
Assessing and Enhancing
Functional Safety Mechanisms for
Safety-Critical Software Systems

V O M FA C H B E R E I C H I N F O R M AT I K

D E R T E C H N I S C H E N U N I V E R S I TÄT D A R M S TA D T

Z U R E R L A N G U N G D E S A K A D E M I S C H E N G R A D E S

E I N E S D O K T O R - I N G E N I E U R S (D R . - I N G .)

G E N E H M I G T E D I S S E RTAT I O N

V O N

D I P L . - I N G . T H O R S T E N P I P E R

G E B O R E N A M

0 5 . S E P T E M B E R 1 9 7 9 I N H E I D E L B E R G

R E F E R E N T: P R O F. N E E R A J S U R I , P H . D .

K O R R E F E R E N T: P R O F. D R . - I N G . H A B I L . R O M A N O B E R M A I S S E R

TA G D E R E I N R E I C H U N G : 2 9 . A P R I L 2 0 1 5

TA G D E R M Ü N D L I C H E N P R Ü F U N G : 1 2 . J U N I 2 0 1 5

D 1 7

D A R M S TA D T 2 0 1 5

Thorsten Piper: Assessing and Enhancing Functional Safety Mechanisms
for Safety-Critical Software Systems, © Juni 2015

E R K L Ä R U N G

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Drit-
ter nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu
haben. Alle Stellen, die aus Quellen entnommen wurden, sind als
solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, 29. April 2015

Thorsten Piper

i

The best car safety device
is a rear-view mirror

with a cop in it.

— Dudley Moore.

A C K N O W L E D G M E N T

First and foremost, I would like to thank my advisor Neeraj Suri for
building and leading a research group, in which each member can
pursue and develop his own research interests individually. Thank
you for providing us this freedom and for guiding me through the
time of my PhD endavour. I am also very grateful to Roman Ober-
maisser for accepting to be my external reviewer, and to Andy Schürr,
Reiner Hähnle, and Matthias Hollick for being on my committee.

I would like to thank all of my colleagues for the intense and inten-
sive discussions that we had throughout the years. Especially Stefan
and Oliver had a large share in successfully shaping my research
and in fueling new ideas after work, thank you! A special thanks to
my partner in crime Daniel for the great times we had together and
for putting the fun in our everyday office life, our research, and our
teaching. Also thanks to Ahmed, Dan, Habib, Hatem, Heng, Kubilay,
Majid, Matthias, Peter, Piotr, Ruben, Sabine, Tsveti, and Ute for being
part of and contributing to our group.

I consider myself very lucky for having worked with some very tal-
ented students and I am very grateful for their input and support, es-
pecially Paul, Michael, Jannik, and Suman. I would also like to thank
Alexander Biedermann, Lars Patzina, Sven Patzina, and Tasuku Ishi-
gooka for providing the opportunity to work on joint papers in the
areas of runtime monitoring and cyberphysical systems. Also, thanks
to Thomas E. Fuhrman for the many interesting discussions during
our joint project.

Last but not least, I would like to thank my family and friends for
their support during this exciting time.

iii

A B S T R A C T

More and more devices of our everyday life are computerized with
smart embedded systems and software-intensive electronics. When-
ever these pervasive embedded systems interact with the physical
world and have the potential to endanger human lives or to cause
significant damage, they are considered safety-critical. To avoid any
unreasonable risk originating from the failure of such systems, strin-
gent development processes, safety engineering practices, and safety
standards are followed and applied for their development and opera-
tion. Thereby, functional safety mechanisms provide technical solutions
to detect faults or control failures in order to achieve or maintain
a safe state. In consequence, the requirements on their dependable
and trustworthy operation are correspondingly high. On this back-
ground, this thesis is concerned with the assessment and enhancement
of functional safety mechanisms in software-intensive safety-critical
embedded systems at the example of automotive systems based on
the AUTOSAR standard.

An established technique for dependability assessments is fault in-
jection (FI). The effective adaptation and application of FI to mod-
ern embedded safety-critical software systems, such as AUTOSAR,
is non-trivial due to their complexity and multiple levels of abstrac-
tion that are introduced by model-based development, layered archi-
tectures, and the integration of components from various suppliers,
which impact the overall customizability, usability, and effectiveness
of experiments. Facing these challenges, this thesis develops a com-
plete FI process, which includes a guidance framework for the sys-
tematic and automated instrumentation with FI test code, a FI frame-
work for the automated execution of experiments, a detailed discus-
sion on the derivation of fault models, and the demonstration of their
effective application in two case studies that uncovered an actual de-
ficiency in a functional safety mechanism.

Due to the high cost-saving potential, functionality of varied crit-
icality is increasingly integrated into so-called mixed-criticality sys-
tems. To provide efficient protection of critical tasks, functional safety
mechanisms benefit from accounting for different criticality levels. At
the example of AUTOSAR’s timing protection, we illustrate the issues
emerging from the lack of criticality awareness and the resulting in-
direct protection of critical tasks. As mitigation, we propose a novel
monitoring scheme that directly protects critical tasks by providing
them with execution time guarantees and implement our approach
as an enhancement to the existing monitoring infrastructure.

v

K U R Z FA S S U N G

Eingebettete Systeme durchdringen zunehmend unseren Alltag und
agieren dabei oft automatisiert und autonom. Sofern sie physisch auf
ihre Umwelt einwirken und potenziell Leben gefährden oder signi-
fikanten Schaden verursachen können, werden sie als safety-kritisch
eingestuft. Um das Restrisiko, das von einer Fehlfunktion solcher Sys-
teme ausgehen kann, zu minimieren, werden sicherheitstechnische
Anforderungen, Standards und Entwicklungsprozesse strikt befolgt.
Funktionale Sicherheitsmechanismen bieten dabei technische Lösungen,
um Fehlerzustände erkennen, und Fehlerwirkung kontrollieren, zu
können. Aufgrund der enormen Bedeutung dieser Mechanismen für
die Sicherheit des Gesamtsystems, werden an ihre Zuverlässigkeit
entsprechend hohe Anforderungen gestellt. Die vorliegende Arbeit
beschäftigt sich vor diesem Hintergrund mit der Prüfung und Ver-
besserung funktionaler Sicherheitsmechanismen in software-intensi-
ven, safety-kritischen, eingebetteten Systemen, am Beispiel von auf
dem AUTOSAR Standard basierten Automobilsystemen.

Fehlerinjektion (FI) ist ein bewährter Ansatz um die Zuverlässig-
keit kritischer Systeme zu prüfen und zu beurteilen. Die effektive
Anwendung von FI-basierten Tests auf modernen eingebetten Soft-
waresystemen (wie z.B. AUTOSAR) wird aufgrund ihrer Komplexität
und des hohen Abstraktionsgrads behindert, welchen modellbasier-
te Entwicklungsansätze, die mehrschichtige Softwarearchitektur und
die Integration von Komponenten verschiedener Zulieferer verursa-
chen. Um eine effektive Anwendung zu ermöglichen, entwickelt die-
se Arbeit einen umfassenden FI-Prozess, bestehend aus einem Frame-
work für die systematische Instrumentierung mit FI-Testcode, einem
Framework für die automatisierte Experimentausführung, einer aus-
führlichen Diskussion der Herleitung von Fehlermodellen und der
Demonstration ihrer effektiven Anwendung in zwei Fallstudien, die
einen Defekt in einem Sicherheitsmechanismus aufgedeckt haben.

Aufgrund des hohen Einsparpotenzials werden Funktionen unter-
schiedlicher Kritikalität zunehmend in sogenannte Mixed-Criticality
Systeme integriert. Funktionale Sicherheitsmechanismen profitieren,
zum effizienten Schutz kritischer Tasks, von einer Anpassung an die-
se Umgebung. Am Beispiel der AUTOSAR Timing Protection veran-
schaulichen wir die Problematik, die sich aus einer fehlenden An-
passung ergeben kann. Als Verbesserung schlagen wir einen neuen
Schutzmechanismus vor, der kritische Tasks durch garantierte Lauf-
zeitbudgets direkt schützt, und implementieren unseren Ansatz als
Erweiterung einer bestehenden Monitoring-Infrastruktur.

vii

P U B L I C AT I O N S

The following previously published material has been, in parts ver-
batim, included in this thesis.

[PWM+12] Thorsten Piper, Stefan Winter, Paul Manns, and Neeraj
Suri. „Instrumenting AUTOSAR for Dependability As-
sessment: A Guidance Framework.“ In: Proceedings of the
42nd IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), 2012, pp. 1–12.

[PWS+15a] Thorsten Piper, Stefan Winter, Oliver Schwahn, Suman
Bidarahalli, and Neeraj Suri. „Mitigating Timing Error
Propagation in Mixed-Criticality Automotive Systems.“
In: Proceedings of the 18th IEEE International Symposium
On Real-time Computing (ISORC), 2015.

[PWS+15b] Thorsten Piper, Stefan Winter, Neeraj Suri, and Thomas
E. Fuhrman. „On the Effective Use of Fault Injection
for the Assessment of AUTOSAR Safety Mechanisms.“
In: Proceedings of the 11th European Dependable Computing
Conference (EDCC), 2015.

[WPS+15] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto
Natella, Neeraj Suri, and Domenico Cotroneo. „GRIN-
DER: On Reusability of Fault Injection Tools.“ In: Pro-
ceedings of the IEEE/ACM International Workshop on Au-
tomation of Software Test (AST), 2015.

The following publications are related to different aspects covered
in this thesis, but have not been included.

[BPP+11] Alexander Biedermann, Thorsten Piper, Lars Patzina,
Sven Patzina, Sorin A. Huss, Andy Schürr, and Neeraj
Suri. „Enhancing FPGA Robustness via Generic Mon-
itoring IP Cores.“ In: Proceedings of the 1st International
Conference on Pervasive and Embedded Computing and Com-
munication Systems (PECCS), 2011, pp. 379–386.

[ISP+14] Tasuku Ishigooka, Habib Saissi, Thorsten Piper, Stefan
Winter, and Neeraj Suri. „Practical Use of Formal Ver-
ification for Safety Critical Cyber-Physical Systems: A
Case Study.“ In: Proceedings of the IEEE International Con-
ference on Cyber-Physical Systems, Networks, and Applica-
tions (CPSNA), 2014, pp. 7–12. doi: 10.1109/CPSNA.2014.
20.

ix

http://dx.doi.org/10.1109/CPSNA.2014.20
http://dx.doi.org/10.1109/CPSNA.2014.20

[PPP+10] Lars Patzina, Sven Patzina, Thorsten Piper, and Andy
Schürr. „Monitor Petri Nets for Security Monitoring.“
In: Proceedings of the International Workshop on Security
and Dependability for Resource Constrained Embedded Sys-
tems (S&D4RCES). Vienna, Austria, 2010, 3:1–3:6. doi:
10.1145/1868433.1868438.

[PPP+13] Lars Patzina, Sven Patzina, Thorsten Piper, and Paul
Manns. „Model-Based Generation of Run-Time Moni-
tors for AUTOSAR.“ In: Modelling Foundations and Ap-
plications. Ed. by Pieter Van Gorp, Tom Ritter, and Louis
M. Rose. Vol. 7949. Lecture Notes in Computer Science.
Winner of the Best Paper Award. Springer Berlin Hei-
delberg, 2013, pp. 70–85. isbn: 978-3-642-39012-8. doi:
10.1007/978-3-642-39013-5_6.

[WGG+12] Stefan Winter, Daniel Germanus, Hamza Ghani, Thorsten
Piper, Abdelmajid Khelil, and Neeraj Suri. „Trustwor-
thiness evaluation of critical information infrastructures.“
In: Critical Infrastructure Security: Assessment, Prevention,
Detection, Response. Ed. by Francesco Flammini. WIT Press,
2012. Chap. 8, pp. 125–140.

x

http://dx.doi.org/10.1145/1868433.1868438
http://dx.doi.org/10.1007/978-3-642-39013-5_6

C O N T E N T S

1 introduction 3

1.1 The Role of Functional Safety Mechanisms 5

1.2 Safety Relies on Dependability – and Vice Versa . . . 7

1.2.1 Error Propagation: Implications and Solutions 8

1.3 Functional Safety Mechanisms for Freedom From In-
terference . 9

1.4 Research Questions and Contributions 10

2 instrumenting autosar systems for dependabil-
ity assessment 17

2.1 Automated Instrumentation: Challenges & Benefits . 17

2.1.1 Contributions 19

2.2 AUTOSAR Development Process and System Model . 20

2.3 Related Work on AUTOSAR Instrumentation 23

2.4 Instrumenting AUTOSAR Software Components . . . 24

2.4.1 Inter-Component Communication: Model vs
Code . 25

2.4.2 Opportunities for Instrumentation 26

2.4.3 Automating AUTOSAR Wrapper Generation 28

2.5 Proof of Concept and Experimental Evaluation 30

2.5.1 The Experimentation Setup 31

2.5.2 ABS System and Simulator in a Nutshell . . . 33

2.5.3 Fault Injection Experiment 33

2.5.4 Instrumentation Overhead 36

2.6 Discussion . 41

2.6.1 Qualitative Aspects of SW-C Instrumentation
Methods . 41

2.6.2 Limitations . 43

2.7 Conclusion . 44

3 assessing safety mechanisms effectively using

fault injection 49

3.1 Impediments to Fault Injection-Based Assessments . . 49

3.2 AUTOSAR: System Model and Functional Safety Mech-
anisms . 51

3.2.1 System Model 51

3.2.2 Functional Safety Mechanisms 52

3.3 Related Work on AUTOSAR FI 53

3.3.1 Simulation-based FI 54

3.3.2 Hardware-based FI 55

3.3.3 Software-based FI 56

3.3.4 Summary Comments 57

3.4 AUTOSAR Fault Models 57

xi

3.5 Applying the Open Source FI Framework GRINDER
for AUTOSAR FI . 59

3.5.1 Adapting GRINDER to an AUTOSAR System 60

3.5.2 Instrumenting AUTOSAR Systems for FI: What
is special about AUTOSAR? 63

3.6 Fault Injection Case Study 64

3.6.1 Deriving Fault Models for the Case Study . . 66

3.6.2 Evaluation Setup 68

3.6.3 Experimentation and Results 70

3.7 Conclusion . 75

4 enhancing timing protection for mixed-criti-
cality systems 79

4.1 Indirect vs. Direct Timing Protection 79

4.2 Related Work . 81

4.3 AUTOSAR System Model 82

4.3.1 Timing Error Propagation 83

4.3.2 AUTOSAR Timing Protection 84

4.4 Preemption Budget Monitoring 85

4.4.1 Integration with AUTOSAR Task State Model 87

4.4.2 Transient Error Ride-through 88

4.4.3 Applicability to Multi-core Systems 89

4.4.4 Limitations and Possible Solutions 89

4.5 Case Study . 90

4.5.1 PBM - Implementation Details 90

4.5.2 Timing Error Scenarios 91

4.5.3 Comparison of run-time overhead 92

4.5.4 Summary . 96

4.6 Conclusion . 96

5 summary and conclusion 99

bibliography 103

xii

L I S T O F F I G U R E S

Figure 1.1 The fundamental chain of dependability and
security threats (from [ALR+04]). 8

Figure 2.1 Model of two software components (SW-Cs)
communicating via a sender-receiver interface. 21

Figure 2.2 The AUTOSAR layered software architecture
(adapted from [AUT11]). 22

Figure 2.3 Possible data flow paths of two communicat-
ing SW-Cs at the implementation level. 23

Figure 2.4 Automating instrumentation: Basic workflow
of the model parsing and instrumentation phases. 29

Figure 2.5 Automating instrumentation: The graphical user
interface for the configuration phase. 30

Figure 2.6 Model of an anti-lock braking system (ABS),
instrumented with monitors and fault injectors
at selected interfaces. 32

Figure 2.7 ETAS INTECRIO: Relative comparison of the
execution time of instrumentation methods, grouped
by implemented functionality. 38

Figure 2.8 OptXware EA: Relative comparison of the exe-
cution time of instrumentation methods, grouped
by implemented functionality. 38

Figure 3.1 The AUTOSAR software architecture (adapted
from [AUT11]). 52

Figure 3.2 The TargetController class and the TargetAbstrac-
tion interface [WPS+15]. 60

Figure 3.3 Adapting the GRINDER FI framework to AU-
TOSAR (adapted from [WPS+15]). 61

Figure 3.4 The adaptive cruise control (ACC) case study
example. 69

Figure 3.5 Scenario 1: Signal traces for a fault injection of
an infinite loop (i.e., a permanent timing fault)
in task OEM_Low_40ms at 20 seconds. 71

Figure 4.1 Deadline violation of τC due to a propagated
timing error. 84

Figure 4.2 Task state transitions and corresponding PB
monitor actions. 87

Figure 4.3 Example of a transient error ride-through of
task τB. 88

Figure 4.4 Transient timing error scenario. 93

xiii

Figure 4.5 Permanent timing error scenario. 94

L I S T O F TA B L E S

Table 2.1 SWIFI experiments: Detected deviations and
exposure times for different injection locations
and bit flip positions. 35

Table 2.2 Overhead in source lines of code (SLOC) of in-
strumented software components for different
instrumentation methods. 37

Table 2.3 Overhead in source lines of code (SLOC) of in-
strumented RTE for different instrumentation
methods. 38

Table 2.4 Text segment size of the (instrumented) object
files of various software components in bytes. 40

Table 2.5 Relative comparison of instrumentation method
and location for different quality attributes. . . 41

Table 3.1 Task configuration of ACC case study example. 69

Table 4.1 Timing properties of the example system. . . . 83

Table 4.2 Assigning preemption budgets in a mixed-crit-
icality example. 87

Table 4.3 Example of conflicting task constraints in a three
criticality system. 89

Table 4.4 Task configuration of ACC case study. 91

Table 4.5 Static overhead of PBM. 91

Table 4.6 Monitoring overhead for ETM and PBM. . . . 95

L I S T O F L I S T I N G S

Figure 2.1 Component prototype specification (extract from
the ARXML of the model in Figure 2.1). 25

Figure 2.2 Interface specification (extract from the ARXML
of the model in Figure 2.1). 26

Figure 2.3 Communication primitive generated from the
ARXML specification in Listings 2.1 and 2.2. . 26

xiv

Part I

I N T R O D U C T I O N

I
n

t
r

o
d

u
c

t
i
o

n1
I N T R O D U C T I O N

The ongoing computerization of devices of our everyday life is driven
by the vision of comfort and simplification. By offloading tasks to
smart computing systems that are increasingly interconnected and
that integrate data from various sensors (e.g., health monitors, smart
homes, and computer vision), we strive for an automation of pro-
cesses and for an autonomous interaction of these systems with our
environment. Manifestations of this trend are manifold. The internet
of things connects physical things to the internet via smart, embedded
sensors. Cyber-physical systems integrate computation and physical
processes with the aim of merging the virtual and physical worlds.
Advanced driver assistance features fuse sensor information to create
a virtual representation of their environment to support the driver
and to provide active safety. These features are key in subsequently
enabling autonomous driving of highly interconnected vehicles.

As these examples show, computers are already pervasively em-
bedded in our everyday lives and this trend is going to continue.
Due to the complex tasks they implement, computers are increasingly
software-intensive and software is extensively used to control many
aspects of our everyday life. In consequence, the complexity of these
computer systems and their software is growing as their adaptation
and pervasiveness progresses.

While these systems ease our lives in various ways, we are also
increasingly reliant on their dependable operation, as individuals and
as society. Especially when they directly interact with the physical
world, the failure of such pervasive, embedded systems could endan-
ger human lives or has the potential for significant damages to prop-
erty or the environment. In those cases we consider these systems
to be safety-critical. In order to guarantee the safe operation of these
systems, their design and verification follows stringent processes to
prevent and remove faults during development with the aim to min-
imize the number of residual faults. To detect and handle erroneous
behavior during runtime and to control hazardous situations, safety
mechanisms are commonly used. For systems that integrate functions
of different criticality levels (so-called mixed-criticality systems), safety
mechanisms also serve the purpose of providing freedom from interfer-
ence, i.e., ensuring that errors in less critical functions cannot disturb
more critical functions through error propagation in space and time.
A thorough assessment of these safety mechanisms and their correct
and effective application is key to establish verifiable trust in the safe
and dependable operation of these systems.

In
t

r
o

d
u

c
t

i
o

n

4 introduction

An established technique for the dependability and robustness as-
sessment of safety-critical systems and their components is fault in-
jection (FI) [HTI97]. In FI experiments, faults are deliberately intro-
duced into a system with the intent to analyze the resulting system
behavior and to establish proof that the system is able to handle cer-
tain fault types. Originally, FI experiments were directly conducted
on hardware, e.g., by exposing it to heavy-ion radiation and elec-
tromagnetic interferences [GKT89], or by performing direct modifi-
cations on the pin-level [AAA+90]. To increase the reproducibility
of the experiments and to allow for higher experiment throughput,
the effects of these hardware injections were subsequently modeled in
software (e.g., by bit flips), with the aim to emulate hardware faults
without conducting time-intensive and complex physical experiments
[SVS+88; KKA95; SBK10]. These experiments are commonly known
as software-implemented fault injections (SWIFI). With the growing
complexity of software, FI developed further into so-called software
fault injections (SFIs). The focus of SFI is now to inject faults that
represent defects that are directly caused by software issues [DM06;
CLN+12], such as programmer mistakes, software ageing, and con-
currency and timing issues.

As the mechanisms and techniques of FI develop and progress, so
do the areas where it is applied. For example, the automotive indus-
try has lately started to adapt FI as a technique for the assessment of
the correctness and effectiveness of their safety mechanisms and crit-
ical components. This adaptation is strongly driven by the functional
safety standard for road vehicles ISO 26262 [Int11] that recommends
FI as assessment technique. The effective adaptation and application
of FI for such complex, software-intensive, and safety-critical systems
is non-trivial due to several factors.

1. FI experiments necessitate the instrumentation of the target sys-
tem with test code on the implementation level. Model-based
development, layered architectures, and the integration of in-
tellectual property (IP) from various suppliers into so-called
mixed-IP systems introduce several levels of abstraction that
impact the customizability, usability, and effectiveness of instru-
mentation and experiments.

2. The choice of representative fault models, i.e., faults that can
and do occur during operation, has major impact on the effec-
tiveness of FI experiments. As the specification of fault models
relies to a high degree on expert domain knowledge, choosing
the right fault models is challenging.

3. To minimize the influence of human error on FI experiments
and to automate the experiment process for efficiency, FI frame-
works are generally used to run large numbers of consecutive
experiments. The framework architecture and design should

I
n

t
r

o
d

u
c

t
i
o

n

1.1 the role of functional safety mechanisms 5

factor the various abstraction levels of the system and be able to
inject faults and monitor system behavior on the complete soft-
ware stack. At the same time, time-consuming process-steps,
such as recompilation and reflashing, should be avoided or min-
imized to achieve a higher efficiency.

On this general background, this thesis

1. develops and presents a guidance framework for the instrumen-
tation of software-intensive and safety-critical systems,

2. develops and adapts a FI framework and provides a detailed
discussion on the derivation of fault models, whose effective
application is demonstrated in two case studies for the assess-
ment of timing protection safety mechanisms, and

3. develops a novel timing protection safety mechanism for mixed-
criticality systems as an enhancement to the existing monitor
infrastructure.

We apply and evaluate the developed techniques on a modern auto-
motive embedded system, based on the AUTOSAR standard [AUT14a].
AUTOSAR implements a highly standardized development process
and layered software architecture, for which systems are designed
as abstract models that consist of software components (SW-Cs), and
compositions thereof, as the core building blocks.

As automotive systems are highly complex and software-intensive
(up to 100 million lines of code distributed over more than 70 elec-
tronic control units (ECUs) [Cha09]), and contain many functions that
are safety-critical, AUTOSAR-based systems are an appealing evalu-
ation target and representative for highly standardized, software-in-
tensive, component-based, safety-critical embedded systems.

This chapter is structured as follows. In Section 1.1 we discuss
the role of functional safety mechanisms in the context of the overall
safety concept, and continue their discussion in the context of de-
pendability in Section 1.2. In Section 1.3 we describe how functional
safety mechanisms contribute to system safety during operation and
present our research questions and contributions in the context of
the assessment and enhancement of functional safety mechanisms in
Section 1.4.

1.1 the role of functional safety mechanisms

This thesis is concerned with the safe operation of those systems,
whose failure could result in loss of life, significant property dam-
age, or damage to the environment, i.e., systems that are safety-criti-
cal, and which implement large parts of their safety concept in soft-
ware. Safety, just as security, is a system property and not an isolated

In
t

r
o

d
u

c
t

i
o

n

6 introduction

property. So, whether a system is in a safe or unsafe state also de-
pends on its operational context. This also means that safety cannot
simply be added at the end of a development process (just like secu-
rity), if the system has not been designed with its respective safety
requirements and their implications on the system design right from
the start. Therefore, a strong emphasis is usually put on the system
development process and system safety engineering.

This section details the safety engineering process and introduces
the terminology, which we use throughout this thesis, according to
the safety standard ISO 26262 with the intent to illustrate the role of
functional safety mechanisms in a system- and process-wide perspective.
ISO 26262 is the adaptation of IEC 61508 [Int10] to comply with needs
specific to the application sector of electrical and/or electronic (E/E)
systems within road vehicles.

The first step in the development of a safety concept is hazard anal-
ysis and risk assessment. Its objective is to identify and to categorize
the hazards1 that malfunctions in the system can trigger and to for-
mulate the safety goals related to the prevention or mitigation of the
hazardous events, in order to avoid unreasonable risk. Techniques such
as brainstorming, checklists, quality history, failure mode and effects
analysis (FMEA), and field studies can be used for the extraction of
hazards at the system level.

As next step, hazardous events, i.e., the combination of a hazard
and a scenario that can occur during a vehicle’s life (e.g., parking,
maintenance), are classified according to their severity, probability of
exposure, and controllability. Based on this classification, an automo-
tive safety integrity level (ASIL) and a safety goal, i.e., a top-level safety
requirement, is assigned to the hazardous event.

For the functional safety concept, the functional safety requirements are
derived from the safety goals, and allocated to preliminary architec-
tural elements of the system or to external measures. The functional
safety concept addresses [Int11]:

• fault detection and failure mitigation,

• transitioning to a safe state,

• fault tolerance mechanisms, where a fault does not lead directly
to the violation of the safety goal(s) and which maintains the
system in a safe state (with or without degradation),

• fault detection and driver warning in order to reduce the risk
exposure time to an acceptable interval (e.g., engine malfunc-
tion indicator lamp, ABS fault warning lamp), and

• arbitration logic to select the most appropriate control request
from multiple requests generated simultaneously by different
functions.

1 A hazard is a potential source of harm caused by malfunctioning behavior.

I
n

t
r

o
d

u
c

t
i
o

n

1.2 safety relies on dependability – and vice versa 7

To comply with the safety goals, the functional safety concept con-
tains safety measures2, either in the form of safety mechanisms or im-
plemented in the system’s architectural elements. Thereby, a safety
mechanism is a technical solution implemented by E/E functions or
elements, or by other technologies, to detect faults or control failures
in order to achieve or maintain a safe state.

1.2 safety relies on dependability – and vice versa

In order to provide safety, a system relies on the dependability of the
safety mechanisms, i.e., they should be free from defects and be able
to tolerate faults during operation. During development, the follow-
ing means are taken to attain dependability and minimize the number
of residual defects [ALR+04]:

• Fault prevention avoids faults from being introduced into a sys-
tem by using better development methodologies (e.g., defensive
programming, usage of formal methods to express a specifica-
tion), better programming languages (e.g., type-safe languages),
and improving the qualification of developers.

• Fault removal techniques (e.g., static and dynamic testing meth-
ods) aim at detecting faults during development and removing
them before a system is deployed.

• Fault forecasting estimates the present number, the future inci-
dence, and the likely consequences of faults (e.g., based on sta-
tistical data, hot-spot analysis) to indicate when an acceptable
level has been attained.

Despite these means, usually not all faults can be removed at de-
sign time, mostly due to the associated costs, limited development
and testing time, and the lack of techniques for the complete veri-
fication of complex (software) systems. Often the trigger conditions
are simply too complex (so-called Mandelbugs) and faults only man-
ifest as the system is exposed to unforseen and untested operational
conditions (e.g., system load and usage, resource depletion due to
ageing). The problem of developing fault-free software systems is
further hardened in the presence of real-time constraints, concurrent
operations, or distributed environments.

