to find faults and dependability issues as well as techniques in-
tended to predict the impact of residual software faults. Software Fault Injection
(SFI) is an approach that can be useful in both contexts, for finding dependability
shortcomings and estimating the impact of residual faults, whereas most other test-
ing techniques, such as fuzzing, are primarily used to find faults. Many approaches
to improve software dependability suffer from scalability issues and are difficult
to apply to large, complex software systems, and particularly to systems software,
such as operating system kernels.

With this general background in mind, this thesis aims to improve the efficiency
and precision of SFI techniques for systems software, as well as to develop novel
guidance mechanisms for feedback-driven fuzzing.

We develop a technique to trace error propagation in monolithic operating sys-
tem kernels, apply it to modules from the widely used Linux kernel, and show that
conventional oracles for SFI tests can misclassify a substantial fraction of seemingly
successful executions. We then focus on accelerating SFI experiments since, due to
increasing software complexity, comprehensive SFI testing requires an increasing
amount of test executions, which in turn leads to long test latencies. Starting with
user mode software, we develop a novel execution model that uses static and dy-
namic analysis to avoid redundant code re-execution and facilitates parallelization.
Since long SFI test latencies are particularly problematic for systems which may
require additional instrumentation to trace error propagation, we then develop a
related approach to accelerate SFI experiments for kernel code, and apply it to the
Linux kernel using error propagation analysis instrumentation and achieve substan-
tial speedups. Finally, we develop a novel guidance mechanism for feedback-driven
fuzzing that makes use of input-dependent memory accesses in the target program.

vii

Zusammenfassung

Die vielfältigen Dienste und Anwendungen, die durch moderne Computersysteme
ermöglicht werden, sind in unserem Alltag allgegenwärtig. Wir verlassen uns zu-
nehmend auf komplexe Computersysteme um wichtige alltägliche Funktionen bere-
itzustellen. Dabei handelt es sich oft um Systeme, deren Soft- und Hardware nicht
spezialisiert, sondern aus Standardkomponenten konstruiert ist. Da wir uns mehr
und mehr auf solche Systeme verlassen, müssen wir sicherstellen, dass sie zuver-
lässig sind und die von ihnen erwartete Funktionalität durchgehend bereitstellen
können. Folglich benötigen wir Techniken, die geeignet sind, die Zuverlässigkeit
solcher Systeme zu überprüfen und zu verbessern. Praxistaugliche Techniken müs-
sen sowohl auf komplexe Softwaresysteme anwendbar sein als auch mit deren zu-
nehmender Größe skalieren.

Verbreitete Ansätze zur Verbesserung der Zuverlässigkeit von Softwaresystemen
sind Testverfahren, mit denen Fehler und Zuverlässigkeitsmängel gefunden werden
können, sowie Verfahren zur Vorhersage der möglichen Auswirkungen im System
verbleibender Fehler. Softwarefehlerinjektionstechniken (SFI-Techniken) können in
beiden Kontexten genutzt werden, sowohl um Zuverlässigkeitsmängel zu finden
als auch um die Auswirkungen verbleibender Fehler abzuschätzen. Andere Tech-
niken, wie Fuzzing, dienen in erster Linie dazu, Fehler zu finden. Viele Verfahren
zur Verbesserung der Softwarezuverlässigkeit leiden unter Skalierbarkeitsproble-
men und sind schwer auf große, komplexe Softwaresysteme, insbesondere auf Sys-
temsoftware wie den Betriebssystemkernel, anwendbar.

Vor diesem Hintergrund zielt diese Dissertation darauf ab, die Effizienz und Präzi-
sion von SFI-Techniken für Systemsoftware zu verbessern sowie neue Steuerungs-
mechanismen für feedbackbasierte Fuzzing-Verfahren zu entwickeln.

Wir entwicklen ein Verfahren zur Nachverfolgung der Ausbreitung von Fehler-
auswirkungen in monolithischen Betriebssystemen, wenden es auf Module aus dem
weit verbreiteten Linux-Kernel an und zeigen, dass konventionelle Verfahren einen
beträchtlichen Anteil der anscheinend erfolgreichen SFI-Testausführungen falsch
klassifizieren. Da mit zunehmender Softwarekomplexität gerade auch SFI-Techni-
ken unter Skalierbarkeitsproblemen leiden, wenden wir uns dann der Beschleuni-
gung von SFI-Tests zu. Zunächst entwickeln wir ein neuartiges Ausführungsmodell
für im Benutzer-Modus laufende Software, welches, unter Verwendung von statis-
cher und dynamischer Analyse, die wiederholte, redundante Ausführung von Pro-
grammcode vermeidet und Parallelisierung begünstigt. Da lange SFI-Tests für Sys-

ix

Zusammenfassung

teme, welche zusätzliche Instrumentierung zur Nachverfolgung der Auswirkun-
gen von Fehlern benötigen, ein besonders großes Problem sind, entwickeln wir
einen Ansatz, der auch SFI-Tests für Betriebssysteme beschleunigen kann. Wir wen-
den diesen Ansatz auf instrumentierten Code aus dem Linux-Kernel an und erre-
ichen eine erhebliche Verkürzung der SFI-Testdauer. Zuletzt entwickeln wir einen
neuartigen Mechanismus zur Steuerung von feedbackbasierten Fuzzing-Verfahren,
welcher eingabeabhängige Speicherzugriffe im getesteten Programm nutzt.

x

Collaborations and Contributions

The results and contributions presented in this thesis are, like the corresponding
publications, the result of collaborative efforts by several authors. Clearly delin-
eating individual contributions is challenging as each author contributed to discus-
sions of ideas, prototype implementations, experimental analysis, or the presenta-
tion of results to varying degrees. In the following, I briefly outline which pub-
lication each chapter of this thesis is based on and what the contributions of my
co-authors and myself are.

Chapter 1 provides the introduction to this thesis, including background infor-
mation and an overview of the research questions, contributions, and publications.
It is not based on previously published material.

Chapter 2 is based, in parts verbatim, on material from [Cop+17], which is joint
work with Oliver Schwahn, Stefan Winter, and Neeraj Suri. I developed the ap-
proach based on discussions with my co-authors, implemented the TrEKer proto-
type, and conducted the evaluation. Additional scripts used in the evaluation were
contributed by Oliver Schwahn. The analysis of the experimental results was per-
formed jointly by Oliver Schwahn, Stefan Winter, and myself.

Chapter 3 is based on material previously published in [Sch+18a], which is joint
work with Oliver Schwahn, Stefan Winter, and Neeraj Suri. The FastFI approach
was developed by Oliver Schwahn and myself following discussions about the ap-
plicability of a fork server architecture to software fault injection experiments. I
developed the initial prototype of the version library generation and contributed to
the development of the static analysis and runtime logic components. The experi-
mental evaluation and analysis were joint work by Oliver Schwahn, Stefan Winter,
and myself.

Chapter 4 is based, in parts verbatim, on material which is currently under sub-
mission [CSS20]. It is joint work with Oliver Schwahn and Neeraj Suri. I developed
the enhanced execution model and the integration of the TrEKer tracing instru-
mentation, implemented the controller including all host-side runtime logic, and
adapted the TrEKer error propagation analysis. I also contributed to the runtime
kernel module used in the guest virtual machines, which was developed primarily
by Oliver Schwahn, who also contributed most of the workload scripts and per-
formed initial testing on the evaluation targets. I conducted the experimental eval-
uation. The analysis of the results was performed jointly by Oliver Schwahn and
myself.

xi

Collaborations and Contributions

Chapter 5 is based, in parts verbatim, on material from [CSS19], which is joint
work with Oliver Schwahn and Neeraj Suri. I developed the approach of using
input-dependent memory accesses to guide a feedback-driven fuzzer. The imple-
mentation was joint work by myself and Raik Joachim. I conducted all experiments
for the evaluation and the analysis of the results. Oliver Schwahn contributed to the
analysis of the results.

Chapter 6 contains concluding remarks and is not based on previously published
work.

xii

Contents

Erklärung v

Abstract vii

Zusammenfassung ix

Collaborations and Contributions xi

1 Introduction 1
1.1 Systems Software . 5
1.2 Dependability and Security . 7
1.3 Research Questions and Contributions 10
1.4 Publications . 15
1.5 Organization . 16

2 Kernel Error Propagation Analysis 17
2.1 Overview . 17

2.1.1 The SFI Oracle Problem for OS Kernels 18
2.1.2 TrEKer: Solving the SFI Oracle Problem 19

2.2 Related Work . 19
2.2.1 Execution Trace Based Oracles for User Mode Software 19
2.2.2 Oracles for Kernel-Level SFI Tests 20
2.2.3 Trace Comparison . 21

2.3 System Model . 22
2.3.1 Faults and their Consequences 22
2.3.2 Monolithic Operating Systems and Composition 22

2.4 TrEKer: Tracing Error Propagation in OS Kernels 26
2.4.1 Component Interface Identification and Instrumentation . . . 26
2.4.2 Trace Analysis . 27
2.4.3 Trace Comparison . 30

2.5 Experimental Analysis . 32
2.5.1 Research Questions . 32
2.5.2 SUT . 32
2.5.3 Injection Targets and Faultload Selection 33
2.5.4 Workload Selection . 34
2.5.5 Results . 35

xiii

Contents

2.6 Conclusion . 42

3 Accelerating Software Fault Injections 43
3.1 Overview . 43
3.2 Related Work . 45

3.2.1 Improving Fault Injection (FI) Test Throughput 45
3.2.2 Test Parallelization . 46
3.2.3 Avoiding Redundant Code Execution 46

3.3 FastFI Approach . 47
3.3.1 Overview . 47
3.3.2 FastFI Execution Model . 49
3.3.3 Scheduling & Monitoring of Faulty Versions 52
3.3.4 Static Analysis & Version Library Generation 55
3.3.5 Limitations . 56
3.3.6 Implementation . 56

3.4 FastFI Evaluation . 57
3.4.1 Experimental Setup . 57
3.4.2 RQ 1: Sequential Speedup . 59
3.4.3 RQ 2: Parallel Speedup . 60
3.4.4 RQ 3: SFI Result Stability . 61
3.4.5 RQ 4: Build Time Speedup . 63
3.4.6 Discussion . 64

3.5 Conclusion . 65

4 Accelerating Kernel Error Propagation Analysis 67
4.1 Overview . 67
4.2 Related Work . 69

4.2.1 SFI Test Latencies . 69
4.2.2 Test Acceleration . 69
4.2.3 Error Propagation Analysis . 70

4.3 Approach . 71
4.3.1 System Model . 71
4.3.2 Kernel Error Propagation Analysis 72
4.3.3 Improving Kernel EPA with Fast VM Cloning 72
4.3.4 Implementation . 76

4.4 Evaluation . 78
4.4.1 Experiment Setup . 78
4.4.2 Research Questions . 80
4.4.3 Results . 81

4.5 Discussion . 90
4.6 Conclusion . 91

xiv

Contents

5 Fuzz Testing 93
5.1 Introduction . 93
5.2 Related Work . 96

5.2.1 Seed Selection . 97
5.2.2 Instrumentation and Guidance 97

5.3 Approach . 98
5.3.1 Overview . 98
5.3.2 Instrumentation . 99
5.3.3 Runtime . 102
5.3.4 Fuzzer . 104

5.4 Evaluation . 105
5.4.1 Experimental Setup . 105
5.4.2 RQ 1: Crashes . 107
5.4.3 RQ 2: Overhead . 110
5.4.4 RQ 3: Coverage . 115
5.4.5 RQ 4: Static Analysis . 115

5.5 Discussion and Threats to Validity . 118
5.5.1 Discussion . 118
5.5.2 Threats to Validity . 119

5.6 Conclusion . 120

6 Summary and Conclusion 121

List of Figures 127

List of Tables 129

Bibliography 131

xv

1 Introduction

Computing systems have become pervasive in our daily lives, including everything
from low-power embedded systems in home electronics or automotive applications,
small Internet of Things (IoT) devices, increasingly capable hand held devices such
as modern smartphones, and powerful server systems. As these systems have be-
come more and more widespread, they have also become increasingly complex,
and we have started to rely on them to consistently provide important function-
ality. For instance, smart home devices that require computing systems to adjust
a thermostat, unlock a door, or turn on the lights are becoming increasingly com-
mon. While the importance of dependability and reliability in more conventional
embedded applications, such as in the automotive and aerospace sectors, is well
understood, devices in other application domains — e.g., smart home devices —
commonly operate with off-the-shelf software stacks and run general purpose oper-
ating systems such as Linux. For instance, Linux-based systems are used in smart
lighting systems [Phi], smart speakers [Bro18], as well as in the vast majority of
smartphones sold today [IDC20] and numerous other Android-based devices. Such
systems frequently receive updates that add new functionality and do not always
undergo rigorous testing since, unlike conventional safety critical systems, they
are not subject to international safety standards such as ISO 26262 [Int11] or IEC
61508 [Int10], which impose development and quality assurance processes. This can
result in shortcomings in dependability and security, which in turn can have a sub-
stantial impact on users, for instance, when software bugs cause smart thermostats
to drain their battery and turn off [Kni16], security issues let attackers bypass smart
locks [Lyn18], and security cameras and smoke alarms are affected by server out-
ages [Mat16]. It is now common for many such devices to be constantly connected
to the internet, rendering security and dependability even more important, as they
may be exposed to untrusted inputs at any time. The Cisco Annual Internet Re-
port (2018–2023) forecasts that there will be more than three times as many devices
connected to IP networks as there are people on earth, with IoT devices, and smart
home devices in particular, taking an increasing share [Cis20].

All these devices require an extensive amount of complex software in order to
provide their functionality, both on the device itself and, in the case of cloud-based
systems, on the backend server systems. This software is commonly organized in a
software stack in which components on the upper layers, such as application soft-
ware, depend on the lower layers, such as the operating system, middleware, and

1

1 Introduction

system libraries. We refer to software on the lower layers of the stack as systems
software. Systems software manages system resources, and provides a platform
and basic functionality to other software on the upper levels of the software stack,
such as application software. As higher level components rely on lower level compo-
nents to provide services that they require to implement the desired functionality,
it is important for the latter to operate dependably. If low level components fail
to operate correctly, the system as a whole can be impacted, and higher level com-
ponents may in turn fail to provide the intended functionality, either because the
system crashes or becomes non-responsive, or due to more subtle effects such as
state corruption, which can be difficult to detect and debug.

The question then arises how the dependability of systems software can be as-
sessed and improved. There are four complementary means to achieve dependabil-
ity and security [Avi+04]:

1. Fault prevention, which encompasses techniques intended to avoid the intro-
duction of faults into a system in the development phase;

2. Fault tolerance, which encompasses error detection and recovery mechanisms
to prevent faults from leading to failures;

3. Fault removal, which encompasses techniques to find and remove faults from
a system; and

4. Fault forecasting, which encompasses techniques that aim to estimate the num-
ber of faults in a system, and their consequences when they are activated.

Techniques for assessing and improving the dependability and security of soft-
ware systems fall into one or more of these categories. We focus on the latter two
means, fault removal and fault forecasting.

Fault removal encompasses, for instance, software correctness testing, with the
goal of finding and fixing as many faults as possible before deploying a system. In
correctness testing, a system or component (termed the System Under Test (SUT))
is exposed to known inputs and its outputs are compared to known correct values.
If the values match, the test has passed. The mechanism used to determine whether
a test has passed or failed is called the test oracle. A simplified version of this pro-
cess is illustrated in Figure 1.1a. Other, related approaches in the fault removal
category work by subjecting a system to automatically generated inputs. Since the
corresponding, correct output values for such inputs are not known, ascertaining
whether the SUT has produced the correct output is difficult. This is known as
the oracle problem. One way of tackling it is to check whether the system exhibits
known, undesirable failure modes as opposed to comparing to known, concrete out-
put values as is done for manually written tests. This kind of testing aims to ensure
that the system behaves as desired even when faced with malformed or maliciously

2

Test Case

Input

Expected Output

Test Harness

SUT Actual Output

Compare Pass/Fail

(a) Correctness Testing

Fuzzer

Generated Input SUT Output

Behavior

Classify

(b) Random Testing or Fuzzing

Figure 1.1: Correctness Testing and Random Testing

crafted inputs. By checking for specific, undesirable behaviors rather than verifying
the correctness of outputs, the oracle problem can be largely avoided in this kind of
testing. One approach that falls in this category and is widely used to find security
and robustness issues is fuzzing. A simplified version of this approach is shown
in Figure 1.1b. Fuzzing comprises a variety of random testing techniques that use
different forms of input generation and are tailored to different target systems. The
illustration therefore omits these details. Inputs can be generated from scratch or
by mutation and different fuzzing approaches differ substantially in which aspects
of the fuzzing target’s behavior and output they monitor. For security and robust-
ness testing, fuzzing is commonly used to find inputs that cause the SUT to crash
or trigger memory safety violations. The fault removal category also encompasses
techniques that aim to assess the fault tolerance mechanisms, such as error detec-
tion and recovery, in a system and can therefore overlap with the fault forecasting
category.

Faults that are not detected during testing and exist in deployed software systems
are termed residual faults, and fault forecasting techniques are intended to assess
the effects of such faults on the behavior of the system. A common technique from
this category is Software Fault Injection (SFI) [DM06], whereby faults in the form
of code mutations are deliberately introduced to a component in the system, and
the effect on other components and overall system behavior is observed. The in-
jected faults are intended to be representative of the residual faults that are present
in a system [CN13; Nat+13; Nat11]. SFI is related to but distinct from other FI tech-
niques which focus on subjecting a system to simulated hardware faults, such as
bit flips in main memory [CP95; HTI97]. While FI is well-established for testing
fault tolerance mechanisms, particularly in safety critical systems, SFI techniques

3

1 Introduction

Injection Target Inject Fault

Execute Workload

Classify Behavior Experiment Result

Figure 1.2: Basic Software Fault Injection Workflow

are particularly well-suited to assessing the dependability of systems that rely on
commodity software components. Due to the complexity of modern software stacks
and the widespread reuse of components by different vendors with varying levels
of quality assurance in different operational contexts, most such systems are likely
to contain residual software faults. With SFI, testers can introduce faults that re-
semble such residual faults and observe how the system as a whole or specific other
components are affected. As it is suitable both for fault forecasting and for assess-
ing a system’s fault tolerance mechanisms, SFI falls into both the fault removal and
fault forecasting categories.

In common SFI techniques, a fault is introduced into a target component in the sys-
tem, a predefined workload is executed, and the behavior of the system is checked
for divergences compared to a fault-free execution, typically by checking for differ-
ences in the resulting output and undesirable behaviors, such as crashes, hangs, or
error indicators. This basic workflow is shown in Figure 1.2. This workflow is re-
peated for each fault that the system is tested with, which can result in thousands or
tens of thousands of test executions. Therefore, to keep test latencies manageable,
it is desirable to keep the workload short and terminate the experiment as soon as
the workload has finished executing. Unfortunately, this limits the utility of such
an approach for a number of important application domains. For instance, embed-
ded systems, IoT devices, automotive systems, or operating systems are typically
long-running systems, and the lack of divergences after the execution of a specific
workload is not sufficient to determine whether a fault affected the system state
in a manner that may affect system behavior at a later time. Addressing this re-
quires more fine-grained monitoring of the SUT, which in turn further exacerbates
the problem of long execution latencies. To mitigate this problem, techniques to
accelerate SFI-based dependability assessment are needed.

We focus on fuzzing and SFI techniques as ways to detect and remove faults from
a system, as well as assessing the impact of residual faults on its behavior. Unfor-
tunately, both kinds of techniques suffer from long execution latencies, particularly
when applied to large scale, complex software systems.

4

1.1 Systems Software

With this general background in mind, this thesis

1. develops an automated approach for determining how faulty components in
monolithic operating systems may affect other parts of the system using mem-
ory access instrumentation, thereby facilitating the use of SFI techniques for
long-running software systems;

2. develops a technique to speed up SFI experiments by avoiding redundant exe-
cutions of common execution prefixes, omitting test executions for faults that
cannot be triggered by a given workload, and effectively utilizing modern par-
allel processors;

3. develops an approach for applying such an SFI acceleration to speed up SFI
experiments on instrumented kernel code;

4. develops a technique that uses memory access instrumentation to augment
evolutionary fuzzing.

The shared goal of all developed approaches and techniques is to improve de-
pendability and security assessment techniques, especially with respect to efficiency.
These techniques have been developed with applicability to the lower levels of the
software stack in mind and have been tested on software that can generally be cat-
egorized as belonging to these lower levels. A substantial portion of the work de-
scribed in this thesis deals with kernel code, as the dependability of kernel code is
crucial to the dependability of the overall system.

In the remainder of this chapter, we first give additional background on the role
of systems software in the software stack in Section 1.1. We then cover dependable
and secure systems and software in Section 1.2. Section 1.3 introduces the research
questions and contributions of this thesis, Section 1.4 covers related publications,
and Section 1.5 outlines the structure of the remainder of the thesis.

1.1 Systems Software

Software systems can be understood as collections of interacting components that
are organized in a broadly hierarchical structure called the software stack. In this
section, we describe this view of software systems and discuss which parts of the
stack can be categorized as systems software. We also discuss the implications of
dependability and security issues at different levels of the software stack on a sys-
tem.

A simplified illustration of the software stack is shown in Figure 1.3. At the bot-
tom of the stack are hardware and firmware, which are outside of the scope of this
discussion. The next level up in the stack comprises the Operating System (OS) ker-
nel. Its task is to interact with the hardware, manage the available system resources,

5

1 Introduction

U
se

r M
o

d
e

K
e

rn
e

l M
o

d
e

Hardware and Firmware

Operating System Kernel

File Systems

Device Drivers

Memory Management

…

System Libraries

System Utilities and Services

Application Software

Figure 1.3: The Software Stack

and provide services and interfaces to software higher up in the stack. It also en-
forces isolation and security boundaries between different software components.
As the software stack shown in the illustration assumes a monolithic operating sys-
tem design, the kernel includes device drivers, file systems, memory management,
and other subsystems, such as networking. Other kernel architectures in which
some or all of these are moved out of the kernel exist, but are less widely used. All
software at this level of the stack, running in kernel mode, can be considered to be
systems software, as its purpose is to provide the basic resource management and
services required by software components higher up in the stack.

Moving up in the stack, the next level comprises system libraries. Such libraries
offer basic functionality required by many applications, such as the memory and
process management functions provided by libc or the basic mathematical functions
found in libm. More complex libraries that provide, for instance, Transport Layer
Security (TLS) or compression implementations, also belong at this level of the stack.
Software at this layer is also considered systems software, as it provides common
functionality to components at the layers above.

Further up in the stack are system utilities and services. This includes, for in-
stance, compilers, linkers, interpreters, or the shell, as well as other software com-
ponents that are on the line between systems and applications software. While
software at this layer is often used directly by users, for instance, when developing

6

1.2 Dependability and Security

software or performing system administration tasks, it is also frequently depended
upon by other application software. Therefore, it is important for such system util-
ities to be dependable, and we include them in our definition of systems software.

Dependability and security issues at different levels of the software stack can dif-
fer in the impact they have on the reliability and security of the overall software
system. Components at the operating system level of the stack provide fundamen-
tal functionality that virtually every component further up on the stack depends
on. Flaws at this level are challenging if not impossible to compensate for higher up
in the stack. Dependability shortcomings in the operating system kernel itself can
cause system crashes, hangs, performance issues, and numerous other, more subtle
flaws. For instance, faulty file systems can lead to data corruption, which can be
difficult to detect in data that is not accessed frequently. Security issues at this level
are also particularly severe, as they can allow attackers to gain access at the highest
privilege level and bypass the security and isolation mechanisms provided by the
operating system, which components higher up in the stack depend upon.

Moving up in the stack, flaws in system libraries as well as system utilities and
services are generally not as severe as in the OS kernel, but still have the potential to
impact each application depending on them. For widely used libraries, this means
that flaws or vulnerabilities can impact a large number of different applications. No-
table examples of vulnerabilities in systems libraries include the Heartbleed bug in
OpenSSL [Syn] and the Stagefright vulnerabilities in libstagefright [MITb] and libu-
tils [MITc] on Android, both of which affected numerous applications relying on
these libraries.

Since dependability and security issues in systems software, including both ker-
nel and user mode systems software, can affect all software components higher up
in the stack that depend on them, it is particularly important for systems software
to be dependable and secure. To ensure that this is the case, dependability and
security assessment techniques for systems software are essential.

1.2 Dependability and Security

In this section, we discuss the notions of dependability and security underlying this
thesis and introduce relevant concepts and background information.

For dependability, we base our discussion on the taxonomy given by Avizienis
et al. [Avi+04], where dependability is defined as “the ability to deliver service that
can justifiably be trusted”, or alternately as “the ability to avoid service failures that
are more frequent and more severe than is acceptable” [Avi+04, p. 13]. The first defi-
nition necessitates a way to justify trust in a system’s ability to deliver correct service,
while the second definition requires the system’s failure frequency and severity to
remain below a specified threshold. In either case, dependability assessment tech-
niques are therefore key to determine whether a system adheres to either definition.

7

1 Introduction

Dependability comprises five different attributes:

1. Availability: A system is said to be available if it is ready to provide correct
service.

2. Reliability: A system is reliable if it continuously provides correct service. While
availability refers to a system’s ability to provide correct service at any point
in time, reliability refers to its ability to sustain that delivery of correct service
over a period of time.

3. Safety: A system is safe if it does not inflict harm on its users or its environment
during normal operation or during system failures.

4. Integrity: System integrity refers to the absence of improper alterations, in-
cluding deliberate as well as accidental alterations.

5. Maintainability: A system is maintainable if it is suitable for (proper) modifi-
cation and repair when required.

Information security is frequently understood to encompass three attributes:

1. Confidentiality: A system fulfills the confidentiality attribute if it does not dis-
close information without authorization.

2. Integrity: System integrity refers to the absence of unauthorized alterations.

3. Availability: A system is available if it is ready to provide correct service to
authorized users.

Together, these three attributes are known as the Confidentiality, Integrity, Avail-
ability (CIA) triad. It has long been understood that a violation of any of these three
attributes constitutes a potential security violation, which can then be categorized as
an unauthorized release of information (a violation of confidentiality), an unautho-
rized modification of information (a violation of integrity), or unauthorized denial
of use (a violation of availability) [And72; SS75].

The attributes of the CIA triad overlap with the attributes of dependability listed
above, but the two common attributes, integrity and availability, differ subtly in
their definition. In the context of security, availability is specifically only required
for authorized actions, and integrity refers to the lack of unauthorized, as opposed to
merely improper, alterations to a system.

The taxonomy introduced above further allows for secondary attributes beyond
the ones listed above. An example of such a secondary attribute is robustness, de-
fined as “dependability with respect to external faults” [Avi+04, p. 23]. Robustness
is a further example of an attribute that falls under both dependability and security.

8

1.2 Dependability and Security

Fault

Error

Failure

Fault Activation

Error Propagation

Figure 1.4: The Threats to Dependability and Their Relationship

For instance, a robust system is not susceptible to attempts by an attacker to trigger
faults in the system by deliberately providing malformed inputs, or by exposing the
system to environmental conditions outside of its specification.

Threats to Dependability and Security

A system operates dependably if it delivers service according to its specification and
fulfills the attributes of dependability listed above. The same applies to security,
likewise according to the attributes and definitions given above. When a system
fails to provide correct service, a service failure has occurred. Failures do not arise
spontaneously but rather due to a prior deviation within the state of the system.
Such a deviation is termed an error. However, not every error causes a failure. An
error may affect a part of the system state that is not directly related to the provided
service, for instance, in parts related to debugging or maintenance, or the affected
state may be overwritten before causing a failure. The mechanism by which errors
cause failures is termed error propagation.

Just like failures, errors do not arise spontaneously and also have an underlying
cause. Errors arise when a fault in the system is activated (fault activation). Faults
are flaws, either within or outside the system, in hardware or in software. Software
bugs are examples of faults, as are malformed inputs or production defects in hard-
ware. To cause an error, a fault must be activated. For example, in the case of a
software bug, fault activation would occur when the faulty code is executed and
affects the system state, thereby causing an error.

To summarize, faults, when activated, cause errors, and when an error propagates
to a part of the system state affecting the service it provides, a service failure arises.
This relationship between faults, errors and failures is illustrated in Figure 1.4.

Faults and failures can all be categorized further. Failures can be categorized by
domain, detectability, consistency, and severity of consequences. For faults, Avizie-
nis et al. propose a classification into eight different fault classes, including the
phase of creation or occurrence, where they originate relative to the system bound-

9

1 Introduction

aries, and their dimension, that is, whether they originate in software or hardware.
They note that most faults belong to three major, overlapping groups:

1. Development faults: All faults that occur or originate during development
are development faults. This class includes software bugs or hardware pro-
duction defects.

2. Interaction faults: All external faults, that is, all faults that originate outside
the system boundaries, are interaction faults. This includes, for instance, mal-
formed inputs.

3. Physical faults: All faults that affect the hardware are physical faults.

Of these three groups, the first two are within the scope of this thesis. Physi-
cal faults are not covered. The SFI work described in this thesis deals with both
development and interaction faults: Considering an entire software system, inject-
ing software faults in individual components simulates the effects of development
faults. Injecting faults into a component A which interacts with another compo-
nent B can expose B to an interaction fault, which is useful for robustness testing
of B. In this way, SFI can be used to study the effects of both development and in-
teraction faults, depending on which injection locations and system boundaries are
chosen. Our work on fuzzing, on the other hand, targets only interaction faults. The
malformed inputs produced during fuzzing constitute external faults, and internal
faults in the parts of the system parsing or processing these inputs can then lead to
errors and, eventually, system failures. As many systems need to robustly handle
untrusted inputs, the kinds of faults uncovered with fuzzing techniques frequently
have not just robustness but also security implications.

1.3 Research Questions and Contributions

This thesis strives to address the research questions stated below, resulting in the
contributions outlined below. The shared goal of all developed approaches and
techniques is to improve dependability and security assessment techniques, espe-
cially with respect to efficiency. These techniques have been developed with ap-
plicability to the lower levels of the software stack in mind and have been tested
on software that can generally be categorized as belonging to these lower levels. A
substantial portion of the work described in this thesis deals with OS kernel code,
as the dependability of kernel code is crucial to the dependability of the overall sys-
tem. The first three research questions deal with the applicability and efficiency of
SFI and Error Propagation Analysis (EPA) techniques, whereas the fourth research
question is related to fuzzing.

10

1.3 Research Questions and Contributions

Research Question 1 (RQ 1): How can the effects of faulty OS kernel components
on other parts of the system be identified in the absence of externally visible failures?

Modern OS kernels, even in monolithic designs, consist of numerous interacting
components. While some of these components implement core functionality, oth-
ers, such as file systems or device drivers, are commonly developed and maintained
independently of one another and the core kernel components, which can lead to
variations in code quality and dependability. Since monolithic systems do not en-
force boundaries between such components at runtime, faults in any component
can affect other components in various ways, including corruption of their internal
state in a manner that may not directly lead to an observable failure. Such state cor-
ruption may nonetheless affect the system execution at a later point in time, which
is particularly problematic since OS kernels are usually long-running systems. This
makes the application of SFI techniques challenging, as the absence of an observ-
able failure is insufficient to decide whether state corruption has occurred and test
durations need to be kept short.

Contribution 1 (C 1): A tracing-based approach for assessing the effects of faults in
kernel modules.

To tackle the problem outlined above, previous work on SFI has made use of execu-
tion tracing to assess the effects of activated faults [APB14; Lan+14; TP13]. However,
applying such techniques to components in a monolithic OS kernel is challenging
due to the lack of clear component boundaries and well-defined interfaces — po-
tentially, any memory access can constitute a cross-component interaction. There-
fore, execution traces need to be gathered on the granularity of memory accesses,
which presents further difficulties as user space solutions like Valgrind [NS07a] or
Pin [Luk+05] are not applicable to kernel code, and existing kernel tracing solutions
like SystemTap [Sys] or LTTng [DD06] do not support tracing at the required granu-
larity. To address these challenges, we develop a scalable, fully automated approach
for tracing error propagation in monolithic OS kernels. We describe our approach,
called TrEKer, in Chapter 2, which is based on material from [Cop+17]. Our ap-
proach makes use of both static and dynamic analysis to assess whether a faulty
component has affected other parts of the kernel. We limit tracing overhead by us-
ing compile time instrumentation and restricting the instrumentation points to the
injection target. Gathered traces are processed and analyzed to determine which
parts of a component’s behavior are visible to other parts of the kernel. Deviations
in such parts constitute potential error propagation. We demonstrate the applica-
bility of our approach by applying it to three different, widely used Linux kernel
modules. This contribution has been documented in the publication “TrEKer: Trac-
ing Error Propagation in Operating System Kernels” at ASE 2017.

11

1 Introduction

Research Question 2 (RQ 2): How can SFI experiments be accelerated and adapted
to efficiently utilize modern, parallel hardware?

As software grows increasingly complex, the number of SFI experiments neces-
sary for dependability assessment also grows, which can render comprehensive
SFI-based dependability assessment of complex software practically infeasible. This
concern applies to all parts of the software stack but to systems software in partic-
ular as its dependability is crucial to the dependability of the overall system. One
way to tackle this issue is to take advantage of the increasing number of execution
units available in modern processors and simply run multiple SFI experiments in
parallel. However, not only has prior work shown that doing so can impact result
validity and may require adjustments to timeout-based detectors [Win+15], paral-
lelization on its own is also insufficient to tackle the problem as it does not address
the substantial amount of redundant work that occurs in typical SFI workflows. For
every faulty version that is executed in a typical SFI workflow, prior to the point at
which the execution reaches the injected fault, the same code is executed with the
same inputs as for all other versions.

Contribution 2 (C 2): A technique for accelerating SFI experiments by avoiding re-
dundant work and facilitating parallelization.

We describe a technique to speed up SFI experiments for user mode code in Chap-
ter 3, which is based on material from [Sch+18a]. This technique, called FastFI,
makes use of static and dynamic analysis to accelerate SFI tests for user mode code
by avoiding the execution of faulty versions containing faults that the workload does
not activate, by not redundantly re-executing common execution prefixes for differ-
ent faulty versions, and by facilitating parallel execution of multiple faulty versions
of the same function. FastFI furthermore reduces the compilation time required
to generate faulty versions. We forgo heavyweight isolation mechanisms such as
Virtual Machines (VMs) to prevent different faulty versions from interfering with
one another due to, for instance, the usage of shared resources. Instead, we rely
on process-level isolation as this allows us to make use of the fast, lightweight pro-
cess management functionality provided by modern OS kernels, such as efficient,
copy-on-write-based fork implementations, while ensuring that each faulty version
is executed in its own address space. We develop a prototype implementation of
the approach that targets user mode software written in C. To demonstrate the ap-
plicability and performance of FastFI, we apply our prototype to applications from
the PARSEC benchmark suite [Pri09]. This contribution has been documented in
the publication “FastFI: Accelerating Software Fault Injections” at PRDC 2018.

12

1.3 Research Questions and Contributions

Research Question 3 (RQ 3): How can SFI and EPA on OS components be acceler-
ated and efficiently parallelized?

As noted above, dependability assessments using SFI are particularly challenging
for monolithic OS kernels. In addition to the growing complexity of kernel com-
ponents such as modern file systems, the lack of well-defined component interfaces
and runtime isolation allows faults in any component to arbitrarily affect other parts
of the system, necessitating the use of EPA. We have tackled some of the associated
challenges with TrEKer (cf. Chapter 2), but the additional tracing requirements
further increase test latencies, adversely affecting the feasibility of thorough, SFI-
based dependability assessment. Moreover, our SFI acceleration approach FastFI
(cf. Chapter 3) is not directly applicable to kernel code as it relies on process manage-
ment functionality that is only available in user space. Furthermore, FastFI involves
a novel execution model that is not directly compatible with TrEKer-style EPA as
faulty versions do not execute the entire workload and can therefore not produce
complete execution traces. To tackle the issue of long execution latencies for kernel
SFI, an approach conceptually related to FastFI but applicable to kernel code and a
compatible TrEKer-style EPA approach are required.

