
Efficient Saptio-Temporal Sampling in Wireless Sensor
Networks Based on Compressive Sampling

Vom Fachbereich Informatik der Technischen Universität Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doktor-Ingenieur (Dr.-Ing.)
vorgelegt von

M.Sc. Mohammadreza Mahmudimanesh

aus Zabol, Iran

Referenten:
Prof. Neeraj Suri, Ph.D.

Prof. Jiannong Cao

Datum der Einreichung: 21. Mai 2015
Datum der mündlichen Prüfung: 7. Juli 2015

Darmstadt 2015
D17

ii

Abstract

A wireless sensor network monitors the environment at a macroscopic level. It
comprises interconnected sensor nodes that sense a physical parameter of interest.
The sensed data is first digitized and then transmitted over a multi-hop network
to a base station or sink. The main challenge of data collection in a wireless sensor
network is to keep the transmissions volume within the limited bandwidth of the
sensor nodes. Several efficient in-network processing techniques are developed to
reduce the network traffic. These techniques are based on the fact that the raw
data sensed by the sensor nodes are often compressible.

This thesis focuses on efficient sampling techniques based on the theory of
compressed sensing. Compressed sensing or compressive sampling is a lossy signal
compression technique for robust and efficient data collection by applying a simple
network coding mechanism. The main advantage of compressed sensing over the
existing methods is that it guarantees balanced load on the sensor nodes in a
normal operation of the wireless sensor network. This effectively avoids exhaustion
of overloaded sensor nodes.

In this thesis, we extend compressed sensing techniques for wireless sensor
networks in the following ways:

Reordering for better compressibility : The effectiveness of compressed sensing
depends very much on the compressibility of the sensed data. The more compress-
ible the raw data is, the less transmissions are needed to collect the data. We show
that compressibility is affected by the order or permutation of the samples. The
samples recorded by a wireless sensor network are conventionally indexed by the
sensor node id’s. This indexing does not necessarily lead to the most compressible
order of the samples. We propose an algorithm that maps the physical indexing
of the samples to a logical indexing that is more compressible. This mapping does
not require reprogramming or relocating the sensor nodes.

Spatiotemporal compressive sampling : Several studies show that the data
sensed by a wireless sensor networks are both spatially and temporally compress-
ible. We propose an extension to compressive sampling that takes advantage of
spatiotemporal compressibility of the sensed data.

Handling link and node failures: In practice, the sensor nodes often experi-
ence occasional failures or link disconnections. We propose a novel variation of
compressed sensing that is more tolerant to network perturbations. Our method
detects the sensor nodes that are facing node or link failures and isolate their
sensor reading to preserve the accuracy of genuine data.

Data dissemination via network coding : We introduce a novel network coding
method that disseminates a particular linear combination of the sensed data to all
sensor nodes of a wireless sensor networks. We show that the originally sensed data
are recoverable from any arbitrarily chosen sensor node that receives an error-free
linear combination. Our dissemination allows accessing the globally sensed data
from any sensor node by performing local data exchanges.

iii

iv

Kurzfassung
Ein Sensornetz ist ein makroskopisches Sensoriksystem zur Überwachung und

Messung von bestimmten physikalischen Parametern (Temperatur, seismische
Wellen, etc.) einer Umgebung. Es besteht aus mehreren miteinander verbundenen
Sensorknoten, die zusammen ein Multi-Hop Netzwerk bilden. Da die Netzwerk-
Bandbreite und die Rechenleistung der Sensorknoten sehr eingeschränkt sind, wer-
den spezielle Datensammlungstechniken benötigt, um eine große Datenmenge ef-
fizient bearbeiten zu können. Diese Dissertation konzentriert sich auf räumliches
und zeitliches Sampling in drahtlosen Sensornetzen mittels einer verteilten Im-
plementierung der Compressive Sampling Theorie. Compressive Sampling (auch
Compressed Sensing genannt) ermöglicht eine robuste und effiziente Datenerfas-
sung, ohne auf eine hohe Rechenleistung der Sensorknoten angewiesen zu sein.
Die Besonderheit von Compressive Sampling ist die gleichmäßige Lastverteilung
auf alle Sensorknoten, wodurch die vorzeitige Erschöpfung einzelner Sensorknoten
verhindert wird. In der vorliegenden Dissertation erweitern wir die state-of-the-art
Techniken von Compressive Sampling wie folgt:

Neu-Indizierung der Sensorknoten für bessere Komprimierbarkeit: Ein Algo-
rithmus wird vorgestellt, der den Sensorknoten Indexe mittels eines neuen Schemas
zuweist. Unter Anwendung der neuen Zuordnung sind die Daten besser komprim-
ierbar wodurch sich die Effizienz von Compressive Sampling verbessert.

Raumzeitliche (spatiotemporal) Erweiterung von Compressive Sampling: Die
Sensordaten wiesen meist Komprimierbarkeit sowohl in der Raumdomäne als auch
in der Zeitdomäne auf. Wir stellen das Konzept von Sliding Sampling-Window
vor, wodurch Compressive Sampling eine bessere Performance erreichen kann.
Unser Konzept basiert auf einem virtuellen Sampling-Fenster, das mit der Zeit
verschoben wird, um die zeitlichen und räumlichen Sensordaten zu sammeln. Un-
sere neue Methode hat die besondere Eigenschaft, dass abnormale oder fehlerhafte
Sensorwerte sofort erkannt werden.

Behandlung von defekten Sensorknoten und fehlerhaften Verbindungen:
Netzwerk-Störungen beeinträchtigen die Komprimierbarkeit der Sensordaten und
die Performance von Compressive Sampling. Wir entwickeln neue Methoden zur
Fehlerbehandlung, die sowohl gelegentliche als auch dauerhafte Fehler erkennen
können. Die Sensorknoten werden nicht aktiv an der Fehlerbehandlung beteiligt.
Stattdessen werden die fehlerhafte Daten durch eine besondere Nachbearbeitung
erkannt und herausgefiltert. Auf diese Weise bleibt die Implementierung auf den
Sensorknoten unkompliziert.

Datenverbreitung in Sensornetzen durch Netzwerkcodierung: Datenverbre-
itung bezeichnet sich auf ein Verfahren, das die gesamten Sensordaten für
jeden Sensorknoten verfügbar macht. Wir präsentieren eine neue Netzw-
erkcodierung, die alle Sensordaten (unter bestimmten Nebenbedingungen und
Qualitätsanforderungen) für jeden Sensorknoten verfügbar macht, nachdem eine
Reihe von lokalen Datenaustauschoperationen zwischen benachbarten Sensor-
knoten durchgeführt wurde.

v

vi

Acknowledgements

I extend my deepest gratitude to my advisor, Prof. Dr. Neeraj Suri
for his support in pursuing the Ph.D. program and for everything I learned
from him to follow the right path in the labyrinth of research. Without his
guidance and encouragement, writing this thesis would never be possible. I
also want to thank Dr. Abdelmajid Khelil who motivated starting this work
and helped me in taking the initial steps and also guided me through the
further stages.

I would like to thank my friends and colleagues at the DEEDS group with
whom I spent a pleasant time and enjoyed working with them. Many thanks
to Azad, Piotr, Oliver, Faisal, Vinay, Brahim, Daniel, Stefan, Thorsten,
Matthias, Ute, Sabine, Peter, Hamza, Robert, Kubilay, Tsvetoslava, Jesus,
Ahmed, Heng, Dan, Marco, and Hatem. They created an excellent atmo-
sphere in the group and helped me a lot from the very first day of arriving
in Darmstat. Also, I really appreciate their kind assistance for settling down
in Darmstadt and the support which lasted all through the years that I was
working on this thesis.

I want to thank my parents and my family for their love and for all the
good things that they taught me. Also, many thanks to Mitra and her family
for the great help in the time of moving from Iran to Germany. I also want
to thank all of my teachers during all levels of my education.

Finally, a very special thank goes to my beloved wife Mina. I am so
thankful for your love and understanding. Thank you for the encouragement
and for supporting me in all of those hard days. Thank you for giving me
hope, courage and the reason not to give up.

vii

viii

Contents

Abstract iii

Kurzfassung (german) v

Acknowledgements vii

List of Figures xiii

List of Tables xvii

List of Algorithms xix

1 Introduction and Problem Context 1
1.1 Problem statement . 2

1.1.1 Reordering for better compressibility 2
1.1.2 Spatiotemporal compressive sampling 3
1.1.3 Compressed sensing in presence of link and node failures 4
1.1.4 Network coding for data dissemination in WSNs 5

1.2 Thesis contributions . 6
1.2.1 Publications . 8

1.3 Thesis structure . 9

2 State of the Art and Practice 11
2.1 Data reduction approaches . 12

2.1.1 Lossy and lossless compression 13
2.1.2 Source coding and network coding 14
2.1.3 Transform compression 15

2.2 Data compression in distributed sensory systems 16
2.2.1 Compressibility of signals 17

2.3 Distributed compression techniques in WSNs 20
2.3.1 In-network compression 21
2.3.2 Distributed source coding 24

ix

2.3.3 Compressed sensing . 26
2.4 Summary . 28

3 Compressive Sampling in Sensor Networks 29
3.1 System model . 29

3.1.1 Distributed discrete signals 30
3.2 Basics of Compressive Sensing 31

3.2.1 Sparse and compressible signals 31
3.2.2 Compressive measurement 32
3.2.3 Signal reconstruction 33

3.3 Compressive Sensing for WSNs 35
3.3.1 Compressive Wireless Sensing 35
3.3.2 Compressive Data Gathering 39
3.3.3 Distributed Compressed Sensing 42
3.3.4 Compressive Sensing over ZigBee Networks 44

3.4 Summary . 45

4 Reordering for Better Compressibility 47
4.1 Motivation for reordering . 48

4.1.1 Conventional indexing of SNs 48
4.2 Problem formulation . 49

4.2.1 Combinatorial problem statement 49
4.2.2 Condensing the energy of the signal 50

4.3 Reordering for enhanced CS in WSNs 51
4.3.1 Greedy approximate solution 51

4.4 Application of reordering in CS-based WSNs 52
4.4.1 Adapting the permutation 52
4.4.2 Reusing the permutations over multiple sampling rounds 53
4.4.3 Iterative feedback and reordering 53

4.5 The impact of sample reordering 55
4.5.1 Simulation environment 55
4.5.2 Impact of reordering on signal compressibility 56
4.5.3 Reordering of dynamic signals 58
4.5.4 Impact of reordering on different WSNs 60

5 Spatiotemporal Compressive Sampling 63
5.1 Extending CS to temporal domain 65

5.1.1 Block-diagonal measurement matrix in DCS 65
5.1.2 Balanced spatiotemporal CS for multi-hop WSNs . . . 67

5.2 The concept of sampling window 70
5.2.1 Benefits of sampling window 72

x

5.2.2 Detecting events in sampling window 73

5.2.3 Evaluation of the sampling window technique 74

5.3 Chapter summary . 76

6 Handling node and link failures 83

6.1 CS in WSNs with linear topology 84

6.1.1 Failures in a WSN with chain topology 85

6.2 CDG in chain topology . 87

6.3 Handling node failures . 88

6.3.1 Communication cost 89

6.3.2 Sensor validation criteria 90

6.3.3 Scope of applications 90

6.4 Detecting and isolating failures 91

6.4.1 Restoring connectivity in chain topology 91

6.4.2 Degrading effect of the missing samples 92

6.5 Signal elevation during measurement 93

6.5.1 Detection and exclusion of the missing samples 95

6.5.2 Detecting unrecoverable chain breakage 98

6.6 Evaluation . 99

6.6.1 CDG in WSN with chain topology 101

6.6.2 CWS in star topology 102

6.7 Summary . 104

7 Data Dissemination via Network Coding 107

7.1 RIPless Compressed Sensing 108

7.1.1 Isotropy and incoherence 109

7.1.2 Signal recovery . 110

7.2 Distributed compression and predistribution via randomized
gossiping . 111

7.2.1 Comprensus and randomized gossipting 111

7.3 The Comprensus protocol . 112

7.3.1 Distributed Comprensus algorithm 113

7.3.2 Matrix representation of the distributed protocol . . . 115

7.3.3 Numerical experiments 116

7.4 Evaluation . 119

7.4.1 Comparison to randomized gossiping methods 119

7.4.2 Comparison to oracle-based approach 122

7.5 Chapter summary . 123

xi

8 Conclusions and Future Research 127
8.1 Contributions of this thesis . 128

8.1.1 Reordering technique for better signal compressibility . 128
8.1.2 Concept of sliding sampling window for spatio-

temporal compressed sensing in WSNs 128
8.1.3 Methods to detect and isolate the failing nodes 129
8.1.4 Compressive signal dissemination in WSNs 129

8.2 Lessons learned . 130
8.3 Future work . 131

Appendices 133

A Detailed evaluation of Comprensus 135

Bibliography 147

xii

List of Figures

2.1 Compressibility of a natural signal under Fourier transform . . 18
2.2 Reconstruction error by keeping the first Fourier coefficients . 18
2.3 Traditional transform coding compression and decompression

system . 19

3.1 CWS in a WSN with star topology 37
3.2 CWS in a multi-hop WSN with tree topology 38
3.3 Effect of abnormal readings on the DCT projection of an il-

lustrative signal (magnitude applies to any physical unit) . . 40

4.1 Iterative CWS and sample reordering 54
4.2 Generating synthetic distributed signal 56
4.3 Amplitude of original synthetic signal and its DCT coefficients 57
4.4 Synthetic signal after reordering 57
4.5 Simulating a dynamic synthesized signal varying over time . . 59
4.6 Sparsity variations over time 59
4.7 Comparing sparsity of the spatial signal with and without re-

ordering . 61

5.1 Distributed spatial sampling using CWS in star topology . . . 64
5.2 Distributed spatial sampling using CWS in chain topology . . 65
5.3 Measurement mechanism of DCS in multi-hop WSNs 67
5.4 Spatiotemporal sampling model for multi-hop WSN 69
5.5 Effect of longer sampling periods on spatiotemporal compress-

ibility . 71
5.6 Accuracy of multi-hop spatiotemporal CS using block-

diagonal measurement matrix 77
5.7 Compressive projection of the spatiotemporal signal contami-

nated with abnormal readings 78
5.8 Event detection in multi-hop spatiotemporal CS using block-

diagonal measurement matrix and overcomplete compressive
systems . 79

xiii

5.9 Reconstruction from DCS measurements 80

5.10 Signal recovery using dense Gaussian measurement matrix . . 81

6.1 Baseline data transmission in a WSN with linear topology . . 84

6.2 CS-based data collection in a WSN with linear topology . . . 84

6.3 Node failure and chain reconstruction 85

6.4 CDG in a WSN with linear topology 88

6.5 Degraded signal recovery due to missing samples 94

6.6 Detecting and excluding the failing SNs 96

6.7 Post-processing failure detection without retransmission over-
head . 99

6.8 Detecting the location of unrecoverable chain breakage 100

6.9 Analysis of the step-back method 103

6.10 More accurate recovery after isolation of the missing samples . 104

6.11 Comparing CWS with and without failure detection under
stress test . 105

7.1 Near-isotropy and low coherence of Comprensus measurement
scheme . 118

7.2 Accuracy of signal recovery for different sparsity levels 120

7.3 Measurement error decay with iterations of randomized gossiping121

7.4 Communication cost for SNR-threshold of 30 dB 123

7.5 Communication cost for SNR-threshold of 35 dB 124

7.6 Communication cost for SNR-threshold of 40 dB 124

A.1 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 1 . 136

A.2 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 2 . 136

A.3 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 3 . 137

A.4 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 4 . 137

A.5 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 5 . 138

A.6 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 6 . 138

A.7 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 7 . 139

A.8 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 8 . 139

xiv

A.9 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 9 . 140

A.10 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 10 . 140

A.11 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 11 . 141

A.12 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 12 . 141

A.13 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 13 . 142

A.14 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 14 . 142

A.15 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 15 . 143

A.16 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 16 . 143

A.17 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 17 . 144

A.18 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 18 . 144

A.19 Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 19 . 145

xv

xvi

List of Tables

7.1 Comparing Comprensus to randomized gossiping 122

xvii

xviii

List of Algorithms

1 Sub-Optimal Permutation (SOPerm) 51

2 Dissemination phase of Comprensus 114

xix

xx

Chapter 1

Introduction and Problem
Context

Wireless Sensor Networks (WSNs) are distributed sensory systems for large-
scale monitoring of physical parameters of interest such as seismic vibra-
tions, temperature, humidity, light intensity, radiation level, etc. Sohraby
et al. [2007]. A WSN consists of battery-powered Sensor Nodes (SNs) that
communicate with each other over a wireless medium. Apart from battery-
powered SNs, there are energy-harvesting SNs that acquire their required en-
ergy from the environment, e.g., through photo-voltaic cells. In either case,
the power consumption of the SN is very strictly limited. Due to energy
constraints, the communication range is limited; hence, each SN can only
exchange information with a few neighboring nodes Mahfoudh and Minet
[2008]. Therefore, the sensed data is often transferred over multiple hops of
interconnected SNs to reach a destination node. WSN is often referred to as
a bridge between information systems and the physical world Elson and Es-
trin [2004]. WSNs have varied applications such as surveillance, monitoring,
industrial automation, home control, etc.

The primary objective of a WSN is to deliver the sensed data to a base
station or sink. Sink is a dedicated node with sufficient computational re-
sources and power that post-processes the data and prepares it for the end
user. Throughout this thesis, the end user or simply user refers to any ex-
ternal entity that is the final consumer of the WSN data. This entity can be
a person or another software that processses the incoming data.

Each SN is typically equipped with a sensing device that records the
physical parameter of interest. These fine-grained sensor acquired values are
quantized and converted to digital data and transmitted over the wireless
network to the sink. The SNs often possess limited computation, power and
bandwidth Polastre et al. [2005].

1

2 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

It is crucial to efficiently transmit the sensed data over the resource lim-
ited SNs. Otherwise, the battery of the SNs will deplete very rapidly. This
causes exhausted nodes that may lead to disconnected or partitioned net-
works. Network partitioning is extremely costly, because the exhausted nodes
must be redeployed or replaced in order to make the WSN operative again.
Redeployment of a WSN or some SNs is often not desired, especially when
the WSN is deployed in a hard-to-reach location, such as a desert, forest,
mountains, etc. WSNs are ideally expected to be installed once and operate
for several months or years. Energy harvesting SNs do not face the problem
of battery exhaustion. However, the power provided by the energy source
(e.g. photo-voltaic cell) is usually very limited. This constraint limits the
bandwidth and processing power of the SN.

1.1 Problem statement

This thesis focuses on distributed data compression techniques in WSNs us-
ing network coding techniques that are based on compressed sensing. Com-
pressed sensing is an efficient method to acquire samples from a sensory
system when accessing all individual samples is costly. Compressed sensing
applies very well to distributed sensing problems like WSNs where each sam-
ple is recorded at a distant location and requires several message exchanges
to be collected at a central base station. Within this context, we target the
following problems as described in the coming subsections.

1.1.1 Reordering for better compressibility

Compressed sensing is based on the linear transformation of the sensed data
under the condition that the sensed data must be compressible under a lin-
ear projection. The data is mathematically represented as a vector of n real
numbers for a WSN consisting of n SNs. Each item of this vector corresponds
to a value sensed by a SN. Modeling the sampled data as a real vector is a
common approach for representing the sensed data. Sampling takes place ei-
ther in spatial or temporal domain. In some applications, the spatiotemporal
sampling acquires the data in both space and time dimensions.

Note that throughout this thesis we may use both forms spatio-temporal
and or spatiotemporal sampling and both refer to sampling or data acquisition
taking place in both space and time domains.

Temporally sensed data are bound to an order that is determined by
the time that samples are recorded. The sample recorded at time t always
precedes the sample recorded at time t + 1. The order of the temporal

1.1. PROBLEM STATEMENT 3

samples is defined by an independent physical parameter, i.e., time. The
order or permutation of the spatial samples usually depend on the placement
of the individual sensors. For example, a camera records the light intensity
of different wavelengths using a matrix of sensitive photo-cells. The order of
the pixels is conventionally fixed and permuted form left to right and from
top to bottom, representing a bitmap picture. If a WSN possesses a regular
topology, for example when all of the SNs are placed on a straight row, then
the order of the samples is normally defined by the order of the SNs on this
row.

If the SNs of the WSN are randomly distributed in the network, no regular
structure or topology is provided at the initialization of the WSN. The WSN
is often deployed to be self-configuring. The SNs build an ad-hoc network
to collect the data from across the network. In particular, when the SNs are
scattered in the environment, the order of samples has much less correlation
to the geographical locations of the SNs.

The conventional ordering of the samples recorded by a WSN is given by
the id’s of the SNs. So, the SN 1 is conventionally reading the sample 1 of a
data vector, SN 2, the sample 2, and so on. Nevertheless, the SN 1 and SN 2
could be placed far from each other and their sensor readings might have
not any correlation to each other. Note that correlation plays an important
role in the success of the compression techniques such as compressed sensing
ElBatt [2009].

We define a systematic labeling of SNs in a WSN that overlays the con-
ventional labeling of the SNs by their id’s. Through a mapping between our
labeling and the SN id’s, we achieve a new ordering (permutation) of the sam-
ples that is more compressible under a transform compression. This finally
leads to less measurements that are required for data collection techniques
based on compressed sensing. More interestingly, when a suitable mapping
is found for a certain time instance of the recorded data, it still produces
a more compressible reordering of the samples for the next time instances,
compared to the typical ordering of the samples by SN id.

1.1.2 Spatiotemporal compressive sampling

The physical phenomena sensed by a WSN often shows compressibility in
both space and time dimensions Vuran et al. [2004]. The data sensed by
two adjacent sensor nodes are expected to be correlated, and hence, com-
pressible Duarte et al. [2005]. Furthermore, the recorded values by a single
sensor node over consequent time instances are also often compressible. A
compression method that benefits only from spatial compressibility is called
spatial compression, i.e., compression only in space domain. A compression

4 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

method that only considers compressibility in time domain is called temporal
compression. Most of compression techniques achieve much higher efficiency
when they are applied on both spatial and temporal data. As an analogy,
consider a typical digital video which applies spatiotemporal compression of
raw video file, and thus, achieves a much higher compression ratio than when
each frame is compressed as a separate picture.

Compressed sensing in its original form for WSNs allows an easy imple-
mentation of spatial compression. It can be also easily extended to spa-
tiotemporal compression. One drawback of extending the compression to
temporal domain is that, the raw data need to be sampled over a time frame
in order to apply an efficient encoding and compression. The width of this
time frame greatly influences the delay of transmitting the data. A longer
time frame improves the performance of temporal compression. Particularly
in compressed sensing, it is desired to apply the coding over a larger sequence
of data as the communication cost grows logarithmically with the size of data.
On the other hand, longer time frames require that several samples over con-
sequent time instances to be recorded first and then the compression takes
place on those data. Delay-tolerant applications of WSNs such as long-term
environmental monitoring can benefit the most from temporal compressibil-
ity. However, when an abnormal sensor reading is encountered, this can be
detected after a certain delay. This delay is proportional to the length of the
compression time frame, because the temporally compressed data must be
first transmitted and unpacked at the sink.

We provide a solution that benefits from the efficiency of spatiotemporal
compressed sensing and avoids delays in event detection. By introducing the
concept of sampling window, we apply the temporal compression iteratively
on time frames that are sliding over the sequential data over sequential time
instances. While taking advantage of temporal compressibility with wider
sampling windows, our solution can also detect the abnormal sensor readings
in time. A larger sampling window increases the efficiency of our proposed
method. At the same time, the penalty of selecting a larger sampling window
is not a higher delay. The abnormal events are detectable while normal data
collection is taking place. Only in case of failures, it takes a longer time for
a larger sampling window to be reinitialized.