As the avoidance, detection, and removal of all faults during design
time is apparently impossible, fault tolerance mechanisms [ALR+04]
are usually employed to tolerate the effects of residual design faults
and operational faults during runtime. Their goal is to avoid and

2 A safety measure is an activity or technical solution to avoid or control system-
atic failures and to detect random hardware failures or control random hardware
failures, or mitigate their harmful effects.

In
t

r
o

d
u

c
t

i
o

n

8 introduction

Figure 1.1: The fundamental chain of dependability and security threats
(from [ALR+04]).

mitigate failures in the presence of faults and to provide sustained
correct service, although that service may be at a degraded level.

Figure 1.1 depicts the relation between fault, error, and failure. A
fault is a defect or flaw (e.g., in the programming or design) that,
when activated, produces an error (i.e., a fault is the cause of an error).
Before a fault is activated (e.g., by a certain input) it is dormant. An
error is the part of a system’s total state that may lead to a failure. If
the error propagates to the boundary of a system component, a failure
occurs when the error causes the delivered service of the component
to deviate from correct service.

1.2.1 Error Propagation: Implications and Solutions

Error propagation between different components of a system may oc-
cur, when an error reaches the service interface of the faulty compo-
nent without being detected by a fault tolerance mechanism. In that
case, any component using the service interface of the faulty com-
ponent will receive incorrect service and the service failure appears
as an external fault to that component (causation of external fault in
Figure 1.1). The effect of error propagation is highly undesirable, es-
pecially in safety-critical systems, as errors in uncritical components
may negatively affect the operation of critical components.

In general, two approaches are taken to mitigate the effect of error
propagation and to prevent propagating errors from affecting critical
components: robustness hardening and isolation.

1. Robustness is the ability of a component or system to handle
external faults during execution. In order to make a component
robust, i.e., to harden it, sanity or range checks are performed
on the inputs of its interfaces and error detection and handling
mechanisms are employed.

2. Isolation eliminates error propagation paths by separating com-
ponents as much as possible, e.g., by a segregated architecture,
also with the aim of eliminating common cause failures.

While the traditional approach of physical isolation used to work
very well, it is often not contemperary anymore. For once, it scales
badly and it is hard to realize in many modern systems that require
a tight overall integration, such as sensor fusion scenarios in which
various control processes simultaneously access signals of multiple
sensors and perform computations on them. Further, physical iso-

I
n

t
r

o
d

u
c

t
i
o

n

1.3 functional safety mechanisms for freedom from interference 9

lation often is a cost issues (e.g., in the automotive domain) as it
necessitates multiple controller boards, periphery, and wiring.

John Knight [Kni02] already stated in 2002 that „the number of in-
teracting safety-critical systems present in a single application will
force the sharing of resources between systems. This will eliminate a
major architectural element that gives confidence in correct operation
– physical separation. Knowing that the failure of one system can-
not affect another greatly facilitates current analysis techniques. This
will be lost as multiple functions are hosted on a single platform to
simplify construction and to reduce power and weight requirements.
Techniques that provide high levels of assurance of non-interference
will be required.“

As an example, the integration of the historically segregated auto-
motive systems, which have been conservatively designed following
a one function per electronic control unit (ECU) approach, offers cost
saving potential for hardware and wiring, as it entailed up to 100

federated ECUs distributed in modern luxury cars [Cha09]. In con-
sequence, modern embedded controllers require the integration of
highly complex and modular software, which can consist of both, un-
critical and safety-critical software components, into so-called mixed-
criticality systems.

1.3 functional safety mechanisms for freedom from in-
terference

The automotive industry serves as an illustrative example how highly
standardized development and safety engineering processes are used
to tackle (1) the challenge of software complexity and (2) the chal-
lenge of designing safe systems in a systematic way.

To standardize the development process and software architecture
of automotive systems, the AUTOSAR (AUTomotive Open System
ARchitecture) consortium [AUT14a; HSF+04] specifies an open in-
dustry standard for automotive software systems. The standard-
ization is driven by the need to address the growing complexity of
modern vehicular systems and to reduce development costs when in-
troducing new software-based features. AUTOSAR is organized as
a layered, modular architecture, and is based on a component- and
composition-centric development process that standardizes the mod-
eling and naming schemes within the system, including components,
interfaces, data types and runnables. The standard promotes the inte-
gration of white-box and black-box components into a grey-box sys-
tem, allowing for the integration and reuse of intellectual property of
different suppliers (so-called mixed-IP systems).

At the same time, manufacturers comply to industry-wide safety
standards and functional safety specifications, such as IEC 61508

[Int10] and in particular the functional safety standard for road vehi-

In
t

r
o

d
u

c
t

i
o

n

10 introduction

cles ISO 26262 [Int11; BFK10], in their design, development and pro-
duction processes for the underlying software. This covers rigorous
software design processes along with analytical and test techniques
at the static software levels. Similar to the „gold standard for parti-
tioning“ in integrated modular avionics [Rus99], ISO 26262 permits
the integration of elements with differing criticality, as long as par-
titioning mechanisms can verifiably provide freedom from interference
in both the spatial and temporal domains, i.e., regarding memory
accesses and timing behavior. In automotive systems, partitioning
is usually supported by hardware [WEK10; ZBS+14], the operating
system (OS) [AUT14i; BFT09], or a combination of both (e.g. virtual-
ization) [RM14].

AUTOSAR addresses freedom from interference specifically through
a set of functional safety mechanisms [AUT14e; AUT14i] that are pro-
vided as services by the AUTOSAR OS, the Watchdog Manager, or
external libraries. These mechanisms include memory partitioning,
timing monitoring, logical supervision, and end-2-end protection. To
support partitioning in the temporal domain, the OS provides mon-
itoring of task execution time budgets, activation frequencies, and
resource lock times.

As functional safety mechanisms assume a key role in the safety
architecture, their dependability requirements are correspondingly
high. They serve the purpose of (1) error detection to realize fault
tolerance, but also (2) isolation by error confinement to realize free-
dom from interference. On this background, this thesis explores two
directions in the context of functional safety mechanisms:

1. The assessment of the correctness and robustness of these mech-
anisms, i.e., how they perform in the presence of specified (tar-
geting correctness) and unspecified (targeting robustness) faults.

2. The enhancement of these mechanisms to mixed-criticality sys-
tems, i.e., how can these mechanisms be effectively and effi-
ciently applied for mixed-criticality applications.

1.4 research questions and contributions

Research Question (RQ1): How do we drive the instrumentation of complex,
software-intensive mixed-IP systems for dependability assessment?

Dynamic testing techniques for dependability assessment, e.g., fault
injections, necessitate the instrumentation of the system under test
with code to conduct the actual injections at various injection loca-
tions and to monitor the actual system response to the injected faults,
e.g., to assess error detection and fault tolerance capabilities. Con-
temporary model-based development processes provide high usabil-
ity, but at the same time introduce a high degree of abstraction from

I
n

t
r

o
d

u
c

t
i
o

n

1.4 research questions and contributions 11

the implementation layer, on which the actual instrumentation is con-
ducted, with the consequence of ambiguous mappings between the
model and implementation view. Layered architectures and the inte-
gration of intellectual property from various suppliers into mixed-IP
systems introduce further levels of abstraction that impact the cus-
tomizability, usability, and effectiveness of instrumentation and ex-
periments.

Contribution (C1): A guidance framework for the dependability assessment
of complex, software-intensive mixed-IP software systems.

To enable a systematic process for the instrumentation of complex,
software-intensive mixed-IP systems, we propose to combine infor-
mation from the system model and the implementation to create a
hybrid view of the system, effectively establishing a relation between
the model and the implementation. At the example of AUTOSAR, we
demonstrate how its high degree of standardization enables the de-
velopment of independent testing procedures that transcend manu-
facturer-specific solutions, and thereby supports a flexible, systematic,
and automated approach. By operating mainly on the standardized
model specification, a transition from a monolithic testing approach
to a component based one, with emphasis on component isolation
and communication via standardized interfaces, can be made. In
Chapter 2 we develop a dependability assessment guidance frame-
work tailored towards AUTOSAR that helps to identify the applica-
bility and effectiveness of instrumentation techniques at (1) varied
levels of software abstraction and granularity, (2) at varied software
access levels - black-box, grey-box, white-box, and (3) the application
of interface wrappers for conducting FI. The results of this work were
presented at DSN 2012 [PWM+12].

Although our focus in this thesis is on the assessment and enhance-
ment of functional safety mechanisms, the overall instrumentation
process is generally applicable and not limited to these application
scenarios. We have also applied the instrumentation approach in the
context of complex runtime monitors for protocol supervision and
presented the results of this joint work at ECMFA 2013 [PPP+13].

Research Question (RQ2): How can FI be effectively and efficiently applied
for the assessment of functional safety mechanisms?

The automotive safety standard ISO 26262 strongly recommends the
use of FI for the assessment of safety mechanisms that typically span
composite dependability and real-time operations. However, with
the standard providing very limited guidance on the actual design,
implementation, and execution of FI experiments, most AUTOSAR
FI approaches use standard fault models (e.g., bit flips and data type

In
t

r
o

d
u

c
t

i
o

n

12 introduction

based corruptions), and focus on using simulation environments. Un-
fortunately, the representation of timing faults using standard fault
models, and the representation of real-time properties in simulation
environments are hard, rendering both inadequate for the compre-
hensive assessment of AUTOSAR’s safety mechanisms. The actual
development of ISO 26262 advocated FI is further hampered by the
lack of representative software fault models and the lack of an openly
accessible AUTOSAR FI framework.

Contribution (C2): An open source FI framework for AUTOSAR, including
fault model guidelines and the assessment of functional safety mechanisms.

Facing these challenges, we provide an open source, ready to use
AUTOSAR FI tool [PMT+15] in Chapter 3 that is capable to conduct
FI experiments at all layers of AUTOSAR’s software architecture, i.e.,
application, runtime environment, and basic software. Injections in
source code and binary object files (i.e., white-box and black-box) are
both supported. Further, we provide guidelines for the derivation of
specific fault models, injection locations and mechanisms from the
abstract AUTOSAR and ISO 26262 fault models. We report our expe-
riences in conducting a dependability assessment of a commercial im-
plementation of AUTOSAR’s timing monitoring safety mechanisms.
The assessment uncovered a real deficiency in the implementation
that was subsequently acknowledged and fixed by the supplier of
the safety mechanisms’ implementation. The results of this work are
going to be presented at EDCC 2015 [PWS+15b].

Research Question (RQ3): How can the existing infrastructure of functional
safety mechanisms be enhanced for mixed-criticality scenarios?

For mixed-criticality automotive systems, the functional safety stan-
dard ISO 26262 stipulates freedom from interference, i.e., errors should
not propagate from low to high criticality tasks. To prevent the prop-
agation of timing errors, the automotive software standard AUTO-
SAR provides monitor-based timing protection, which detects and
confines task timing errors. As current monitors are unaware of a
criticality concept, the effective protection of a critical task requires to
monitor all tasks that constitute a potential source of propagating er-
rors, thereby causing overhead for worst-case execution time analysis,
configuration and monitoring.

Contribution (C3): A novel, criticality-aware timing protection mechanism.

Differing from the indirect protection of critical tasks facilitated by ex-
isting mechanisms, we propose a novel monitoring scheme in Chap-
ter 4 that directly protects critical tasks from interference, by providing

I
n

t
r

o
d

u
c

t
i
o

n

1.4 research questions and contributions 13

them with execution time guarantees. The monitor is implemented
as an enhancement to the existing monitoring infrastructure of a
widely used commerical AUTOSAR OS and meant to augment exist-
ing mechanisms. Overall, our approach provides efficient low-over-
head interference protection, while also adding transient timing error
ride-through capabilities. The results of this work were presented at
ISORC 2015 [PWS+15a].

Part II

I N S T R U M E N TAT I O N

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2
I N S T R U M E N T I N G A U T O S A R S Y S T E M S F O R
D E P E N D A B I L I T Y A S S E S S M E N T

The AUTOSAR standard guides the development of component-based
automotive software. As automotive software typically implements
safety-critical functions, it needs to fulfill high dependability require-
ments, and the effort put into the quality assurance of these systems
is correspondingly high. Testing, fault injection (FI), and other tech-
niques are employed for the experimental dependability assessment
of these increasingly software-intensive systems. Having flexible and
automated support for instrumentation is key in making these assess-
ment techniques efficient. However, providing a usable, customizable
and performant instrumentation for AUTOSAR is non-trivial due to
the varied abstractions and high complexity of these systems.

This chapter develops a dependability assessment guidance frame-
work tailored towards AUTOSAR that helps identify the applicability
and effectiveness of instrumentation techniques at (a) varied levels
of software abstraction and granularity, (b) at varied software access
levels - black-box, grey-box, white-box, and (c) the application of in-
terface wrappers for conducting FI. The framework presented in this
chapter forms the basis of the automated fault injection process for
the assessment of the functional safety mechanisms of AUTOSAR,
which is developed in Chapter 3. The content of this chapter is based
on a conference paper presented at DSN 2012 [PWM+12].

2.1 automated instrumentation : challenges & benefits

AUTOSAR (AUTomotive Open System ARchitecture) [HSF+04] is an
emerging open industry standard for automotive software systems.
Its development is driven by the need to address the growing com-
plexity of modern vehicular systems and to reduce development costs
when introducing new software-based features. AUTOSAR is orga-
nized as a layered, modular architecture, and is based on a compo-
nent/composition-centric development process that standardizes the
modeling and naming schemes within the system, including com-
ponents, interfaces, data types and runnables. The standard pro-
motes the integration of white-box and black-box components into
a grey-box system, allowing for the integration and reuse of intellec-
tual property (IP) of different suppliers (so-called mixed-IP systems).

Automobiles are safety-critical systems, i.e., systems whose failure
could potentially endanger human life, property, and environment,
with increasing software based functionality. In order to maintain

In
s
t

r
u

m
e

n
t
a

t
i
o

n

18 instrumenting autosar systems for dependability assessment

safety, often defined as the „absence of catastrophic consequences on
the user(s) and the environment“ [ALR+04], manufacturers comply
to industry-wide safety standards and functional safety specifications,
such as IEC 61508 [Int10] and in particular the functional safety stan-
dard for road vehicles ISO 26262 ([Int11], [BFK10]), in their design,
development and production processes for the underlying software.
This covers rigorous software design processes along with analytical
and test techniques at the static software levels. Moreover, experimen-
tal methods for dependability assessment (e.g., testing, fault injection,
and error propagation analysis) are employed during development
to analyze the system’s behavior before its deployment and to ensure
the fault tolerance of critical components [SK08]. Similarly, an equally
widespread adoption of experimental security analyses is advisable.
It has repeatedly been shown that current implementations of auto-
motive software have severe security issues ([KCR+10], [RMM+10],
[HKD11]), which can also be attributed to insufficient testing.

In practice, instrumentation1 is one way to enable dependability as-
sessment techniques within a system. To make the assessment ef-
ficient, a flexible and automatic instrumentation of the test system at
different locations and varied levels of granularity is highly desir-
able. To systematically address the aforementioned requirements, we
propose an automated process for the instrumentation of AUTOSAR
systems by a framework, which provides the key features usability,
customizability and efficiency. The implementation of such a frame-
work for AUTOSAR is hard, mainly due to these factors:

F1) AUTOSAR systems are developed in a model based process that
introduces a high degree of abstraction between the model and
the actual implementation. As consequence, instrumentation at
the model level has no access to implementation details (limit-
ing customizability), while instrumenting the implementation,
i.e., machine generated code, is a tedious process (limiting us-
ability). Also, due to the degree of abstraction, elements of the
model often have no singular representation in the implemen-
tation.

F2) AUTOSAR systems are composed of white-box and black-box
software components as provided by various suppliers. A cus-
tomizable and usable instrumentation should also be applicable
to these systems, to not impact the overall efficiency of instru-
mentation, for instance, if an approach requires the re-compila-
tion of the entire system. To keep the effectiveness and impli-
cations on the overall system composition and performance in
mind is key.

1 Throughout this work, we use the word instrumentation to express a modification
of a program with the intent to enable an interception of data and control flow
for analysis or alteration, aiming to implement the major dependability-related
applications fault injection and monitoring.

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.1 automated instrumentation : challenges & benefits 19

2.1.1 Contributions

Facing these challenges, we develop an instrumentation framework
for AUTOSAR systems that is usable, customizable and efficient. At
the same time, we aim to establish a guidance framework on how to
develop and implement a systematic instrumentation schema within
the AUTOSAR environment. The key idea to address factor (F1) is
to leverage collective information from the system model, provided
during the development process in standardized AUTOSAR XML
(ARXML) format, and the system implementation, to drive the con-
figuration and instrumentation process.

Addressing factor (F2), we develop and advocate an interface wrap-
per based approach for the instrumentation realization. Wrappers
are a well established concept [Voa98], that can be used to intercept
inter-component communication. They are applicable to white-box,
grey-box, and black-box components, all of which can be present
simultaneously within an AUTOSAR system and are, as such, also
explicitly promoted by the standard. Moreover, wrappers can im-
plement add-on functionality and thus enable a variety of run-time
testing and analysis methods, such as fault injection (FI), failure prop-
agation analysis, and control-/ data-flow monitoring.

Having said that, our approach is the first to investigate how to
systematically and automatically instrument a given system. Our
contribution is to provide a guidance framework for the systematic
and automated instrumentation of AUTOSAR systems that enables:

• Usability: Instead of requiring the user to instrument code at a
low level, e.g., at the output of code generators, we enable in-
strumentation via high-level models. Building models is an es-
sential abstraction step in the AUTOSAR development process
to specify modular and interconnected systems. Such models
are widely-used and supported by AUTOSAR design tools.

• Customizability: In addition, expert users of the proposed in-
strumentation framework are given a highly customizable inter-
face to specify instrumentation locations that are not part of the
model abstraction. We achieve this by exploiting semantic infor-
mation of high-level models, e.g., the logic of generating source
code from models. Furthermore, our customizable framework
allows instrumentation at different software access levels, e.g.,
binaries (black-box) or C code (white-box).

• Efficiency: The proposed framework is also efficient in terms
of user effort, compilation resources, execution time, and mem-
ory consumption. We implement efficiency through adaption
of established SW engineering techniques such as wrappers
and XML meta data. We evaluate this efficiency by conducting

In
s
t

r
u

m
e

n
t
a

t
i
o

n

20 instrumenting autosar systems for dependability assessment

fault-injection of an anti-lock braking system, which we imple-
mented with two different AUTOSAR design tools to demon-
strate efficiency and applicability across multiple vendors.

We structure this chapter as follows. We introduce the system
model in Section 2.2 and review related work on AUTOSAR instru-
mentation in Section 2.3. In Section 2.4 we detail the development of a
systematic, automated process for instrumentation. We evaluate our
approach in Section 2.5 and discuss its characteristics and limitations
in Section 2.6.

2.2 autosar development process and system model

Many techniques for component level dependability assessment (e.g.,
fault injection) or reliability enhancement (e.g., run-time monitors),
rely on accessing or modifying the actual data flow between the com-
ponents [CC96; MCV00]. This section provides the foundations to
understand key aspects of the AUTOSAR development process and
architecture, which is essential to appreciating the difficult challenge
of instrumentation and its effective usage.

AUTOSAR’s focus is to provide the software architecture for dis-
tributed automotive systems. In these systems, electronic control
units (ECUs) constitute nodes that implement dedicated functional-
ity and that communicate via bus systems such as CAN, LIN and
FlexRay. AUTOSAR systems are created in a model driven develop-
ment process, in which the developer composes the system model
typically via a graphical user interface. This model provides an ab-
stract view on the system, making no assumptions on the distribu-
tion or mapping of resources in a later development stage. Large
parts of the overall software code base are generated from this model
and only a fraction of the system development is done on the actual
implementation level. This approach provides the developer great
usability and flexibility in terms of evolving system configuration, as
the assignment of resources (i.e., mapping components to ECUs) and
low level implementation become decoupled processes. On the other
hand, this approach also entails a high degree of abstraction between
the model and the actual implementation.

We use the example model in Figure 2.1 to introduce some of the
key concepts of AUTOSAR, and to show the ambiguity of the model
concepts in the implementation domain later on. The top-level el-
ement in any AUTOSAR system is a composition (depicted by the
dashed box), which can be thought of as a container that contains
other compositions or software components (SW-Cs). The standard
defines several types of SW-Cs, such as application SW-C or sen-
sor-actuator SW-C, and SW-Cs provide functionality to the system
through runnables, which are timer or event (e.g., message arrival)
triggered functions that are implemented in C or C++. SW-Cs com-

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.2 autosar development process and system model 21

Data flow

Interface AB

A B

Example Composition

Sendport Recvport

SW-C SW-C

Figure 2.1: Model of two software components (SW-Cs) communicating via
a sender-receiver interface.

municate with each other via standardized port interfaces (or simply
interfaces, in our example Interface AB), which specify the communi-
cation method and provide a link between components. Interfaces
are accessed through ports, serving as communication endpoints. As
such, ports provide access to a named point-to-point connection be-
tween components that uses standard communication patterns, such
as client-server or sender-receiver, to exchange data or invoke server
operations.

Spotting and identifying points for communication interception
seems trivial in the model, but becomes non-intuitive in the imple-
mentation mostly due to the high abstraction degree of the model. In
fact, after reviewing the AUTOSAR architecture and the data flow be-
tween components within, we show that, for example, the modeling
concept port has no singular representation within the implementa-
tion. It is important to understand that the view on the system that
the model provides is inherently different from the implementation’s
view of the system. In the model, SW-Cs are directly connected to
each other via their respective ports and port interface. But, unlike
the model suggests, there is no direct communication between SW-Cs
in the implementation. Instead, each SW-C invokes the API of a run-
time environment (RTE), which abstracts the services/primitives for in-
ter-component communication. The RTE is a layer of the AUTOSAR
software architecture, as shown in Figure 2.2. To understand how
connections (and eventually communication) between components in
the model manifest in the implementation, we have to understand
further details of the architecture.

At the implementation level, AUTOSAR is organized as a layered,
modular software architecture in which each layer provides an ab-
straction of the underlying layer and a set of services to the overlying
layer. As mentioned, the RTE implements communication services
for the SW-Cs and transparently abstracts from the actual communi-
cation medium or channel. In order to dispatch communication and
route messages, the RTE uses the services provided by the basic soft-
ware (BSW) layer, which itself is composed of several sub-layers and
modules, and provides the hardware abstraction.

In
s
t

r
u

m
e

n
t
a

t
i
o

n

22 instrumenting autosar systems for dependability assessment

Application Layer

AUTOSAR Runtime Environment (RTE)

Hardware

SW-C SW-C SW-C

Basic Software (BSW)

Complex
Drivers

OS and Services

ECU Abstraction

Microcontroller Abstraction

Figure 2.2: The AUTOSAR layered software architecture (adapted from
[AUT11]).

Recalling the example model of Figure 2.1, the communication be-
tween components A and B can result in three distinct communica-
tion paths in the implementation, as shown in Figure 2.3. In the case
where component A and B reside on the same ECU (as in the left part
of the picture) the communication can either involve only the RTE or
the RTE and the BSW. In the distributed case, where component A
and B reside on different ECUs, the communication also involves a
network, such as CAN. The direct communication between compo-
nents that the model view suggests, obviously gets split into several
phases within the implementation. To give an example, the commu-
nication process and data flow for the most simple case of commu-
nication is as follows. In phase one, SW-C A invokes an API call of
the RTE to send a message to SW-C B. The interface handler of the
RTE processes the call and stores the message until delivery. Phase
two starts when SW-C B invokes an API call of the RTE to read the
message. The interface handler of the RTE loads the stored message
and delivers it to SW-C B. So, the message first passes the interface
between SW-C A and the RTE, and then the interface between the
RTE and SW-C B. As each of these interfaces has two communication
endpoints, one within the SW-C and one within the RTE, we have
the choice of four distinct locations to intercept the dataflow between
component A and B – for the simplest case.

Another factor that adds to the complexity of the scenario, is the
distributed development of AUTOSAR systems. AUTOSAR advo-
cates a component-based design with standardized interfaces to sup-
port the integration of application components that are supplied by
third party manufacturers, into the overall system. Third party sup-
pliers receive, alongside with the SW-C’s functional requirement spec-
ification, an interface specification that results from the code gen-

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.3 related work on autosar instrumentation 23

SW-C

A
SW-C

B

RTE

BSW

Network (e.g. CAN)

ECU 1

SW-C

B

RTE

BSW

ECU 2

Figure 2.3: Possible data flow paths of two communicating SW-Cs at the
implementation level.

eration process. They have the option to deliver the implemented
functionality either as source-code (white-box) or binary object-code
(black-box). Both options are explicitly supported by the AUTOSAR
standard, whereas delivering the implementation in binary form aids
in protecting the intellectual property of the external supplier. In ad-
dition to the different instrumentation locations (SW-C and RTE), an
instrumentation approach therefore has to factor the different code
access levels that might be present in the system.

We address this scenario as follows. To bridge the gap between
the model and the implementation, we propose to leverage informa-
tion from the model and the implementation to create a collective
view of the system. After a review of related work in the following
section, we explain the technical details of extracting the necessary
information from the model and the implementation in Section 2.4.
Furthermore, we show how to technically drive wrapper-based inter-
face instrumentation on the access levels of source code and binary
object, and provide suggestions on how to use this information to
develop an instrumentation framework.

2.3 related work on autosar instrumentation

In order to implement fault-tolerance extensions or to conduct fault
injection experiments, several publications have dealt with the instru-
mentation of AUTOSAR software systems.

In [LFK09a], Lu et al. propose a fault-tolerance extension for au-
tomotive modular embedded software, which is implemented as an
error monitor in an external customizable component. The external
monitor instruments and interfaces the monitored system via software
hooks provided by the AUTOSAR OS on certain events (e.g., task start,

In
s
t

r
u

m
e

n
t
a

t
i
o

n

24 instrumenting autosar systems for dependability assessment

task stop, and OS errors), based on the user’s OS configuration. The
approach is capable of monitoring the control- and data-flow at the
OS level, with granularity restricted to task invocations. Apart from
the low granularity, the approach is limited by the instrumentation at
the OS level (therefore requiring OS access) and the use of software
hooks, which necessitates white-box access to those parts of the OS
that implement the hooks.

In [LFK09b], the authors suggest a wrapping-based approach that
partly addresses above limitations. The approach is based on the
same architecture, but targets the RTE as the instrumentation loca-
tion, leveraging software hooks provided by the RTE. The granularity
of monitoring is substantially improved to tracking interactions be-
tween SW-Cs and RTE at the interface level, and is comparable to our
approach. Furthermore, the approach only requires RTE access and
no longer OS access. On the other hand, white-box restrictions still
apply, while implicitly necessitating the time-consuming recompila-
tion of code, when the configuration of instrumentation changes.

Lanigan et al. [LNF10] published a feasibility study of fault injec-
tion in AUTOSAR using CANoe, a commercial tool that provides
a simulation and evaluation environment for automotive applica-
tions. As with the previous approaches, the instrumentation method
of choice is software hooks. The authors restrict themselves to the
basic software (BSW) layer and do not instrument the RTE, as „it is
mostly auto-generated by the AUTOSAR configuration tools“. While
the instrumentation at BSW service level provides a better granular-
ity than at the OS level, the same access and white-box limitations as
for [LFK09a] apply, due to the similarities in instrumentation method
and location. As the approach targets a specific tool, the generic ap-
plicability is restricted.

In summary, the review of related work shows that all current ap-
proaches rely on hooks provided by either the BSW, the OS or the RTE,
requiring at least partial source code access, and in turn, the recom-
pilation of parts of the system for different configurations. Currently,
none of the existing approaches addresses the different access levels
of white-box, grey-box or black-box, which are explicitly promoted by
AUTOSAR. Furthermore, the question of how to systematically and
automatically instrument a given system is not investigated. Also,
none of the publications provides an (experimental) evaluation of the
overhead incurred by the instrumentation. We are the first to address
these open issues.

2.4 instrumenting autosar software components

AUTOSAR’s high-level view of inter-component communication fa-
cilitates the identification of candidate locations for instrumentation.

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.4 instrumenting autosar software components 25

In order to analyze or intercept the communication on the compo-
nent level, i.e., among the core building blocks of AUTOSAR systems,
communication end-points of interest can be chosen from the set of
ports that are used for component interconnection. Unfortunately,
this simplicity of the communication model is not reflected in the tool-
generated source code structure, for which the actual instrumentation
has to be implemented. In the following we discuss how AUTOSAR’s
high-level communication model translates to source code constructs,
along with the resulting opportunities for instrumentation.