Contribution 3 (C 3): An approach to reduce SFI test latencies for OS kernel compo-
nents while allowing detection of internal state corruption.

Attempting to apply a FastFI-style mechanism for accelerating SFI experiments to
kernel code raises several challenges, including the need to quickly and efficiently
clone the SUT as well as the required adaptations and enhancements to the EPA
approach to support the new execution model. We describe our approach, which is
based on material from [CSS20], in Chapter 4. We make use of static and dynamic
analysis alongside modern OS, file system, and Virtual Machine Monitor (VMM)
features — such as Copy-on-Write (CoW) file copies and VM snapshots — to apply
a technique conceptually similar to FastFI to kernel code running in a VM, thereby
reducing SFI test latencies by avoiding redundant work and facilitating paralleliza-
tion. We implement the fast VM cloning required for this approach using off-the-
shelf components and without modifying the host kernel or VMM. Moreover, we
augment TrEKer, the EPA approach described in Chapter 2, to work with the exe-
cution model used in our approach and integrate it with our implementation. We
demonstrate the feasibility of our approach by applying it to seven widely used
Linux file systems and studying its performance and impact on result validity and
EPA results. This contribution has been documented in the publication “Fast Kernel
Error Propagation Analysis in Virtualized Environments” which has been submit-
ted to OSDI 2020.

13

1 Introduction

Research Question 4 (RQ 4): Can selective instrumentation of memory accesses
characterize program executions in a manner suitable to guide feedback-driven evo-
lutionary fuzzing?

Fuzzing comprises a wide variety of testing techniques that are commonly used for
finding security and dependability issues. One class of fuzzing techniques that has
proven particularly successful are approaches that use information about the behav-
ior of the SUT during prior executions to decide which inputs should be subjected
to further mutation. This is called feedback-driven fuzzing. Most commonly, the
feedback mechanism used is based on the control flow path taken by the SUT during
prior executions. For instance, inputs which caused the SUT to cover previously un-
seen edges or new basic blocks are mutated further. However, control flow is not
the only way to characterize a program execution. For instance, as shown by our
work on EPA with TrEKer (cf. Chapter 2), memory access tracing can be a useful
way to characterize a program execution and may provide more fine-grained infor-
mation about the behavior of the SUT. However, straightforward memory access
tracing would incur substantial performance impacts, and many memory accesses
performed by typical fuzzing targets may be entirely input-independent and there-
fore provide no useful guidance to the fuzzer.

Contribution 4 (C 4): A technique to use memory access instrumentation to guide
evolutionary fuzzing.

It is possible to augment evolutionary fuzzing by using information about input-
dependent memory accesses instead of or in conjunction with control flow infor-
mation. We describe our technique for doing this, called MemFuzz, in Chapter 5,
which is based on material from [CSS19]. MemFuzz uses static analysis to filter out
input-independent memory accesses. Memory accesses for which the accessed ad-
dress may depend on the input provided to the SUT are instrumented at compile
time. We use a conservative, intraprocedural static analysis to determine which
memory accesses to instrument. Our static analysis and instrumentation are imple-
mented as an LLVM pass. At runtime, a bloom filter is used to store the memory
addresses used by the SUT. By using a fixed size data structure, we ensure that we
do not need to allocate or free memory to store addresses used by the SUT. We build
MemFuzz as a modification of AFL [Zal], a widely used feedback-driven fuzzer that
normally relies solely on edge coverage as its feedback mechanism, and apply it to
three different, widely used target programs. Our results show that different ways
of characterizing program executions can guide the fuzzer to find different, distinct
crashes. This contribution has been documented in the publication “MemFuzz: Us-
ing Memory Accesses to Guide Fuzzing” at ICST 2019.

14

1.4 Publications

1.4 Publications

The following publications have, in parts verbatim, been included in this thesis.

[Cop+17] Nicolas Coppik, Oliver Schwahn, Stefan Winter, and Neeraj Suri.
“TrEKer: Tracing Error Propagation in Operating System Kernels”.
In: Proceedings of the 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering. ASE 2017. Urbana-Champaign, IL, USA:
IEEE Press, 2017, pp. 377–387. doi: 10.1109/ASE.2017.8115650

[Sch+18a] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri.
“FastFI: Accelerating Software Fault Injections”. In: 23rd IEEE Pa-
cific Rim International Symposium on Dependable Computing (PRDC).
PRDC 2018. Taipei, Taiwan, Dec. 2018, pp. 193–202. doi: 10.1109/
PRDC.2018.00035

[CSS19] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. “MemFuzz: Us-
ing Memory Accesses to Guide Fuzzing”. In: 12th IEEE International
Conference on Software Testing, Verification and Validation. ICST 2019.
Xi’an, China, Apr. 2019, pp. 48–58. doi: 10.1109/ICST.2019.
00015

[CSS20] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. “Fast Kernel Er-
ror Propagation Analysis in Virtualized Environments”. In: 14th
USENIX Symposium on Operating Systems Design and Implementation.
OSDI 2020. 2020. [under submission]

The following publications are related to different aspects covered in this thesis,
but have not been included.

[Sch+19] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri.
“Assessing the State and Improving the Art of Parallel Testing for
C”. in: 28th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis. ISSTA 2019. Beijing, China: ACM, 2019, pp. 123–
133. doi: 10.1145/3293882.3330573

[Sch+18b] Oliver Schwahn, Stefan Winter, Nicolas Coppik, and Neeraj Suri.
“How to Fillet a Penguin: Runtime Data Driven Partitioning of Linux
Code”. In: IEEE Transactions on Dependable and Secure Computing 15.6
(Nov. 2018), pp. 945–958. doi: 10.1109/TDSC.2017.2745574

15

https://doi.org/10.1109/ASE.2017.8115650
https://doi.org/10.1109/PRDC.2018.00035
https://doi.org/10.1109/PRDC.2018.00035
https://doi.org/10.1109/ICST.2019.00015
https://doi.org/10.1109/ICST.2019.00015
https://doi.org/10.1145/3293882.3330573
https://doi.org/10.1109/TDSC.2017.2745574

1 Introduction

1.5 Organization

The rest of this thesis is structured as follows: We address our first research ques-
tion in Chapter 2, where we develop an approach for determining the effects of
faulty components in monolithic OS kernels in the absence of observable failures.
In Chapter 3, we address the second research question and describe a technique for
accelerating SFI experiments of user mode software. We then turn to the applica-
bility of such a technique for kernel code in Chapter 4, where we address the third
research question and describe our approach for accelerating SFI experiments and
EPA for kernel code. Chapter 5 addresses the fourth research question and describes
our work on memory access instrumentation-guided fuzzing. Finally, concluding
remarks, along with a summary of the contributions and key insights, can be found
in Chapter 6.

16

2 Kernel Error Propagation Analysis

Modern operating system kernels consist of numerous separate but interacting com-
ponents, many of which are developed and maintained independently of one an-
other. In monolithic systems, the boundaries of and interfaces between such com-
ponents are not strictly enforced at runtime. Therefore, faults in individual compo-
nents may directly affect other parts of the system in various ways. SFI is a testing
technique to assess the resilience of a software system in the presence of faulty com-
ponents. Unfortunately, SFI tests of operating system kernels are inconclusive if
they do not lead to observable failures, as corruptions of the internal software state
may not be visible at its interfaces but nonetheless affect the subsequent execution
of the OS kernel beyond the duration of the test.

In this chapter we present TrEKer, a fully automated approach for identifying
how faulty kernel components affect other parts of the system. TrEKer combines
static and dynamic analyses to achieve efficient tracing on the granularity of mem-
ory accesses. We demonstrate TrEKer’s ability to support SFI oracles by accurately
tracing the effects of faults injected into three widely used Linux kernel modules.
The contents of this chapter are, in parts verbatim, based on material from [Cop+17].

2.1 Overview

Complex modern software systems generally consist of many interacting compo-
nents. In larger systems, these components may be developed or maintained by
different teams of developers and may differ in numerous aspects, including code
quality and the amount of residual faults. In an empirical study of the Linux kernel,
Palix et al. find that device drivers, along with file systems and architecture-specific
code, have one of the highest rates of faults per line of code in the kernel. As de-
vice drivers have a high fault rate and comprise a large amount of code, they are
the part of the kernel containing the most faults in absolute numbers, followed by
file systems and architecture-specific code. In order to assess the resilience of the
overall system, it is necessary to understand how it is affected by individual faulty
components, such as, in the case of a monolithic kernel, faulty device drivers or
faulty file systems. This is called error propagation in the taxonomy by Avizienis et
al. [Avi+04], as outlined in Chapter 1. For this purpose, SFI, the deliberate introduc-
tion of faults in specific components to simulate their behavior in the presence of
residual software faults, is an established approach [APB14; DM06; Nat+13].

17

2 Kernel Error Propagation Analysis

In SFI tests, the SUT is exposed to erroneous behavior of a component it is in-
teracting with. That component is termed the injection target. Software fault in-
jections are similar to mutations for mutation testing, but commonly based on dif-
ferent assumptions regarding the types and distributions of the introduced faults
(see [JH11a; NCM16] for an overview of common fault assumptions in either appli-
cation). After the injection, interactions between the SUT and the injection target are
triggered by a test workload. To assess error propagation from the injection target to
the SUT, the behavior of the SUT is observed while it is processing the workload to
identify behavioral deviations in response to the injection. Unfortunately, oracles
of this type are generally insufficient to make any conclusions whenever no such
behavioral deviations are observed. In such cases, there are three different possibil-
ities:

1. The fault has not been activated,

2. The fault has been activated, but its effects have not propagated to the user
interface, therefore there are no observable behavioral deviations.

3. The fault does not affect the system behavior, for instance because the mu-
tated version is semantically equivalent to the non-mutated version, either in
general or under the specific workload used for the test.

While the first case can be identified by additional code that logs the activation
of injected faults, which can easily be added when performing SFI, distinguishing
the latter two requires observing the internal state of the SUT during test execu-
tion. SFI test frameworks commonly use execution trace comparisons across setups
with and without injected faults as a secondary oracle to distinguish between these
cases [APB14; Lan+14; TP13].

2.1.1 The SFI Oracle Problem for OS Kernels

While the gathering and comparison of execution traces alleviates the aforemen-
tioned oracle problem, applying it is challenging for an important class of SUTs:
OS kernel components in monolithic OS kernels, where all kernel components are
interacting within the same address space and with the same privileges. Without
memory protection between kernel components all memory is shared and directly
accessible. This makes every memory operation in the system a potential cross-
component interaction affecting the SUT, meaning that all such memory operations
need to be traced. Existing memory tracing approaches for user space applications
(e.g., using Valgrind [NS07a] or Pin [Luk+05]) are not applicable for OS kernels. Ex-
isting tracing approaches for OS kernels (e.g., SystemTap [Sys] or LTTng [DD06]), on
the other hand, only provide tracing on the granularity of function calls instead of
individual memory accesses. A naïve tracing of all memory operations is infeasible,

18

2.2 Related Work

as the kernel code base is large and some parts, such as hardware interrupt han-
dling routines, are performance critical. Simply attempting to instrument and log
every memory access in the kernel would therefore incur prohibitive performance
overhead, adversely affect timing behavior, and cause issues when the logging code
itself relies on parts of the kernel that been instrumented.

2.1.2 TrEKer: Solving the SFI Oracle Problem

To correctly identify and characterize the effects of residual software faults in kernel
components, we present TrEKer, a scalable, fully automated approach for Tracing
Error propagation in operating system Kernels that relies on a combination of static
and dynamic analyses to infer error propagation from a faulty kernel component to
other parts of the kernel. TrEKer limits the trace points to the injection target and
infers error propagation from deviations in the injection target’s state and behavior
that are potentially visible to other parts of the kernel, thereby effectively improving
the soundness of SFI tests for OS kernels at the cost of execution time overheads for
trace collection and analysis.

We demonstrate TrEKer’s ability to trace the effects of faults in three widely used
kernel components on the Linux kernel. We find that up to ∼10 % of seemingly
successful runs in our fault injection experiments would be misclassified by con-
ventional oracles.

The remainder of this chapter is organized as follows: Section 2.2 gives an overview
over related work. Our proposed approach is detailed in Section 2.3. We discuss
TrEKer’s implementation in Section 2.4 and the experimental analysis in Section 2.5.
Concluding remarks for this chapter can be found in Section 2.6.

2.2 Related Work

To classify the results of SFI tests on kernel code, TrEKer traces the effects of injected
software faults in OS kernels. We discuss existing trace-based approaches for user
mode software in Section 2.2.1, alternative approaches for kernel-level SFI tests in
Section 2.2.2 and trace comparison in Section 2.2.3.

2.2.1 Execution Trace Based Oracles for User Mode Software

Execution tracing has been widely adopted to determine the outcome of SFI tests
[Aid+01; APB14; CMS98; Lan+14; NCM16; Pip+12; Pip+15; TP13], for reasons sim-
ilar to our motivation for TrEKer. In such approaches, execution traces of the un-
modified SUT are recorded and later used as a golden run oracle to compare execu-
tions with injected faults against. The techniques used to record execution traces
can be broadly classified as belonging to three different categories.

19

2 Kernel Error Propagation Analysis

One class of approaches (e.g., [Aid+01; CMS98; Pip+15]) uses debuggers to record
execution traces. This imposes execution latencies that are not tolerable by many
SUTs, among them the OS kernels targeted by our work. Interrupt service routines,
for instance, need to have short response times and exceeding those due to the over-
head imposed by using a debugger to gather traces may result in unintended OS
failures during the SFI test.

A second class of approaches (e.g., [Sch+15; SPS09]) uses full-system simulation
for execution tracing. Full-system simulators implement the semantics of low-level
hardware operations for a given target platform in software. The SUT is executed
on this simulated hardware model. Although the simulation of every single hard-
ware operation in software imposes massive execution time overheads, this is not
observable by the SUT itself. Any latencies observable by the SUT are based on the
simulated hardware model, including cycle counts or simulated hardware timers.
Therefore, full-system simulators are generally suitable for tracing OS kernel execu-
tions, but massively impair test throughput due to the simulation overhead.

The third class of approaches (e.g., [Lan+14; ZKB13]) relies on Dynamic Binary
Instrumentation (DBI) or Dynamic Binary Translation (DBT). Such approaches typi-
cally use tools or frameworks such as Pin [Luk+05], Valgrind [NS07b] or DynamoRIO
[BGA03]. Similar approaches have been developed for OS kernels [BL07; FBG12;
Hen+14; KB13], but none of them have been used for execution tracing in SFI tests.
As TrEKer instruments kernel code during compilation, it is independent from ker-
nel modules that need to co-evolve with changing kernel interfaces. In this respect it
differs from the work of Feiner et al. [FBG12] or Kedia and Bansal [KB13]. Moreover,
approaches based on binary translation only work for the specific hardware archi-
tecture or architectures supported by the chosen framework and require adjustment
for others. PinOS [BL07], for instance, is limited to IA-32. The applicability of TrE-
Ker, in contrast, is not limited to any specific OS kernel or hardware architecture,
as long as the instrumentation target can be compiled for that architecture with
Clang/LLVM. As both PinOS and DECAF [Hen+14; Hen+16] rely on virtualization,
they cannot be applied for hardware-specific kernel code, such as device drivers, if
that hardware cannot be emulated by the underlying hypervisors.

2.2.2 Oracles for Kernel-Level SFI Tests

Due to the SUT and architecture specificity of available kernel tracing tools, SFI tests
for these SUTs commonly employ other, less accurate oracles.

Koopman et al. have introduced a classification of OS failure modes that they
consider relevant and implemented corresponding detectors in the Ballista project
[Koo+97]. Their classification comprises five different failure modes, collectively
referred to as the “CRASH scale”, where each letter of the acronym stands for a
failure mode:

20

2.2 Related Work

• Catastrophic failures are failures that render the entire system unusable, e.g.,
kernel panics or blue screens.

• Restart failures are cases where the OS silently stops responding to requests
made by the executing test case, also known as a system hang, which requires
a restart to resolve.

• Abort failures are cases in which the OS detects a problem and responds by
notifying the executing test, e.g., by signaling a segmentation fault.

• Silent failures denote the violation of the kernel’s specified behavior without
corresponding notification to the executing test.

• Hindering failures are failures that mislead debugging efforts, e.g., by return-
ing an incorrect error code.

Arguing that these are the most critical failure classes, Ballista and similar approaches
to OS robustness testing limit their oracles to the detection of the first three classes
of the CRASH scale [FX02; IVD15; JZ08; KKS98; Reg05].

In contrast, TrEKer focuses on the detection of silent or “non-crashing” failures,
such as Silent Data Corruption (SDC), which constitute a significant threat to reli-
ability [Cot+15; Lo+09; Lu+14; ZE13] and have been largely ignored by prior work
on OS level SFI tests. The reliable detection of restart failures requires kernel execu-
tion traces containing every single executed instruction. While TrEKer is capable
of implementing such a tracing policy, the required heavy-weight instrumentation
may result in performance degradation similar to the approaches discussed in Sec-
tion 2.2.1. We, therefore, limit the scope of our approach to the detection of error
propagation in the case of terminating test executions and employ existing timeout-
based detectors for restart failures.

While a number of tools (e.g. SystemTap [Sys] and LTTng [DD06]) exist to trace
the execution of OS kernel code using probes (cf. [Cot+13; KIT93a] for SFI tracing),
they are only capable of tracing function invocations and not individual memory
accesses. To identify how faults affect SUT state, i.e., the data the SUT operates on,
TrEKer selectively instruments memory operations that are invisible to these tools.

2.2.3 Trace Comparison

To detect error propagation, TrEKer compares traces of executions with injected
faults to golden run traces of the unmodified SUT. Trace comparison is also com-
monly used for fault localization. Wong et al. give an extensive overview [Won+16].
Such approaches typically compare traces of the same version of the SUT with dif-
ferent inputs to identify the root causes of behavioral divergences. Therefore, they
are not directly applicable to the scenario targeted by TrEKer.

21

2 Kernel Error Propagation Analysis

2.3 System Model

We propose an approach for identifying how faults in components in a monolithic
OS affect the rest of the system. To that end, this section starts with a brief overview
of the underlying fault taxonomy in Section 2.3.1, followed by a discussion of the
systems we consider and their component interactions in Section 2.3.2.

2.3.1 Faults and their Consequences

As noted in Section 2.1, we follow the fault taxonomy by Avizienis et al. [Avi+04].
We discussed this taxonomy in Section 1.2, so we limit ourselves to a brief recap
of the relevant concepts here. Any system or system component1 is assumed to
implement a system function according to a functional specification. The system im-
plements the system function as a sequence of states. The fraction of a system state
that is perceivable at the system’s interface is called the external state. The sequence
of external states implementing the system function is referred to as service and the
deviation of service from the functional specification is called a failure. The devia-
tion of an external state in the sequence that constitutes the service may be caused
by a prior deviation of the system’s internal state that is indistinguishable at the
interface from a correct implementation of the system function. Such a deviation
of the system state is called an error. The cause of an error is termed as a fault. By
these definitions, a fault is “something that possibly leads to an error”, an error
“something that possibly leads to a failure”, and a failure “a deviation of observed
behavior from specified behavior.”

When a fault causes an error, this is referred to as fault activation, and the effect an
error has on subsequent system states is called error propagation.

2.3.2 Monolithic Operating Systems and Composition

We assume that component-based, monolithic OS kernels can be seen as follows:

• There is a core part which provides essential functionality, such as basic pro-
cess and memory management and is, therefore, always necessarily present.

• All functionality outside of the core part is implemented by an arbitrary num-
ber of modules, including device drivers and file systems.

Modules can interact with one another or the core kernel through function calls,
thereby explicitly exchanging information via parameters and return values. Fur-
thermore, the system does not enforce any memory isolation between its compo-
nents. All modules and the core kernel share the same memory address space and

1We mean “system or system component” whenever we refer to “system” in this subsection.

22

2.3 System Model

can, in theory, freely access and modify each others data structures. Finally, mod-
ules can also access and modify any global data structures in the system. This lack
of isolation allows for implicit component interactions and exchange of information
outside of the explicit mechanism of function calls and return values.

Although the implementation we describe in Section 2.4 utilizes runtime loading
and unloading of kernel modules, the fundamental approach described here does
not conceptually rely on the availability of this functionality. TrEKer is equally ap-
plicable to a kernel that does not provide this functionality.

Due to the lack of runtime isolation or protection mechanisms, a faulty module
can affect other modules or the core kernel in a variety of ways. In particular, tracing
mechanisms that only consider parameters and return values of function calls can-
not capture differences in communication through shared memory. However, due
to the aforementioned lack of isolation, distinguishing between memory accesses
that constitute potential shared memory communication, particularly write accesses
by a faulty component, and those that do not is usually not straightforward with-
out examining the entirety of all other modules and the core kernel. However, the
result of such an analysis would be dependent on the particular modules present in
the system in question and changes to this configuration might well yield different
results. In practical terms, it would also incur substantial overhead and potentially
cause problems with performance or timing sensitive parts of the kernel. Therefore,
we limit our analysis to the faulty component itself and analyze which fraction of its
state can be expected to be accessible by any other component in the system, inde-
pendent from the actual system configuration. We denote this fraction of expected
externally visible behavior as the component’s interface. The interface includes pa-
rameters of function calls from and return values of function calls to the component
as well as memory accesses to locations that can reasonably be assumed to be used
for transmitting data to other components via shared memory. We detail in the fol-
lowing what we do and do not consider such interface relevant memory accesses
within a component targeted by our analysis.

Read accesses are not generally considered part of the component interface. If the
value that is read was previously written by the faulty module itself, the read access
is a purely internal operation and clearly does not constitute external communica-
tion. If, on the other hand, the value was written by another module, we do not
consider the read access itself to be behavior visible to other components: While a
faulty module may attempt to read from the wrong address, resulting in an unex-
pected value, this does not directly result in externally visible differences in behav-
ior. Cases where it has indirect influence (for instance, if the faulty module proceeds
to use the wrong value as a function parameter) will be captured under our notion
of interface at the point where the behavior in question becomes externally visible.
Finally, cases where a faulty module attempts to access an invalid address, such as
a null pointer, do potentially constitute externally visible behavior, but are already

23

2 Kernel Error Propagation Analysis

int global = 0;

void c_foo(int* x) {
 int a = 1;
 e_bar(&a);
}

void e_bar(int* y); {
 ...
}

void c_baz(int* z) {
 int c = 2;
 *z = c;
 global = c;
}

1

2

3

@global = global i32 0

define void @c_foo(int*)(i32*) {
 %2 = alloca i32*
 %3 = alloca i32
 store i32* %0, i32** %2
 store i32 1, i32* %3
 call void @e_bar(int*)(i32* %3)
 ret void
}

define void @c_baz(int*)(i32*) {
 %2 = alloca i32*
 %3 = alloca i32
 store i32* %0, i32** %2
 store i32 2, i32* %3
 %4 = load i32, i32* %3
 %5 = load i32*, i32** %2
 store i32 %4, i32* %5
 %6 = load i32, i32* %3
 store i32 %6, i32* @global
 ret void
}

Figure 2.1: Three different cases in which write accesses can be externally visible, in C and
simplified LLVM IR.

captured by existing error detectors and typically result in a system failure, such as
a kernel panic.

Local write accesses are store operations to addresses that are not known to any
components other than the faulty one. Most notably, this includes accesses to stack-
allocated local variables unless their address is passed to another component (either
directly, e.g., as a function parameter or implicitly by writing it to another externally
visible memory location). Access to regions of memory that are allocated and freed
without ever being referenced in an externally visible manner (that is, as with stack
addresses, passed to external functions or written to externally visible addresses)
in between also fall into this category. Such accesses are not considered externally
visible for the purposes of our analysis and are therefore not deemed part of the
component interface.

Externally visible write accesses are store operations to addresses that are known to
components other than the faulty one. This includes all addresses that are passed to
the module from another component, for instance as a parameter or return value, as
well as globals and addresses belonging to memory that has been allocated by the
module itself but then communicated to other components. As mentioned above, it
also includes all memory addresses that are reachable by following pointers from
another externally visible address.

24

2.3 System Model

Of these three categories, the one most relevant for our analysis is the last one,
externally visible write accesses. We distinguish between three different cases of
external visibility of write accesses:

1. Writes to an address that the component passes to another component or to
addresses that are reachable from such an address;

2. Writes to an address that was passed to the component by another component
or to addresses that are reachable from such an address;

3. Writes to global variables or to addresses that are reachable from a global vari-
able.

These three cases are illustrated in Figure 2.1. In the first case, a function in the
component (c_foo) writes to a variable (a) and then passes the address of that vari-
able to an external function (e_bar). Should the external function dereference that
address, the result of the written value would be accessible to it. Note that we do not
inspect whether such an access actually occurs as that would require instrumenting
the external component itself with the associated drawbacks discussed above, we
just check whether it is possible. In the second case, a function in the component
(c_baz) has received a pointer (z) as an argument and writes to that address. If the
caller of c_baz is an external function (e.g., e_bar), that write access is visible to
that caller. In the final case, a function in the component writes to a global variable
(global). As global is visible to all components in the system, this write access
is also externally visible.

In all of these examples, the external visibility of the stores in question is fairly
straightforward to recognize, requiring at most one pointer dereference. However,
more complicated cases exist, for which we introduce the following notion of reach-
ability: An address p is directly reachable from an address q in the following cases:

1. p is stored at q (i.e. *q = p).

2. q is the base address of a data structure (e.g., an array or struct) and p is the
address of a member of that data structure (e.g., p = &(q->foo)).

An address p is indirectly reachable from an address q if there is an address r such
that p is directly reachable from r and r is reachable (either directly or indirectly)
from q.

We consider the externally visible behavior of a component at its interface with
the rest of the operating system to consist of the values of parameters passed to func-
tions outside the component, the values returned to callers outside the component,
the externally visible memory addresses it writes to and the values it writes to them.

Error propagation occurs when a faulty component exhibits externally visible be-
havior that a fault-free version of the same component will never exhibit under the
same workload.

25

2 Kernel Error Propagation Analysis

2.4 TrEKer: Tracing Error Propagation in OS Kernels

The implementation work required to realize our proposed approach comprises two
essential parts: An instrumentation tool capable of gathering the information re-
quired to fully capture the externally visible behavior of a target component and an
analysis tool to perform the filtering and transformations required to distinguish
between the cases described in Section 2.3. We describe these parts in Section 2.4.1
and Section 2.4.2, respectively. Trace comparison is described in Section 2.4.3.

2.4.1 Component Interface Identification and Instrumentation

The purpose of the instrumentation phase is to gather all the information required
to reconstruct an accurate model of the externally visible behavior of the target com-
ponent. To that end, the instrumentation needs to capture the addresses and values
of memory accesses as well as function call targets, parameters and return values.
Function call instrumentation needs to be performed both on the caller side, when
the target component calls functions in other components, as well as the callee side,
when other components invoke functions of the target component. This is neces-
sary to determine when control flow enters or exits the target component, and to
track the associated parameters and return values.

In order to avoid limiting TrEKer to a specific OS or architecture, we have decided
to implement compile time instrumentation as an LLVM [LA04] optimization pass,
allowing us to support native execution on a various different architectures.

As an LLVM optimization pass, the instrumentation step operates on LLVM IR,
a Static Single Assignment (SSA) representation. Unlike x86 assembly, only a small
number of LLVM instructions operate on memory, most notably theload andstore
instructions. In addition to the memory accesses themselves, the instrumentation
also needs to capture accesses to fields of data structures, or more specifically the
computation of their addresses based on the base address of the data structure. In
LLVM, this is typically modeled by the getelementptr instruction.

Furthermore, the instrumentation should capture basic tracing information, such
as function entry and exit, arguments and return values. Therefore, it also handles
function calls (caller-side), function entry and function exit (callee-side).

Finally, TrEKer is designed for OS kernel components, necessitating a way to in-
strument inline assembly which is common in kernel code. Attempting to parse
and process inline assembly directly suffers from many of the same drawbacks that
make binary instrumentation an unattractive choice for kernel tracing, including
lack of portability across different architectures and significant added complexity.
We would lose the portability advantages gained by choosing to build our imple-
mentation on LLVM. In practice, and particularly in the Linux kernel, we find that
inline assembly is usually specified using extended inline assembly syntax. Such
extended inline assembly statements take a list of input and output variables and

26

2.4 TrEKer: Tracing Error Propagation in OS Kernels

clobbers. The instrumentation can rely on these arguments and constraints to ex-
tract which memory addresses may be read from or written to by the inline assem-
bly without parsing it directly. Based on this information, instrumentation can be
performed as it would be for load or store instructions. This allows us to retain
the portability enabled by LLVM without foregoing instrumentation of assembly
code entirely.

For each of the instrumentation points identified above, the instrumentation pass
inserts a function call with the first argument indicating its type. The subsequent
arguments differ for the different types of instrumentation points. In addition to
memory addresses and values, the information passed to the function also includes
static type information (e.g., whether a value is of a pointer type) and hashes of
global variable names where applicable. This way, later analysis steps (e.g., the trace
analysis described in Section 2.4.2) can identify pointer values in the trace without
having to rely on heuristics, such as checking whether a value belongs to a previ-
ously seen address range (as in [Lan+14]).

The instrumentation pass inserts calls to a function inst_wrapper. For our ex-
periments on Linux kernel modules, we applied a patch to the Linux kernel that
implements a stub for this function and a kernel module that, once loaded, handles
the logging at instrumentation points. Prior to loading this runtime kernel module,
the kernel stub is effectively a no-op, allowing the instrumented module to function
even when the runtime has not been loaded. This lets us measure the overhead of
instrumentation on its own, separately from the cost incurred by the actual logging.
For other application scenarios, such as user-level code, different implementations
of the runtime, for instance in a library, would be possible as well.

When the runtime module is loaded, it sets up a function pointer which is then
used by the inst_wrapper function to call the actual logging implementation.
That implementation uses printk to output information at each instrumentation
point in order to enable reliable tracing even in cases where the target may crash.
For other use cases, a trivial performance optimization would involve caching trace
data in memory to reduce the number of calls to printk, or relying on other mech-
anisms to transfer logging data from the kernel.

2.4.2 Trace Analysis

We have implemented a trace analysis tool that is capable of performing the reach-
ability analysis for externally visible write accesses that we have described in Sec-
tion 2.3 as well as deriving symbolic values for the addresses of memory accesses
in order to facilitate comparisons between traces. We first describe our implemen-
tation of the reachability analysis, followed by our symbolic address generation.

27

2 Kernel Error Propagation Analysis

Reachability

In Section 2.3, we have introduced a notion of reachability which incorporates both
reachability through pointers as well as through access to member fields of data
structures. Our implementation of reachability analysis applies this notion to in-
dividual execution traces. First, we split the trace based on the function calls it
contains. For each function call, we extract the caller, arguments, return value and
called functions. For calls to internal functions, we additionally extract the trace en-
tries generated during that function call. This results in a tree structure in which
nodes represent dynamic instances of function calls and edges represent a caller-
callee relationship.

Next, we perform the aforementioned reachability analysis for each of the three
different cases in which stores performed by the instrumented component may be
externally visible.

For the first case, writes in the component that are reachable from arguments
passed to an external function, we first identify each node representing a call to an
external function taking at least one pointer argument in the aforementioned tree.
Then, for each such node, we iterate backwards over the preceding trace entries
until we encounter another node representing an external function call. During this
traversal, we build up a separate graph which we term the reachability graph from
the encountered trace entries as follows:

• For load or store entries, check if the address node has an outgoing edge repre-
senting a previously seen load or store from that node, and if so, skip this trace
entry. This way, we only take the most recent load or store into account. Oth-
erwise, if the read or written value is a pointer, add an edge from the address
node to the value node.

• For data structure member access entries (i.e. getelementptr instructions
in LLVM IR — we omit other forms of pointer arithmetic at this stage), add an
edge from the source (i.e. base address) to the destination (member address)
node.

Non-existent address nodes are created on demand during the construction of
the reachability graph.

In this reachability graph, we identify the set of nodes (addresses) that are reach-
able from any of the nodes representing pointer arguments passed to the external
function. This set of addresses is a subset of the addresses that are visible to the
external function, and for each of these addresses, the last write access is deemed
visible to the external function. An illustration of a graph for this case can be seen in
Figure 2.2: The stack-allocated struct s_baz is accessible via the pointer p passed to
the external function and both of the stores to its members are visible to the called
function.

28

2.4 TrEKer: Tracing Error Propagation in OS Kernels

For the second case, writes in the component to global addresses or addresses
reachable from them, we iterate over the trace, constructing a reachability graph as
follows:

• For load or store entries, if the address node already has an outgoing edge
representing a read or write access, remove it so that we only take the most
recent load or store into account. Add an edge from the address node to the
value node.

• For data structure member entries, add an edge from the source to the desti-
nation address.

• Mark global addresses when they are encountered and annotate the corre-
sponding node.

In this reachability graph, we identify the set of nodes that are reachable from any
node annotated as representing a global variable. As in the first case, write accesses
operating on any of these addresses are deemed visible to the external function.

For the third case, writes in the component that are reachable from arguments
passed by an external function, we identify each node representing a call to an ex-
ternal function that in turn calls functions provided by the component. This cor-
responds to any external function node (including the root node) in the tree that
has internal function child nodes. Then, for each component function (that takes at
least one pointer argument) called by such an external function, we iterate over all
trace entries belonging to that function node and its child nodes, performing an in-
order traversal of a sub-tree with the component function at its root. The traversal
is stopped when we encounter another external function node. During this traver-
sal, we once again build up a reachability graph, in the same manner as for global
addresses, apart from annotating nodes representing global variables. We identify
the set of nodes that are reachable from any node representing a pointer argument
passed by the external function, and as in the previous cases, deem the last write
accesses to any of these addresses visible to the external function.

Symbolic Addresses

To compare traces from different executions, where absolute addresses may differ, a
mechanism to map concrete addresses to symbolic addresses is required. We gener-
ate symbolic addresses from reachability graphs similar to the ones described pre-
viously. A symbolic address consists of an anchor point, and a path starting from
that anchor point. For writes in the component that are reachable from arguments
passed by an external function and writes that are reachable from a global value
(the second and third cases discussed above), symbolic addresses use the argument
or the global variable as the anchor point and the shortest path from there to the

29

2 Kernel Error Propagation Analysis

struct s_baz {
int x, y;

};

void c_foo(int* x) {
 struct s_baz s;
 struct s_baz* p;
 s.x = 0;
 s.y = 1;
 p = &s;
 e_bar(&p);
}

define void @c_foo(int*)(i32*) {
 %1 = alloca %struct.s_baz
 %2 = alloca %struct.s_baz*
 %3 = getelementptr %struct.s_baz, %struct.s_baz* %1, i32 0, i32 0
 store i32 0, i32* %3
 %4 = getelementptr %struct.s_baz, %struct.s_baz* %1, i32 0
 store i32 1, i32* %4
 store %struct.s_baz* %1, %struct.s_baz** %2
 call void @e_bar(s_baz**)(%struct.s_baz** %2)
 ret void
}

%2

p

%1

s

%4

s.y

%3

s.x

Figure 2.2: An example of a reachability graph and the corresponding code snippet. Solid
lines indicate values stored at an address, dashed lines indicate offset calculations. Writes
to s.x and s.y are visible to e_bar.

address that was written to as the path. If, for instance, a pointer x is passed to
the component, and the component writes to an address y that can be obtained by
dereferencingx and adding an offsetk, the resulting symbolic address isx *−→ k−→. For
writes in the component that are reachable from arguments passed to an external
function, symbolic addresses are created using a similar mechanism. In this case,
however, a set of anchor points consisting of return values of external functions,
stack allocations, global variables and the results of pointer arithmetic is consid-
ered. If an address is reachable from several anchor points, we compare the lengths
of the shortest paths from each anchor point to the address and pick the shortest
one. The same symbolification is performed for values of pointer types.