1.1.3 Compressed sensing in presence of link and node
failures

One advantage of compressed sensing over traditional transform compression
methods is its robustness to abnormal sensor reading. While most of com-

1.1. PROBLEM STATEMENT 5

pression techniques rely on a presumed structure or statistical distribution
of the sensed data, compressed sensing only requires the compressibility of
the data under a linear transformation. Enhanced variations of compressed
sensing are capable of detecting abnormal sensor reading without affecting
the efficiency of data collection Luo et al. [2009].

We propose a solution for applying compressed sensing in a WSN in pres-
ence of link and node failures. Our solution is based on implicit distinguishing
between erroneous and genuine data at the sensor level and detecting it after
post-processing at the sink. We know that each sensor node is capable of
sensing a particular range of data. For example, a temperature sensor is de-
signed for sensing temperatures between a lower and upper bound. We add
a real number as an offset to these lower and upper bounds. Therefore, the
valid range of sensor readings is elevated by the offset. Our solution is then
able to detect the node or link failures by finding the samples that are sud-
denly dropped to zero because they were not able to transmit their data due
to an internal or external failure. We show that, this method can effectively
detect the failing sensor nodes. Furthermore, we propose an enhancement to
the compressive data gathering in WSNs (see Luo et al. [2009]) that is able
to isolate the failing nodes from data collection.

1.1.4 Network coding for data dissemination in WSNs

Data dissemination in a WSN refers to distribution of the sensed data to
all sensor nodes of the WSN. Dissemination is especially useful for applica-
tions where each node of the network requires the full knowledge about the
operational environment. For example, when a distributed control is to be
performed to control the global quantity of a physical phenomena. Such sce-
narios can be most efficiently handled when the global knowledge about the
operational environment is accessible by all nodes of the network. This sce-
nario is often studied in Wireless Sensor and Actuator Networks (WSANs).
A WSAN is comprised of both sensing and actuating nodes. In some ap-
plications, the nodes have a hybrid role of sensing and actuating. Sensing
nodes acquire the information about the environment. Actuating nodes try
to change or maintain the attributes of the environment in an efficient way
to achieve a desired state of the environment.

Dissemination allows each node of the network to take the role of the
sink node. We propose a method for data dissemination based on com-
pressed sensing that takes the compressibility of the data into account. As
discussed earlier, the data sensed by a WSN is expected to be compressible.
Our proposed method takes advantage of this compressibility to perform the
dissemination more efficiently. Our solution has also a very low computation

6 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

complexity for the sensing nodes. By exchanging local information between
neighboring nodes, a set of linear combinations of the sensed data is dis-
tributed across the network. We show that, with our special combination
of source- and network-coding, it is possible to recover the originally sensed
data from the linear combinations that are received by any arbitrarily chosen
node of the network. Depending on the processing power of the nodes, some
of them are chosen for executing the recovery algorithm. Another possibility
is that a mobile node that has enough processing power fetches the linear
combinations from one or more sensor node(s) in its vicinity. The mobile
node can access the global state of the environment after applying the re-
covery step. The latter scenario is especially useful in mobile sink scenarios
such as a combination of a robot and WSNs.

1.2 Thesis contributions

Within the context of the problem statements, we list the following contri-
butions of this thesis.

• Contribution 1 – Reordering technique for better signal com-
pressibility and a polynomial-time algorithm to find a more
compressible permutation of the samples: Given a set of sensed
data and a compressive basis Ψ, the objective of our algorithm is to find
a permutation of the samples, such that the sensed data are more com-
pressible in Ψ. The algorithm is executed at a time instance t and the
WSN continues sensing the data at time t + 1. The SNs are relabeled
according to the more compressible permutation that was found in the
previous time instance. Enhanced compressibility of the reordered per-
mutation proves to be extended over longer time spans. Consequently,
the more compressible ordering leads to a better performance of com-
pressed sensing at time instances after t.

• Contribution 2 – Concept of sliding sampling window for
spatio-temporal compressed sensing in WSNs: A sliding window
for sampling over time is conceptualized. Our concept aims to exploit
temporal as well as spatial compressibility of the sensed data. A larger
sampling window makes the compressed sensing mechanism to operate
more efficiently because the communication cost of compressive sam-
pling grows logarithmically with the size of the spatio-temporal signal.
On the other hand, a too large sampling window requires a longer time
to get filled (initialization) and also longer time to refill (reinitializa-
tion) when the network encounters an unrecoverable failure. The time

1.2. THESIS CONTRIBUTIONS 7

for filling (buffering) is required only once during the initialization of
the network. Afterwards, the data is delivered to the user in time. In
our proposed model, the delay of delivering the sensed data does not
grow drastically. Furthermore, our evaluations show that our method
is able to detect abnormal sensor readings and report them in time.

• Contribution 3 – Methods to detect the failing nodes and iso-
late the negative effect of their abnormal sensor reading on
the compressibility of data: It is known that abnormal sensor read-
ings usually degrade the performance of compression algorithms. We
consider SN failures as an abnormal event and design a sensing mech-
anism that models a failing node as an abnormal value in the sensed
data. If the compression algorithm relies on the statistical distribution
of data to be preserved during runtime, it suffers most from sensor node
failures and or abnormal sensor readings. CS shows more robustness
to abnormal sensor readings, because it does not assume a statistical
distribution of the sensed data before sampling. However, CS is also
affected by the negative consequences of abnormal sensor readings, be-
cause abnormal values in the signal often degrade the compressibility
of the signal. We propose an event detection mechanism for our spa-
tiotemporal sampling window mechanism. Our method is based on
recovering the data using an over-complete dictionary. The first step
is to detect the abnormal values with the help of data recovery in an
over-complete dictionary. In the first step, we inform the user about
the failing nodes. In the next step, the failing nodes are excluded (iso-
lated) from the recovery process, and the sensed data are reconstructed
again. We observe a much higher quality of the recovered data after
excluding the missing nodes.

• Contribution 4 – Novel network coding mechanism based on
compressed sensing for efficient signal dissemination in WSNs:
The network coding technique introduced in this thesis allows dissem-
ination of the sensed data to all sensor nodes without collecting it at
a central point. Our coding mechanism only involves the exchange of
numerical values and performing simple arithmetic operations, i.e., ad-
dition and multiplication. We show that, by performing the proposed
network coding technique, each SN receives a set of linear combinations
of the sensed data. Our numerical experiments show that these linear
combinations correspond to a measurement transform that allows re-
covery of the original data at any node. Our dissemination framework
called Comprensus allows accessing a globally sensed signal by fetch-

8 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

ing a small amount of information from a node in the vicinity of the
receiver.

1.2.1 Publications

The topics discussed in this thesis and the research outcomes are published in
the following papers. Some contents of these publications are partly included
in the thesis:

• Mohammadreza Mahmudimanesh and Neeraj Suri, “Agile sink selec-
tion in wireless sensor networks”, 11th IEEE International Conference
on Sensing, Communication, and Networking (SECON 2014), pp. 390–
398, IEEE, 2014.

• Mohammadreza Mahmudimanesh and Neeraj Suri, “Robust Compres-
sive Data Gathering in Wireless Sensor Networks with Linear Topol-
ogy”, IEEE International Conference on Distributed Computing in Sen-
sor Systems (DCOSS 2014), pp. 179–186, IEEE, 2014.

• Mohammadreza Mahmudimanesh, Amir Naseri and Neeraj Suri, “Effi-
cient Agile Sink Selection in Wireless Sensor Networks Based on Com-
pressed Sensing”, IEEE International Conference on Distributed Com-
puting in Sensor Systems (DCOSS 2014), pp. 193–200, IEEE, 2014.

• Mohammadreza Mahmudimanesh, Abdelmajid Khelil and Neeraj Suri,
“Compressive Sensing for Wireless Sensor Networks” in “Intelligent
Sensor Networks: The Integration of Sensor Networks, Signal Process-
ing and Machine Learning”, pp. 379–395, CRC Press, 2012.

• Mohammadreza Mahmudimanesh, Abdelmajid Khelil and Neeraj Suri,
“Balanced spatio-temporal compressive sensing for multi-hop wireless
sensor networks”, IEEE 9th International Conference on Mobile Adhoc
and Sensor Systems (MASS 2012), pp 389–397, IEEE, 2012.

• Mohammadreza Mahmudimanesh, Abdelmajid Khelil and Neeraj Suri,
“Reordering for better compressibility: Efficient spatial sampling in
wireless sensor networks”, IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC 2010), pp.
50–57, IEEE, 2010.

Topics of this thesis also partly contribute to the following papers or are
related to them, though the publications are not a direct research outcome
of this work:

1.3. THESIS STRUCTURE 9

• Azad Ali, Abdelmajid Khelil, Neeraj Suri and Mohammadreza Mah-
mudimanesh, “Adaptive Hybrid Compression for Wireless Sensor Net-
works”, ACM Transactions on Sensor Networks (TOSN), vol. 11, no.
4, p. 53, ACM, 2015.

• Mohammadreza Mahmudimanesh, Abdelmajid Khelil and Nasser Yaz-
dani, “Map-based compressive sensing model for wireless sensor net-
work architecture, a starting point”, Mobile Wireless Middleware, Op-
erating Systems, and Applications Workshops, pp. 75–84, Springer
Berlin Heidelberg, 2009.

1.3 Thesis structure

Chapter 2 reviews the state of the art for efficient acquisition of spatial,
temporal and spatiotemporal signals. We focus on data reduction techniques,
and then, we narrow down our study to distributed compression techniques
for WSNs.

Both chapters 2 and 3 discuss mainly the state of the art techniques
related to this thesis. Chapter 3 is focused on CS-based techniques. It also
gives a detailed description of the system model that is considered in this
thesis.

Chapter 3 focuses on the CS theory and elaborates on its foundations.
The concepts of the CS theory that are needed for the rest of the thesis are
described in more details. We also discuss some of the existing implementa-
tions of the CS methods for WSNs. Parts of our solutions are based on the
frameworks that are reviewed in this section or are enhancements to them.

Chapters 4 to 7 give technical details of our contributions 1 to 4 as listed
in Section 1.2. Chapter 4 contains the technical details of Contribution 1.
Chapter 5 details Contribution 2. Chapter 6 describes Contribution 3. Fi-
nally, Chapter 7 focuses on our Contribution 4, namely the Comprensus data
dissemination technique.

10 CHAPTER 1. INTRODUCTION AND PROBLEM CONTEXT

Chapter 2

State of the Art and Practice

In this section, the state of the art techniques for gathering and disseminating
the WSN data is reviewed. Since the study field of WSNs is broad, we first
need to focus on the scope of this thesis and discover the most relevant related
works. This thesis mainly focuses on the efficient data processing techniques
to make the data available to a specific user or third-party application. Unless
we specifically mention it, we assume that the routing, network management
and similar practices that are not directly related to the sensed data, are
performed by any suitable existing method that is designed for such tasks.

In particular, we assume that the SNs are able to discover their neighbor-
ing nodes. Also, during the network establishment, the SNs know to which
neighbor they have to send in order to deliver their data over multiple hops
to reach the base station. For example, in the context of data collection, it
is usually needed to make a collection tree before starting the data collec-
tion phase. For example, the spanning tree creation method by Tan et al.
Tan and Körpeoǧlu [2003] can be applied to form a spanning tree over the
network.

Suppose that a spanning tree is formed for the WSN and the sink is
positioned at at the root of this tree. A trivial baseline solution to collect
the data at the sink is to transmit the sensed data hop-by-hop towards the
sink. However, this obviously overloads the nodes closer to the sink. Each
node has to transmit its own data and forward the data from the nodes in
lower levels of the spanning tree. Therefore, when a node is closer to the
sink, it has much more data to forward than to transmit. The overloaded
nodes will eventually run out of battery and cannot transmit and or forward
the data. Consequently, the spanning tree must be rebuilt to recover the
connectivity of the network. When too many nodes are overloaded, it is
not possible anymore to recover the network connectivity. In this case, the
network is partitioned at the overloaded nodes. When network partitioning

11

12 CHAPTER 2. STATE OF THE ART AND PRACTICE

happens, a large amount of sensed data will be inaccessible, since they cannot
be delivered to the sink.

It is crucial to reduce the amount of the data that is being transmitted
by the SNs. Radio transmission is a major energy drain of a SN. By reducing
the amount of transmissions, SNs consume less energy and can prolong their
lifetime. In this section, we categorize the data reduction and compression
techniques based on different criteria. Then we narrow down our study to
the categories that are most relevant to the approach that is presented in
this thesis. This provide a good background and an insight into the context
of the problem that is targeted in this thesis.

2.1 Data reduction approaches

Data reduction techniques mainly rely on two factors:

• Compressibility of the sensed data: If some pattern or structure is de-
tected in a dataset, a shorter summary of the data is extracted by the
compression algorithm. This shorter piece of information can be more
efficiently stored or transmitted than the raw data.

• User’s accuracy and timeliness requirements : Depending on user’s ac-
curacy and granularity requirements, data reduction techniques can be
optimized for better efficiency. For example, if the user is only inter-
ested in the arithmetic average of the sensed data, a large amount of
raw data can be reduced to a single data item with minimal computa-
tion complexity. Timeliness requirement can play an important role as
well. When longer data collection periods are allowed by the user, more
temporal correlation of the data can be exploited by the compression
algorithm to further reduce the size of the data.

Aggregative operations such as averaging are another type of data reduc-
tion methods. However, we want to distinguish such data reduction methods
from compression. For this reason, we use two different terms to refer to
these techniques and classify them by two criteria.

• Aggregation functions are non-reversible functions. It is not possible to
retrieve the original data from the outcome of an aggregation function.
For example, if a is the average of n sensor readings, it is not possible
to recover the individual sample values from a as soon as n > 1.

• Compression processes are generally reversible processes. Compressed
data can be partly or completely decompressed to access the originally
recorded data.

2.1. DATA REDUCTION APPROACHES 13

Throughout this thesis, either of the terms compression or data reduction
refer to reversible processes that reduce the amount of data. Aggregation
methods as a subset of data reduction technique are not the topic of this
thesis.

Let Draw be a finite ordered list of real numbers that contains all sen-
sor values recorded at a certain time instance by the WSN. A compres-
sion function γ takes Draw as input and reduces it to a smaller data set
Dcompressed = γ(Draw) such that size of Dcompressed is less than Draw:

Dcompressed := γ(Draw) such that |Dcompressed| < |Draw| (2.1)

Decompression process is then the inverse process γ−1 that takes Dcompressed

as input and returns the decompressed data set Ddecompressed.

Ddecompressed := γ−1(Dcompressed) (2.2)

2.1.1 Lossy and lossless compression

Depending on the accuracy of the decompressed data, compression schemes
can be classified into two categories: Lossless and lossy.

• Lossless compression: No data is lost after applying the com-
pression and decompression functions to the original data, i.e.,
Ddecompressed = Draw. Lossless compression is usually used in archiv-
ing and transmission of large sensitive data such as software applica-
tion files or medical images. It is widely used in commercial compres-
sion softwares. Some of the most commonly used lossless compres-
sion algorithms are Run-Length Encoding (RLE), Lempel-Ziv-Welch
(LZW) and Lempel-Zim-Markov chain algorithm (LZMA) Parekar and
Thakare [2014]. These algorithms are used in many compression ap-
plications and several file formats like Graphics Interchange Format
(GIF), Portable Network Graphics (PNG), ZIP, etc.

• Lossy compression: Data loss or inaccuracy of the decompressed data is
allowed to a certain level according to the accuracy requirements of the
user, i.e., Ddecompressed ≈ Draw. Lossy compression allows unimportant
data to be lost in sake of more important data. Most of lossy com-
pression techniques involve transforming the raw data to some other
domain like frequency domain or wavelets domain Graps [1995].

The distributed compression techniques introduced in this thesis are all
lossy compression. There is a tradeoff between accuracy of the data that

14 CHAPTER 2. STATE OF THE ART AND PRACTICE

is delivered to the end user and the communication cost for the WSN. Our
techniques allow tuning this tradeoff to suite specific requirements of the end
user regarding energy preservation, accuracy and timeliness of the received
data.

2.1.2 Source coding and network coding

Compression techniques for WSNs demand a different implementation from
other applications of data compression, mainly because the compression takes
place in a distributed manner. The compression function γ introduced in
Equation 2.1 represents an ideal theoretical representation of a compression
scheme that is applied at once on the whole data set. Even when the whole
raw data set is available to the compression algorithm, the compression usu-
ally takes place on smaller chunks of data that fit into the memory of the
computing machine. Apparently, more correlations within the raw data are
observable if the whole data is loaded into the memory and the compression
algorithm can access the whole data set at once. However, practically this
ideal approach can not be implemented for larger amounts of data in order
of hundreds of megabytes or gigabytes. It requires a lot of memory and pro-
cessing power to compress large amounts of data as single integral dataset.
In practice, even if the whole dataset is available beforehand, most of com-
pression algorithms work with much smaller chunks of data and process each
of them separately.

In a WSN, it is even more challenging to compress the sensed data. The
raw data (sensed values by the SNs) are stored in SNs across the whole
network. Acquiring each and every sample requires fetching the sensed value
from the SN. This is a very resource-intensive operation, since the sensed data
often need to be forwarded over several hops to become accessible by a central
compression algorithm. Therefore, the compression schemes for WSNs differ
for instance from audio or video compression in which the raw picture or
sound is accessible directly by the processing unit that runs the compression
algorithm. In audio and video compression, the source of raw data (image
sensor or microphone) is located close to the processor that performs the
compression. In most cases they are mounted on the same device, such as a
digital camera or a digital voice recorder. In contrast to these applications,
the data sources of a WSN are distributed in a large environment. Therefore,
the data compression techniques have to be implemented in sensing and or
network communication layer. Distributed data compression in WSNs is thus
closely related to both source coding and network coding.

• Source coding refers to transformation of data at the SNs. As an ex-

2.1. DATA REDUCTION APPROACHES 15

ample, consider a WSN that is programmed to report the position of
the most rapidly changing sensor values. The SNs thus apply a simple
source coding operation by differentiating the consequent sensor read-
ings and reporting the difference instead of the the actual sensor data.
Each node compares the received difference by its own calculated value
and sends the larger value along with the corresponding SN id to the
next hop.

• Network coding refers to transformations that are performed on the
data while it is traversing the WSN. In contrast to source coding that
only affects the values sensed by a single SN, network coding affects
also values sensed by other SNs.

Source coding and network coding play an important role in effectiveness
of compression techniques for WSNs. By reducing the data at the SNs,
a large amount of raw data traffic is already removed from the network.
Network coding helps further to reduce the amount of data while it is being
transmitted hop by hop through the network. It brings no value to compress
the data of a WSN after it arrives its destination. The final destination of
the WSN data (usually the sink node) has often much higher computation
and storage resources than the SNs. It is too late to apply data reduction
on the data that is received by the sink. The most valuable resources of a
WSN, i.e., the SNs power and bandwidth will be consumed very rapidly when
no or little data reduction is performed by source- or network-coding. Data
reduction techniques introduced in this thesis apply both source coding and
network coding to achieve a more efficient data collection scheme in WSNs.

2.1.3 Transform compression

Compressibility of the data may not be apparent at the first glance. However,
when the data is transformed using a transformation function, it can be
seen that the the data are compressible with one of the known encoding
techniques. The transformation must be reversible in order to be able to
recover the original data. Often, the transformation is performed by a linear
transform on discrete data. A linear transform can be represented by a matrix
multiplication. The data is represented by a vector and a transformed vector
is the result of multiplying a transform matrix by the data vector. For
a suitably chosen transform matrix, the transformed vector is expected to
be more compressible than the original data. The inverse of the transform
matrix must exist in order to be able to apply the decompression.

Transform compression forms the basis of many signal compression tech-
niques. Discrete Cosine Transform (DCT) and Fourier transform are some of

16 CHAPTER 2. STATE OF THE ART AND PRACTICE

the most commonly used linear transformations for compressing the signals.
Wavelet transform is another commonly used transformation for compression
Graps [1995]. Transform compression is based on the fact that most signals
recorded from natural phenomena are highly compressible under DCT or
Fourier transform. Being compressible means that, most of the data items in
the transformed data vector are nearly zero. Only a few of the items in the
transformed vector have a significant value. Transform compression is based
on finding the most significant (largest) values and storing those values along
with their location (their index in the transformed data vector).

Lossy decompression of the transformed data is performed by restoring
a few of the most significant values and keeping the rest of the compressive
coefficients zero. By applying the inverse transform on this vector, we are
able to recover the original data with a reasonable accuracy. The compres-
sion and decompression process is lossy, because the recovered data differs
from the original data by a difference proportional to the magnitude of least
significant items which were thrown away during the compression process.
There is a tradeoff between the compression ratio (the ratio of the number
of most significant values kept to the size of the whole data) and the accu-
racy of decompressed data. Depending on accuracy requirements, transform
compression can be easily tuned to achieve a desired compression ratio while
delivering the desired degree of accuracy.

Lossless compression keeps all of the transformed data and applies a stan-
dard entropy coding technique such as Hufmann coding, or run-length cod-
ing to further reduce the stored or transmitted data. The decompression
comprises then of two phases. First, encoding string of data is decoded (de-
compressed). Second, the inverse transform is applied on the result of the
first phase to recover the original data. In a lossless compression, the original
data is fully recovered. Lossless compression achieves less compression ratio
than lossy compression.

2.2 Data compression in distributed sensory

systems

When we look at many sensory systems, we usually observe three different
functions.

1. Sensing : A sensor records the physical value of interest, like light in-
tensity, sound, pressure, temperature, etc. and an Analog-to-Digital
Converter (ADC) quantizes the recorded value and outputs a binary
number that reflect the sensed value.

2.2. DATA COMPRESSION IN DISTRIBUTED SENSORY SYSTEMS 17

2. Transmission: The sensor recordings are transmitted periodically over
a communication channel. Depending on the technology used for trans-
ferring data, this process entails different levels of transmission cost.
For example a camera connected directly to a computer, has a fast, ac-
curate and cheap (low power, inexpensive) communication channel for
transferring data. In such trivial cases, raw data is sent without much
processing and the receiver (in this example, the computer) is responsi-
ble for further computation steps. On the other hand, in several sensor
network applications, the raw data is to be transmitted over a noisy
wireless channel. For example in a WSN, a vast amount of data has to
be transmitted over a noisy wireless channel. Because of collision, con-
gestion and inevitable errors, some of the packets are dropped, causing
more and more retransmissions. Such a communication channel is too
expensive for the sensor nodes (SNs) since each transmission consumes
a lot of node’s battery power. When the communication is too ex-
pensive or the amount of raw data is far more than channel capacity,
the raw data must be compressed before or during the transmission to
utilize the communication line more efficiently.

3. Processing and Storage: The raw data collected from the individual
sensors is then processed by the sink or stored on persistent storage for
future processing. The data collected over the network can be encoded,
encrypted or compressed. Depending on the application of the sensory
systems, a combination of compression, encryption or other special
encodings are applied.

2.2.1 Compressibility of signals

Figure 2.1 shows an example of Fourier transform that is run on signal ac-
quired from a temperature sensor that records ambient temperatures period-
ically LUC [2008]. Despite the signal itself in time domain does no appear
to have a specific structure, its Fourier transform is quite compressible. We
see that only very few Fourier coefficients have a large magnitude and most
of other coefficients are quite negligible. One can devise a compression tech-
nique by keeping only the largest Fourier coefficients and discarding the other
ones.