2.4.1 Inter-Component Communication: Model vs Code

AUTOSAR models are stored as machine-readable specification in a
XML-based data format called ARXML. A code generator translates
these models into an implementation code skeleton. To illustrate the
code generation process, we have modeled the system presented in
Figure 2.1, which, despite its simplicity, resulted in almost 140 lines
of ARXML code. From this code, an extract of the component speci-
fication of SW-C A is shown in Listing 2.1, with the intent to provide
an illustrative example and give the reader a glimpse at the overall
process.

1 <APPLICATION-SOFTWARE-COMPONENT-TYPE>

2 <SHORT-NAME>A</SHORT-NAME>

3 <PORTS><P-PORT-PROTOTYPE>

4 <SHORT-NAME>SendPort</SHORT-NAME>

5 <PROVIDED-COM-SPECS><UNQUEUED-SENDER-COM-SPEC>

6 <DATA-ELEMENT-REF DEST="DATA-ELEMENT-PROTOTYPE">

7 /rootPackage/SendPort/DataPrototype</DATA-ELEMENT-REF>

8 </UNQUEUED-SENDER-COM-SPEC></PROVIDED-COM-SPECS>

9 <PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE">

10 /rootPackage/SendPort</PROVIDED-INTERFACE-TREF>

11 </P-PORT-PROTOTYPE></PORTS>

12 </APPLICATION-SOFTWARE-COMPONENT-TYPE>

Listing 2.1: Component prototype specification (extract from the ARXML of
the model in Figure 2.1).

The specification’s key elements are the component name (line
2) and the provide port definition (lines 3-11), which contains refer-
ences to the data prototype (lines 6-7) and the interface (lines 9-10). In
[AUT14h], the AUTOSAR standard defines various interface types,
which are translated to more than 20 API types during the code
generation, each of which is generated with a strict naming scheme
to ensure interoperability. In our example, the interface is of type
SENDER-RECEIVER-INTERFACE (lines 9-10), and the specification
results in the generation of an Rte_Write API. For this API, the nam-
ing scheme is defined as Rte_Write_<p>_<o>, where <p> denotes the

In
s
t

r
u

m
e

n
t
a

t
i
o

n

26 instrumenting autosar systems for dependability assessment

port name and <o> the DataElementPrototype. Line 4 of Listing 2.1 spec-
ifies the port name (SendPort) while the DataElementPrototype can be
obtained by de-referencing the interface reference in lines 9-10.

1 <SENDER-RECEIVER-INTERFACE>

2 <SHORT-NAME>SendPort</SHORT-NAME>

3 <DATA-ELEMENTS><DATA-ELEMENT-PROTOTYPE>

4 <SHORT-NAME>DataPrototype</SHORT-NAME>

5 <TYPE-TREF DEST="INTEGER-TYPE">

6 /rootPackage/DataType</TYPE-TREF>

7 </DATA-ELEMENT-PROTOTYPE></DATA-ELEMENTS>

8 </SENDER-RECEIVER-INTERFACE>

Listing 2.2: Interface specification (extract from the ARXML of the model in
Figure 2.1).

Listing 2.2 shows the interface specification. The name of the
DataElementPrototype (DataPrototype) is located in line 4. By apply-
ing the port name and the DataElementPrototype to the API naming
scheme, we obtain the function call signature Rte_Write_SendPort_DataPrototype
which matches the signature of the actual generated code, which is
shown in Listing 2.3.

1 Std_ReturnType Rte_Write_SendPort_DataPrototype(DataType data);

Listing 2.3: Communication primitive generated from the ARXML specifi-
cation in Listings 2.1 and 2.2.

This simple example illustrates some of the key concepts of ARXML
parsing. By de-referencing basic building blocks of a component, the
function call signature can be derived and located in the implementa-
tion code base for instrumentation. The AUTOSAR standard defines
more than 20 interface types with a multitude of options, significantly
adding to the complexity of the translation process. An exhaustive
implementation of all interface types is essential, if maximum com-
patibility needs to be achieved. Else, a limited subset that resembles
the interfaces that are used throughout the concrete model suffices.

2.4.2 Opportunities for Instrumentation

The AUTOSAR standard document Requirements on RTE Software de-
fines that the „RTE shall be generated in C“ and that the „RTE is
required to support components written using the C and C++ pro-
gramming languages“ [AUT14f]. Thus, C and C++ are the preva-
lent programming languages in AUTOSAR systems, and we focus on
these for instrumentation. Examining the characteristics of the C/C++
programming languages, both languages allow either source code,
header file, or binary object, as possible options for instrumentation,
which correspond to the software access levels white-box, grey-box

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.4 instrumenting autosar software components 27

and black-box. SW-Cs and the RTE are instrumented in a technically
similar manner, hence we will refer to them collectively. A clear dis-
tinction has to be drawn during the evaluation and discussion of each
approach though, as the instrumentation of SW-Cs and RTE differs in
semantics and requirements, as discussed in Section 2.6. Thus each
instrumentation location (RTE and SW-C) has three instrumentation
options at the code access level, as:

Option 1: Instrumentation of Source Code (.c-files)

The source code of a component contains its implementation, which is
located in a .c-file or .cpp-file. Source code instrumentation demands
white-box access to the instrumented component and therefore has
the highest requirements in terms of accessibility.

In order to instrument a component’s implementation, i.e., its .c-
file, all invocations of the interface function that is to be instrumented,
must be replaced with calls to a wrapper. This is done by renaming
all calls to Interface_Name to a unique and unused function name, e.g.
Wrapper_Interface_Name. An implementation of Wrapper_Interface_Name
then has to be provided in a separate .c-file that replicates all #include
statements of the original .c-file (e.g., for type definitions and macros)
and transparently invokes the original API function Interface_Name,
by passing all parameters and the return value.

Option 2: Instrumentation of Header File (.h-files)

The header file of a component contains its interface declaration, which
is located in a .h-file. Header file instrumentation requires grey-box
access to the instrumented component, as the interface declaration
must be accessible, but knowledge of implementation specific details
is not necessary.

The interface declaration of a component, i.e., its .h-file, is instru-
mented by redeclaring the interface name of the function that is to
be instrumented (e.g., Interface_Name) to a new, unique and unused
function name (e.g., Original_Interface_Name), effectively hiding the
original interface from the implementation. Similar to the instrumen-
tation of source code, an implementation of Interface_Name has to be
provided in a separate .c-file, that #includes the original header file,
and invokes the original API function Original_Interface_Name trans-
parently.

Option 3: Instrumentation of Binary Object (.o-files)

The binary object of a component contains its compiled object code,
which is located in an .o-file. The instrumentation of binary objects
only requires black-box access to the instrumented component and
therefore has the lowest requirements in terms of accessibility.

In
s
t

r
u

m
e

n
t
a

t
i
o

n

28 instrumenting autosar systems for dependability assessment

Binary objects contain tables with information on imported and ex-
ported symbols that are used by the linker during the link phase of
a program. Symbol tables can be accessed and manipulated by tools
such as objdump and objcopy, both part of GNU Binutils [GNU]. By
modifying the import/export table of the binary object, the linker
can be instructed to link all calls of the original interface function
(e.g. Interface_Name) to a wrapped version of the function (e.g. Wrap-
per_Interface_Name). An entry in the symbol table can be redefined, by
calling objcopy with the -redefine-sym parameter, passing the origi-
nal and new symbol name as additional parameters. An implemen-
tation of the wrapped interface function Wrapper_Interface_Name has
to be provided in a similar way as for above approaches in a separate
.c-file.

2.4.3 Automating AUTOSAR Wrapper Generation

We have implemented aforementioned instrumentation methods into
a prototype AUTOSAR instrumentation framework, which was de-
veloped in C#. The development of this framework was motivated
by our need for a flexible, configurable and programmatic process to
drive the instrumentation of AUTOSAR systems for our own fault in-
jection experiments. At the same time, we also wanted to verify that
we can indeed achieve a usable, customizable and efficient approach to
instrumentation.

The overall workflow is divided into three phases: parsing, con-
figuration, and instrumentation. Model parsing is key in provid-
ing usability to the user, as it enables a presentation of the system
on the model abstraction level. During model parsing (shown on
the left side of Figure 2.4), the parser analyzes the AUTOSAR XML
(ARXML) file(s) for elements that are relevant to create this presen-
tation and to drive instrumentation. Beginning at the top-level com-
position (TLC), which contains the component instances (CIs) of the
system, the parser de-references the component prototype specifica-
tion (CPS) of all CIs.

Next, the parser extracts all references to interface type(s) and data
element type(s) that are part of the component prototype. The in-
formation contained within the interface type specification, the data
element type specification and the specification of the internal behav-
ior of the component prototype are relevant for the overall process.
Due to the complexity of the standard, it is not feasible to give a
more detailed list of elements. Instead we advise the reader to con-
sult the Specification of RTE [AUT14h] that lists all interface types and
their associated signatures.

After parsing the ARXML file, we provide the user with a brows-
able list of the software components that compose the system and
their corresponding interface functions, shown in Figure 2.5. During

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.4 instrumenting autosar software components 29

ARXML

System Model

Parse Top-Level

Composition (TLC)

Parse Each Component

of TLC

Data

Element

References

Interface

Type

References

Component Prototypes

(CPs)

Parsing

Parser

Output

Iterate Component

Prototypes (CPs)

User

Config.

Instrumentation

Imple-

mentation

Parse Internal Behavior

of CPs

Iterate all Interfaces of

each CP

Evaluate Config. of

Instrumentation

SW-C/

RTE

.c-file

SW-C/

RTE

.h-file

SW-C/

RTE

.o-file

Figure 2.4: Automating instrumentation: Basic workflow of the model pars-
ing and instrumentation phases.

the configuration phase, the user can select the various instrumenta-
tion methods (.c-file, .h-file or .o-file) and locations (SW-C or RTE) for
each interface of an SW-C, as derived from the component specifica-
tion in the system model, and supply code for wrapper functionality
(e.g., monitor or FI). By offering the various choices of methods and
location, we provide the user a customizable way to drive instrumen-
tation.

Lastly, in the instrumentation phase (shown on the right side of
Figure 2.4), all interfaces of each CPS are iterated, and, depending
on the configuration, a method- and location-specific procedure that
generates the wrapper and instruments the interface is called. A log
file of the instrumentation is generated, to provide feedback and re-
port errors.

By integrating a presentation of the various instrumentation op-
tions on the model’s abstraction layer, while preserving the flexibility
and customizability of working directly on the implementation level,
we were able to satisfy the requirements of usability and customizabil-
ity. The evaluation of the efficiency of our approach is provided in the
following section.

In
s
t

r
u

m
e

n
t
a

t
i
o

n

30 instrumenting autosar systems for dependability assessment

Figure 2.5: Automating instrumentation: The graphical user interface for
the configuration phase.

2.5 proof of concept and experimental evaluation

This section provides a proof of concept for our suggested instru-
mentation approach in a typical dependability assessment scenario.
We apply the source code and binary object instrumentation options
to the SW-C and RTE layers, in order to conduct a series of fault
injection (FI) experiments on a simplified anti-lock braking system
(ABS). The purpose and intent of these experiments is not so much
the evaluation of a single, specific system, but rather to apply all of
the instrumentation methods in a common application scenario to
show their generic applicability. We determine the overhead of each
instrumentation technique, in order to establish a relative comparison
and raise the reader’s awareness for the different evaluation criteria.
This is a best effort approach, as, given the multitude of platforms,
systems and tool-chains in the automotive domain, a generic analysis
is infeasible.

For development, implementation and evaluation of the system, we
used the commercial AUTOSAR tools ETAS INTECRIO V3.2.0 Hotfix
5 [ETA] and OptXware Embedded Architect (EA) V1.0.0.201103031241
[Opt], which enabled us to cross-validate our results. Although we
have conducted all of our experiments on both tools, it is neither our
intention nor feasible to provide a comparison of tools, due to the di-
verse functionality and application area of each tool. Instead, we in-
tend to provide a relative comparison of instrumentation approaches
per tool, and we aim at showing that our approach is a generic one,
therefore not limited to a certain tool or implementation. For the
automated instrumentation of the system, we employ the instrumen-
tation framework prototype that we have developed according to the
technical details given in Section 2.4.

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.5 proof of concept and experimental evaluation 31

2.5.1 The Experimentation Setup

The system on which we implement the proof of concept is a simpli-
fied anti-lock braking system, as shown in Figure 2.6. It is simplified
in the sense that only two wheels are present in the model and that
the internal behavior is not used in a production system (i.e., a real
car). The system is nevertheless a complete and fully-fledged AU-
TOSAR system, aligning well with the intent of our experiments. A
detailed description of the function of the system and the operating
conditions is given in Section 2.5.2. In our setup we aimed to cover
the instrumentation locations SW-C and RTE and the wrapper im-
plementation options .c-file, .h-file and .o-file. By applying each of the
3 implementation options to each of the 2 instrumentation locations,
we have 6 distinct experimentation setups possible, of which we were
able to evaluate 5. We were unable to apply, and therefore experi-
mentally validate, the RTE .h instrumentation method, as both tools
generate the RTE’s header file without interface prototype declara-
tions.

For each of our experiments, we compare the experiment’s out-
come to a golden run made on a reference setup without any instru-
mentation. To map the 5 experimentation setups to the actual system,
we decided to instrument the system with a fixed set of monitors
and shift the fault injector location, based on the current setup. The
instrumentation methods and fault injector locations are as follows:

• No instrumentation Reference setup.

• SW-C .c BrakePedalPosition in SW-C BrakePedalSensor.

• SW-C .h BrakeTorque_FL in SW-C BrakeController.

• SW-C .o WheelSpeed in SW-C WheelSpeedSensor_FL.

• RTE .c VehicleSpeed in SW-C VehicleSpeed.

• RTE .h Not evaluated.

• RTE .o RequestedBrakeTorque in SW-C ABS_FL.

For each setup, we have implemented three classes of wrapper be-
havior: (a) skeleton, (b) monitor, and (c) monitor with fault injector
combined. In this context skeleton means that the wrapper imple-
ments no other behavior than pass-through. Comparing the reference
system with a system implementing skeleton wrapper behavior gives
information about the overhead of the instrumentation itself, while
comparing the monitor and fault injector with the skeleton behavior,
gives information about the implementation efficiency of the behavior.
As we will see in the results later on, an inefficient implementation of
wrapper functionality has a much higher impact on system overhead
than the instrumentation itself.

In
s
t

r
u

m
e

n
t
a

t
i
o

n

32 instrumenting autosar systems for dependability assessment

Figure 2.6: Model of an anti-lock braking system (ABS), instrumented with
monitors and fault injectors at selected interfaces.

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.5 proof of concept and experimental evaluation 33

2.5.2 ABS System and Simulator in a Nutshell

The ABS system we consider consists of nine SW-Cs and is embedded
in an environment simulator, which provides stimuli to the system
and receives reactions from the system. In our case, these stimuli are
the input values of the brake pedal sensor and the two wheel speed
sensors. The system reacts to these stimuli by applying a certain
brake torque to each wheel.

The test case we simulate is a full braking from 50 km/h to 0 km/h
with a deceleration of −7m/s2 in the optimal case of non-blocking
wheels and −6m/s2 in the blocking case. The runnables within the
system’s components are scheduled periodically every 20ms and im-
plemented as follows.

BrakePedalSensor polls the BrakePedal I/O port for a brake pedal
position value, which is provided by the simulator as input stim-
ulus. After scaling and converting the pedal position value to a
suitable data type, it is sent to the BrakeController, which provides
per-wheel brake torque values to the front left (ABS_FL) and front
right (ABS_FR) ABS controllers.

Depending on the individual WheelSpeed, VehicleSpeed and Brake-
Torque, ABS_FL and ABS_FR calculate a per-wheel brake torque that
maximizes the brake retardation for the given input values. The
brake torque is then sent to the wheel’s respective BrakeActuator and
fed back to the simulator, which calculates this period’s deceleration
based on the current simulation state and the applied brake torque.

2.5.3 Fault Injection Experiment

To show the application of our approach in a typical dependability
assessment scenario, we conduct a series of fault injection (FI) exper-
iments on the presented ABS system. FI [HTI97] is a widely accepted
technique for experimental robustness evaluation and is applicable at
varied component and interface levels. For our evaluation, we uti-
lized SWIFI (Software Implemented FI) to instrument the software
component under evaluation (CUE). During the SWIFI experiment,
the data sent to a CUE via its interface is intentionally modified in a
systematic way, i.e., a fault is introduced, with the intent to expose the
CUE to unexpected input. Subsequently, the CUE’s behavior, in re-
sponse to the injected fault, as well as the overall effect on the system,
is analyzed.

In order to verify the effectiveness of each instrumentation method,
we utilize each to instrument the system with a set of monitors and
a fault injector. We then conduct a series of injection runs on the
instrumented system, by flipping a single bit of an intercepted data
value when a certain trigger condition is met. In our setup, the fault
injection is time-triggered at a model time of 300ms after the simu-

In
s
t

r
u

m
e

n
t
a

t
i
o

n

34 instrumenting autosar systems for dependability assessment

lator has initiated a full application of the brake. As all interfaces in
our example system transmit 16-bit values, each injection campaign
consists of 17 runs; one golden run that we use for reference, and 16

fault injection runs in which we individually flip a bit at a distinct
position of a 16-bit wide data value. For each test run, we compare
the output of the interface monitors against the golden run in order
to determine whether the monitors were able to detect the inserted
fault, and to analyze its impact on system behavior.

Before presenting our results, our choice of the single bit flip fault
model requires a short discussion on its relevance and representative-
ness. AUTOSAR is a new standard that manufacturers are just start-
ing to adapt and use in production systems. Therefore the knowledge
on actual fault types within those systems is severely limited, and
consequently so is the knowledge on fault models. Whether this, or
other fault models, are realistic or relevant for AUTOSAR is an inter-
esting question that currently can not be answered due to the novelty
of the system and the lack of respective (experience) data. To analyze
the relevance of various fault types in AUTOSAR is potentially an
interesting field of future research for the dependability community.
For our instrumentation approach this has the implication that we
can currently only assume that there are faults in AUTOSAR that can
be addressed by FI at the interface level.

Having said that, the results of our experiments are listed in Ta-
ble 2.1. For each test run, we provide the number of detected devia-
tions from the golden run as a measure of the fault’s overall impact on
the system. The error persistence indicates, for how long the fault’s
effects were detectable in the system. In summary, all the fault in-
jections, for each test setup and instrumentation method, manifest as
detectable deviations from the golden run thus verifying the effec-
tiveness of each approach. Injections into the lower 8 bits have only
minor impact on system behavior and are tolerated by the system
within one or two periods of execution time. Of all tested interfaces,
WheelSpeed and VehicleSpeed are most susceptible to variations in the
lower bit range. The peak value of detected deviations, on the other
hand, is reached by injecting into the upper range of most significant
bits of the BrakePedalPosition, RequestedBrakeTorque and WheelSpeed in-
terfaces. The repeatedly measured cutoff of the error persistence at
1,940ms is owed to the car being at full stop at that time.

It is noteworthy to highlight that the AUTOSAR component ro-
bustness assessment coverage for the number of detected deviations
across all bit positions were similar for both SW-C and RTE, and at the
.c, .h and .o levels. The deviation stems in each case from a variation
of the fault injector location and not from a conceptual weakness or
strength of one or the other approach. This result is important as the
equivalent dependability coverages result in giving the system eval-

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.5 proof of concept and experimental evaluation 35

Ta
bl

e
2.

1:
SW

IF
I

ex
pe

ri
m

en
ts

:D
et

ec
te

d
de

vi
at

io
ns

an
d

ex
po

su
re

ti
m

es
fo

r
di

ff
er

en
t

in
je

ct
io

n
lo

ca
ti

on
s

an
d

bi
t

fli
p

po
si

ti
on

s.

In
je

ct
io

n
lo

ca
ti

on
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

B
ra

ke
Pe

da
lP

os
it

io
n

D
et

ec
te

d
de

vi
at

io
ns

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
5
4

6
4
4

Er
ro

r
pe

rs
is

te
nc

e
(m

s)
4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

1
8
4
0

1
9
4
0

B
ra

ke
To

rq
ue

_F
L

D
et

ec
te

d
de

vi
at

io
ns

2
2

2
2

2
2

2
2

2
2

2
2

2
2

4
5
2

4
5
2

Er
ro

r
pe

rs
is

te
nc

e
(m

s)
4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

1
8
4
0

1
8
4
0

W
he

el
Sp

ee
d

D
et

ec
te

d
de

vi
at

io
ns

3
3

3
3

3
4
2
8

3
4
2
8

4
4
9

4
5
8

2
4
3

4
5
8

2
4
3

2
4
3

6
4
7

2
4
3

Er
ro

r
pe

rs
is

te
nc

e
(m

s)
2
0

2
0

2
0

2
0

2
0

1
8
4
0

2
0

1
8
4
0

1
8
4
0

1
8
4
0

1
9
4
0

1
8
4
0

1
9
4
0

1
9
4
0

1
9
4
0

1
9
4
0

V
eh

ic
le

Sp
ee

d

D
et

ec
te

d
de

vi
at

io
ns

2
2

2
2

2
2

2
2

4
3
6

4
5
1

2
4
2

4
5
7

4
5
7

4
5
7

4
5
4

4
5
7

Er
ro

r
pe

rs
is

te
nc

e
(m

s)
2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

1
8
4
0

1
8
4
0

1
9
4
0

1
8
4
0

1
8
4
0

1
8
4
0

1
8
4
0

1
8
4
0

R
eq

ue
st

ed
B

ra
ke

To
rq

ue

D
et

ec
te

d
de

vi
at

io
ns

2
2

2
2

2
2

2
2

5
5

5
4
2
5

5
6
4
7

6
4
5

6
4
5

Er
ro

r
pe

rs
is

te
nc

e
(m

s)
4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

4
0

1
8
4
0

4
0

1
9
4
0

1
9
4
0

1
9
4
0

In
s
t

r
u

m
e

n
t
a

t
i
o

n

36 instrumenting autosar systems for dependability assessment

uator the desired instrumentation choices as based on the access and
implementation/execution criteria of Section 2.5.4 and Section 2.6.

2.5.4 Instrumentation Overhead

The instrumentation of a system obviously entails overhead either
in space (e.g., memory consumption) or time (e.g., execution time).
In this section, we determine the overhead of each instrumentation
technique in three categories: implementation, runtime, and memory.
Given the multitude of platforms, systems, and tool-chains in the au-
tomotive domain, this is a best effort approach that aims to establish a
relative comparison between the instrumentation methods and raise
the reader’s awareness for the different evaluation criteria.

2.5.4.1 Implementation

Implementation overhead describes the expected time and effort to
implement an approach by hand. We measure the implementation
overhead of each instrumentation method using SLOCCount [Whe],
a set of tools for counting physical source lines of code (SLOC). Ta-
ble 2.2 and Table 2.3 list the SLOC of each component and the RTE
respectively, for various instrumentation methods.

As the numbers for SW-C reveal, SW-C .h has the highest imple-
mentation overhead, followed by SW-C .c and SW-C .o. Recalling
from Section 2.4, this is not surprising as SW-C .h requires the redec-
laration of interfaces, the implementation of interface wrappers and
the declaration of the interface wrappers. Implementing SW-C .c, the
redeclaration of interfaces is not part of the process, whereas SW-C .o
only requires the implementation of interface wrappers.

For the RTE the figures show a different picture, due to the way the
tools generate the RTE. As a declaration of interfaces is omitted in the
generated code, RTE .c and RTE .o both only require the implementa-
tion of interface wrappers, and therefore share the same overhead.

As the overhead of functionality within the wrappers depends on
their implementation, no general statement on their overhead can be
made. To provide an example though, the monitors we use consume
1 SLOC per wrapper, whereas the fault injector consumes 9 SLOC.

2.5.4.2 Runtime

We employ ETAS INTECRIO and OptXware EA to simulate actual
system behavior on a PC platform. As both tools do not provide an
accurate emulation of the time of the simulated target system, we use
the Windows API function QueryPerformanceCounter to measure the
current CPU tick count, eventually establishing a relative comparison
of the runtime of the different approaches. Figure 2.7 and Figure 2.8
depict boxplots of the accumulated runtime of all instrumented in-

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.5 proof of concept and experimental evaluation 37

Ta
bl

e
2.

2:
O

ve
rh

ea
d

in
so

ur
ce

lin
es

of
co

de
(S

LO
C

)
of

in
st

ru
m

en
te

d
so

ft
w

ar
e

co
m

po
ne

nt
s

fo
r

di
ff

er
en

t
in

st
ru

m
en

ta
ti

on
m

et
ho

ds
.

In
st

ru
m

en
ta

ti
on

A
B

S_
FL

B
ra

ke
A

ct
ua

to
r_

FL
B

ra
ke

C
on

tr
ol

le
r

B
ra

ke
Pe

da
lS

en
so

r
V

eh
ic

le
Sp

ee
d

W
he

el
Sp

ee
dS

en
so

r_
FL

ET
A

S
IN

T
EC

R
IO

N
on

e
1
4
4

4
8

6
2

5
1

9
8

4
9

SW
-C

.c
+2

6
+8

+1
4

+8
+1

4
+8

SW
-C

.h
+3

0
+9

+1
6

+9
+1

6
+9

SW
-C

.o
+2

2
+7

+1
2

+7
+1

2
+7

O
pt

X
w

ar
e

EA

N
on

e
1
4
1

4
5

5
9

4
8

9
5

4
6

SW
-C

.c
+2

6
+8

+1
4

+8
+1

4
+8

SW
-C

.h
+3

0
+9

+1
6

+9
+1

6
+9

SW
-C

.o
+2

2
+7

+1
2

+7
+1

2
+7

In
s
t

r
u

m
e

n
t
a

t
i
o

n

38 instrumenting autosar systems for dependability assessment

Table 2.3: Overhead in source lines of code (SLOC) of instrumented RTE for
different instrumentation methods.

Instrumentation ETAS INTECRIO OptXware EA

RTE .c +67 +67

RTE .h not evaluated

RTE .o +67 +67

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

None SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o

A
gg

re
ga

te
d

C
P

U
 ti

ck
s

pe
r

in
te

rf
ac

e
ca

ll

SKELETON MONITOR FAULT INJECTION

upper/lower quartile
median value

Figure 2.7: ETAS INTECRIO: Relative comparison of the execution time of
instrumentation methods, grouped by implemented functional-
ity.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

None SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o SW-C .c
SW-C .h

SW-C .o
RTE .c

RTE .o

A
gg

re
ga

te
d

C
P

U
 ti

ck
s

pe
r

in
te

rf
ac

e
ca

ll

SKELETON MONITOR FAULT INJECTION

upper/lower quartile
median value

Figure 2.8: OptXware EA: Relative comparison of the execution time of in-
strumentation methods, grouped by implemented functionality.

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.5 proof of concept and experimental evaluation 39

terface calls in CPU ticks, for ETAS INTECRIO and OptXware EA,
respectively. The boxplots’ quartiles are at 25% and 75% of mea-
sured runtimes. The median value is at 50% and marked by a black
line. The difference of magnitudes in the CPU ticks scale is caused
by the different simulation approaches of each tool. While OptXware
EA directly simulates RTE and application layer behavior, ETAS IN-
TECRIO executes the target system on a virtual PC target.

The measurements show that the instrumentation method has no
significant impact on the overall runtime. Visible minor variations
can be attributed to slight deviations of system load during the ex-
periments, caused, e.g., by background applications. Also, the sole
instrumentation with wrappers without implemented functionality
(skeletons) causes only slight overhead below 1%.

The main contributor to runtime overhead is therefore the runtime
of the functionality that is implemented in the wrappers. In our
monitor implementation, we directly write the monitored values to
the disk in each invocation. As disk I/O is an expensive operation,
we measure an overhead of about 50% for OptXware EA and about
38% for ETAS INTECRIO. The fault injector on the other hand, adds
no measurable overhead. As the above example shows, providing a
time-efficient implementation of wrapper functionality is crucial in
real-time systems. It should also be noted that the actual systemwide
overhead is considerably smaller, as the above percentages are rela-
tive to individual interface calls.

2.5.4.3 Memory

We evaluate the overall instrumentation memory overhead, which
consists of added code segment size and data segment size, with the
tool objdump, which is part of GNU Binutils [GNU]. The object files
of each of the system’s components were compiled without optimiza-
tions (compiler switch -O0), in order to have a worst case estimation
and to disregard compiler specific optimizations.