2.4.3 Trace Comparison

Assessing the impact of faults on visible write accesses requires a mechanism for
comparing traces of executions with activated faults to fault-free executions (golden
runs). Moreover, in order to minimize the impact of non-deterministic runtime be-
havior, we need to compare a faulty execution to a set of several fault free runs.
While this allows us to more precisely extract those differences between traces that
result from the activation of a fault (i.e. behavior that a fault-free implementation
would never exhibit), it also complicates the comparison process. We compare
traces using the following two-step approach:

30

2.4 TrEKer: Tracing Error Propagation in OS Kernels

Trace Merging

First, a set of traces from fault-free runs is processed in order to generate a merged
trace structure containing information about the addresses any execution writes to
as well as the addresses all executions write to, along with the corresponding values:

Let t1 and t2 be traces from two fault-free executions, both of which consist of
the same sequence of function calls and write to address a1, with the values being
v1 in t1 and v2 in t2. The resulting merged structure then contains a write access
a1 ← {v1, v2}. Furthermore, let t1 also write to address a2. The merged structure
then contains, separately, the set of addresses that all executions have written to
(Aall = {a1}) as well as the set of addresses that at least one trace has written to
(Aany = {a1, a2}).

Let t3 be a trace from a third fault-free execution which consists of a different
sequence of function calls. The addresses and values written by t3 are stored sep-
arately from those of t1 and t2. In order to support workloads which exercise the
target module using multiple threads or processes, merged structures are stored
separately for different threads and processes.

Trace Comparison

Next, this merged structure is used in a comparison with a faulty execution. Let
t f be a trace from such an execution. First, the threads or processes in t f need to
be matched to their counterparts in the merged structure. Since absolute thread or
process IDs may differ between executions, they do not form a reliable foundation
for such a mapping. They are also not applicable for kernel code that does not run
in process context, such as interrupt service routines. Instead, we perform the map-
ping by call sequence, looking first for exact matches. In cases where no exact match
is found, the trace exhibiting the previously unknown call sequence can either be ig-
nored so as to avoid introducing false positives, or a best effort comparison with the
known call sequence with the longest common prefix can be performed. We call the
former option strict mode as it provides stronger safeguards against false positives.
In the latter option, situations may arise in which several known call sequences have
the same longest common prefix length with the new call sequence. In this case, we
compare with all of them and report the results for the case in which we discover the
fewest divergences. Best effort comparisons are only performed over the common
prefix so that we never compare store visibility for different functions. The trace
comparison then checks for three different cases:

1. Is each address a f that t f writes to also written to in at least one fault-free
execution? In case it is not, the write to a f is deemed an additional write access.

2. Does t f contain writes to all addresses ai that every fault-free execution writes
to? If it does not, a write to such an ai is deemed missing.

31

2 Kernel Error Propagation Analysis

3. For the set of addresses that both the faulty and at least one fault-free execution
write to, is value v f written by t f contained in the set of values written by the
fault-free executions? If v f is not in that set, the write access differs from the
corresponding write accesses seen in fault-free runs.

Non-pointer values are not assigned symbolic counterparts during trace process-
ing but may in some cases take on different values even during most fault-free runs.
This can be the case with, for instance, addresses that are written as non-pointer
types, timestamps or random values. In order to minimize the number of false pos-
itives introduced by such cases, the comparison between faulty and fault-free runs
ignores any values that differed in a majority of fault-free runs (i.e. for which the
number of observed values is greater than half the number of fault-free runs) when
performing the third check above.

The numbers of missing, additional and differing stores are gathered separately
for the three cases of write access visibility, resulting in a total of nine combinations.

2.5 Experimental Analysis

In this section, we evaluate our approach by performing experiments with real-
world Linux kernel modules: a storage device driver and two file systems. The
research questions that we strive to answer in this evaluation are detailed in the
following Section 2.5.1. We then describe our SUT in Section 2.5.2. Section 2.5.3
covers the injection targets and Section 2.5.4 our choice of workload. We report on
our experimental results in Section 2.5.5.

2.5.1 Research Questions

In order to assess the suitability of TrEKer for SFI experiments on real-world kernel
code, we investigate the following research questions:

RQ 1 Is TrEKer a sound detector for error propagation?

RQ 2 Does TrEKer improve the soundness of SFI tests?

RQ 3 What are the overheads resulting from TrEKer’s instrumentation?

RQ 4 Does TrEKer’s instrumentation affect SFI test results?

2.5.2 SUT

Although TrEKer supports native execution, we perform our evaluation in a virtu-
alized environment to avoid frequent hard machine restarts due to system crashes
resulting from the tests. The toolchain we use in the experiments is illustrated in

32

2.5 Experimental Analysis

Figure 2.3. The guest system is Debian 8.6 running in QEMU 2.6.0. It is configured
with one CPU and 1 GiB of RAM and has virtual SCSI and NVMe devices attached.
KVM is enabled. The guest kernel is Linux 4.4.25, patched to support compilation
with Clang/LLVM (using a modified version of the patch set created by the de-
funct LLVMLinux project) and compiled with Clang/LLVM 3.9.1. The host system
is Debian 8.5 running the distribution-provided 3.16 kernel. All experiments are
performed using four parallel QEMU instances running on a host system equipped
with an i7-4790 CPU and 16 GiB of RAM. Experiment control and timeout detection
are handled by a controller running on the same host. The timeout value for all tests
is 45 seconds, excluding boot and setup time. In addition to the timeout mechanism,
we employ detectors operating on the serial output of the guest system to detect
error messages from the kernel. Our detectors distinguish between five different
classes of kernel error messages (Call Trace, GPF, BUG, Oops and Panic). We also
check exit codes during the workload execution to detect workload failures that did
not result in kernel error messages, resulting in a total of eight different experiment
result classes.

2.5.3 Injection Targets and Faultload Selection

We apply our proposed approach to three different, widely used Linux kernel mod-
ules:

1. f2fs, the Flash-Friendly File System, a file system specifically designed for
NAND Flash-based storage devices;

2. btrfs, a copy-on-write file system implementing various advanced features;
and

3. nvme, the kernel module providing support for NVMe devices.

For each of these modules, we perform the following series of steps:

1. We inject software faults using the SAFE tool [Nat+13] with default settings,

2. build the resulting module using our compile time instrumentation tool (Sec-
tion 2.4.1),

3. execute a workload that utilizes functionality provided by the module, and

4. observe the resulting effects during execution and via memory trace compar-
ison.

SAFE performs fault injection at the source code level using the G-SWFIT[DM06]
fault operators. We build and instrument the target modules with Clang/LLVM
3.9.1.

33

2 Kernel Error Propagation Analysis

Module

Instrumented
Module

Kernel

Runtime

QEMUExperiment
Control

&
Result

Detection

SSH serial console

Trace
Exp.
Log

Processed
Trace

Trace Analysis
Symbolification

instr.

Figure 2.3: The QEMU-based virtualized test environment and toolchain

We use prefix matching for btrfs and f2fs to maximize the usage of recorded
memory traces (see Section 2.4.3). As nvme directly interfaces with the system hard-
ware and, thus, has a higher exposure to non-determinism, we use the strict mode
to limit false positives resulting from this.

2.5.4 Workload Selection

All three modules in our study provide functionality related to file I/O. Two of them
(btrfs and f2fs) are file systems and the third one (nvme) provides support for an
interface standard for storage devices. This allows us to apply the same workload
to all three modules. Specifically, the workload consists of the following sequence
of steps:

1. Loading the target module and any other required modules;

2. Creating a file system (F2FS for the f2fs and nvme modules, BTRFS for the
btrfs module) on either an NVMe (nvme, f2fs) or SCSI (btrfs) device;

3. Mounting that file system;

4. Creating a new file and writing to it;

5. Creating a new directory;

6. Reading the file;

7. Removing the directory;

34

2.5 Experimental Analysis

8. Removing the file;

9. Unmounting the file system;

10. Removing the target module and all other modules that were loaded in the
first step.

The instrumentation is active throughout the execution of the workload (that is,
the runtime module is loaded prior to the first step and removed after the last step).

This workload exercises most commonly used file system features and, through
module insertion, device registration, I/O activity and removal, also exercises the
essential functionality of the nvme module.

2.5.5 Results

We report on the experimental results obtained with TrEKer and how they answer
the research questions posed in Section 2.5.1. The overall result distribution for runs
with activated mutation according to the simple detectors discussed in Section 2.5.2
is shown in Figure 2.4.

RQ 1: Soundness of TrEKer

To answer this question, we analyze if there are any spurious indications of error
propagation by comparing memory traces of SFI tests for which the injected muta-
tions have not been activated. In mutation-based SFI, there is a risk that the mutated
code fraction does not get executed during the test. As the injected faults cannot
have an effect on the correct execution of the workload in this case, any differences
in the memory traces are false positives since no error propagation can occur in
these cases. To reliably identify these tests, we track the execution of mutated code
by dedicated log instructions. We then use TrEKer to analyze their memory traces.
Any instances of error propagation indicated by TrEKer are false positives.

Figure 2.5 shows the number of trace deviations detected by TrEKer for differ-
ent numbers of golden runs used as comparison basis for runs with and without
mutation activation. The latter case represents false positives, which are indicated
by the dashed lines. For all three modules, we observe a false positive rate below
1 %. From Figure 2.5, we see that the number of detected trace deviations does not
change beyond 800 golden runs. Consequently, we use this number as a compari-
son basis in our further experiments to keep the false positive rate in the presented
results below 1 % and the comparison stable.

RQ 2: Soundness of SFI tests with TrEKer

Even if TrEKer is a sound detector, it only improves the soundness of SFI tests if silent
error propagation actually occurs in these tests. To assess if silent error propagation

35

2 Kernel Error Propagation Analysis

0.0

0.2

0.4

0.6

Success

Workload Timeout

Workload Failure

Call Trace
GPF Bug

Oops
Panic

Result Class

R
el

at
iv

e
Fr

eq
ue

nc
y

Module
btrfs (n=1981)
f2fs (n=3350)
nvme (n=1159)

Figure 2.4: Result distribution for runs with activated mutation

occurs and goes unnoticed in conventional OS-level SFI tests, we analyze TrEKer’s
memory traces for SFI tests that appear to complete successfully. To assess the suit-
ability of our approach for detecting divergences in the behavior of faulty versions
during such apparently successful runs, we examine the sets of SFI test traces with
fault activations which finished without any obvious error indication, i.e. the runs
that are marked as successful in Figure 2.4. We show the trace deviations found
by TrEKer in Figure 2.6 with overall rates ranging from 2.75 % (btrfs) to 10.1 %
(nvme). From the analysis of different visibility types we observe instances of at
least two different types of visibility for all modules. However, store visibility via
a global variable only occurs for nvme. We conclude that, although the different
types of visibility occur with different frequencies, analysis of all three is needed
to obtain a complete picture of differences in memory access behavior between ex-
ecutions. The significantly higher rate of propagation to the callee rather than the
caller is an interesting observation, as it indicates that errors tend to not propagate
directly to components that invoke functionality of the targeted modules (i.e., their
callers), but rather tend to spread further in the system, at least for the target mod-
ules and workload considered in our experiments. While a detailed study is needed
to substantiate such a result, this finding illustrates the insights that TrEKer fosters
and that traditional SFI oracles cannot provide.

36

2.5 Experimental Analysis

0.00

0.05

0.10

0.15

100 200 300 400 500 600 700 800 900 1000
Golden Runs

Tr
ac

e
D

ev
ia

tio
n

Ra
te

Module
BTRFS
F2FS
NVME (strict)

Mutation activation
activated
inactive

Figure 2.5: Result stability with increasing number of golden runs.

0.000

0.025

0.050

0.075

0.100

BTRFS F2FS NVME (strict)
Module

Re
la

tiv
e

Fr
eq

ue
nc

y

Visibility Type
total
callee
caller
global

Figure 2.6: Trace deviation rates for the three modules and different types of store visibility
when compared with 800 golden runs.

37

2 Kernel Error Propagation Analysis

Table 2.1: Compile-time overhead (OH) of instrumentation. User times are reported in sec-
onds.

Module Build type Median MAD OH

btrfs instr 71.86 0.21 1.7
uninstr 43.62 0.11

f2fs instr 14.07 0.14 1.4
uninstr 10.07 0.06

nvme instr 2.43 0.02 1.5
uninstr 1.62 0.02

RQ 3: Instrumentation Overhead

Static code instrumentation always imposes a certain overhead at both compile-time
and run-time. Compile-time overheads are caused by necessary additional code
analyses and instruction insertions. Run-time overheads, on the other hand, are
caused by the execution of the inserted additional instructions. To assess the over-
head associated with our instrumentation, we compare both compilation and execu-
tion times of TrEKer against native SFI test compilation and execution in different
instrumentation modes.

Compile-time Overhead: Using the GNU time utility, we measure the user time
that make needs for building instrumented and uninstrumented versions of our
faulty versions from a clean work space. Table 2.1 summarizes the median and the
Median Absolute Deviation (MAD) of user times. Column OH reports the overhead
factors (between median values) for compilation with instrumentation for all mod-
ules. In the median, the compile-time overhead ranges from a factor of 1.4 for f2fs
to a factor of 1.7 for btrfs. We deem these overheads as manageable in practice,
especially since compilation is often a one-time effort and the actual needed real-
time for compilation is much smaller than accumulated user time due to parallel
compilation capabilities of build tools like make.

Run-time Overhead: We run the same SFI tests using the full set of faulty versions
in three different modes:

1. Without instrumentation,

2. with instrumentation compiled into the faulty versions but disabled during
runtime,

3. and with active instrumentation.

We measure the durations of all workload executions that complete in all three
modes. Table 2.2 summarizes the median and the MAD of workload durations in

38

2.5 Experimental Analysis

Table 2.2: Run-time overhead (OH) of instrumentation. Workload durations reported in
seconds.

Module Mode Median MAD OH

btrfs
instrumentation active 2.714 0.139 2.5
instrumentation inactive 1.113 0.012 1.0
uninstrumented 1.109 0.008

f2fs
instrumentation active 1.951 0.061 19.3
instrumentation inactive 0.101 0.006 1.0
uninstrumented 0.101 0.006

nvme
instrumentation active 2.133 0.082 3.3
instrumentation inactive 0.656 0.009 1.0
uninstrumented 0.642 0.008

seconds of real time. Column OH reports the overhead factors (between median val-
ues) compared to the uninstrumented execution. The overhead for runs with active
instrumentation ranges from a factor of 2.5 for btrfs to a factor of 19.3 for f2fs.
We attribute the higher relative overhead for f2fs to the high concentration of log-
ging output in its mount routine. We expect to achieve a lower overhead for such
cases if data logging is changed to use a more efficient format rather than relying
on the kernel’s printk facilities. Execution with inactive instrumentation imposes
a negligible overhead. We observe the highest overhead for nvme with 14 ms. By
comparison, PinOS [BL07] overheads with inactive instrumentation range from a
factor of 12 to 120. DECAF [Hen+16] incurs a 15.2 % overhead with disabled instru-
mentation in addition to the overheads incurred by QEMU emulation. TrEKer, in
contrast, can run on bare metal configurations to avoid this overhead. We conclude
that, with TrEKer, instrumented modules could even be used in production, but
data logging should be enabled only for tests or execution periods of interest for
trace analysis.

RQ 4: Instrumentation Impact on SFI Test Results

As code instrumentation modifies the SFI target’s binary code and thereby poten-
tially its behavior, it is conceivable that the results of SFI tests are affected or even
invalidated by the instrumentation. In order to assess if such an effect is observable
for our approach, we compare the results of SFI tests with and without instrumen-
tation of the injection target using Fisher’s exact test for independence.

We use the same set of tests with the same three instrumentation modes that we
used to assess the run-time overhead in Section 2.5.5. We consider all tests with
activated mutation and compare the obtained result distributions for each module.
We use Fisher’s exact test to test the null hypothesis (H0) that “there is no association

39

2 Kernel Error Propagation Analysis

Table 2.3: p-values of Fisher’s test of independence of observed result distribution and in-
strumentation mode

Module p

btrfs 0.9834
f2fs 0.9978

nvme 0.8420

between observed result distributions and the instrumentation mode”. Table 2.3
reports the p-values obtained from Fisher’s test. With p ≫ 0.05 for all three modules,
we cannot reject the null hypothesis, i.e., there is no statistically significant evidence
that the instrumentation systematically changes the result distribution.

Nonetheless, in pairwise comparisons of executions of the same faulty version
with different instrumentation modes, we observe a small number of differences in
outcomes, which we investigate here. We focus on the comparison between runs
with activated instrumentation and uninstrumented runs and see a total of 79, 101
and 68 differences for btrfs, f2fs and nvme, respectively, amounting to 0.79 %,
1.11 % and 2.46 %. As it is the module that most frequently exhibits such diver-
gences, we discuss the nature of the divergences seen for nvme in some more detail:
In 26 of the 68 cases, we observe a timeout only for the run with activated instru-
mentation. We hypothesize that these are most likely cases of spurious timeout
detection, potentially a result of the overheads we discuss in Section 2.5.5. In a fur-
ther 21 cases, we observe neither a success nor a timeout but different failure modes.
For instance, there are several cases in which the uninstrumented run results in a
kernel panic whereas the run with activated instrumentation merely results in a ker-
nel oops before reaching the execution time limit. These are, once again, likely re-
lated to longer test execution times due to the instrumentation. We also observe two
cases in which the instrumented run completes successfully whereas the uninstru-
mented run does not, suggesting non-deterministic behavior by the faulty version.
Among the remaining 19 cases, we observe twelve in which the instrumented run
fails shortly after activating a mutation whereas the uninstrumented run does not
(our data does not reveal whether the mutation was activated during the uninstru-
mented run), six cases in which the instrumented run results in a failure after the
end of the workload execution and after removal of the runtime but prior to system
shutdown and finally one in which the uninstrumented execution times out but the
instrumented run does not.

We conclude that most of the differences in outcome we observe are related to
timeout detection and execution time limits and could be tackled by adjusting the
corresponding values at the cost of a lower test throughput, similar to what has been
reported in [Win+15].

40

2.5 Experimental Analysis

Threats To Validity

We identify the following threats to validity:

1. Non-determinism in the memory access patterns of the target modules that
can, even in the absence of faults, lead to divergences between execution traces
for the same workload;

2. Limitations of the presented approach for identifying visible stores, assigning
symbolic addresses and detecting divergences;

3. The choice of target modules, SUT and workload.

We take several measures to minimize the effects of non-determinism: We use
a large number of golden runs as a comparison base, assign symbolic values to
memory addresses (including pointers that are used as value rather than address
operands in load or store operations) to avoid non-determinism introduced by con-
crete address values, and handle different processes and threads individually as
opposed to explicitly tackling concurrency. The low false positive rates obtained in
our evaluation demonstrate the effectiveness of these measures.

TrEKer has several restrictions on the scope within which, for instance, store vis-
ibility is determined (e.g., only stores between the prior external function and the
current one are considered) or symbolic values are assigned (pointer arithmetic that
is not modeled by getelementptr instructions is not analyzed). These restrictions
result from the deliberately limited scope of our instrumentation and from perfor-
mance optimizations in the trace processing. Consequently, there may be visible
stores outside of the range considered by TrEKer or different memory addresses
that are assigned the same symbolic address. Such instances may result in the pro-
posed approach reporting fewer divergences than actually exist.

Finally, the evaluation targets three different kernel modules providing related
functionality, running on one kernel version and one system setup. Other categories
of kernel modules or other operating systems may behave in a significantly differ-
ent manner, and our results may not generalize. Furthermore, different workloads
could exercise different parts of the module. Long-running workloads, for instance,
may be expected to spend less time executing parts of the module for which the in-
strumentation is particularly expensive, such as module insertion, potentially lead-
ing to lower mean overheads. Furthermore, the likelihood of error propagation may
increase with longer workload running times. We believe that TrEKer is applicable
to a wide variety of usage scenarios and our evaluation demonstrates the viability
of the approach.

41

2 Kernel Error Propagation Analysis

2.6 Conclusion

In this chapter, we have presented TrEKer, an approach for identifying how faulty
OS components can affect other parts of the system, even in the absence of exter-
nally visible failures. TrEKer enables tracing memory accesses in a target module
using compile-time instrumentation and achieves low instrumentation overheads.
We have presented a method for utilizing TrEKer to improve oracles for SFI exper-
iments targeting OS kernel components. An evaluation with several widely used
modules for the Linux kernel demonstrates the viability of the approach, finding
that conventional oracles would misclassify up to ∼10 % of seemingly successful
runs. The evaluation shows a false positive rate below 1 %.

42

3 Accelerating Software Fault
Injections

In Chapter 2, we described a method for assessing the effects of faults in kernel
modules in a monolithic operating system kernel. This approach allows SFI testing
of kernel modules with short workloads as potential instances of state corruption
can be detected without waiting for them to result in observable failures. Concerns
about SFI test latencies also apply to user space software, where they are driven
mainly by the large number of faulty versions that need to be executed due to the
increasing complexity of software components and libraries. We therefore need
to accelerate SFI experiments. To this end, we propose an approach called FastFI,
which speeds up SFI experiments in three different ways:

1. FastFI avoids redundant re-executions of the same code with the same inputs
across different faulty versions, thereby reducing the overall amount of work
that needs to be performed.

2. To make efficient use of the parallel computational resources available in mod-
ern systems, FastFI enables parallelizing SFI experiments by executing multi-
ple faulty versions of the same function in parallel.

3. By creating a single binary containing all faulty versions, FastFI reduces com-
pilation time as common code across different faulty versions is not repeatedly
re-compiled.

We demonstrate the applicability of FastFI with SFI experiments on applications
from the PARSEC benchmark suite. The contents of this chapter are based on mate-
rial from [Sch+18a].

3.1 Overview

Software is growing increasingly complex in all parts of the software stack. This
includes the OS kernel as well as common user space systems and application soft-
ware. Coping with the demands on developers that this increase in complexity
brings with it is challenging without relying on re-using existing code, frequently
in the form of off-the-shelf software components. This is cost effective and can ben-
efit system reliability, as such components are likely to be more thoroughly tested

43

3 Accelerating Software Fault Injections

than implementations of the same functionality developed from scratch. However,
this kind of software re-use can in some cases also have an adverse effect on system
reliability. Such cases arise when the component is used outside of the operational
contexts anticipated by its developers. Under conditions outside of its specification,
even correct software can malfunction in undesirable ways and adversely affect sys-
tem reliability. For instance, Leveson and Turner note improper software re-use
as a possible contributing factor in the Therac-25 accidents [LT93] in which several
people died due to radiation overdoses. Even outside of the realm of safety-critical
software, assessing the effects of software faults in parts of the software stack on a
software system as a whole is crucial to understanding its overall dependability. To
that end, SFI is a widely used technique [CN13; DM06; Voa+97].

As previously outlined in Chapter 1, SFI works by injecting faults into an injec-
tion target to create several faulty versions. These faulty versions are then executed
with a specific workload, and their behavior is monitored. SFI tools typically in-
ject faults by applying certain transformations to specified code patterns, such as
deleting a branch from an if/else-statement. These fault models [CB89; KIT93b;
Nat+13; Rod+99] are closely related to the mutation operators used in mutation
testing [Bud+80; DO91; JH11b]. For any such code pattern, a larger code base most
likely contains more locations in which it occurs. This means that there are also
more locations in which the specified transformations can be applied, which in turn
results in a larger amount of faulty versions. Executing more faulty versions natu-
rally requires longer execution times, hence overall SFI test latency increases for
larger projects. For complex projects, this can result in large numbers of required
experiments as reported in prior studies [Arl+02; Di +12; KD00; Nat+13].

Moreover, some studies investigating simultaneous fault injection have found that
certain dependability issues can only be revealed by combinations of multiple faults
that are injected at the same time [Gun+11; JGS11; Lan+14; Win+13]. Such ap-
proaches yield a combinatorial explosion in the number of possible faulty versions
and therefore in the number of required experiments. In practice, the number of
experiments required for exhaustive SFI testing with simultaneous fault injections
can quickly become infeasible.

As testing of complex software systems and testing with simultaneous faults are
both desirable, strategies to cope with these complexity issues are required. Two
fundamental classes of approaches can be distinguished:

1. Reducing the number of required experiments: It is possible to reduce SFI test laten-
cies by executing only a subset of experiments, which can be chosen with ran-
dom sampling, heuristics or search-based approaches [JGS11; JH08; Nat+13;
SAM08]. While the likelihood of such an approach missing a relevant test
case is highly dependent on the exact strategy that is chosen, any approach
that may miss failing tests is unsound.

44

3.2 Related Work

2. Increasing test throughput: The other class of approaches strives to reduce SFI
test latencies by increasing test execution throughput. This can be achieved
by accelerating the execution of individual tests, or by taking advantage of
modern parallel hardware and parallelizing SFI test execution [Dua+06; Las05;
OU10]. The overall effect of parallelization on SFI test latencies is limited by
the available parallelism and, like the first class, soundness issues may arise in
parallelization [Win+13], not due to leaving out relevant tests but rather due
to potential interference between concurrently executing tests.

Combinations of the two classes are, of course, also possible, and likely to be nec-
essary when, for instance, attempting to perform experiments using simultaneous
fault injections on a complex injection target.

We present an approach spanning both classes, which we call FastFI. Our ap-
proach aims to accelerate SFI experiments for user mode software. FastFI reduces
the number of executed faulty versions by not running experiments for faults in
functions not exercised by a given workload. For the remaining faulty versions,
FastFI speeds up execution by avoiding the re-execution of redundant code that is
common to multiple faulty versions, as well as enabling parallelization of SFI exper-
iments.

The rest of this chapter is structured as follows: We first discuss related work
in Section 3.2. Next, we present the design and implementation of our approach in
Section 3.3, followed by its evaluation in Section 3.4. Section 3.5 contains concluding
remarks for this chapter.

3.2 Related Work

In this section, we discuss prior work related to our FastFI approach, starting with
work on FI test throughput in Section 3.2.1. We then cover work on test paralleliza-
tion in Section 3.2.2, and finally work on avoiding redundant code execution in Sec-
tion 3.2.3.

3.2.1 Improving FI Test Throughput

Parallelizing experiment execution to increase FI experiment throughput has been
the subject of several prior studies [Ban+10; BC12; Han+10; Mah+12]. Parallel exe-
cution can be achieved using virtual machines [Ban+10; Han+10], which provide
strong isolation but also incur substantial overhead, potentially resulting in per-
formance interference [Win+13]. Using virtual machines is particularly costly if
setup and teardown are required for each test. A more lightweight isolation can be
achieved by using separate processes [BC12]. For FastFI, we choose to rely on pro-
cesses to avoid the overhead associated with a virtualization-based solution and to
take advantage of the process management functionality offered by the OS. Due to

45

3 Accelerating Software Fault Injections

this, FastFI is not applicable to kernel code but rather to software, including systems
software, running above the OS layer in user mode.

3.2.2 Test Parallelization

Test throughput is an issue outside of dependability and FI testing, and with the
rise of parallel hardware, test parallelization has been studied as a possible solution
[Sta00]. Parallelization approaches to improve test throughput have been applied to
regression testing [Kap01], testing distributed systems [Las05], and to perform unit
testing on cluster hardware [Par+09]. Other recent approaches have investigated
cloud-based parallel testing or Testing-as-a-Service, both for test execution [Yu+09;
Yu+10] and for static program analysis [CBZ10; Cio+10; Mah+12; SP10].

A common assumption in earlier work on test parallelization is that test cases are
generally independent, that is, they do not influence each other and can therefore be
executed in parallel or sequentially in an arbitrary order [Dua+06; Mis+07; OU10;
Par+09]. More recent work has shown that this assumption is incorrect for several
test suites [CMd17; Zha+14]. For this reason, newer approaches have been devel-
oped that take potential dependencies between tests into account [Bel+15; Gam+17;
LZE15]. Using information about potential dependencies between tests, such ap-
proaches can schedule parallel test execution in a manner that avoids altering re-
sults compared to sequential execution in the original test suite execution order.

In our approach, FastFI, we handle potential dependencies between SFI tests due
to the shared file system at runtime, and otherwise rely on process isolation to avoid
interference between test executions. This way, each process has its own address
space and file system issues are handled by the runtime, so interferences between
test cases can only arise due to either performance interference or due to other, ex-
ternal resources beyond the file system, for example if a test were to communicate
over the network. This is a stronger isolation than is commonly assumed for paral-
lel correctness testing, but nonetheless weaker than the isolation achieved by virtual
machine-based solutions.

3.2.3 Avoiding Redundant Code Execution

As noted before, FastFI is not purely a parallelization technique. Our approach
also increases test throughput by avoiding the repeated, redundant re-execution
of code that is shared between several SFI test cases. With VmVm, Bell and Kaiser
propose an approach to analyze test suites to determine which data is modified by
each individual test, allowing the test suite executor to only reset that part of the
system state [BK14]. This way, resets are faster and heavy isolation mechanisms can
be avoided. FastFI avoids re-execution of redundant code paths that are shared by
many SFI tests and avoids executing faulty versions with faults that the workload
would not activate. These ways of reducing execution time are specific to FI testing,

46

3.3 FastFI Approach

and do not apply to the unit testing scenario targeted by VmVm. With FastFI, we do
not attempt to reduce isolation between test cases to improve performance. Rather,
we aim to use the most lightweight isolation possible that is still sufficient to safely
execute SFI tests in parallel.

3.3 FastFI Approach

In this section, we describe the design and implementation of FastFI, our approach
to accelerating SFI test execution. We first give an overview of FastFI and the as-
sociated workflow in Section 3.3.1. We then describe the FastFI execution model
in Section 3.3.2. Next, we discuss the parallelization strategy and the necessary
control logic in Section 3.3.3. The static analysis required for FastFI is covered in
Section 3.3.4. We then discuss the technical limitations of our approach in Sec-
tion 3.3.5. Implementation details of our prototype implementation are described
in Section 3.3.6.

3.3.1 Overview

For FastFI, we assume the same basic workflow for SFI tests outlined in Chapter 1 as
our starting point: A number of faulty versions of the target are generated, typically
containing a single fault each, and compiled. Each faulty version is then executed
and their behavior during execution is monitored. This usually involves external
experiment control logic that schedules the execution of the faulty versions — in the
common case, this can be as straightforward as running each of them sequentially
— and monitors the outcome of the SFI tests. In the absence of more sophisticated
oracles like TrEKer, this monitoring typically involves checking whether the target
crashed, timed out, indicated an error, or finished successfully.

The key difference between this conventional workflow and FastFI is that, with
our approach, the generated faulty versions are no longer compiled and executed
separately. Rather, we integrate all faulty versions into a single test executable. To
do so, we first generate faulty versions as usual. These are then grouped by the
functions in which the faults are located. Other groupings, such as at the basic
block level, would also be possible, but may limit parallelization opportunities or in-
cur greater runtime overhead. We believe function-level grouping to be an obvious
choice for procedural languages and our results suggest that it is effective, as shown
in Section 3.4. For each function, each faulty version is extracted and included in the
target program, along with an unmodified copy of the original function. The orig-
inal function is then replaced with FastFI runtime logic. This runtime logic takes
over the responsibilities of the experiment control logic in conventional workflows:
When the execution reaches a point where a faulty version of a function needs to be
chosen, the runtime logic picks a version to execute, forks a new process to execute

47

3 Accelerating Software Fault Injections

SFI

Tool

S
o

u
rc

e
 C

o
d

e

…

P
a

tc
h

 F
il

e
s

FastFI

Static Analysis

Version Library Generation

Control Logic Generation

V
e

rs
io

n
 L

ib
ra

ry
M

o
d

if
ie

d
 S

o
u

rc
e

In
te

g
ra

te
d

E
xe

cu
ta

b
le

1

2

3

Figure 3.1: Overview of the FastFI workflow.

the faulty version, and monitors execution outcomes. With this approach, no exter-
nal control logic is required. The integrated executable contains all faulty versions
and all necessary control logic to execute and monitor a complete set of SFI tests for
a given target.

An overview of the FastFI workflow is shown in Figure 3.1. The original source
code is first processed by an SFI tool to generate a set of patches, one for each faulty
version. For our experiments, we use the SAFE SFI tool [Nat+13], but FastFI is able
to work with any SFI tool that can generate patch files in the unified diff format and
only modifies a single function at a time. Both the original source code and the set
of patch files are then provided as input to the FastFI tool, which processes them in
three steps:

1. Static Analysis: In this step, FastFI extracts function location information from
the input source code, parses the patch files, checks whether each patch mod-
ifies exactly one function, and then performs the mapping of patches to mod-
ified functions.

2. Version Library Generation: In the second step, FastFI applies each patch to
its corresponding function to obtain the resultant faulty version. All faulty
versions and a copy of the original version of each function are collected in a
library which can then be compiled into the target program.

3. Control Logic Generation: In the final step, FastFI replaces each original func-
tion for which at least one faulty version exists with runtime control logic.

The result of this process is a modified version of the input source code containing
FastFI control logic for all functions for which faulty versions were generated as well

48

3.3 FastFI Approach

as a library containing all faulty and original versions of the same set of functions.
Once the modified source code and the version library are compiled, the result is an
integrated FastFI test executable, capable of performing a complete set of SFI tests
without external control logic.

3.3.2 FastFI Execution Model

As briefly described above, FastFI merges all faulty versions along with the control
logic required for SFI experiments into a single executable. This entails a novel ex-
ecution model unlike the one used in conventional SFI testing. In this section, we
describe and contrast both the conventional execution model and the novel execu-
tion model introduced with FastFI.

Conventional Execution

In conventional SFI testing, each faulty version is compiled and executed separately.
This execution model is illustrated in Figure 3.2, where an example in which five
tests are executed is shown. The figure shows function-level execution traces for
each execution. The fi denote the different functions that are executed. f ′i denotes
a faulty version of fi, and f ′′i another faulty version of the same function. The first
trace represents a golden run, an execution of the original software without injected
faults. This trace shows functions f1 through f5 being invoked in order. The second
and third traces represent executions of SFI tests in which a fault was injected in
f5, whereas the last two traces represent executions in which faults were injected in
f4. Each trace can only contain at most one faulty version of one function, although
that faulty version may be invoked multiple times. Moreover, a trace containing a
faulty version of a function must not also contain the original version of the same
function.

In Figure 3.2, all five traces start with the same sequence of functions, f1 through
f3, up to the point where a faulty version of a function is first invoked. We term this
the common execution prefix. If we consider only the first three traces, they share a
longer common execution prefix, encompassing f1 through f4. Once a faulty version
of a function has been executed, the sequence of functions in the execution trace
can differ from the golden run and other faulty executions as an activated fault can
arbitrarily alter the program state, thereby affecting control flow. For example, in
the fourth trace in Figure 3.2, f5 is not invoked anymore, and f6 is executed instead.
This illustrates that, although multiple SFI tests share a common execution prefix,
a common postfix cannot be assumed to exist. Not spending time on repeatedly
re-executing common execution prefixes is a core part of the improvements FastFI
offers over conventional SFI test execution. We detail how FastFI can avoid these
redundant re-executions in the following section.

49

3 Accelerating Software Fault Injections

Common Prefix

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5′ …

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 …

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5′′ …

𝑓1 𝑓2 𝑓3 𝑓4′′ 𝑓5 …

𝑓1 𝑓2 𝑓3 𝑓4′ 𝑓6 …

(1)

(2)

(3)

(4)

(5)

Figure 3.2: Conventional Execution Model. fi denote functions and f ′i denote faulty versions
of a function.