To show how efficient transform-coding compression techniques are, we
do a simple numerical experiment on the time-domain signal of Figure 2.1.
We represent the signal as a vector f ∈ RN . Assume x ∈ CN is the Fourier
transform of f . We select k largest elements of x and set its other N − k
elements to zeros. We name the resulting vector y. Now we do an inverse

18 CHAPTER 2. STATE OF THE ART AND PRACTICE

0 1000 2000 3000 4000 5000
Time [seconds]

2

4

6

8

10

12

14

T
e
m
p
e
ra
tu
re

[C
e
lc
iu
s
d
e
g
re
e
]

Time domain

0 1000 2000 3000 4000 5000
Fourier coefficient index

10

0

10

20

30

40

50

Fo
u
ri
e
r
co
e
ff
ic
ie
n
t
a
m
p
lit
u
d
e
/1
0
0
0

Fourier transform

Figure 2.1: Compressibility of a natural signal under Fourier transform

0 500 1000 1500 2000 2500
Number of coefficients

0

1

2

3

4

5

M
S
E

Reconstruction error after inverse Fourier transform

Figure 2.2: Reconstruction error by keeping the first Fourier coefficients

2.2. DATA COMPRESSION IN DISTRIBUTED SENSORY SYSTEMS 19

Sensor ADC Sampling Forward
Transform

Finding the
largest elements

Storage / Communications
of largest lements with their positions

Encoding
(Compression)

Communication/Storage

Rendering / Visualization
Inverse

Transform

Decoding
Decompression

Figure 2.3: Traditional transform coding compression and decompression
system

Fourier transform on y and get the vector g, a recovered version of the
original signal f . Since the signal is to be recovered from incomplete set
of information, reconstruction error is inevitable. We measure the error by
calculating mean square error (MSE). Figure 2.2 illustrates that the recovery
error rapidly decreases when we increase number of Fourier measurements.
In other words, almost all energy of the time-domain signal of Figure 2.1 is
concentrated on the few largest Fourier coefficients of its frequency-domain
transform.

Many other signals acquired from natural phenomena, like sound, radia-
tion level, humidity as well as more complex audiovisual signals recorded by
cameras and microphones have a very dense support on a suitably chosen do-
main like Fourier, wavelet or DCT Broughton and Bryan [2011]. Therefore,
we can depict the overall function of a transform coding system in Figure
2.3. Encoding part of the compression system illustrated in Figure 2.3 is a
complex function that is run on a large amount of data. Note that after
determining the largest elements of the transformed signal, negligible values
are simply thrown away.

20 CHAPTER 2. STATE OF THE ART AND PRACTICE

2.3 Distributed compression techniques in

WSNs

Distributed implementation of the discussed compression techniques is not
trivial. WSN is a distributed sensing system that requires data compression
to keep the data transmission, and finally, the power consumption low. The
level of compressibility of the sensed data is not known before accessing the
whole set of data at once and at a single point. This is not possible in a
multi-hop WSN, since each data item is sensed by a separate node of the
network.

The classical system model of Figure 2.3 is not appropriate for dis-
tributed sensor systems like WSNs, mainly because the communication,
sampling and encoding are taking place simultaneously in a WSN. Apart
from that, the encoding/compressing complexity needs to be low, while
the decoding/decompressing is often performed by the sink which has suf-
ficient computing power. Depending on the computation complexity of en-
coder/compresser and decoder/decompresser we classify three different ap-
plication classes of compression algorithms.

• High compression ratio with complex algorithms and easy to de-
code/decompress data payload : This variant has several applications
in multimedia codecs (coder/decoders). The raw (uncompressed) data
is often in form of audio and or visual files with high details and a very
large size. In such applications, the objective is to store as much as
possible details in a small information payload. Only high compression
ratio allows, for instance, online watching of high definition videos on
the internet. On the other hand, the decoding/decompression phase
should not be resource intensive. Today’s trend is to be able to play
multimedia files on resource-limited mobile devices. As mentioned, this
class of compression is suitable for multimedia applications.

• Fair compression and decompression resource consumption: Fairness
for encoder and decoder is more of interest for verifying the security
of a system in which compression of data in a communication protocol
is allowed. When a protocol allows non-complex encoding and very
complex decoding, an attacker can launch denial of service attacks by
sending a compressed information package that causes a lot of compu-
tations on the receiver side to decompress the data.

• Resource-constrained encoders and powerful decoder : Distributed sens-
ing and data collection is a good example for this category of compres-
sion methods. Unlike the other two categories, it is required to encode

2.3. DISTRIBUTED COMPRESSION TECHNIQUES IN WSNS 21

and compress the data using the least amount of resources, while de-
coding can be done by a computation entity that possesses sufficient
resources.

WSNs fit into the third category of the compression approaches mentioned
above. The encoding takes place in the sensor nodes which are resource-
limited. One important requirement for a compression algorithm in WSNs is
to be very low complex at the encoder side. The complexity of decoding is not
an issue in most configurations of WSNs, because the decoding takes place at
a dedicated node outside the sensor network that performs the computations
to recover or reconstruct the originally sensed data.

In this section, we discuss three general methods of data compression in
WSNs, namely in-network compression, Distributed Source Coding (DSC)
and Compressed Sensing (CS). Most of the compression techniques for WSNs
can be considered as a specialization of these general methods. Some other
works provide enhancements or extensions of these general approaches which
are applicable to specific scenarios.

2.3.1 In-network compression

In-network compression refers to a wide range of compression methods that
are implemented both on the sensor node level and network level. Assuming
that the sensed data is compressible, the objective of in-network compression
is to find an optimal combination of routing and encoding throughout the
path that the data is traversing hop by hop to reach the sink. Most of
the in-network compression techniques are based on transform compression.
First, a suitable compressive transform needs to be chosen depending on the
signal that is to be sensed by the WSN. DCT or Fourier transform is suitable
for acquiring signals such as ambient temperature, humidity, etc. Wavelet
transform better captures abnormal changes in the spatial data. Wavelet
can be used to detect events in an environment or signals that have drastic
variations or fluctuations.

In addition to the typical transformations such as DCT, Fourier or
wavelet, Karhuenen-Loève Transform (KLT) is considered as a better trans-
formation, since it theoretically achieves the optimal compressive basis for
a given signal Gastpar et al. [2006]. While the transformation matrices of
DCT and Fourier transform can be generated using a finite number of com-
putations, there is no practical solution for generating the entries of a KLT
matrix for a given signal profile Marco F. Duarte and Baraniuk [2012]. Re-
gardless of the compressive basis that is used for in-network compression,
the transmission of the data has to take place in a compressed form. The

22 CHAPTER 2. STATE OF THE ART AND PRACTICE

compressed data are gathered over a spanning tree. The sink receives the
compressed data and applies the decompression algorithm to extract the
originally sensed data. Shen et al. Shen and Ortega [2010] introduce a data
gathering technique based on transform compression.

To achieve the best compression ratio, transform compression must be
applied to the complete set of data rather than on small portions of the
sensed data. Therefore, when each node receives the compressed data, it has
to perform a local decompression. It first extracts the raw data and appends
its own data to the received data. Then the compression algorithm is applied
again to build a compressed packet that is sent to the next hop.

One drawback of this approach is that the sensor nodes need to possess
enough computation power and memory to decompress the partially received
data, and then, append their own data. Furthermore, each SN requires a
relatively powerful CPU and a relatively large amount of RAM to compress
the data and send it to the next hop. Note that, a complex compression
algorithm can be very heavy for the basic hardware of a typical SN. Some
other SN hardware architectures provide more computation power, though
with the cost of more energy consumption. The memory requirement can
grow very high especially for the nodes closer to the sink. These nodes
have a lot of descendants in the collection tree. Therefore, the compressed
data packets that are received by these nodes will occupy a larger amount of
RAM when uncompressed. The efficiency of compression algorithms depends
very much on the amount of data that can be accessed centrally by the
computation algorithm. This is mainly decided by the amount of data that
can be loaded directly into RAM, because the compression algorithm has to
process a buffer of data at once and then store the compressed buffer, in
order to achieve the highest overall performance.

Assuming that the SNs possess enough computation power and memory,
in-network transform compression still suffers from another drawback. The
amount of computations performed by the SNs is not balanced across the
sensor network. The nodes closer to the sink perform more computation
and may require more RAM than the nodes that are in the middle of the
collection tree hierarchy. The leaf nodes have the least computation and
memory requirements, since they have only one data item and do not require
to compress it at all. This leads to an inhomogeneous composition of the
SNs in a WSN.

Inhomogeneity of the SNs makes the WSN very inflexible to configuration
changes. It is desired that all SNs have the same hardware platform, other-
wise the WSN becomes very inflexible to configuration changes. According
to the homogeneity requirement, the SNs must be equipped with a hardware
that can handle data compression and decompression in its worst case, i.e.,

2.3. DISTRIBUTED COMPRESSION TECHNIQUES IN WSNS 23

very close to the sink node. Having a homogeneous network enables the user
to reconfigure the WSN at any time. For example, the user may want to pick
another location for the sink. This is only in a network with homogeneous
SN hardware platforms possible without massive reconfiguration or reloca-
tion of the SNs. In the exemplified scenario, we see that a huge amount of
computation power of the SNs remains unused. Only the nodes closer to the
sink may fully advantage from their relative high-performance hardware.

We summarize the pros and cons of in-network transform compression as
follows:

• Pros

– Higher compression ratio: By applying the transformation directly
on the sensed data, in-network compression often achieves a higher
compression ratio.

– Suitable for low bandwidth applications : In-network compression
is one of the best solutions for scenarios where the bandwidth is
very limited, but the computation power of the sensor nodes allow
uncompressing, padding and re-compressing the data.

– Extensible to temporal domain: Temporal and spatio-temporal
compression are direct extensions of the spatial in-network com-
pression. The same methods for spatial compression are applica-
ble to temporal and spatio-temporal data collection without major
modifications to the state-of-the-art algorithms.

• Cons

– Complexity : Efficient implementation of the in-network compres-
sion algorithms such that they can be executed by the basic hard-
ware of the SNs is challenging.

– Unbalanced computation load : The computation complexity de-
pends very much on the amount of data that is passing through
the node. In particular, the nodes closer to the sink have to per-
form more computations and require more memory to process and
forward the data.

– Being sensitive to packet failures : Data communication takes
place only in the compressed form. Therefore, any loss of con-
nection between two nodes destroys a relatively large amount of
data. Compressed data packets are more sensitive to packet loss,
because more information is likely to be lost when a single packet
is lost or a small part of the data is corrupted.

24 CHAPTER 2. STATE OF THE ART AND PRACTICE

Similar to network perturbation and packet loss, abnormal sensor readings
also have a degrading effect on in-network compression methods. Especially,
when a non-robust compressive domain is selected for transformation. In sit-
uations where abnormal sensor readings and unexpected events are possible,
transform bases such as wavelet transform are more suitable choices to be
used by in-network compression methods.

2.3.2 Distributed source coding

Distributed Source Coding (DSC) is based on correlation between data
sources in the WSN. If two data sources are correlated, it is more ef-
ficient to use a joint encoding and save the number of bits required
for storage or communication of the data. Suppose that, sensor A re-
quires 6 bits to store its sensed data and the values sensed by sensor B
are having at most 1-bit distance from the values sensed by sensor A.
The possible differences to the value sensed by sensor A belong to the
set {[000000], [000001], [000010], [000100], [001000], [010000], [100000]}. Only
three bits are required to store the difference between values A and B, since
the index to each of these 7 states requires 3 bits for its representation. In
this example, a joint encoder can achieve a compression ratio of (6+6):(6+3)
by sending the actual value of sensor A and then sending the index to the
difference pattern of sensor B.

Joint encoding requires the two sources to communication with each other
and choose an efficient coding set. This is avoided using Slepian-Wolf cod-
ing Slepian and Wolf [1973]. Slepian and Wolf showed that even if the data
sources separately encode the data without any inter-communication, it is
possible to transmit the data with an encoding rate equal to the joint com-
pression data rate. The initial form of Slepian-Wolf coding is proposed for
lossless coding. Wyner and Ziv extended source coding to lossy compression
Wyner and Ziv [1976]. Lossy compression is of particular interest for WSNs
and multimedia sensor networks.

The main drawback of DSC is that it depends very much on the cor-
relation model between data sources. The statistical model of correlations
between different sensor reading must be known for DSC to work properly.
Furthermore, the correlation model must remain unchanged during the oper-
ation of the WSN. These two requirements are hardly achievable in a WSN.
The WSN has to sense values from all SNs and observe the physical param-
eter over a relatively long period to achieve an accurate correlation model
of the sensed data. Given the resource constraints of the sensor nodes, it is
usually impossible to achieve such an accurate correlation model. Without
an accurate correlation model, DSC cannot perform efficiently and is prone

2.3. DISTRIBUTED COMPRESSION TECHNIQUES IN WSNS 25

to data collection errors. Even if the correlation model is known for a given
WSN, there is no guarantee that this model remains unchanged for the whole
duration of WSN’s runtime. When the environment changes, the correlation
model between the sensed data changes as well and a new correlation model
must be determined for DSC to continue correct data collection.

To summarize the above discussion, we list the pros and cons of DSC as
below:

• Pros

– Low complexity of coding : The SNs perform simple computations
to encode the data. This is of great importance for resource-
limited SNs that are equipped with basic and low-power hardware.

– Memoryless coding : DSC allows data collection schemes with
memoryless SNs. The SNs do not need to store any data and
simply encode and transmit their data. This is a great advan-
tage for multimedia sensor networks where a lot of raw data is
produced every second that needs to be encoded and transmitted
using low resources and in a short amount of time.

– Tunable robustness : Both Slepian-Wolf and Wyner-Zif coding
methods provide mechanism to increase the robustness of data col-
lection scheme to errors and channel perturbations. Both methods
provide a well-defined tradeoff between sampling rate, compres-
sion ratio and coding strength. This allows the user to fine-tune
the DSC according to application requirements and the conditions
of the operational environment.

• Cons

– Need for accurate correlation models : Accurate correlation models
such as a covariance matrix of all sensor readings can be only
calculated when a large amount of data is first sensed by the sensor
network. The limited resources of the SNs would be finished even
before starting the actual DSC. The correlation model usually does
not remain constant and will change over time. The calculated
correlation model is then no longer valid and must be calculated
again. The need for knowing the correlation model in advance is
the main disadvantage of DSC.

– Sensitive to environmental changes : This is directly resulted from
the first requirement of DSC to obtain and maintain an accurate
correlation model. Any changes in the environment that is not

26 CHAPTER 2. STATE OF THE ART AND PRACTICE

foreseen in the correlation model will lead to high errors in the
collected data. Thus, DSC is not suitable for scenarios where the
environment experiences very dynamic and unexpected changes.

– Abnormal events remain undetected : Abnormal events are unex-
pected events that cannot be accurately provisioned by the corre-
lation model. They can severely impact the effectiveness of DSC
by degrading the accuracy of the collected data.

2.3.3 Compressed sensing

CS theory discusses lossy compression techniques that differ from transform
coding in measurement acquisition. Looking at Figure 2.3, one important
observation is that a large amount of negligible compressive coefficients are
discarded. CS theory tries to answer this question: Is it possible to reduce
the data without performing the full transformation on the whole set of data?
According to the CS theory, under certain conditions, a compressible signal
can be recovered from a few number of random linear measurements Donoho
[2006].

The aim of CS is to bring the concept behind compression techniques
down to the sampling level. This is specially important in WSNs, as we pre-
fer to compress the data as it is being transported over the network. Ran-
dom measurement makes it easier to implement CS in a distributed manner,
because no centralized decision and control is needed. Linearity of the mea-
surement mechanism simplifies hardware and software design for the sensor
nodes.

Similar to transform compression, CS also applies a linear transform on
the sensed data. In contrast to transform compression, not all of the coeffi-
cients in the transform basis are calculated. CS transmits a fraction of the
transformed data, namely measurements, to the sink. Acquiring linear mea-
surements from the network involves only multiplication and additions to be
calculated by the nodes and the complexity of the calculations remains to
its minimum. Moreover, such operations can be performed more efficiently
if a especially designed low-power hardware is built in the sensor nodes to
performed array processing Bajwa et al. [2006].

The main challenge in transform coding is that, the magnitude and loca-
tion of the most significant coefficients in the transformed data is not known
in advance. Therefore, the transformation takes place on the whole data.
CS benefits from the compressibility of the data under transformation bases,
while eliminating the need to perform the transformation on the whole data.
Only a subset of linear combinations of the data suffices to reconstruct the

2.3. DISTRIBUTED COMPRESSION TECHNIQUES IN WSNS 27

original data. Compressibility of data under the compressive basis still plays
an important role in efficiency of CS. The more compressible the raw data is,
the less measurements are required to reconstruct the original data Candes
[2006].

Data collection and dissemination techniques introduced in this thesis are
based on the CS theory. We provide a full introduction to the CS theory and
its applications in WSN in Chapter 3. To finalize our short review of CS, we
summarize the pros and cons of CS as bellow.

• Pros:

– Decentralized data processing : Most CS-based data collection de-
signs are based on randomized measurement. A pseudo-random
number generator generates a random measurement matrix that
is used for calculating the measurements. The random number
generator is initialized once before the operation of the WSN us-
ing the SN id as the random seed. The sink is then aware of the
measurement matrix within the network without exchanging ex-
tra information, when it uses the same random number generator
initialized with node id’s as seed to reconstruct the random values.
This mechanism avoids the communication overhead to exchange
the measurement matrix between SNs and the sink.

– Simple arithmetic calculations at SNs : The SNs need to calculate
multiplication and additions to produce the random linear mea-
surements. The calculation can be performed on the fly, since the
coefficients are usually generated in runtime.

– Balanced communication and processing : We will see in Chap-
ter 3 that the amount of processing and communication does not
increase as the measurements are being transported up the data
collection tree. Unlike in-network compression, the nodes closer to
the sink are not overloaded, and hence, do not become exhausted.

• Cons:

– Complex reconstruction algorithms : After receiving the random
linear measurements at the sink, the original data needs to be
reconstructed from these measurements. The existing algorithms
for recovery of the original data are very complex and do not scale
well for very large signals such as audio or video signals. Accu-
rate and efficient recovery algorithm work well for spatiotemporal
sampling in WSN with thousands of SNs. This practically suffices
for most WSN applications.

28 CHAPTER 2. STATE OF THE ART AND PRACTICE

– Inefficient measurement at leaf nodes : Balanced communication
and processing means that even leaf nodes record the same amount
of measurements and send the same amount of data as the nodes
that are close to the sink, although they have much less data than
nodes closer to the sink. A straight-forward solution is to send
raw data until the compression ratio is higher than raw data rate.
We will discuss this issue and a solution for that in more details
in Section 3.3.4.

2.4 Summary

In this chapter, we reviewed different approaches for data compression in
WSNs. Since the focus of the thesis is on lossy signal compression, we fo-
cused our study on lossy compression. Lossy compression allows a better
tradeoff between communication cost and accuracy of the collected data. We
reviewed three major classes of lossy data compression techniques for WSNs:
In-network compression using transform coding, distributed source coding,
and compressed sensing also known as compressive sampling.

After giving a brief review of each technique, the advantages and dis-
advantages of each compression method is listed. According to the required
communication cost and the provided accuracy by each method, a specific ap-
plication can benefit most out of that compression method. In-network com-
pression and transform compression are suitable for WSNs with slightly more
powerful SN hardware. When combined with an efficient routing scheme,
in-network compression can achieve a very high compression ratio while pre-
serving a good accuracy of the sensed data. Distributed source coding is
mainly suitable for WSNs consisting of SNs with basic hardware capabili-
ties, because the source coding can be done with non-complex arithmetic
operations. Furthermore, distributed source coding allows data collection
mechanism without having memory on the SNs.

Chapter 3

Compressive Sampling in
Sensor Networks

Compressive Sensing (CS) is a sampling or measurement technique to effi-
ciently acquire compressible data without applying direct compression. CS is
increasingly being applied in many areas like multimedia, machine learning,
medical imaging, etc. We focus on the aspects of CS theory which has direct
applications in WSNs. We also investigate the most well-known implemen-
tations of CS theory for data collection in WSNs. Before that, we have to
formally define the system model that is used within the context of CS theory
for WSNs.

3.1 System model

We consider the standard WSN model consisting of n static SNs distributed
in an area of interest to sense a certain physical parameter of that area in a
macro scale. SNs are equipped with low power and short range radio com-
munication modules. They are either battery-powered or self-charging and
possess limited processing resources. SNs sense and report environmental
phenomena such as air temperature, soil humidity, light intensity, radiation
level, etc. Data processing techniques for WSNs try to achieve a predefined
information acquisition and preparation by exchanging local data between
the SNs. Because of the short-range communication, often only neighboring
nodes exchange information with each other. Therefore, node-to-node com-
munication or node-to-sink communication may happen over multiple hops,
especially when the source and destination nodes are located distantly from
each other.

Throughout the thesis, the SNs are assumed to be homogeneous, unless

29

30CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

it is explicitly mentioned that some of the nodes may possess more computa-
tion power. Homogeneity of SNs means that all SNs possess equal hardware
platforms, and therefore, have the same hardware capabilities. WSNs con-
sisting of homogeneous SNs are particularly desired for mass deployment of
SNs when no specific topology is to be enforced on the network.

We assume that a failure-free SN accurately records the physical param-
eter of interest at the position where it is located and the quantization error
of its sensor is negligible. Sink or base station of the WSN is a high per-
formance computation unit. It is responsible for reconstructing the state of
the environment from the collected measurements. The recovered data are
then prepared for use by the end user of the WSN. The WSN should be able
to represent the current state of the environment periodically on a regular
basis. This representation should meet a certain level of accuracy. Besides
the regular monitoring, WSN should be able to detect abnormal events. An
example for abnormal event is extremely high temperature at a certain lo-
cation. Abnormal sensor readings serve as indicators for important events.
For example high temperature recorded by a sensor node can be caused by
a fire.

3.1.1 Distributed discrete signals

In sampling and signal processing literature, signal usually refers to the elec-
trical measurements that are recorded by a sensor that samples a physical
phenomenon. When several sensors record a signal at different locations, the
result is a spatial signal. Sensing over time will result in temporal signals. In
this text, we name the combination of spatial and temporal sampling as spa-
tiotemporal sampling. Spatiotemporal sampling in WSNs refers to the signal
that is recorded over consequent time instances by several SNs distributed
in the environment.

Spatial signal

The data sensed by a WSN is modeled as a vector f of real numbers. Each
item of this vector refers to a value sensed by a SN. If fi denotes the ith
component of vector f , then fi is equal to the value sensed by SN i. Vector
f is often called a discrete spatial signal or simply signal. A WSN of size
n (consisting of n SNs) senses a signal of size n, that means f is a real
vector of length n and notated as f ∈ Rn. Vector f defines a vector in the
n-dimensional real space.

3.2. BASICS OF COMPRESSIVE SENSING 31

Discrete temporal signal

Similar to spatial signals, the definition of the sensed data as vector can apply
to the time-domain signals as well. A SN that regularly samples r times every
t seconds has a temporal sampling rate of r/t samples per seconds. In a
typical SN, the sensed data is then quantized and converted to binary data.
Depending on the specific application requirements, more data processing
steps may be applied before or after calculating the measurements. The
discrete temporal signal recorded by the exemplified SN records a discrete
signal of size r every t seconds that can be represented by a real vector f ∈ Rr.