Our analysis shows that the instrumentation with wrappers causes
no data segment size overhead and that the text segment size over-
head is independent of the instrumentation method. A detailed break-
down of components’ text segment size and the introduced relative
overhead is provided in Table 2.4.

The figures show that the relative overhead in text segment size
ranges between 1.5% and 15.0% per wrapper, and is therefore largely
dependent on the implementation complexity of each component. In
absolute values, each wrapper consumes approximately 33 bytes for
ETAS INTECRIO and 30 bytes for OptXware EA. This difference is
caused by the different compilers used by each tool, with INTECRIO
relying on MinGW GCC 3.4.2 (mingw-special) and EA relying on Cyg-
win GCC 3.4.4 (cygming special).

In
s
t

r
u

m
e

n
t
a

t
i
o

n

40 instrumenting autosar systems for dependability assessment

Table
2.4:Text

segm
ent

size
of

the
(instrum

ented)
object

files
of

various
softw

are
com

ponents
in

bytes.

ETA
S

IN
T

EC
R

IO
O

ptX
w

are
EA

O
bjectfile

Text
segm

ent
size

O
verhead

(%
)

Text
segm

ent
size

O
verhead

(%
)

plain
instrum

ented
overall

per
w

rapper
plain

instrum
ented

overall
per

w
rapper

R
te_A

BS_FL.o
1
8
0
8

1
9
2
0

6.
2

1.
5

1
8
0
8

1
9
2
0

6.
2

1.
5

R
te_BrakeA

ctuator_FL.o
3
3
6

3
6
8

9.
5

9.
5

3
2
8

3
5
6

8.
5

8.
5

R
te_BrakeC

ontroller.o
5
1
2

5
7
6

1
2.

5
6.

3
5
0
4

5
6
4

1
1.

9
6.

0

R
te_BrakePedalSensor.o

3
2
0

3
6
8

1
5.

0
1
5.

0
3
2
8

3
6
4

1
1.

0
1
1.

0

R
te_VehicleSpeed.o

8
9
6

9
6
0

7.
1

3.
6

8
9
2

9
5
2

6.
7

3.
4

R
te_W

heelSpeedSensor_FL.o
3
3
6

3
8
4

1
4.

3
1
4.

3
3
3
6

3
7
2

1
0.

7
1
0.

7

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.6 discussion 41

Table 2.5: Relative comparison of instrumentation method and location for
different quality attributes.

Instrumentation method Instr. location

Attribute .c-file .h-file .o-file RTE SW-C

Intrusiveness F F F F F F F F F F

Implementation effort F F F F F F F F F F F

Automation complexity F F F F F F F F F F F F

Required system access F F F F F F F F F F

Scalability / usability F F F F F F F F F F

Legend: F poor; F F fair; F F F good

2.6 discussion

The experimental results of the previous section have shown that all
instrumentation methods are comparably effective to enable the im-
plementation of dependability assessment techniques at the compo-
nent level, and therefore have to be considered equally viable. Conse-
quently, we draw the conclusion that qualitative aspects can become
the determining factor in choosing the right instrumentation option
and location. To this end, we discuss the qualitative characteristics of
each instrumentation method, with the intention to guide the eval-
uator in his decision of how and where to instrument a system and
which tradeoffs to consider. In the second part of the discussion, we
cover the current limitations of our approach, specifically for multiple
component instantiations and shared memory communication.

2.6.1 Qualitative Aspects of SW-C Instrumentation Methods

In the following, we introduce a set of quality attributes, which we
use to establish a qualitative comparison between the different instru-
mentation methods. A summary of the comparisons is provided in
Table 2.5.

Intrusiveness describes to which degree the instrumentation pen-
etrates the system. Thereby, we consider the system viewpoint (i.e.,
which layer is affected and what is the layer’s criticality) and the im-
plementation viewpoint (i.e., which parts of the implementation are
changed). Although the instrumentation with wrappers is an auto-
matic process, the implementation of functionality within the wrap-
pers is a manual or semi-automatic process and therefore error-prone.
To minimize possible negative effects of such errors, a low intrusive-
ness is desirable. Due to the RTE’s vital role as communication hub,
approaches targeting the RTE are consequently considered more in-
trusive than the ones targeting the SW-C. Furthermore we consider

In
s
t

r
u

m
e

n
t
a

t
i
o

n

42 instrumenting autosar systems for dependability assessment

changes to the actual implementation more intrusive than changes to
the interface declaration or the link information of the object file. The
least intrusive instrumentation method is therefore SW-C .o-file and
the most intrusive one is RTE .c-file.

Implementation effort considers the amount of changes entailed
by each instrumentation method and serves as an estimate for the
effort of manually instrumenting a system, as well as the amount of
changes induced by automatic generation. With reference to the tech-
nical implementation details of Section 2.4.2, we assess that the in-
strumentation of .c-files requires a higher effort than .h-files and .o-files.
Also, instrumenting the RTE generally requires less effort than instru-
menting SW-Cs, as SW-Cs reside in distributed locations, whereas the
RTE resides in a central location. Therefore, the least implementation
effort is required by RTE .o-file and the most by SW-C .c-file. For a
general estimate of implementation effort, it should be kept in mind
that regardless of the effort of wrapper instrumentation, the effort of
implementing functionality into the wrappers has to be considered
as well.

Automation complexity provides an estimate of the effort to im-
plement the instrumentation method into a generator. During the im-
plementation of the wrapper generator presented in Section 2.4.3, we
made the experience that binary instrumentation is the most complex
generation task to implement. This is due to the black-box constraint
put by binary objects, which requires the deduction and generation of
the complete interface declaration from the system specification con-
tained in the system’s ARXML file. The implementation (.c-file) and
interface declaration (.h-file) on the other hand, both contain the dec-
laration, either implicitly or explicitly, making this generation step
obsolete, and only requiring a technically similar parsing of source
files. Due to the central location of the RTE, mentioned in the previ-
ous paragraph, the least automation complexity is required by RTE
.c-file and RTE .h-file and the most by SW-C .o-file.

The required system access characterizes the requirements of each
instrumentation method on the accessibility and visibility of the sys-
tem and its implementation. We distinguish white-box, i.e., all source
code is accessible to the system evaluator, grey-box, i.e., parts of the
source code (e.g. header files) are accessible, and black-box, i.e., no
source code is accessible. Furthermore, we distinguish between SW-Cs
and the RTE, with access to the RTE usually being available to the in-
tegrator only. Accordingly, RTE .c-file has the highest requirements
on system access and SW-C .o-file the lowest ones.

Scalability describes, how well each instrumentation method scales
to larger systems. As the scalability of an instrumentation method has
a high influence on its usability, we consider them collectively. The
main overhead in large scale projects can be accounted to the con-
figuration of the instrumentation and the system build process, and

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.6 discussion 43

not the instrumentation itself. Therefore, all instrumentation meth-
ods scale comparatively well, with a slight advantage for methods
targeting the RTE (due to its central location), and a notable advan-
tage for black-box instrumentation methods. As black-box methods
do not modify any source code, a time-consuming recompilation of
code can be omitted, and only the linkage of binary objects has to be
performed.

Summarizing our observations in Table 2.5, there is a clear trend
showing advantages in all categories for black-box instrumentation
over grey-box and white-box, except for automation complexity. The
choice of instrumentation location, i.e., whether to instrument the
SW-C or RTE, is not as clear though. As SW-C has advantages in
the categories intrusiveness and required system access, and RTE has
advantages in the other categories, the determining factor is, how
each category is weighted by the system evaluator, also considering
his software access level and the application scenario.

2.6.2 Limitations

During experiments with different AUTOSAR example systems, we
realized that there exist two classes of systematic limitations to our
proposed approach of wrapping AUTOSAR components. The first
limitation only affects a subset of the presented instrumentation meth-
ods and is related to the possible implementation of the communica-
tion between SW-Cs and the RTE via shared memory. The second
limitation affects all of the presented methods, but is only relevant in
systems which make use of multiple instantiations of a component.
Both limitations are discussed in the following.

2.6.2.1 Shared Memory Communication

The communication between SW-Cs and the RTE is not necessarily
always implemented via function calls (which was our intuitive as-
sumption) but can also be implemented via shared memory com-
munication for performance reasons. Whether communication is im-
plemented via function calls or shared memory, depends on the im-
plementation of the RTE generator (and is therefore tool dependent)
and the communication interface-type (e.g., implicit/explicit access,
client/server or sender/receiver model, etc.) and its configuration.

The implementation of the communication mechanism impacts the
applicability of some of our approaches. Namely, SW-C .o-file, as well
as all RTE instrumentation methods, are unable to cover shared mem-
ory communication. In order to cope with shared memory communi-
cation, we propose two feasible workarounds. The first workaround
is runnable wrappers, which can be implemented on the SW-C and RTE
side. The second one is a task-based monitor which is implemented by

In
s
t

r
u

m
e

n
t
a

t
i
o

n

44 instrumenting autosar systems for dependability assessment

associating a monitoring task on the operating system level, with the
runnable to be monitored. Runnables are the executable parts of a
software component that implement actual functionality. By wrap-
ping a runnable’s invocation, we are able to access all data that the
runnable has access to via shared memory, either before (relevant for
reads) or after (relevant for writes) the runnable invocation.

As both workarounds are conceptually different from interface wrap-
pers, we did not include them in our evaluation. Preliminary experi-
mental results show that both approaches are suitable for systematic
and automatic instrumentation of AUTOSAR systems using shared
memory communication.

2.6.2.2 Multiple Instantiation of Components

Our approach is also limited for models that make use of multiple in-
stantiations of component prototypes and therefore employ code-reuse.
The issue in such a scenario is that we are currently unable to distin-
guish between different instances of a component prototype, as the
interface implementation (due to code-reuse) is only present once, ir-
respective of the number of instances. For each component instance,
the RTE holds a unique data structure (termed RTE instance) that is
passed to the component runnables as a parameter on invocation. As
these data structures contain no naming information, it is difficult to
obtain self-awareness for the active SW-C instance.

A simple workaround is to move the instrumentation location from
the receiving SW-C’s interface to the sending SW-C’s interface, or vice
versa. This workaround is only feasible as long as the component that
the instrumentation is moved to is not a multiply instantiated compo-
nent itself. Due to the fixed memory layout of automotive systems, an
alternate approach leveraging pointer address information of the RTE
instance data structures, to distinguish between multiple instances, is
conceivable. We will address this and alternate solutions in future
work.

2.7 conclusion

In this section, we have shown how to develop a usable, customiz-
able and efficient instrumentation framework for the dependability
assessment of AUTOSAR systems. Our approach provides usability
as we enable the user to define their instrumentation requirements
on the model level instead of the implementation, which largely con-
sists of automatically generated code. Our approach is customizable
as we provide expert users with the ability to further tune and re-
fine their instrumentation choice factoring implementation details,
and thus test certain aspects of an interface, which are represented
by the different instrumentation options and instrumentation loca-
tions within the software stack. Our approach is efficient as the use of

I
n

s
t

r
u

m
e

n
t
a

t
i
o

n

2.7 conclusion 45

interface wrappers infers low timely and spatial overhead as shown
by our experimental results.

Factoring the different software component access levels that are
prevalent in AUTOSAR systems (black-box and white-box), we en-
able the instrumentation at the source code level (i.e., implementation
and interface specification) and the binary object level. As proof of
concept, we have conducted a series of fault injection experiments on
an anti-lock braking system (ABS), which showed the generic applica-
bility of the different instrumentation techniques, providing freedom
of choice to the user on the different techniques. The experimental
evaluation furthermore yielded the result that the varied techniques
were comparably efficient, and the cross-validated fault injection ex-
periments showed that a black-box instrumentation technique was
as effective as a white-box technique while requiring less access to
the system and being less intrusive. To guide the reader in his de-
cision of instrumentation location and instrumentation options, we
have discussed the qualitative criteria of code access, intrusiveness,
automation complexity, and implementation effort.

In addition, we have identified systematic limitations of our ap-
proach and sketched possible solutions to resolve them. The imple-
mentation and evaluation of such solutions is up to future work, as
is the instrumentation of other locations in the AUTOSAR software
stack, such as the basic software. As our approach is potentially able
to implement control-flow monitoring, which will be supported by
version 4 of the AUTOSAR standard, with the advantage of finer
granularity and the added benefit of data-flow monitoring, we also
plan to pursue this option in future work.

Part III

A S S E S S M E N T

A
s
s
e

s
s
m

e
n

t

3
A S S E S S I N G S A F E T Y M E C H A N I S M S E F F E C T I V E LY
U S I N G FA U LT I N J E C T I O N

The automotive safety standard ISO 26262 strongly recommends the
use of fault injection (FI) for the assessment of safety mechanisms
that typically span composite dependability and real-time operations.
However, with the standard providing very limited guidance on the
actual design, implementation, and execution of FI experiments, most
AUTOSAR FI approaches use standard fault models (e.g., bit flips and
data type based corruptions), and focus on using simulation environ-
ments. Unfortunately, the representation of timing faults using stan-
dard fault models, and the representation of real-time properties in
simulation environments are hard, rendering both inadequate for the
comprehensive assessment of AUTOSAR’s safety mechanisms. The
actual development of ISO 26262 advocated FI is further hampered
by the lack of representative software fault models and the lack of an
openly accessible AUTOSAR FI framework. We address these gaps
by (a) adapting the open source FI framework GRINDER [WPS+15] to
AUTOSAR and (b) showing how to effectively apply it for the assess-
ment of AUTOSAR’s safety mechanisms. The FI process presented in
this chapter advances and builds upon the instrumentation approach
that we developed in Chapter 2. The content of this chapter is based
on a conference paper accepted at EDCC 2015 [PWS+15b].

3.1 impediments to fault injection-based assessments

In the automotive domain, many innovative functions, such as crash
prevention, advanced driver assistance features, and vehicular com-
munication systems, are enabled by software. Consequently, the soft-
ware code base is growing in both complexity and size, in some cases
reaching 100 million lines of code that are distributed across more
than 70 electronic control units (ECUs) and interconnected by more
than 5 different bus systems [Bro06; Cha09]. In order to manage
the complexity of these systems and to reduce the development and
integration costs for new vehicle features, the automotive industry
widely adopts standardized software architectures and development
processes such as AUTOSAR (AUTomotive Open System ARchitec-
ture) [AUT14a].

To warrant the trust that motorists put in the safe operation of
their vehicles, many functions in automotive systems are designed
and developed following stringent dependability and safety require-
ments. The recommended guidelines for the design, development

A
s
s
e

s
s
m

e
n

t

50 assessing safety mechanisms effectively using fault injection

and integration of such systems are provided by the functional safety
standard for road vehicles ISO 26262 [Int11]. To aid automotive sys-
tem developers in meeting these safety requirements, the AUTOSAR
standard specifies a set of functional safety mechanisms [AUT14e], such
as memory partitioning and timing monitoring. The verification and
validation of the implementation and application of these functional
safety mechanisms, which are usually supplied by third party ven-
dors, is essential to the dependable and safe operation of these sys-
tems and to prevent hazards such as Toyota’s unintended acceleration
issues [Koo14].

Among the available dependability assessment techniques, fault in-
jection (FI) [HTI97] is widely adopted and ISO 26262 strongly recom-
mends its use to validate that functional and technical safety mecha-
nisms are correctly and effectively implemented. Despite this explicit
recommendation, published work on AUTOSAR FI (cf. Section 3.3)
is currently not addressing the comprehensive assessment of the cor-
rectness and effectiveness of AUTOSAR’s safety mechanisms. More-
over, the predominantly used standard fault models, such as bit flips
and data type dependent corruptions, are limited in their representa-
tion of timing and software faults, thus hampering their applicability
to such an assessment. We argue that this situation originates from
ISO 26262 recommending FI without providing appropriate guidance
on the design, implementation and execution of FI experiments. The
actual assessment is further hampered by the lack of an openly ac-
cessible AUTOSAR FI framework. A similar observation was made
by Silva et al. [SBC+13], who conclude that „although many fault in-
jection tools exist, none is really a ready to use tool, thus a common
framework would be a major breakthrough“. As state of the art, lit-
tle documented experience exists on how to effectively apply FI for
validating the implementation of AUTOSAR safety mechanisms.

Contributions

• Facing these challenges, we provide an open source, ready to
use AUTOSAR FI tool [PMT+15] capable of conducting FI ex-
periments at all layers of AUTOSAR’s software architecture, i.e.,
application, runtime environment and basic software. Injections
in source code and binary object files (i.e., white-box and black-
-box) are both supported.

• We report our experiences in conducting a dependability as-
sessment of a commercial implementation of AUTOSAR’s tim-
ing monitoring safety mechanisms. The assessment uncovered
a real deficiency in the implementation that was subsequently
acknowledged and fixed by the supplier of the safety mecha-
nisms’ implementation.

A
s
s
e

s
s
m

e
n

t

3.2 autosar : system model and functional safety mechanisms 51

• We provide guidelines for the derivation of specific fault mod-
els, injection locations and mechanisms from the abstract AU-
TOSAR and ISO 26262 fault models.

We structure this chapter as follows. We give a brief introduction
to AUTOSAR’s system model and functional safety mechanisms in
Section 3.2, followed by a review of related work on AUTOSAR FI
in Section 3.3. In Section 3.4, we discuss the AUTOSAR fault models
that are currently used or provided by the standard. The adaptation
of the open source FI framework GRINDER to AUTOSAR and the in-
strumentation of AUTOSAR systems is described in Section 3.5. We
demonstrate the applicability and effectiveness of FI for the assess-
ment of AUTOSAR safety mechanisms in a case study in Section 3.6,
including a detailed specification of the used fault models.

3.2 autosar : system model and functional safety mech-
anisms

To familiarize the reader with basic concepts of AUTOSAR, this sec-
tion provides a brief introduction to its system model and functional
safety mechanisms. The description of the system model condenses
information from Section 2.2 to provide sufficient context for the de-
scription of the functional safety mechanisms. For a thorough treat-
ment of the system model, we recommend to revisit Section 2.2.

3.2.1 System Model

AUTOSAR systems are designed as abstract models, in which soft-
ware components (SW-Cs) are the core building blocks. They contain
functional entities called runnables, whose execution is triggered by
recurring timers or aperiodic events (e.g., message arrival). SW-Cs
interact with their environment via port interfaces that are connected
in the model through a virtual functional bus (VFB).

During the system configuration phase, this abstract representa-
tion of the system is subsequently mapped to one or more electronic
control units (ECUs). At an ECU, the AUTOSAR software architec-
ture is organized in layered form as depicted in Figure 3.1. Closest
to the hardware is the basic software (BSW) layer, which provides
hardware abstractions for the microcontroller and the ECU and hosts
the operating system (OS) amongst other system and communication
services. The runtime environment (RTE) provides the SW-Cs of the
application layer with an interface to BSW services. Moreover, the
RTE implements a transparent communication abstraction that maps
the virtual connections of the VFB to actual communication channels.
The application layer comprises a set of SW-Cs, each of which con-
tains one or more runnables. As runnables are not directly schedu-

A
s
s
e

s
s
m

e
n

t

52 assessing safety mechanisms effectively using fault injection

Application Layer

AUTOSAR Runtime Environment (RTE)

Hardware

SW-C SW-C SW-C

Basic Software (BSW)

Complex
Drivers

OS and Services

ECU Abstraction

Microcontroller Abstraction

Figure 3.1: The AUTOSAR software architecture (adapted from [AUT11]).

lable by the OS, they are grouped as tasks by the system integrator,
usually taking the execution periods of the runnables and the criti-
cality of their SW-C into account. To avoid unintentional interactions
between tasks of different criticality (e.g., by error propagation), AU-
TOSAR offers a set of functional safety mechanisms to monitor and
isolate tasks, which are described in the following subsection.

3.2.2 Functional Safety Mechanisms

For the co-existence of tasks with different criticality, i.e., different au-
tomotive safety integrity levels (ASILs), on the same system, ISO 26262

requires freedom from interference in both space and time. This means
that lower ASIL tasks must not interfere with higher ASIL ones, for
example through error propagation. To realize freedom from inter-
ference, isolation mechanisms are used to establish fault contain-
ment regions. The Overview of Functional Safety Measures in AUTO-
SAR [AUT14e] (a document which recently superseded the Technical
Safety Concept Status Report [AUT14i]) specifies the following func-
tional safety mechanisms to assist with the prevention, detection and
mitigation of hardware and software faults to ensure freedom from
interference between tasks.

• Memory Partitioning. To prevent low ASIL tasks from wrong-
fully accessing memory of higher ASIL tasks (e.g., by corrupting
their content), arbitrary tasks may be grouped to so-called OS
applications which are subsequently executed in separate mem-
ory partitions, i.e., the code executing in one partition cannot
modify memory of a different partition. Memory partitioning
allows to protect read-only memory segments as well as mem-
ory-mapped hardware.

A
s
s
e

s
s
m

e
n

t

3.3 related work on autosar fi 53

• Timing Monitoring. The safety of a system often depends on
the timely execution of actions and reactions such as object
recognition for crash avoidance or crash detection for airbag
inflation during an accident. The OS provides a set of moni-
toring mechanisms to detect conformance (e.g., whether tasks
are dispatched at the specified time) or deviance (e.g., when
tasks violate their execution time budgets or monopolize OS
resources).

• Logical Supervision. To detect control flow errors, i.e., any di-
vergence of a program’s execution sequence from its error-free
execution sequence, checkpoints are placed throughout a super-
vised entity at design time. When encountering a checkpoint, the
Watchdog Manager is notified and verifies that the sequence of
encountered checkpoints is valid. In addition, temporal moni-
toring mechanisms such as aliveness and deadline monitoring
are implemented using checkpoints.

• End-2-End Protection. To ensure the integrity of data trans-
mitted between SW-Cs, both within the same ECU as well as
across networks, the end-2-end protection library enables the
sender to protect data prior to transmission and the receiver to
detect and handle errors in the communication link at runtime.
Several standardized profiles offer different sets of protection
mechanisms (e.g., CRC, sequence counter, alive counter) that
are suitable for diverse requirements.

The functional safety mechanisms aim at detecting and mitigating
the erroneous behavior of tasks and are implemented by the OS or as
BSW services, except for end-2-end protection, which is implemented
by a library. Given the broad scope of these mechanisms ranging
from the BSW to the application layer, any framework for their com-
prehensive FI-based assessment naturally benefits from access to the
complete AUTOSAR stack for the flexible placement of fault injectors
and monitors of system behavior.

3.3 related work on autosar fi

Following a standalone exposition of state of the art AUTOSAR FI
techniques, either based on simulation, hardware, or software, this
section summarizes the viability of the different approaches for as-
sessing AUTOSAR safety mechanisms and comments on the utilized
fault models.

A
s
s
e

s
s
m

e
n

t

54 assessing safety mechanisms effectively using fault injection

3.3.1 Simulation-based FI

In 2010, Lanigan et al. [LNF10] used the commercial off-the-shelf
(COTS) tool Vector CANoe to build a FI framework for AUTOSAR.
This early work on AUTOSAR FI primarily comments on the fea-
sibility and practical obstacles of building such a framework and
does not report any specific results of dependability analyses of AU-
TOSAR-based (sub-)systems or provide specific fault models. In CA-
Noe, AUTOSAR systems are executed in a simulation environment
on a host PC. Faults can be injected in various components of the ba-
sic software (BSW) layer via a set of hooks that either suppress calls
to certain API functions (suppression hooks) or manipulate specific
data structures of an API (manipulation hooks). Hooks are manually
placed in the code and the actual implementation of the fault mod-
els is provided by an external library that is linked to the simulation
environment. The authors conclude that „CANoe is a suitable fault-
-injection environment for some faults, but that other faults cannot be
represented using the level of abstraction that CANoe provides“.

Another simulation based FI framework is from Baumgarten et
al. [BOR+14] where application-level software components (SW-Cs)
of existing AUTOSAR models are annotated and extended by so
called fault ports. These extended models are translated to C-code
using dSpace TargetLink which is a code generation tool that oper-
ates on Simulink and Stateflow models. Faults are implemented as
additional code in the TargetLink model and triggered during sim-
ulation by signaling the corresponding fault port(s). Consequently,
faulty behavior is added in form of functional blocks, which are then
able to disturb the normal behavior according to the provided fault
implementations. Annotating models with fault ports is currently
a manual process and the authors leave automated annotation for
future work. The actual simulation can be performed on two differ-
ent levels, either in the integrated simulation environment of dSpace
SystemDesk to simulate the whole AUTOSAR architecture or at the
software unit level using test tools for C code. The authors evaluate
their approach in a front-lights controller setting, considering phys-
ical chip damage, stuck-at, crash and message loss as fault models.
The effects of the faults are emulated on the application layer by dis-
abling the execution of SW-Cs, by forcing port interfaces to specific
values, or by omitting messages.

To identify threats to functional safety early in the system design
stage, Pintard et al. [PFK+13; PFL+14] propose fault injection analy-
ses (FIA) on pre-implementation design artifacts to complement fault
injection experimentation (FIE) on an actual (prototype) implementa-
tion. To conduct FIA, a functional model is created from the system
requirements using data flow diagrams, state charts, UML or AADL,
depending on the available level of detail that the specification pro-

A
s
s
e

s
s
m

e
n

t

3.3 related work on autosar fi 55

vides. Using this model, failure modes of functions or components
are assumed and their effect on the system operation analyzed, sim-
ilar to failure mode and effect analysis (FMEA) and failure mode,
effect and criticality analysis (FMECA). Subsequently, the results of
FIA are used as guidance to perform FIEs, for example by identifying
critical components.

Vedder et al. [VAV+14] develop a method and tool for combining
property-based testing (PBT) and FI for testing safety-critical systems.
PBT automatically generates test cases from a specified property of a
system, i.e., it generates test input values and at the same time acts as
an oracle for the expected output. The authors use the commercially
available tool QuickCheck for generating the test cases in conjunction
with their own tool FaultCheck, a C++ library with an optional wrap-
per for C, that conducts the actual injections. The tool is evaluated on
an AUTOSAR E2E library implementation in an isolated simulation
environment.

Overall, while simulation-based approaches are useful to conduct
FI analyses and experimentation in the early stages of system de-
velopment, they are inherently limited in their representation of de-
tailed lower-level fault models and timing conditions necessary for
addressing real-time operations. As the meaningful application of
many safety mechanisms depends on an exact representation of time
and real-time constraints, a comprehensive assessment of timing-de-
pendent safety mechanisms is infeasible using simulation-based ap-
proaches.

3.3.2 Hardware-based FI

Cunha and colleagues [Cun13; BSC13] developed the fault injection
tool csXception® for scan-chain implemented fault injection (SCIFI)
on an ARM Cortex-M3 microcontroller, which is capable of injecting
faults at the hardware level (i.e., processor and auxiliary registers,
flash memory and SRAM). The considered fault models are bit flips,
reset values and specific values, which can be activated based on
various fault trigger conditions. The tool is evaluated in an anti-lock
braking system (ABS) case study where the focus of the evaluation
is the general application of the tool rather than addressing actual
dependability properties of the ABS system.

Salkham et al. [SPS12; SPS13] present a FI framework implemented
as AUTOSAR software components (SW-Cs) and complex device driver
(CDD). The FI controller and monitoring services are implemented on
the application layer as SW-Cs and isolated from the rest of the sys-
tem using memory partitioning. The CDD contains a collection of
FI modules that implement specific error types for each target com-
ponent. The approach is evaluated in two example scenarios: com-
munication errors that are modeled by disabling the CAN bus circuit

A
s
s
e

s
s
m

e
n

t

56 assessing safety mechanisms effectively using fault injection

and NVRAM errors that are modeled by corrupting CRC bits. While
the experiment control logic is implemented as software elements,
hardware mechanisms are utilized to perform actual injections.

Hardware-based FI commonly has the advantage of handling low
level implementation details. However, to cover dependability prop-
erties that are related to the interaction of hardware and software
elements or to accelerate experiments [CB89; CC96], e.g., by using
software states as trigger conditions for injections, software based
control as in [SPS12; SPS13] is often required. To exercise precise con-
trol over software interactions and software timing in our study, we
also chose to implement the injection mechanisms in software.