FastFI Execution

What sets FastFI apart from the conventional execution model for SFI tests is that
FastFI does not re-execute the common execution prefix for each faulty version. This
is possible because FastFI executables contain all faulty versions of the target pro-
gram. This makes it possible to choose the faulty versions to be executed at runtime,
on demand, when a function for which such faulty versions exist is executed for the
first time. An example of the FastFI execution model is shown in Figure 3.3. Sim-
ilarly to Figure 3.2, the illustration shows function-level execution traces. Unlike
in the conventional execution model, the common execution prefix consisting of f1
through f3 is only executed once. This execution takes place in the master process,
which schedules the execution of faulty versions of functions, but never executes
such a faulty version itself. When the master process reaches a function for which
faulty versions exist for the first time, the FastFI control logic for that function is
invoked. This control logic then forks new child processes, shown by the thicker
gray arrows in Figure 3.3, each of which executes a single, specific faulty version.

In the example shown in Figure 3.3, the master process executes f1 through f3.
Once it reaches f4, a function for which two faulty versions exist, the FastFI control
logic is invoked, which forks a new process each for f ′4 and f ′′4 . The fork system call
creates an exact copy of the calling process, so the newly created child processes
start at the same point in the execution trace at which the master process forked
them. They then resume execution, and execute f ′4 and f ′′4 , respectively. As these
faulty versions are executed in separate processes, they are isolated from the mas-
ter process and each other through the process isolation provided by the OS. While

50

3.3 FastFI Approach

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5′ …

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 …

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5′′ …

𝑓1 𝑓2 𝑓3 𝑓4′′ 𝑓5 …

𝑓1 𝑓2 𝑓3 𝑓4′ 𝑓6 …

(1)

(2)

(3)

(4)

(5)

Common Prefix

Figure 3.3: FastFI Execution Model. fi denote functions and f ′i denote faulty versions of a
function. The thicker gray arrows represent process forks.

this means that they have completely separate address spaces, it does not prevent
interference between processes due to shared external resources. The most common
example for this are interferences arising from multiple processes attempting to op-
erate on the same file or files. To mitigate this, the FastFI control logic performs file
descriptor manipulation and sets up I/O redirection when a new child process is
forked.

Once all faulty versions of f4 have finished executing, the master process resumes
its own execution and invokes the fault-free version of f4. When it reaches f5 it once
again forks new child processes for each faulty version, waits for them to finish, and
then continues executing. This continues until the master process has executed the
entire workload. As the master process itself never executes any faulty versions,
its own execution trace corresponds to a golden run. Moreover, for every function
executed by the master process for which faulty versions exist, all faulty versions
have been executed. Therefore, all reachable faulty versions have been executed.
Faulty versions of functions not encountered by the master process, on the other
hand, have not been executed. This is how FastFI can reduce the amount of faulty
versions that need to be tested. Note that this happens entirely dynamically, so a
new workload — which may invoke different functions — can be executed without
requiring any new analysis or a new integrated executable.

By reducing the amount of faulty versions that are executed and by avoiding the
redundant re-execution of common execution prefixes, FastFI can reduce the over-
all amount of work that needs to be performed to execute a complete set of SFI tests.
Additionally, FastFI can further reduce SFI test latencies by taking advantage of
modern parallel hardware and executing SFI tests for the same function in parallel.
In the example shown in Figure 3.3, f ′4 and f ′′4 can be executed in parallel, as can f ′5

51

3 Accelerating Software Fault Injections

𝑓𝑖 Control

Logic
𝑓𝑖3
𝑓𝑖2

…

𝑓𝑖𝑝

𝑓𝑖1

Control

Logic
𝑓𝑖𝑝+3
𝑓𝑖𝑝+2

…

𝑓𝑖𝑛

𝑓𝑖𝑝+1

Control

Logic
𝑓𝑖𝑜𝑟𝑖𝑔…

…

…

…

…

…

…

…

…

…

Figure 3.4: FastFI Parallel Execution. The example illustrates the execution of all n versions
of function fi using parallelism degree p in two groups.

and f ′′5 . Since each faulty version is executed in its own process to ensure address
space isolation, applying parallelization is straightforward and does not incur ad-
ditional overhead. We describe the parallelization strategy used by FastFI in detail
in the following section, along with the control logic FastFI utilizes to schedule and
monitor the execution of faulty versions.

3.3.3 Scheduling & Monitoring of Faulty Versions

During the generation of a FastFI integrated executable, the function body of every
function for which faulty versions exist is replaced with the corresponding FastFI
control logic for that function. That control logic is responsible for scheduling faulty
versions at a given degree of parallelism as well as monitoring the execution out-
comes. A customized version of this control logic is generated for each function.

Parallelization Strategy

To parallelize SFI test execution with a given degree of parallelism p, FastFI dy-
namically splits all faulty versions of each function in groups of size p. The degree
of parallelism is a runtime parameter and can be altered for each execution of the
integrated FastFI executable. As illustrated in Figure 3.4, when FastFI execution
reaches a function fi for which n faulty versions exist, the control logic is invoked,
which then forks up to p new processes at the same time. Once this group of faulty
versions has finished executing, the control logic logs the execution outcomes and
forks the next group. This is repeated until all faulty versions of the function have
been executed. In the example shown in Figure 3.4, this is the case after the second
group has finished executing. At that point, the control logic invokes the original
version of fi, and the master process resumes processing the workload.

52

3.3 FastFI Approach

The groups of faulty versions that are scheduled for parallel execution are gener-
ated by partitioning the set of available faulty versions into subsets of size p. The
final subset may be smaller if the total number is not evenly divisible by p. These
subsets are then executed one after another. The total execution time for all faulty
versions of the function is therefore the sum of the longest execution time of each
subset. To keep overall execution time short, and make efficient use of the available
computational resources, it is desirable for faulty versions in the same subset to
have similar execution times. As execution times are not known ahead of time, they
cannot be taken into account when partitioning the set. However, we have made
the experience that faulty versions of the same function, generated with the same
mutation operator, often exhibit similar execution times. We therefore partition the
set of faulty versions based on the mutation operator used to generate them.

Control Logic

As noted above, during the generation of an integrated FastFI executable, the func-
tion body of each function for which faulty versions exist is replaced by customized
FastFI control logic. A copy of the original function body is included in the version
library and invoked by the control logic once all faulty versions have been executed.
Original versions are also used by child processes executing faulty versions of other
functions as only one faulty version is active in each such process.

We provide a simplified version of the control logic for a function f in Figure 3.5.
The control logic starts by first checking whether the FastFI execution model should
be used in line 2 or whether the execution of a single, specific faulty version has
been requested. In the latter case, that function is called in line 21 and no further
actions are performed. This mode exists to facilitate testing the behavior of specific
faulty versions under various workloads without requiring separate compilation or
recompilation.

The former case, in which the FastFI execution mode is requested, is somewhat
more complex. Its implementation can be found in lines 3 to 19. As the FastFI im-
plementation is fork-based, the master process and all forked child processes share
the same code. The control logic therefore needs to distinguish in what context it is
currently executing.

To that end, it first checks whether it is currently executing in a child process in
line 3, and, if so, whether the current function f is the active function (line 4), that
is, whether f is the function for which a faulty version should be executed. If it
is, the active faulty version is called in line 5. Otherwise, execution resumes with
the original version in line 7. In both cases, the control logic passes through the
arguments passed to f and returns the return value of the called function.

If, on the other hand, the control logic determines that it is the master process,
the desired behavior depends on whether f has already been seen during the cur-
rent execution. The control logic checks this in line 10. If f is encountered for the

53

3 Accelerating Software Fault Injections

1: function f(args)
2: if in_fastfi_mode then
3: if in_child then
4: if is_active(f) then
5: return invoke_version(f, args, active_version)
6: else
7: return invoke_version(f, args, original_version)
8: end if
9: else

10: if !seen(f) then
11: subsets← partition_faulty_versions(f)
12: for all subset ∈ subsets do
13: fork_faulty(subset, args)
14: wait_for_children
15: end for
16: set_seen(f)
17: end if
18: return invoke_version(f, args, original_version)
19: end if
20: else
21: return invoke_version(f, args, requested_version)
22: end if
23: end function

24: function fork_faulty(subset, args)
25: for all faulty_version ∈ subset do
26: if fork == 0 then
27: if fork == 0 then
28: set_in_child(true)
29: set_active_version(faulty_version)
30: return invoke_version(f, args, active_version)
31: else
32: monitor_execution(faulty_version)
33: exit(0)
34: end if
35: end if
36: end for
37: end function

Figure 3.5: FastFI Control Logic for a Function f

54

3.3 FastFI Approach

first time, the control logic proceeds to partition its faulty versions into subsets. It
then iterates over those subsets and calls the fork_faulty function to execute and
monitor the faulty versions, which we will cover in more detail below. The master
process waits for all faulty versions to finish executing, notes that the current func-
tion has been handled, and then invokes the original version to resume execution
in line 18. If f is encountered again later on in the execution, the check in line 10
ensures that the master process will call the original version without forking again.

The implementation of the actual forking logic can be found in lines 24 to 37. Here,
the master process iterates over all faulty versions in the current subset and, for
each version, calls fork (line 26). Once this is done, the master process returns. The
newly forked processes, which we term monitor processes, then promptly fork again
in line 27 to create the process that will actually execute the faulty version. As shown
in lines 28 to 30, the newly created process keeps track of the fact that it is a child
process, sets the appropriate faulty version, and then resumes by executing that
faulty version with the same arguments originally provided to f and returning its
return value. Meanwhile, the monitor process waits for that execution to finish in
line 32, where timeouts, error detection, and result logging are also handled. The
monitor process then exits.

3.3.4 Static Analysis & Version Library Generation

To insert the control logic in the appropriate places, map faulty versions to functions,
and generate a library of faulty and original function versions, FastFI needs informa-
tion about the static structure of the input source code and the patches generated
by the SFI tool. Specifically, for each function, FastFI requires the line numbers
where the function is located, the number, names, and types of its arguments, and
its return type. For each patch, FastFI needs to know which lines it modifies, which
allows FastFI to ensure that the patch only modifies a single function and to map it
to that function.

Extracting information from the patches is straightforward as the unified diff for-
mat is easy to parse. To obtain the information required from the input source code,
we rely on an existing static analysis framework rather than attempting to imple-
ment our own parser. Using the information obtained from the input source code
and the patch files, FastFI generates a library of faulty and original functions by ap-
plying each patch and extracting a copy of the resulting faulty function. The copy
is given a unique name and added to the version library. The patch is then reverted
so no versions with more than one injected fault are generated and the next patch
applied. A copy of the original function is also added to the version library.

55

3 Accelerating Software Fault Injections

3.3.5 Limitations

We discuss the technical limitations of the FastFI approach in this section. FastFI
requires the fork system call as specified by POSIX [IEE18], or a way for running
processes to clone themselves with similar semantics, to function. The fork system
call enables very fast duplication of running processes, but it also imposes some
limitations. In particular, multi-threaded programs cannot be cloned with fork as
only the calling thread is forked, and the resulting process is only allowed to per-
form a limited set of operations. For this reason, FastFI is not directly applicable to
multi-threaded software which does not include a single-threaded mode.

There are circumstances in which a SUT may behave differently in the FastFI ex-
ecution mode. This is the case, for instance, if aspects of its behavior depend on
process attributes, such as the Process ID (PID), which normally remain constant
over the life of a process, but, from the perspective of the SUT, can change in the
FastFI execution mode. The same applies to software that makes use of explicit time
information as performance in the FastFI execution model may differ, and the mas-
ter process can remain paused for a significant amount of time if a large number of
faulty versions need to be executed. Residual faults in the SUT can also manifest
differently between FastFI and the conventional execution model, for example due
to differences in the memory layout of the generated executables.

While the process isolation used by FastFI provides isolated address spaces for
each faulty version, it does not prevent interferences due to external resources. FastFI
takes steps to handle open files but any SUT that interacts with, for instance, network
connections or hardware devices would require additional measures to prevent con-
flicts.

3.3.6 Implementation

We have developed a prototype FastFI implementation that targets software writ-
ten in the C programming language which execute on POSIX systems. We use the
Coccinelle [INR18; Pad+08] for our static analysis as it can be scripted to provide
the information FastFI requires about the input source code. Our prototype itself is
implemented primarily in Python. As we show in our evaluation in Section 3.4, it
is capable of handling real world software.

We note that, while our prototype is currently limited to software written in C,
this limitation is not inherent to the approach. With appropriate SFI tools and static
analysis frameworks, FastFI could also be applied to, for instance, target programs
written in C++ or Rust.

56

3.4 FastFI Evaluation

3.4 FastFI Evaluation

To evaluate the applicability and performance of the FastFI approach, we apply our
prototype implementation to four real world applications taken from a widely used
benchmark suite and written in C. We apply FastFI to these target applications and
investigate the following research questions:

RQ 1 Can FastFI reduce test execution latencies for sequential SFI tests?

RQ 2 How do increasing degrees of parallelism affect the execution speedup
FastFI can achieve?

RQ 3 Do SFI test results remain stable when using FastFI with increasing de-
grees of parallelism?

RQ 4 How much can FastFI reduce build times compared to conventional, sep-
arate builds?

3.4.1 Experimental Setup

In the following, we describe the execution environment for our experiments, the
evaluation targets we chose, and how we conducted our experiments.

Execution Environment

All our experiments are conducted on a system that is equipped with a first genera-
tion AMD Ryzen 7 processor with eight physical and 16 logical cores. It is equipped
with 32 GiB of main memory and a 1 TiB SSD. The system is running Debian Buster,
with a Linux 4.16 kernel provided by the distribution.

Evaluation Targets

As evaluation targets, we choose four applications from the widely used PARSEC
benchmark suite 3.0 [Bie11; Pri09]. A brief overview of the chosen target applica-
tions is given in Table 3.1. They are representative of different application domains
and all of them are written in C, which is a requirement for our current prototype
implementation. PARSEC ships with different input sets or workloads as part of
the benchmark suite. We use the “simmedium” input sets in our SFI tests. This
input set is normally intended for simulations, not native execution, but due to the
large number of test cases required for SFI testing, we choose to use it rather than
the “native” input set as this allows us to complete our experiments in a reasonable
time frame.

57

3 Accelerating Software Fault Injections

Table 3.1: Overview of the four applications from the PARSEC suite used in the evaluation.

Application Description

blackscholes Numerical financial computations with the
Black-Scholes equation

dedup Data stream compression and deduplication
ferret Content-based image similarity search
x264 H.264/AVC video stream encoder

Table 3.2: Overview of the number of faulty versions generated by SAFE for each applica-
tion.

Application Faulty Versions

blackscholes 416
dedup 662
ferret 6157
x264 13368

Experiment Execution

In order to answer the research questions posed above, we take the following steps
for each of our evaluation targets:

1. We apply SAFE [Nat+13; Nat13], an SFI tool, to the target software to generate
set of mutation patches. Each of the patches generated by SAFE corresponds
to a faulty version that needs to be executed during SFI testing. An overview
of the number of generated patches for each of our evaluation targets is given
in Table 3.2.

2. We perform the static analysis described in Section 3.3.4. To this end, we apply
our Coccinelle-based static analysis tool to the evaluation target. We also parse
the patches generated in the previous step and perform the mapping between
functions and mutation patches.

3. We generate the version library by applying each mutation patch and extract-
ing the modified, faulty version of the function. We also save an unmodified
copy of each function to the version library.

4. We replace the original function bodies with FastFI control logic as described
in Section 3.3.3.

5. We build an integrated, FastFI-enabled executable using the PARSEC default
build configuration “gcc-serial”. This results in a single-threaded executable,
which is a requirement as outlined in Section 3.3.5.

58

3.4 FastFI Evaluation

1.3
1.5

3.6

2.3

0

1

2

3

4

blackscholes dedup ferret x264

Target Application

S
p

e
e

d
u

p
 F

a
ct

o
r

Figure 3.6: FastFI speedup relative to the conventional execution model for sequential exe-
cution. Error bars indicate minimum and maximum speedup.

Table 3.3: Percentage of and absolute reduction in the amount of faulty versions executed
during sequential FastFI execution.

Application % of Faulty Versions Reduction

blackscholes 100% 0
dedup 75.7% -161
ferret 47.9% -3206
x264 67.8% -4306

6. We perform SFI experiments using our integrated executables. Each experi-
ment is performed three times. We report averages.

3.4.2 RQ 1: Sequential Speedup

To investigate how FastFI impacts sequential SFI execution latencies, we compare
how FastFI performs without parallelization — that is, with a parallelization degree
p = 1 — to the performance we achieve by executing each faulty version on its
own, making use of the ability of integrated FastFI executables to execute a single,
specific faulty version as described in Section 3.3.3. In this mode, the faulty version
that should be executed is determined prior to execution, most of the FastFI control
logic is inactive, and no forking takes place. This means that executions in this mode
do not benefit from FastFI’s ability to avoid the repeated re-execution of common
execution prefixes or its ability to avoid the execution of faulty versions of functions
not triggered by the chosen workload. The resulting execution flow corresponds to
a conventional SFI test as described in Section 3.3.2.

59

3 Accelerating Software Fault Injections

As shown in Figure 3.6, sequential FastFI execution results in speedup factors
from 1.3 to 3.6. We see the highest speedup of 3.6× for ferret and the lowest
(1.3×) for blackscholes. As these are speedups achieved with sequential exe-
cution, they are the result of FastFI reducing the total amount of work performed.
FastFI achieves this by reducing the amount of faulty versions that need to be ex-
ecuted and by avoiding the redundant re-execution of common execution prefixes.
Table 3.3 shows the percentage of faulty versions executed by FastFI relative to the
total amount executed in the conventional execution model. We see reductions for
three out of the four benchmarks. In those cases, FastFI executes fewer versions than
the conventional execution model by skipping unreachable versions automatically.
The largest reduction in the number of executed versions is achieved for ferret,
where FastFI executes fewer than half of all faulty versions. This reduction is also re-
flected in the fact that ferret is the benchmark for which FastFI achieves the high-
est sequential speedup. x264 and dedup see the second and third largest reduction
in the number of executed faulty versions and correspondingly the second and third
highest sequential speedup. For blackscholes, FastFI executes all faulty versions
but still achieves a speedup of 1.3 over conventional execution. This reduction is a
result of FastFI’s ability to avoid re-executing common execution prefixes.

We conclude that FastFI is able to avoid the execution of faulty versions that are
not triggered by the workload and can effectively avoid re-executing common ex-
ecution prefixes. This allows FastFI to substantially speed up sequential SFI test
execution, with a best case speedup of 3.6 in our experiments.

3.4.3 RQ 2: Parallel Speedup

In order to determine how increasing degrees of parallelism affect the speedup
FastFI can achieve, we run FastFI-enabled SFI experiments on our four evaluation
targets with up to 32 faulty versions in parallel. Changing the degree of parallelism
between executions does not require new analysis or compilation as parallel execu-
tion is handled entirely by the FastFI control logic code. The speedups achieved
by FastFI at various degrees of parallelism relative to the conventional execution
model are shown in Figure 3.7. At p = 1, the speedups correspond to the sequential
speedups discussed in the previous section. With increasing degrees of parallelism,
the speedup increases further. At p = 16, which corresponds to the number of
available logical cores in the machine we use in our experiments, FastFI achieves
speedups of 7.6 to 20.6 relative to the conventional execution model. Relative to
sequential FastFI execution, the speedups are lower as the lower number of faulty
versions executed by FastFI and the avoidance of common prefix re-execution no
longer affect the speedup. In this case, the speedups range from 5.0 to 8.9. Going
beyond the number of available processor cores with p = 32 increases speedups
even further to 9.8 to 26.0 compared to the conventional execution model and 6.5 to

60

3.4 FastFI Evaluation

 1
.3

 2
.4 4
.3 7

.2 1
0

.6

1
1

.3

 3
.6 5
.5 8

.2 1
3

.1 1
8

.5

2
6

.0

 1
.5

 2
.5 3
.9 5
.8 7

.6 9
.8

 2
.3 4

.8 7
.4

1
4

.1

2
0

.6 2
3

.2

ferret x264

blackscholes dedup

1 2 4 8 16 32 1 2 4 8 16 32

0

10

20

30

0

10

20

30

Degree of Parallelism (p)

S
p

e
e

d
u

p
 F

a
ct

o
r

Figure 3.7: FastFI speedup relative to traditional execution model for increasing degrees of
parallelization (p). Error bars indicate minimum and maximum speedup.

10.0 compared to sequential FastFI execution. Note that FastFI achieves superlinear
speedups compared to the conventional execution model from p = 1 to p = 16. We
believe that further speedups can be achieved by adjusting the FastFI control logic
architecture to allow dynamic scheduling of faulty versions as opposed to the static
partitioning currently used.

Our results show that parallel FastFI execution can achieve significant speedups
over both the conventional execution model and sequential FastFI execution. In our
experiments, we achieved speedups of up to 26× for p = 32.

3.4.4 RQ 3: SFI Result Stability

As before, we configure FastFI to run at increasing degrees of parallelism from p = 1

to p = 32. By comparing SFI test outcomes across these different degrees of paral-
lelism, we can assess whether they remain stable or are altered by parallelization.
We distinguish between four different SFI test outcomes:

• Success: The application finished its execution successfully and without error
indications.

• Crash: The application crashed. This is detected by checking the status of the
child process after its completion.

• Error: The application terminated with an error indication. Like Crash, this is
detected by inspecting the status of the child process.

61

3 Accelerating Software Fault Injections

blackscholes (Success) blackscholes (Other Results)

dedup (Success) dedup (Other Results)

ferret (Success) ferret (Other Results)

x264 (Success) x264 (Other Results)

s 1 2 4 8 16 32 s 1 2 4 8 16 32

s 1 2 4 8 16 32 s 1 2 4 8 16 32

s 1 2 4 8 16 32 s 1 2 4 8 16 32

s 1 2 4 8 16 32 s 1 2 4 8 16 32

0

200

400

600

800

0

300

600

900

0

25

50

75

0

10

20

30

0

4000

8000

12000

0

1000

2000

3000

4000

0

100

200

300

400

500

0

100

200

300

Mode

C
o

u
n

t
Success Crash Error Timeout

Figure 3.8: SFI test results with FastFI using different degrees of parallelism (p = 1 to p = 32,
on the x axis) and sequential test results in the conventional mode of execution (“s”, also
on the x axis). Error bars indicate standard deviation.

62

3.4 FastFI Evaluation

• Timeout: The application did not finish processing the workload in time and
was terminated by the monitor process. For each target application, we set the
timeout to be 3× the duration of a normal, fault-free execution.

SFI test results for different degrees of parallelism are shown in Figure 3.8. For
the sake of readability, we show successful and non-successful runs in separate plots.
The columns labeled with “s” show the results of sequential, conventional SFI test
executions.

Looking at the successful runs on the left, it is apparent that the number of suc-
cessful runs in the conventional execution mode is higher than for FastFI with any
degree of parallelism for all benchmarks except blackscholes. This is due to the
fact that the conventional execution model performs a number of test executions
for faulty versions in which the fault never gets activated, which naturally results
in a successful test completion. FastFI does not execute such versions and therefore
performs fewer successful runs. This reduction in executed versions is shown in
Table 3.3.

For the other result classes, shown on the right, the results are stable up to p = 16

for all four target benchmarks. At p = 32, the number of timeouts rises for x264,
ferret, and dedup, and for x264, the number of timeouts varies substantially
across test runs. The number of crashes and errors, however, remain stable. For
blackscholes, all results remain stable at p = 32. As results remain stable up
to p = 16, which corresponds to the number of available logical cores on our ex-
periment setup, and the only effect at p = 32 is an increase in spurious timeouts
which could be mitigated by increasing the timeout duration, these results show
that FastFI parallelization does not adversely affect result stability.

We conclude that, with appropriate degrees of parallelism and sufficiently long
timeouts, using FastFI parallel execution can reduce SFI test latencies without af-
fecting result stability.

3.4.5 RQ 4: Build Time Speedup

To determine whether FastFI is capable of reducing build times in addition to exe-
cution latencies, we build an identical set of faulty versions once as an integrated
FastFI executable and once by building a separate executable for each faulty version.
We use incremental compilation when building the separate executables so that we
don’t give an advantage to FastFI by re-compiling the entire target benchmark for
every faulty version. Instead, only one compilation unit is re-compiled and the final
executable is linked again. This is a common approach for building separate bina-
ries in SFI testing. For both modes, the recorded time includes the time required to
apply and revert the mutation patches. For FastFI, the recorded time also includes
the generation of the version library and control logic.

63

3 Accelerating Software Fault Injections

Table 3.4: User build times for FastFI and separate executables.

Application Build Time (s) FastFI
FastFI Separate Speedup Reduction

blackscholes 2.91 26.11 8.97 23.2 s
dedup 18.47 88.96 4.82 1 min 10 s
ferret 57.94 809.10 13.96 12 min 31 s
x264 2062.90 21508.37 10.43 5 h 24 min 5 s

We report the measured user times in Table 3.4, along with the speedups achieved
by FastFI and the absolute reduction in user build time. FastFI achieves substantial
speedups over the conventional approach of building separate executables, rang-
ing from 4.82 to 13.96. Moreover, the two benchmarks with the longest build times,
x264 and ferret, also see the greatest benefit, both in terms of speedup and in
terms of time reduction. For x264, the reduction in build time amounts to more
than 5 h. The reason integrated FastFI executables can be built more quickly than
separate executables is, as with the sequential execution speedups, that FastFI re-
duces the total amount of redundant work that needs to be completed. In the con-
ventional approach, an entire compilation unit needs to be re-compiled for every
faulty version and a new executable needs to be linked, even though just a single
function is different from the fault-free version. FastFI avoids this overhead since
the approach works at function granularity.

Our results show that integrated FastFI executables can be built significantly more
quickly than conventional, separate executables containing a single version each.
We achieve speedups of up to 13.96×, and build time reductions of up to 5 h 24 min.

3.4.6 Discussion

Our experimental evaluation of our prototype implementation shows that FastFI is
applicable to real world software. It can achieve sequential speedups of up to 3.6,
showing that it is effective at avoiding redundant code (re-)execution, both due to
inactive faults and common execution prefixes. Moreover, FastFI enables straight-
forward parallelization, which can yield further speedups. In our experiments, we
achieve speedups of up to 20.6 at p = 16 without adversely affecting result stabil-
ity. FastFI can also reduce compilation times substantially due to its function-level
granularity, achieving build time speedups of up to 13.96 in our experiments. We
conclude that FastFI is a viable approach for reducing both the compilation and
execution times required for SFI tests of real world software.

64

3.5 Conclusion

3.5 Conclusion

The increasing complexity of software at all levels of the stack entail an increasing
number of SFI experiments that are required for assessing its dependability. With
FastFI, we have developed an approach to accelerate SFI tests of user mode software
by combining several techniques:

1. FastFI avoids redundant re-executions of common execution prefixes and ex-
ecutions of faulty versions that the workload does not trigger.

2. FastFI enables parallelizing SFI experiments by executing multiple faulty ver-
sions of the same function in parallel, thereby taking advantage of modern
parallel hardware.

3. FastFI reduces compilation time as common code across different faulty ver-
sions is not repeatedly re-compiled.

Our evaluation on four applications from the PARSEC benchmark suite shows
that FastFI is applicable to real world software across different application domains.
It achieves both sequential and parallel execution speedups, substantially reduces
build times, and, given appropriate settings, does not affect result stability.

65

4 Accelerating Kernel Error
Propagation Analysis

Assessing operating system dependability remains a challenging problem, particu-
larly in monolithic systems. Component interfaces are not well-defined and bound-
aries are not enforced at runtime. This allows faults in individual components to
arbitrarily affect other parts of the system. SFI can be used to experimentally as-
sess the resilience of such systems in the presence of faulty components. However,
as discussed in Chapter 2, applying SFI to such systems raises its own set of chal-
lenges, such as the difficulty of detecting corruptions in the internal state of the sys-
tem. Although we have developed an approach to tackle this challenge, it requires
additional instrumentation which further increases SFI test latencies. In Chapter 3,
we presented an approach for accelerating SFI experiments on user space software,
which did not consider EPA instrumentation and was not directly applicable to ker-
nel code. In this chapter, we present an approach that leverages static and dynamic
analysis alongside modern OS and VMM features to reduce SFI test latencies for
OS kernel components in the presence of the instrumentation required for trace-
based EPA to enable efficient and precise detection of internal state corruptions.
We demonstrate the feasibility of our approach by applying it to seven widely used
Linux file systems. The contents of this chapter are, in parts verbatim, based on
material from [CSS20].

4.1 Overview

Monolithic OS kernels are large and complex software systems. While they do not
enforce boundaries or isolation between components at runtime, they are nonethe-
less commonly developed as collections of separate modules which may differ in
size and complexity and implement different kinds of functionality. Moreover,
modules, such as device drivers or file systems, may be developed and maintained
by separate teams of software developers, resulting in substantial differences in
code quality and, consequently, the number and density of faults in different mod-
ules. In order to assess the dependability of an operating system kernel in the pres-
ence of faulty modules, we need to analyze how such faulty modules can affect other
modules or the core system. A well-established technique for this purpose is SFI, in
which faults are deliberately injected into a module as described in Section 1.2. In

67

4 Accelerating Kernel Error Propagation Analysis

this way, a number of faulty versions of a module can be created, and the system
can be exposed to the potentially faulty behavior of the module to test how resilient
it is to such faults. To achieve this, normally, each faulty version is loaded, the sys-
tem is subjected to a test workload and the behavior of the system is monitored. If
the system fails, reports an error or its behavior otherwise deviates from a normal
execution, the faulty module has affected overall system behavior. It is, however,
more challenging to determine the test outcome if no such observable deviation
has occurred. This may be the case if the injected fault has not been activated by the
test workload, or does not affect system behavior or state under the specific work-
load. However, it may also be the case if the fault is activated and adversely affects
or corrupts the state of the system but the SFI experiment ends prior to the effects
of that state corruption becoming observable. In keeping with the Laprie taxon-
omy [Avi+04], we refer to instances in which faults in a module or component affect
other parts of the system as error propagation. Identifying instances of potential error
propagation requires EPA and is particularly important in the context of operating
system kernels, as these are typically long-running systems, and the limited test du-
rations typically used in SFI testing do not — and, due to the impact on test latency,
cannot — reflect that aspect of a realistic operating environment.

As described in Chapter 2, one way to tackle this issue is by introducing addi-
tional instrumentation to the faulty module and using that instrumentation to trace
the modifications that the faulty module makes either to the system state or to ex-
ternally visible parts of its own state. These modifications can then be compared
to those made by the non-faulty version of the same module, with the underly-
ing assumption that instances in which the behavior of the faulty version diverges
from the non-faulty version constitute potential error propagation. While this yields
promising results, it also introduces additional overhead, thereby further increasing
the already substantial SFI test latency, especially when instrumenting more com-
plex modules or executing longer workloads. Moreover, false positives are an issue
with this kind of detector since the system may exhibit non-deterministic behavior.

We investigate ways of mitigating the impact such instrumentation has on SFI test
latency. Long test latencies are a known problem with SFI tests and various means of
addressing them have been proposed. We give a brief overview of relevant work in
Section 4.2.1. Our proposed approach is conceptually related to one such technique
in particular, FastFI, which we describe in Chapter 3.

The rest of this chapter is structured as follows: First, we cover related work in
Section 4.2. We then give a more detailed description of our proposed approach
and prototype implementation in Section 4.3. Next, we discuss the experimental
evaluation of our approach in Section 4.4. We discuss our results as well as poten-
tial threats to validity in Section 4.5. Finally, we provide concluding remarks in
Section 4.6.

68

4.2 Related Work

4.2 Related Work

The goal of our approach is to reduce SFI test latencies for kernel code to improve the
practical applicability of error propagation analysis, which is often hindered by long
test latencies. Related work includes approaches for reducing fault injection test
latencies, which we cover in Section 4.2.1), more general work on test parallelization
that needs to tackle several related issues, discussed in Section 4.2.2, as well as work
on error propagation analysis, covered in Section 4.2.3.

4.2.1 SFI Test Latencies

Test latencies are a well known problem in fault injection and numerous approaches
to reduce them have been proposed. Most of these focus on parallelizing the execu-
tion of fault injection experiments using different isolation mechanisms to prevent
concurrent executions from interfering with one another.

D-Cloud [Ban+10; Han+10] is a cloud system that enables fault injection testing
of distributed systems using virtual machines to isolate the systems under test. We
also use virtual machines to isolate different SFI experiments from each other but
our work targets kernel code rather than distributed systems.

Other techniques rely on more lightweight process isolation to avoid the overhead
associated with the strong virtual machine isolation. This includes AFEX [BC12] as
well as FastFI, which we describe in Chapter 3. FastFI accelerates SFI experiments
by avoiding redundant executions of code that is common to multiple faults, avoid-
ing executions of faulty versions in which the fault location is never reached under
a given workload, and facilitating process-level parallelization of SFI experiments.
Unlike FastFI, we make use of the stronger isolation guarantees provided by vir-
tual machines, which allows us to apply our technique to more targets, including
kernel code, and lets us avoid the handling of potential resource conflicts on file
descriptors that FastFI requires.

While virtual machines provide strong isolation, executing multiple fault injec-
tion experiments in parallel can nonetheless affect results due to the impact of a
higher system load on test latencies, as shown in [Win+15]. In our evaluation, we
take care to choose appropriate timeout values for our workload to avoid such ef-
fects and compare results across different degrees of parallelism on the same hard-
ware.

4.2.2 Test Acceleration

Outside of the specific context of fault injection testing, numerous ways of speeding
up software testing in general have been investigated.

Many such approaches use parallel test execution and rely on the assumption
that test cases are independent and can therefore be executed in any order or concur-

69

4 Accelerating Kernel Error Propagation Analysis

rently without altering results (e.g., [Dua+06; Mis+07; Par+09]), but recent work has
shown that this assumption frequently does not hold in practice [LZE15; Sch+19]. A
related problem arises in fault injection tests, where executing tests in parallel may
also lead to interferences. Recent work investigating the feasibility of statically de-
tecting conflicts between software tests [Sch+19] is not applicable to fault injection
testing since it relies on each test having a distinct entry point whereas, in a typical
fault injection scenario, all tests use the same workload and hence the same entry
point.

FastFI, as discussed in Section 4.2.1, relies on address space isolation between
user mode processes and runtime handling of file descriptors and does not attempt
to tackle issues arising from multi-threaded targets or conflicts on other resources.
As we are targeting kernel code, this is isolation mechanism is not applicable and we
instead make use of the stronger isolation guarantees provided by virtual machines.

Besides parallelization, test execution can also be accelerated by avoiding redun-
dantly executing code multiple times and not executing unnecessary code. For
instance, VmVm [BK14] avoids unnecessarily resetting the entire system state be-
tween test executions by determining which parts of the system state each test af-
fects, and O!Snap [Gam+17] leverages disk snapshots to reduce test setup and execu-
tion times as well as cost in a cloud setting. Both FastFI and our work avoid repeat-
edly re-executing the entire workload by cloning system state at appropriate points,
but do so using fundamentally different methods: While FastFI relies on forking
a process, we clone VM instances as described in Section 4.3.3. This VM cloning
resembles the VM fork primitive described in SnowFlock [Lag+09], however, our
implementation does not require modifications to the VMM and is intended for
cloning VM instances on a single host machine rather than in the distributed or
cloud scenarios targeted by SnowFlock.

4.2.3 Error Propagation Analysis

Our work builds directly on TrEKer, our technique for tracing error propagation
in OS kernels by using execution traces at the granularity of individual memory
accesses as described in Chapter 2. We briefly summarize how TrEKer works in
Section 4.3.

Execution traces are commonly used to assess the outcome of fault injection tests
[APB14; TP13]. In this context, the execution of an unmodified system is traced one
or more times. These executions, called golden runs, are then used as an oracle that
executions in which faults have been injected can be compared against.