Spatiotemporal signal

Spatiotemporal sampling is a direct extension of spatial and temporal sam-
pling. For example, a WSN consisting of n SNs each of which recording r
samples in every t time units, produces a discrete spatio-temporal signal that
can be represented by a vector f ∈ RN where N = nr.

In case of sole spatial sampling, N and n are equal, because during each
time period unit only one sample is recorded by a SN. Note that in parts of
this text, our discussion may only focus on spatial signals without considering
the temporal data. In such cases, we may use either N or n to refer to the
size of the signal. According to our definition, r = 1 in pure spatial sampling
mode, and hence, N = n when no temporal sampling is taking place.

3.2 Basics of Compressive Sensing

Throughout this text we may use the terms signal and vector interchange-
ably. Both of them refer to discrete values of a spatiotemporal phenomenon.

3.2.1 Sparse and compressible signals

To begin formal description of the CS theory, we need some mathematical
definitions. The formal definitions apply to the original signal in time or
space domain as well as its projection on some frequency domain. Therefore,
we use the notation v as a general vector which may refer to a signal or its
compressive transformation. The first three definitions are general mathe-
matical definitions which may apply to any vector. Definition 4 refers to the
CS theory in a more specific manner. This clarification was required to avoid
ambiguity in using the mathematical notation for the signal vectors.

Definition 1. Vector v ∈ RN is said to be S-sparse if ‖v‖0= S, i.e., v has
only S nonzero entries and its all other N − S entries are zero.

32CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

Definition 2. S-sparse vector vS ∈ RN is made from non-sparse vector
v ∈ RN by keeping S largest entries of v and zeroing its all other N − S
entries.

Definition 3. Vector v is said to be compressible if most of its entries are
near zero. More formally, v ∈ RN is compressible when ‖v−vS‖2 is negligible
for some S � N .

Note that ‖·‖2 denotes the norm-2 operator1. The above definitions may
apply to any vector which can be a signal vector or its projection on some
orthonormal basis. In the coming sections, we may use the definitions 1 to
3 to both time-domain or space-domain signals or their projections on bases
like Fourier, DCT, wavelet, etc. In any case, the vector v in the definitions
above can be substituted with the signal vector f or its compressive projection
x whichever is discussed in the context.

Definition 4. Signal f is compressible under orthonormal basis Ψ when
f = Ψx and x is compressible. The matrix Ψ is a real complex orthonor-
mal matrix with the basis vectors of Ψ as its rows. We also say that Ψ is a
compressive basis for signal f .

Compressibility of WSN signals

Most signals recorded from natural phenomena are compressible under
Fourier, DCT and the family of wavelet transforms. This is the fundamen-
tal fact behind every traditional compression technique. Audio signals are
compressible under Fourier transform. Images are compressible under DCT
or wavelet. WSN also records a distributed spatiotemporal signal from a
natural phenomenon which can be compactly represented under the family
of Fourier or wavelet orthonormal bases.

3.2.2 Compressive measurement

CS is distinguished from traditional compression techniques in signal acqui-
sition method as it combines compression into the data acquisition layer and
tries to recover the original signal from fewest possible measurements. This
is very advantageous in applications where acquiring individual samples is
infeasible or too expensive. WSN is an excellent application for CS since
acquiring every single sample from the whole network leads to a large traffic
that can be beyond the capacity of the resource-limited SNs.

1For a real vector v ∈ RN , norm-1 of v is defined as ‖v‖1=
∑N

i=1|vi| and norm-2 of v

is defined as ‖v‖2=
√∑N

i=1|vi|2.

3.2. BASICS OF COMPRESSIVE SENSING 33

Definition 5. Measurement matrix Φm is an m×N real or complex matrix
consisting of m < N basis vectors randomly selected from orthonormal mea-
surement basis Φ that produces an incomplete measurement vector y ∈ Cm

such that y = Φmf .

Definition 6. Coherence between the measurement basis Φ and the com-
pressive basis Ψ is denoted by µ(Φ,Ψ) and is equal to max

1≤i,j≤N
|〈φi, ψj〉| where

for each 1 ≤ i, j ≤ N , φi’s and ψj’s are basis vectors of Φ- and Ψ-domain
respectively and 〈·〉 is the inner product operation.

3.2.3 Signal reconstruction

The novelty of the CS theory is that, it provides conditions for accurate
recovery of the original data by applying a polynomial-time reconstruction
algorithm on the collected compressive measurements.

Theorem 1. Suppose signal f ∈ RN is S-sparse in Ψ-domain, i.e., f = Ψx
and x is S-sparse. We acquire m linear random measurements by randomly
selecting m basis vectors of the measurement basis Φ. Assume that y ∈ Cm

represents these incomplete measurements such that y = Φmf where Φm is
the measurement matrix. Then it is possible to recover f exactly from y by
solving the following convex optimization problem:

x̂ = argmin
x∈CN

‖x‖1 subject to yk = 〈Ψx, φk〉 for all k = 1, . . . ,m.

(3.1)

where φk’s are the rows of the Φm matrix. Recovered signal will be f̂ = Ψx̂
Candes and Tao [2006].

In case of real measurement and compressive bases, problem (3.1) can
be simplified to a linear program Vanderbei [2001]. Noiselet measurement
matrices involve complex numbers and thus a linear program can not solve
problem (3.1) Coifman et al. [2001]. Convex optimization problem (3.1) with
complex values can be cast to a Second Order Cone Program (SOCP) Winter
et al. [2005].

Sparsity and incoherence

Accurate signal recovery is possible when the number of measurements fol-
lows

m > C · S · logN · µ2(Φ,Ψ) (3.2)

34CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

where C > 1 is a small real constant Candes and Romberg [2007].

From Equation (3.2) it is clear why sparsity and incoherence is important
in CS. In order to efficiently incorporate CS theory in a specific sampling
scenario, we need the measurement and compressive bases to be incoherent as
maximum as possible to decrease parameter µ in (3.2). Moreover compressive
basis must be able to effectively compress the signal f to decrease S in (3.2).
When these two preconditions hold for a certain sampling configuration, it is
possible to recover the signal f from m measurements where m can be much
smaller than the dimension of the original signal Candes and Tao [2006].

Random measurements

Interestingly, random matrices such as a Gaussian matrix with independent
and identically distributed (i.i.d.) entries from a N (0, 1) have low coherence
with any fixed orthonormal basis Candes and Romberg [2007]. The elements
of such a random matrix can be calculated on the fly using a pseudo-random
number generator which is common between SNs and the sink. When the
normal random generator at every SN is initialized by the id-number of that
SN, the sink can also reproduce the measurement matrix. Note that in this
case, there is no need for a centralized control to update the measurement
matrix and the values of the measurement matrix are not needed to be stored
inside the SN. Therefore, using random measurement matrices gives us more
flexibility and requires less memory on the SNs. Instead, because of slightly
more coherence between random measurement matrix and the fixed compres-
sive basis, the number of required measurements m will increase according
to (3.2).

Noisy measurements

CS is also very stable against noisy measurement and can also handle signals
that are not strictly sparse but compressible. It is a very idealistic condition
being able to transform signal f to a strictly sparse vector in Ψ-domain.
Instead, f is usually transformed into a compressible form with many near
zero entries. Candes et al. have shown that if ‖x − xS‖2< ε for some
integer S < N and a small real constant ε, then the recovery error by solving
problem (3.1) will be in order of O(ε). Similarly, in a noisy environment
if the measurement vector is added by an Additive White Gaussian Noise
(AWGN) ∼ N (0, σ2), the recovery error is bounded by O(σ2) Candes et al.
[2006a,b].

3.3. COMPRESSIVE SENSING FOR WSNS 35

3.3 Compressive Sensing for WSNs

In this section, we review the major adaptations of the CS theory for a
distributed implementation in WSNs.

3.3.1 Compressive Wireless Sensing

Bajwa et al. Bajwa et al. [2006] first proposed an implementation of CS for
WSNs which was based on analog data communication. Although the real-
ization of their abstract idea is merely feasible, their model provides a simple
technique to acquire compressive measurements from a WSN. Therefore, we
begin the study of major CS implementations for WSNs first by introducing
Compressive Wireless Sensing (CWS).

Calculations at the sensor nodes

Let Φ be a measurement basis and Φm is a measurement matrix that has
m rows and N columns. Here N is the total number of SNs and m is the
required number of compressive measurements. m can be determined by
Equation (3.2) according to the compressibility level of the spatial signal.
The measurement matrix Φm is made of m randomly selected basis vectors
from the measurement basis Φ. When we are using random Gaussian ba-
sis, Φm can be simply populated by random real numbers from a Gaussian
distribution with zero mean and unit variance. Either using random mea-
surements calculated on the fly, or using embedded measurement vectors,
we have to calculate the result of Φmf . Here f ∈ RN is the spatial signal
with a dimension equal to the number of SNs. The matrix multiplication
y = Φmf is actually a linear measurement process which must be performed
in a distributed manner. The result will be the vector y ∈ Rm which has
lower dimension that the original signal. The CS recovery algorithm then
has to recover the original vector f from y.

Accumulation through network coding

To understand how CWS works, we consider the simplest case where all
SNs can directly communicate with the sink. We know that Φm has N
columns. Suppose each SN embeds one column of Φ. When using random
measurements, no embedded data is required. The ith column of Φm can be
generated on the fly. The only requirement here is that the entries of Φm can
be regenerated at the sink. Therefore, either the columns of Φ are embedded
into SNs before deployment of the WSN, or SNs produce their corresponding

36CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

column using a pseudo-random Gaussian random number generator which
is known to the sink. The same Φm can be then reproduced at the sink
using the same algorithm and a predetermined seed. When the SNs initialize
the pseudo-random Gaussian random number generator with their own id,
the whole sequences of random entries of the measurement matrix can be
regenerated at each sampling period.

All SNs record the value of the intended physical phenomena at the same
time. This means that the nodes have synchronized clocks (we will discuss
later the disadvantages of the need for synchronized clocks). Each SN then
multiplies its recorded real value with its own column vector which is part
of the measurement matrix Φm. We set wi = fiφi where fi is the value
recorded by that SN and φi is the ith vector of Φm. When all SNs have done
the calculation of their own vector multiplication, the vector wi will be ready
to be transmitted from each SN. If all the SNs transmit their own wi at the
same time, the result of matrix multiplication y = Φmf will be accumulated
at the sink. Figure 3.1 illustrates this setup. CWS assumes that the SNs
can be perfectly synchronized such that the measurement vector y can be
accurately accumulated at the sink.

Extension to tree topology

The accumulation is actually taking place by adding vectors of the same size
across the WSN. Therefore, it can be done by any order since the addition
is a commutative operation. This property of CS measurement has a very
important advantage. Due to the commutative property of addition, accumu-
lation can be done in any order. Therefore, the same approach as discussed
above can be applied to a star topology, chain topology or more complex tree
topologies. As long as the tree routing is applied, accumulation can be done
over many levels. Thus, we can extend the very simple topology in Figure
3.1 to a multi-hop WSN depicted in 3.2.

Limitation of CWS

The CWS model in its very primary form which is based on synchronized
superposition of signals is hard to implement with current hardware of to-
day’s typical SNs. However it has interesting attributes in its abstract form.
Note that the accumulation of the vectors can be done on the air and with-
out further computation by the SNs. In the star topology the accumulation
takes place instantly when all SNs have transmitted their own calculated vec-
tor. Today’s common wireless Medium Access Control (MAC) protocols for
WSNs are all based on detecting and avoiding collision. Therefore, special

3.3. COMPRESSIVE SENSING FOR WSNS 37

Φm[1,1]

Φm[2,1]

Φm[3,1]
.
.
.

Φm[m ,1]

Sensor Node 1

f 1

f 1Φm[1,1]

f 1Φm[2,1]

f 1Φm[3,1]

.

.

.

f 1Φm[m ,1]

.

.

.

Φm[1,N]

Φm[2,N]

Φm[3,N]
.
.
.

Φm[m , N]

f N

f NΦm[1,N]

f NΦm[2,N]

f NΦm[3,N]

.

.

.

f NΦm[m , N]

Sensor Node N

Sink

∑
i=1

i=N

f iΦm[1,i]

.

.

.

∑
i=1

i=N

f iΦm[2, i]

∑
i=1

i=N

f iΦm[m ,i]

y=Φm f

Figure 3.1: CWS in a WSN with star topology

38CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

SN 1

Cluster Head 1

∑
i=1

k1

f im[1,i]

.

.

.

∑
i=1

k1

f im[m ,i]

SN k
1

.

.

.

∑
i=1

i=N

f iΦm[1,i]

.

.

.

∑
i=1

i=N

f iΦm[2, i]

∑
i=1

i=N

f iΦm[m ,i]

y=Φm f

SN k
1
+1

Cluster Head 2

SN k
2

.

.

.

.

.

.

SN k
l
+1

Cluster Head l
SN n

.

.

.

∑
i=k11

k2

f im[1, i]

.

.

.

∑
i=k11

k2

f im[m , i]

∑
i=k l1

N

f im[1, i]

.

.

.

∑
i=k l+1

N

f iΦm[m , i]

Sink

Figure 3.2: CWS in a multi-hop WSN with tree topology

3.3. COMPRESSIVE SENSING FOR WSNS 39

hardware and radio modules must be developed that allows signal collision
and superposition to realize an implementation of CWS.

There has been a large body of continuous work for an efficient MAC
protocol that faces minimum collisions. In contrast to all these achievements,
CWS requires a synchronized collision. Implementing a communication layer
with perfectly synchronized collisions is even more challenging than making a
wireless MAC protocol with minimum collisions. This topic can be considered
as an open area in applying CS theory in WSNs.

3.3.2 Compressive Data Gathering

A more practical implementation of the CWS concept is introduced by Luo
et al. in Compressive Data Gathering (CDG) for large-scale WSNs Luo et al.
[2010, 2009]. Using overcomplete dictionaries Donoho et al. [2006] in solving
(3.1), CDG is also able to tackle abnormal sensor readings and cope with
unpredicted events in the operational environment of WSN. CDG models
the abstract data aggregation discussed in CWS as message passing through
the WSN. Therefore, we do not discuss the data transfer as analog signals any
more. Instead, data transmission is modeled as messages that are transferred
over a digital wireless communication channel. CDG in its heart remains
very much like CWS, while paying attention to implementation details and
practicality of its model.

Effect of abnormal sensor readings

Figure 3.3 shows an example of the effect of the abnormal samples on the
compressibility of an illustrative signal. Note that the signal is synthetically
generated and is not based on real data. Therefore, it does not contain a unit
for its values. The Y-axis is unit-less and the X axis indicates the sample
index in signal vector or coefficient index in its transformed vector. Figure
3.3(a) shows the original signal which is sparse in DCT as can be seen in
Figure 3.3(b). In Figure 3.3(c) we see the same signal with two abnormal
sensor readings. The values of those two samples are either too large or
too low compared to the normal sample values. Figure 3.3(d) shows the
DCT transform of the abnormal signal. Obviously the abnormal signal is
not compressible under DCT. This violates all of the preconditions required
for operation of the traditional CS. Fortunately, there is a solution to this
problem by using over-complete dictionaries Donoho et al. [2006].

40CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

0 20 40 60 80 100 1200.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) DCT transform of original signal

0 20 40 60 80 100 1200.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
(a) Original signal

0 20 40 60 80 100 1200.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
(c) Original signal with abnormal readings

0 20 40 60 80 100 120

0.5

0.0

0.5

1.0

1.5
(d) DCT transform of abnormal signal

Figure 3.3: Effect of abnormal readings on the DCT projection of an illus-
trative signal (magnitude applies to any physical unit)

3.3. COMPRESSIVE SENSING FOR WSNS 41

Over-complete compressive basis

CDG proposes the use of over-complete dictionaries to detect abnormal sen-
sor readings. Assume f is the spatial signal vector that may have been
contaminated with abnormal readings. Remember that we assume that the
abnormal readings in the signal are sparse, otherwise it is not possible to re-
cover a heavily distorted signal by any efficient data acquisition mechanism.
We can decompose the vector f into two vectors:

f = f0 + ds (3.3)

where f0 is the signal without abnormal sensor readings which is sparse or
compressible in the compressive basis Ψ and ds contains the deviated values
of the abnormal readings. The vector ds is supposed to be sparse since
the abnormal sensor readings are rare and sporadic. Therefore, ds is sparse
in space domain. The original signal vector f can be then represented as
the linear combination of two sparse signals and we can express the signal
acquisition by:

f = Ψx0 + I xs (3.4)

where x0 is the sparse projection of the normal component f0 on the Ψ-
domain. Vector ds is in fact equal to xs since ds is already sparse in the
space domain. I is the identity matrix, and hence, ds = xs = I xs. It
is possible to project the signal f on a single over-complete basis. First
we need to construct an augmented transformation matrix into the over-
complete system named Ψ′. Assume that the matrix Ψ′ is made by putting
the matrices Ψ and I next to each other. Formally speaking, Ψ′ = [ΨI]
which has now N rows and 2N columns.

Donoho et al. have shown the possibility of stable recovery of sparse
signals under an over-complete system Donoho et al. [2006]. They have also
proved that their method is effective for measurements contaminated with
noise. The recovery takes place using a convex optimization similar to the
typical CS recovery method. The recovery error in presence of noise would
be in the order of the additive noise magnitude. Since we are going to search
for a solution in an augmented dictionary, our target vector has now the
dimension of 2N instead of N . Note that f ∈ RN can be represented by a
sparse projection on the Ψ′ basis:

f = Ψ′x , x = [x0
Txs

T]T (3.5)

Here you see that x has a dimension of 2N and is made by concatenating xs
and x0 on top of each other.

42CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

Detecting abnormal sensor readings

Now we apply CS reconstruction as explained in Theorem 1 for this new pair
of signals and measurements. The measurement vector can be calculated
using a random measurement matrix as before. The estimated solution vector
will be x̂ = [x̂T0 x̂Ts]T . The original signal can be estimated by calculating
f̂0 = Ψx̂0. Again the recovery error depends on the number of measurements
m and the noise which is present in the communication channel. CDG is also
able to detect the location of abnormal events in the WSN. After solving the
convex optimization problem (3.1) for the augmented system and finding the
solution x̂ = [x̂T0 x̂Ts]T . The significant nonzero elements in x̂s determine the
position of the events.

3.3.3 Distributed Compressed Sensing

Wakin et al. in Distributed Compressed Sensing (DCS) give a model of
WSN with each node having direct link to the sink Wakin et al. [2005].
DCS considers not only the spatial correlation of a distributed signal but
also the temporal correlation over a period of time. Therefore, DCS can
be regarded as a spatiotemporal sampling technique. The spatiotemporal
signal is modeled as combination of several temporal signals. DCS assumes
two components are contributing to the spatiotemporal signal recorded by
the WSN. The first component is the common component which is sensed
overall by SNs. For the second component individual SNs can contribute
their own signals which can be sparse. According to this configuration, DCS
defines three Joint Sparsity Models (JSMs) namely JSM-1, JSM-2 and JSM-3
which will be briefly explained later. Suppose there are J SNs each of which
are producing a temporal signal fj with dimension N . This means J SNs are
producing N samples in every sampling period. We assume that there is a
fixed Ψ-basis for RN on which the signals can be projected sparsely. Now,
we explain attributes of the three JSM models.

JSM-1: Sparse common component + innovations

In this model, all of the temporal signals share a common component which is
compressible in Ψ-domain while every SN may contribute a sparse innovation
component:

fj = zC + zj , j ∈ 1, 2, ..., J (3.6)

such that

zC = ΨθC , ‖θC‖0= K and zj = Ψ‖θj‖0 , ‖θj‖0= Kj (3.7)

3.3. COMPRESSIVE SENSING FOR WSNS 43

Note that the operator ‖·‖0 denotes the number of nonzero elements in it
operand vector. In the above formula, zC is the common component which
has the K-sparse representation of θC . Every SN has its own innovation zj
which is Kj-sparse in Ψ-domain. Note that here Ψ is an N ×N orthonormal
matrix. This model is probably the most realizable WSNs. Imagine a WSN
that is deployed in an outdoor environment to record the micro-climate data
such as ambient air temperature. Overall, nearly a constant temperature
is sensed which is close to the average. There might be some more struc-
tures present in the signal values over a geographical area, but the signal
is expected to be temporally compressible. In some spots of the operational
environment, there is a temperature difference because of local events or con-
ditions like shades, flow of water, etc. Therefore, the JSM-1 model is suitable
for modeling this signal.

JSM-2: Common sparse supports

In this model, signals recorded by all SNs can be projected sparsely on a
single fixed orthonormal basis, but the coefficients may differ for every SN.
Formally speaking this means that

fj = Ψθj , j ∈ 1, 2, 3, ..., J (3.8)

where each signal vector θj can be projected only on the same subset of
basis vectors Ω ⊂ 1, 2, 3, ..., N such that |Ω| = K. Therefore, all temporal
signals recorded by SNs, have a sparsity of degree K, but the amplitude of
coefficients may differ for each SN. This model is useful in situations such
as in acoustic sensor networks where all signals have the same support in
frequency domain, but may experience phase shifts and attenuations due to
the signal propagation.

JSM-3: Non-sparse common + sparse innovations

This model can be regarded as an extension to JSM-1 since it does not require
the common signal to be sparse in the Ψ-domain, however the innovations
by individual SNs is still sparse:

fj = zC + zj , j ∈ 1, 2, ...J (3.9)

zC = ΨθC and zj = Ψθj , ‖θ‖0= Kj. (3.10)

One application of this model can be in a distributed deployment of cameras.
The overall picture can be presented as a reference picture with some small

44CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

innovations sensed by different cameras. These differences from the base pic-
ture depend on the position of each camera. Wakin et al. has also proposed
a new algorithm especially developed for joint signal recovery.

3.3.4 Compressive Sensing over ZigBee Networks

ZigBee is a high level wireless communication specification based on IEEE
802.15.4 standard Caione et al. [2010]. It is widely used in today’s SN plat-
forms. As we mentioned before, the CS variants designed for WSN require
further implementation adaptations to become suitable for the typical hard-
ware and software platform that is currently being used. CWS requires ana-
log signal superposition, and hence, perfect time synchronization between
nodes. Furthermore, it does not yet consider the effect of multi-path fad-
ing and other propagation noises. CDG follows a more practical approach,
though it does not target any standard and established communication pro-
tocol or SN hardware platform. DCS and JSM models are best suited for star
topologies where each node can transmit its data directly to the sink. Sim-
ilar to CWS, a time synchronized signal superposition is preferred for DCS,
otherwise Time Division Multiple Access (TDMA) methods will become very
time consuming.

Raw sampling at leaf nodes

Caione et al. proposed a simple and yet very effective improvement technique
for the operation of a CS-based signal acquisition for WSNs Caione et al.
[2010]. In the previous section, we have seen that when using CS, the number
of data items to be transmitted by each SN is equal to m and hence the energy
consumption is balanced. This means that for a leaf node that needs to send
only one value, m transmissions must be performed. We know that most of
the nodes in a tree structure belong to the lower levels of the tree (levels near
to the leaves). Therefore, a majority of nodes are sending data much more
than the useful information that they produce. Caione et al. introduced a
Hybrid CS method for WSNs in which two operations are performed by the
SNs:

• Pack and Forward (PF): the SN packs its own recorded data along with
the data received from its children SNs.