3.3.3 Software-based FI

Islam et al. [ISA+13] proposed the BeSafe framework for benchmark-
ing the functional safety of AUTOSAR systems on three different
abstraction layers: model, software and hardware. The benchmark
framework supports FI at the software level through a proprietary
tool called B-FEAT. The tool is capable of intercepting calls to/from
SW-C interfaces, facilitating data type and fuzzing error models to
evaluate the robustness of SW-Cs. The resilience of SW-Cs with re-
spect to transient bit flip hardware faults is benchmarked using the FI
tool GOOFI-2 [SBK10]. On the model level the tool MODIFI [SVE+10]
is used to conduct dependability evaluations of Simulink models
early in the development phase, mainly to assess error detection and
recovery mechanisms. The considered fault models are data type
and fuzzing on the software level, bit-flips on the hardware level
and bit-flips and sensor faults on the model level. Unfortunately, the
preliminary evaluation of the framework has not been conducted on
an AUTOSAR system. However, the reported assessment of a CRC
mechanism suggests that the framework potentially could be used to
assess AUTOSAR’s end-to-end (E2E) protection mechanisms.

With the aim to assess the robustness of AUTOSAR COTS compo-
nents that are available as binaries only, Islam et al. [IKH+14] present
a technique and tool prototype for binary-level fault injection (BLFI).
Contrary to the binary-level instrumentation approach presented in
[PWM+12], no AUTOSAR specific information is used to drive the
instrumentation, thereby expanding its applicability to all AUTOSAR
layers including the BSW. The broader application scope comes at the
cost of losing the reference to the underlying system model, which
impacts the usability of the instrumentation if the system model is
used to select instrumentation locations. The tool is evaluated on
a blinking LED warning system, using data-type based and fuzzing
fault models.

A
s
s
e

s
s
m

e
n

t

3.4 autosar fault models 57

3.3.4 Summary Comments

We observe that the fault models used in related work are predom-
inantly standard fault models1, such as bit flips and data type de-
pendent corruptions, that have been adopted from studies for differ-
ent target systems and application scenarios. It is surprising that no
AUTOSAR-specific fault models are used, as the choice of fault mod-
els heavily impacts the effectiveness of the FI experiments [WSS+11;
NCD+13] and domain-specific fault models are expected to yield bet-
ter results.

We also observe that, despite an explicit recommendation in the
ISO 26262 standard, no studies on FI-based assessments of the mech-
anisms in AUTOSAR’s technical safety concept exist, apart from the
E2E library.

Finally, we observe that many FI approaches are simulation based
and as such unable to adequately represent real-time properties and
timing behavior of the system. As we demonstrate in Section 3.6,
assessing real-time properties is essential to many safety-critical ap-
plications and AUTOSAR’s timing monitoring mechanisms, which
constitute a significant fraction of the technical safety concept.

3.4 autosar fault models

A fault model is a representation of a possible internal or external
fault [ALR+04] that a system may be exposed to. In the context of
FI experiments, a fault model is characterized by the fault location
(where to inject), the fault type (what to inject), and the fault timing
(when to inject) that possibly also includes an expected workload or
system state. The selection of representative fault model(s), i.e., faults
that may and do occur during the development and operation of the
tested system, is crucial as non-representative faults can significantly
affect the injection results [NCD+13] by hampering (a) their accuracy
and usefulness [JSM07] and (b) the effectiveness of the experiments
to reveal robustness vulnerabilities [WSS+11]. Consequently, devel-
oping and using a realistic fault model is one of the biggest challenges
for any FI schema [SBC+13].

The use of standard fault models such as bit flips and data type de-
pendent corruptions is currently predominant in related work on AU-
TOSAR FI (cf. Section 3.3). While these established fault models ade-
quately represent specific abstraction levels and classes of faults (and
their effects), their applicability to represent complex software and
also timing faults is limited. For the effective assessment of AUTO-
SAR’s safety mechanisms, the use of standard fault models should

1 In Section 3.4 we further elaborate why the „standard fault models“ are still preva-
lent.

A
s
s
e

s
s
m

e
n

t

58 assessing safety mechanisms effectively using fault injection

therefore be combined with fault models that allow a more direct
mapping of application level software and timing faults.

Before the release of the Overview of Functional Safety Measures in
AUTOSAR [AUT14e] end of 2014, no central document provided
documentation on the applicable fault models for the evaluation of
AUTOSAR’s functional safety mechanisms. Moreover, representative
fault models are invariably based on deep domain knowledge such
as known failures, identified hazards and (non-functional) safety, and
dependability requirements–in summary information that is not nec-
essarily publicly available to the research community. We argue that
both of these factors have contributed to the slow adoption of more
representative software and timing fault models for AUTOSAR FI. In
addition, an opinion that has been prevalent for a long time in the
automotive community is that software faults are generally covered
by, and detected during, the verification phase of development, due
to the systematic nature of these faults. Given the growing complex-
ity of automotive software, it is questionable whether this view still
holds, or for how long.

Even though the release of applicable fault models for AUTOSAR’s
functional safety mechanisms in [AUT14e] is a step in the right direc-
tion, the models are still at a very abstract level as they are directly
adapted from ISO 26262, which is a generic standard for road vehi-
cles and not AUTOSAR in particular. Concrete examples of software
defects are thus omitted and instead only the effects of faults are ex-
emplified. To give an example, the only information that AUTOSAR
and ISO 26262 provide for fault models applicable to timing monitor-
ing is „blocking of execution, deadlocks, livelocks, incorrect allocation
of execution time, and incorrect synchronization between software el-
ements“. This information serves as suggestion for what to inject at
best, while guidance on the actual application of these fault models,
i.e., where and when to inject, is still missing.

Other documents, such as the Description of the AUTOSAR standard
errors [AUT14c], improve on this but are still work in progress. While
having the purpose of giving an overview of dysfunctional behavior,
clarifying error handling mechanisms and giving the failure modes
coverage of the different mechanisms, the scope of the document is
currently limited to the CAN communication stack and the memory
stack. As the specification of AUTOSAR fault models is still an ongo-
ing process, one may fall back to studies on representative software
faults from other domains in the meantime [CC96; DM06; NCD+13].

Surprisingly, the consideration of simultaneous fault models is cur-
rently missing completely in AUTOSAR, although ISO 26262 explic-
itly considers dual-point and multi-point failures, i.e., failures result-
ing from the combination of two or several independent faults that
leads directly to the violation of a safety goal [Int11]. Until the stan-
dard incorporates multi-point faults, we refer to the work of Win-

A
s
s
e

s
s
m

e
n

t

3.5 applying the open source fi framework grinder for autosar fi 59

ter et al. [WTS+13], who provide a comprehensive study and new
approaches to assess the degree to which systems are vulnerable to
multiple-fault conditions.

As consequence of the ongoing development of the AUTOSAR
standard and the reliance on deep domain knowledge to specify fault
models, any FI framework utilized for the assessment of the func-
tional safety mechanisms should be easily and flexibly extensible to
account for future standard revisions and domain specific require-
ments. For the FI framework that we present in Section 3.5, we there-
fore use a fault model library to offer this flexibility, while at the
same time enabling the re-use of fault models that have already been
implemented.

3.5 applying the open source fi framework grinder for

autosar fi

Following the discussions on AUTOSAR-specific FI and fault mod-
els, we now detail the application of the open-source FI framework
GRINDER for AUTOSAR FI. After presenting the FI workflow, we
discuss GRINDER’s adaptation to our AUTOSAR evaluation envi-
ronment and comment on the instrumentation methodology for us-
ing GRINDER with AUTOSAR.

The workflow of an FI experiment typically comprises the follow-
ing three phases.

1. Configuration: The workload is prepared and the target sys-
tem is instrumented with injector(s) and detector(s) according
to the experiment’s specification. The workload should match
the evaluation target and also ensure that all injection(s) are
activated by meeting their respective trigger condition(s) (i.e.,
when to inject).

2. Execution: The target system is executed until the injection of
fault(s) and the collection of perturbation data is successfully
completed, or until a stop criterion (e.g., a timeout) is satisfied.

3. Evaluation: The experiment outcome, for example logs and
traces that were collected during its execution, is analyzed.

As this workflow offers much potential for automation, FI frame-
works are typically employed for the automated and efficient exe-
cution of campaigns (series of experiments) with the positive side-ef-
fect of precluding human error from adversely affecting experiment
results.

For the assessment of AUTOSAR’s functional safety mechanisms,
we faced the challenge of which framework to use. Specifically for
AUTOSAR FI, none of the existing frameworks is publicly available,
nor do the existing frameworks fulfill the requirements for such an

A
s
s
e

s
s
m

e
n

t

60 assessing safety mechanisms effectively using fault injection

TargetAbstraction

start()

stop()

reset()

runExperiment()

TargetController

-campaign : Campaign

-experiment : ExperimentRun

start()

stop()

reset()

setCampaign(c : Campaign)

Target-specific functions

Figure 3.2: The TargetController class and the TargetAbstraction interface
[WPS+15].

assessment (cf. Section 3.3). While considering publicly available gen-
eralist tools such as FAIL* [SHK+12] and LLFI [TP13] as potential
alternatives, we realized that the adaptation of these tools was in-
feasible. FAIL* targets architecture simulators for x86 and ARM that
do not suit the PowerPC architecture of our evaluation system, and
LLFI relies on the LLVM compiler infrastructure, whose use would
require the modification of large parts of the existing AUTOSAR de-
velopment environment and tool chain. In conclusion, the adjust-
ment of openly available tools to suit the purpose of our assessment
would likely have outweighed any effort for re-implementing a cus-
tom tool from scratch. Consequently, we adapted the open source FI
framework GRINDER to AUTOSAR, which entailed modest imple-
mentation and configuration overhead [WPS+15]. In the following
two subsections, we detail the adaptation of GRINDER to an AU-
TOSAR system and the instrumentation of AUTOSAR systems for FI
experiments.

3.5.1 Adapting GRINDER to an AUTOSAR System

GRINDER is an open source general-target FI tool that is written in
Java and built around an extensible architecture with a simple inter-
face for target abstraction, extension and customization, and which
has reusability as one of its primary design goals. With the intent of
making a ready-to-use AUTOSAR FI framework publicly and freely
available, we release our AUTOSAR adaptation of GRINDER as open
source [PMT+15].

GRINDER is adapted to a new target system (e.g., an AUTOSAR
system) by providing a target-specific implementation of the so-called
TargetAbstraction interface, by which GRINDER interacts with target
systems (cf. Figure 3.2). The TargetAbstraction specifies a simple set
of target-specific functions that GRINDER’s TargetController class re-

A
s
s
e

s
s
m

e
n

t

3.5 applying the open source fi framework grinder for autosar fi 61

Hardware

AUTOSAR OS

Task 1 Task 6

libGRINDER

AUTOSAR

Debugger

Multiplexer

AutosarAbstractionTargetController

TC
P

TCPServer

Database

TCP

TC
P

GRINDER

Figure 3.3: Adapting the GRINDER FI framework to AUTOSAR (adapted
from [WPS+15]).

quires to control target systems: start(), runExperiment(), reset(), and
stop(). The specification was driven by the observation that on an
abstract level the progression of FI experiments across different tools
and targets is the same: target initialization, workload invocation,
fault injection and data collection [WPS+15], closely matching the de-
scription of the FI workflow in the beginning of the section. After
starting the target, an experiment is run and data is collected for anal-
ysis. After experiment completion, the target is reset to a known stable
state to avoid the impact of undetected residual injection effects on
subsequent experiments. These steps are repeated until each exper-
iment of the current campaign has been executed. Afterwards, the
target is stopped and exchanged or reconfigured, if this is required for
subsequent experiments.

GRINDER’s architecture resembles the general FI tool architecture
presented by Hsueh et al. [HTI97]. Its integration in an AUTOSAR
FI setting is depicted in Figure 3.3 where components that had to be
either developed or adapted for GRINDER’s use with the AUTOSAR
system, i.e., the AutosarAbstraction, the Multiplexer for communication
with the target, and the fault model library libGRINDER, are colored
gray. The details on each of these components are provided below.

Using GRINDER, the experiments are directly configurable regard-
ing the location of fault injectors, for the placement of monitors,
for selecting employed fault models and for logging of campaign
data. The experiment and campaign configurations are stored in a
MySQL-compatible Database (e.g., MariaDB). To transmit the exper-
iment configurations from GRINDER to the target and experiment
data back from the target to GRINDER, a communication channel be-
tween GRINDER and the target is used. The TCPServer provides a
TCP-based communication interface to (a) handle incoming configu-
ration requests from the target by fetching and sending the configura-
tion of the next executable experiment from the database and (b) store

A
s
s
e

s
s
m

e
n

t

62 assessing safety mechanisms effectively using fault injection

log data from the target for the currently executing experiment in the
database.

The AUTOSAR target system that GRINDER is adapted for runs on
a Freescale XKT564L evaluation board2, which hosts a 32-bit dual core
Power Architecture microcontroller. As the XKT564L target is not
equipped with an Ethernet interface to directly interact with GRIN-
DER’s TCPServer, the board is connected to a host computer via its
JTAG/Nexus hardware debugging interface. On the host computer,
the Green Hills MULTI3 Debugger is utilized by GRINDER to inter-
act with the hardware, and a Multiplexer handles interactions of the
AutosarAbstraction and the TCPServer with the target through the
debugging interface and vice versa. On the AUTOSAR target, the
generic and extensible C library libGRINDER implements a compat-
ible communication interface for debugger-based message exchange.
The library further provides pre-configured injector, detector, and
logging logic for the use in interceptors, i.e., probes in the target sys-
tem that can be used to inject faults or monitor the system’s state
(they are indicated by gray circles in Figure 3.3).

The AutosarAbstraction implements GRINDER’s TargetAbstraction
interface as follows.

• start() initializes the experiment environment by starting a new
instance of the MULTI debugger, connecting to the debugger
via TCP and establishing a connection between the debugger
and the evaluation board using the debugger’s connect com-
mand. A valid target configuration in MULTI is required for
the connect command to succeed.

• runExperiment() prepares the target system by verifying that
the correct binary is loaded and starts the execution of the tar-
get system. Furthermore, a variable watch4 is used by the target
to indicate a communication request, for example to retrieve
configuration options or to store log information. As runEx-
periment() has full access to the debugger’s features, additional
functionality may be implemented if needed.

• reset() instructs the debugger to halt the system and set it to
the initial state. Since the debugger is always able to reset the
target system, this method works well to reset the entire system
without further interaction.

• stop() terminates the experiment environment by disconnecting
the target system and shutting down the MULTI debugger.

2 http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=XKT564L
3 http://www.ghs.com/products/MULTI_IDE.html
4 A hardware breakpoint that constantly inspects a watched variable during pro-

gram execution for write access.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=XKT564L
http://www.ghs.com/products/MULTI_IDE.html

A
s
s
e

s
s
m

e
n

t

3.5 applying the open source fi framework grinder for autosar fi 63

It is noteworthy, that the presented AutosarAbstraction is applicable
for debugger-based interaction of the host computer and the AUTO-
SAR system, using Greenhills MULTI and the Nexus debug interface,
as a direct TCP connection is unavailable. While both, the MULTI
toolchain and the Nexus interface, are widely used, other AUTOSAR
evaluation setups may feature slightly different tools or interfaces.
For such scenarios, we estimate that the adaptation of the provided
AutosarAbstraction to a different setup entails low overhead as only
the communication channel needs to be adapted accordingly.

3.5.2 Instrumenting AUTOSAR Systems for FI: What is special about
AUTOSAR?

Fault injection relies on mechanisms to access and modify the actual
data- and control-flow within a system. These mechanisms are typ-
ically implemented as interceptors that are inserted in the system by
instrumentation. Interceptors may implement arbitrary functionality,
such as altering data (e.g., bit-flips, fuzzing, etc.), modifying the con-
trol flow (e.g., call other functions) or monitoring the system (e.g., for
logging data).

As shown in Chapter 2, the instrumentation of AUTOSAR systems
is complex due to the following factors:

• AUTOSAR systems are developed as models that highly ab-
stract from the actual implementation, which comprises a mix-
ture of tool-generated and hand-written code. As consequence,
instrumentation at the model level cannot leverage implemen-
tation specifics (thereby limiting customizability), while instru-
menting the implementation, i.e., mostly tool-generated code, is
a tedious process if performed manually (thereby limiting us-
ability).

• Given the degree of abstraction, elements of the model often
have no singular representation in the implementation. Thus,
the view on the system that the model provides is inherently
different from the actual implementation. Moreover, as AU-
TOSAR promotes the integration of white-box and black-box
components by various suppliers, who distribute their software
either as source code or binary-only (to protect their intellectual
property), the chosen instrumentation approach should work
on source code and binary objects.

For the assessment of the functional safety mechanisms, the instru-
mentation of all AUTOSAR layers is beneficial, as it enables the injec-
tion of faults that manifest at the SW-C, RTE or BSW layers, and the
flexible placement of monitors to observe system behavior and fault
effects. An automated framework, which leverages development ar-
tifacts from the system model and the implementation to drive the

A
s
s
e

s
s
m

e
n

t

64 assessing safety mechanisms effectively using fault injection

instrumentation process (such as the one presented in Chapter 2),
can help with the instrumentation on the SW-C and RTE levels.

On the BSW level and specifically for the OS, a different approach
has to be chosen, as no standardized model of the OS exists to aug-
ment and drive the instrumentation process. Our analysis of actual
AUTOSAR OS code has shown that the situation is further compli-
cated by the extensive use of macros throughout the OS for perfor-
mance reasons. This directly impacts the applicability of static anal-
ysis to derive potential instrumentation locations, e.g., for interface
injections [Voa98], as constructs that syntactically look like function
calls can turn out to be macros that lack type safety and have no type
declarations. Macros, in contrast to actual functions, do not have ex-
plicit signatures (prototypes), return types or parameter types.

Despite these impediments, a tool-supported instrumentation still
has the advantage of the automated generation of interceptor code.
Hence, we have chosen to extend the static analysis tool CIL (C Inter-
mediate Language) [NMR+02] with a plug-in for the instrumentation
of AUTOSAR OS source code, which we complement with manual
instrumentation when needed. For binary level instrumentation, the
approaches presented in [CLN+12; IKH+14] are conceivable.

We do emphasize that recurrent instrumentation can negatively im-
pact the experiment efficiency especially when running experiments
on actual embedded hardware due to the necessary time-consum-
ing re-flash cycles. Our approach to avoid re-flashing, or at least to
minimize its usage, is to instrument the system upfront with all inter-
ceptors that are potentially required for various test campaigns and
to selectively enable or disable them at runtime in a pre-experiment
configuration phase. This is achieved by assigning a unique identifier
to each interceptor, whose state (on or off) can be configured on a
per-experiment basis.

3.6 fault injection case study

Having outlined the FI framework and instrumentation approach, we
now present our case study where we demonstrate the assessment of
AUTOSAR’s timing monitoring safety mechanisms in two scenarios
using GRINDER. As mentioned earlier, the intent is to highlight the
viability of the approach and its effectiveness in locating a bug in
the timing monitoring implementation of a commercial AUTOSAR
OS. For simplicity of illustration and communicating the insights, we
focus on a small subset of the conducted FI experiments.

In the conducted experiments, we concentrate on assessing safety
mechanisms specifically related to timing monitoring. This choice
was motivated by the following factors.

• Timing monitoring is one of the newest safety mechanisms added
in AUTOSAR and, except for a programmable timer interrupt,

A
s
s
e

s
s
m

e
n

t

3.6 fault injection case study 65

the monitoring functionality is entirely software based. With
the discussion on the limitation of classical FI to address timing
issues (cf. Section 3.3), this constitutes a good target to detail
how faults related to task timing can be accurately injected with
software.

• Memory protection is based on COTS hardware that is widely
applied in other domains. Except for project-specific miscon-
figurations, we did not see much potential for software-related
dependability issues.

• Logical supervision features, such as aliveness and deadline mon-
itoring, that are implemented by a watchdog are well-estab-
lished and were already used in systems based on the AUTO-
SAR predecessor OSEK.

• End-2-end protection is library-based and does not necessarily
require an AUTOSAR environment for testing, as was shown
by Vedder et al. [VAV+14].

In summary, we considered the assessment of timing monitoring to
offer a pertinent case study for FI applicability and of its effectiveness.

AUTOSAR’s timing monitoring consists of four discrete mecha-
nisms that, in general, can be used independently, but may require a
combined use to attain guarantees on specific system timing charac-
teristics.

• Execution time monitoring checks a task’s execution time against
a fixed time budget. When the budget is exceeded without the
task finishing its execution, a timing error is detected.

• Inter-arrival time monitoring monitors a task’s activation frequency
within a statically configured time frame. When an activation
threshold is exceeded, a timing error is detected.

• Resource locking time monitoring checks the locking time of re-
sources by tasks against a fixed time budget. When the budget
is exceeded without the task releasing the resource, a timing
error is detected.

• Interrupt locking time monitoring checks the locking time of inter-
rupts by a task against a fixed time budget. When the budget is
exceeded without the task re-enabling interrupts, a timing error
is detected.

For the case study, targeting correctness and robustness as the drivers,
we illustrate the FI approach and its evaluation over two example sce-
narios (i.e., a simple case of execution time monitoring and a complex
timing interaction scenario) to demonstrate its broad applicability.

Scenario 1: Task timing errors are provoked to (a) assess the cor-
rectness of the error detection and error mitigation of execution time

A
s
s
e

s
s
m

e
n

t

66 assessing safety mechanisms effectively using fault injection

monitoring, i.e., whether the mechanism detects the timing errors and
mitigates their effect, and (b) analyze error propagation within the sys-
tem with and without timing monitoring enabled.

Scenario 2: The interaction between execution time monitoring and
resource locking time monitoring is investigated. Both mechanisms share
a common timer (embedded hardware usually has a limited number
of timers), and the timer for execution time monitoring is reset and
overwritten when a monitored resource is acquired. Arbitrary task
timing and resource usage patterns are injected to (a) assess the cor-
rectness of the mechanisms, and (b) to assess their robustness by aiming
to provoke situations in which the re-activation of the original timer
fails.

The following sections detail the progression of the FI setup and
its execution. We start with the detailed specification of the used
fault models. Subsequently, the evaluation setup is presented in
Section 3.6.2 and the results of the evaluation are discussed in Sec-
tion 3.6.3.

3.6.1 Deriving Fault Models for the Case Study

In the following, we describe how we derived the fault models used
for the case study. As the fault models provided by AUTOSAR and
ISO 26262 are very abstract, the intent is to provide these examples as
guideline for other FI-based assessments of AUTOSAR safety mech-
anisms.

Scenario 1 - Assessing Execution Time Monitoring

In the first scenario, we aim to trigger timing errors of arbitrary tasks
by altering their control flow to either call a timed loop, thereby ex-
tending their runtime by a fixed offset (transient fault), or an infinite
loop, thereby blocking execution completely (permanent fault). The
trigger condition of the injection should be freely configurable in or-
der to analyze the effects of error propagation throughout the system
at workload-dependent times. The fault model for this scenario is
specified as follows.

• Fault type: A loop that consumes a defined (possibly infinite)
amount of CPU time to inject transient and permanent timing
faults with high accuracy.

• Fault location: In the control flow of a monitored task, e.g., in
its implementation (when source code is available) or its invo-
cation.

• Fault timing: During different phases of the workload. The in-
jection is triggered when a counter of the number of task invo-
cations reaches a configurable threshold.

A
s
s
e

s
s
m

e
n

t

3.6 fault injection case study 67

Scenario 2: Assessing Timing Monitor Interactions

For the second scenario, we manually reviewed the source code of
the implementation of timing monitoring in a commercial AUTO-
SAR OS to identify potential robustness issues that we could further
analyze with FI. We should highlight, that although having profound
knowledge of AUTOSAR and the C programming language, this was
our first encounter with AUTOSAR OS code. As such, our analy-
sis was not influenced or guided by in-depth knowledge, and we
chose the generic approach of identifying assumptions that were po-
tentially made by the developers (OS experts could have used a more
refined approach). We checked for assumptions regarding the out-
come or return value of an operation, shared resource usage, poten-
tial time-of-check to time-of-use issues (i.e., race conditions), assump-
tions on variable initialization or state, and more, which resulted in
eleven potential FI targets. In the following, we detail the FI target
that we use in our case study and that uncovered a deficiency in the
implementation of the timing monitoring safety mechanisms, which
was subsequently acknowledged and fixed by the supplier.

In our code review, we had noticed that resource lock monitoring
uses the same timer as execution time monitoring to detect resource
lock errors accountable to the excess of a lock time budget. When a
task acquires a monitored resource, the timer for execution time mon-
itoring is reset and the remaining execution time budget is stored and
compared to the lock budget of the resource. The smaller value (i.e.,
the shorter time frame) is then used as the new timeout value and
the resource lock timer is activated. Whenever the resource lock is
released by the task, execution time monitoring is re-activated. Al-
though sharing a timer, or resources in general, is common in em-
bedded systems, it also increases complexity due to synchronization
issues.

To assess whether any resource usage and task timing patterns
could potentially lead to a failure of the re-activation of the execu-
tion time monitor, we iterated over various timings for the resource
lock time, execution time and the resource lock time budget. To emu-
late different time budget configuration efficiently, we directly inject
in the monitoring mechanism’s kernel data structure. This FI-based
approach has two advantages over a conventional approach. Firstly,
it enables the injection of unexpected budget configurations for the
purpose of robustness testing, which is restricted by the configura-
tion tool to sound budget settings. Secondly, it greatly accelerates
the assessment, as the workload (i.e., task timing behavior) and the
configuration of timing monitoring budgets can be directly adjusted
between experiments. Normally, changing the configuration of tim-
ing monitoring on the target is a tedious and time-intensive process.
It entails modifying the configuration in a GUI, generating kernel

A
s
s
e

s
s
m

e
n

t

68 assessing safety mechanisms effectively using fault injection

source code, compiling the binary image and flashing it to the target.
The same process applies to modifications of a task’s timing behavior
with additional adjustments needed for the actual implementation.

For the assessment of timing monitor interactions, we employ two
fault models specified as follows. The first fault model is adapted
from the previous scenario to flexibly induce different resource lock
times during a task’s execution. This is achieved by altering its con-
trol flow between the acquisition and release of a monitored resource.

• Fault type: A loop that consumes a defined (possibly infinite)
amount of CPU time to emulate transient and permanent timing
faults with high accuracy.

• Fault location: Between the acquisition and release of a moni-
tored resource.

• Fault timing: Between the acquisition and release of a monitored
resource. The injection is only triggered on the first acquisition
of a resource.

The second fault model aims to modify the configured resource
lock budget by injecting arbitrary budget values in the monitoring
mechanism’s kernel data structure as follows.

• Fault type: An arbitrary, potentially unsound resource lock bud-
get. A series of lock budgets is generated by iterating over a
fixed time interval with a configurable step size. Of this series,
one budget is injected per experiment.

• Fault location: In the kernel data structure holding the moni-
tored task’s timing characteristics and budget configuration.

• Fault timing: Before or upon the resource allocation of the mon-
itored task. The injection must have occurred before the budget
configuration is evaluated by the monitoring mechanism.

3.6.2 Evaluation Setup

The case study example is a simple adaptive cruise control (ACC)
system and depicted in Figure 3.4. The ACC comprises four soft-
ware components that contain one or two runnables with periods of
10ms and 40ms each. Further, the SW-C Environment provides en-
vironmental stimuli to the ACC. It is noteworthy that although this
case study example is purely hypothetical and does not represent any
particular real design it is intended to represent plausible mixed-IP5

and mixed-criticality integration scenarios relevant to the automobile
industry.

5 Mixed-IP systems integrate intellectual property (IP) by various suppliers.

A
s
s
e

s
s
m

e
n

t

3.6 fault injection case study 69

SteeringWheelTorque

LaneMarkingPosition

BrakePedalPressure

SteeringWheelAngle

AccelPedalPosition

CruiseSetSpeed

AutoSteeringOn

TargetDistance

CruiseOn

SW-C: OEM_Hi

SW-C: OEM_Low

SW-C: Tier1_Hi

SW-C: Tier1_Low

SW-C: Environment

SteeringOnIndicator

CruiseOnIndicator

PropulsionTorque

BrakingTorque

SteeringTorque

40msUpdateEnvironment

40msOutputArbitration

10msAutoSteering

40msManualPropulsion

10msAdaptiveCruise

40msManualSteering

40msManualBraking

Injection

Figure 3.4: The adaptive cruise control (ACC) case study example.

Table 3.1: Task configuration of ACC case study example.

Task name Priority Runnable(s)

OEM_Hi_10ms 100 AutoSteering

Tier1_Hi_10ms 90 AdaptiveCruise

OEM_Hi_40ms 80 OutputArbitration

Environment_40ms 70 UpdateEnvironment

OEM_Low_40ms 60 ManualPropulsion

Tier1_Low_40ms 50 ManualBraking, ManualSteering

Table 3.1 lists the runnable to task assignment and the configura-
tion of the six tasks of the system. The tasks are ordered from highest
to lowest priority, which AUTOSAR schedules following a fixed-pri-
ority preemptive approach, i.e., when a tasks becomes ready that has
a higher priority than the currently running task, the running task is
preempted and the new task is executed.