Execution traces can be collected in several ways. Some approaches rely on de-
buggers [Aid+01; CMS98], while others use full-system simulation [SPS09]. While
these techniques allow for fine-grained tracing and control over the system under
test, they also induce substantial execution overhead, particularly in the case of full

70

4.3 Approach

system simulation. If this overhead is not acceptable, DBI can be used to collect
traces (e.g., [Lan+14; ZKB13]). However, DBI is not straightforward to apply to
kernel code, and while several tools and frameworks exist [BL07; FBG12; Hen+14;
Hen+16; KB13], they have not been used to collect execution traces for fault injec-
tion tests. We follow the approach used in TrEKer, which relies on compile-time
instrumentation.

4.3 Approach

We propose an approach for efficiently and precisely identifying ways in which
faults in a component of a monolithic operating system affect other parts of that
system. We first provide a brief overview of the systems we are focusing on and
the ways in which their components interact in Section 4.3.1. Then, we explain how
error propagation analysis can be conducted in such a system in Section 4.3.2 and
how we aim to address the limitations of prior work. This leads to an overview of
our proposed approach in Section 4.3.3. We describe our implementation in Sec-
tion 4.3.4.

4.3.1 System Model

As in our work on OS kernel error propagation analysis described in Chapter 2, we
follow the Laprie taxonomy [Avi+04] which we outlined in Section 1.2. We provide
a brief recap here. We assume a component-based system in which each compo-
nent implements a function according to some specification, realized through the
externally observable part of its state, or its external state. Should that external state
deviate from its specification, a component failure has occurred, which may in turn
have been caused by a preceding deviation (error) in the part of the component state
that is not externally observable. The cause of such an error is called a fault, and the
process by which a fault causes an error is called fault activation. Alterations in sub-
sequent system states caused by an error are instances of error propagation.

As we focus specifically on monolithic OS kernels in our work, these abstract no-
tions map onto the systems we are studying as follows:

• The system is the OS kernel, and system components are individual kernel
modules. Kernel modules are conceptually separate entities implementing
distinct functionality, but no runtime isolation is enforced. We do not assume
the existence of an explicit specification for the function they are intended to
implement.

• A component’s external state or interface consists of data passed between the
component and the rest of the system either through function call arguments

71

4 Accelerating Kernel Error Propagation Analysis

and return values (in either direction) as well as shared memory communica-
tion. Since all components share the same address space, all memory accesses
constitute potential shared memory communication. We consider externally
visible write accesses, as defined in Chapter 2, to be instances of shared mem-
ory communication and use an augmented version of the TrEKer analysis to
identify them.

• We are focusing on permanent faults in the form of software bugs. We do not
consider transient or hardware faults.

4.3.2 Kernel Error Propagation Analysis

As noted in Section 4.3.1, we use a similar system model as in Chapter 2 and base
the error propagation analyses aspects of our approach on the TrEKer analysis pro-
posed there. However, the TrEKer approach suffers from certain limitations that we
address in this work, most notably the overhead caused by the required instrumen-
tation, which further exacerbates the problem of long test latencies in SFI testing.
Moreover, TrEKer requires a large number of golden runs to obtain stable results,
which in turn results in increased execution times to obtain these golden runs and
long analysis times to process them. Although TrEKer achieves a false positive rate
below 1 % with a sufficiently large number of golden runs, given the large num-
ber of faulty versions that SFI in complex kernel modules may yield, this can still
amount to hundreds of misclassified executions.

We propose an approach to reduce overall SFI test latency, while also requir-
ing fewer golden runs. Our approach is based on integrating all faulty versions
of a module into a single binary and leveraging fast VM cloning to avoid redun-
dant executions of common execution prefixes for different faulty versions, thereby
also reducing non-determinism between executions. We detail our approach in Sec-
tion 4.3.3.

4.3.3 Improving Kernel EPA with Fast VM Cloning

As mentioned in Section 4.1, our approach for reducing kernel SFI test latency is
conceptually related to that of FastFI, described in Chapter 3, which we briefly recap
here. We first summarize the execution model of FastFI in Section 4.3.3 and discuss
why it is not directly applicable to OS kernels, which are the target systems we focus
on in this work. We then describe our modified approach and its integration with
error propagation analysis in Section 4.3.3.

FastFI Summarized

FastFI can reduce improve SFI test latencies in three ways:

72

4.3 Approach

(a) F1 F2 F3 F4 F1
5

…

(b) F1 F2 F3 F4 F2
5

…

(c) F1 F2 F3 F1
4 F6 …

Common Prefix

Figure 4.1: The common prefix problem. Each Fi is a function and F j
i is the jth faulty version

of that function after fault injection.

F1 F2 F3 F4

F1
4

F2
4

F3
4

F5

F6

F5

…

…

…

…

Figure 4.2: The FastFI approach. The redundant re-execution of functions Fi in the common
prefix is avoided. FastFI executes each faulty version in a new process once the injected
function F : i j is reached.

1. FastFI avoids repeated executions of code paths which are shared by different
SFI tests and therefore faulty versions.

2. FastFI reduces the amount of executed faulty versions by automatically avoid-
ing the execution of faulty versions for which the given workload does not
activate the fault.

3. By facilitating parallelization, FastFI can take advantage of modern, parallel
hardware to accelerate SFI tests.

latencies by avoiding redundant, It is based on the insight that, in SFI testing, the
same workload is executed for each version, and prior to the execution reaching
the part of the code that a fault has been injected in, the same code is executed for
each version. We refer to this as the common prefix problem and show a simplified
example in Figure 4.1. In this example, three SFI test executions (a) – (c) are depicted
as function-level execution traces. Faulty versions of a function Fi are shown as F j

i .
The code in functions F1 through F3 is executed for each test even though it contains
no injected faults. The repeated execution is therefore redundant.

73

4 Accelerating Kernel Error Propagation Analysis

VM0 F1 F2 F3 F4 …

Controller

F1
4 F5 …

F2
4 F6 …

F3
4 F5 …VM1

VM2

1

2

3

4

Figure 4.3: Our enhanced approach. Each faulty version is executed in a separate VM, which
is started from a snapshot.

The solution proposed in FastFI is shown in Figure 4.2. Here, F1 through F3 are
only executed once and new processes are forked for each faulty version when a
function for which such versions exist is reached. While this approach can achieve
substantial speedups as described in Chapter 3, it is not applicable to kernel code
for several reasons.

First, FastFI uses forking to duplicate the state of the system under test at appro-
priate points during the execution. As we are studying kernel code, we cannot rely
on abstractions provided by the OS, such as processes. Due to this reliance on the
process abstraction, FastFI cannot handle multi-threaded code, the SUT must con-
sist of a single process, and it must not rely on external resources besides the file
system. While these are not insurmountable challenges for the systems FastFI has
been applied to, they render it inherently unsuitable for kernel code.

Secondly, FastFI integrates the entire control logic — which performs the forking,
monitoring and logging — in the SUT, which is not a desirable solution for kernel
code as it could impose substantial delays in timing-critical portions of the system
and impose additional technical challenges due to the lack of the availability of a
process abstraction.

Next, we describe how we address these limitations and how we integrate our
enhanced approach with error propagation analysis.

Fast VM Cloning

To overcome the limitations that render FastFI unsuitable for our target systems, we
propose a conceptually related approach that makes use of virtual machine snap-
shots rather than processes, reduces the amount of control logic embedded in the

74

4.3 Approach

system under test, and facilitates straightforward integration with trace-based error
propagation analysis.

The resulting approach is illustrated in Figure 4.3, which continues our earlier
example from Figure 4.2. The execution of the target system starts in a virtual ma-
chine, VM0, where, in keeping with the prior example, functions F1 through F3

are executed. When function F4 is reached, the system notifies the controller (1),
a separate process running outside the VM. The controller process is where most
of the control logic, which was embedded in the SUT in the FastFI model, resides
in our approach. At this point, the controller suspends the execution of VM0 and
instructs the VMM (we use QEMU [Bel17]) to take a snapshot of the system. The
controller then decides how many VMs to create based on the number of available
faulty versions of the current function and the desired degree of parallelism. It then
spawns the new VMs and resumes execution from the snapshot (2). In this exam-
ple, two parallel instances are used, VM1 and VM2, and they start executing F1

4 and
F2
4 . Execution is monitored by the controller, and once a VM finishes executing the

workload, it is once again suspended, the snapshot is loaded and the next faulty
version is executed. In the given example, VM1 finishes executing F1

4 , is restored to
the snapshot by the controller (3) and then executes F3

4 . One key advantage our
approach of not embedding control logic in the SUT offers is that we can resume
execution in VM0 even before all faulty versions have finished executing. Therefore,
in the given example, VM0 can resume executing the unmodified system as soon as
VM2 finishes and a CPU core becomes available (4). This is particularly valuable
in cases where a faulty version causes the system under test to hang until a timeout
detector is triggered as such cases no longer completely halt experiment progress,
giving our enhanced approach a performance advantage over the FastFI approach.
In addition to cloning virtual machines and scheduling the execution of faulty ver-
sions, the controller is also responsible for monitoring and logging experiment out-
comes. By the time VM0 and all other VM instances that have been spawned have
finished, every faulty version that is reachable by the given workload will have been
executed.

Our approach also allows for the integration of TrEKer-style EPA. We show this
by integrating the existing TrEKer implementation with our new approach by ad-
justing the TrEKer runtime to send trace entries to our controller and enhancing
the TrEKer trace processing to support the trace fragments generated in our modi-
fied execution model. This integration offers benefits besides performance improve-
ments which are particularly important due to the overhead incurred by memory
access tracing. In particular, since our approach avoids re-executing common pre-
fixes for different faulty versions as well as the original version of the system, the
execution trace fragments that have to be stored for later offline analysis are smaller
and there is no opportunity for traces to diverge prior to reaching the function con-
taining the fault due to non-deterministic behavior of the SUT. We study the impact

75

4 Accelerating Kernel Error Propagation Analysis

Kernel
Module

SFI Patches
Static

Analysis
Version
Merging

Logic
Generation

Instrumentation
Building &

Linking

Integrated
Kernel
Module

Figure 4.4: An overview of our implementation.

this has on the detection and false positive rates of the error propagation analysis
in Section 4.4.

4.3.4 Implementation

Our implementation consists of two parts. The first consists of the analyses and tools
required to obtain a single, integrated kernel module containing multiple faulty
versions. An overview of this process is shown in Figure 4.4. The second part is the
runtime logic, consisting of the controller and runtime kernel module.

Compile Time

We start by applying an SFI tool, SAFE [Nat+13; Nat13], to the target kernel mod-
ule, resulting in a number of patch files, each corresponding to a single faulty ver-
sion. Next, we need to determine for each such patch what function it modifies
and where that function is located in the original, unpreprocessed source code. We
use a custom GCC plugin to efficiently obtain function location information and
parse the patch files to create a mapping. With this information, we can then per-
form the version merging and logic generation steps as shown in Figure 4.4. First,
instead of creating a copy of the kernel module for each faulty version, we merge
all faulty versions into a single module by creating a copy of the modified function
for each such version. We also include a separate copy of the original function im-
plementation. Then, in the logic generation step, we replace the original function
implementation with a small amount of runtime logic to determine which version
should be executed. Unlike FastFI, this does not include any logic for orchestrating
or monitoring the execution of different faulty versions. Rather, our support logic
just calls out to a runtime support module, which in turn communicates with the

76

4.3 Approach

controller as shown in Figure 4.3 as required. We then instrument, build, and link
the resulting code. By only instrumenting after merging all faulty versions, we can
avoid redundant instrumentation overhead resulting from instrumenting the same
code multiple times. This yields a single, integrated kernel module which is fully
instrumented and contains all faulty versions.

Runtime

The runtime part of our implementation consists of two main parts: The first is the
controller as shown in Figure 4.3, which runs on the host and is responsible for
spawning VMs, controlling parallelism, monitoring experiment outcomes, and log-
ging tracing information. The second is the runtime module, which is implemented
as a kernel module that is loaded in the experiment VMs and enables communica-
tion between the controller and the experiment VMs as well as providing logging
interfaces to the instrumented kernel modules and providing supporting function-
ality to the version select logic described above.

We implemented the controller as a Rust program which manages the VMs for SFI
experiments and performs experiment result detection and logging. While one goal
of our implementation is to achieve fast VM cloning, which is a crucial factor in real-
izing the speedups we are aiming for, we choose not to use a custom VMM to keep
the applicability of our approach as broad as possible. Instead, we use QEMU and
rely on its existing snapshotting functionality, along with a file system providing
CoW functionality on the host, to quickly clone VMs. This lets our implementation
take advantage of the mature implementation, numerous features and supported
emulated devices of QEMU while still achieving high performance when cloning
VMs.

The runtime module is a Linux kernel module written in C. It provides an inter-
face to the integrated kernel module to aid in version selection and handles com-
munication with the controller over a VirtIO serial device. It also passes the log
messages required for trace-based EPA to the controller over the same interface. Us-
ing a VirtIO device for logging, rather than, for instance, SSH, as in Chapter 2, lets
us keep overhead as well as noise on the system to a minimum.

At runtime, when the original VM (VM0 in Figure 4.3) reaches a function for
which faulty versions exist, the following sequence of events happens:

1. The version selection logic in the integrated module calls the runtime module
and provides the number of faulty versions that need to be executed.

2. The runtime module notifies the controller and blocks until a response is re-
ceived.

3. The controller stops VM0 and takes a snapshot.

77

4 Accelerating Kernel Error Propagation Analysis

4. Depending on the desired degree of parallelism P, the controller creates up to
P copies of the file containing the VM snapshot. To ensure that this step is per-
formant, it is necessary that the snapshots are kept on a file system supporting
lightweight CoW copies. In our implementation, we use a RAM-backed XFS
file system.

5. The controller creates a workqueue for the faulty versions of the current func-
tion and spawns controller threads for each new VM, which in turn start
QEMU processes, load the snapshots, send a response to the runtime mod-
ule indicating which faulty version to execute, and monitor the resulting exe-
cution to determine the SFI experiment outcome. These threads also log the
tracing data relayed to them by the runtime module.

6. Depending on P, the controller either resumes VM0 or waits until at least one
of the spawned VMs has finished executing.

When VM0 reaches another function for which a faulty version exists, this process
is repeated. It is not repeated if VM0 reaches the same function again or if one of the
spawned VMs reaches a function with faulty versions. This ensures that at most one
faulty version is active in any VM and none are active in VM0. When VM0 reaches
the end of the workload and the controller detects that the experiment is complete,
it waits for all spawned VMs to complete and terminates.

4.4 Evaluation

We evaluate our approach by applying it to seven real world Linux file systems.
We provide a list of the file systems along with a description of our experiment
setup and workloads in Section 4.4.1. The research questions we intend to answer
in this evaluation are detailed in Section 4.4.2. Experimental results are reported in
Section 4.4.3

4.4.1 Experiment Setup

We first describe the execution environment we use for our experiments. We then
cover our evaluation targets and the workloads we use for our experiments.

Execution Environment

We conduct our experiments on the following two machines:

S 1: The first system is equipped with an AMD Threadripper 2990WX CPU with
32 physical and 64 logical cores, 128 GiB of RAM and a 1 TB NVMe SSD.

78

4.4 Evaluation

S 2: The second system is equipped with an AMD Threadripper 2970WX CPU
with 24 physical and 48 logical cores, 64 GiB of RAM and a 1 TB NVMe SSD.

Both systems run Ubuntu 19.10. We use QEMU 4.0.0 as the VMM for our exper-
iments, with KVM acceleration enabled. All SFI experiments are conducted on S 1,
while S 2 is used to generate and build faulty versions and perform error propaga-
tion analysis.

Evaluation Targets

We apply our technique to 7 Linux file systems. An overview of the target file sys-
tems is given in Table 4.1. All file systems are extracted from Linux 5.0.

The virtual machines we use to run our SFI experiments are configured with 1
vCPU, 2 GiB of RAM and a qcow2 disk that is used by QEMU for snapshots but not
used by or visible to the guest system. All files required for our experiments with
integrated kernel modules are placed in the initramfs, along with BusyBox 1.28.1.
The VMs run Linux 5.0. We use a custom kernel configuration that supports the
required VirtIO functionality used in our logging and controller implementation. To
keep scheduling and timing non-determinism, and noise in general, on the system
to a minimum, we disable preemption and run a tickless kernel. Since our approach
assumes that each VM only has a single CPU core, we also disable SMP support in
the kernel.

When we perform experiments using individually built faulty versions of kernel
modules, placing all required files in initramfs would not be feasible, and regen-
erating the initramfs for each experiment execution would entail excessive per-
execution overheads. Instead, we provide a read-only virtfs share to the VMs
which contains all required kernel modules. For experiments comparing our ap-
proach to conventional SFI test execution with separate faulty versions, we use the
same kernel as in experiments with our approach and we take a VM snapshot after
boot but prior to workload start to avoid having to reboot the VM for each experi-
ment.

Evaluation Workloads

Even though all our evaluation targets are file systems, we cannot use identical work-
loads across all of them. This is due to the fact that some of the included file systems
are read-only, whereas others differ in their supported feature set. We use the fol-
lowing workloads in our experiments:

• Read-write: This is the workload we use for full-featured file systems. It en-
compasses module insertion, file system mounting, a variety of common file
system operations such as directory listing, file creation and deletion, reading

79

4 Accelerating Kernel Error Propagation Analysis

Table 4.1: Overview of the Linux file system kernel modules used in the evaluation.

Module Description LOC

hfsplus General purpose journaling read/write FS 9111
isofs CD-ROM read-only FS 2922
ntfs General purpose journaling FS, limited

read/write
17021

overlayfs Union mount read/write FS 7086
romfs RomFS EEPROM read-only FS 722
squashfs Compressed read-only FS 2791
vfat General purpose read/write FS 6328

and writing, unmounting, and module removal. It is used for hfsplus and
vfat.

• Limited read-write: We use this workload for our experiments with the ntfs
file system as the kernel module does not support file creation. The workload
resembles the regular read-write workload apart from the omission of the file
creation step.

• Read-only: This is the workload we use for read-only file systems. It encom-
passes module insertion, mounting, common file system operations for read
only file systems (i.e., directory listing and reading), unmounting, and module
removal. This workload is used for isofs, romfs, and squashfs.

• Overlay: This is the specialized workload we use for the overlayfs file sys-
tem. All other workloads operate on prepared file system images, but this is
not applicable for the overlayfs file system. Therefore, we use this special-
ized workload. The functionality it exercises resembles the read-write work-
load, but it does not make use of a prepared image.

4.4.2 Research Questions

To evaluate the impact our proposed approach has on the performance and pre-
cision of kernel SFI and error propagation analysis, we investigate the following
research questions:

RQ 1 Can our approach speed up sequential SFI test execution?

RQ 2 Can our approach speed up parallel SFI test execution?

RQ 3 How does our approach affect the number of executed faulty versions?

80

4.4 Evaluation

Table 4.2: Number of executed and activated faulty versions in each execution mode.

Module

Classic Execution Integrated Execution
Executed Activated Executed Activated

Abs Rel % Abs Rel % Abs Rel % Abs Rel %

hfsplus 2885 100 1228 42.56 1814 62.88 1235 68.08
isofs 1519 100 799 52.6 1246 82.03 799 64.13
ntfs 7158 100 2432 33.98 4997 69.81 2438 48.79
overlayfs 4180 100 1527 36.53 2117 50.65 1527 72.13
romfs 289 100 250 86.51 272 94.12 250 91.91
squashfs 1107 100 654 59.01 929 83.92 654 70.4
vfat 3210 100 1468 45.7 1960 61.06 1468 74.9

RQ 4 Can our approach reduce build times for SFI experiments?

RQ 5 Does our approach affect SFI result validity?

RQ 6 How does our approach affect detection rates and false positives in error
propagation analysis?

4.4.3 Results

In the following, we report our experimental results. Apart from the reported build
times, all reported numbers are averages over three repeated executions.

RQ 1: Sequential Speedup

To determine whether our approach can speed up sequential SFI test execution, we
compare sequential execution times between our approach and the conventional ex-
ecution model using faulty versions with TrEKer instrumentation. The speedups
achieved by our approach over the conventional execution model are shown in Fig-
ure 4.5. For sequential execution, the relevant numbers are the speedups reported
above the bars for a degree of parallelism of 1 for each target file system. The
speedups we achieve range from 1.32× for squashfs to 2.45× for overlayfs. As
we do not make use of parallelism here, these speedups are entirely the result of the
ability of our approach to execute fewer faulty versions and its ability to avoid the
common prefix problem discussed in Section 4.3.3.

Our approach outperforms the conventional execution model for all file systems
in our evaluation. We achieve speedups from 1.32× to 2.45× and conclude that our
approach is capable of speeding up sequential SFI test execution.

81

4 Accelerating Kernel Error Propagation Analysis

3
0

m
 3

6
s

2
1

m
 0

8
s

1
5

m
 2

9
s

1
0

m
 4

8
s

7
m

 5
1

s

5
m

 2
7

s

4
m

 1
6

s

3
m

 0
2

s

3
m

 0
8

s

2
m

 0
6

s

2
m

 2
1

s

2
m

 0
2

s

1.45x 1.43x 1.44x 1.41x 1.49x 1.15x

5
h

 2
1

m
 5

6
s

2
h

 1
1

m
 3

3
s

2
h

 3
9

m
 1

9
s

1
h

 0
6

m
 4

8
s

1
h

 2
0

m
 0

3
s

3
4

m
 0

6
s

4
0

m
 4

7
s

1
8

m
 2

0
s

2
1

m
 0

0
s

1
1

m
 4

3
s

1
1

m
 5

3
s

1
0

m
 3

1
s

2.45x 2.39x 2.35x 2.22x 1.79x 1.13x

6
h

 4
9

m
 3

0
s

3
h

 1
7

m
 1

7
s

3
h

 2
6

m
 5

5
s

1
h

 4
0

m
 0

4
s

1
h

 4
3

m
 5

7
s

5
0

m
 0

6
s

5
2

m
 2

2
s

2
5

m
 2

6
s

2
6

m
 2

8
s

1
4

m
 0

8
s

1
4

m
 0

3
s

1
1

m
 0

7
s

2.08x 2.07x 2.07x 2.06x 1.87x 1.26x

1
8

h
 1

3
m

 1
3

s

8
h

 5
5

m
 4

4
s

9
h

 1
1

m
 0

6
s

4
h

 3
4

m
 4

7
s

4
h

 3
8

m
 1

9
s

2
h

 1
7

m
 5

9
s

2
h

 1
8

m
 5

6
s

1
h

 1
0

m
 2

2
s

1
h

 0
9

m
 5

7
s

3
9

m
 5

3
s

3
6

m
 4

8
s

3
1

m
 2

2
s

2.04x 2.01x 2.02x 1.97x 1.75x 1.17x

6
h

 0
7

m
 4

9
s

3
h

 0
0

m
 2

8
s

3
h

 0
5

m
 3

6
s

1
h

 3
1

m
 2

2
s

1
h

 3
3

m
 5

6
s

4
5

m
 4

9
s

4
7

m
 2

4
s

2
3

m
 2

9
s

2
4

m
 2

2
s

1
3

m
 2

3
s

1
3

m
 2

4
s

1
0

m
 2

3
s

2.04x 2.03x 2.05x 2.02x 1.82x 1.29x

1
h

 3
8

m
 4

4
s

1
h

 1
4

m
 3

3
s

4
9

m
 3

3
s

3
7

m
 4

5
s

2
4

m
 5

1
s

1
8

m
 5

9
s

1
2

m
 5

2
s

9
m

 4
1

s 6
m

 3
4

s

5
m

 2
8

s

3
m

 4
6

s

4
m

 1
1

s

1.32x 1.31x 1.31x 1.33x 1.2x 0.9x

2
h

 1
1

m
 2

9
s

1
h

 3
2

m
 5

5
s

1
h

 0
5

m
 4

5
s

4
7

m
 1

5
s

3
3

m
 5

2
s

2
3

m
 5

8
s

1
8

m
 1

8
s

1
2

m
 0

6
s

1
0

m
 1

6
s

6
m

 3
7

s

6
m

 3
7

s

4
m

 5
0

s

1.42x 1.39x 1.41x 1.51x 1.55x 1.37x

ntfs

hfsplus isofs

overlayfs squashfs

romfs vfat

1 2 4 8 16 32

1 2 4 8 16 32

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

Degree of Parallelism

S
p

e
e

d
u
p
 F

a
c
to

r

Classic

Integrated

Figure 4.5: Execution times and relative speedups for SFI experiments based on wall time.
Speedups compared to sequential execution are shown on the Y-axis. Absolute times
are reported inside or above the bars. Speedups of integrated compared to conventional
execution are shown at the top. All results are the average of three executions. The error
bars indicate minimum and maximum values.

82

4.4 Evaluation

-1
h
 0

4
m

 4
1
s

-2
h
 1

5
m

 0
4
s

-5
4
m

 3
5
s

-2
h
 0

3
m

 1
0
s

-2
8
m

 4
9
s

-1
h
 0

3
m

 4
3
s -3

h
 0

2
m

 5
5
s

-5
h
 4

6
m

 2
1
s -1

h
 1

8
m

 1
7
s

-2
h
 4

4
m

 3
1
s

-4
m

 4
6
s

-1
0
m

 2
1
s

-1
8
m

 5
8
s

-4
0
m

 4
3
s

21
4.

9

72
.2

17
9.

6

99
.7

18
7.

4

56
.6

25
6.

7

8 21
4.

2

47
.4

11
3.

7

10
0.

4

13
7.

7

63

0

100

200

300

fat
n=3210

hfsplus
n=2885

isofs
n=1519

ntfs
n=7158

overlayfs
n=4180

romfs
n=289

squashfs
n=1107

Module

S
p

e
e

d
u
p

 F
a

c
to

r
Uninstrumented TrEKer

Figure 4.6: Build time speedups with and without instrumentation

RQ 2: Parallel Speedup

We investigate whether our approach is capable of accelerating parallel SFI test ex-
ecution by comparing its performance to the conventional execution model across
a range of different degrees of parallelism ranging from 1 to 32.

Figure 4.5 shows, for each file system and degree of parallelism, the speedup
achieved relative to sequential execution in the same mode. The factors above the
bars correspond to the speedups achieved by our approach over the conventional
execution model at the same degree of parallelism. The times inside or above the
bar give the absolute execution time.

We see that, except in one case, squashfs at a degree of parallelism of 32, our
approach always outperforms the conventional execution model at the same degree
of parallelism. However, it is also apparent that speedups relative to conventional
execution at the same degree of parallelism reduce with increasingly parallel exe-
cution. This is due to the fact that, in some cases, our approach is not able to utilize
the full computational resources available at higher degrees of parallelism through-
out the entire SFI test execution. This can happen when, for example, the faulty
versions for an SFI target are distributed across a large number of functions so that
there are only a few faulty versions per function. In that case, our approach will not
be able to fully utilize all available CPU cores with the faulty versions of a single
function, and some cores will remain idle until the root VM (VM0) has reached the
next function for which faulty versions exist. The conventional execution model, on
the other hand, can simply run as many VMs in parallel as it has cores available. We
note that, while wall time speedups for our approach are lower at higher degrees of

83

4 Accelerating Kernel Error Propagation Analysis

parallelism, user time speedups remain high since our approach reduces the over-
all amount of code to be executed, with squashfs at a degree of parallelism of 32
achieving a user time speedup of 15.2×.

Looking at speedups relative to sequential execution in the same mode as shown
in Figure 4.5, it appears that our approach scales less well than the conventional
execution model. This is for the reasons related to CPU utilization described above.
However, our approach does achieve increasing speedups with increasing degree
of parallelism for all file systems, with further potential for optimization in our pro-
totype implementation.

We conclude that our approach is capable of accelerating parallel SFI test exe-
cution, although the benefits in execution time diminish for very high degrees of
parallelism.

RQ 3: Executed Versions

We investigate how our approach affects the number of executed faulty versions as
well as the number of activated faults by comparing the number of executed and
activated faulty versions in the conventional execution model and in our approach
as reported in Table 4.2. The table lists executed faulty versions, both absolute and
as a percentage of all faulty versions, and activated faulty versions, absolute and as
a percentage of executed faulty versions in the same mode. The conventional exe-
cution model requires execution of every faulty version. Therefore 100 % of faulty
versions are executed for all file systems in this mode. This includes faulty versions
with faults in functions that the workload does not trigger, resulting in activation
rates below 60 % for all file systems except romfs, which, due to its straightforward
code structure, achieves fairly high code coverage with our workload and a fault
activation rate of 86.51 %. Our approach requires the execution of fewer faulty ver-
sions than the conventional execution model, ranging from 50.65 % to 94.12 %. This
corresponds to a reduction in the number of executed faulty versions of 250 to 2438.
As this reduction is the result of not executing inactive faulty versions, our approach
also reaches higher activation rates ranging from 48.79 % to 91.91 %. While, in the
conventional execution model, we only saw an activation rate above 60 % for a single
file system, with our approach, all file systems bar one achieve such an activation
rate.

We conclude that our approach can effectively reduce the number of faulty ver-
sions that need to be executed in SFI testing. We achieved fewer executed faulty
versions and higher activation rates for all evaluated file systems.

RQ 4: Build Times

With this research question, we investigate the impact our approach has on build
times for SFI experiments, both with the instrumentation required for kernel EPA

84

4.4 Evaluation

using our augmented version of TrEKer and without it. User build time speedups
for all 7 file systems used in our evaluation, both instrumented and uninstrumented,
are shown in Figure 4.6. Absolute time savings are listed vertically inside or above
the bars. Speedup factors are shown on the Y-axis and above the bars. For all mod-
ules and in both modes, building an integrated module containing all faulty ver-
sions is substantially faster than building each faulty version separately. Note that
we use incremental compilation in the latter case to minimize the work required for
each faulty version. Speedups range from 8× to over 250×, with the instrumented
case achieving lower speedups across all modules. This is particularly noticeable
for ntfs, which is also the file system with the most faulty versions in our evalu-
ation. We attribute this to inefficiencies in the instrumentation code and note that,
although it achieves the lowest speedup, the instrumented ntfs build is also the
one with the largest absolute time reduction.

With speedups ranging from 8× to 256×, we conclude that our approach can sub-
stantially reduce build times for SFI experiments.

RQ 5: Result Validity

We investigate the impact of our approach on SFI results using conventional fail-
ure mode detectors to check whether result validity is adversely affected. To that
end, we report the observed results for integrated executions at different degrees of
parallelism with activated faults and compare them to the results for conventional
executions at the same degree of parallelism. Figure 4.7 shows the observed result
distributions for all evaluation targets. We distinguish four common classes of SFI
test results:

• No Failure: The test run finished without any error indication.

• Timeout: The test run did not finish within its execution time budget and was
terminated by the experiment control logic.

• Workload Failure: The test run terminated with an error indication from user-
mode, for instance, by aborting with an exit code indicating a failure.

• Kernel Failure: The test run terminated with an error indication from the kernel,
such as a kernel panic.

We set the execution time budget of the timeout detector to 30 s for all runs since
this value is considerably higher than the fault-free, but instrumented, execution
time for all our target modules and should hence avoid premature timeout detec-
tions.

Across all modules and execution modes, “No Failure” is the most common re-
sult, with the exception of romfs for which “Workload Failure” is the most com-
mon. “Timeout” is the least common result with less than 10 % of runs having this

85

4 Accelerating Kernel Error Propagation Analysis

Conventional Integrated
hfsplus

isofs
ntfs

overlayfs
rom

fs
squashfs

vfat

1 2 4 8 16 32 1 2 4 8 16 32

0

250

500

750

0

200

400

600

0

500

1000

1500

0

250

500

750

1000

0

30

60

90

120

0

100

200

300

0

250

500

750

Degree of Parallelism

C
o
u
n
t

No Failure Timeout Workload Failure Kernel Failure

Figure 4.7: Result distributions for FI experiments.

86

4.4 Evaluation

Table 4.3: Results of χ2-tests. p values and Cramer’s V are reported for each test. The Rej
column indicates if H0 (no association between SFI results and execution mode) can be
rejected (3) or not (7).

(a) χ2-test results for degrees of parallelism from 1 to 4

par = 1 par = 2 par = 4
Module p V Rej p V Rej p V Rej

hfsplus 0.943 0.0072 7 0.786 0.0120 7 0.818 0.0112 7

isofs 0.943 0.0090 7 0.957 0.0081 7 0.963 0.0077 7

ntfs 0.981 0.0035 7 0.978 0.0037 7 0.980 0.0036 7

overlayfs 0.986 0.0040 7 0.999 0.0018 7 0.998 0.0021 7

romfs 0.980 0.0110 7 0.976 0.0119 7 0.976 0.0119 7

squashfs 0.990 0.0053 7 0.987 0.0059 7 0.983 0.0065 7

vfat 0.900 0.0081 7 0.888 0.0085 7 0.916 0.0076 7

(b) χ2-test results for degrees of parallelism from 8 to 32

par = 8 par = 16 par = 32
Module p V Rej p V Rej p V Rej

hfsplus 0.974 0.0055 7 0.925 0.0080 7 0.983 0.0048 7

isofs 0.967 0.0074 7 0.955 0.0083 7 0.967 0.0074 7

ntfs 0.953 0.0048 7 0.974 0.0039 7 0.969 0.0042 7

overlayfs 0.981 0.0044 7 0.979 0.0045 7 0.969 0.0052 7

romfs 0.965 0.0135 7 0.967 0.0132 7 0.981 0.0109 7

squashfs 0.993 0.0049 7 0.995 0.0043 7 0.995 0.0043 7

vfat 0.897 0.0082 7 0.898 0.0082 7 0.884 0.0086 7

outcome, which suggests that out execution time budget choice was sensible. The
result distributions remain stable across repeated runs and across different degrees
of parallelism. We observe the largest variability for hfsplus (P = 16) in both exe-
cution modes with a maximum difference of result class counts of 30 (less than 3 %)
between repeated executions. To assess whether the result distributions are signif-
icantly affected by integrated parallel or sequential execution when compared to
conventional sequential execution, we conduct pairwise Pearson’s χ2-tests of inde-
pendence between the conventional sequential execution and each integrated exe-
cution. We test the null hypothesis H0 that “the obtained result distribution is inde-
pendent from the execution mode”, with the alternative hypothesis H1 that “there is
an association between result distribution and execution mode”. We try to reject H0

with a significance level of α = 0.05. Table 4.3 reports the resulting p and Cramer’s
V values along with the decision whether we can reject H0. Cramer’s V is a measure
of association based on the χ2-statistic and ranges from 0 to 1, where the larger the

87

4 Accelerating Kernel Error Propagation Analysis

value, the stronger the association. With p ≫ α for all modules across all execution
modes, we fail to reject H0. Hence, we cannot establish that there is an association
between result distributions and execution mode. Accordingly, Cramer’s V does
not hint at association with V < 0.015 for all tests.

We conclude that integrated parallel or sequential execution does not affect SFI
results of conventional oracles when compared to conventional sequential execu-
tion.