• CS measurement: the SN accumulates its data and the data that has
been received from its children using CS measurement techniques. It
then sends the CS measurement vector to its parent node.

3.4. SUMMARY 45

All SNs follow two rules throughout acquiring, packing, forward and accu-
mulation of data:

• A SN only applies CS measurement accumulation method, when the
length of the resulting message is less that when using PF. In other
words, each node decides whether to use PF or CS depending on the
length of the outgoing message. This way the SNs minimize the energy
consumed during radio transmission.

• When the message received by a SN is a CS measurement, the SN is
obligated to apply the CS accumulation process. In other words, when
the message changes its type from PF to CS, then it continues to be in
CS form all the way up through the network till it reaches the sink.

These two simple rules and operations help to reduce the overall energy
consumption of SNs. However, the energy consumption is not balanced any
more. One drawback of the discussed hybrid CS scheme is that there is still
the possibility of network partitioning, since the nodes near to the sink may
get exhausted and deplete earlier than leaf SNs.

3.4 Summary

In this chapter we have explained the fundamentals of the emerging theory
of CS and its applications in WSNs. We have realized that CS provides a
very flexible, tunable, resilient and yet efficient sampling method for WSNs.
We have listed major advantages of CS over transform coding or other signal
compression methods which. CS guarantees a balanced energy consumption
by all of the SNs. This important property avoids network partitioning and
improves overall resource management of the whole network. It is easily
implementable on strict hardware or software platforms of today’s typical
SNs. Its resilience against noise and packet loss, makes it very suitable for
the harsh operational environment of WSNs.

We have reviewed most important variants of CS which are especially
devised for WSNs. In recent years, with the progress of the CS theory in
WSNs area, more and more realistic applications of CS are presented. CWS
was one of the first variants of CS for WSNs. Though it lacks consideration
of hardware implementability, it offers a novel approach which openes a new
avenue of research in the area of signal acquisition for WSNs. CDG which
is directly based on CWS model, enabled detection of unexpected events.
Event detection is a crucial requirement of many critical WSN applications.

DCS with its JSM models has categorized a wide range of applications
for CS in WSNs. DCS provided an efficient solution to the problem of joint

46CHAPTER 3. COMPRESSIVE SAMPLING IN SENSOR NETWORKS

signal recovery. DCS has many applications in different distributed sampling
scenarios, like WSN with star topology, camera arrays, acoustic localization,
etc. However, it is not very suitable for multi-hop WSNs. Hybrid CS is
a simple and yet effective solution for multi-hop WSNs consisting of very
resource-limited SNs. It is one of the most recent improvements to typical
CS implementation in WSNs. The only disadvantage of using Hybrid CS is
the unbalanced energy consumption that may lead to network partitioning.

Chapter 4

Reordering for Better
Compressibility

In this chapter, we introduce our enhancement to CS in WSN by finding a
better labeling (indexing) of the SNs. Our improvement does not affect the
basics of CS or its WSN implementation. Consequently, the state of the art
techniques can be combined with the methods introduced here. We show
that if the signal vector is viewed under a reordering (mapping) function, it
is possible to obtain a more compressible signal, i.e., a signal which is sparser
in a certain domain such as DCT. Our work offers a new approach to the
WSN sampling problem by enhancing the performance of CS.

The major advantages of our proposed technique are:

• A polynomial-time algorithm that finds a permutation of samples of the
discrete signal vector f , so that the linear transform of f in frequency
domain is sparser than the original ordering of samples.

• A CWS model which is capable of adapting itself to the environment
changes. When the state of the environment does not change quickly,
our model is capable of reducing spatial sampling rate through con-
structing a more compressible view of the spatial signal.

In addition to reconstructing the original signal from compressively sam-
pled data, the sink has a second responsibility in our enhanced compressive
sampling scheme: Computing sub-optimal reordering of the SNs with sparser
DCT representation. We assume the sink to be powerful in processing, i.e.,
computation and storage.

47

48 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

4.1 Motivation for reordering

In most distributed CS applications, sampling and sparse bases are deter-
mined prior to the deployment of the sensor network. Therefore, according
to Equation 3.2, µ remains constant because compressive and measurement
domains, namely the bases Φ and Ψ do not change after network deploy-
ment. Therefore, sparsity factor S is the only parameter that is effective
on the minimum number of required measurements m. If we succeed to de-
crease S, then we can reconstruct the original signal from fewer samples,
saving valuable bandwidth and SNs energy.

4.1.1 Conventional indexing of SNs

In some sampling problems such as WSNs, the ordering of the samples is not
dictated by an independent phenomenon. Mostly, we can assign the value
sensed by one sensor to the first signal element and the other to the second
one, and so on. In this chapter, we focuses on such conditions where we can
set the sampling order.

It is important to emphasize that the position and order of SNs are dif-
ferent aspects. Reordering only takes place at the sink and all its required
computations are done outside the WSN. That’s why our proposed model
does not add overhead to the WSN nodes. In simple words, reordering is an
alternative view of our WSN signal vector under which we can apply CS more
efficiently. It does not require to relocate the SNs or change their positions.

Less measurement requirements after proper reordering

Our enhancement works by improving compressibility, that means increasing
sparsity of f under the Ψ-transform, which means decreasing S in Equation
3.2. Then, from Equation 3.2 it implies that a view of the signal that makes it
appear to be more compressible, leads to fewer number of compressive mea-
surements required for signal reconstruction. Lower compressive sampling
rate means more efficient bandwidth usage and decreased energy consump-
tion, and hence, prolonging WSN lifetime.

Energy consumption by the SNs is directly related to data transmission
rate and number of compressive measurements, but it is inversely related to
compressibility of the signal that is sensed by the WSN. Compressibility is
increased by finding a mapping under which the WSN signal f is sparser in
Ψ-domain.

4.2. PROBLEM FORMULATION 49

4.2 Problem formulation

WSN can operate in two modes that we name full measurement mode or
simply full mode and sub-measurement mode. Let Se be the expected value
for the sparsity or compressibility of the spatial signal without applying the
reordering of the SNs. In full mode, from our previous knowledge or estima-
tion of Se in the operational environment, we determine the expected number
of measurements me by substituting S by Se in Equation 3.2.

First me measurements are acquired. Measurement acquisition takes
place by any suitable implementation of CS for WSN, such as CWS, CDG
and other techniques introduced in Chapter 3. In sub-measurement mode,
we calculate a suboptimal reordering of the signal at the sink. Then the sink
broadcasts a new version of the sampling matrix Φm×n with fewer rows, as
the minimum required samples (m) is reduced because signal’s sparsity is
improved through our reordering.

Without loosing generality, we limit our configuration to the case where
Φ is an orthogonal Gaussian random basis and Ψ to be the Fourier domain.
Our conclusions will also apply to any other pair of orthogonal incoherent
sampling and sparse bases. One can apply this method to other bases such
DCT or wavelets. In fact, the method discussed here applies to any other
transformation (projection) bases which can be presented in matrix multipli-
cation form. For example one can set Ψ to be the DCT matrix, and find the
sub-optimal reordering as described by our method detailed in this section.

The elements (samples) of signal f are initially ordered by SNs’ ids. Our
objective is to find a permutation under which the Ψ-transform of f is sparser.

4.2.1 Combinatorial problem statement

A permuted function π is defined as a one-to-one mapping from a set of
natural numbers to a permuted set of the same numbers. Here, we consider
the case where the set {1, 2, 3, . . . , n} is mapped to to a permutation of the
same elements.

π : {1, 2, . . . , n} → {1, 2, . . . , n}
∀i, j ∈ {1, 2, . . . , n} : i = j ⇒ π(i) = π(j)

∀i ∈ 1, 2, . . . , n : ∃j ∈ {1, 2, . . . , n} π(j) = π(i)

(4.1)

Suppose fπ is a reordered version of signal f according to the permutation
function π. That means, fπ has the same samples as f , though in a different

50 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

order.

∀i ∈ {1, 2, . . . , n} fπ[i] = f [π(i)] (4.2)

Let Π be the set of all possible permutation functions defined on set
{1, 2, . . . , n}. Apparently, the size of set Π is n!, i.e., |Π| = n!. The optimal
permutation function for signal f is the permutation function π∗ that gives
the sparsest vector under a Ψ-transform.

∀π ∈ Π π 6= π∗ Ψfπ∗ is sparser than Ψfπ (4.3)

4.2.2 Condensing the energy of the signal

Fourier domain.
The inverse projection of the unit vectors in the Fourier domain to the

time/space domain, gives us some vectors in the sampling domain. If we
find an order of the samples that best matches one of these basis vectors,
we can expect that the Discrete Fourier Transform (DFT) or DCT of the
optimally reordered sample vector has most of its energy concentrated on a
few Fourier coefficients. If we set Ψ to be the DFT or DCT matrix, then the
inverse projection basis vectors in the sampling domain will be the columns
of Ψ−1 (this is also valid for any other transform which can be represented
as matrix multiplication of an orthonormal transformation matrix). For each
basis vector, we can find the optimal permutation of the samples, resulting
in n different permutation functions for each of the n basis vectors. Among
these we choose the permutation that matches a basis vector better than the
others.

In our model, f is the discrete spatial vector whose each element is the
real value sensed by corresponding SN. Initially, the elements of f are ordered
simply by SNs id’s. Our objective is to find a permutation π∗ under which
Ψ-transform of f is sparser. Now for each basis vector f we construct a
difference matrix ∆ as below:

∆n×n =

|f1 − ψ1| |f1 − ψ2| · · · |f1 − ψn|
|f2 − ψ1| |f2 − ψ2| · · · |f2 − ψn|

...
. . .

...
|fn − ψ1| |fn − ψ2| · · · |fn − ψn|

 (4.4)

We define two vectors with least difference as most matching. Accord-
ing to this definition, finding π∗ in Equation 4.3 is equivalent to finding n
elements of ∆ with minimum sum, such that no two of them are on the
same row or column. Note that, we consider only near-optimality of the

4.3. REORDERING FOR ENHANCED CS IN WSNS 51

permutation and do not claim finding the globally optimal solution. As our
evaluations show, our nearly-optimal reordering also leads to a significantly
more compressible signal.

4.3 Reordering for enhanced CS in WSNs

In the following, we introduce a simple greedy algorithm that finds a permu-
tation of the n elements of f in O(n2 log n) time. Next, we show how to use
our algorithm to improve compressibility, and hence, the performance of CS
in WSNs.

4.3.1 Greedy approximate solution

Here we introduce our algorithm (Algorithm 1) for finding a sub-optimal
permutation of the samples, called the Sub-Optimal Permutation (SOPerm).
Note that this algorithm only compares two unit vectors (or two vectors of the
same scale) and outputs a sub-optimal permutation to project the first vector
on the second. Here ψ’s are the unit vectors of the sparse representation
domain and f is our discrete signal vector. The basis vectors (ψ’s) are fixed
and we have to find a permutation for f which is sub-optimal.

Note that Algorithm 1 requires the vectors f and ψ to be normalized
in order to have the same scale. Normalization is necessary to eliminate
the effects of signal magnitude on the differences between signal elements
and basis vector components. Obviously, an optimal permutation found for
normalized versions of f and ψ is also optimal for the original vectors f and
ψ.

1: for i = 1 .. n do
2: for j = 1 .. n do
3: ∆i,j ← |fi − ψj|
4: end for
5: end for
6: C ← ∅, R← ∅, σ ← 0
7: for k = 1 .. n do
8: Select i ∈ {1, 2, . . . , n} −R and

j ∈ {1, 2, . . . , n} − C, so that
∆i,j is minimum among all i and j

9: R← R ∪ {i}, C ← C ∪ {j}, σ ← σ + ∆i,j

10: πj = i
11: end for

Algorithm 1: Sub-Optimal Permutation (SOPerm)

52 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

SOPerm first constructs the matrix ∆. Then, it runs n steps and at
each step greedily selects the element which is not on a row or column of a
previously selected element and the addition of that element to the sum of
previously selected elements is minimum. This is equal to adding the smallest
non-constrained element of ∆, because all the elements of ∆ are positive real
numbers.

In Algorithm 1, Lines 1-5 constructs the matrix ∆. Line 6 initializes the
set of visited rows and columns (R and C respectively) to null. Our greedy
approach is implemented in Lines 7-11. At each iteration of the for-loop, an
element at the ith row and jth column of ∆ with minimum value is selected,
such that i does not exist in R and j does not exist in C. At Line 9 inside the
for-loop, the ith row and the jth column are marked as visited by appending
them to the sets R and C respectively.

Because the spatial DFT/DCT of a natural environment is expected to
have only low frequencies, we begin our search for the sub-optimal permuta-
tion from low frequency basis vectors. Our simulations justify this hypothesis,
as searching in higher frequencies resulted no better permutations than the
one found among low frequencies. Therefore, to decrease processing time our
SOPerm algorithm is run against lower frequency basis vectors.

4.4 Application of reordering in CS-based

WSNs

So far we have presented a practical method to redefine a model of the WSN
under which we can improve signal sparsity, and hence, decrease compressive
sampling rate. The SOPerm algorithm will be implemented on the sink
(outside the WSN). SOPerm tries to find a reordering of SNs that leads to a
sparser discrete spatial signal. Consider that the spatial CS takes place on a
regular basis every T time units (selecting a proper T that is suitable for the
dynamics of the signal and characteristics of the operational environment is
another important problem that is out of scope of this text).

4.4.1 Adapting the permutation

At the beginning, we set the minimum required samples for reconstruction,
to be me calculated according to Equation 3.2 with presumption of signal f
being Se-sparse. SOPerm is then run for the reconstructed signal f∗ which
is expected to be almost exactly equal to f .

SOPerm calculates a sub-optimal permutation π∗ under which vector f is
S-sparse and S < Se. For the next sampling round, we use this permutation

4.4. APPLICATION OF REORDERING IN CS-BASED WSNS 53

and sample at a rate of at leastm = C·µ2(Φ,Ψ)·S·log n < me. Given that π is
still a good reordering for the next T time units because the environment does
not change so quickly over time. We emphasize again that our model applies
only to WSNs with fixed SNs in an environment with moderate changes
over time. Our reordering solution assumes that drastic perturbations in the
signal value do not occur. We will discuss scenarios with more perturbations
especially in Chapters 5 and 6.

4.4.2 Reusing the permutations over multiple sam-
pling rounds

By taking slightly more measurements, i. e., m+ r measurements such that
r � m, more certainty can be gained that we acquire enough compressive
samples to reconstruct the original signal. In the subsequent sampling rounds
and using our new reordering, we can reconstruct the spatial signal f from
fewer measurements. The whole process is repeated for the next sampling
round. The amount of data is then reduced because the new permutation of
the samples has more compressibility.

Figure 4.1 illustrates the overall architecture of our adaptive reordering
model. Our model is in fact a closed-loop system that applies CWS every
T time units and updates its internal model according to the changes in
the operational environment. Because m changes over time, the sampling
matrix Φ has to be broadcast to all SNs before each sampling round. As an
alternative, one can find a way to publish only the integer number m and
then SNs shall compute their own individual columns of Φ according to a
predetermined seed for generating a pseudo-random sampling matrix. The
second method requires much less broadcasting and is particularly suitable
for WSNs with randomized measurement matrices.

4.4.3 Iterative feedback and reordering

As illustrated in Figure 4.1, our approach starts with a presumption about
the operational environment and begins its CWS operation normally in full
sampling mode. At first no reordering is performed, i.e., π = (1, 2, 3, . . . , n).
After reconstructing the signal from the measurement vector, we apply SOP-
erm to improve signal sparsity under the newly calculated reordering π∗. This
new permutation may lead to a sparser signal vector in the Ψ-domain. The
parameter η (see Figure 4.1) determines how many unit vectors from the
Ψ-basis are compared by the SOPerm algorithm.

As discussed in Section 4.2.2, a suboptimal permutation can be often
found among very first unit vectors of the Ψ-domain because the natural

54 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

CWS: Compute f=Φm×n distributively

Reconstruct f π
* from y

f* = (fπ*)π−1

For the first λ unit vectors ψ in the Ψ -domain,compute
[π ,σ]=SOPerm (f* ,ψ)

and select the permutation π* with minimum σ

π ← π*

S ← minimum k where ‖(Ψ f π *)k−Ψ f π *‖2<η

m ← C⋅μ2(Φ ,Ψ)⋅S⋅log (n)

S←Se , m ← me = C⋅μ2(Φ ,Ψ)⋅Se⋅log n
π←(1,2,3,…, n)

Figure 4.1: Iterative CWS and sample reordering

4.5. THE IMPACT OF SAMPLE REORDERING 55

phenomenon being sampled is expected to be projected to the lower frequency
coefficients in its Ψ-transform. The lower the parameter η, the faster our
approach computes sub-optimal reordering. The higher the parameter η, the
higher is the chance to find a better permutation. However, in search for
matching to unit basis vectors among high frequencies, it is less probable
to find a better permutation than the one we have found among the lower
frequencies.

Parameter σ > 0 is a threshold which controls that with how much preci-
sion we consider a signal to be sparse in Ψ-domain. The smaller the threshold
σ, the more accurate is our CWS reconstruction, but at the cost of higher
sampling rate. In each cycle, the current reconstructed state of the environ-
ment is displayed to the user by mapping back the elements of fπ∗ under the
inverse permutation indexing vector π−1:

f∗ = (f∗π)π−1 (4.5)

4.5 The impact of sample reordering

We perform simulations to evaluate our adaptive CS for WSN. After detailing
the settings, we present the evaluation results of our reordering algorithms.

4.5.1 Simulation environment

Our simulations are done in MATLAB. The simulation environment is de-
fined as a rectangular area where a set of SNs are randomly distributed. In
this simulation, we evaluate the impact of reordering on sparsity of the signal
and does not consider every details of the communication protocol. Our pro-
totype scripts are in fact numerical experiments that show how the sparsity
of the spatial signal is enhanced under reordering found by SOPerm.

We simulate the behavior of a natural environment and work with the
generated synthetic data. As a proof of concept, we consider the air tempera-
ture of individual points on a rectangular area. We can view the temperature
map of the environment as a 2-D gray-scale picture. To construct such a 2-D
image of the temperature map that behaves much like a real temperature map
we need to construct a picture whose pixel intensities do not vary sharply
along x or y axis.

The following steps show how we construct such a picture with smooth
variations of pixel intensity. At the first step, we paint all the pixels with
intensity 0. The second step is to set some points of the image to random
values other than zero. In our implementation of the environment simulator,

56 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

(a) Random points on the temperature
map

(b) Gaussian filter applied on (a)

Figure 4.2: Generating synthetic distributed signal

we choose some points on the image, and set them a random real number
chosen from a Gaussian random distribution with zero mean and variance
1.0. Finally, we apply a 2-D Gaussian filter on the resulting image.

Figure 4.2 depicts our method for a 64×64 image. Figure 4.2(a) shows the
random guiding points. Figure 4.2(b) shows the final simulated operational
environment after applying a Gaussian filter on Figure 4.2(a).

4.5.2 Impact of reordering on signal compressibility

SNs are distributed randomly on the surface of a temperature map like Figure
4.2(b). Signal vector f is composed of the intensity of the pixels located at the
points where SNs are situated. Our SOPerm algorithm gives us a reordering
of f such that its DCT transform is sparser. Note that in our numerical
experiments we have chosen DCT as our Ψ-domain for simplicity, and to
avoid dealing with imaginary parts of complex numbers.

Figure 4.3(a) shows the original discrete signal f of size 2000 composed of
the sensed temperature values according to permutation of samples ordered
by the original index (id) of the SNs. Figure 4.3(b) depicts the DCT trans-
form of the actual vector f . Then, we apply SOPerm on f with regard to the
first 20 unit basis vectors in the DCT system, and finally we choose the best
permutation among the 20 permutations found by the SOPerm. Let us call
the sub-optimal permutation as π∗.

Figure 4.4(a) shows the reordered vector fπ∗ computed by our SOPerm
algorithm and Figure 4.4(b) depicts its DCT transform. It is apparent that
fπ∗ is much sparser under the DCT domain than the original signal f . Note

4.5. THE IMPACT OF SAMPLE REORDERING 57

(a) Indexed by SN id’s (b) DCT transform

Figure 4.3: Amplitude of original synthetic signal and its DCT coefficients

(a) Sub-optimally permuted (b) DCT transform

Figure 4.4: Synthetic signal after reordering

58 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

that because the signal is synthetically generated and is not based on real
data of a physical phenomenon, the amplitude of the signal in the figures are
without unit.

4.5.3 Reordering of dynamic signals

Now, we show that the permutation computed for a discrete spatial signal
at a specific moment, can be still good enough for upcoming moments in
future, given the precondition that the state of the environment does not
change very quickly over time. To simulate such a dynamic environment,
we have upgraded our synthetic environment described in Section 4.5.1 to
simulate changes over time. By randomly moving the points (Figure 4.2(a))
over the image to different directions, we simulate the environment changes.
Simultaneously, we pass the image through a Gaussian filter to keep realistic-
appearing distribution of temperature that changes over time. Figure 4.5
shows the outcome of such a synthesized animated image.

In Figure 4.5, the points move around the rectangular image randomly
in each direction to maximum 10 pixels away. This small steps causes that
the environment does not change too quickly over time. In Figure 4.5, the
environment changes in the sequence specified by the directed arrows. We
have run the simulation for 64 time periods and the images shown in Figure
4.5 are actually 8 snapshots taken every 8 time units. During all this time,
200 SNs are compressively reporting the value of the physical parameter
under the points they are located. Therefore, at each time instance, we have
a different spatial signal vector. For each vector, we run SOPerm with regard
to DCT domain and find a sub-optimal permutation. We keep a history of
previously computed sub-optimal permutations. Figure 4.6 shows how old
permutations may still lead to sparser DCT transform of the signal at the
current time. Equivalently, this means that a suboptimal permutation at a
specific time is still sub-optimal for the following time instances.

Figure 4.6 shows that the sparsity of the signal with its normal order (de-
noted by �) stands always lower than suboptimal permuted signal vector and
the signal vector reordered according to previously calculated sub-optimal
permutations. At each time instance t, SOPerm is applied on the signal
vector ft and resulted πt as a permutation for the signal at time instance t.
Sparsity of (ft)πt is depicted with (*) on Figure 4.6.

The interesting result is that previously computed suboptimal permuta-
tions still make the signal sparser even for signal vectors at times later than
the instance they have been computed. However, as it can be seen on the
diagram, outdated permutations (previously computed πt where t < 30) do
not provide a good reordering anymore. As we approach closer to the present

4.5. THE IMPACT OF SAMPLE REORDERING 59

Figure 4.5: Simulating a dynamic synthesized signal varying over time

Figure 4.6: Sparsity variations over time

60 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

time (t > 30 till t = 64), we see that previously computed πt’s work as good
as the SOPerm permutation which is especially calculated for f64.

4.5.4 Impact of reordering on different WSNs

So far we have run our simulations only for a fixed WSN. Now we vary the
number of nodes for 200 ≤ n ≤ 800. We first construct synthetic simulated
operational environment. For each n, we randomly distribute n SNs over the
2D image representing our environment and acquire spatial signal f and then
we apply SOPerm on f to see how much improvement in sparsity we can gain.
For each of these WSNs, we run the same simulation 100 times and compare
the averaged sparsity of discrete spatial signal f with and without reordering
by SOPerm. Figure 4.7 depicts the result of this experiment. The exper-
iment is run with the Fourier domain as our Ψ-domain. This experiment
also illustrates the validity of SOPerm algorithm for transformation matrices
with imaginary elements. Because Fourier transform matrix contains both
real and imaginary values, we can expect a decrease in sampling rate equal
to half of the sparsity improvement illustrated in Figure 4.7. During the
test, the threshold η is set to 0.01. With the reordering resulted from SOP-
erm algorithm, environmental spatial signal stands always sparser than the
original signal that is not reordered using SOPerm. This overall experiment
shows the generality of our proposed model. This method can to be used
to enhance CWS and decrease sampling rate and energy consumption while
delivering the same quality of environmental signal reconstruction.