In order to enable error reporting and a flexible reaction to differ-
ent errors, AUTOSAR specifies the so-called ProtectionHook interface
as part of its error handling process [AUT14d; AUT14g]. The Pro-
tectionHook is invoked whenever one of the safety mechanisms de-
tects an error. The detected error type is passed as parameter, based
on which further analysis and mitigation steps may be initiated. The
user-supplied return value of the ProtectionHook defines whether the
OS performs further actions (e.g., task termination or ECU shutdown)
or ignores the error. Throughout the case study, we use the informa-
tion provided by the ProtectionHook to determine if and when an
error was detected. Moreover, to flexibly enable or disable timing
monitoring (e.g., to compare system behavior or error propagation),

A
s
s
e

s
s
m

e
n

t

70 assessing safety mechanisms effectively using fault injection

we modify the return value of the ProtectionHook depending on the
experiment configuration using an injector.

3.6.3 Experimentation and Results

In the following, we illustrate and discuss the results of our experi-
ments on the basis of two timing monitoring assessment scenarios.

Scenario 1: Assessing Execution Time Monitoring

In the first scenario, we evaluate the error detection and error mitigation
of execution time monitoring for timing errors caused by a permanent
hang of task OEM_Low_40ms. In order to inject an infinite loop in the
control flow of the task OEM_Low_40ms, we place an injector in the
runnable ManualPropulsion. The injection is triggered, whenever the
number of invocations of the runnable passes a configurable thresh-
old.

To enable the comprehensive observation of the system’s reaction
to fault injections and to analyze error propagation effects, we require
access to signal traces within the system. For this reason, we have in-
strumented the SW-Cs Environment and OEM_Hi with 20 interceptors
that are capable of logging all relevant signals within the system.

The scenario consists of three FI campaigns:

1. The fault-free golden run.

2. A series of experiments in which faults are injected at fixed,
workload-dependent times and execution time monitoring is
disabled.

3. The same series of experiments with execution time monitoring
being enabled.

Using the flexible configuration approach of libGRINDER (cf. Sec-
tion 3.5), no re-compilation or re-flashing was necessary for the dif-
ferent campaigns. Instead, we used the same binary image for all
three campaigns and adjusted the configuration at runtime. Each
FI experiment runs for 45 seconds, which is the time during which
workload stimuli are provided by the Environment. In the following,
we discuss one experiment from each campaign in detail to evaluate
the effectiveness of error mitigation due to execution time monitoring.

Figure 3.5 depicts the traces of the three signals PropulsionTorque,
BrakingTorque and SteeringTorque. These three traces were chosen from
the 20 available traces because the signals are affected by the fault
injection either directly or indirectly due to error propagation. The
fault-free golden run is shown in Figure 3.5a, whereas Figure 3.5b
and Figure 3.5c depict the signals in the presence of a permanent

A
s
s
e

s
s
m

e
n

t

3.6 fault injection case study 71

(a) Fault-free golden run.

(b) Monitoring disabled, error propagates.

(c) Monitoring enabled, propagation mitigated.

Figure 3.5: Scenario 1: Signal traces for a fault injection of an infinite loop
(i.e., a permanent timing fault) in task OEM_Low_40ms at 20 sec-
onds.

A
s
s
e

s
s
m

e
n

t

72 assessing safety mechanisms effectively using fault injection

task hang injected at 20 s where execution time monitoring is either
disabled or enabled.

For the scenario in Figure 3.5b where monitoring is disabled, all
three signals have observable deviations from the golden run at dif-
ferent times in their signal. The change of PropulsionTorque (from 30 s
to 37 s) is directly accountable to the FI, as PropulsionTorque is a com-
posite signal6 that also comprises input from the ManualPropulsion
runnable that we injected into. The change of BrakingTorque (from
37 s to 44 s) and SteeringTorque (from 20 s to 28 s) is caused by error
propagation from the task OEM_Low_40ms, which we injected into,
to the task Tier1_Low_40ms. Tier1_Low_40ms comprises the runnables
ManualBraking and ManualSteering whose outputs contribute to the
composite signals BrakingTorque and SteeringTorque. As direct conse-
quence of the propagation of the timing error, critical functionality
provided by both runnables is lost.

In Figure 3.5c the same injection scenario is depicted with execu-
tion time monitoring enabled. The monitoring mechanism correctly
detects the timing error of task OEM_Low_40ms that is caused by the
injected fault. Despite the detection of the error, the signal of Propul-
sionTorque still deviates from the golden run, as the injected fault is
permanent. Therefore, the monitoring mechanism repeatedly detects
the persisting timing error and, in consequence, kills the erroneous
task in each period after the injection. While the chosen strategy of
killing the task is inadequate to mitigate the permanent timing fault
in this case, it still successfully mitigates the propagation of the tim-
ing error to other tasks. The BrakingTorque and SteeringTorque signals,
which were affected by error propagation without timing monitoring
in the previous scenario, are now identical to the golden run.

In summary, execution time monitoring correctly detected errors
due to injected timing fault in all of our experiments. Moreover, it
successfully mitigated the effects of error propagation to lower prior-
ity tasks whenever monitoring was enabled, thus preventing the loss
of critical functionality.

Scenario 2: Assessing Timing Monitor Interactions - Finding the Bug!

In our review of the timing monitoring implementation of a commer-
cial AUTOSAR OS (cf. Section 3.6.1) we had noticed that execution
time monitoring and resource lock time monitoring share a common
timer to signal timing errors. If both monitoring mechanisms are en-
abled, the timer used by the execution time monitor is reset and over-
written by the resource lock monitor when a monitored task acquires
a monitored resource. The new timer value is determined in the
resource lock monitor’s implementation by comparing the remain-
ing execution time and resource lock budgets, and using the smaller

6 A composite signal combines inputs from various sources.

A
s
s
e

s
s
m

e
n

t

3.6 fault injection case study 73

value as the new budget. This ensures that budget violations, i.e., tim-
ing errors, are detected at the earliest point in time. In the error-free
case, the resource is released after use and the cleanup routine of the
resource lock monitor reinstates the execution time monitor. In the
error case, the OS’s error handling mechanisms are invoked.

In this assessment, we investigate the precedence relationship be-
tween both monitoring mechanisms with the intent to uncover any
cases in which the re-activation of the original timer fails. Contrary
to the previous scenario, our focus is not on the analysis of over-
all system behavior and error propagation effects, but on the cor-
rectness of the timing error detection and the robustness of the OS’s
timing monitoring mechanisms. Consequently, we do not require
extensive logging mechanisms for signal traces in this scenario. In-
stead, we only instrument the ProtectionHook to provide logging of
errors that are detected by the OS. Furthermore, we place injectors
at two locations in the software stack. The first injector is placed be-
tween the resource acquisition and resource release in the runnable
ManualPropulsion of task OEM_Low_40ms to inject arbitrary timing
faults while holding a monitored resource. The second injector is
placed in the resource lock monitor setup routine to inject arbitrary
resource lock budget configurations. The aim of the budget injec-
tions is twofold: Firstly, we evaluate the robustness of the monitoring
mechanism by injecting unsound budget values that are normally
prohibited by the GUI-based configuration (e.g., resource lock bud-
gets that are bigger than execution time budgets). Secondly, we inject
sound budget values to change the configuration of the monitoring
mechanism on-the-fly during runtime, thus avoiding the time-con-
suming steps of reconfiguration, recompilation and flashing of the
binary.

This scenario consist of one campaign, in which we inject an in-
finite loop (i.e., a permanent timing fault) between the acquisition
and release of a resource in the runnable ManualPropulsion. Per ex-
periment, one value of a series of sound and unsound resource lock
budget values is injected directly in the data structures of the moni-
toring mechanism when the resource is acquired and the monitor is
initialized.

For all of our experiments, the timing monitoring mechanisms de-
tected that a timing error had occurred and also the point in time of
the error was detected correctly. After reviewing the log data, and
to our surprise, the distribution of the reported error types (execu-
tion time vs. resource lock time) did not match the distribution ex-
pected from the injected budget values. As the series of injected bud-
get values was generated using the execution time monitor budget
as median value, we expected a fifty-fifty distribution of each error
type, i.e., for those experiments where the resource lock budget was
smaller than the execution time budget, we expected a resource lock

A
s
s
e

s
s
m

e
n

t

74 assessing safety mechanisms effectively using fault injection

error, and for the opposite case an execution time error. Instead, all
error types were logged as resource lock errors.

In order to verify that the observed mismatch of the distribution is
not only accountable to the injection of unsound budget values, we
analyzed the root cause for the mismatch further. As a result, we
discovered that the type of timing error is misidentified whenever a
timing error occurs while holding a locked resource and, at the same
time, the remaining execution time budget is lower than the remain-
ing resource lock budget. Whenever these constraints are met, errors
accountable to execution time violations are reported as resource lock
errors, affecting both, sound and unsound, configuration conditions.

This deficiency of the implementation is critical, as the handling of
errors by the OS and the user (through means of the ProtectionHook)
relies on the correctness of the supplied error type. A wrongfully
identified error may therefore directly impact the error analysis and,
in consequence, may lead to the execution of inappropriate mitiga-
tion actions. We reported the discovered issue to the vendor of the
AUTOSAR OS implementation, who was able to reproduce it. The
vendor acknowledged the issue as a bug and fixed it in subsequent
releases of the OS.

Case Study Summary

In the case study, we have presented two scenarios for the FI-based
assessment of AUTOSAR’s timing monitoring mechanisms using the
FI framework GRINDER. In the first scenario, we evaluated the cor-
rectness of the error detection and error mitigation of execution time
monitoring for permanent timing faults. The monitor detected all in-
jected timing faults correctly and was able to mitigate error propaga-
tion successfully, thus preserving critical functionality. In the second
scenario, the correctness and robustness of execution time monitor-
ing and resource lock monitoring was evaluated by injecting a per-
manent resource lock timing fault in combination with the injection
of sound and unsound resource lock budgets. While the monitoring
mechanisms correctly detected the presence of an error and its point
in time, the source of the error was misidentified under certain con-
ditions, which potentially affects error mitigation actions negatively.
As the focus of our work was on providing the FI assessment mech-
anisms and guidance on their use, we only conducted around 200

experiments overall, which comprise the basis for this case study. To
put this number into context, we should note that comprehensive FI
studies sometimes comprise hundreds of thousands of experiments
and that consequently the amount of experiments that we conducted
can be considered very low. It is therefore even more impressive that,
as a result of our FI experiments, we uncovered a bug in a commer-
cial AUTOSAR OS implementation, which emphasizes and justifies

A
s
s
e

s
s
m

e
n

t

3.7 conclusion 75

the use of FI as an effective method for the assessment of AUTOSAR’s
safety mechanisms.

3.7 conclusion

Innovation in the automotive sector is mainly driven by software,
which is leading to automotive software systems of massively in-
creased complexity. To foster reusability, portability and interoper-
ability of automotive software components, the AUTOSAR industry
standard promotes a modular software architecture for automotive
systems. At the same time, the ISO 26262 standard addresses safety
considerations for automotive control systems, covering both hard-
ware and software aspects, which has led to the addition of a safety
concept to AUTOSAR comprising several safety mechanisms. While
the ISO 26262 explicitly recommends fault injections (FI) to assess
such mechanisms, it provides little guidance on how experiments
should be performed and how suitable fault models can be identi-
fied.

In this chapter we described the process of implementing and ap-
plying FI for the validation of AUTOSAR’s safety mechanisms, ac-
cording to recommendations outlined by the ISO 26262 standard. To
conduct the FI experiments, we have adapted the open source FI
framework GRINDER to AUTOSAR. By making our implementation
openly available, we provide a ready to use FI framework for AU-
TOSAR and hope to foster the development and use of FI for this
target environment. To fill the gap between the ISO standard’s re-
quirement to apply FI and the absence of suitable fault models, we
have provided a detailed discussion on how we derived fault models
for our assessment, which targets a commercial implementation of
AUTOSAR’s timing monitoring safety mechanisms. The conducted
experiments uncovered an actual bug in the interaction of two timing
monitoring mechanisms that could lead to a misidentification of the
source of a timing error and negatively impact the effectiveness of
error mitigation. The bug was subsequently acknowledged and fixed
by the supplier of the safety mechanism’s implementation.

In summary our results demonstrate that (1) FI is an effective
method to assess automotive suppliers’ implementations of AUTO-
SAR safety mechanisms, (2) suitable fault models for these systems
can be derived from their functional specification and their intended
usage context, and (3) using these fault models actual deficiencies
in the implementation can be identified with a modest amount of
experiments.

Part IV

E N H A N C E M E N T

E
n

h
a

n
c

e
m

e
n

t

4
E N H A N C I N G T I M I N G P R O T E C T I O N F O R
M I X E D - C R I T I C A L I T Y S Y S T E M S

For mixed-criticality automotive systems, the functional safety stan-
dard ISO 26262 stipulates freedom from interference, i.e., errors should
not propagate from low to high criticality tasks. To prevent the prop-
agation of timing errors, the automotive software standard AUTO-
SAR provides monitor-based timing protection, which detects and
confines task timing errors. As current monitors are unaware of a
criticality concept, the effective protection of a critical task requires
to monitor all tasks that constitute a potential source of propagating
errors, thereby causing overhead for worst-case execution time anal-
ysis, configuration and monitoring. Differing from the indirect pro-
tection of critical tasks facilitated by existing mechanisms, we pro-
pose a novel monitoring scheme that directly protects critical tasks
from interference, by providing them with execution time guaran-
tees. The monitor is implemented as an enhancement to the existing
monitoring infrastructure of a widely used commerical AUTOSAR
OS and meant to augment existing mechanisms. Overall, our ap-
proach provides efficient low-overhead interference protection, while
also adding transient timing error ride-through capabilities. The con-
tent of this chapter is based on a conference paper presented at ISORC
2015 [PWS+15a].

4.1 indirect vs . direct timing protection

The automotive industry is encountering growing interest in the de-
velopment and integration of mixed-criticality systems [BD14], i.e.,
systems containing components with varying degrees of assurance
on timing and safety. This trend arises from the increasing multi-
tude and complexity of innovative (often software based) driver as-
sistance features while dealing with resource constraints of limited
space, energy capacity and distribution, weight and, fundamentally,
costs. Essentially, the integration of the historically segregated auto-
motive systems, which have been conservatively designed following
a one function per electronic control unit (ECU) approach, offers cost
saving potential for hardware and wiring, as it entailed up to 100

federated ECUs distributed in modern luxury cars [Cha09].
Similar to the „gold standard for partitioning“ in integrated mod-

ular avionics [Rus99], the functional safety standard for road vehicles
ISO 26262 [Int11] permits the integration of elements with differing
criticality, as long as partitioning mechanisms can verifiably provide

En
h

a
n

c
e

m
e

n
t

80 enhancing timing protection for mixed-criticality systems

freedom from interference in both the spatial and temporal domains,
i.e., regarding memory accesses and timing behavior. In automo-
tive systems, partitioning is usually supported by hardware [WEK10;
ZBS+14], the operating system (OS) [AUT14i; BFT09], or a combina-
tion of both (e.g. virtualization) [RM14].

The established AUTOSAR standard [AUT14a] for automotive soft-
ware addresses freedom from interference through a set of safety
mechanisms in its Technical Safety Concept [AUT14i] that are pro-
vided as services by the AUTOSAR OS. To support partitioning in
the temporal domain, the OS provides monitoring of task execution
time budgets, activation frequencies, and resource lock times. The
violation of a monitor policy constitutes a timing error, whose prop-
agation is prevented by stopping the responsible task and freeing
locked resources.

AUTOSAR schedules tasks based on a fixed-priority preemptive
scheme [ABD+95], in which the processor executes the highest pri-
ority task among the tasks ready for execution. Without timing pro-
tection, timing errors, i.e., any fault that leads to a violation of the
specified worst-case execution time (WCET) of a task, may propagate
from high priority to low priority tasks. Due to rate monotonic pri-
ority assignment [LL73; LSD89], the priority and criticality of a task
are usually unaligned, i.e., the most critical task is not necessarily as-
signed the highest priority. Thus, criticality inversion [NLR09] may
occur through timing error propagation. AUTOSAR’s timing pro-
tection mechanisms, specifically execution time monitoring, aim at
detecting and confining timing errors to the task where they origi-
nate. To protect critical tasks from the effects of timing errors arising
in less critical tasks, all such less critical tasks require execution time
monitoring.

This approach has a number of undesired implications in mixed-
criticality systems:

• Critical tasks are protected indirectly by confining timing errors
in less critical tasks. To protect a given critical task, all less crit-
ical tasks must be individually and correctly monitored, which
is an error-prone process.

• Monitoring causes configuration and run-time overhead (cf. Sec-
tion 4.5), which can be reduced by focusing on critical tasks
only.

• Worst-case execution times of uncritical or less critical tasks are
often over-approximated [FFR12; Ves07], which, when enforced
via monitors, may impact overall system utilization negatively.

E
n

h
a

n
c

e
m

e
n

t

4.2 related work 81

Contributions

On this background, we propose a novel, criticality-aware AUTOSAR
run-time monitoring scheme that guarantees critical tasks a config-
urable execution time budget to directly protect them from timing er-
rors of other tasks. The budget guarantee is enforced by monitoring
a task’s preemption budget (PB), which determines how long a task
may be preempted without compromising its timely execution. By
focusing only on critical tasks, we reduce the overhead for run-time
monitoring and WCET analysis of non-critical tasks. Further, any un-
used computation time of critical tasks may be spent by erroneous
non-critical tasks to eventually finish (transient ride-through). To put
this contribution in context, we highlight that currently AUTOSAR
lacks support for mixed criticality scenarios by its monitoring mech-
anisms. Our work helps to provide this support.

This chapter is structured as follows. We review the work related
to our problem scope in Section 4.2. In Section 4.3, we provide back-
ground on AUTOSAR that is essential in understanding the proposed
preemption budget monitor, which is presented in Section 4.4. In Sec-
tion 4.5, we evaluate the efficiency and overhead of our approach in
a case study, and provide our conclusion in Section 4.6.

4.2 related work

Following a standalone exposition of the body of work relevant to
our problem scope, we summarize its viability on addressing timing
error propagation.

Related to our approach is the work by de Niz et al. [NLR09], who
identify a criticality inversion problem, for which less critical tasks
may block more critical tasks in fixed-priority preemptive systems,
if criticality and priority are not aligned. The authors first try to
address criticality inversion by the criticality driven priority assign-
ment scheme Criticality As Priority Assignment (CAPA), which has the
drawback that more critical tasks with long periods may block the ex-
ecution of less critical tasks with short periods, resulting in deadline
misses. As an improvement, they introduce zero-slack scheduling, a
scheme that is based on a dual mode task model (normal and over-
load) with the aim to maximize resource utilization, while providing
protection from criticality inversion.

The period transformation approach proposed by Sha et al. [SLR86]
slices critical tasks with longer periods than less critical tasks in sec-
tions, such that each of those sections has a shorter period than any
less critical task. Scheduling such a sliced set with a rate monotonic
approach will result in task criticalities and priorities being aligned.
However, this comes with the drawback of increased system manage-

En
h

a
n

c
e

m
e

n
t

82 enhancing timing protection for mixed-criticality systems

ment overhead, additional complexity of sharing data across slices,
additional development effort for task slicing, and the basic require-
ment that tasks must be sliceable.

Ficek et al. [FFR12; FSF+13] developed a design workflow that
provides guidance on how to effectively apply the previously dis-
cussed CAPA and period transformation approaches, together with
AUTOSAR’s execution time monitoring facilities to the overall sys-
tem design, in order to ensure freedom from interference for critical
tasks.

Baruah et al. [BBD11; BBD13] propose an extension to the fixed-pri-
ority preemptive scheduling approach, in which a system executes
either in LO-criticality (normal) or HI-criticality mode. If any task vi-
olates its assigned execution time budget, a switch to the HI-criticality
mode occurs, and task priorities are re-assigned in such a way that a
set of predefined critical tasks remains schedulable.

In summary, the related work on mixed criticality systems (a com-
prehensive review is given by Burns and Davis [BD14]) focuses mostly
on scheduling algorithms and schedulability analysis and not on tim-
ing errors, or how to prevent their propagation at run-time by mon-
itoring. Additionally, these approaches do not directly conform to
the AUTOSAR model, thus limiting their usage as such. The work of
Ficek et al. [FFR12; FSF+13] is an exception in this respect. Contrary
to their work, the approach proposed in this chapter does not require
a (re-)design of the system to provide execution time guarantees and
freedom from interference to critical tasks.

4.3 autosar system model

This section provides the reader with a background on AUTOSAR’s
scheduling model, task model, and timing protection that are essen-
tial in understanding the problem scope and the solution of preemp-
tion budget monitoring proposed in Section 4.4. The provided infor-
mation focuses on timing aspects and is mostly complementary to
Section 2.2 and Section 3.2.

The AUTOSAR OS [AUT14g] is a statically configured multitask-
ing OS where all system objects, such as tasks and resources, are al-
located at build time. The OS schedules tasks in a fixed-priority pre-
emptive manner [ABD+95] executing the highest priority task among
all ready tasks. For the assignment of task priorities [MNS+10], a rate
monotonic scheme [LL73; LSD89] is commonly used, where the pe-
riod or deadline of a task determines its priority (i.e., the shorter the
period/deadline, the higher the priority). Task priorities are gener-
ally static, with the exception of the priority ceiling protocol [SRL90],
which is used to avoid priority inversion when resources are shared
across tasks. In such situations, the priority of tasks that hold a shared
resource is temporarily raised to the priority ceiling of the resource.

E
n

h
a

n
c

e
m

e
n

t

4.3 autosar system model 83

We define a task τi as a tuple

τi = (Pi,Ci, Ti,Di, ζi)

where:

• Pi is the static priority,

• Ci is the worst-case execution time (WCET),

• Ti is the period,

• Di is the deadline, and

• ζi is the criticality of the task.

In our model, higher values of Pi and ζi indicate higher priority and
criticality, respectively. To achieve a clearer presentation, we assume
that Di = Ti throughout this chapter, unless stated otherwise. The
WCET Ci constitutes the uninterrupted, maximum possible execu-
tion time of a task, and is either identified analytically (via static code
analysis), experimentally (via tracing/measurement) or through sim-
ulation [KP05; GE07]. Depending on the assurance that the employed
method provides, a buffer value is usually added to the WCET to
compensate for inaccuracies. Thorough WCET analysis is essential
in determining the system schedule and conducting schedulability
analysis, which proves whether the schedule meets the overall tim-
ing requirements and ensures that all tasks meet their deadline under
error-free conditions.

4.3.1 Timing Error Propagation

In the presence of a timing error, which we define as a task τi exceed-
ing its WCET Ci, the schedule’s underlying assumptions are invali-
dated. Undetected timing errors may impact the timing of fault-free
tasks through error propagation, and lead to failures in the form of
deadline violation (not finishing the execution until Di) of fault-free
tasks. To illustrate such a scenario, we assume a system with tasks
τA, τB and τC, as shown in Table 4.1.

Table 4.1: Timing properties of the example system.

Task τi WCET Ci Deadline Di Priority Pi
A 2ms 7ms 3

B 2ms 7ms 2

C 2ms 7ms 1

Figure 4.1 depicts the task timing. During the first period from
0ms to 7ms, all tasks are error-free and finish before their deadline.

En
h

a
n

c
e

m
e

n
t

84 enhancing timing protection for mixed-criticality systems

0 5 10
ms

Error

2ms 4ms

2ms

2ms

2ms

15

1ms

Deadline violation

τA

τB

τC

running, WCET exceededrunningready

Di Di

Figure 4.1: Deadline violation of τC due to a propagated timing error.

In the second period from 7ms to 14ms, τA is subject to a timing
error at 9ms (indicated by the red bolt) that prolongs its execution
time by 2ms. The error of τA propagates and delays the execution of
τB and τC by 2ms. When τC starts to execute at 13ms, the remaining
execution time does not suffice to finish until its deadline at 14ms.
The consequence is a deadline violation and timing failure of τC.

4.3.2 AUTOSAR Timing Protection

The propagation of timing errors from one task to another can be de-
tected and prevented by timing protection mechanisms (TPMs) that
monitor task run-time behavior. AUTOSAR specifies and implements
the following TPMs as OS services [AUT14g; AUT14i], which are se-
lectively enabled on a per-task basis.

• Execution time monitoring monitors a task’s execution time
and compares it to a budget. When the budget is exhausted
without the task having finished, a timing error is detected.

• Inter-arrival time monitoring monitors a task’s activation fre-
quency within a statically configured time frame. When an ac-
tivation limit is exceeded, a timing error is detected.

• Locking time monitoring limits the blocking time of tasks im-
putable to priority ceiling [SRL90] or disabling interrupts. For
each resource and each task, a lock time budget can be speci-
fied, and locking a resource for longer than its budget for that
task constitutes a timing error.

Upon detection of a timing error, it can be locally confined by
killing the task or its task group (OS application). Killing a task re-
sults in an abortion and failure of the task.

AUTOSAR detects timing errors accountable to WCET violations
by execution time monitoring (ETM). As AUTOSAR’s monitoring

E
n

h
a

n
c

e
m

e
n

t

4.4 preemption budget monitoring 85

mechanisms currently lack support for mixed-criticality scenarios,
ETM can only indirectly protect critical tasks by individually moni-
toring all tasks from which errors could potentially propagate, which
is an error-prone process. In addition, ETM is inefficient compared
to a criticality-aware monitoring scheme in mixed-criticality scenar-
ios with few critical and many non-critical tasks, due to the overhead
that monitoring the non-critical tasks entails. Recalling our previous
example (Table 4.1), we assume that task τC is critical, while tasks
τA and τB are non-critical. To guarantee freedom from interference
to τC, both τA and τB require monitoring using ETM, while a di-
rect criticality-aware monitor would only require monitoring τC. In
Section 4.5, we compare the run-time overhead of ETM and a novel
criticality-aware monitoring scheme that we propose in the next sec-
tion.

4.4 preemption budget monitoring

As augmentation to the existing monitoring infrastructure of AUTO-
SAR, we propose a monitoring scheme that is specifically suited to
mixed-criticality systems. It is based on the idea that instead of
monitoring the timing behavior of all non-critical tasks that consti-
tute potential sources of timing errors, it would be more efficient to
only monitor critical tasks with the aim of providing a guaranteed
execution time budget to them. Differing from the indirect protec-
tion of critical tasks facilitated by existing mechanisms, this approach
directly protects critical tasks from interference. In consequence of
this paradigm shift, non-critical tasks are eligible for transient error
ride-through (see Section 4.4.2).

The execution time guarantee is provided by monitoring the pre-
emption time of critical tasks, i.e., the time spent in the ready state
waiting for execution. If the preemption time exceeds a threshold
value, which we term preemption budget (PB), the immediate start of
the monitored task is enforced by re-queueing it with the highest pri-
ority in order to prevent interference by other tasks. For systems with
only one critical task τi, the task’s PBi can intuitively be defined as
Di −Ci, as the task needs to start its uninterrupted execution Ci time
units before its deadline Di.

For systems with several critical tasks, determining PBi is more
complex, as potential preemptions through other PB-monitored tasks
with a higher precedence (explained below) need to be factored in. The
problem can be thought of as response time analysis [ABR+93], but with
an inverted time line. We therefore make an argument along the lines
of [ABR+93] and define the response time Ri as the sum of the WCET
Ci and the total worst-case interference Ii of other critical tasks with
higher precedence on τi through preemption.

Ri = Ci + Ii (4.1)

En
h

a
n

c
e

m
e

n
t

86 enhancing timing protection for mixed-criticality systems

The PBi of a task τi then follows as

PBi = Di − Ri (4.2)

We argue that the interference on task τi from a task τj through
preemption is nCj, where n denotes how often τj executes within Ri,
or in other words, how often its period Tj fits in Ri. For non-integer
values of n = Ri/Tj, n has to be rounded up by the ceiling function,
to account for the fact that τj will always preempt τi for its full ex-
ecution time Cj (due to fixed-priority preemptive scheduling). The
worst-case interference from a task τj on task τi is therefore given by⌈

Ri
Tj

⌉
∗Cj

Consequently, the total interference Ii of other tasks on τi follows
as

Ii =
∑

j∈hp(i)

⌈
Ri
Tj

⌉
∗Cj (4.3)

where hp(i) is the set of tasks that might preempt τi due to higher
monitor precedence. The precedence between PB-monitored tasks
is defined as follows. The higher a task’s criticality, the higher its
precedence. For tasks of equal criticality, their precedence is defined
in alignment to their priority.