RQ 6: Detection Rates

We investigate how integrated execution affects the trace deviation rates detected by
the TrEKer EPA. For this purpose, we analyze the execution traces that we collected
during the sequential runs of our SFI experiments in both classic and integrated ex-
ecution. As apparent from Figure 4.7, the “No Failure” class is the most common
SFI outcome. More than 60 % of the runs with activated fault for all modules fall
into this class, with the exceptions of romfs with 38 % and squashfs with 52 %.
For error propagation analysis, this is the most interesting class of results as conven-
tional oracles cannot detect any deviation despite the fault being activated. Either
the injected fault is benign and has no effect or the effects have not manifested yet
in a way that can be detected by conventional, external detectors. Both cases can be
distinguished by EPA techniques such as TrEKer since execution trace deviations
can be detected in the latter case. We report the TrEKer trace deviation rates for
that case in Figure 4.8 with the bars labeled “Mutation Activated”. In addition to
the rates, the plots also contain the absolute numbers inside or above the bars. In
order to assess the false positive detection rates, we also perform an analysis of “No
Failure” run traces without activated fault, which are labeled accordingly in the
plots. Any deviation detected in such a run cannot be caused by an injected fault
and is therefore a false positive. The TrEKer analysis detects deviations by compar-
ing execution traces against fault-free golden run traces, i.e., traces without injected
faults. Since we took special care to create a low-noise and deterministic execution
environment for our experiments, we use only a single golden run as comparison
basis. In the case of the integrated experiments, this is the trace obtained from the
root VM, so no separate golden runs need to be performed.

Overall, we observe low false positive rates, which are at 0 % across all modules
when using integrated execution. In classic execution, we observe some false posi-
tives for isofs (2.4 %) and ntfs (below 0.1 %). The deviation rates with activated
faults range from 1.4 % to 11.1 % for classic and from 1.5 % to 9.5 % for integrated
execution. Overall, fewer deviations are detected with integrated execution for all
modules, except for isofs. We attribute this reduction to less noise and less po-
tential for spurious deviations in the execution traces due to the fine-grained VM
snapshotting employed for integrated execution.

88

4.4 Evaluation

0
/5

7
9

1
3

/8
5

1

0
/4

4
7

1
6

/6
3

7

0
/2

5
5

8

4
4

/1
4

7
9

0
/5

9
0

2
4

/1
0

2
6

0
/2

2

9
/9

5

0
/2

7
5

2
8

/3
4

1

0
/4

9
2

2
7

/9
4

4

0.000

0.025

0.050

0.075

hfs
plu

s
iso

fs ntf
s

ov
er

lay
fs

ro
m

fs

sq
ua

sh
fs vfa

t

Module

T
ra

c
e
 D

e
vi

a
tio

n
 R

a
te

Mutation Not Activated Mutation Activated

(a) Detected divergence rates with our approach.

0
/1

6
5

7

2
7

/8
4

1

1
7

/7
2

0

9
/6

4
2

3
/4

7
2

5

8
5

/1
4

7
8

0
/2

6
5

3

4
0

/1
0

2
5

0
/3

9

9
/9

6

0
/4

5
3

3
8

/3
4

1

0
/1

7
4

2

6
0

/9
4

9

0.00

0.03

0.06

0.09

hfs
plu

s
iso

fs ntf
s

ov
er

lay
fs

ro
m

fs

sq
ua

sh
fs vfa

t

Module

T
ra

c
e
 D

e
vi

a
tio

n
 R

a
te

Mutation Not Activated Mutation Activated

(b) Detected divergence rates with the conventional approach.

Figure 4.8: Detected divergence rates for runs with and without activated faults.

89

4 Accelerating Kernel Error Propagation Analysis

With a 0 % false positive rate across all our target modules when comparing against
a single golden run, we conclude that integrated execution is effective and does not
increase false positive rates.

4.5 Discussion

As the investigation of our research questions in Section 4.4 shows, our approach
is applicable to real world kernel code and can effectively accelerate sequential and
parallel SFI testing without adversely affecting result validity. We therefore con-
clude that our approach enables effective SFI testing of kernel code on modern, par-
allel hardware.

We identify the following three main threats to the validity of our study:

1. The choice of target modules, system setup, configuration, and workload.

2. Limitations of the EPA approach used in our study.

3. Interactions between non-deterministic or timing-dependent behavior in the
SUT and our snapshot-based experiments.

We evaluate our approach on seven widely used file systems from the Linux ker-
nel using different workloads to exercise common file system functionality. How-
ever, kernel modules implementing different, unrelated functionality may behave
differently. A different choice of workload may also yield different results. We
tailor the configuration of the kernel on the target system to minimize noise and
facilitate our VM cloning approach. To this end, we disable SMP support and pre-
emption and run a small, BusyBox-based userspace. Different kernel configurations
may increase scheduling noise, thereby affecting results or result stability. A more
full-featured userspace, for example from a common desktop-focused Linux dis-
tribution, could also increase noise on the system and affect the experimental re-
sults. Our system configuration is a likely reason for the lower false positive rate we
observed relative to the TrEKer experiments described in Chapter 2 using an aug-
mented version of the same EPA approach. Such a target system may, for instance,
require substantially more golden runs to achieve stable results. Our results may
not generalize to other target modules, workloads, or configurations.

We use an augmented version of the TrEKer error propagation analysis in our
experiments. As noted in Chapter 2, this approach restricts instrumentation and
trace analysis in some respects to reduce overhead and improve performance. It
may therefore miss behavioral divergences in some instances. The detection rates
reported in Section 4.4.3 are subject to these restrictions. As we do not depend on
the accuracy of the reported detection rates in our investigation of our other research
questions, these limitations do not otherwise threaten the validity of our results.

90

4.6 Conclusion

Even though we have taken care to minimize noise and non-deterministic behav-
ior on the system with our configuration, the SUT may still exhibit non-deterministic
behavior between different executions, or timing-dependent behavior that leads to
seemingly non-deterministic variations between executions. Our snapshot-based
execution model may limit the first but could potentially increase the second. This
can, in turn, influence the detection rates of the error propagation analysis. Since
our approach does not result in any false positives for the modules used in our eval-
uation, this does not seem to occur in our evaluation, but, as noted above, other
configurations may yield different results.

4.6 Conclusion

In this chapter, we introduced a novel approach for accelerating the SFI testing and
error propagation analysis of operating system kernel code. Our approach speeds
up SFI test execution in three ways: We avoid redundant code execution, automat-
ically skip the execution of inactive faulty versions, and facilitate parallelization
of SFI experiment execution. Moreover, our approach substantially reduces build
times by integrating all faulty versions into a single module, thereby avoiding re-
dundant compilation effort.

In our evaluation on seven widely used Linux file system implementations, we
achieve sequential speedups of up to 2.45×, parallel speedups of up to 36.8× using
16 parallel instances, and build time speedups of up to 100.4×with instrumentation
and 256.7×without. We find that our approach does not adversely affect SFI result
validity and does not increase the false positive rate in error propagation analysis.

91

5 Fuzz Testing

Fuzzing is a form of random testing that is widely used for finding security and
dependability issues. Approaches that leverage information about the control flow
of prior executions of the program under test to decide which inputs to mutate fur-
ther have proven particularly effective in practice. However, by relying solely on
control flow information to characterize executions, such approaches may miss rel-
evant differences. We saw in our work on TrEKer, which we describe in Chapter 2,
how memory instrumentation can be useful in characterizing the runtime behavior
of software components, and on this basis we propose augmenting evolutionary
fuzzing by additionally leveraging information about memory accesses performed
by the target program. The resulting approach can leverage more sophisticated in-
formation about the execution of the target program, enhancing the effectiveness
of the evolutionary fuzzing. We implement our approach as a modification of the
widely used AFL fuzzer [Zal] and evaluate our implementation on three widely
used target applications. We find distinct crashes from those detected by AFL for
all three targets in our evaluation. The contents of this chapter are, in parts verbatim,
based on material from [CSS19].

5.1 Introduction

Fuzzing is an established form of random testing that has proven to be highly ca-
pable of finding bugs and vulnerabilities in numerous widely used programs and
applications. It is commonly used to examine application software, libraries, as well
as system level code and has been applied in practice to a wide variety of targets,
ranging from smart contracts [JLC18] to operating system kernels [Sch+17; Vyu]. In
recent years, fuzzing has emerged as an effective technique for finding bugs that
involve memory safety violations for software written in languages such as C or
C++ that do not guarantee memory safety. This category of software bugs is of par-
ticular interest as such bugs frequently have not just robustness but also security
implications. Some of the most well known vulnerabilities of recent years belong to
this category [MITa; Orm; Syn].

Fuzzing is a fairly broad category that covers a variety of approaches, including
techniques that generate inputs from scratch, for instance based on a grammar spec-
ification, as well as techniques based on input mutation. It also encompasses both
white and black box approaches. A widely used class of fuzzers are coverage-guided,

93

5 Fuzz Testing

Source

Code Seed

Inputs Queue

Executable

Execute &

Monitor

Instru-

mentation

①

Take Next Input

Report

Crashes

Enqueue

Interesting

Input
Mutate

②
Evaluate

Fuzzer Engine

Figure 5.1: Evolutionary Fuzzing

evolutionary fuzzers. A typical fuzzing workflow from this category is illustrated in
Figure 5.1. It consists of the following steps:

a) A set of seed inputs is selected (for instance, from the test suite of the program
under test) and used to initialize the input queue.

b) The program under test is instrumented, typically during compilation, to gather
coverage information at runtime. This step is marked 1⃝ in Figure 5.1.

c) The fuzzer picks an input from the queue, mutates it, and runs the instru-
mented program under test with the mutated input while monitoring its exe-
cution.

d) The resulting coverage information is evaluated to determine whether the pro-
gram under test exhibited interesting behavior with the latest input. Typically,
this means checking whether the program crashed or new edges in the control
flow graph or new basic blocks were reached during that execution. This step
is marked 2⃝ in Figure 5.1. Non-crashing, interesting inputs are put back into
the queue for further mutation, whereas crashing inputs are reported.

The last two steps of this process (gray box in Figure 5.1) are repeated as often
as possible with the available time budget, which is set by the user. Fuzzing typi-
cally emphasizes speed of individual executions and favors efficiency over complex
program analysis techniques. Therefore, the inserted instrumentation (1⃝) should
be lightweight and incur little runtime overhead; and the evaluation (2⃝) should be

94

5.1 Introduction

1 int main(int argc, char **argv) {
2 int buffer[512] = {0};
3 FILE* fp = fopen(argv[1], "r");
4 int a = 0, b = 0, c = 0, d = 0;
5 fscanf(fp, "(%d, %d); (%d, %d)",
6 &a, &b, &c, &d);
7 int x = (a * b) & 511;
8 int y = (c * d) & 511;
9 printf("%d %d %d\n", buffer[x],

10 buffer[y], buffer[x + y]);
11 return 0;
12 }

Figure 5.2: A Motivating Example for MemFuzz

fast to allow as many executions of the target program as possible in the given time
budget.

For these reasons, widely used coverage-guided, evolutionary fuzzing techniques
generally rely on basic block or edge coverage data: It can be gathered with relatively
little runtime overhead and compact representations enable quick comparisons in
the evaluation step.

Relying on such control-flow centered coverage information to distinguish be-
tween executions of a fuzzing target is an efficient approach with a proven track
record. However, relying solely on edge or basic block coverage information may
lead to missing important differences in how programs process different inputs. For
instance, consider the example shown in Figure 5.2. The presented program reads
four integers from an input file using fscanf (lines 3 – 6). Crucially, it does not
perform any error checking and silently falls back to default values in the presence
of invalid input. It then uses these integers to compute indices (lines 7 and 8) which
are used to access a fixed-size buffer (lines 9 and 10). The last of these accesses
(buffer[x + y] in line 10) is potentially out of bounds, which constitutes a mem-
ory safety violation bug.

This bug is straightforward to find by manual inspection and easy to detect us-
ing more heavyweight techniques like symbolic execution. Conventional coverage-
guided, evolutionary fuzzing, however, struggles to find a crashing input for this
program: There is only one path through the program, so the edge coverage such
techniques rely on fails to provide meaningful feedback. Without any feedback, the
resulting blind fuzzing is unlikely to produce a crashing input entirely by chance.

We fuzzed the program shown in Figure 5.2 using AFL 2.45b [Zal], a widely used,
state of the art fuzzing tool, and a seed input (1, 1); (1, 1) for more than 24
hours without finding a crash. This is due to the fuzzer trimming the seed input
prior to mutating it and, being entirely reliant on edge coverage, discarding most

95

5 Fuzz Testing

of it. Absent a working feedback mechanism, the fuzzer would then need to recon-
struct the structure of the input entirely by chance to find a crash, which is highly
unlikely.

Similar issues can arise due to the use of conditional moves or complex address
calculations. Generally, the effectiveness of conventional, coverage-guided fuzzing
is limited for code in which safe executions and unsafe, crashing executions exist
with the same control flow, and in which the mutation of multiple parts of the in-
put is necessary to generate an unsafe input from a safe one. In such cases, any
intermediate inputs would be discarded by the fuzzer without further mutation as
no new control flow behavior is exhibited, and the fuzzer would fail to find a crash-
ing input.

We propose addressing this blind spot by using information about the memory
addresses a program accesses, either in addition to or instead of edge coverage, to
characterize executions. The resulting approach, which we call MemFuzz, should
be able to distinguish between executions with the same control flow, based on
differences in the accessed memory addresses. We implement a prototype of this
approach based on AFL 2.45b. To summarize, we make the following contributions:

• A new characterization of program executions for feedback-guided fuzzing

• MemFuzz, an instrumentation and static analysis approach to allow for effi-
cient collection of memory coverage data

• A prototype implementation based on the state of the art AFL fuzzer

• An extensive evaluation of the proposed approach, highlighting the strengths
and limitations of the MemFuzz approach

The rest of this chapter is structured as follows: We discuss related work in Sec-
tion 5.2. Our approach and implementation are presented in Section 5.3 and evalu-
ated in Section 5.4. We discuss our results and threats to validity in Section 5.5 and
present concluding remarks in Section 5.6.

5.2 Related Work

Fuzzing is a wide, active research area, which renders a comprehensive overview
infeasible. Therefore, we focus on a discussion of how our work relates to other
research on evolutionary fuzzing and omit an in-depth discussion of other related
techniques (e.g. approaches using symbolic execution).

Recent research in this area aims at improving the various steps of the evolution-
ary fuzzing process. We focus our discussion on related work dealing with seed
selection and minimization, instrumentation, and guidance mechanisms in this sec-
tion. Recent work on search strategies, scheduling, and queue prioritization [BPR18;

96

5.2 Related Work

CC18; Lem+18; LS18; Raw+17] is largely orthogonal to our approach as it does not
alter how executions are distinguished. Therefore, we omit a detailed discussion.

5.2.1 Seed Selection

The selection of seed inputs is usually one of the first steps in fuzzing workflows (cf.
Figure 5.1) and one that requires substantial manual effort. Research in this area
has dealt with automating this step, achieving effective seed corpora by optimizing
seed selection [Reb+14] or generation [Wan+17]. As our proposed approach does
not involve alterations to the seed selection step, most of this work is orthogonal to
ours.

However, it is common to minimize seed test cases prior to fuzzing as the muta-
tion and execution of smaller inputs is more efficient. AFL [Zal], being the most
widely used fuzzer in this area, even trims new inputs on its own to reduce their
size and additionally ships with a separate tool, afl-tmin, to perform more so-
phisticated test case minimization.

Other approaches to test case minimization can also be applied to minimize seed
inputs for fuzzing. Groce et al. propose an extension of delta debugging [Zel02] to
support test case minimization while retaining arbitrary properties of executions of
a given target program [Gro+16]. When used for seed minimization in the context
of guided fuzzing, such approaches, which minimize test cases based on coverage
information, may benefit from additionally applying memory instrumentation to
avoid cases like the one discussed in the example in Figure 5.2 in Section 5.1. The
MemFuzz modifications we propose for AFL involve changing the way the fuzzer
trims new inputs to avoid this issue (but not the standalone afl-tmin tool). Other
test case minimization tools could be adjusted in a similar way to leverage the Mem-
Fuzz memory instrumentation.

5.2.2 Instrumentation and Guidance

Research on instrumentation and guidance mechanisms for fuzzing either deals
with devising new mechanisms or optimizing existing approaches for gathering
coverage information or with the collection and usage of entirely different types of
information to guide the fuzzing process.

Petsios et al. propose SlowFuzz [Pet+17] to automatically detect algorithmic com-
plexity vulnerabilities. Like MemFuzz, SlowFuzz employs a different guidance mech-
anism from conventional evolutionary fuzzing, which does not exclusively rely on
a notion of edge coverage. Instead, SlowFuzz uses resource usage, specifically the
number of executed instructions, to guide the fuzzing process.

Hsu et al. propose InsTrim [Hsu+18], an approach for reducing the number of
basic blocks that need to be instrumented to gather edge coverage information in
order to reduce runtime overhead. We pursue a similar objective with MemFuzz’s

97

5 Fuzz Testing

static analysis described in Section 5.3.2, but for memory access instrumentation
rather than basic block instrumentation.

Gan et al. tackle the problem of edge collisions in AFL. The original AFL fuzzer
may assign the same identifier to multiple edges, which results in inaccurate cover-
age information. Their solution, CollAFL [Gan+18], outperforms AFL in terms of
coverage and crashes found.

AFLGo [Böh+17] is a modification of AFL for directed fuzzing that aims to exten-
sively fuzz specific parts of the program under test for use cases like patch testing.
AFLGo extends AFL’s feedback and guiding mechanism to consider the distance to
the targeted parts of the program under test.

Other approaches do not investigate different types of information as basis to
guide the fuzzing but different ways of gathering edge coverage information. For
instance, PTFuzz [Zha+18] and kAFL [Sch+17] rely on the Intel Processor Trace func-
tionality of newer Intel x86 CPUs to obviate compile-time instrumentation and dy-
namic binary instrumentation. Such optimizations are not applicable to the instru-
mentation MemFuzz requires as the mechanisms they use are restricted to control
flow tracing.

5.3 Approach

In this section, we present the design and implementation of MemFuzz, our ap-
proach to distinguish meaningfully different program executions with the same
control flow based on the sets of memory addresses used in read and write mem-
ory accesses. MemFuzz provides novel guiding strategies to enhance the conven-
tional coverage-guided evolutionary fuzzing and is implemented as an extension
to the widely used AFL fuzzer. It requires a compile-time instrumentation of the
targeted programs, which we discuss in Section 5.3.2, as well as certain runtime
support, which we discuss in Section 5.3.3. MemFuzz extends the information the
fuzzing feedback loop can rely on to guide the fuzzing process, which we detail in
Section 5.3.4. We begin our discussion with an overview of MemFuzz and its inte-
gration with AFL in Section 5.3.1.

5.3.1 Overview

The overall design goal of MemFuzz is closing the blind spot of traditional coverage-
guided fuzzing, which we illustrated with the example in Figure 5.2, where execu-
tions cannot be meaningfully distinguished by means of control flow only. In order
to be of practical use, the MemFuzz implementation must be simple to apply to new
targets and maintain sufficient fuzzing performance. This is why we designed Mem-
Fuzz as extension to the AFL fuzzer, which is widely used and known to perform
well.

98

5.3 Approach

Runtime Support

Instrumented
Executable

Evaluate

①

Fuzzer Engine Edges

Loads

Stores
Control Logic

log_read

log_write

③

②

𝑒 𝑙 𝑠

Instrumentation Output

Provide Input & Run

Figure 5.3: MemFuzz: Design Overview

Figure 5.3 provides an overview of the MemFuzz design, which consists of three
essential parts:

• Compile-time instrumentation, marked 1⃝ in the figure;

• A runtime support library, marked 2⃝;

• The fuzzer feedback mechanism that categorizes an execution as interesting
or uninteresting, marked 3⃝.

The MemFuzz instrumentation, which focuses on loads and stores, provides infor-
mation on performed memory accesses in addition to AFL’s edge coverage infor-
mation. The accessed memory addresses are tracked within the runtime support li-
brary that employs two bloom filters to efficiently track which addresses have been
accessed to read or write memory. This extended pool of coverage information is
then used by the fuzzer engine to evaluate the past execution and decide whether
the used input is eligible for further mutation. The MemFuzz extension to AFL’s
evaluation mechanism allows the usage of all three information sources either sep-
arately or in certain combinations.

5.3.2 Instrumentation

To capture the addresses used in read and write memory accesses, we instrument
such accesses at compile-time. As AFL already includes an LLVM-based mode and
ships with an LLVM-instrumentation pass, we chose to build onto that feature for
MemFuzz. In the LLVM intermediate representation (LLVM-IR), memory accesses
are explicit and can only be performed using a small number of specific instructions,
such as load for reading and store for writing memory locations. It is therefore

99

5 Fuzz Testing

especially well suited for the instrumentation of memory accesses as all instrumen-
tation sites are apparent, a fact that we also took advantage of in our work on TrEKer
as described in Section 2.4. Moreover, instrumenting memory accesses at compile
time incurs lower runtime overhead than techniques using, e.g., dynamic binary in-
strumentation, and allows us to perform static analysis as discussed in Section 5.3.2.

Basic Memory Instrumentation

We start from the existing AFL LLVM instrumentation pass and enhance it to also in-
strument load and store instructions. By extending the existing pass, we ensure
backwards compatibility as we leave the original edge instrumentation functionality
untouched. The enhanced instrumentation pass inserts calls to logging functions,
which reside in the support runtime library (cf. Section 5.3.3), prior to loads and
stores. An example of the memory instrumentation is shown in Figure 5.4. The
small C function in Section 5.3.2 reads from a computed memory location (d[i])
and writes to the global variable g. Section 5.3.2 lists a simplified version of the
corresponding LLVM-IR. Note that not only the read and write accesses are explic-
itly represented (lines 5 and 6) but also the address calculation (line 4) for the read
access. The possible instrumentation sites are the load in line 5 and the store in
line 6. The listing in Section 5.3.2 shows the LLVM-IR after the MemFuzz instrumen-
tation has been applied. Here, the load is instrumented by the insertion of a call
to log_read (line 6) prior to the actual load. Note that the additional bitcast
(line 5) is needed to correctly call log_read as type casts in LLVM are explicit, but it
does not impose actual runtime overhead. The store in line 6 is not instrumented
in this example due to MemFuzz’s static analysis optimization that we detail in Sec-
tion 5.3.2. The log_read function takes the address of the memory location the
program is reading as its argument. The value that is read is not logged. store
instructions are treated analogously using the log_write function.

Instrumentation Site Filtering

At runtime, MemFuzz-instrumented code incurs the overhead of an additional func-
tion call as well as the actual logging implementation (cf. Section 5.3.3) for each in-
strumentation site. It is therefore desirable from a performance standpoint to avoid
instrumentation where possible. To this end, our instrumentation pass includes a
static analysis component that excludes instrumentation sites that correspond to
certain classes of memory accesses that can be safely ignored without losing infor-
mation beneficial for the guiding of the fuzzing process (i.e., memory accesses for
which the address is not computed using the program input). For instance, a load
from a global variable will use the same address for every access. Instrumenting
such an input-independent memory access does not yield any information beyond
the fact that the access has taken place. This fact, however, is already more effi-

100

5.3 Approach

1 int g = 0;
2
3 void f(int* d, long i) {
4 g = d[i];
5 }

(a) C-Code

1 @g = global i32 0
2
3 define void @f(i32*, i64) {
4 %4 = gep i32, i32* %0, i64 %1
5 %5 = load i32, i32* %4
6 store i32 %5, i32* @g
7 ret void
8 }

(b) LLVM-IR Representation

1 @g = global i32 0
2
3 define void @f(i32*, i64) {
4 %4 = gep i32, i32* %0, i64 %1
5 %5 = bitcast i32* %4 to i8*
6 call void @log_read(i8* %5)
7 %6 = load i32, i32* %4
8 store i32 %6, i32* @g
9 ret void

10 }

(c) LLVM-IR with Memory Instrumentation

Figure 5.4: A simplified example showing the operation of the instrumentation pass and
the static analysis component.

101

5 Fuzz Testing

ciently detectable by means of control flow instrumentation. Our static analysis
therefore excludes instrumentation sites that correspond to accesses to globals from
instrumentation. The store in Section 5.3.2 (line 6) is an example of this, and con-
sequently, there is no call to log_write prior to the store in Section 5.3.2. Addi-
tionally, we also exclude accesses to stack variables allocated in the current frame
unless they use a dynamically computed offset.

A simplified version of the algorithm we use to decide whether to filter out a given
instrumentation site is given in Figure 5.5. Note that the pseudocode omits loop de-
tection and result caching. The analysis is intraprocedural and conservative, which
allows us to substantially reduce the number of instrumentation sites without incur-
ring large compile time overhead or erroneously skipping relevant instrumentation
sites.

5.3.3 Runtime

The log_read and log_write functions that are invoked by the inserted instru-
mentation code as described earlier are implemented within a runtime support li-
brary. The two functions implement the actual tracking of memory addresses. As
the instrumentation and the runtime library are decoupled, a wide variety of de-
sign choices for the implementation of these functions are viable. As we aim to
maintain backwards compatibility with AFL’s edge coverage instrumentation, we
extend AFL’s runtime library with the runtime support functions our MemFuzz in-
strumentation requires. Moreover, we choose to focus on performance and favor
simplicity in our implementation. The runtime library therefore only keeps track of
the sets of memory addresses that are used to read or write memory locations. It
does not track the order of accesses or the number of accesses to the same address.
In order to avoid the need for heap allocations in the runtime, we employ bloom
filters to represent the sets of memory addresses. As these are fixed-size data struc-
tures, memory overhead is independent of the number of accesses. Furthermore,
adjusting bloom filter parameters allows tuning of the runtime for different appli-
cation scenarios or target applications. Since the runtime support library and the
fuzzing target share the same address space, avoiding heap allocations in the run-
time prevents such allocations from affecting the memory layout or addresses used
by the target application. Since bloom filters do not allow the retrieval of set mem-
bers, it is not possible to reconstruct the exact set of addresses that were accessed
during an execution afterwards. However, as we will discuss in Section 5.3.4, this
is not a drawback in this application context as we only need to decide whether a
memory address has been seen before in an execution. We use the xxHash64 [Col]
algorithm for our bloom filter implementation.

102

5.3 Approach

1: procedure SkipAddr(a: Addr)
2: if IsGlobal(a) then
3: return true;
4: else if IsLocalAlloca(a) then
5: return true;
6: else if IsCast(a) then
7: iv← IncomingValue(a);
8: return SkipAddr(iv);
9: else if IsGEP(a) then

10: return SkipGEP(a);
11: else if IsPHI(a) then
12: return SkipPHI(a);
13: else
14: return false;
15: end if
16: end procedure

17: procedure SkipGEP(g: GEPInst)
18: if HasSafeConstantOffset(g) then
19: a← IncomingValue(g);
20: return SkipAddr(a);
21: else
22: return false;
23: end if
24: end procedure

25: procedure SkipPHI(p: PHIInst)
26: for all iv ∈IncomingValues(p) do
27: if ¬SkipAddr(iv) then
28: return false;
29: end if
30: end for
31: return true;
32: end procedure

Figure 5.5: Instrumentation Site Filtering

103

5 Fuzz Testing

5.3.4 Fuzzer

Our instrumentation and runtime provide the fuzzer with additional feedback for
each execution. In addition to the edge coverage information, which the original
AFL implementation relies on exclusively, our MemFuzz enabled fuzzer can use the
two bloom filters containing load and store addresses to choose which inputs to
mutate further. As discussed in Section 5.3.3, bloom filters do not allow the retrieval
of entries. However, by keeping track of the bloom filters seen during previous exe-
cutions of the target program, the fuzzer can tell whether an execution has resulted
in a reading or writing memory access that has not been seen during any previous
execution. This is necessarily the case if any bit in the bloom filter is set that has not
been set during any prior execution.

After each execution of the target program, there are three predicates on the exe-
cution available to the fuzzer:

• Whether the input resulted in new edge coverage (e);

• whether any previously unseen memory addresses were written to (s); and

• whether any previously unseen memory addresses were read from (l).

We use this information to determine whether an execution exhibited novel be-
havior, and therefore, whether the corresponding input should be mutated further.
We do not change other parts of the fuzzer such as queue prioritization.

MemFuzz allows the use of any boolean expression over the aforementioned three
predicates to be used as a novelty criterion by the fuzzer. We call such expressions
strategies. Our prototype implementation supports both a conjunction or disjunc-
tion over any subset of predicates. As our goal is a more fine-grained rather than
coarse-grained distinction between executions, we focus on logical disjunctions (e.g.
e ∨ s ∨ l or s ∨ l) as guiding strategies. With such strategies, the fuzzer considers an
execution to have exhibited novel behavior if, for instance, it resulted in new edge
coverage or a store to a new memory address. As a result, the set of executions con-
sidered novel by any such strategy that also takes edge coverage into account is a
superset of the set of executions considered novel by conventional coverage-guided
fuzzing. This is in line with our goal of a more fine-grained distinction.

104

5.4 Evaluation

Table 5.1: Overview of Evaluation Targets

Application Version Description

ffmpeg 2.0.1 Audio/video processing
ImageMagick 6.7.5-10 Bitmap image processing
libxml2 2.7.0 XML parser library/toolkit

Table 5.2: Seed Inputs and Dictionary Tokens for each Evaluation Target

Application Dictionary Tokens Seed Inputs Seed Input Sizes

ffmpeg 992 196 55 B – 99 KiB
ImageMagick 90 15 41 B – 262 KiB
libxml2 60 69 5 B – 40 KiB

5.4 Evaluation

To evaluate the applicability and effectiveness of the proposed approach, we ap-
ply our prototype implementation to three evaluation targets and investigate the
following research questions:

RQ 1 Does MemFuzz find different crashes from conventional, coverage-guided evo-
lutionary fuzzing?

RQ 2 What runtime overhead does our prototype implementation impose?

RQ 3 How does MemFuzz affect the edge coverage of the generated inputs?

RQ 4 How much can the static analysis component reduce the number of necessary
instrumentation sites?

In the following, we first describe our experimental setup and evaluation targets
in Section 5.4.1. Then, we address the four research questions in Sections 5.4.2
to 5.4.5.

5.4.1 Experimental Setup

In the following, we describe our choice of evaluation targets, the execution envi-
ronment in which we conduct our experiments, and the configurations we use in
fuzzing our target applications.

105

5 Fuzz Testing

Table 5.3: Overview of Fuzzing Configurations

Designation Fuzzer Strategy ASAN Seed/Dict

afl AFL Edge No Null
afl+a AFL Edge Yes Null
mem AFLm Mem No Null
mem+a AFLm Mem Yes Null
hyb AFLm Mem + Edge No Null
hyb+a AFLm Mem + Edge Yes Null
aflS AFL Edge No Seed & Dict
afl+aS AFL Edge Yes Seed & Dict
memS AFLm Mem No Seed & Dict
mem+aS AFLm Mem Yes Seed & Dict
hybS AFLm Mem + Edge No Seed & Dict
hyb+aS AFLm Mem + Edge Yes Seed & Dict

Evaluation Targets

We evaluate our approach on the three target applications listed in Table 5.1. The
table gives a brief description of each target and lists the used versions. All three
targets are widely used, parse complex file formats and are primarily implemented
in C, which does not guarantee memory safety. We selected older versions of our
targets to ensure that the fuzzers used in the evaluation are able to find crashes in a
reasonable amount of time.

Execution Environment

We use machines with an Intel Core i7-4790 CPU, 16 GiB of RAM, and a 500 GB SSD
running Debian 8.10 with a distribution-provided Linux 4.9 kernel for all experi-
ments.

Experiment Configurations and Execution

Table 5.3 lists all configurations we use for fuzzing each of our targets. We use
the original AFL fuzzer in version 2.45b (being the version our implementation is
based on) that relies exclusively on edges (predicate e, cf. Section 5.3.4) as guid-
ing strategy in the afl configurations. For our modified AFL (AFLm in the table),
we distinguish two configurations that use different guiding strategies: The first,
mem, relies exclusively on memory accesses to distinguish interesting executions
(l ∨ s). The second, hyb, is a hybrid strategy taking both edges and memory ac-
cesses into account (l ∨ s ∨ e). Additionally, we fuzz our targets both with and

106

5.4 Evaluation

without AddressSanitizer (ASAN) [Ser+12] as well as with simple Null seed inputs
without dictionaries and with a larger corpus of seed inputs and dictionaries to
cover a variety of realistic scenarios. For the configurations using seed inputs and
dictionaries, the number and size of the seed inputs and the number of tokens for
the fuzzing dictionary are listed in Table 5.2. Overall, this amounts to a total of 12
distinct fuzzing configurations.

We execute each of these 12 configurations for each target for three hours using
eight parallel instances (one master and seven secondary instances, totaling 24 h
computation time). This process is repeated five times for a total of 180 experiments.

Dictionaries and Seed Inputs

Our Null seed input is identical for all targets and consists of a single file containing
one byte with value 0x00. For the seeded configurations, we construct an individ-
ual corpus of seed inputs and a token dictionary for each target (cf. Table 5.2). The
seed input corpus for ImageMagick and libxml2 is constructed from test case
and example files that ship with the respective target. For ffmpeg, the seed input
corpus is constructed from small sample files from the FFmpeg Automated Testing
Environment (FATE) [FFm]. Starting with these files, we applied AFL’s corpus and
file minimization tools afl-cmin and afl-tmin to remove redundant input files
and file contents which do not contribute to interesting program behavior in terms
of edge coverage.

The token dictionaries were constructed by merging the dictionaries for the file
types relevant for the respective targets that are included with AFL. The only ex-
ception is ffmpeg since AFL does not include dictionaries for video and audio files.
We used libtokencap, which ships with AFL, on the samples from FATE to auto-
matically extract tokens for all file types included in the corpus.

5.4.2 RQ 1: Crashes

To determine whether the MemFuzz approach is capable of finding different crashes
compared to conventional, coverage-guided evolutionary fuzzing, we analyze the
crashing inputs generated by each fuzzing configuration for each target. We re-use
the same target binaries that were used for afl+a, as they are built with Address-
Sanitizer, to reproduce all crashes and gather stack traces. We then bucket crashes
using an enhanced form of stack hashing. We hash call stack addresses, program
counter, stack pointer as well as base pointer values, and the cause of the crash as re-
ported by AddressSanitizer (read, write, or signal) using the xxHash64 algorithm.
In case of crashes caused by signals, we also include the signal type (e.g. SEGV or
ABRT) but not the exact memory addresses triggering an AddressSanitizer error or
signal. The additional information beyond the call stack and program counter is

107

5 Fuzz Testing

included to increase precision. We exclude memory addresses to ensure that this
technique does not give an advantage to our approach.

The described stack hashing yields a set of hashes for each combination of fuzzing
configuration and target (36 sets in total) where each hash corresponds to a distinct
crash. We compare these sets for each target and consider all crashes found in at
least one of the five repetitions. The results are visualized in Figures 5.6 to 5.10 as
UpSet plots [CLG17; Lex+14]. The UpSet plots show the number of distinct crashes
(horizontal bars at the bottom left), the set intersections (connected circles at the bot-
tom), and the intersection sizes (vertical bars at the top). Note that the intersections
are exclusive and form a partition of the set of all crashes. We omit plots for cases in
which there are no set intersections, e.g. because only one fuzzer found any crashes.

For ffmpeg, Section 5.4.2 shows that, without the use of AddressSanitizer, both
mem and hyb found one crash. In the same runtime, afl found five different crashes,
but not the one found by mem and hyb. With AddressSanitizer (Section 5.4.2), on
the other hand, neither hyb+a nor mem+a were able to detect crashes not found by
afl+a. In both configurations, mem and hyb find the same crashes as each other.

When using seed inputs without AddressSanitizer, aflS finds 5 distinct crashes
whereas memS and hybS do not find any. With AddressSanitizer (Figure 5.7), mem+aS

and hyb+aS perform as well as in the corresponding unseeded runs, whereas afl+aS

finds fewer crashes than afl+a. We attribute this to the use of a large seed input col-
lection leading to longer individual runtimes and keeping the fuzzer from reaching
more difficult crashes within the allotted time budget.

For ImageMagick, both with and without AddressSanitizer, mem and hyb were
able to find crashes not found by afl, as shown in Figure 5.8. Unlike for ffmpeg,
the crashes found by mem and hyb in ImageMagick differ between the two fuzzers,
with hyb outperforming mem.