4.5. THE IMPACT OF SAMPLE REORDERING 61

Figure 4.7: Comparing sparsity of the spatial signal with and without re-
ordering

62 CHAPTER 4. REORDERING FOR BETTER COMPRESSIBILITY

Chapter 5

Spatiotemporal Compressive
Sampling

Several studies have shown that the sensor observations are both spatially
and temporally correlated Vuran et al. [2004]. Therefore, data acquisition
techniques can achieve better efficiency by exploiting redundancy and com-
pressing the raw data by considering spatial and temporal compression at
the same time.

Spatial CS for WSNs was proposed in Compressive Wireless Sensing
(CWS) Bajwa et al. [2006] and developed to Compressive Data Gathering
(CDG) Luo et al. [2010, 2009]. Distributed Compressive Sensing (DCS)
Duarte et al. [2006] extends CS-based spatial sampling techniques for WSNs
to temporal domain by considering temporal as well as spatial correlations
between sensor observations. As detailed in Section 3.3.3, DCS model is best
suited for WSNs with star topology.

We address two key shortcomings of the existing CS-based spatiotemporal
sampling techniques:

• Implementing DCS on multi-hop WSNs with tree topology leads to
unbalanced energy consumption and exhausted nodes.

• Existing spatiotemporal CS techniques for WSN usually consider non-
continuous sampling periods. Consequent intervals are treated sepa-
rately when acquiring measurements and recovering the signal.

We show that temporal correlation of overlapping sampling periods allows
for non-interruptive and more efficient measurement and signal recovery. We
enhance CS-based spatiotemporal sampling in multi-hop WSNs by:

1. A new spatiotemporal CS model that puts a balanced computation and
communication load on all SNs,

63

64 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

[1,1]

 [2,1]
.
.
.

[m ,1]
Sensor Node 1

f 1

f 1[1,1]

f 1[2,1]
.
.
.

f 1[m,1]

.

.

.

Sink

∑
i=1

i=n

f i[1,i]

.

.

.

∑
i=1

i=n

f i[2, i]

∑
i=1

i=n

f i[m ,i]

y= f

[1,n]

 [2,n]
.
.
.

[m ,n]

f n[1,n]

f n[2,n]
.
.
.

f n[m ,n]
Sensor Node n

f n

Figure 5.1: Distributed spatial sampling using CWS in star topology

2. Applying the concept of sampling window to streamline the process
of compressive measurement and signal reconstruction. Our proposed
method progressively acquires compressive measurements from the net-
work and reconstructs the signal from a set of consequent spatiotem-
poral measurements.

Recalling the concepts of Chapter 3, Figure 5.1 shows a simple configu-
ration in which n SNs are directly connected to the sink. The ith SN can
access the ith column of the matrix Φ. This column might be embedded
into the SN before deployment or calculated on the fly when using random
measurement matrices. Note that since addition is a commutative opera-
tion, the summation can be calculated in any order. For example, Figure 5.2
depicts the distributed computation of the measurement vector in a WSN
with chain topology. Evidently, any tree topology can be constructed by a
combination of star and chain topologies. Therefore, CWS can be applied to
any topology like star topology, or multi-hop WSNs pertaining tree or chain
topologies. The cloud shape enclosing the summation operator signifies that
any tree-based topology can compute the measurement vector y and deliver
it to the sink.

5.1. EXTENDING CS TO TEMPORAL DOMAIN 65

Sink

∑
i=1

i=n

f im[1,i]

.

.

.

∑
i=1

i=n

f im[2, i]

∑
i=1

i=n

f im[m ,i]

y= m f
m[1,n]
m[2,n]

.

.

.

m[m ,n]

SN n

f n

m[1,1]
m[2,1]

.

.

.

m[m ,1]

SN 1

f 1

m[1,2]
m[2,2]

.

.

.

m[m,2]

SN 2

f 2

···

Figure 5.2: Distributed spatial sampling using CWS in chain topology

5.1 Extending CS to temporal domain

If we take another look at Equation (3.2), we realize that CS is also very
efficient in number of required measurements. The number of required com-
pressive measurements, namely the parameter m in Equation (3.2), grows
logarithmically with the dimension of the signal f . This means that higher
performance of the CS-based methods is intrinsically visible for high dimen-
sional signals when N is large enough. In plain spatial CS methods like CWS,
the dimension of the spatial signal is equal to the number of SNs. Therefore,
simple spatial CS might be less useful for small- to medium-scale WSNs. If
we extend our model to the temporal domain, we can exploit the desirable
logarithmic cost growth even in small- and medium-scale WSNs by increas-
ing the temporal sampling rate of individual SNs. This is the chief motive
for our spatiotemporal method.

5.1.1 Block-diagonal measurement matrix in DCS

The DCS technique models jointly sparse signals in a distributed system and
introduces a new algorithm suited for recovering jointly-sparse signals. The
most important result of DCS is that, it is possible to recover a jointly sparse

66 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

signal from much fewer number of measurements than when applying CS
individually on every SN. It exploits spatial as well as temporal correlation
between samples to reduce the overall number of measurements. DCS differs
from CS not only in recovery algorithm, but also in the measurement matrix.
In DCS, the measurement matrix is a block-diagonal matrix composed of
several temporal measurement sub-matrices. DCS is perfect for WSNs with
star topology where every SN can directly send data to the sink. Assume
that the ith SN is recording ri samples every T time units and build up
a vector f ′i ∈ Rri . Temporal values of each SN produce such a discrete
temporal signal and all of them together form a discrete spatiotemporal signal
f ′ = [f ′1

tr f ′2
tr · · · f ′ntr]tr of size N = r1+r2+...+rn where [·]tr is the transpose

operator. The measurement vector y′ ∈ Rm is also composed of n subvectors
such that:

y′ :=

y′1
y′2
...

y′n

 =

Φ′1

Φ′2
. . .

Φ′n

f ′1
f ′2
...
f ′n

 (5.1)

where each Φ′i i ∈ {1, 2, · · · , n} has ri columns. Having

Φ′ :=

Φ′1

Φ′2
. . .

Φ′n

 and f ′ =

f ′1
f ′2
...
f ′n

 , (5.2)

The measurement operation can be formulated by y′ = Φ′f ′.

Unbalaned operation of DCS in multi-hop WSNs

Employing DCS in a multi-hop WSN, leads to unbalanced communication
overhead that eventually causes network partitioning and or coverage drops
due to the depletion of the batteries of more active nodes. Figure 5.3 shows
what happens when transmitting vector y′ in Equation (7.4) over a WSN with
chain topology. Every SN calculates its own component of the measurement
vector y′. In a multi-hop topology each component is treated separately as
a data packet. The message length increases as the data packets approach
the sink. New sub-vector components must be attached to the messages
received from previous hops. Apparently, DCS does not lead to a balanced
data acquisition mechanism for multi-hop WSNs.

5.1. EXTENDING CS TO TEMPORAL DOMAIN 67

SN 1 SN 2 SN 3 SN n . . . Sink
y '1

y '1
y '2

y '1
y '2
y '3

y '1
y ' 2
⋮
y 'n

Figure 5.3: Measurement mechanism of DCS in multi-hop WSNs

5.1.2 Balanced spatiotemporal CS for multi-hop
WSNs

Yap et al. have shown that block-diagonal random measurement matrices
can perform as good as dense random measurement matrices in CS signal
acquisition and recovery Yap et al. [2011]. Similar to DCS, we also use a
block-diagonal measurement matrix. However, we propose a different model
for spatiotemporal signals and a new structure of the measurement matrix.
Let Φt and ft ∈ Rn denote the measurement matrix and the spatial signal
at time t, respectively. The measurement vector at time t will be yt =
Φtft. We perform the measurement process T times and then recover the
spatiotemporal signal [f1

tr f2
tr · · · fT tr]tr from υ such that:

υ :=

y1

y2
...

yT

 =

Φ1

Φ2

. . .

ΦT

f1
f2
...
fT

 (5.3)

where for every 1 ≤ t ≤ T , Φt has mt rows and n columns.
There is a fundamental difference between measurement matrices in

Equation (5.2) and Equation (5.3). In Equation (5.2), each block Φ′i
i ∈ {1, 2, · · · , n} corresponds to a single SN sampling over a period T . In
Equation (5.3), each block Φt t ∈ {1, 2, · · · , T} corresponds to spatial sam-
ples acquired by all n SNs at time instance t. Note that in contrast to DCS,
each SN in our model transmits m = m1 + m2 + · · · + mT measurements
to deliver the measurement vector υ to the sink. Therefore, our model still
benefits from the balanced energy consumption like CWS. Remember from
Figure 5.3 that in the extreme case of chain topology, the number of trans-
missions in DCS increases in order of O(n2) as the measurements traverse
the network hop by hop to approach the sink.

We define the size of a WSN to be the number of its SNs and is denoted by
n. Nodes that do not record or sense the physical parameter of interest, are

68 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

not counted 1. As mentioned before, we denote by T the sampling interval of
a WSN , that is the period in which all the compressive spatiotemporal mea-
surements must be acquired from SNs. The spatiotemporal signal recovery
is done at the end of every sampling interval. Sampling rate of the ith SN is
denoted by ri and is equal to the number of samples to be recorded by the
ith SN in sampling interval T . Sampling rates of the SNs are not necessarily
equal and may differ from one SN to another one according to the temporal
accuracy required at the position where the SN is located.

Definition 7. Partial spatiotemporal signal recorded by the ith SN in every
sampling interval is a discrete signal vector gi composed of the values recorded
in a single sampling interval by the ith SN. Therefore, the jth entry of vector
gi in a specific sampling interval is the value recorded by the ith SN at time
instance (j/ri)T just after the beginning of that sampling interval.

The dimension of the spatiotemporal signal vector g ∈ RN is the number
of its entries, namely N , which is equal to the sum of the partial samples
by every SNs, i.e, N =

∑n
i=1 ri. Total spatiotemporal signal or simply the

spatiotemporal signal vector g ∈ RN is made by joining the partial spa-
tiotemporal signals (which are basically temporal signals) recorded by all
SNs. More formally, g = [gT1 gT2 gT3 . . .g

T
n]T .

Definition 8. Partial measurement matrix Φ
(i)
m for the ith SN is an m× ri

matrix consisting of the kth, k + 1st, k + 2nd, . . . , (k + ri − 1)th columns
of the measurement matrix Φm where k = 1 when i = 1 and k =

∑i−1
j=1 rj

otherwise.

Definition 9. Partial measurement vector yi ∈ Cm by the ith SN is equal to
Φ

(i)
m gi where Φ

(i)
m and gi are the partial measurement matrix for the ith SN and

partial spatiotemporal signal recorded by the ith SN according to Definitions
8 and 7 respectively.

Note that all the partial measurement vectors have the same dimension
and when added together, result in the linear transform Φmg. Formally
speaking,

∑n
i=1 yi =

∑n
i=1 Φ

(i)
m gi = y = Φmg. Our spatiotemporal model

still benefits from balanced energy consumption in CWS methodology. Com-
putation and memory complexity required by the ith SN is proportional to
its sampling rate ri. Similar to typical spatial CWS, if random measurement
matrices are applied here, memory complexity reduces to a constant when us-
ing a common pseudo-random number generator with a predetermined seed
known to sink.

1All nodes of a WSN are not necessarily sensor nodes, some of them may function as
message forwarding or administrative nodes.

5.1. EXTENDING CS TO TEMPORAL DOMAIN 69

Sensor Node 1

Sink

∑
i=1

i=N

g im[1,i]

.

.

.

∑
i=1

i=N

g im[2, i]

∑
i=1

i=N

g im[m ,i]

y= mg

m×r1

m
1

g1[1]

.

.

.

g1[2]

g1[r1]

r1×1

m×1

∑
i=1

r1

g 1[i]m
1

[1,i]

∑
i=1

r1

g 1[i]m
1

[3, i]
.
.
.

∑
i=1

r1

g 1[i]m
1

[m , i]

.

.

.

Sensor Node n

g n[1]

.

.

.m×rn

m
n

g n[2]

g n[rn]
r n×1

m×1

∑
i=1

r n

g n[i]m
n

[1,i]

∑
i=1

r n

g n[i]m
n

[3,i]
.
.
.

∑
i=1

r n

g n[i]m
n

[m , i]

Figure 5.4: Spatiotemporal sampling model for multi-hop WSN

Figure 5.4 illustrates our spatiotemporal CS model. Comparing to Figure
5.1 and Figure 5.2, we see that here the size of the WSN, namely n, is not
necessarily equal to the dimension of the spatiotemporal signal, namely N .
In fact, typical spatial CWS is a special case of our spatiotemporal CWS with
r1 = r2 = r3 = · · · = rn = 1. Every SN accumulates the values sampled by
the node itself and the received samples from children on the buffer location
pointed by the corresponding index of that sample. Thus the nodes do not
need to be exactly synchronized. When a measurement from lower levels
of the tree arrives with delay, it is still possible to search in buffer for its
corresponding index and accumulate its value with the correct location. A
buffer counter or index variable takes care of the number of accumulated
values. When it reaches the total number of samples per node plus the
number of its children, that buffer value is sent to the next hop. That buffer
entry will be then marked as free for future use. This process continues until
the aggregation is completed throughout the network.

Evaluations show that our model for the spatiotemporal signal leads to
a more compressible representation of the signal especially when the spa-
tiotemporal signal is acquired over longer periods. As mentioned earlier,
the logarithmic growth of sampling cost in CS encourages us to try acquiring

70 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

more samples over longer periods. This way, we can acquire a spatiotemporal
signal with higher dimension which entails even better compressibility.

First, we formally define the efficiency of a CS-based signal acquisition
method in WSNs. This efficiency is directly related to the compressibility of
the signal. We will assess our model of spatiotemporal signals by investigating
the level of compressibility that we achieve by extending CS to the temporal
domain over longer sampling periods. We also need to exactly define sampling
period and sampling round.

Definition 10. Sampling period of length T is composed of T sampling
rounds. Each sampling round occurs at a discrete time instance on a reg-
ular basis. During a sampling round, all SNs record the sensed value at that
time instance. Compressive measurements are then calculated distributively
from the recorded values and transmitted over the multi-hop WSN to the sink.

Definition 11. The efficiency of the signal acquisition in a CS-based sys-
tem is denoted by η defined as η = (N − m)/N where m is the number of
measurements according to Equation (3.2) and N is the dimension of the
spatiotemporal signal.

When more measurements need to be acquired for a fixed N , the effi-
ciency will be lower. If the signal is recoverable from fewer measurements,
the efficiency increases. According to Equation (3.2), for an efficiency of η,
we require S/N to be less than (1−η)/(C[µ2(Φ,Ψ)] logN). We have investi-
gated how this efficiency can be achieved by running numerical experiments
on real-world data sets. Evaluations are done using real-world data of air
temperature values collected by the LUCE (Lausanne Urban Canopy Exper-
iment) WSN deployment at EPFL LUC [2008]. The dashed curve in Figure
5.5 shows S/N when efficiency is roughly equal to 90% and recovery error
is bounded to ±1◦C per SN. We have calculated S/N under Haar wavelet
and DCT transformation for spatiotemporal signal with different sampling
periods. We see that when the sampling period T increases, the S/N drops
quickly under the limit that satisfies η = 90%. Next, we will see how higher
compressibility (i.e., lower S/N) leads to higher efficiency. The trade-off
here is the more delay required to sample signals over longer periods. We see
that for a slight increase in T , the efficiency can be significantly improved.
Therefore, we expect not so much delay in a real world implementation.

5.2 The concept of sampling window

So far, we have seen improvements in compressibility of spatiotemporal sig-
nals when using block-diagonal random measurement matrices over longer

5.2. THE CONCEPT OF SAMPLING WINDOW 71

1 2 4 8 16 32
0

0.01

0.01

0.02

0.02

0.03

0.03

0.04

DCT
Haar
 90%η ≈

T [sampling rounds]

S
 /

N

Figure 5.5: Effect of longer sampling periods on spatiotemporal compress-
ibility

sampling periods. The trade-off is a delay equal to T sampling rounds. In-
creasing T usually leads to better compressibility of the spatiotemporal signal
and improves efficiency. However, the signal reconstruction is delayed by T
sampling rounds. Here, we introduce the concept of sampling window and
show that the delay affects measurements acquisition and signal recovery
only at initialization. When T periods are over, only in-network communica-
tion delays affect recovery of every consequent fu where u > T . Assume for
any time instance τ ≥ T , the measurement vectors yτ−T+1, yτ−T+2, ... , yτ
are delivered to the sink. Therefore, all of the vectors fτ−T+1, fτ−T+2, ... , fτ
which describe the sate of the environment during the interval [τ − T + 1, τ]
are recoverable from υτ where:

υτ :=

yτ−T+1

yτ−T+2
...

yτ

=

Φτ−T+1

Φτ−T+2

. . .

Φτ

fτ−T+1

fτ−T+2
...
fτ

 . (5.4)

72 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

In the next sampling round, fτ+1 is sensed by the SNs and should be recon-
structed at the sink. Of course we do not want to perform typical CWS from
scratch at sampling round τ+1. Having previous measurements using block-
diagonal measurement matrix in Equation (3.5), we can recover the signal
at the next sampling round from fewer measurements compared with typical
spatial CWS. Our spatiotemporal measurement method should calculate the
new measurement vector:

υτ+1 :=

yτ−T+2

yτ−T+3
...

yτ+1

=

Φτ−T+2

Φτ−T+3

. . .

Φτ+1

fτ−T+2

fτ−T+3
...

fτ+1

 . (5.5)

Comparing Equations (5.4) and (5.5), we observe that if υτ is already present
at the sink, then we only need yτ+1 to be delivered to the sink in order to
make υτ+1. In fact, a sampling window of T allows us to efficiently recover the
spatiotemporal signal at any sampling round. Note that in this case, to have
yτ+1 (and consequently υτ+1) at the sink, only mτ+1 more measurements are
needed which would be lower than when running CWS on sampling round
τ + 1 . Moreover, all SNs transmit an equal amount of data proportional to
mτ+1.

5.2.1 Benefits of sampling window

Here, we clarify the advantage of our sampling window mechanism com-
pared with the state of the art CS-based spatiotemporal signal acquisition
techniques. Sampling window as described above allows for recovering the
spatiotemporal signal from a history of the current and previously acquired
measurements. We recall that CWS only considers instantaneous spatial
measurements and DCS operates over disjunct intervals. The advantages
of our proposed sampling window are twofold: First, total number of mea-
surements, namely

∑i=T
i=1mτ−T+i is much less than when running CWS sepa-

rately for T sampling rounds because considering temporal as well as spatial
correlations leads to better compressibility and hence more efficient signal
acquisition. Second, acquiring measurements and recovering the signal are
done seamlessly with a much less delay. Remember that DCS recovers spa-
tiotemporal signals after a delay proportional to T when all measurements

5.2. THE CONCEPT OF SAMPLING WINDOW 73

of the last T sampling rounds are received at the sink. In particular, for an
extensive multi-hop WSN, our model decreases the delay by a factor of T .
Note that here, delay refers to the time required to acquire measurements
from the network and not the time required by the recovery algorithm to
reconstruct the spatiotemporal signal. The sink is assumed to have enough
computation capabilities to recover the signal. Many efficient CS reconstruc-
tion algorithms such as orthogonal matching pursuit are developed to recover
the signal in a timely manner Tropp and Gilbert [2007].

This result has an important application in our work to decrease the delay
during signal acquisition. Assume we use a block-diagonal Gaussian random
measurement matrix Φm with m rows and N = nT columns, such that each
block corresponds to a sampling period, i.e.:

Φm =

Φm1

Φm2

. . .

ΦmT

 (5.6)

where m1 +m2 + · · ·+mT = m and for each i ∈ 1, ..., T , Φmi
has n columns.

This operation is basically equivalent to applying spatial measurement ma-
trices with m1, m2, ... , mT rows over T sampling periods. The advantage of
using such a measurement matrix is that measurements can be progressively
transmitted to the sink and there is no need to wait for the whole sampling
period to finish and then send the measurements.

5.2.2 Detecting events in sampling window

Luo et al. have proposed an effective method to detect and handle sparse
abnormal sensor readings using overcomplete dictionaries Luo et al. [2010,
2009]. We apply a similar method for detecting abnormal events in order
to trigger notification about potentially harmful situations. What we are
especially interested in, is how our sliding sampling window can detect the
new events occurring in the most recent sampling round. Assume few SNs
record unexpected values at time u where u ≥ T . We can decompose fu into
two vectors fc and fe such that fu = fc + fe where fe is the sparse abnormal
innovation vector. We know that [f tru−T+1 f tru−T+2 · · · f tru−1 f trc]tr = Ψξ
is compressible in the Ψ-domain. Substituting fu with fc + fe we will have:

g :=

fu−T+1

fu−T+2
...
fu

 =

fu−T+1

fu−T+2
...

fc + fe

 =
(
Ψ I

)(ξ
ε

)
(5.7)

74 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

such that ε = [0tr fe
tr]tr, where 0 means a zero vector of size nT − n.

For recovering the original signal as well as detecting abnormal events, we
solve a convex optimization problem similar to that in Theorem 1. From
Equation (5.7), we see that [ξtr εtr]tr is compressible under overcomplete
system Ψ′ = [ΨI]. Assume:

Λ =

Φu−T+1

Φu−T+2

. . .

Φu

 (5.8)

and z = Λg is the spatiotemporal measurement vector. If we solve the l1
minimization problem:

x̂′ = argmin
x̃′∈R2N

‖x̃′‖1 subject to z = ΛΨ′x̃′, (5.9)

then it is possible to recover the original spatiotemporal signal g (including
the abnormal samples). The recovered signal of g will be ĝ = Ψ′x̂′. Here,
x̂′ ∈ R2N and Ψ′ has 2N columns.

Note that when using a progressive sampling window, we are mainly
interested in detecting events at the most recent sampling round. In this
case, we see that the abnormal sensor readings are not uniformly distributed
over the spatiotemporal signal. The abnormal observations only affect the
last chunk of the spatiotemporal signal vector.

5.2.3 Evaluation of the sampling window technique

We have evaluated our proposed methods using real-world data collected by
the LUCE WSN deployment at EPFL LUC [2008]. The ambient temperature
values of 64 SNs are used as the physical parameter for evaluating our model.
In the LUCE dataset, some records were missing or too desynchronized, i.e.
the sampling rounds of the SNs were not aligned. Therefore, we have pre-
processed the dataset while preserving the attributes of the spatiotemporal
signal to have a synchronized data set which is suitable for testing our model.
We assume that measurements are calculated while transferring to the sink
using a reliable hop-by-hop transport protocol Stann and Heidemann [2003].