Combining eq. (4.1) and eq. (4.3), the unknown term Ri appears on
both sides of the equation

Ri = Ci +
∑

j∈hp(i)

⌈
Ri
Tj

⌉
∗Cj

which can be iteratively solved as follows.
Let Rni be the nth approximation to Ri.

Rn+1
i = Ci +

∑
j∈hp(i)

⌈
Rni
Tj

⌉
∗Cj (4.4)

Starting with R0i = Ci, the iteration terminates when Rn+1
i = Rni .

The iteration is guaranteed to converge if the processor utilization
is 6 100% [ABR+93].

In Table 4.2 we provide an example for the calculation of the PB.
The example system consists of three tasks: τB is of high criticality,
τC is of medium criticality, and τA is non-critical.

The PBs are computed according to the precedence relations de-
fined above, i.e., from the highest critical task to the lowest. There-
fore, we start the computation of the PB for task τB. As task τB is
the highest critical task, the set hp(B) is empty, and using eq. (4.4)
we determine RB = R0B = CB = 2ms. Using eq. (4.2) it follows

E
n

h
a

n
c

e
m

e
n

t

4.4 preemption budget monitoring 87

Table 4.2: Assigning preemption budgets in a mixed-criticality example.

Task τi WCET Ci Period Ti Prio. Pi Crit. ζi PBi

A 2ms 6ms 2 0 n.a.

B 2ms 8ms 1 2 6ms

C 3ms 12ms 0 1 7ms

that PBB = 8ms − 2ms = 6ms. The next critical task is τC, for
which we have to factor in that it might be preempted by the PB
monitor of task τB due to its higher precedence. Therefore, the
RC = R1C = CC +

⌈
CC

TB

⌉
∗ CB = 3ms + 2ms = 5ms and PBC =

12ms − 5ms = 7ms.
In the presence of a timing error, the PB monitor would force the

execution of τB at 6ms after its activation, providing τB a guaranteed
execution time of CB = 2ms. For τC, the PB monitor would force
its execution at 7ms, providing τC a guaranteed execution time of
CC = 3ms, and accounting for a possible preemption by τB for up to
CB = 2ms.

4.4.1 Integration with AUTOSAR Task State Model

We integrate the PB monitor into the AUTOSAR task state model as
depicted in Figure 4.2.

Preemption Budget depleted

SUSPENDED

RUNNING READY

1. Activate
Start PB monitor

2a. Start/Resume
Pause PB monitor

3. Preempt
Resume PB monitor

4. Terminate
No action

2b. Start/Resume
Enforce task execution

Figure 4.2: Task state transitions and corresponding PB monitor actions.

After system start-up, tasks are in the suspended state. Once a task
is activated, it enters the ready state and the PB monitor is started

En
h

a
n

c
e

m
e

n
t

88 enhancing timing protection for mixed-criticality systems

(1. Activate). As long as the task is in the ready state, its PB is con-
sumed. In the error-free case, the task will eventually be dispatched
(2a. Start/Resume) and enter the running state, from which it will either
be preempted (3. Preempt) and be resumed later, or it will terminate
after finishing its execution (4. Terminate). If the task leaves the ready
state, the monitor will be paused. It will be resumed once the task
re-enters the ready state.

In the erroneous case (2b. Start/Resume), the task will deplete its
PB and a timer interrupt will trigger. To guarantee the critical task its
WCET as execution time, it is either immediately started or enqueued
with the highest priority, depending on whether higher precedence
tasks have their PB depleted as well. The case study in Section 4.5
provides further details on the monitor’s implementation and its per-
formance in a transient and a permanent timing error scenario.

4.4.2 Transient Error Ride-through

A transient error is a temporary error that disappears after a limited
amount of time. For example, a task with a nominal WCET of 2ms
may exceed its WCET by 1ms and run for 3ms before it finishes. As
long as the task finishes before its deadline, it has not failed – the
task made a transient error ride-through. For tasks that are protected
using AUTOSAR’s ETM, transient error ride-throughs are infeasible,
as the monitor strictly enforces the configured execution time budget.
Consequently, the task is forced to fail, although it could eventually
have finished, depending on the overall CPU utilization and timing
constraints.

Contrary to ETM, PB monitoring allows for transient error ride-throughs.
We again consider our example system as specified in Table 4.2, but
assume that only task τC is critical. For this modified scenario PBC =

12ms − 3ms = 9ms, which is monitored. As shown in Figure 4.3,
task τB is subject to a timing error at 10ms (indicated by the red bolt)
and continues to execute.

DC0 5 10
ms

15

τA

τB

τC

running, WCET exceededrunningready

Error

2ms

2ms

2ms

3ms
0.5ms

0.5ms

2ms

PB timer

2ms

Figure 4.3: Example of a transient error ride-through of task τB.

E
n

h
a

n
c

e
m

e
n

t

4.4 preemption budget monitoring 89

At 11ms, the PB of task τC is exhausted (remember that the PB
is only consumed in the ready state) and the monitor enforces τC to
execute. τC finishes its execution after 0.5ms and has therefore not
consumed all of its WCET. The remaining 0.5ms are used by τB to
eventually finish its execution at 12ms, which is before its deadline
at 16ms. Accordingly, τB performed a transient error ride-through.

4.4.3 Applicability to Multi-core Systems

Although much research has gone into multi-core mixed criticality
scheduling (e.g. [BCL+14]), AUTOSAR uses an approach based on
static partitioning [AUT14b; MB09], in which a static task set is as-
signed to each partition/core. A possible explanation is provided
by Reinhardt and Morgan [RM14], as „automotive software devel-
opment has yet to exploit parallel processing in an efficient manner
because legacy code, designed to run on single core systems, is diffi-
cult to adapt to run in parallel on multi-core systems.“ So, although
we consider a single-core environment throughout this chapter, the
given analysis should be equally applicable to multi-core AUTOSAR
systems with a static task partitioning.

4.4.4 Limitations and Possible Solutions

The partitioning of a system in different criticality levels using PB
monitoring is subject to a set of constraints in order to avoid effects
similar to those of the CAPA approach discussed in Section 4.2. To
illustrate the problem, we assume an example system with three tasks
of different criticality, as shown in Table 4.3.

Table 4.3: Example of conflicting task constraints in a three criticality sys-
tem.

Task τi WCET Ci Period Ti Prio. Pi Crit. ζi
A 2ms 6ms 2 0

B 2ms 8ms 1 1

C 10ms 30ms 0 2

According to the task precedence relationship, we first calculate
the PB of τC and then of τB. It follows that PBC = 30ms − 10ms =

20ms. For τB, we calculate PBB = 8ms − 2ms − 10ms = −4ms. As
PBB is negative, assigning a PB to τB is infeasible. Consequently,
no execution time guarantee can be given to τB. The explanation is
straight-forward: as τC has a higher monitor precedence, τC could
preempt τB whenever its PBC is depleted. As τC has a WCET CC of
10ms, τB can impossibly meet its deadline DB = TB = 8ms in that
case.

En
h

a
n

c
e

m
e

n
t

90 enhancing timing protection for mixed-criticality systems

The described effect cannot occur for dual criticality systems (non-
critical and critical), as the set of critical tasks simply represents an
ordered subset of the overall system and remains schedulable, if the
overall system was schedulable. For systems with more than two
criticalities, the effect does not occur as long as task criticalities are
aligned with task priorities. For all other cases, we propose the fol-
lowing solutions:

• Invert the precedence of conflicting tasks (in our example τB
and τC), so that the task with the shorter period τB can preempt
τC. To continually provide freedom from interference to the
more critical task τC in such a scenario, the execution time of
τB would require additional monitoring with ETM.

• Re-arrange task priorities by period transformation to align crit-
icalities and priorities (similar to the approach proposed by
Ficek in [FSF+13]).

4.5 case study

In this section, we evaluate our implementation of preemption budget
monitoring (PBM) and compare it in terms of memory and run-time
overhead to execution time monitoring (ETM). Further, we assess the
effectiveness of PBM in direct comparison to ETM under the follow-
ing timing error scenarios:

• Transient: A task exceeds its worst-case execution time to even-
tually finish its execution before its deadline.

• Permanent: A task is stuck, for example in a livelock or dead-
lock, and is therefore unable to finish its execution.

Our test system is a simplified adaptive cruise control (ACC) that
consists of seven tasks, as shown in Table 4.4. We assume that the
deadline of each task matches the task’s respective period, and that
τ6 is the only critical task in our system.

We have implemented the test system for the XKT564L evaluation
board by Freescale [Fre] using a widely used, commercial AUTOSAR
tool suite for system integration. The XKT564L hosts a 32-bit dual
core Power Architecture microcontroller unit (MCU) with 1MiB of
flash memory and 128KiB of RAM (both ECC). The MCU is specifi-
cally developed for safety-critical applications and both cores are op-
erated in lock-step mode to detect hardware run-time errors.

4.5.1 PBM - Implementation Details

Our PBM implementation is an extension to the monitoring infras-
tructure of a widely used, commercial AUTOSAR OS. We closely re-

E
n

h
a

n
c

e
m

e
n

t

4.5 case study 91

Table 4.4: Task configuration of ACC case study.

Task WCET Ci Period Ti Priority Pi Critical

τ1 30µs 250µs 7 -

τ2 50µs 250µs 6 -

τ3 145µs 500µs 5 -

τ4 15µs 500µs 4 -

τ5 20µs 500µs 3 -

τ6 15µs 1,000µs 2 X

τ7 20µs 1,000µs 1 -

semble the structure of the existing monitoring mechanisms to sup-
port a seamless integration of our approach. Following the task state
diagram (cf. Figure 4.2, Section 4.4), we added monitor hooks to the
kernel’s enqueue and dispatch functions, in order to handle task ac-
tivation, start/resume and preemption in the monitor. Further, we
implemented a handler for PB depletion (cf. Figure 4.2, transition 2b)
to enforce the execution of critical tasks if necessary.

Table 4.5: Static overhead of PBM.

Baseline with PBM Overhead

Kernel SLOC 25,736 25,985 +159 (0.6%)

Flash ROM 43,903 44,319 +416 (0.9%)

RAM 47,952 47,980 +28 (0.06%)

In Table 4.5 we review the static overhead of PBM on the source
code and binary levels. We utilized the tool SLOCCount [Whe] to
determine the source lines of code (SLOC) of the baseline kernel, and
compare it to the version with PBM as a measure for the implemen-
tation complexity of PBM. Overall, PBM increases the SLOC of the
AUTOSAR OS kernel by 159 lines, which is an increase of 0.6%.

The static flash ROM and RAM consumption was obtained using
the tool objdump from the GNU Binutils toolsuite [GNU]. PBM con-
sumes an additional 416 bytes (0.9%) of flash ROM, and 28 bytes
(0.06%) of RAM.

4.5.2 Timing Error Scenarios

We evaluate the efficiency of PBM and compare it to ETM in a tran-
sient and a permanent timing error scenario. The errors are injected
at run-time using a software-implemented fault injection (SWIFI) tool
prototype for AUTOSAR that extends previous work [PWM+12]. For
both error scenarios, the injection location is task τ5 and the trigger

En
h

a
n

c
e

m
e

n
t

92 enhancing timing protection for mixed-criticality systems

condition is set to the third execution of the task after system start
(activated around 6,100µs).

The three graphs in Figure 4.4 depict the transient error scenario
for ETM and PBM. The graphs cover two full periods of the tasks
with the longest period in the system (τ6, τ7). In the first period
(5,000µs to 6,000µs), the error-free timing is shown. In the second
period (6,000µs to 7,000µs), a transient timing error that lasts 100µs
is injected at 6,250µs in τ5. Figure 4.4a shows how ETM detects the
error after τ5 has consumed its WCET. As ETM strictly enforces the
configured budget, τ5 gets killed by the OS and thus fails. Figure 4.4b
shows the same scenario for PBM. As the preemption budget of τ6
is not consumed until 6,900µs, the PBM does not interfere with τ5,
which eventually finishes its execution successfully. Figure 4.4c de-
picts a slightly different scenario with two error injections, in order to
highlight the interaction between PBM and the erroneous task. The
first injection at 6,250µs serves the sole purpose of delaying the exe-
cution of τ6. For the second injection at 6,750µs, we observe that PBM
gets activated around 6,900µs and preempts τ5. After executing for
less than its WCET, τ6 finishes and τ5 uses the remaining budget
from τ6 to successfully finish. In all three scenarios, ETM and PBM
effectively prevented task failures of the critical task τ6, while the lat-
ter two scenarios demonstrate the transient ride-through capabilities
of PBM.

The two graphs in Figure 4.5 illustrate the permanent error sce-
nario for ETM and PBM. The graphs cover four full periods of the
task with the longest period in the system to better observe the effect
of the permanent error. In the first period (5,000µs to 6,000µs), the
error-free timing is shown. After the first period, a permanent timing
error is injected in τ5 at 6,250µs. Figure 4.5a shows how ETM re-
peatedly detects the error after τ5 has consumed its WCET and kills
the task. Figure 4.5b shows the same scenario for PBM, which re-
peatedly detects an imminent error propagation from task τ5 to τ6
and prevents it by assigning τ6 its guaranteed execution time bud-
get. Both monitors, ETM and PBM are effective in preventing task
failures of the critical task τ6 that are accountable to timing error
propagation. At the same time, ETM and PBM are incapable of mit-
igating the failure of τ5 that is evoked by its permanent error. To
address such error scenarios, we recommend to additionally employ
a monitor that provides complementary mitigation strategies, such as
an external watchdog.

4.5.3 Comparison of run-time overhead

Monitoring the timing behavior of tasks entails run-time overhead
whenever the monitor is invoked. In general, ETM is invoked at task
start, preemption, resume, and termination. Correspondingly, PBM

E
n

h
a

n
c

e
m

e
n

t

4.5 case study 93

(a) ETM: Prevents transient ride-through

(b) PBM: Transient ride-through (case I)

(c) PBM: Transient ride-through (case II)

Figure 4.4: Transient timing error scenario.

En
h

a
n

c
e

m
e

n
t

94 enhancing timing protection for mixed-criticality systems

(a) ETM

(b) PBM

Figure 4.5: Permanent timing error scenario.

E
n

h
a

n
c

e
m

e
n

t

4.5 case study 95

is invoked at task activation, start, preemption, and resume. As our
case study only has few preemption/resume events, we focus our
evaluation on activation, start and termination. It can be expected
that the overall overhead grows linearly for ETM and PBM alike for
systems with many preemptions, due to structural similarity of the
monitors.

Our measurements over 500 activation, 500 start and 500 termina-
tion events demonstrate a very constant run-time behavior. For both
monitors, the monitor start (at each task activation for PBM and each
task start for ETM) consumes 2µs on average, while the monitor stop
routine (at each task start for PBM and each task termination for ETM)
consumes 2.2µs on average. Therefore, the monitor overhead for one
period of a task’s execution is fixed at 4.2µs for ETM and PBM alike.

Table 4.6: Monitoring overhead for ETM and PBM.

ETM, per PBM, per

Task ETmax Period Ti ETmax Period ETmax Period

τ1 24µs 250µs 17.5% 1.7% - -

τ2 38µs 250µs 11.1% 1.7% - -

τ3 113µs 500µs 3.7% 0.8% - -

τ4 9µs 500µs 46.7% 0.8% - -

τ5 13µs 500µs 32.3% 0.8% - -

τ6 12µs 1,000µs - - 35.0% 0.4%

τ7 16µs 1,000µs - - - -

Systemwide overhead 5.9% 0.4%

Table 4.6 compares the overhead for ETM and PBM in our test sys-
tem. For ETM, each task with a higher priority than the critical task
τ6 requires monitoring, to prevent error propagation to τ6, while for
PBM, only the critical task τ6 requires monitoring. In direct com-
parison to the tasks’ measured maximum execution time ETmax, the
monitoring overhead is between 3.7% and 46.7% per monitored task.

To put these figures into a systemwide perspective, a comparison
to the period of a task is more meaningful than to ETmax because the
period determines how often a task (and thus its monitor) is executed.
For ETM, the overhead per period is between 0.8% and 1.7%, which
results in an aggregated systemwide overhead of 5.9%. For PBM,
the overhead per period is 0.4%, which results in an aggregated sys-
temwide overhead of 0.4%.

En
h

a
n

c
e

m
e

n
t

96 enhancing timing protection for mixed-criticality systems

4.5.4 Summary

Our case study showed that PBM and ETM both protect critical tasks
from failures due to timing error propagation in transient and per-
manent error scenarios. For transient errors, only PBM enables non-
critical tasks to perform a transient error ride-through. In terms of
overhead, PBM outperforms ETM by a magnitude. The expected
benefit of using PBM over ETM in other scenarios largely depends
on the distribution of critical and non-critical tasks, with a preference
for PBM in scenarios with a low number, and for ETM in scenarios
with a high number, of critical over non-critical tasks.

4.6 conclusion

We have presented preemption budget monitoring (PBM), a novel
monitoring approach that guarantees freedom from interference in
the temporal domain to critical tasks in mixed-criticality systems.
We have implemented our approach as an extension to the existing
monitoring infrastructure of a widely used, commercial AUTOSAR
OS with a 0.9% increase in binary code size and less than 0.1% in-
crease in memory consumption. The evaluation of our approach in
an adaptive cruise control scenario showed that PBM effectively pre-
vents the propagation of timing errors from non-critical to critical
tasks with a run-time overhead that is a magnitude lower than exist-
ing approaches. PBM achieves these impressive results by monitoring
only critical tasks and avoiding the overhead of monitoring non-crit-
ical tasks. Therefore, we expect PBM to perform equally well for any
mixed-criticality systems, in which few critical tasks require protec-
tion from possible failures of many non-critical tasks. Furthermore, in
contrast to existing approaches, PBM enables transient ride-through
to allow non-critical tasks to recover from transient timing errors and
thereby improves overall system reliability.

Part V

S U M M A RY A N D C O N C L U S I O N

S
u

m
m

a
r

y
a

n
d

C
o

n
c

l
u

s
i
o

n

5
S U M M A RY A N D C O N C L U S I O N

Functional safety mechanisms assume a pivotal role in implement-
ing the safety concept of a system, as they provide technical means
for error detection and failure mitigation. For mixed-criticality sys-
tems, which integrate tasks of different criticality levels, they also
serve the purpose of providing freedom from interference, i.e., pre-
venting the propagation of errors from low to high criticality tasks. In
consequence, the requirements on their dependable and trustworthy
operation are correspondingly high.

In this thesis, we have explored two directions in the context of
functional safety mechanisms:

1. The assessment of the correctness and robustness of these mech-
anisms, i.e., how they perform in the presence of specified (tar-
geting correctness) and unspecified (targeting robustness) faults.

2. The enhancement of these mechanisms to mixed-criticality sys-
tems, i.e., how can these mechanisms be efficiently applied for
mixed-criticality applications.

In conclusion, we have addressed each research question of Sec-
tion 1.4 as follows.

Research Question (RQ1): How do we drive the instrumentation of complex,
software-intensive mixed-IP systems for dependability assessment?

The FI-based assessment of software systems requires the instrumen-
tation with test code for injectors and detectors. As the manual instru-
mentation of (often tool-generated) code is tedious and error-prone,
the instrumentation process is usually automated. Model-based de-
velopment, layered architectures, and the integration of components
from various suppliers increase the complexity of a system and intro-
duce multiple levels of abstraction. As the fault location (e.g., appli-
cation component, runtime environment), the fault type (e.g., bit flip,
fuzzing), and the accessibility of the injection location (i.e., source
code or binary) can vary greatly across different fault models, instru-
mentation frameworks are facing the challenge of providing usability,
customizability, and efficiency to the user.

Su
m

m
a

r
y

a
n

d

C
o

n
c

l
u

s
i
o

n
100 summary and conclusion

Contribution (C1): A guidance framework for the dependability assessment
of complex, software-intensive mixed-IP software systems.

In Chapter 2, we have developed an automated instrumentation frame-
work for the dependability assessment of AUTOSAR-based systems.
Our approach provides:

1. Usability: We enable the user to define their instrumentation
requirements on the model level instead of the implementation
level, which largely consists of automatically generated code.

2. Customizability: We provide expert users with the ability to
further tune and refine their instrumentation choice, factoring
implementation details, and thus test certain aspects of an inter-
face, which are represented by the different instrumentation op-
tions and instrumentation locations within the software stack.

3. Efficiency: Our experimental results have shown that the use of
interface wrappers for instrumentation infers low overhead in
space and time.

We factor the different software component access levels (i.e., black-
-box, grey-box, and white-box) by enabling the instrumentation at
the source code level (i.e., implementation and interface specification)
and the binary object level. To demonstrate our approach and to show
the generic applicability of the different instrumentation techniques,
we have conducted a series of FI experiments on an anti-lock brak-
ing system. The cross-validated experimental evaluation yielded the
result that the varied techniques were comparably efficient and that
black-box instrumentation was as effective as white-box instrumenta-
tion while requiring less access to the system and being less intrusive.
To provide guidance on the decision of instrumentation location and
instrumentation options, we have discussed the qualitative criteria of
code access, intrusiveness, automation complexity, and implementa-
tion effort.

In addition, we have identified systematic limitations of our ap-
proach and sketched possible solutions to resolve them. The imple-
mentation and evaluation of the proposed solutions is left for fu-
ture work. The results of this work were presented at DSN 2012

[PWM+12].
The developed instrumentation approach and framework is not

limited to FI scenarios. We have also demonstrated its application
in the context of a model-based generator for complex runtime mon-
itors, which was presented as joint work at ECMFA 2013 [PPP+13].

S
u

m
m

a
r

y
a

n
d

C
o

n
c

l
u

s
i
o

n
summary and conclusion 101

Research Question (RQ2): How can FI be effectively and efficiently applied
for the assessment of functional safety mechanisms?

Functional safety mechanisms provide technical solutions to detect
faults or control failures in order to achieve or maintain a safe state.
Due to this pivotal role, the requirements on their dependability are
correspondingly high. Fault injection (FI) is a versatile and estab-
lished technique to assess a system’s dependability in the presence
of operational perturbations caused by hardware and software faults.
The effective and efficient application of FI to modern software-inten-
sive embedded systems is non-trivial, due to the complexity of these
systems and the difficulty of identifying representative fault models.
On the example of the AUTOSAR and ISO 26262 standards, we ob-
serve that, although FI is explicitly recommended to assess functional
safety mechanisms, the standards provide little guidance on how ex-
periments should be performed and how suitable fault models can
be identified.

Contribution (C2): An open source FI framework for AUTOSAR, including
fault model guidelines and the assessment of functional safety mechanisms.

In Chapter 3, we have developed and examined the complete FI pro-
cess for the assessment of AUTOSAR’s safety mechanisms, according
to recommendations given by the ISO 26262 standard. To fill the
gap between the ISO standard’s recommendation to apply FI and the
absence of suitable fault models, we have provided a detailed discus-
sion on how we derived fault models for our assessment, which tar-
gets a commercial implementation of AUTOSAR’s timing monitoring
safety mechanisms. For the automated execution of FI experiments,
we have adapted the open source FI framework GRINDER to AUTO-
SAR, which we have made openly available [PMT+15]. By providing
this ready to use FI framework for AUTOSAR, we hope to foster the
further development and use of FI for this target environment.

The conducted case studies uncovered an actual bug in the inter-
action of two timing monitoring mechanisms that could lead to a
misidentification of the source of a timing error and negatively im-
pact the effectiveness of error mitigation. The bug was subsequently
acknowledged and fixed by the supplier of the safety mechanism’s
implementation. In summary our results demonstrate that

1. FI is an effective method to assess the implementation of func-
tional safety mechanisms,

2. suitable fault models can be derived from functional specifica-
tions and the intended usage context, and

3. using these fault models actual deficiencies in the implementa-
tion can be identified with a modest amount of experiments.

Su
m

m
a

r
y

a
n

d

C
o

n
c

l
u

s
i
o

n
102 summary and conclusion

Research Question (RQ3): How can the existing infrastructure of functional
safety mechanisms be enhanced for mixed-criticality scenarios?

Mixed-criticality systems integrate tasks of different criticality lev-
els. In order to ensure that errors originating in less critical functions
can not propagate to disturb more critical functions, functional safety
mechanisms are employed to provide freedom from interference, i.e.,
preventing error propagation from low to high criticality tasks. To
provide efficient protection of critical tasks, functional safety mecha-
nisms benefit from accounting for different criticality levels. At the
example of AUTOSAR’s timing protection, we illustrate the issues
emerging from the lack of criticality awareness and the resulting in-
direct protection of critical tasks.

Contribution (C3): A novel, criticality-aware timing protection mechanism.

In Chapter 4, we have presented preemption budget monitoring (PBM),
a novel monitoring approach that provides freedom from interfer-
ence for the timing of critical tasks in mixed-criticality systems. To
implement our approach, we have enhanced the existing monitoring
infrastructure of a widely used, commercial AUTOSAR OS. Our ap-
proach causes a 0.9% increase in binary code size and less than 0.1%
increase in memory consumption.

We have evaluated our approach for transient and permanent tim-
ing errors in an adaptive cruise control scenario. Our results have
shown that PBM effectively prevents the propagation of timing er-
rors from non-critical to critical tasks with a run-time overhead that
is a magnitude lower than existing approaches. PBM achieves these
impressive results by monitoring only critical tasks and avoiding the
overhead of monitoring non-critical tasks. We expect PBM to perform
equally well for any mixed-criticality systems, in which few critical
tasks require protection from possible failures of many non-critical
tasks. Furthermore, in contrast to existing approaches, PBM enables
transient ride-through to allow non-critical tasks to recover from tran-
sient timing errors and thereby improves overall system reliability.

B I B L I O G R A P H Y

[AAA+90] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet,
Jean-Charles Fabre, Jean-Claude Laprie, Eliane Martins,
and David Powell. „Fault Injection for Dependability
Validation: A Methodology and Some Applications.“ In:
Software Engineering, IEEE Transactions on, vol. 16, no. 2

(Feb. 1990), pp. 166–182.

[ABD+95] Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W.
Tindell, and Andy J. Wellings. „Fixed Priority Pre-emp-
tive Scheduling: An Historical Perspective.“ In: Real-
Time Systems, vol. 8, no. 2-3 (Mar. 1995), pp. 173–198.

[ABR+93] Neil Audsley, Alan Burns, Mike Richardson, Ken Tin-
dell, and Andy J. Wellings. „Applying new schedul-
ing theory to static priority pre-emptive scheduling.“
In: Software Engineering Journal, vol. 8, no. 5 (Sept. 1993),
pp. 284–292.

[ALR+04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell,
and Carl Landwehr. „Basic Concepts and Taxonomy of
Dependable and Secure Computing.“ In: Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1 (Jan.
2004), pp. 11–33. issn: 1545-5971. doi: 10.1109/TDSC.
2004.2.

[AUT11] AUTOSAR Release 3.2. Technical Overview. Document
ID 067. Apr. 2011. url: http : / / www . autosar . org /

fileadmin / files / releases / 3 - 2 / main / auxiliary /

AUTOSAR_TechnicalOverview.pdf.

[AUT14a] AUTomotive Open System ARchitecture (AUTOSAR).
Release 4.2.1. Oct. 2014. url: http://www.autosar.org/.

[AUT14b] AUTOSAR Release 4.1 Rev 3. Guide to Multi-Core Sys-
tems. Document ID 631. Mar. 2014. url: http://www.
autosar.org/fileadmin/files/releases/4-1/software-

architecture/general/auxiliary/AUTOSAR_EXP_MultiCoreGuide.

pdf.

[AUT14c] AUTOSAR Release 4.2.1. Description of the AUTOSAR
standard errors. Document ID 377. Oct. 2014. url: http:
//www.autosar.org/fileadmin/files/releases/4-2/

software-architecture/general/auxiliary/AUTOSAR_

EXP_ErrorDescription.pdf.

http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2
http://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_TechnicalOverview.pdf
http://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_TechnicalOverview.pdf
http://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_TechnicalOverview.pdf
http://www.autosar.org/
http://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/general/auxiliary/AUTOSAR_EXP_MultiCoreGuide.pdf
http://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/general/auxiliary/AUTOSAR_EXP_MultiCoreGuide.pdf
http://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/general/auxiliary/AUTOSAR_EXP_MultiCoreGuide.pdf
http://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/general/auxiliary/AUTOSAR_EXP_MultiCoreGuide.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_ErrorDescription.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_ErrorDescription.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_ErrorDescription.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_ErrorDescription.pdf

104 Bibliography

[AUT14d] AUTOSAR Release 4.2.1. Explanation of Error Handling
on Application Level. Document ID 378. Oct. 2014. url:
http://www.autosar.org/fileadmin/files/releases/

4 - 2 / software - architecture / general / auxiliary /

AUTOSAR_EXP_ApplicationLevelErrorHandling.pdf.