With seed inputs hybS and especially memS perform well, finding 48 and 76 crashes
not found by any other fuzzer, respectively (Section 5.4.2). Both exceed the perfor-
mance of their unseeded counterparts whereas aflS does worse than afl. With Ad-
dressSanitizer (Section 5.4.2), on the other hand, both mem+aS and hyb+aS do worse
than their unseeded counterparts, likely due to the increased runtime.

For libxml2, no fuzzing configuration found any crashes when not using Ad-
dressSanitizer. With AddressSanitizer, afl+a found 149 distinct crashes whereas
mem+a and hyb+a did not find any crashes. MemFuzz performs better in the seeded
experiments: As shown in Section 5.4.2, memS finds 3 crashes that aflS does not.
Moreover, when using AddressSanitizer, both mem+aS and hyb+aS find crashes that
afl+aS does not (Section 5.4.2).

Across all targets for which at least one fuzzing configuration found crashes, the
number of crashes found by mem and hyb is lower than afl. We hypothesize that
this is primarily due to the additional runtime overhead, as discussed in Section 5.4.3.
However, despite finding a lower number of crashes overall, both mem and hyb find

108

5.4 Evaluation

5

1

0

2

4
In

te
rs

ec
tio

n
Si

ze

 AFL

 HYB

 MEM

012345
Crashes

(a) Without AddressSanitizer

6

1

0

2

4

6

In
te

rs
ec

tio
n

Si
ze

 AFL+A

 HYB+A

 MEM+A

0246
Crashes

(b) With AddressSanitizer

Figure 5.6: ffmpeg crashes

109

5 Fuzz Testing

2

1

0.0

0.5

1.0

1.5

2.0

In
te

rs
ec

tio
n

Si
ze

 AFL+A

 HYB+A

 MEM+A

0123
Crashes

Figure 5.7: ffmpeg Crashes with AddressSanitizer (seeded)

crashes not detected by afl for all three targets we have evaluated, albeit not in all
configurations. We therefore conclude that MemFuzz is capable of finding different
crashes from conventional, coverage-guided evolutionary fuzzing.

5.4.3 RQ 2: Overhead

To determine the runtime overhead caused by the additional instrumentation and
analysis required for MemFuzz, we compare the number of executions of each target
configuration achieved by mem and hyb to afl.

For unseeded runs, the mean number of executions over five runs achieved by
hyb and mem relative to afl is shown in Section 5.4.3. Without ASAN, mem and hyb
achieve between 11 % and 17 % of the executions achieved by afl. With Address-
Sanitizer, they achieve between 25 % and 47 % of afl+a executions. We hypothesize
that this increase is due to the overhead incurred by AddressSanitizer instrumenta-
tion, which affects all fuzzers equally. In both cases, the overhead incurred by our
MemFuzz implementation is highest for ffmpeg.

Overheads are lower for seeded runs, with memS and hybS achieving 18 % and
17 % of aflS executions, respectively, on ffmpeg, an increase of 6 – 7 percentage
points compared to the unseeded runs. On ImageMagick, the improvement is
even larger at 27 – 28 percentage points, and on libxml2, performance relative
to aflS is more than doubled compared to the unseeded runs. Configurations us-
ing AddressSanitizer see larger improvements still. On ImageMagick, mem+aS and
hyb+aS achieve 73 % of the executions of afl+aS. On libxml2, they achieve 64 %
and 63 %, respectively. We hypothesize that the reduced slowdown for seeded runs

110

5.4 Evaluation

105

13
1

9

0

30

60

90

120

In
te

rs
ec

tio
n

Si
ze

 AFL

 HYB

 MEM

0306090
Crashes

(a) Without AddressSanitizer

76

28

14
9 11

0

20

40

60

80

In
te

rs
ec

tio
n

Si
ze

 AFL+A

 HYB+A

 MEM+A

0255075
Crashes

(b) With AddressSanitizer

Figure 5.8: ImageMagick crashes

111

5 Fuzz Testing

86
76

48

5 2
10

0

25

50

75

In
te

rs
ec

tio
n

Si
ze

 AFL

 MEM

 HYB

0255075100
Crashes

(a) Without AddressSanitizer

72

12
6 2

12

0

20

40

60

80

In
te

rs
ec

tio
n

Si
ze

 AFL+A

 MEM+A

 HYB+A

0255075
Crashes

(b) With AddressSanitizer

Figure 5.9: ImageMagick crashes (seeded)

112

5.4 Evaluation

15

3
2

0

5

10

15

In
te

rs
ec

tio
n

Si
ze

 AFL

 MEM

051015
Crashes

(a) Without AddressSanitizer

13

9

3

5

2
1

14

0

5

10

15

In
te

rs
ec

tio
n

Si
ze

 AFL+A

 HYB+A

 MEM+A

0102030
Crashes

(b) With AddressSanitizer

Figure 5.10: libxml2 crashes (seeded)

113

5 Fuzz Testing

0.0

0.1

0.2

0.3

0.4

ffmpeg ImageMagick libxml2

Target

E
xe

c
u
tio

n
s

re
la

tiv
e
 t
o
 A

F
L

HYB HYB+A MEM MEM+A

(a) Unseeded

0.0

0.2

0.4

0.6

ffmpeg ImageMagick libxml2

Target

E
xe

c
u
tio

n
s

re
la

tiv
e
 t
o
 A

F
L

HYB HYB+A MEM MEM+A

(b) Seeded

Figure 5.11: Mean number of executions over five runs relative to AFL(+A).

114

5.4 Evaluation

is the result of longer execution durations for all fuzzers amortizing the more com-
plex evaluation step after each execution.

We conclude that, while our implementation does incur substantial runtime over-
head, the slowdown is highly variable between targets and configurations, ranging
from 1.36× to more than 5×. The effect is lower when using appropriate seed in-
puts and AddressSanitizer, both of which are generally desirable in a wide variety
of fuzzing use cases.

5.4.4 RQ 3: Coverage

As we modify the fuzzing engine and introduce additional instrumentation and
consequently overhead (as discussed in Section 5.4.3), we expect our MemFuzz im-
plementation to achieve a reduced edge coverage relative to conventional, coverage-
guided evolutionary fuzzing. To assess the extent of the impact, we check the inputs
generated by all fuzzers and compare the covered edges. Coverage for all fuzzers
is checked on the same binary for each target. An edge is considered covered by a
fuzzer if it was covered during at least one of the five executions by any of the eight
parallel instances.

Results for the unseeded runs without AddressSanitizer are shown in Section 5.4.4.
afl consistently outperforms both mem and hyb for all targets, but the size of the
effect varies substantially between targets. On ffmpeg, afl covers more than twice
as many edges as mem or hyb, whereas the difference on the other targets is much
smaller, with both mem and hyb achieving over 80 % of the coverage achieved by
afl. mem and hyb perform similarly well on all three targets, with hyb having a
slight edge on ImageMagick and libxml2 while mem does marginally better on
ffmpeg.

For the seeded runs (Section 5.4.4), hyb and mem are much more closely matched
with afl. On ffmpeg, both go from below 50 % of afl’s coverage to above 80 %.
On ImageMagick and libxml2, mem and hyb cover more than 96 % of the edges
covered by afl.

While some impact on coverage is to be expected due to the overheads reported
in Section 5.4.3, our results show that the extent of this impact is highly dependent
on the specific program under test and the quality of the seed inputs. We conclude
that our approach does adversely affect edge coverage but the effect can be mitigated
with careful seed selection.

5.4.5 RQ 4: Static Analysis

In Section 5.3.2, we describe our technique for reducing the number of instrumen-
tation sites that we employ to reduce overall runtime overhead as each instrumen-
tation point imposes a runtime cost. To assess how well our technique works in
practice, we log both the number of instrumentation sites where instrumentation

115

5 Fuzz Testing

0

10000

20000

ffmpeg ImageMagick libxml2

Target

E
d
g
e
s

c
o
ve

re
d

AFL HYB MEM

(a) Unseeded

0

10000

20000

30000

40000

ffmpeg ImageMagick libxml2

Target

E
d
g
e
s

c
o
ve

re
d

AFL HYB MEM

(b) Seeded

Figure 5.12: Mean edge coverage achieved by the different fuzzers over five runs. Error bars
indicate minimum and maximum values.

116

5.4 Evaluation

9.8

4.9

23.0
25.1

26.2

22.7

0

10

20

30

ffmpeg imagemagick libxml2

Target

R
e

d
u

ct
io

n
 o

f
In

st
r.

 S
ite

s
[%

]

Load Store

Figure 5.13: Reduction of Load/Store Instrumentation Sites Due to Static Analysis

Table 5.4: Number of Instrument Sites for each Evaluation Target

Application Instrumentation Sites Loads Stores

ffmpeg 360 684 65.5 % 34.5 %
ImageMagick 295 373 66.4 % 33.6 %
libxml2 139 572 72.6 % 27.4 %

was applied and where it could be elided during the execution of our LLVM instru-
mentation pass. We report the percentage of load and store instructions in each
of our fuzzing targets for which instrumentation could be elided by our technique
in Figure 5.13.

For both ImageMagick and libxml2 the number of necessary load instrumen-
tations could be reduced by over 22 % and the number of store instrumentations
by over 23 %. For ffmpeg, on the other hand, load instrumentations could be re-
duced by only about 5 % and store instrumentations by about 10 %. To put these
percentages into perspective, Table 5.4 reports the absolute total numbers of instru-
mentation sites as well as how they are divided between loads and stores for each tar-
get. Overall, our technique saves 72 048 instrumentation points for ImageMagick,
33 016 for libxml2, and 23 681 for ffmpeg. As these numbers demonstrate, our
static analysis and instrumentation elision technique is capable of significantly re-

117

5 Fuzz Testing

ducing the number of necessary instrumentation points, which translates to a re-
duction of runtime overhead.

5.5 Discussion and Threats to Validity

In the previous section, we presented the experimental results obtained with our
approach. In the following, we first discuss those results and potential future work
in Section 5.5.1. This is followed by a discussion of the threats to validity of our
results in Section 5.5.2.

5.5.1 Discussion

Here, we discuss the overhead incurred by our instrumentation and potential ap-
proaches for further reducing that overhead. We then discuss the relationship be-
tween overhead, coverage, and crash finding ability and briefly cover potential fu-
ture work.

Instrumentation and Overhead

While the evaluation shows that our static analysis is capable of significantly reduc-
ing the number of instrumentation sites (cf. Section 5.4.5), our approach nonethe-
less incurs a substantial runtime overhead. Moreover, the evaluation shows that
the target for which the static analysis was least effective at reducing the number
of instrumentation points (ffmpeg) is not the target with the largest overhead. We
hypothesize that this is due to our evaluation of the static analysis considering in-
strumentation sites at compile time, whereas runtime overhead is determined by
the number of instrumentation sites encountered at runtime. Thus, to improve
performance, it is more important to remove instrumentation sites in code that is
frequently executed, rather than removing as many instrumentation sites as possi-
ble. While it may therefore be worthwhile to expend additional analysis effort to
reduce instrumentation sites in frequently executed code paths, predicting where
those paths will be at compile time is challenging. A more powerful static analy-
sis could further reduce instrumentation sites throughout the target program and
therefore also reduce runtime overhead.

Overhead, Coverage, and Crash Finding Ability

We find that the ability of our approach to find crashes is not directly linked to its
overhead, the number of executions relative to afl or the edge coverage relative
to afl. For instance, hyb+a and mem+a perform better in terms of executions rela-
tive to afl+a and coverage on libxml2 than on the other two evaluation targets.
At the same time, they do not find any crashes in libxml2 when not using seed

118

5.5 Discussion and Threats to Validity

inputs while afl+a finds 149. Despite higher overheads and lower coverage, the
performance in terms of crashes found relative to afl+a is better on ImageMagick
and ffmpeg. This suggests that our feedback mechanism is ill-suited for overcom-
ing the early parsing stages in libxml2. When using seed inputs, this problem
disappears, and consequently, mem+aS and hyb+aS perform much better than their
unseeded counterparts in terms of their ability to find crashes. These results high-
light the importance of picking suitable seed inputs. Moreover, coverage does not
appear to be a particularly good proxy for crash finding ability in general.

Future Work

There is potential to further reduce overheads through more powerful static anal-
ysis or a more optimized implementation. Another promising avenue for future
work is the use of memory access instrumentation as part of the queue prioritiza-
tion or for more targeted mutations in the fuzzer rather than just as an indicator for
novelty. Exploring other strategies and combinations of memory access-guided and
conventional coverage-guided fuzzing in a parallel fuzzing setting, such as running
afl, mem, and hyb in parallel on a shared queue may also be worthwhile.

5.5.2 Threats to Validity

In this section, we discuss threats to the validity of our results due to our experiment
setup, choice of evaluation targets, and crash bucketing approach.

Choice of Evaluation Targets

We have chosen three evaluation targets. All three targets are widely used and well-
suited for fuzzing due to being written in a language that does not provide memory
safety and handling complex data structures. Our results may not generalize to
other targets, and to applications or libraries that do not have these properties.

Moreover, the number of instrumentation sites in a target application and the
achievable reduction in that number depends not just on the target application but
also on the employed compiler version and compiler optimizations. In other set-
tings, the number or reduction in instrumentation sites may differ. Consequently,
overhead may differ as well.

Crash Bucketing

To determine whether our proposed approach finds different crashes from con-
ventional, coverage-guided evolutionary fuzzing, we use stack hashing to bucket
the crashing inputs found by each fuzzer and assign a unique identifier to each
bucket. However, crash bucketing using standard techniques is known to be im-
precise [TKL18]. We first filter crashes using AFL’s unique crashes heuristic as part

119

5 Fuzz Testing

of the fuzzing process, then apply our stack hashing variant, but both techniques
have known shortcomings and may suffer from both over- and underapproximation.
Without manual inspection, it is not possible to precisely map crashes to underlying
bugs in the general case. Therefore, it is possible that we over- or underapproximate
the number of crashes. In the former case, we may erroneously map crashes with
the same underlying cause to different buckets. In the latter case, crashes with dif-
ferent underlying causes get the same identifier. Both issues would affect both the
total number of crashes reported as well as the comparisons between techniques
performed in Section 5.4.2. As discussed in Section 5.4.2, we attempt to mitigate
this concern by omitting specific memory addresses connected to crashes from the
hash to ensure that deduplication does not grant an advantage to our proposed
technique.

Experiment Durations

All results reported in our evaluation have been gathered with the setup and ex-
periment duration described in Section 5.4.1. Substantially different experiment
durations may affect how different fuzzers perform relative to each other. We have
attempted to mitigate the effect of nondeterministic runtime behavior by repeating
all experiments five times. We consider additionally assessing the impact of longer
experiment durations to be infeasible as this would require an exceptionally large
amount of computational resources.

5.6 Conclusion

We have introduced MemFuzz, an approach for using memory access instrumen-
tation instead of or in addition to control flow information to guide evolutionary
fuzzing. We have implemented a prototype of MemFuzz based on AFL. It comprises
a static analysis and instrumentation component, a runtime component, and a modi-
fied version of the fuzzer capable of taking memory access information into account
as a novelty criterion according to different, user-specified strategies. Our evalua-
tion shows that, despite incurring non-negligible runtime overhead, the approach
is capable of finding crashes that coverage-guided fuzzing does not find within the
same time budget for all three targets in our evaluation. Our results demonstrate
the feasibility of memory access instrumentation as a way to characterize program
executions.

120

6 Summary and Conclusion

A wide variety of computing systems, ranging from low-power embedded systems
in home electronics to powerful server systems, have become pervasive in our daily
lives. As they have become more widespread, they have also become increasingly
complex. We now rely on many computing systems to consistently and reliably
provide important everyday functionality. That includes traditional embedded sys-
tems and safety-critical systems, but increasingly also IoT and smart home devices,
smartphones, various cloud services, and other software systems built on general
purpose, off-the-shelf components. Unlike conventional embedded systems, these
systems undergo more frequent updates, commonly receive new functionality, and
undergo less testing. This can result in shortcomings in dependability and security,
which can have a substantial impact on users. On this background, dependability
assessment and security testing for systems software is increasingly important. At
the same time, due to the increasing complexity of modern software systems, con-
ventional techniques for dependability assessment such as SFI suffer from long test
execution latencies, which harms their adoption in practice. Complicating the issue
further, many of the most important targets for such a dependability assessment are
long-running systems, in which the lack of divergences after the execution of a spec-
ified workload is insufficient to determine whether an activated fault affected the
system in a manner that could affect system behavior at a later time. Tackling this
issue, in turn, exacerbates the SFI test execution latency problem.

In this thesis, we developed a technique to determine the impact of faulty compo-
nents in monolithic operating systems, investigated ways to accelerate SFI testing,
both for user space and kernel code, and, building on observations we made in using
memory instrumentation for EPA, proposed a feedback-driven fuzzing technique
that leverages information about input-dependent memory accesses as a guidance
mechanism. The shared goal of these approaches and techniques is to improve de-
pendability and security assessment techniques, especially with respect to their ef-
ficiency. We have developed these techniques with applicability to the lower levels
of the software stack in mind and have tested them on software that can broadly be
categorized as belonging to these lower levels. A substantial portion of the work de-
scribed in this thesis deals with kernel code, which is crucial to the dependability of
software systems. In summary, this thesis has investigated the following research
questions and, in the process, made the following contributions:

121

6 Summary and Conclusion

Research Question 1 (RQ 1): How can the effects of faulty OS components on other
parts of the system be identified in the absence of externally visible failures?

Modern OS kernels consist of many interacting components. Even in monolithic
designs such as the Linux kernel, the system is divided into components, albeit
without runtime isolation between them. Some components implement core func-
tionality, others are tailored for specific tasks, configurations, or use cases. In mono-
lithic designs, the lack of runtime isolation makes it difficult to assess the effect of
faults in one component on other parts of the system. In such systems, faulty code
can directly alter the state of other components or provide invalid values to them in
ways that are challenging to detect. Since OS kernels are long-running systems, the
absence of a system failure during the execution of a test workload is insufficient
to rule out effects that can affect the system’s behavior at a later time. Therefore,
SFI tests for kernel code can benefit from a way to detect state corruption due to
activated faults.

Contribution 1 (C 1): A tracing-based approach for assessing the effects of faults in
kernel modules.

In Chapter 2, we presented TrEKer, our approach for assessing the effects of faults
in kernel modules on other parts of the system in monolithic OS kernels. Like pre-
vious work that has attempted to tackle similar issues, we make use of execution
tracing. Due to the shared address space and lack of runtime isolation, any mem-
ory access in the kernel is a potential instance of component interaction. Therefore,
fine-grained tracing on the granularity of individual memory accesses is needed.
As we target kernel code, we cannot rely on existing user space tracing solutions.
We restrict our instrumentation to the SFI target component and insert instrumen-
tation code at compile time. We develop a technique to process and analyze the
gathered traces to determine which memory accesses constitute potential compo-
nent interaction by building up a graph structure and checking which addresses
are reachable from memory addresses known to components besides the injection
target. To tackle non-deterministic runtime behavior of our target system due to,
for instance, scheduling effects, we develop a trace comparison approach that can
compare the execution trace of a faulty version to a merged trace of an arbitrary
number of golden runs. We demonstrate the applicability of our approach by using
it to trace the effects of software faults injected into three widely used Linux kernel
components. We find that conventional oracles based on externally visible system
behavior would misclassify up to approximately 10 % of seemingly successful exe-
cutions. Our approach achieves a false positive rate below 1 %.

122

Research Question 2 (RQ 2): How can SFI experiments be accelerated and adapted
to efficiently utilize modern, parallel hardware?

Due to the growing complexity of modern software systems, the number of faulty
versions that need to be executed in SFI testing is increasing. This leads to increasing
SFI test latencies and can render comprehensive SFI testing of complex software
systems infeasible in some scenarios. This is particularly problematic for systems
software, where comprehensive dependability assessment is especially important
as the dependability of systems software is crucial for overall system dependability,
but the basic problem arises throughout the software stack. To mitigate the problem
of long SFI test latencies, approaches to speed up the execution of individual SFI
tests, run more SFI tests in parallel to take advantage of modern, parallel hardware,
or reduce the number of required SFI tests are necessary. At the same time, it is
crucial that such approaches do not adversely affect result validity, for instance, by
allowing for interference between different faulty versions due to shared resources
or increased system load, or by leaving out faulty versions that could have revealed
relevant failures.

Contribution 2 (C 2): A technique for accelerating SFI experiments by avoiding re-
dundant work and facilitating parallelization.

In Chapter 3, we described a technique to accelerate SFI experiments for user mode
code. Our technique, called FastFI, accelerates SFI testing in three different ways: It
reduces the amount of faulty versions that are executed in which the fault is not ac-
tivated by the given workload, it avoids repeatedly re-executing common execution
prefixes that are shared between different faulty versions, and it facilitates SFI test
parallelization to take advantage of modern parallel hardware. Furthermore, FastFI
reduces build times by reducing the amount of redundant re-compilation. Our ap-
proach uses static analysis to group different faulty versions together at function
granularity and generate a single binary including all generated faulty versions as
well as the required control logic for SFI experiments. Since our approach relies on
OS-provided process management functionality, it applies to user mode code and
cannot be applied to kernel code. We rely on process isolation to prevent different
faulty versions from interfering with each other. We implement a FastFI prototype
that targets user mode software written in C and apply that prototype to four appli-
cations from the PARSEC benchmark suite. We achieve sequential speedups of up
to 3.6×, parallel speedups of up to 20.6×with 16 parallel instances, reductions of up
to 52.1 % in the number of executed faulty versions, and build time speedups of up
to 13.7×without adversely affecting result validity.

123

6 Summary and Conclusion

Research Question 3 (RQ 3): How can SFI and EPA on OS components be acceler-
ated and efficiently parallelized?

Dependability assessments of OS kernel code is particularly challenging, especially
in monolithic kernel designs. Monolithic systems lack well-defined component
boundaries, interfaces, or runtime isolation. Therefore faults in individual com-
ponents can affect other parts of the system in an arbitrary manner, for instance,
by directly altering the state of other components or by providing invalid values to
other components either explicitly, through arguments or return values, or implic-
itly, through shared memory communication. Since OS kernels are long-running
systems, relying on SFI oracles to detect externally visible system failures is insuffi-
cient. Additional instrumentation to detect instances of state corruption using EPA
as described in Chapter 2 is required, which in turn further increases test latencies.
Accelerating SFI tests of OS kernel code is not straightforward, particularly in the
presence of instrumentation for the purpose of error propagation analysis, without
affecting result validity.

Contribution 3 (C 3): An approach to reduce SFI test latencies for OS kernel compo-
nents while allowing detection of internal state corruption.

In Chapter 4, we described an approach for accelerating SFI tests of OS kernel code
with TrEKer-based EPA instrumentation. Our approach is conceptually related to
the approach we described in Chapter 3, FastFI, in that it also tackles the common
prefix problem, avoids executing inactive faulty versions at function granularity,
facilitates parallelization, and reduces build times. Our approach targets SFI test-
ing of kernel code in virtualized environments. We integrate all faulty versions of
a kernel module into a single module, which is then instrumented to provide the
fine-grained tracing required for error propagation analysis. The integrated kernel
module interfaces with a separate runtime module that implements logging and
handles communication with the SFI experiment control logic running on the host.
The experiment control logic is responsible for scheduling and monitoring the ex-
ecution of faulty versions as well as experiment result logging. To realize fast VM
cloning, we make use of modern file system and VMM features including VM snap-
shotting and CoW file systems. We enhance TrEKer, the EPA approach presented
in Chapter 2, to handle the fragmented traces generated by our integrated execu-
tion model. To demonstrate the applicability of our approach, we apply it to seven
widely used Linux file systems. We achieve sequential SFI test speedups of up to
2.45×, parallel speedups of up to 36.8× using 16 parallel instances relative to sequen-
tial execution in the conventional mode, and build time speedups of up to 100.4×
with instrumentation and 256.7× without. Our approach does not adversely affect
SFI result validity.

124

Research Question 4 (RQ 4): Can selective instrumentation of memory accesses
characterize program executions in a manner suitable to guide feedback-driven evo-
lutionary fuzzing?

Fuzzing encompasses a number of testing techniques that are widely used for find-
ing security and dependability issues. Approaches that use information about pre-
vious executions of the SUT to pick which inputs to mutate further are termed
feedback-driven fuzzing. Most commonly the feedback mechanism used is a form
of structural code coverage such as edge or basic block coverage. However, as de-
scribed in Chapter 2, our work on memory access tracing for kernel EPA shows
that memory accesses performed by the SUT can be a meaningful way to character-
ize a program execution. This approach may provide more fine-grained informa-
tion than control flow can provide. However, using memory access traces to guide
fuzzing is raises several challenges. Overhead must be minimized as performance
is critical, steps must be taken to ensure that the instrumentation and tracing do
not affect the memory addresses used in the SUT, and input-independent memory
accesses should be excluded from instrumentation.

Contribution 4 (C 4): A technique to use memory access instrumentation to guide
evolutionary fuzzing.

In Chapter 5, we described our approach, called MemFuzz, that makes use of infor-
mation about input-dependent memory accesses to guide a feedback-driven fuzzer.
We use conservative, intraprocedural static analysis to filter out input-independent
memory accesses. At runtime, memory addresses — but not values — used by the
SUT are stored in a bloom filter and provided to the fuzzer as a feedback mechanism.
Since the bloom filter is a fixed size data structure, MemFuzz does not need to allo-
cate or free memory at runtime and therefore does not affect the memory addresses
used by the SUT. We implement a MemFuzz prototype based on the AFL fuzzer,
which is a widely used feedback-driven fuzzer which normally relies on edge cov-
erage. For the static analysis required to filter out input-independent memory ac-
cesses and the memory access instrumentation, we base our implementation on the
LLVM-based instrumentation pass that ships with AFL. We apply our prototype
to three widely used target programs in several different configurations, including
running the SUT with and without additional AddressSanitizer instrumentation
and fuzzing it with and without seed inputs. We find that, for each target program,
MemFuzz detects distinct crashes from those found by AFL in at least one configura-
tion. We conclude that different ways of characterizing program executions beyond
control flow coverage can be used to guide fuzzers to find different and distinct
crashes.

125

6 Summary and Conclusion

As we grow increasingly dependent on complex software systems in everyday
live, it is essential that these systems are dependable and secure. To ensure that this
is the case, dependability assessment and security testing techniques are needed,
and numerous such techniques have been developed. However, for some of the
most important target systems, commonly used techniques such as SFI are challeng-
ing to apply due to the extraordinary test latencies they incur. In this thesis, we have
investigated techniques related to fault removal and fault forecasting, developed im-
proved SFI test oracles for OS kernel code, accelerated SFI testing of user mode and
kernel code, and developed a fuzzing technique leveraging memory access infor-
mation as a guidance mechanism. Approaches capable of finding dependability
and robustness issues efficiently are crucial for dealing with increasingly complex
software systems providing increasingly important functionality. The approaches
developed in this thesis facilitate the dependability assessment of such systems.

126

List of Figures

1.1 Correctness Testing and Random Testing 3
1.2 Basic Software Fault Injection Workflow 4
1.3 The Software Stack . 6
1.4 The Threats to Dependability and Their Relationship 9

2.1 Write Access Visibility . 24
2.2 TrEKer Reachability Graph . 30
2.3 The QEMU-based virtualized test environment and toolchain 34
2.4 Result distribution for runs with activated mutation 36
2.5 Result stability with increasing number of golden runs. 37
2.6 Trace Deviation Rates . 37

3.1 Overview of the FastFI workflow. 48
3.2 Conventional Execution Model . 50
3.3 FastFI Execution Model . 51
3.4 FastFI Parallel Execution . 52
3.5 FastFI Control Logic for a Function f 54
3.6 Sequential Speedup Relative to Conventional Execution Model 59
3.7 Speedup Relative to Traditional Execution Model 61
3.8 SFI Test Results . 62

4.1 The Common Prefix Problem . 73
4.2 The FastFI approach. 73
4.3 Our enhanced VM-based approach. 74
4.4 An overview of our implementation. 76
4.5 Execution times and relative speedups for SFI experiments. 82
4.6 Build time speedups with and without instrumentation 83
4.7 Result distributions for FI experiments. 86
4.8 Divergence Rates . 89

5.1 Evolutionary Fuzzing . 94
5.2 A Motivating Example for MemFuzz 95
5.3 MemFuzz: Design Overview . 99
5.4 Instrumentation and Static Analysis Example 101
5.5 Instrumentation Site Filtering . 103
5.6 ffmpeg crashes . 109

127

List of Figures

5.7 ffmpeg Crashes with AddressSanitizer (seeded) 110
5.8 ImageMagick crashes . 111
5.9 ImageMagick crashes (seeded) . 112
5.10 libxml2 crashes (seeded) . 113
5.11 Mean number of executions over five runs relative to AFL(+A). . . . 114
5.12 MemFuzz Mean Edge Coverage . 116
5.13 Reduction of Load/Store Instrumentation Sites Due to Static Analysis 117

128

List of Tables

2.1 Compile-time Instrumentation Overhead 38
2.2 Run-time Instrumentation Overhead 39
2.3 Independence of Result Distribution and Instrumentation Mode . . . 40

3.1 PARSEC Benchmark Applications . 58
3.2 PARSEC Benchmark Faulty Versions 58
3.3 Executed Faulty Versions . 59
3.4 FastFI User Build Times . 64

4.1 File Systems used in the Evaluation . 80
4.2 Number of executed and activated faulty versions in each execution

mode. 81
4.3 Result of χ2-tests. 87

5.1 Overview of Evaluation Targets . 105
5.2 Seed Inputs and Dictionary Tokens for each Evaluation Target 105
5.3 Overview of Fuzzing Configurations 106
5.4 Number of Instrument Sites for each Evaluation Target 117

129

Bibliography

[Aid+01] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. “GOOFI: Generic
Object-Oriented Fault Injection Tool”. In: 2001 International Conference
on Dependable Systems and Networks. 2001, pp. 83–88. doi: 10.1109/
DSN.2001.941394.

[And72] James P. Anderson. “Information Security in a Multi-User Computer
Environment”. In: vol. 12. Advances in Computers. Elsevier, 1972, pp. 1–
36. doi: https://doi.org/10.1016/S0065-2458(08)60506-9.

[APB14] M. R. Aliabadi, K. Pattabiraman, and N. Bidokhti. “Soft-LLFI: A Com-
prehensive Framework for Software Fault Injection”. In: Proceedings
of International Symposium on Software Reliability Engineering Workshops.
2014, pp. 1–5.

[Arl+02] J. Arlat, J.C. Fabre, M. Rodríguez, and F. Salles. “Dependability of COTS
Microkernel-Based Systems”. In: IEEE Transactions on Computers 51.2
(2002), pp. 138–163. doi: 10.1109/12.980005.

[Avi+04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. “Basic concepts and taxonomy of dependable and secure
computing”. In: IEEE Transactions on Dependable and Secure Computing
1.1 (Jan. 2004), pp. 11–33. doi: 10.1109/TDSC.2004.2.

[Ban+10] Takayuki Banzai, Hitoshi Koizumi, Ryo Kanbayashi, Takayuki Imada,
Toshihiro Hanawa, and Mitsuhisa Sato. “D-Cloud: Design of a Software
Testing Environment for Reliable Distributed Systems Using Cloud
Computing Technology”. In: 2010 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing. 2010, pp. 631–636. doi: 10.
1109/CCGRID.2010.72.

[BC12] Radu Banabic and George Candea. “Fast black-box testing of system re-
covery code”. In: Proceedings of the 7th ACM european conference on Com-
puter Systems. EuroSys’12. 2012, pp. 281–294. doi: 10.1145/2168836.
2168865.

[Bel+15] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. “Effi-
cient dependency detection for safe Java test acceleration”. In: Proceed-
ings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE’15. New York, New York, USA: ACM Press, 2015, pp. 770–
781. doi: 10.1145/2786805.2786823.

131

https://doi.org/10.1109/DSN.2001.941394
https://doi.org/10.1109/DSN.2001.941394
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60506-9
https://doi.org/10.1109/12.980005
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/CCGRID.2010.72
https://doi.org/10.1109/CCGRID.2010.72
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2168836.2168865
https://doi.org/10.1145/2786805.2786823

Bibliography

[Bel17] Fabrice Bellard. QEMU. 2017. url: https://www.qemu.org.

[BGA03] D. Bruening, T. Garnett, and S. Amarasinghe. “An infrastructure for
adaptive dynamic optimization”. In: International Symposium on Code
Generation and Optimization. CGO ’03. 2003, pp. 265–275.

[Bie11] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD the-
sis. Princeton University, Jan. 2011.

[BK14] Jonathan Bell and Gail Kaiser. “Unit Test Virtualization with VMVM”.
In: Proceedings of the 36th International Conference on Software Engineer-
ing. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 550–561. doi: 10.
1145/2568225.2568248.

[BL07] Prashanth P. Bungale and Chi-Keung Luk. “PinOS: A Programmable
Framework for Whole-system Dynamic Instrumentation”. In: Proceed-
ings of the 3rd International Conference on Virtual Execution Environments.
2007, pp. 137–147. doi: 10.1145/1254810.1254830.

[Böh+17] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. “Directed Greybox Fuzzing”. In: 2017 ACM Conference
on Computer and Communications Security. 2017, pp. 2329–2344.

[BPR18] M. Böhme, V. Pham, and A. Roychoudhury. “Coverage-based Greybox
Fuzzing as Markov Chain”. In: IEEE Transactions on Software Engineering
(2018).

[Bro18] Eric Brown. A Closer Look at Voice-Assisted Speakers. Nov. 2018. url:
https://www.linux.com/tutorials/closer-look-voice-
assisted-speakers (visited on 03/05/2020).

[Bud+80] Timothy A. Budd, Richard A. DeMillo, Richard J. Lipton, and Freder-
ick G. Sayward. “Theoretical and Empirical Studies on Using Program
Mutation to Test the Functional Correctness of Programs”. In: Confer-
ence Record of the Seventh Annual ACM Symposium on Principles of Pro-
gramming Languages. 1980, pp. 220–233.

[CB89] R. Chillarege and N. Bowen. “Understanding large system failures-a
fault injection experiment”. In: [1989] The Nineteenth International Sym-
posium on Fault-Tolerant Computing. Digest of Papers. 1989, pp. 356–363.
doi: 10.1109/FTCS.1989.105592.

[CBZ10] George Candea, Stefan Bucur, and Cristian Zamfir. “Automated Soft-
ware Testing as a Service”. In: Proceedings of the 1st ACM symposium on
Cloud computing. SOCC’10. 2010, pp. 155–160. doi: 10.1145/1807128.
1807153.

[CC18] P. Chen and H. Chen. “Angora: Efficient Fuzzing by Principled Search”.
In: IEEE Security & Privacy. 2018, pp. 711–725.

132

https://www.qemu.org
https://doi.org/10.1145/2568225.2568248
https://doi.org/10.1145/2568225.2568248
https://doi.org/10.1145/1254810.1254830
https://www.linux.com/tutorials/closer-look-voice-assisted-speakers
https://www.linux.com/tutorials/closer-look-voice-assisted-speakers
https://doi.org/10.1109/FTCS.1989.105592
https://doi.org/10.1145/1807128.1807153
https://doi.org/10.1145/1807128.1807153

Bibliography

[Cio+10] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and
George Candea. “Cloud9: A Software Testing Service”. In: SIGOPS Op-
erating Systems Review 43.4 (Jan. 2010), pp. 5–10.

[Cis20] Cisco. Cisco Annual Internet Report (2018 – 2023) White Paper. Feb. 2020.
url: https : / / www . cisco . com / c / en / us / solutions /
collateral/executive-perspectives/annual-internet-
report / white - paper - c11 - 741490 . html (visited on
03/05/2020).