Figure 5.6 shows the accuracy of signal recovery using a block-diagonal
measurement matrix as described in Equation (5.6). Figure 5.6(a) and Figure
5.6(b) illustrate the results using DCT and Haar wavelet as the the compres-
sive basis respectively. This means that the Ψ-domain in Figure 5.6(a) and
Figure 5.6(b) is DCT and Haar respectively. For each compressive domain,

5.2. THE CONCEPT OF SAMPLING WINDOW 75

we have tested the measurement and recovery for different sampling window
lengths. Parameter T in Equation (5.6) represents the initialization delay as
well as the width of the sampling window of our spatiotemporal sampling
model for multi-hop WSNs. The X-axis represents the ratio of the number
of measurements to the number of all spatiotemporal samples, namely m/N
where m and N are the same parameters as used in Equation (3.2). The ac-
curacy of the signal reconstruction is measured by the Signal to Noise Ratio
(SNR). The Y-axis represents the SNR in decibels (dB).

We observe that in all cases, the quality of signal reconstruction generally
improves as the ratio m/N increases. For smaller values of m/N the system
can achieve better efficiency as defined in Definition 11.

The evaluations are first done for T = 1 which is basically equivalent to
the plain spatial sampling case. Then, the width of the sampling window
is increased and the evaluation is repeated for T = 2, T = 4 and T = 8.
For larger T , we see that higher signal reconstruction accuracy is possible
for lower m/N . This means that a higher reconstruction accuracy can be
achieved more efficiently if the width of the sampling window T increases.

We have selected these SNs at random and increased their recorded value
at the last sampling round to above 100 degrees Celsius. This may resemble
a fire starting in the environment that is sensed by three SNs. The sampling
window during this simulation was set to T = 8.

Figure 5.7 illustrates how the compressive presentation of the spatiotem-
poral signal is distorted in presence of abnormal sensor readings. The spa-
tiotemporal signal is measured using a block-diagonal random measurement
matrix as described in Equation (5.6). Figure 5.7(a) and Figure 5.7(b) show
the projection of the signal contaminated with abnormal readings on DCT
and Haar wavelet respectively. The DCT projection is not compressible any
more. Haar wavelet projection leads to a more compressible representation,
since it can preserve hard edges in the signal better than DCT. Now, we use
an overcomplete system Ψ′ = [ΨI] to recover the compressible projection.
We use two systems Ψ′DCT = [ΨDCTI] and Ψ′Haar = [ΨHaarI] where ΨDCT

and ΨHaar represent DCT and Haar wavelet bases respectively. Figure 5.7(c)
and Figure 5.7(d) show the recovered compressive projections on Ψ′DCT and
Ψ′Haar respectively. Naturally, we observe that the projections of the spa-
tiotemporal signal on the overcomplete bases are much more compressible
that typical DCT and Haar bases.

The SNs in LUCE deployment are not synchronized. Therefore, we have
averaged over longer periods to achieve a virtual dataset from a synchronized
network. The averaged value for each SN over a short period of time, repre-
sents the value of a single time spot in the dataset that we have used as the
input to our simulating software. Data of ambient temperature sensor is fed

76 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

to the simulator as the testbed input.

Higher compressibility means that less measurements are required to re-
cover the signal with comparable accuracy, or in other words, it is possible
to achieve better signal reconstruction quality from the same number of ran-
dom measurements. With low level of compressibility that typical DCT and
Haar projections provide, it is impossible to recover the signal and detect
abnormal sensor readings. Using overcomplete dictionaries, the signal could
be recovered and the abnormal events are localized. Figure 5.8(a) and Figure
5.8(b) show the recovered signal at the last (8th) sampling round using Ψ′DCT

and Ψ′Haar overcomplete systems respectively. Note that when the sampling
window is filled and the measurement process is streamlined, such abnormal
events can be detected very shortly as only the last measurement vector is
needed to be reported to the sink.

We have also compared our sampling method with that of DCS. Figure
5.9 shows the same results as discussed in explanation of Figure 5.6 for the
DCS measurements. The signal reconstruction quality using our proposed
block-diagonal spatiotemporal measurement matrix is comparable to signal
reconstruction using spatiotemporal model of DCS. More interestingly, we
have observed that block-diagonal matrices lead to almost the same per-
formance of dense measurement matrices as expected in Yap et al. [2011].
Figure 5.10 shows the signal reconstruction quality from measurement vec-
tors produced by dense Gaussian random measurement matrices. The SNR
is closely comparable to schemes with block-diagonal measurement matrices
like DCS and our spatiotemporal block-diagonal model for CS measurements
in multi-hop WSNs.

5.3 Chapter summary

In this chapter, we have introduced our spatiotemporal extension to CS-
based data collection in WSN. It provides the advantage over DCS that it
puts a balanced load on the network regardless of the network topology.
The amount of data sent by each SN is proportional to its sampling rate.
Furthermore, by applying the concept of signal recovery using overcomplete
dictionaries, it is possible to detect the abnormal sensor readings that may
be caused by faulty SNs or an unexpected event.

We also introduced the concept of sampling window. A sampling window
defines a certain time period in which the samples are being gathered from
the network. The sampling window then slides forward to collect more data
when time passes. The newly sensed data and previously gathered data
are involved in the signal recovery process. This makes the overall scheme

5.3. CHAPTER SUMMARY 77

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(b) Haar

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(a) DCT

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

Figure 5.6: Accuracy of multi-hop spatiotemporal CS using block-diagonal
measurement matrix

78 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

0 100 200 300 400 500 60030

20

10

0

10

20

30
(a) DCT projection

0 100 200 300 400 500 600100

50

0

50

100
(b) Haar projection

0 200 400 600 800 1000 120020
0

20
40
60
80

100
120
140

(c) Overcomplete DCT

0 200 400 600 800 1000 120020
0

20
40
60
80

100
120
140

(d) Overcomplete Haar

Figure 5.7: Compressive projection of the spatiotemporal signal contami-
nated with abnormal readings

5.3. CHAPTER SUMMARY 79

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61
63

0
20
40
60
80

100
120
140
160
180

(a) DCT

original signal
recovered
signal

SN id

T
e

m
p

e
ra

tu
re

 [°
C

]

1
3

5
7

9
11

13
15

17
19

21
23

25
27

29
31

33
35

37
39

41
43

45
47

49
51

53
55

57
59

61
63

0
20
40
60
80

100
120
140
160
180

(b) Haar

original signal
recovered
signal

SN id

T
e

m
p

e
ra

tu
re

 [°
C

]

Figure 5.8: Event detection in multi-hop spatiotemporal CS using block-
diagonal measurement matrix and overcomplete compressive systems

80 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(a) DCT

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(b) Haar

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

Figure 5.9: Reconstruction from DCS measurements

5.3. CHAPTER SUMMARY 81

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(a) DCT

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

0.02
0.03

0.05
0.07

0.08
0.10

0.12
0.13

0.15
0.17

0.18
0.20

0.22
0.23

0.25
0.27

0.28
0.30

0.32
0.33

0

5

10

15

20

25

30

(b) Haar

T = 1
T = 2
T = 4
T = 8

m / N

S
N

R
 [d

B
]

Figure 5.10: Signal recovery using dense Gaussian measurement matrix

82 CHAPTER 5. SPATIOTEMPORAL COMPRESSIVE SAMPLING

more efficient, because the measurement cost of CS grows logarithmically
by the size of the signal. Our evaluations on a real-world data set verifies
our findings and shows better compressibility as well as the ability to detect
abnormal events.

Chapter 6

Handling node and link failures

WSNs are often self-configured networks and their topology depends very
much on the deployment and application requirements. In a two dimensional
field such as a farm or a woodland, often a tree or chain topology is preferred
for data collection. In this chapter, we target an important application of
the WSNs, i.e, monitoring and surveillance of civil structures Chintalapudi
et al. [2006]. In particular, we study WSNs with linear topology that is often
employed for surveillance and monitoring of constructions such as roads,
railways, bridges, etc. We say that a WSN possess a linear or chain topology,
when the SNs are connected in a series and transmit the data hop by hop
to deliver to the sink that is positioned at the end of this chain. Larger
deployments may require several segments of chain WSNs with a sink at the
end of each segment.

In a computation, power and bandwidth constrained WSN environment,
the challenge is to efficiently transfer a large amount of the sensed data over
a low-bandwidth wireless communication channel to the base station or sink.
The sink is a dedicated node that receives the data from the Sensor Nodes
(SNs) and prepares them for the end user. Since the SNs are battery powered,
it is required to transmit the least amount of data in order to preserve more
battery and prolong the lifetime of the WSN.

The problem of efficient data gathering is especially challenging in a WSN
with linear topology. Figure 6.1 illustrates the baseline approach for data
collection in a WSN with linear topology. The value sensed by SN i is
denoted by fi. Since the communication is done hop-by-hop, each node has to
transmit its own data and also forward the data from the previous nodes. SN
i has to transmit fi and forward the values {f1, f2, . . . , fi−1}. Consequently,
the nodes closer to the sink become highly overloaded. An effective solution
to this problem is to reduce the amount of the transmissions by compressing
the sensed data. Several studies show that, the data recorded by the SNs are

83

84 CHAPTER 6. HANDLING NODE AND LINK FAILURES

SN 1

f 1

SN 2

f 1
f 2

⋯ Sink

f 1
f 2
⋮
f n

SN n

Figure 6.1: Baseline data transmission in a WSN with linear topology

SN 1 SN 2 ⋯ SinkSN n

b1
∑
i=1

i=n

bi
b1+b2

Figure 6.2: CS-based data collection in a WSN with linear topology

highly compressible Marco F. Duarte and Baraniuk [2012]; Srisooksai et al.
[2012]. Thus, the use of compression algorithms such as CS to reduce the
amount of data sent to the sink is advocated. An important requirement for
the compression algorithm that is fulfilled by CS is to be light-weight as it
runs on the resource-limited SN hardware platform Polastre et al. [2005].

6.1 CS in WSNs with linear topology

Figure 6.2 shows the CS-based data collection in a WSN with linear topol-
ogy. It is a simplistic illustration of the Compressive Data Gathering (CDG)
method that we explained in detail in Section 3.3.2. Each node computes an
encoding of its sensed value. The encoded value by SN i is denoted by bi.
Since these values are accumulated (arithmetically added) at each hop, the
amount of transmissions at all SNs remains equal. Thus, the communication
and computation load is balanced across the network. This effectively avoids
occurrence of exhausted nodes.

As we have seen in Chapter 3, measurement and recovery in CS is resilient
to additive noise in the communication channel. This feature significantly
distinguishes CS from other compression techniques. In traditional compres-
sion techniques, the compressed data are typically very sensitive to network
perturbations Luo et al. [2009]. Therefore, additional protective techniques
(e.g. Forward Error Correction (FEC) or Automatic Repeat reQuest (ARQ))
are employed to ensure reliable transfer of the data. In CS, additive noise
is handled gracefully without putting more communication and controlling
overhead Candes et al. [2006a]; Haupt and Nowak [2006].

While CS is shown to inherently handle additive noise without signifi-

6.1. CS IN WSNS WITH LINEAR TOPOLOGY 85

SN 1 SN 2 ⋯ SinkSN n

b1 b1+∑
i=3

i=n

bi

SN 3

b1+b3

Fetch predecessor hop

Figure 6.3: Node failure and chain reconstruction

cant communication or control overhead, CS’s ability to withstand the very
commonly encountered WSN failure occurrences of SNs or communication
failure has yet to be explored. Addressing these node/link perturbations in
CS is the specific objective of this chapter. We study the performance of CS
under failure circumstances and perturbation models beyond mere additive
noise that commonly occur in WSNs, but not considered seriously in the CS
literature.

WSNs are usually deployed in uncontrolled operational environments, and
hence, it can happen that some SNs get damaged and cannot continue their
function. We study the problem of CS-based data collection in a chain WSN
in presence of node failures. For simplicity of reading, we may use the term
WSN or chain to refer to a WSN with chain or linear topology. When a node
encounters a failure, it stops accumulating and forwarding the measurements
to the next hop. This failure causes a breakage of the chain at the position
of the failing SN.

6.1.1 Failures in a WSN with chain topology

Figure 6.3 illustrates a failure scenario in which SN 2 stops sending to the
next hop. We assume that SN 3 detects this failure since it does not receive
any messages from SN 2. Consequently, SN 3 fetches the measurement from
the first healthy predecessor node, i.e., SN 1. Looking at the accumulated
measurement that is received by the sink, we observe that only maintaining
the chain connectivity is not sufficient to cancel the effect of node failure.
The value of b2 is missing in the accumulated measurement that is received
by the sink. Consequently, the sink also has to exclude the missing samples
when it wants to recover the original data. Therefore, a list of failed SNs
must be communicated to the sink which in turn requires more communi-
cation overhead. Moreover, maintaining the consistency of such a list is a
cumbersome task especially in a large-scale WSN.

CS is based on the fact that the data being sensed is compressible. For
example, in WSNs, we know that the values sensed by the SNs have spatial

86 CHAPTER 6. HANDLING NODE AND LINK FAILURES

and temporal compressibility. Therefore, instead of transmitting the entire
raw data to the sink, we send a small number of measurements. The sink
can then recover the original data from the received measurements.

When a node or link failure in the WSN occurs, one or more sensed
data items are missing or become corrupted. In this case, that part of the
sensed data which is affected by the failure is not correlated to the rest of the
sensed data anymore. Therefore, CS either fails or its performance degrades
drastically. One possible solution is to exclude the faulty nodes from the
measurement process.

This requires the sink to be informed exactly which part of the sensed
data is excluded from compression. However, sending failure information to
the sink requires more communication overhead. As we mentioned earlier,
the set of raw data on which the compression takes place must be fixed
during the compression and communication process. This means that it is
not possible to add or remove arbitrarily to the raw data, otherwise the data
correlation cannot be guaranteed.

We provide a solution for robust data gathering in WSNs using an en-
hanced version of CS that is capable of:

• Maintaining the connectivity of a chain WSN that performs CS-based
data collection by making auxiliary links and isolating the failing nodes.

• Detecting the location of the failures without modifying the measure-
ment mechanism at the SN level and without sending health-monitoring
messages to the sink.

• Minimizing the effect of faulty or missing sensor readings on accuracy
of the CS recovery algorithm.

We present a simple and effective enhancement to CS-based data gather-
ing for WSNs with chain topology that is resilient to node and link failures
as well as communication noise. In case of burst failure, e.g., when a node
goes off-line for a period of time or in some cases forever, more and more
retransmissions will only deplete the battery of the SN without any success
in error recovery. Reconstruction of the chain is also a costly process. In
such cases, the second approach is applied and the location of the failure is
detected by the sink using our modified recovery algorithm. It is then possi-
ble to exclude the missing data and rerun the recovery algorithm to acquire
the genuine data that are not affected by the failure.

Our evaluations show that the same technique for failure detection and
isolation can be also applied to WSN with start topology without significant
changes to the measurement and signal reconstruction mechanism.

6.2. CDG IN CHAIN TOPOLOGY 87

6.2 CDG in chain topology

As discussed in Section 3.3.2, one advantage of CDG over CWS is that it can
be implemented on the existing hardware platforms of the SNs. Instead of
analogue communication and signal superposition, CDG uses established dig-
ital wireless communication standards such as ZigBee to exchange messages
and transmit the measurements in the network Caione et al. [2010].

Furthermore, while CWS is suitable for star topology, CDG runs more
efficiently on chain topologies as depicted in Figure 6.2. Given the measure-
ment matrix Φ as

Φ =

φ1,1 φ1,2 . . . φ1,n

φ2,1 φ2,2 . . . φ2,n
...

. . .
...

φm,1 φm,2 . . . φm,n

 (6.1)

we define the column vector αi as αi = [φ1,i φ2,i . . . φm,i]
T .

Each SN is given a unique id and runs a pseudo-random number generator
algorithm seeded by its id to produce αi. All of the SNs run the same
pseudo-random number generator algorithm, though with different seeds.
The pseudo-random number generator should not generate the same sequence
of random values for two different SNs.

SN i senses the value fi and multiplies this real number by the column
vector αi. If applicable, it accumulates the measurements received from the
previous hop and forwards the result to the next hop. The same process is
repeated by every SN till the measurement vector y is delivered to the sink,
see Figure 6.4.

The measurement matrix Φ can be easily reproduced at the sink by ex-
ecuting the same pseudo-random number generator seeded by the SN id’s.
Therefore, Φ does not need to be communicated between the SNs and the
sink. Having Φ and y, the sink can recover f from y after performing the
CS reconstruction step. This process forms the main building block of many
distributed data gathering techniques based on CS Bajwa et al. [2006]; Luo
et al. [2009]; Mahmudimanesh et al. [2012].

CDG also introduces a method to detect abnormal sensor readings and
eliminate their unwanted effects. Similar to CDG, we also use a post-
processing detection method that is executed on the sink.

As discussed in pervious chapters, CDG uses over-complete dictionaries
in CS signal recovery to detect abnormal sensor readings that are caused by
either faulty nodes or abnormal events. In other words, the SNs do not ac-
tively participate in notifying about an abnormal sensor reading or a failure.

88 CHAPTER 6. HANDLING NODE AND LINK FAILURES

SN 1

f 1α1

SN 2

f 1α1+ f 2α2

⋯ Sink

y =∑
i=1

i=n

f iαi

SN n

Figure 6.4: CDG in a WSN with linear topology

Instead, with the help of the recovery algorithm, the sink is able to detect
whether there are faulty values in the received data. The difference of our
work from CDG is that we consider the case of node failure in both sensing
and forwarding roles. In the second case, we see that usually more than a few
samples will be missed since a forwarding node carrying the payload from
underlying levels may fail to transfer the measurements to the sink.

6.3 Handling node failures

In failure-free scenarios, the measurement vector y is received by the sink
after running the network coding of CDG. When a node fails, what is received
by the sink is different from what is expected to be received. As we show in
Section 6.4, this causes anomalies in the signal that degrades the accuracy
of the recovered signal.

The advantage of our work over CDG is that it handles node failures. By
node failure, we mean the situation where a node gets damaged and cannot
transmit or forward the measurements to the next hop. We propose a method
to maintain the connectivity of the chain and rebuild the connection at the
position of the failing node. Then we present our solution that applies a post-
processing phase to detect the location of the failures and exclude the missing
samples from the recovery process. If our connectivity restoring technique
does not succeed due to a heavy damage to a burst of SNs, our detection
method still precisely determines the location of chain breakage and also
excludes the missing segment of the signal from signal recovery.

In Section 6.4, we see that if these failures are not detected, the accuracy
of the reconstructed signal at the sink degrades significantly. Using our
method, data collection continues seamlessly after rebuilding the chain and
the missing samples are isolated to maintain the accuracy of signal recovery
at the sink. This issue applies to both CWS and CDG as we will see in
Section 6.4 where we describe our solution. We consider a WSN with linear
topology consisting of static SNs and a single static sink at the end of the
chain. The goal is to collect all of the sensed data at the sink.

6.3. HANDLING NODE FAILURES 89

6.3.1 Communication cost

The communication cost depends on both communication range and the
number of messages. Sending more data consumes more battery power.
Also achieving a more distant receiver requires to transmit with higher radio
power. While the energy consumption grows linearly with the size of the
transmitted data, it grows quadratically with the communication range. To-
tal communication cost to transmit m messages to a receiver in the distance
of d is O(md2).

For simplicity we assume that the nodes are placed on equal distances of
each other. For a chain WSN consisting of n nodes, the distance between
each two consecutive nodes is the same and equal to d. Let P0 be the radio
power required for communicating a unit of data between nodes i and i+ 1.
Thus the radio power required for communication between nodes i and i+ 2
is 4P0, and in general, the radio power for communication between nodes i
and i+ k is k2P0.

Node failure must be detectable by other nodes in order to rebuild the
chain connectivity. Based on the detection method, we study three different
approaches to maintain the connectivity of the chain.

• AR - Retransmission based on Acknowledgements: Each hop of the
chain must send an acknowledgement when it successfully processes
and forwards a measurement to the next hop. In case of a failure, no
acknowledgement is sent and the previous hop retransmits the packet
with higher radio power to reach the next functioning node.

• IA - Retransmission based on Implicit Acknowledgements: Instead of
sending acknowledgements, each hop implicitly monitors the commu-
nication channel. When it detects that its next hop did not forward a
measurement, it retransmits the measurement with higher radio power
to reach the next healthy node.

• MC - Multiply-Connected chain: No explicit or implicit acknowledge-
ment are used in this method. The nodes transmit all the time with a
higher radio power and transmit their measurements to multiple next
hops. Failures are recovered by each of the functioning nodes in the
consecutive set of multiply linked chain.

In all of the above strategies, anomalies in the signal due to missing samples
should be handled in the recovery process, otherwise the accuracy of the
genuine data will be affected by the missing or corrupted data.

90 CHAPTER 6. HANDLING NODE AND LINK FAILURES

6.3.2 Sensor validation criteria

It is required that the range of valid sensor readings are known. We require
that a SN calculates and transmits the measurements only when the sensor
reading is within a finite range. For example, when a temperature sensor
which is designed to measure values between -50 degrees to +500 degrees
Celsius reports a value of -1000 or +2000, then the SN regards this value
as invalid and does not compute the measurement, and consequently, no
message will be sent by this SN.

Note that the term measurement is formally defined in Definition 5. It
differs from sample or the value recorded by the sensor.

If the range of floating point numbers that a SN can store in its memory
is [BL, BU] and the range of valid sensor values is [sl, su], we require that

|sl − su| � |BL −BU |. (6.2)

The range of valid sensor readings must be bounded and the length of this
range must be a small fraction of the range of numbers that can be stored
in the memory of the SN. For example, a numerical storage format such
as IEEE 754 half precision or single precision is suitable for a temperature
sensor that records values e.g. between -50 and +500 degrees.

6.3.3 Scope of applications

In the simplest form, we consider that the SNs are solely performing the
simplistic network coding to compute the measurements. The SNs are not
involved in failure mitigation. In case of a failure, the neighboring nodes do
not try to recover by employing methods such as retransmission or topology
reconfiguration. All of the failure handling is done at the sink.

Our system model is particularly suitable for two classes of applications:

• WSN consisting of SNs with very basic hardware platforms in which
we want the embedded software to be as simple as possible Kahn et al.
[1999].

• Real time WSNs in which we want to gather the data within a spec-
ified deadline Stankovic et al. [2003]. In real time applications, non-
deterministic delays caused by retransmissions should be avoided.

In a more complex scenario, we also consider employing retransmissions
when the aggregated data are close to the sink. SNs closer to the sink usually
carry the measurements that are aggregated over many lower-level SNs. Our

6.4. DETECTING AND ISOLATING FAILURES 91

method in its simplest form can still handle failures at these nodes. However,
a combination of retransmission and our post-processing failure handling
leads to better overall performance.

6.4 Detecting and isolating failures

In this section, we describe our connectivity maintenance and failure detec-
tion technique in three steps using an illustrative example. First, we describe
our technique for restoring the connectivity of the WSN when one or more
nodes fail in the network. Second, we propose a method that detects the
exact location of failing nodes without transmitting any health monitoring
messages. Finally, we show that our failure detection technique withstands
the extreme failures in which the connectivity of the chain is not recoverable.

6.4.1 Restoring connectivity in chain topology

In a normal operation of the WSN, all nodes are accumulating and transmit-
ting their measurements hop by hop to deliver the measurement vector y to
the sink. As described in Section 6.3.1, the nodes are regularly located in a
series with distance d from each other. All nodes are transmitting with the
radio power P0 to communicate with their direct neighboring nodes.

All nodes are placed in a series arranged from node 1 to n as depicted
in Figure 6.4. When node i ∈ {1, . . . , n} fails to transmit to node i + 1,
node i + 1 detects this failure since it does not receive any messages from
its previous hop. Consequently, it tries to contact the node i − 1 and fetch
its measurements. According to our system model, this requires 4P0 radio
power since the nodes i− 1 and i+ 1 are placed in a distance of 2d.