[AUT14e] AUTOSAR Release 4.2.1. Overview of Functional Safety
Measures in AUTOSAR. Document ID 664. Oct. 2014.
url: http : / / www . autosar . org / fileadmin / files /

releases/4-2/software-architecture/general/auxiliary/

AUTOSAR_EXP_FunctionalSafetyMeasures.pdf.

[AUT14f] AUTOSAR Release 4.2.1. Requirements on Runtime En-
vironment. Document ID 083. Oct. 2014. url: http://
www.autosar.org/fileadmin/files/releases/4- 2/

software-architecture/rte/auxiliary/AUTOSAR_SRS_

RTE.pdf.

[AUT14g] AUTOSAR Release 4.2.1. Specification of Operating Sys-
tem. Document ID 034. Oct. 2014. url: http : / / www .

autosar.org/fileadmin/files/releases/4-2/software-

architecture/system- services/standard/AUTOSAR_

SWS_OS.pdf.

[AUT14h] AUTOSAR Release 4.2.1. Specification of RTE. Document
ID 084. Oct. 2014. url: http : / / www . autosar . org /

fileadmin/files/releases/4-2/software-architecture/

rte/standard/AUTOSAR_SWS_RTE.pdf.

[AUT14i] AUTOSAR Release 4.2.1. Technical Safety Concept Sta-
tus Report. Document ID 233. Oct. 2014. url: http://
www.autosar.org/fileadmin/files/releases/4- 2/

software-architecture/general/auxiliary/AUTOSAR_

TR_SafetyConceptStatusReport.pdf.

[BBD11] Sanjoy K. Baruah, Alan Burns, and Robert I. Davis. „Re-
sponse-Time Analysis for Mixed Criticality Systems.“
In: Proceedings of the 32nd Real-Time Systems Symposium
(RTSS), 2011.

[BBD13] Sanjoy Baruah, Alan Burns, and Robert I. Davis. „An
Extended Fixed Priority Scheme for Mixed Criticality
Systems.“ In: Proceedings of the 1st Workshop on Real-Time
Mixed Criticality Systems (ReTiMiCS), 2013.

[BCL+14] Sanjoy Baruah, Bipasa Chattopadhyay, Haohan Li, and
Insik Shin. „Mixed-criticality scheduling on multipro-
cessors.“ In: Real-Time Systems, vol. 50, no. 1 (Jan. 2014),
pp. 142–177.

[BD14] Alan Burns and Robert I. Davis. Mixed Criticality Systems
- A Review. Tech. rep. Department of Computer Science,
University of York, UK, 2014.

http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_ApplicationLevelErrorHandling.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_ApplicationLevelErrorHandling.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_ApplicationLevelErrorHandling.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_EXP_FunctionalSafetyMeasures.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/auxiliary/AUTOSAR_SRS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/auxiliary/AUTOSAR_SRS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/auxiliary/AUTOSAR_SRS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/auxiliary/AUTOSAR_SRS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_TR_SafetyConceptStatusReport.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_TR_SafetyConceptStatusReport.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_TR_SafetyConceptStatusReport.pdf
http://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/general/auxiliary/AUTOSAR_TR_SafetyConceptStatusReport.pdf

Bibliography 105

[BFK10] Marc Born, John Favaro, and Olaf Kath. „Application
of ISO DIS 26262 in practice.“ In: Proceedings of the 1st

Workshop on Critical Automotive applications: Robustness
& Safety (CARS), 2010, pp. 3–6. doi: 10.1145/1772643.
1772645.

[BFT09] Dominique Bertrand, Sébastien Faucou, and Yvon Trin-
quet. „An analysis of the AUTOSAR OS timing protec-
tion mechanism.“ In: Proceedings of the 14th IEEE Inter-
national Conference on Emerging Techonologies and Factory
Automation (ETFA), 2009.

[BOR+14] Guilherme Baumgarten, Markus Oertel, Achim Rettberg,
and Marcelo Götz. „First Results of Automatic Fault-In-
jection in an AUTOSAR Tool-chain.“ In: Proceedings of
the 12th IEEE International Conference on Industrial Infor-
matics (INDIN), 2014, pp. 170–175.

[Bro06] Manfred Broy. „Challenges in Automotive Software En-
gineering.“ In: Proceedings of the 28th International Confer-
ence on Software Engineering (ICSE), 2006, pp. 33–42.

[BSC13] Ricardo Barbosa, Nuno Silva, and João Mário Cunha.
„csXception®: First Steps to Provide Fault Injection for
the Development of Safe Systems in Automotive Indus-
try.“ In: Dependable Computing. Ed. by Marco Vieira and
João Carlos Cunha. Vol. 7869. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 202–205.

[CB89] Ram Chillarege and Nicholas S. Bowen. „Understand-
ing Large System Failures - A Fault Injection Experi-
ment.“ In: Proceedings of the 19th International Symposium
on Fault-Tolerant Computing (FTCS), 1989, pp. 356–363.
doi: 10.1109/FTCS.1989.105592.

[CC96] Jörgen Christmansson and Ram Chillarege. „Generation
of an Error Set that Emulates Software Faults Based on
Field Data.“ In: Proceedings of the 26th International Sym-
posium on Fault-Tolerant Computing (FTCS), 1996, pp. 304–
313. doi: 10.1109/FTCS.1996.534615.

[Cha09] Robert N. Charette. „This Car Runs on Code.“ In: IEEE
Spectrum (Feb. 2009). url: http://spectrum.ieee.org/
transportation/systems/this-car-runs-on-code.

[CLN+12] Domenico Cotroneo, Anna Lanzaro, Roberto Natella,
and Ricardo Barbosa. „Experimental Analysis of Bina-
ry-Level Software Fault Injection in Complex Software.“
In: Proc. of the 9th European Dependable Computing Confer-
ence (EDCC), 2012, pp. 162–172.

http://dx.doi.org/10.1145/1772643.1772645
http://dx.doi.org/10.1145/1772643.1772645
http://dx.doi.org/10.1109/FTCS.1989.105592
http://dx.doi.org/10.1109/FTCS.1996.534615
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

106 Bibliography

[Cun13] João Mário Quintas Cunha. „Fault injection for the eval-
uation of critical systems.“ MA thesis. Universidade do
Minho, 2013. url: http://hdl.handle.net/1822/27841.

[DM06] João A. Durães and Henrique S. Madeira. „Emulation
of Software Faults: A Field Data Study and a Practi-
cal Approach.“ In: Software Engineering, IEEE Transac-
tions on, vol. 32, no. 11 (Nov. 2006), pp. 849–867. doi:
10.1109/TSE.2006.113.

[ETA] ETAS GmbH. INTECRIO. url: http://www.etas.com/
en/products/intecrio.php.

[FFR12] Christoph Ficek, Nico Feiertag, and Kai Richter. „Ap-
plying the AUTOSAR timing protection to build safe
and efficient ISO 26262 mixed-criticality systems.“ In:
Proceedings of Embedded Real Time Software and Systems
(ERTS2), 2012.

[Fre] Freescale Semiconductor, Inc. MPC564xL: Ultra-Reliable
Dual-Core 32-bit MCU for Automotive and Industrial Func-
tional Safety Applications. url: http://www.freescale.
com / webapp / sps / site / prod _ summary . jsp ? code =

MPC564xL.

[FSF+13] Christoph Ficek, Maurice Sebastian, Nico Feiertag, Kai
Richter, Marek Jersak, and Karsten Schmidt. „Software
Architecture Methods and Mechanisms for Timing Error
and Failure Detection According to ISO 26262: Deadline
vs. Execution Time Monitoring.“ In: Proceedings of the
SAE World Congress. 2013-01-0174, 2013.

[GE07] Jan Gustafsson and Andreas Ermedahl. „Experiences
from Applying WCET Analysis in Industrial Settings.“
In: Proceedings of the10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), 2007.

[GKT89] Ulf Gunneflo, Johan Karlsson, and Jan Torin. „Evalua-
tion of Error Detection Schemes Using Fault Injection by
Heavy-ion Radiation.“ In: Digest of Papers of the 19th In-
ternational Symposium on Fault-Tolerant Computing (FTCS),
June 1989, pp. 340–347. doi: 10.1109/FTCS.1989.105590.

[GNU] GNU Binutils. url: http://www.gnu.org/software/
binutils/.

[HKD11] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. „Secu-
rity threats to automotive CAN networks–Practical ex-
amples and selected short-term countermeasures.“ In:
Reliability Engineering & System Safety, vol. 96 (2011), pp. 11–
25. issn: 0951-8320. doi: 10.1016/j.ress.2010.06.026.

http://hdl.handle.net/1822/27841
http://dx.doi.org/10.1109/TSE.2006.113
http://www.etas.com/en/products/intecrio.php
http://www.etas.com/en/products/intecrio.php
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC564xL
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC564xL
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MPC564xL
http://dx.doi.org/10.1109/FTCS.1989.105590
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://dx.doi.org/10.1016/j.ress.2010.06.026

Bibliography 107

[HSF+04] Harald Heinecke, Klaus-Peter Schnelle, Helmut Fennel,
Jürgen Bortolazzi, Lennart Lundh, Jean Leflour, Jean-Luc
Maté, Kenji Nishikawa, and Thomas Scharnhorst. „AU-
Tomotive Open System ARchitecture - An Industry-Wide
Initiative to Manage the Complexity of Emerging Auto-
motive E/E Architectures.“ In: Convergence International
Congress & Exposition On Transportation Electronics, 2004,
pp. 325–332.

[HTI97] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K.
Iyer. „Fault Injection Techniques and Tools.“ In: IEEE
Computer, vol. 30, no. 4 (4 Apr. 1997), pp. 75–82. issn:
0018-9162.

[IKH+14] Mafijul Md. Islam, Nithilan Meenakshi Karunakaran,
Johan Haraldsson, Fredrik Bernin, and Johan Karlsson.
„Binary-Level Fault Injection for AUTOSAR Systems.“
In: Proceedings of the 10th European Dependable Computing
Conference (EDCC), 2014, pp. 138–141.

[Int10] International Electrotechnical Commission. IEC 61508:
Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-related Systems. 2010.

[Int11] International Organization for Standardization. ISO 26262:
Road vehicles – Functional safety. Geneva, Switzerland,
2011.

[ISA+13] Mafijul Md. Islam, Behrooz Sangchoolie, Fatemeh Aya-
tolahi, Daniel Skarin, Jonny Vinter, Fredrik Törner, An-
dreas Käck, Mattias Nyberg, Emilia Villani, Johan Har-
aldsson, Patrik Isaksson, and Johan Karlsson. „Towards
Benchmarking of Functional Safety in the Automotive
Industry.“ In: Dependable Computing. Ed. by Marco Vieira
and JoãoCarlos Cunha. Vol. 7869. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 111–125.

[JSM07] Andréas Johansson, Neeraj Suri, and Brendan Murphy.
„On the Selection of Error Model(s) For OS Robustness
Evaluation.“ In: Proceedings of the 37th IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), 2007, pp. 502–511.

[KCR+10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwe-
tak Patel, Tadayosi Kohno, Stepen Checkoway, Damon
McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
and Stefan Savage. „Experimental Security Analysis of
a Modern Automobile.“ In: IEEE Symposium on Security
and Privacy (S&P), 2010, pp. 447–462. doi: 10.1109/SP.
2010.34.

http://dx.doi.org/10.1109/SP.2010.34
http://dx.doi.org/10.1109/SP.2010.34

108 Bibliography

[KKA95] Ghani A. Kanawati, Nasser A. Kanawati, and Jacob A.
Abraham. „FERRARI: A Flexible Software-Based Fault
and Error Injection System.“ In: Computers, IEEE Trans-
actions on, vol. 44, no. 2 (Feb. 1995), pp. 248–260. doi:
10.1109/12.364536.

[Kni02] John C. Knight. „Safety Critical Systems: Challenges and
Directions.“ In: Proceedings of the 24rd International Con-
ference on Software Engineering (ICSE), 2002, pp. 547–550.

[Koo14] Phil Koopman. A Case Study of Toyota Unintended Accel-
eration and Software Safety. Presentation. Sept. 2014. url:
http://betterembsw.blogspot.de/2014/09/a-case-

study-of-toyota-unintended.html.

[KP05] Raimund Kirner and Peter Puschner. „Classification of
WCET Analysis Techniques.“ In: Proceedings of the 8th

IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), 2005.

[LFK09a] Caroline Lu, Jean-Charles Fabre, and Marc-Olivier Kil-
lijian. „An approach for improving Fault-Tolerance in
Automotive Modular Embedded Software.“ In: Proceed-
ings of the 17th International Conference on Real-Time and
Network Systems (RTNS), 2009, pp. 132–147.

[LFK09b] Caroline Lu, Jean-Charles Fabre, and Marc-Olivier Killi-
jian. „Robustness of modular multi-layered software in
the automotive domain: a wrapping-based approach.“
In: Proceedings of the 14th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA),
2009, pp. 1–8. doi: 10.1109/ETFA.2009.5347121.

[LL73] Chung Laung Liu and James W. Layland. „Scheduling
Algorithms for Multiprogramming in a Hard-Real-Time
Environment.“ In: Journal of the ACM, vol. 20, no. 1 (Jan.
1973), pp. 46–61.

[LNF10] Patrick E. Lanigan, Priya Narasimhan, and Thomas E.
Fuhrman. „Experiences with a CANoe-based Fault In-
jection Framework for AUTOSAR.“ In: Proceedings of the
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2010, pp. 569–574.

[LSD89] John Lehoczky, Lui Sha, and Ye Ding. „The Rate Mono-
tonic Scheduling Algorithm: Exact Characterization And
Average Case Behavior.“ In: Proceedings of Real Time Sys-
tems Symposium (RTSS), 1989.

[MB09] Gary Morgan and Andrew Borg. Multi-core Automotive
ECUs: Software and Hardware Implications. Tech. rep. ETAS
GmbH, 2009.

http://dx.doi.org/10.1109/12.364536
http://betterembsw.blogspot.de/2014/09/a-case-study-of-toyota-unintended.html
http://betterembsw.blogspot.de/2014/09/a-case-study-of-toyota-unintended.html
http://dx.doi.org/10.1109/ETFA.2009.5347121

Bibliography 109

[MCV00] Henrique Madeira, Diamantino Costa, and Marco Vieira.
„On the Emulation of Software Faults by Software Fault
Injection.“ In: Proceedings of the International Conference
on Dependable Systems and Networks (DSN), 2000, pp. 417–
426. doi: 10.1109/ICDSN.2000.857571.

[MNS+10] Aurélien Monot, Nicolas Navet, Françoise Simonot, and
Bernard Bavoux. „Multicore scheduling in automotive
ECUs.“ In: Proceedings of Embedded Real Time Software and
Systems (ERTS2), 2010.

[NCD+13] Roberto Natella, Domenico Cotroneo, Joao A. Durães,
and Henrique S. Madeira. „On Fault Representative-
ness of Software Fault Injection.“ In: Software Engineer-
ing, IEEE Transactions on, vol. 39, no. 1 (Jan. 2013), pp. 80–
96.

[NLR09] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan
Rajkumar. „On the Scheduling of Mixed-Criticality Re-
al-Time Task Sets.“ In: Proceedings of the 30th IEEE Real-
Time Systems Symposium (RTSS), 2009.

[NMR+02] George C. Necula, Scott McPeak, Shree P. Rahul, and
Westley Weimer. „CIL: Intermediate Language and Tools
for Analysis and Transformation of C Programs.“ In:
Compiler Construction. Ed. by R. Nigel Horspool. Vol. 2304.
Lecture Notes in Computer Science. Springer, 2002, pp. 213–
228. isbn: 978-3-540-43369-9. doi: 10.1007/3-540-45937-
5_16.

[Opt] OptXware Ltd. Embedded Architect. url: http : / / www .

optxware . com / en / embedded / embedded - architect -

platform/.

[PFK+13] Ludovic Pintard, Jean-Charles Fabre, Karama Kanoun,
Michel Leeman, and Matthieu Roy. „Fault Injection in
the Automotive Standard ISO 26262: An Initial Approach.“
In: Dependable Computing. Ed. by Marco Vieira and João
Carlos Cunha. Vol. 7869. Lecture Notes in Computer
Science. Springer, 2013, pp. 126–133.

[PFL+14] Ludovic Pintard, Jean-Charles Fabre, Michel Leeman,
Karama Kanoun, and Matthieu Roy. „From Safety Anal-
yses to Experimental Validation of Automotive Embed-
ded Systems.“ In: Proceedings of the 20th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC),
2014, pp. 125–134.

[PMT+15] Thorsten Piper, Paul Manns, Michael Tretter, and Stefan
Winter. AUTOGRINDER: GRINDER adaptation to AUTO-
SAR. 2015. url: https : / / github . com / DEEDS - TUD /

AUTOGRINDER.

http://dx.doi.org/10.1109/ICDSN.2000.857571
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/3-540-45937-5_16
http://www.optxware.com/en/embedded/embedded-architect-platform/
http://www.optxware.com/en/embedded/embedded-architect-platform/
http://www.optxware.com/en/embedded/embedded-architect-platform/
https://github.com/DEEDS-TUD/AUTOGRINDER
https://github.com/DEEDS-TUD/AUTOGRINDER

110 Bibliography

[PPP+13] Lars Patzina, Sven Patzina, Thorsten Piper, and Paul
Manns. „Model-Based Generation of Run-Time Moni-
tors for AUTOSAR.“ In: Modelling Foundations and Ap-
plications. Ed. by Pieter Van Gorp, Tom Ritter, and Louis
M. Rose. Vol. 7949. Lecture Notes in Computer Science.
Winner of the Best Paper Award. Springer Berlin Hei-
delberg, 2013, pp. 70–85. isbn: 978-3-642-39012-8. doi:
10.1007/978-3-642-39013-5_6.

[PWM+12] Thorsten Piper, Stefan Winter, Paul Manns, and Neeraj
Suri. „Instrumenting AUTOSAR for Dependability As-
sessment: A Guidance Framework.“ In: Proceedings of the
42nd IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN), 2012, pp. 1–12.

[PWS+15a] Thorsten Piper, Stefan Winter, Oliver Schwahn, Suman
Bidarahalli, and Neeraj Suri. „Mitigating Timing Error
Propagation in Mixed-Criticality Automotive Systems.“
In: Proceedings of the 18th IEEE International Symposium
On Real-time Computing (ISORC), 2015.

[PWS+15b] Thorsten Piper, Stefan Winter, Neeraj Suri, and Thomas
E. Fuhrman. „On the Effective Use of Fault Injection
for the Assessment of AUTOSAR Safety Mechanisms.“
In: Proceedings of the 11th European Dependable Computing
Conference (EDCC), 2015.

[RM14] Dominik Reinhardt and Gary Morgan. „An Embedded
Hypervisor for Safety-Relevant Automotive E/E-Systems.“
In: Proceedings of the 9th IEEE International Symposium on
Industrial Embedded Systems (SIES), 2014.

[RMM+10] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Tay-
lor, Sangho Oh, Wenyuan Xu, Marco Gruteser, Wade
Trappe, and Ivan Seskar. „Security and Privacy Vulner-
abilities of In-Car Wireless Networks: A Tire Pressure
Monitoring System Case Study.“ In: Proceedings of the
19th USENIX Security Symposium. Washington, DC, USA,
2010.

[Rus99] John Rushby. Partitioning for Avionics Architectures: Re-
quirements, Mechanisms, and Assurance. NASA Contrac-
tor Report CR-1999-209347. NASA Langley Research Cen-
ter, June 1999.

[SBC+13] Nuno Silva, Ricardo Barbosa, João Carlos Cunha, and
Marco Vieira. „A View on the Past and Future of Fault
Injection.“ In: Proceedings of the 43rd IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN),
2013, pp. 1–2.

http://dx.doi.org/10.1007/978-3-642-39013-5_6

Bibliography 111

[SBK10] Daniel Skarin, Raul Barbosa, and Johan Karlsson. „GOOFI-2:
A Tool for Experimental Dependability Assessment.“ In:
Proceedings of the 40th IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2010, pp. 557–
562.

[SHK+12] Horst Schirmeier, Martin Hoffmann, Rüdiger Kapitza,
Daniel Lohmann, and Olaf Spinczyk. „FAIL*: Towards
a Versatile Fault-Injection Experiment Framework.“ In:
Proceedings of Architecture of Computing Systems (ARCS)
Workshops, 2012.

[SK08] Daniel Skarin and Johan Karlsson. „Software Implemented
Detection and Recovery of Soft Errors in a Brake-by-Wire
System.“ In: Proceedings of the 7th European Dependable
Computing Conference (EDCC), 2008, pp. 145–154. doi:
10.1109/EDCC-7.2008.24.

[SLR86] Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar.
„Solutions for Some Practical Problems in Prioritized
Preemptive Scheduling.“ In: Proceedings of the 7th IEEE
Real-Time Systems Symposium (RTSS), 1986.

[SPS12] As’ad Salkham, Antonio Pecchia, and Nuno Silva. „As-
sessing AUTOSAR Systems Using Fault Injection.“ In:
Proceedings of the 23rd IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), 2012,
pp. 11–12.

[SPS13] As’ad Salkham, Antonio Pecchia, and Nuno Silva. „De-
sign of a CDD-Based Fault Injection Framework for AU-
TOSAR Systems.“ In: Proceedings of the International Work-
shop on Next Generation of System Assurance Approaches for
Safety-Critical Systems (SASSUR), 2013.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky.
„Priority Inheritance Protocols: An Approach to Real-
Time Synchronization.“ In: Computers, IEEE Transactions
on, vol. 39, no. 9 (Sept. 1990), pp. 1175–1185.

[SVE+10] Rickard Svenningsson, Jonny Vinter, Henrik Eriksson,
and Martin Törngren. „MODIFI: A MODel-Implemented
Fault Injection Tool.“ In: Computer Safety, Reliability, and
Security. Ed. by Erwin Schoitsch. Vol. 6351. Lecture Notes
in Computer Science. Springer, 2010, pp. 210–222. isbn:
978-3-642-15650-2.

[SVS+88] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kow-
nacki, J. Barton, R. Dancey, A. Robinson, and T. Lin.
„FIAT – Fault Injection Based Automated Testing En-
vironment.“ In: Digest of Papers of the 18th International

http://dx.doi.org/10.1109/EDCC-7.2008.24

112 Bibliography

Symposium on Fault-Tolerant Computing (FTCS), June 1988,
pp. 102–107. doi: 10.1109/FTCS.1988.5306.

[TP13] Anna Thomas and Karthik Pattabiraman. „LLFI: An In-
termediate Code Level Fault Injector For Soft Comput-
ing Applications.“ In: Proceedings of Silicon Errors in Logic
System Effects (SELSE), 2013.

[VAV+14] Benjamin Vedder, Thomas Arts, Jonny Vinter, and Mag-
nus Jonsson. „Combining Fault-Injection with Proper-
ty-Based Testing.“ In: Proceedings of the International Work-
shop on Engineering Simulations for Cyber-Physical Systems
(ES4CPS), 2014, pp. 1–8.

[Ves07] Steve Vestal. „Preemptive Scheduling of Multi-Critical-
ity Systems with Varying Degrees of Execution Time
Assurance.“ In: Proceedings of the 28th IEEE International
Real-Time Systems Symposium (RTSS), 2007.

[Voa98] Jeffrey M. Voas. „Certifying Off-the-Shelf Software Com-
ponents.“ In: IEEE Computer, vol. 31, no. 6 (1998), pp. 53–
59. doi: 10.1109/2.683008.

[WEK10] Armin Wasicek, Christian El-Salloum, and Hermann Kopetz.
„A System-on-a-Chip Platform for Mixed-Criticality Ap-
plications.“ In: Proceedings of the 13th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2010.

[Whe] David A. Wheeler. SLOCCount: Tools for counting physical
Source Lines of Code. url: http://www.dwheeler.com/
sloccount/.

[WPS+15] Stefan Winter, Thorsten Piper, Oliver Schwahn, Roberto
Natella, Neeraj Suri, and Domenico Cotroneo. „GRIN-
DER: On Reusability of Fault Injection Tools.“ In: Pro-
ceedings of the IEEE/ACM International Workshop on Au-
tomation of Software Test (AST), 2015.

[WSS+11] Stefan Winter, Constantin Sârbu, Neeraj Suri, and Bren-
dan Murphy. „The Impact of Fault Models on Software
Robustness Evaluations.“ In: Proceedings of the 33rd Inter-
national Conference on Software Engineering (ICSE), 2011,
pp. 51–60.

[WTS+13] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj
Suri. „simFI: From Single to Simultaneous Software Fault
Injections.“ In: Proceedings of the 43rd IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), 2013, pp. 1–12.

http://dx.doi.org/10.1109/FTCS.1988.5306
http://dx.doi.org/10.1109/2.683008
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

Bibliography 113

[ZBS+14] Michael Zimmer, David Broman, Christopher Shaver,
and Edward A. Lee. „FlexPRET: A Processor Platform
for Mixed-Criticality Systems.“ In: Proceedings of the 20th

IEEE Real-Time and Embedded Technology and Application
Symposium (RTAS), 2014.

	Preamble
	Erklärung
	Acknowledgments
	Abstract
	Kurzfassung
	Publications

	Indices
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 The Role of Functional Safety Mechanisms
	1.2 Safety Relies on Dependability – and Vice Versa
	1.2.1 Error Propagation: Implications and Solutions

	1.3 Functional Safety Mechanisms for Freedom From Interference
	1.4 Research Questions and Contributions

	2 Instrumenting AUTOSAR Systems for Dependability Assessment
	2.1 Automated Instrumentation: Challenges & Benefits
	2.1.1 Contributions

	2.2 AUTOSAR Development Process and System Model
	2.3 Related Work on AUTOSAR Instrumentation
	2.4 Instrumenting AUTOSAR Software Components
	2.4.1 Inter-Component Communication: Model vs Code
	2.4.2 Opportunities for Instrumentation
	2.4.3 Automating AUTOSAR Wrapper Generation

	2.5 Proof of Concept and Experimental Evaluation
	2.5.1 The Experimentation Setup
	2.5.2 ABS System and Simulator in a Nutshell
	2.5.3 Fault Injection Experiment
	2.5.4 Instrumentation Overhead

	2.6 Discussion
	2.6.1 Qualitative Aspects of SW-C Instrumentation Methods
	2.6.2 Limitations

	2.7 Conclusion

	3 Assessing Safety Mechanisms Effectively Using Fault Injection
	3.1 Impediments to Fault Injection-Based Assessments
	3.2 AUTOSAR: System Model and Functional Safety Mechanisms
	3.2.1 System Model
	3.2.2 Functional Safety Mechanisms

	3.3 Related Work on AUTOSAR FI
	3.3.1 Simulation-based FI
	3.3.2 Hardware-based FI
	3.3.3 Software-based FI
	3.3.4 Summary Comments

	3.4 AUTOSAR Fault Models
	3.5 Applying the Open Source FI Framework GRINDER for AUTOSAR FI
	3.5.1 Adapting GRINDER to an AUTOSAR System
	3.5.2 Instrumenting AUTOSAR Systems for FI: What is special about AUTOSAR?

	3.6 Fault Injection Case Study
	3.6.1 Deriving Fault Models for the Case Study
	3.6.2 Evaluation Setup
	3.6.3 Experimentation and Results

	3.7 Conclusion

	4 Enhancing Timing Protection for Mixed-Criticality Systems
	4.1 Indirect vs. Direct Timing Protection
	4.2 Related Work
	4.3 AUTOSAR System Model
	4.3.1 Timing Error Propagation
	4.3.2 AUTOSAR Timing Protection

	4.4 Preemption Budget Monitoring
	4.4.1 Integration with AUTOSAR Task State Model
	4.4.2 Transient Error Ride-through
	4.4.3 Applicability to Multi-core Systems
	4.4.4 Limitations and Possible Solutions

	4.5 Case Study
	4.5.1 PBM - Implementation Details
	4.5.2 Timing Error Scenarios
	4.5.3 Comparison of run-time overhead
	4.5.4 Summary

	4.6 Conclusion

	5 Summary and Conclusion
	Bibliography