[CLG17] Jake R Conway, Alexander Lex, and Nils Gehlenborg. “UpSetR: an R
package for the visualization of intersecting sets and their properties”.
In: Bioinformatics 33.18 (2017), pp. 2938–2940.

[CMd17] Jeanderson Candido, Luis Melo, and Marcelo d’Amorim. “Test Suite
Parallelization in Open-source Projects: A Study on Its Usage and Im-
pact”. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. ASE 2017. Urbana-Champaign, IL, USA:
IEEE Press, 2017, pp. 838–848.

[CMS98] J. Carreira, H. Madeira, and J. G. Silva. “Xception: a technique for the
experimental evaluation of dependability in modern computers”. In:
IEEE Transactions on Software Engineering 24.2 (Feb. 1998), pp. 125–136.
doi: 10.1109/32.666826.

[CN13] D. Cotroneo and R. Natella. “Fault Injection for Software Certification”.
In: IEEE Security & Privacy 11.4 (2013), pp. 38–45. doi: 10.1109/MSP.
2013.54.

[Col] Yann Collet. xxHash. url: http : / / xxhash . com (visited on
03/06/2020).

[Cop+17] Nicolas Coppik, Oliver Schwahn, Stefan Winter, and Neeraj Suri. “TrE-
Ker: Tracing Error Propagation in Operating System Kernels”. In: Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE 2017. Urbana-Champaign, IL, USA: IEEE Press,
2017, pp. 377–387. doi: 10.1109/ASE.2017.8115650.

[Cot+13] D. Cotroneo, D. Di Leo, F. Fucci, and R. Natella. “SABRINE: State-
based robustness testing of operating systems”. In: Proceedings of the
28th IEEE/ACM International Conference on Automated Software Engineer-
ing. 2013, pp. 125–135. doi: 10.1109/ASE.2013.6693073.

[Cot+15] D. Cotroneo, L. De Simone, F. Fucci, and R. Natella. “MoIO: Run-time
monitoring for I/O protocol violations in storage device drivers”. In:
Proceedings of the 26th IEEE International Symposium on Software Relia-
bility Engineering. 2015, pp. 472–483. doi: 10.1109/ISSRE.2015.
7381840.

133

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/32.666826
https://doi.org/10.1109/MSP.2013.54
https://doi.org/10.1109/MSP.2013.54
http://xxhash.com
https://doi.org/10.1109/ASE.2017.8115650
https://doi.org/10.1109/ASE.2013.6693073
https://doi.org/10.1109/ISSRE.2015.7381840
https://doi.org/10.1109/ISSRE.2015.7381840

Bibliography

[CP95] Jeffrey A Clark and Dhiraj K Pradhan. “Fault injection: A method for
validating computer-system dependability”. In: Computer 28.6 (1995),
pp. 47–56.

[CSS19] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. “MemFuzz: Using
Memory Accesses to Guide Fuzzing”. In: 12th IEEE International Con-
ference on Software Testing, Verification and Validation. ICST 2019. Xi’an,
China, Apr. 2019, pp. 48–58. doi: 10.1109/ICST.2019.00015.

[CSS20] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. “Fast Kernel Error
Propagation Analysis in Virtualized Environments”. In: 14th USENIX
Symposium on Operating Systems Design and Implementation. OSDI 2020.
2020. [under submission].

[DD06] Mathieu Desnoyers and Michel R Dagenais. “The LTTng tracer: A low
impact performance and behavior monitor for GNU/Linux”. In: Ottawa
Linux Symposium. 2006, pp. 209–224.

[Di +12] Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan
Karlsson, and Roger Johansson. “On the Impact of Hardware Faults–
An Investigation of the Relationship between Workload Inputs and Fail-
ure Mode Distributions”. In: Proceedings of the 31st International Confer-
ence on Computer Safety, Reliability, and Security. SAFECOMP’12. 2012,
pp. 198–209. doi: 10.1007/978-3-642-33678-2_17.

[DM06] J. A. Duraes and H. S. Madeira. “Emulation of Software faults: A Field
Data Study and a Practical Approach”. In: IEEE Transactions on Software
Engineering 32.11 (2006), pp. 849–867. doi: 10.1109/TSE.2006.113.

[DO91] R. A. DeMillo and A. J. Offutt. “Constraint-based automatic test data
generation”. In: IEEE Transactions on Software Engineering 17.9 (Sept.
1991), pp. 900–910.

[Dua+06] Alexandre Duarte, Walfredo Cirne, Francisco Brasileiro, and Patricia
Machado. “GridUnit: Software Testing on the Grid”. In: Proceedings of
the 28th International Conference on Software Engineering. ICSE ’06. New
York, NY, USA: ACM, 2006, pp. 779–782. doi: 10.1145/1134285.
1134410.

[FBG12] Peter Feiner, Angela Demke Brown, and Ashvin Goel. “Comprehen-
sive Kernel Instrumentation via Dynamic Binary Translation”. In: Pro-
ceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems. 2012, pp. 135–146. doi:
10.1145/2150976.2150992.

[FFm] FFmpeg. FFmpeg Automated Testing Environment. url: https://www.
ffmpeg.org/fate.html (visited on 03/31/2020).

134

https://doi.org/10.1109/ICST.2019.00015
https://doi.org/10.1007/978-3-642-33678-2_17
https://doi.org/10.1109/TSE.2006.113
https://doi.org/10.1145/1134285.1134410
https://doi.org/10.1145/1134285.1134410
https://doi.org/10.1145/2150976.2150992
https://www.ffmpeg.org/fate.html
https://www.ffmpeg.org/fate.html

Bibliography

[FX02] C. Fetzer and Zhen Xiao. “An automated approach to increasing the
robustness of C libraries”. In: 2002 International Conference on Dependable
Systems and Networks. 2002, pp. 155–164. doi: 10.1109/DSN.2002.
1028896.

[Gam+17] Alessio Gambi, Sebastian Kappler, Johannes Lampel, and Andreas
Zeller. “CUT: Automatic Unit Testing in the Cloud”. In: Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2017. New York, NY, USA: ACM, 2017, pp. 364–367. doi:
10.1145/3092703.3098222.

[Gan+18] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen. “CollAFL:
Path Sensitive Fuzzing”. In: IEEE Security & Privacy. 2018, pp. 679–696.

[Gro+16] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen,
and John Regehr. “Cause reduction: delta debugging, even without
bugs”. In: Software Testing, Verification and Reliability 26.1 (2016), pp. 40–
68.

[Gun+11] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph
M. Hellerstein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
Koushik Sen, and Dhruba Borthakur. “FATE and DESTINI: A Frame-
work for Cloud Recovery Testing”. In: Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implementation. NSDI’11. 2011,
pp. 238–252.

[Han+10] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, and M.
Sato. “Large-Scale Software Testing Environment Using Cloud Com-
puting Technology for Dependable Parallel and Distributed Systems”.
In: 2010 Third International Conference on Software Testing, Verification, and
Validation Workshops. 2010, pp. 428–433. doi: 10.1109/ICSTW.2010.
59.

[Hen+14] Andrew Henderson, Aravind Prakash, Lok Kwong Yan, Xunchao Hu,
Xujiewen Wang, Rundong Zhou, and Heng Yin. “Make It Work, Make
It Right, Make It Fast: Building a Platform-neutral Whole-system Dy-
namic Binary Analysis Platform”. In: Proceedings of the 2014 International
Symposium on Software Testing and Analysis. 2014, pp. 248–258. doi: 10.
1145/2610384.2610407.

[Hen+16] A. Henderson, L. Yan, X. Hu, A. Prakash, H. Yin, and S. McCamant.
“DECAF: A Platform-Neutral Whole-System Dynamic Binary Analy-
sis Platform”. In: IEEE Transactions on Software Engineering PP.99 (2016),
pp. 1–1. doi: 10.1109/TSE.2016.2589242.

135

https://doi.org/10.1109/DSN.2002.1028896
https://doi.org/10.1109/DSN.2002.1028896
https://doi.org/10.1145/3092703.3098222
https://doi.org/10.1109/ICSTW.2010.59
https://doi.org/10.1109/ICSTW.2010.59
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1109/TSE.2016.2589242

Bibliography

[Hsu+18] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun
Huang. “INSTRIM: Lightweight Instrumentation for Coverage-guided
Fuzzing”. In: Workshop on Binary Analysis Research (2018).

[HTI97] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. “Fault Injection Techniques
and Tools”. In: Computer 30.4 (Apr. 1997), pp. 75–82.

[IDC20] IDC. Smartphone Market Share – OS. 2020. url: https : / / www .
idc.com/promo/smartphone- market- share/os (visited on
03/05/2020).

[IEE18] IEEE and The Open Group. “IEEE Standard for Information
Technology–Portable Operating System Interface (POSIX(R)) Base
Specifications, Issue 7”. In: IEEE Std 1003.1-2017 (Revision of IEEE Std
1003.1-2008) (Jan. 2018), pp. 1–3951. doi: 10.1109/IEEESTD.2018.
8277153.

[INR18] INRIA. Coccinelle Website. 2018. url: http://coccinelle.lip6.fr
(visited on 03/30/2020).

[Int10] International Electrotechnical Commission. IEC 61508: Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-related Sys-
tems. 2010.

[Int11] International Organization for Standardization. ISO 26262: Road Vehi-
cles – Functional Safety. 2011.

[IVD15] I. Irrera, M. Vieira, and J. Duraes. “Adaptive Failure Prediction for Com-
puter Systems: A Framework and a Case Study”. In: IEEE 16th Interna-
tional Symposium on High Assurance Systems Engineering. 2015, pp. 142–
149. doi: 10.1109/HASE.2015.29.

[JGS11] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. “PREFAIL: A Pro-
grammable Tool for Multiple-failure Injection”. In: Proceedings of the
2011 ACM international conference on Object oriented programming systems
languages and applications. 2011, pp. 171–188. doi: 10.1145/2048066.
2048082.

[JH08] Yue Jia and M. Harman. “Constructing Subtle Faults Using Higher Or-
der Mutation Testing”. In: 2008 Eighth IEEE International Working Con-
ference on Source Code Analysis and Manipulation. Sept. 2008, pp. 249–258.
doi: 10.1109/SCAM.2008.36.

[JH11a] Y. Jia and M. Harman. “An Analysis and Survey of the Development
of Mutation Testing”. In: IEEE Transactions on Software Engineering 37.5
(Sept. 2011), pp. 649–678. doi: 10.1109/TSE.2010.62.

136

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.1109/IEEESTD.2018.8277153
http://coccinelle.lip6.fr
https://doi.org/10.1109/HASE.2015.29
https://doi.org/10.1145/2048066.2048082
https://doi.org/10.1145/2048066.2048082
https://doi.org/10.1109/SCAM.2008.36
https://doi.org/10.1109/TSE.2010.62

Bibliography

[JH11b] Y. Jia and M. Harman. “An Analysis and Survey of the Development
of Mutation Testing”. In: IEEE Transactions on Software Engineering 37.5
(Sept. 2011), pp. 649–678.

[JLC18] Bo Jiang, Ye Liu, and W. K. Chan. “ContractFuzzer: Fuzzing Smart Con-
tracts for Vulnerability Detection”. In: Proceedings of the 33rd IEEE/ACM
International Conference on Automated Software Engineering. 2018, pp. 259–
269.

[JZ08] X. Ju and H. Zou. “Operating System Robustness Forecast and Selec-
tion”. In: Proceedings of the 19th IEEE International Symposium on Software
Reliability Engineering. 2008, pp. 107–116. doi: 10.1109/ISSRE.2008.
10.

[Kap01] Gregory M Kapfhammer. “Automatically and Transparently Distribut-
ing the Execution of Regression Test Suites”. In: Proceedings of the 18th
International Conference on Testing Computer Software. 2001.

[KB13] Piyus Kedia and Sorav Bansal. “Fast Dynamic Binary Translation for
the Kernel”. In: ACM Symposium on Operating Systems Principles. 2013,
pp. 101–115. doi: 10.1145/2517349.2522718.

[KD00] P. Koopman and J. DeVale. “The Exception Handling Effectiveness of
POSIX Operating Systems”. In: IEEE Transactions on Software Engineer-
ing 26.9 (2000), pp. 837–848. doi: 10.1109/32.877845.

[KIT93a] W. I. Kao, R. K. Iyer, and D. Tang. “FINE: A fault injection and monitor-
ing environment for tracing the UNIX system behavior under faults”.
In: IEEE Transactions on Software Engineering 19.11 (Nov. 1993), pp. 1105–
1118. doi: 10.1109/32.256857.

[KIT93b] W. I. Kao, R. K. Iyer, and D. Tang. “FINE: A fault injection and monitor-
ing environment for tracing the UNIX system behavior under faults”.
In: IEEE Transactions on Software Engineering 19.11 (Nov. 1993), pp. 1105–
1118.

[KKS98] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek. “Automated robust-
ness testing of off-the-shelf software components”. In: Proceedings of the
Twenty-Eigth Annual International Symposium on Fault-Tolerant Comput-
ing. 1998, pp. 230–239. doi: 10.1109/FTCS.1998.689474.

[Kni16] Kate Knibbs. Nest Thermostats Are Having Battery Problems and There’s
No Fix Yet. Jan. 2016. url: https : / / gizmodo . com / nest -
thermostats-are-having-battery-problems-and-theres-
1751800309 (visited on 03/05/2020).

137

https://doi.org/10.1109/ISSRE.2008.10
https://doi.org/10.1109/ISSRE.2008.10
https://doi.org/10.1145/2517349.2522718
https://doi.org/10.1109/32.877845
https://doi.org/10.1109/32.256857
https://doi.org/10.1109/FTCS.1998.689474
https://gizmodo.com/nest-thermostats-are-having-battery-problems-and-theres-1751800309
https://gizmodo.com/nest-thermostats-are-having-battery-problems-and-theres-1751800309
https://gizmodo.com/nest-thermostats-are-having-battery-problems-and-theres-1751800309

Bibliography

[Koo+97] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz. “Compar-
ing operating systems using robustness benchmarks”. In: Proceedings of
the Sixteenth Symposium on Reliable Distributed Systems. 1997, pp. 72–79.
doi: 10.1109/RELDIS.1997.632800.

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: Proceedings of the
International Symposium on Code Generation and Optimization: Feedback-
directed and Runtime Optimization. CGO ’04. Palo Alto, California: IEEE
Computer Society, 2004.

[Lag+09] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin
Matthew Scannell, Philip Patchin, Stephen M. Rumble, Eyal de
Lara, Michael Brudno, and Mahadev Satyanarayanan. “SnowFlock:
Rapid Virtual Machine Cloning for Cloud Computing”. In: Pro-
ceedings of the 4th ACM European Conference on Computer Systems.
EuroSys ’09. Nuremberg, Germany: ACM, 2009, pp. 1–12. doi:
10.1145/1519065.1519067.

[Lan+14] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri. “An Empir-
ical Study of Injected versus Actual Interface Errors”. In: Proceedings of
the 2014 International Symposium on Software Testing and Analysis. 2014,
pp. 397–408.

[Las05] Alexey Lastovetsky. “Parallel testing of distributed software”. In: Infor-
mation and Software Technology 47.10 (2005), pp. 657–662.

[Lem+18] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. “Perf-
Fuzz: Automatically Generating Pathological Inputs”. In: Proceedings of
the 2018 International Symposium on Software Testing and Analysis. 2018,
pp. 254–265.

[Lex+14] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. “UpSet:
Visualization of Intersecting Sets”. In: IEEE Transactions on Visualization
and Computer Graphics 20.12 (Dec. 2014), pp. 1983–1992.

[Lo+09] David Lo, Hong Cheng, Jiawei Han, Siau-Cheng Khoo, and Chengnian
Sun. “Classification of Software Behaviors for Failure Detection: A Dis-
criminative Pattern Mining Approach”. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. 2009, pp. 557–566. doi: 10.1145/1557019.1557083.

[LS18] Caroline Lemieux and Koushik Sen. “FairFuzz: A Targeted Mutation
Strategy for Increasing Greybox Fuzz Testing Coverage”. In: Proceedings
of the 33rd IEEE/ACM International Conference on Automated Software En-
gineering. 2018, pp. 475–485.

138

https://doi.org/10.1109/RELDIS.1997.632800
https://doi.org/10.1145/1519065.1519067
https://doi.org/10.1145/1557019.1557083

Bibliography

[LT93] Nancy G. Leveson and Clark S. Turner. “An Investigation of the Therac-
25 Accidents”. In: Computer 26.7 (July 1993), pp. 18–41. doi: 10.1109/
MC.1993.274940.

[Lu+14] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. “A Study of Linux File System Evolution”. In: ACM Transac-
tions on Storage 10.1 (Jan. 2014), 3:1–3:32. doi: 10.1145/2560012.

[Luk+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. “Pin: Building Customized Program Analysis Tools with Dy-
namic Instrumentation”. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2005, pp. 190–200. doi: 10.1145/
1065010.1065034.

[Lyn18] Gerald Lynch. Amazon Key smart lock security integrity called into question
by hack. Feb. 2018. url: https://www.techradar.com/news/
amazon- key- smart- lock- security- integrity- called-
into-question-by-hack (visited on 03/05/2020).

[LZE15] Wing Lam, Sai Zhang, and Michael D. Ernst. When tests collide: Evaluat-
ing and coping with the impact of test dependence. Tech. rep. University of
Washington Department of Computer Science and Engineering, 2015.

[Mah+12] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and A.
Stavrou. “A whitebox approach for automated security testing of An-
droid applications on the cloud”. In: Proceedings of the 7th International
Workshop on Automation of Software Test. 2012, pp. 22–28. doi: 10.5555/
2663608.2663613.

[Mat16] Lucas Matney. Nest’s Smart Home Apps Are Back Online Following Outages.
Jan. 2016. url: https://techcrunch.com/2016/01/09/nests-
smart-home-apps-are-back-online-following-outages
(visited on 03/05/2020).

[Mis+07] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khur-
shid, and Darko Marinov. “Parallel Test Generation and Execution with
Korat”. In: Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Founda-
tions of Software Engineering. ESEC-FSE ’07. New York, NY, USA: ACM,
2007, pp. 135–144. doi: 10.1145/1287624.1287645.

[MITa] MITRE. CVE-2014-7186. url: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-7186 (visited on 03/06/2020).

[MITb] MITRE. CVE-2015-1538. url: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-1538 (visited on 03/18/2020).

139

https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/2560012
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/1065010.1065034
https://www.techradar.com/news/amazon-key-smart-lock-security-integrity-called-into-question-by-hack
https://www.techradar.com/news/amazon-key-smart-lock-security-integrity-called-into-question-by-hack
https://www.techradar.com/news/amazon-key-smart-lock-security-integrity-called-into-question-by-hack
https://doi.org/10.5555/2663608.2663613
https://doi.org/10.5555/2663608.2663613
https://techcrunch.com/2016/01/09/nests-smart-home-apps-are-back-online-following-outages
https://techcrunch.com/2016/01/09/nests-smart-home-apps-are-back-online-following-outages
https://doi.org/10.1145/1287624.1287645
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7186
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-7186
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538

Bibliography

[MITc] MITRE. CVE-2015-6602. url: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-6602 (visited on 03/18/2020).

[Nat+13] R. Natella, D. Cotroneo, J.A. Durães, and H.S. Madeira. “On Fault Repre-
sentativeness of Software Fault Injection”. In: IEEE Transactions on Soft-
ware Engineering 39.1 (Jan. 2013), pp. 80–96. doi: 10.1109/TSE.2011.
124.

[Nat11] Roberto Natella. “Achieving Representative Faultloads in Software
Fault Injection”. PhD thesis. Università di Napoli Federico II, 2011.

[Nat13] Roberto Natella. SAFE: SoftwAre Fault Emulator tool. 2013. url: http:
//wpage.unina.it/roberto.natella/tools.html.

[NCM16] Roberto Natella, Domenico Cotroneo, and Henrique S. Madeira. “As-
sessing Dependability with Software Fault Injection: A Survey”. In:
ACM Computing Surveys 48.3 (Feb. 2016), 44:1–44:55. doi: 10.1145/
2841425.

[NS07a] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation”. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation. 2007,
pp. 89–100. doi: 10.1145/1250734.1250746.

[NS07b] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation”. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation. 2007,
pp. 89–100. doi: 10.1145/1250734.1250746.

[Orm] Tavis Ormandy. Cloudbleed.

[OU10] M. Oriol and F. Ullah. “YETI on the Cloud”. In: 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops. Apr.
2010, pp. 434–437. doi: 10.1109/ICSTW.2010.68.

[Pad+08] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.
“Documenting and Automating Collateral Evolutions in Linux Device
Drivers”. In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2008. Eurosys ’08. Glasgow, Scotland UK:
ACM, 2008, pp. 247–260. doi: 10.1145/1352592.1352618.

[Pal+11] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia
Lawall, and Gilles Muller. “Faults in Linux: Ten Years Later”. In: Pro-
ceedings of the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS XVI. ACM,
2011, pp. 305–318. doi: 10.1145/1950365.1950401.

140

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6602
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6602
https://doi.org/10.1109/TSE.2011.124
https://doi.org/10.1109/TSE.2011.124
http://wpage.unina.it/roberto.natella/tools.html
http://wpage.unina.it/roberto.natella/tools.html
https://doi.org/10.1145/2841425
https://doi.org/10.1145/2841425
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1109/ICSTW.2010.68
https://doi.org/10.1145/1352592.1352618
https://doi.org/10.1145/1950365.1950401

Bibliography

[Par+09] T. Parveen, S. Tilley, N. Daley, and P. Morales. “Towards a distributed
execution framework for JUnit test cases”. In: 2009 IEEE International
Conference on Software Maintenance. Sept. 2009, pp. 425–428. doi: 10 .
1109/ICSM.2009.5306292.

[Pet+17] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana.
“SlowFuzz: Automated Domain-Independent Detection of Algorithmic
Complexity Vulnerabilities”. In: 2017 ACM Conference on Computer and
Communications Security. 2017, pp. 2155–2168.

[Phi] Philips. Philips Hue Bridge release notes. url: https://www2.meethue.
com / en - us / support / release - notes / bridge (visited on
03/05/2020).

[Pip+12] T. Piper, S. Winter, P. Manns, and N. Suri. “Instrumenting AUTOSAR
for dependability assessment: A guidance framework”. In: 2012 Inter-
national Conference on Dependable Systems and Networks. 2012, pp. 1–12.
doi: 10.1109/DSN.2012.6263913.

[Pip+15] T. Piper, S. Winter, N. Suri, and T. E. Fuhrman. “On the Effective Use of
Fault Injection for the Assessment of AUTOSAR Safety Mechanisms”.
In: Proceedings of the 11th European Dependable Computing Conference.
2015, pp. 85–96. doi: 10.1109/EDCC.2015.14.

[Pri09] Princeton University. The PARSEC Benchmark Suite. 2009. url: http://
parsec.cs.princeton.edu/parsec3-doc.htm.

[Raw+17] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. “VUzzer: Application-aware evolutionary
fuzzing”. In: Proceedings of the Network and Distributed System Security
Symposium. 2017.

[Reb+14] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote,
David Warren, Gustavo Grieco, and David Brumley. “Optimizing Seed
Selection for Fuzzing.” In: Proceedings of USENIX Security. 2014, pp. 861–
875.

[Reg05] John Regehr. “Random Testing of Interrupt-driven Software”. In: Pro-
ceedings of the 5th ACM International Conference On Embedded Software.
2005, pp. 290–298. doi: 10.1145/1086228.1086282.

[Rod+99] Manuel Rodríguez, Frédéric Salles, Jean-Charles Fabre, and Jean Arlat.
“MAFALDA: Microkernel Assessment by Fault Injection and Design
Aid”. In: Proceedings of the Third European Dependable Computing Con-
ference. Ed. by Jan Hlavička, Erik Maehle, and András Pataricza. 1999,
pp. 143–160.

141

https://doi.org/10.1109/ICSM.2009.5306292
https://doi.org/10.1109/ICSM.2009.5306292
https://www2.meethue.com/en-us/support/release-notes/bridge
https://www2.meethue.com/en-us/support/release-notes/bridge
https://doi.org/10.1109/DSN.2012.6263913
https://doi.org/10.1109/EDCC.2015.14
http://parsec.cs.princeton.edu/parsec3-doc.htm
http://parsec.cs.princeton.edu/parsec3-doc.htm
https://doi.org/10.1145/1086228.1086282

Bibliography

[SAM08] Akbar Siami Namin, James H. Andrews, and Duncan J. Murdoch.
“Sufficient Mutation Operators for Measuring Test Effectiveness”. In:
Proceedings of the 30th International Conference on Software Engineering.
ICSE’08. 2008, pp. 351–360. doi: 10.1145/1368088.1368136.

[Sch+15] H. Schirmeier, M. Hoffmann, C. Dietrich, M. Lenz, D. Lohmann, and O.
Spinczyk. “FAIL*: An Open and Versatile Fault-Injection Framework
for the Assessment of Software-Implemented Hardware Fault Toler-
ance”. In: Proceedings of the 11th European Dependable Computing Confer-
ence. 2015, pp. 245–255. doi: 10.1109/EDCC.2015.28.

[Sch+17] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. “kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels”. In: Proceedings of USENIX Security. 2017,
pp. 167–182.

[Sch+18a] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri.
“FastFI: Accelerating Software Fault Injections”. In: 23rd IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC). PRDC
2018. Taipei, Taiwan, Dec. 2018, pp. 193–202. doi: 10.1109/PRDC.
2018.00035.

[Sch+18b] Oliver Schwahn, Stefan Winter, Nicolas Coppik, and Neeraj Suri. “How
to Fillet a Penguin: Runtime Data Driven Partitioning of Linux Code”.
In: IEEE Transactions on Dependable and Secure Computing 15.6 (Nov.
2018), pp. 945–958. doi: 10.1109/TDSC.2017.2745574.

[Sch+19] Oliver Schwahn, Nicolas Coppik, Stefan Winter, and Neeraj Suri. “As-
sessing the State and Improving the Art of Parallel Testing for C”.
In: 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis. ISSTA 2019. Beijing, China: ACM, 2019, pp. 123–133. doi: 10.
1145/3293882.3330573.

[Ser+12] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. “AddressSanitizer: A Fast Address Sanity Checker”.
In: Proceedings of the 2012 USENIX Annual Technical Conference. 2012,
pp. 309–318.

[SP10] Matt Staats and Corina Păsăreanu. “Parallel Symbolic Execution for
Structural Test Generation”. In: Proceedings of the 19th International Sym-
posium on Software Testing and Analysis. ISSTA ’10. 2010, pp. 183–194. doi:
10.1145/1831708.1831732.

[SPS09] M. Sand, S. Potyra, and V. Sieh. “Deterministic high-speed simulation
of complex systems including fault-injection”. In: 2009 International Con-
ference on Dependable Systems and Networks. 2009, pp. 211–216. doi: 10.
1109/DSN.2009.5270335.

142

https://doi.org/10.1145/1368088.1368136
https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/PRDC.2018.00035
https://doi.org/10.1109/PRDC.2018.00035
https://doi.org/10.1109/TDSC.2017.2745574
https://doi.org/10.1145/3293882.3330573
https://doi.org/10.1145/3293882.3330573
https://doi.org/10.1145/1831708.1831732
https://doi.org/10.1109/DSN.2009.5270335
https://doi.org/10.1109/DSN.2009.5270335

Bibliography

[SS75] J. H. Saltzer and M. D. Schroeder. “The protection of information
in computer systems”. In: Proceedings of the IEEE 63.9 (Sept. 1975),
pp. 1278–1308. doi: 10.1109/PROC.1975.9939.

[Sta00] E. Starkloff. “Designing a parallel, distributed test system”. In: Proceed-
ings of IEEE AUTOTESTCON 2000. 2000, pp. 564–567.

[Syn] Synopsys. Heartbleed. url: http://heartbleed.com/ (visited on
03/06/2020).

[Sys] SystemTap. SystemTap. url: https : / / sourceware . org /
systemtap/ (visited on 03/06/2020).

[TKL18] Rijnard van Tonder, John Kotheimer, and Claire Le Goues. “Seman-
tic Crash Bucketing”. In: Proceedings of the 33rd IEEE/ACM International
Conference on Automated Software Engineering. 2018, pp. 612–622.

[TP13] Anna Thomas and Karthik Pattabiraman. “LLFI: An intermediate code
level fault injector for soft computing applications”. In: Proceedings of
the IEEE Workshop on Silicon Errors in Logic - System Effects. 2013.

[Voa+97] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. “Predicting
How Badly “Good” Software Can Behave”. In: IEEE Software 14.4 (1997),
pp. 73–83.

[Vyu] Dmitry Vyukov. syzkaller. url: https://github.com/google/
syzkaller (visited on 03/06/2020).

[Wan+17] J. Wang, B. Chen, L. Wei, and Y. Liu. “Skyfire: Data-Driven Seed Gen-
eration for Fuzzing”. In: IEEE Security & Privacy. 2017, pp. 579–594.

[Win+13] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj Suri.
“simFI: From Single to Simultaneous Software Fault Injections”. In: 2013
43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. IEEE, June 2013, pp. 1–12. doi: 10.1109/DSN.2013.
6575310.

[Win+15] Stefan Winter, Oliver Schwahn, Roberto Natella, Neeraj Suri, and
Domenico Cotroneo. “No PAIN, No Gain?: The Utility of PArallel Fault
INjections”. In: Proceedings of the 37th International Conference on Software
Engineering. ICSE ’15. Florence, Italy: IEEE Press, 2015, pp. 494–505. doi:
10.1109/ICSE.2015.67.

[Won+16] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. “A Survey on Soft-
ware Fault Localization”. In: IEEE Transactions on Software Engineering
42.8 (Aug. 2016), pp. 707–740. doi: 10.1109/TSE.2016.2521368.

143

https://doi.org/10.1109/PROC.1975.9939
http://heartbleed.com/
https://sourceware.org/systemtap/
https://sourceware.org/systemtap/
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://doi.org/10.1109/DSN.2013.6575310
https://doi.org/10.1109/DSN.2013.6575310
https://doi.org/10.1109/ICSE.2015.67
https://doi.org/10.1109/TSE.2016.2521368

Bibliography

[Yu+09] Lian Yu, Le Zhang, Huiru Xiang, Yu Su, Wei Zhao, and Jun Zhu. “A
Framework of Testing as a Service”. In: 2009 International Conference on
Management and Service Science. Sept. 2009, pp. 1–4. doi: 10 . 1109 /
ICMSS.2009.5302717.

[Yu+10] Lian Yu, Wei-Tek Tsai, Xiangji Chen, Linqing Liu, Yan Zhao, Liangjie
Tang, and Wei Zhao. “Testing as a Service over Cloud”. In: 2010 Fifth
IEEE International Symposium on Service Oriented System Engineering.
2010, pp. 181–188. doi: 10.1109/SOSE.2010.36.

[Zal] Michal Zalewski. American Fuzzy Lop. url: http : / / lcamtuf .
coredump.cx/afl/ (visited on 03/06/2020).

[ZE13] Sai Zhang and Michael D. Ernst. “Automated Diagnosis of Software
Configuration Errors”. In: Proceedings of the 35th International Conference
on Software Engineering. 2013, pp. 312–321.

[Zel02] Andreas Zeller. “Isolating Cause-effect Chains from Computer Pro-
grams”. In: Proceedings of the Tenth ACM SIGSOFT Symposium on Foun-
dations of Software Engineering. 2002, pp. 1–10.

[Zha+14] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam,
Michael D. Ernst, and David Notkin. “Empirically Revisiting the Test
Independence Assumption”. In: Proceedings of the 2014 International
Symposium on Software Testing and Analysis. ISSTA’14. New York, New
York, USA: ACM Press, 2014, pp. 385–396. doi: 10.1145/2610384.
2610404.

[Zha+18] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min. “PTfuzz: Guided Fuzzing
With Processor Trace Feedback”. In: IEEE Access 6 (2018).

[ZKB13] Bowen Zhou, Milind Kulkarni, and Saurabh Bagchi. “WuKong: Effec-
tive Diagnosis of Bugs at Large System Scales”. In: SIGPLAN Notices
48.8 (Feb. 2013), pp. 317–318. doi: 10.1145/2517327.2442563.

144

https://doi.org/10.1109/ICMSS.2009.5302717
https://doi.org/10.1109/ICMSS.2009.5302717
https://doi.org/10.1109/SOSE.2010.36
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/2610384.2610404
https://doi.org/10.1145/2610384.2610404
https://doi.org/10.1145/2517327.2442563

	Erklärung
	Abstract
	Zusammenfassung
	Collaborations and Contributions
	Contents
	1 Introduction
	1.1 Systems Software
	1.2 Dependability and Security
	1.3 Research Questions and Contributions
	1.4 Publications
	1.5 Organization

	2 Kernel Error Propagation Analysis
	2.1 Overview
	2.1.1 The SFI Oracle Problem for OS Kernels
	2.1.2 TrEKer: Solving the SFI Oracle Problem

	2.2 Related Work
	2.2.1 Execution Trace Based Oracles for User Mode Software
	2.2.2 Oracles for Kernel-Level SFI Tests
	2.2.3 Trace Comparison

	2.3 System Model
	2.3.1 Faults and their Consequences
	2.3.2 Monolithic Operating Systems and Composition

	2.4 TrEKer: Tracing Error Propagation in OS Kernels
	2.4.1 Component Interface Identification and Instrumentation
	2.4.2 Trace Analysis
	2.4.3 Trace Comparison

	2.5 Experimental Analysis
	2.5.1 Research Questions
	2.5.2 SUT
	2.5.3 Injection Targets and Faultload Selection
	2.5.4 Workload Selection
	2.5.5 Results

	2.6 Conclusion

	3 Accelerating Software Fault Injections
	3.1 Overview
	3.2 Related Work
	3.2.1 Improving FI Test Throughput
	3.2.2 Test Parallelization
	3.2.3 Avoiding Redundant Code Execution

	3.3 FastFI Approach
	3.3.1 Overview
	3.3.2 FastFI Execution Model
	3.3.3 Scheduling & Monitoring of Faulty Versions
	3.3.4 Static Analysis & Version Library Generation
	3.3.5 Limitations
	3.3.6 Implementation

	3.4 FastFI Evaluation
	3.4.1 Experimental Setup
	3.4.2 RQ1: Sequential Speedup
	3.4.3 RQ2: Parallel Speedup
	3.4.4 RQ3: SFI Result Stability
	3.4.5 RQ4: Build Time Speedup
	3.4.6 Discussion

	3.5 Conclusion

	4 Accelerating Kernel Error Propagation Analysis
	4.1 Overview
	4.2 Related Work
	4.2.1 SFI Test Latencies
	4.2.2 Test Acceleration
	4.2.3 Error Propagation Analysis

	4.3 Approach
	4.3.1 System Model
	4.3.2 Kernel Error Propagation Analysis
	4.3.3 Improving Kernel EPA with Fast VM Cloning
	4.3.4 Implementation

	4.4 Evaluation
	4.4.1 Experiment Setup
	4.4.2 Research Questions
	4.4.3 Results

	4.5 Discussion
	4.6 Conclusion

	5 Fuzz Testing
	5.1 Introduction
	5.2 Related Work
	5.2.1 Seed Selection
	5.2.2 Instrumentation and Guidance

	5.3 Approach
	5.3.1 Overview
	5.3.2 Instrumentation
	5.3.3 Runtime
	5.3.4 Fuzzer

	5.4 Evaluation
	5.4.1 Experimental Setup
	5.4.2 RQ1: Crashes
	5.4.3 RQ2: Overhead
	5.4.4 RQ3: Coverage
	5.4.5 RQ4: Static Analysis

	5.5 Discussion and Threats to Validity
	5.5.1 Discussion
	5.5.2 Threats to Validity

	5.6 Conclusion

	6 Summary and Conclusion
	List of Figures
	List of Tables
	Bibliography