Definition 12. Step-back count is defined as the number k when node i+ 1
successfully fetches the measurements from node i− k in case that the nodes
i− k + 1, i− k + 2, . . . , i fail to deliver their encoded values to node i+ 1.

A step-back of size k requires the nodes i− k and i+ 1 to transmit with
radio power (k + 1)2P0. Note that node i+ 1 sequentially tries to fetch data
from nodes i−1, . . . , i−k+1 until it reaches the first healthy predecessor i−k.
Respectively, these trials has a cost of 4P0, 9P0, . . . , k

2P0 before reaching the
healthy node i− k.

The maximum allowed step-back count is obviously not unlimited. De-
pending on the capabilities of SN’s radio module, there is a limit for the
maximum communication range.

92 CHAPTER 6. HANDLING NODE AND LINK FAILURES

Definition 13. Step-back limit kmax is the maximum step-back count k that
is allowed by the communication capabilities of the radio module of a sensor
node.

Depending on the success of the connectivity maintenance phase, one of
the following cases may occur:

• Successful network restoration: The information flow continues
by stepping back by k ≤ kmax hops. In this case, the connectivity of
network is restored, though the samples i − k + 1, i − k + 2, . . . , i are
missing due to node failures.

• Unrecoverable chain breakage: Restoration mechanism cannot re-
build the chain because even the node i − kmax does not respond to
the measurement fetching request that is sent by node i+ 1. All of the
samples 1, 2, . . . , i will be missed because of chain breakage.

We should emphasize that failure detection and recovery mechanism is
entirely done at the sink by post-processing. The SNs do not actively partic-
ipate in reporting which nodes have failed and which nodes are transmitting
genuine data. Our technique avoids overhead of transmitting health mon-
itoring messages and does not require acknowledgement or retransmission
mechanism, thus, effectively reduces overhead of failure reporting.

6.4.2 Degrading effect of the missing samples

Here, we consider an illustrative synthesized spatial temperature signal that
is compressible under DCT. Our discussion can easily extend to sensing any
other physical parameter that is compressible in some compressive basis.
Consider a WSN consisting of temperature sensors with linear topology con-
sisting of n = 256 SNs. The values of the samples sensed by the SNs are
represented as a spatial signal vector f of size 256.

In failure-free operation of the WSN, all of the SNs are transmitting their
fiαi, and thus, the measurement vector y is correctly received by the sink.
Suppose that when none of the samples of f are missing, the vector f is
compressible under DCT. More precisely, f = ΨDx where ΨD is the n × n
inverse DCT matrix and x is sparse. We set the sparsity of x to 10 in the
synthesized signal of our example. To make it more realistic, we add a white
Gaussian noise to the measurement vector y. We have set the power of the
noise to be 5% of the signal power.

According to our setup, to estimate the original signal f from the measure-
ment vector y, we have to solve the following convex optimization problem.

6.5. SIGNAL ELEVATION DURING MEASUREMENT 93

minimize
x̃∈Rn

‖x̃‖1 , subject to ‖y −ΦΨDx̃‖22 ≤ ε (6.3)

If x̂ is the solution to Equation 6.3, then the original signal is estimated by
f̂ = ΨDx̂.

In the failure-free case, the recovered signal f̂ shows a good accuracy
compared to the original signal f , see Figure 6.5.a. When the connectivity of
the chain is maintained, node failures are equivalent to missing samples in the
signal vector f . When some of the samples are missing due to node failures,
the corresponding elements of vector f suddenly drop to zero. When this
happens, there is no guarantee that f is compressible under DCT anymore,
and hence, we cannot accurately recover the original vector f by solving
Equation 6.3. Looking at Figure 6.5.b we observe that the accuracy of signal
recovery significantly decreases. The recovery of the latter case shows a
significant accuracy loss as illustrated in Figure 6.5.b compared to failure-
free case depicted in Figure 6.5.a. The Signal-to-Noise Ratio (SNR) drops
from around 65 to 19 when some of the samples are missing due to SN failures.
Furthermore, it is not possible to detect which nodes are failing.

Next, we present a method that exactly detects the location of failures
and excludes the failing SNs from the signal recovery process.

6.5 Signal elevation during measurement

From our system model description we recall that the values recorded by
the SNs are bounded between a lower and upper bound, namely sl and su
respectively. In our exemplified WSN, we assume that the temperature values
are bounded between 0 and 25. Note that sl and su can be any positive or
negative real numbers. We take 0 and 25 just as an example here. This
discussion also applies to signals recorded from any other physical parameter
other than temperature.

Suppose that each SN elevates its recorded value by an offset before
applying the measurement mechanism illustrated in Figure 6.4. Formally
speaking, when SN i senses the value fi, it first adds fi by a positive real
number c that we call it offset and then multiplies αi by fi + c.

We choose c to be two or three order of magnitudes larger than |sl − su|.
The reason is that when node failures occur, the missing samples are better
distinguished from the genuine samples. In fact, the offset elevates the range
of valid values to a higher level. In our current example, if we select c = 1000,
then the range of offsetted values will be [1000, 1025] instead of [0, 25]. Using
this simple modification in the measurement mechanism, we distinguish a

94 CHAPTER 6. HANDLING NODE AND LINK FAILURES

0 50 100 150 200 250 300
SN id

0

5

10

15

20

25

R
e
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e

(a) Without node failures

original

recovered

0 50 100 150 200 250 300
SN id

0

5

10

15

20

25

R
e
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e

(b) With occurrence of node failures

original

recovered

Figure 6.5: Degraded signal recovery due to missing samples

6.5. SIGNAL ELEVATION DURING MEASUREMENT 95

reported value zero due to missing samples from the case when the recorded
value is in fact zero.

Note that when all nodes perform the offsetting, the whole signal vector
f is elevated by the offset c. Let g ∈ Rn be the elevated version of f , i.e.,

g = f + cn (6.4)

where cn is a column vector of size n with all of its elements being equal to
c.

6.5.1 Detection and exclusion of the missing samples

When some nodes fail, their corresponding values in g will also drop to
zero, since they cannot transmit their measurements. In this case, the com-
pressibility of f (and also g) under DCT decreases. However, g shows high
compressibility under Haar wavelet transform Graps [1995]. In order to find
out which nodes are missing, we try to recover g by solving the following
convex optimization problem.

minimize
ũ∈Rn

‖ũ‖1 , subject to ‖y −ΦΨHũ‖22 ≤ ε (6.5)

where ΨH is the inverse Haar transformation matrix.
If û is the solution to Equation 6.5, then ĝ = ΨHû estimates the original

elevated signal g. The size of the signal must be a power of two when applying
the Haar transform. In this example, the size of the signal is equal to the
number of SNs, i.e., n = 256. When the number of nodes is not a power of
two, one can pad sufficient number of pseudo-samples with a predetermined
value. Pseudo-samples with a value of c is a suitable choice here.

Recovery result using Haar wavelet is depicted in Figure 6.6.a. Here,
sl = 0, su = 25 and c = 1000. While recovery using DCT cannot distinguish
the failing SNs, using Haar wavelet as our compressive basis, we can exactly
detect the location of the failing nodes. The estimated signal ĝ recovered by
solving Equation 6.5 shows significantly lower values at the failing nodes, see
Figure 6.6.a. By employing signal elevation and performing the reconstruc-
tion using Haar wavelet, the exact location of the failures in a chain WSN is
determined.

After detecting the position of the missing samples, we exclude those
samples and rerun the signal recovery on that part of the signal that actually
contains valid sensor readings.

Using matrix representations, the measurement vector received by the
sink is given by

y = Φg + z (6.6)

96 CHAPTER 6. HANDLING NODE AND LINK FAILURES

0 50 100 150 200 250 300
SN id

0

500

1000

1500

re
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e
 +

 o
ff

se
t

(a) Detecting missing samples due to failing nodes

elevated signal

recovered by DCT

recovered by Haar

0 50 100 150 200 250
SN id

2

4

6

8

10

12

14

16

18

20

re
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e

(b) Signal recovery after excluding the missing samples

original

recovered by DCT

Figure 6.6: Detecting and excluding the failing SNs

6.5. SIGNAL ELEVATION DURING MEASUREMENT 97

where z is the additive noise. We add a white Gaussian noise with a power
equal to 5% of the signal power in all of our simulations. This resembles the
communication noise or computation precision noise of the SNs.

Let M be the set of failing nodes and k be the number of failing nodes,
i.e., k = |M |. We define an m× (n− k) matrix Φ′ by removing the columns
m1,m2, . . . ,mk from Φ where {m1,m2, . . . ,mk} = M .

Φ′ := [Φi,j] i ∈ {1, . . . ,m} , j ∈ {1, . . . , n} −M (6.7)

We define the vector g′ of size (n− k) by removing the elements gi from
g where i ∈M .

g′ := [gi] i ∈ {1, . . . , n} −M (6.8)

It is easy to show that:
Φg = Φ′g′. (6.9)

We also define the column vector f ′ by removing the elements fi from f
where i ∈M .

f ′ := [fi] i ∈ {1, . . . , n} −M (6.10)

According to the definitions of g and g′, we know that:

g′ = f ′ + c(n−k) (6.11)

where c(n−k) is a column vector of size (n− k) with all of its elements being
equal to c.

Since f is compressible under DCT and f ′ is equal to f except some missing
samples, it is still expected to be sufficiently compressible under DCT, i.e.,

f ′ = Ψ′Dx′ (6.12)

such that Ψ′D is the (n− k)× (n− k) inverse DCT matrix and x′ ∈ R(n−k) is
the (nearly) sparse projection of f ′ under DCT. Note that any compressive
basic other than DCT can also apply here. Choosing DCT is independent of
our offsetting and detection mechanism using Haar wavelets. We use DCT as
a an example and this discussion can be generalized to any other compressive
basis Ψ when f = Ψx and x is sparse or nearly sparse.

Putting Equation 6.9 in Equation 6.6 we have:

y = Φ′g′ + z (6.13)

and by substituting Equation 6.11 we have:

y = Φ′(f ′ + c(n−k)) + z

= Φ′f ′ + Φ′c(n−k) + z
(6.14)

98 CHAPTER 6. HANDLING NODE AND LINK FAILURES

We define a vector w ∈ Rm as:

w := y −Φ′c(n−k) (6.15)

According to the definition of w and Equation 6.14, we have:

w = Φ′f ′ + z. (6.16)

Therefore, we can recover x′ by solving a modified version of Equation 7.5
as follows.

minimize
x̃′∈Rn

‖x̃′‖1 , subject to ‖w −Φ′Ψ′Dx̃′‖22 ≤ ε (6.17)

If x̂′ is the solution to Equation 6.17, the original signal excluding the missing
samples, i.e., f ′ is then estimated by f̂ ′ = Ψ′Dx̂′. The recovery result is shown
in Figure 6.6.b for our current example.

By comparing Figures 6.6.b and 6.5.b to each other, we see that, a much
more accurate signal recovery is possible after excluding the missing samples.
Figure 6.5.b shows the recovery when some of the samples are missing due
to node failures. Figure 6.6.a shows how our technique can exactly detect
the samples that are lost due to failing SNs. Figure 6.6.b shows the recovery
of the same signal after excluding the missing samples. We observe a sig-
nificantly more accurate signal reconstruction after exclusion of the missing
samples.

Note that in Figure 6.6.b the size of the recovered signal is 251 instead of
256, because 5 samples corresponding to the failing SNs are excluded.

6.5.2 Detecting unrecoverable chain breakage

In this section we study the situation where the chains break at some node
and our chain rebuilding procedure as described in Section 6.4.1 does not
restore the connectivity. We do not want the next hops after the failing nodes
to wait for the retransmission of the lost encoded values. In particular, when
the failing nodes face an unrecoverable error, those encoded values may never
be retransmitted and the next hop will wait forever for the missing part of
the measurement vector. This situation is depicted in Figure 6.7.a. We let
the next healthy node in the chain to send its own measurements without
waiting for its failing predecessor nodes, see Figure 6.7.b. We apply the
same technique as discussed in the previous section. The SNs elevate their
sensed values by an offset c. Then, we first perform signal recovery using
Haar wavelet to detect the position of the failure. Finally, we exclude the
missing portion of the spatial signal and rerun the recovery on the valid part

6.6. EVALUATION 99

OK FAIL Sinkwait!wait!

OK FAIL Sink
OK

send
OK

send

(a) Retransmissions delay the whole chain

(b) CS measurement continues from healthy SNs

Figure 6.7: Post-processing failure detection without retransmission overhead

of the signal using the compressive basis under which the genuine data are
compressible.

The conditions are the same as our example in the previous section. The
signal f is compressible under DCT and records temperature values between
0 and 25 degrees which are elevated by c = 1000. We inject a failure in SNs
{50− kmax, . . . , 50}. Thus, the sensed values from nodes {1, . . . , 50} will be
lost as the chain restoration mechanism at node 50 is unsuccessful.

Recovery of the elevated signal after solving Equation 6.5 is depicted in
Figure 6.8.a. We observe that recovery using DCT cannot exactly determine
the location of the failing node. It gives only a rough estimation of the lo-
cation where the chain is broken. On the other hand, recovery using Haar
wavelet exactly distinguishes the missing segment of the signal and deter-
mines the position of the failure. We exclude the missing segment of the
signal from recovery, here the samples 1-50 as depicted by the dashed curve
in Figure 6.8.b.

Signal recovery using DCT without excluding the missing segment still
gives us a good accuracy. However, it erroneously detects low temperatures
for SNs 1-50, see the dotted curve in Figure 6.8.b. The recovered signal after
excluding the missing segment retains its accuracy and also distinguishes the
missing samples for nodes 1-50, see the dashed curve in Figure 6.8.b.

6.6 Evaluation

We have tested our technique on different simulated WSNs with our illustra-
tive synthesized compressible signals. In this section, we apply our method
on real-world datasets and put the WSN under stress tests to evaluate the
performance of our failure detection technique.

The simulations are performed on a real-world dataset form the Sen-
sorscope deployment LUC [2008]. Since not all of the SNs in the testbed

100 CHAPTER 6. HANDLING NODE AND LINK FAILURES

0 50 100 150 200 250 300
SN id

0

500

1000

1500

re
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e
 +

 o
ff

se
t (a) Detecting the location where the chain is broken

elevated signal

recovered by DCT

recovered by Haar

0 50 100 150 200 250
SN id

5

0

5

10

15

20

25

re
co

rd
e
d
 t

e
m

p
e
ra

tu
re

 v
a
lu

e

(b) Exluding the missing segment

original

rec. by DCT with exclusion

rec. by DCT without exclusion

Figure 6.8: Detecting the location of unrecoverable chain breakage

6.6. EVALUATION 101

were sampling synchronously, we selected 64 SNs with the most amount of
synchronously sampled data. The sensed data from LUCE dataset is applied
in our simulated network that possesses a linear topology. We take the data
from the real-world dataset while the network topology is determined in our
simulation program to be a linear topology. We employ our implementation
of the recovery algorithm which uses CVXOPT software package Dahl and
Vandenberghe [2006]. The simulation is implemented in Python using the
NumPy/SciPy scientific programming libraries Jones et al. [2001–].

6.6.1 CDG in WSN with chain topology

First, we evaluate the effectiveness of our step-back method introduced in
Section 6.4.1. In particular, we want to analyze the behavior of the step-
back method for different values of kmax and different number of failure occur-
rences. We assume that each node has an independent probability p of failure.
We simulate the chain WSN of size 64 with different values for kmax ∈ {1, 2, 3}
and different values of node failure probability p ∈ [0.01, 0.15]. Looking at
Figure 6.9.a, we observe that the step-back method effectively reduces the
amount of lost samples. Without the step-back method, i.e. when kmax = 0,
we loose a lot of samples whenever a single node fails to transmit its values.
This happens because when kmax = 0 and no step-back takes place, any node
failures lead to a chain breakage. The step-back method tries to maintain the
connectivity of the network when a node failure occurs. With higher kmax
each node tries to fetch the values from farther predecessor nodes when their
direct predecessor does not send them any data.

Observation 1. The step-back method significantly reduces the lost samples
when restoring the connectivity of the chain succeeds.

Another interesting observation is that the average amount of increase in
power consumption and the balance of load on the SNs mainly depends on the
probability failure p. Figure 6.9.b illustrates the increase in communication
cost and its standard deviation across the network after applying the step-
back method for different values of p and kmax. We observe a moderate
increase in average power consumption when applying the step-back method.
The standard deviation shows how the load is distributed on the network.
Higher standard deviation indicates that the nodes that are restoring the
chain connectivity are overloaded.

Observation 2. Higher step-back limit kmax increases the ability to restore
the chain connectivity. Changes in power consumption of the WSN is preva-
lently determined by the failure probability p rather than step-back limit kmax.

102 CHAPTER 6. HANDLING NODE AND LINK FAILURES

According to Observation 2 it is recommended to use a higher step-back
limit kmax as long as the hardware capabilities of the SN allows it.

Now, we put the WSN under stress test and measure the accuracy of the
recovered signal. The stress test deliberately fails some of the SNs, i.e., zeros
their corresponding samples in the spatial signal. We measure the accuracy
of signal recovery when the number of failures increases. The accuracy of
the recovered signal is given by Signal-to-Noise Ratio (SNR) which is mea-
sured in decibels (dB). In our simulated network, setting kmax = 5 effectively
maintains the connectivity of the chain. Figure 6.10 illustrates the signal
reconstruction accuracy of our method and compares it to CDG for chain
topology Luo et al. [2009]. Equipping CDG with out failure detection and
isolation mechanism improves the accuracy of the recovered signal. Note that
each unit dB increment of SNR roughly corresponds to 25% higher accuracy
of the reconstructed signal as we measure the SNR by a logarithmic scale.

Observation 3. Detection and isolation of the missing samples improves the
accuracy of the recovered signal in Compressive Data Gathering.

The simulations are executed on the real-world data from the Sensorscope
dataset, while the network topology is controlled by the simulation environ-
ment. To assess failure detection capability in CWS, we apply a star topology.
For CDG we run the simulations on a large set of randomly generated trees.
This gives us a better understanding of the performance of our failure detec-
tion technique for a variety of WSN configurations, while the real-world data
resembles a more realistic situation. Similar to our previous experiments,
the measurements are contaminated with Gaussian noise. The power of the
noise is 5% of the power of the signal.

6.6.2 CWS in star topology

Figure 6.11 compares the performance of conventional CWS with our en-
hanced version that is equipped with failure detection. We observe that by
increasing the number of failures, the accuracy of the signal recovered by
conventional CWS decreases steadily. Detection and exclusion of the miss-
ing samples keeps the accuracy at a higher level even when more failures
are injected. We have inserted the failures in random locations and ran the
simulation for 50 different time spots of the dataset. The simulation results
are then averaged over 10 repetitions. Note that we assess both conventional
CWS and failure-aware CWS using a WSN with the same location of failures.

Our failure detection technique helps to withstand the negative effect of
failing SNs by excluding the missing samples from signal recovery. The result

6.6. EVALUATION 103

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Probability of node failure (p)

0

20

40

60

80

100

120

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f

lo
st

 s
a
m

p
le

s (a) Number of lost samples for different values of kmax

No step-back (kmax=0)

Step-back with kmax=1

Step-back with kmax=2

Step-back with kmax=3

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Probability of node failure (p)

0

2

4

6

8

10

12

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
co

m
m

u
n
ic

a
ti

o
n
 c

o
st

(b) Communication cost for different values of p and kmax

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 i
n
cr

e
a
se

 o
f

co
m

m
u
n
ic

a
ti

o
n
 c

o
st

AVG increase, kmax=1

AVG increase, kmax=2

AVG increase, kmax=3

STD comm. cost, kmax=1

STD comm. cost, kmax=2

STD comm. cost, kmax=3

Figure 6.9: Analysis of the step-back method

104 CHAPTER 6. HANDLING NODE AND LINK FAILURES

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Probability of node failure (p)

2

4

6

8

10

12

14

S
ig

n
a
l
re

co
v
e
ry

 S
N

R
 (

d
B

)

CDG

CDG with failure-detection

Figure 6.10: More accurate recovery after isolation of the missing samples

illustrated in Figure 6.11 is then averaged over many different simulation
runs.

6.7 Summary

In this chapter, we introduced an enhancement to Compressive Data Gath-
ering (CDG) in chain Wireless Sensor Networks (WSNs). CS-based data
collection methods for WSNs like CDG are inherently robust to additive
communication noise. In addition to communication noise, a WSN also faces
another source of erroneous data collection. The WSNs are usually deployed
in harsh operational environments, and thus, it is likely that some SNs gets
damaged and cannot continue their function. Thus, the SNs of a WSN are
at the risk of temporary or permanent defects.

The performance of CDG in WSNs with linear topology is also studied
under circumstances where a SN encounters a failure and cannot transmit its
measurements or forward the accumulated measurements from other SNs.

We proposed a simple and effective method based on a best-effort tech-
nique to maintain the connectivity of the chain topology. We also introduce
an enhancement to CS measurement and recovery that excludes the missing
samples due to node failures without transmitting health monitoring mes-
sages. Our proposed technique, first determines the location of the missing
samples that are caused by node failures. Then, the recovery algorithm is
executed on the remaining part of the signal that contains genuine data. Our

6.7. SUMMARY 105

0 1 2 3 4 5 6 7 8 9 10
Number of failures

4

6

8

10

12

14

16

18

20

S
N

R
 (

d
B

)

CWS

CWS with failure-detection

Figure 6.11: Comparing CWS with and without failure detection under stress
test

evaluations prove that exclusion of the missing samples significantly improves
the accuracy of the recovered signal.

106 CHAPTER 6. HANDLING NODE AND LINK FAILURES

Chapter 7

Data Dissemination via
Network Coding

In a typical WSN, all of the sensed data is cooperatively gathered at the
sink. The end user of the WSN fetches these data from the sink for further
processing. In this chapter, we present an all-to-all dissemination method
such that all of the sensed data is accessible from any node of a WSN. In
simple words, each node can potentially be a sink. This grants more flexibility
and mobility to the end user of the WSN, since it is possible to access the
global state of the environment from any arbitrary SN in its vicinity.

Consider a WSN consisting of n static SNs. Suppose that vector f ∈ Rn

is made by stacking the values recorded by the SNs. Thus, the ith entry of
vector f , namely fi, is equal to the value recorded by the ith SN. Like the
previous chapters, we may use either of the terms spatial signal or vector
interchangeably and both refer to f . The goal of our dissemination method
is to make the vector f available to all SNs within a certain time limit.
This is useful for Wireless Sensor and Actuator Networks (WSANs) when a
distributed control is performed based on the global state of the environment
Verdone et al. [2008]. We also consider the scenario where the global state
can be recovered by fetching a limited amount of data from a small subset of
the SNs; e.g., when a mobile sink visits some SNs and estimates the global
state of the environment by extracting their data.

There are two challenges to achieve this goal. First, the number of trans-
missions by the SNs must be minimized in order to meet bandwidth limi-
tations and also save battery. Second, the dissemination protocol must be
light-weight such that it can be easily implemented on the basic hardware
platforms of the SNs.

In this chapter, we introduce Comprensus, a novel protocol for efficient
dissemination of compressible data in a WSN. Comprensus draws its con-

107

108 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

cepts from the well known consensus methods studied in distributed control
literature Olfati-Saber et al. [2006]. Unlike consensus, compressibility of the
data plays a decisive role in our protocol. The more compressible the spatial
signal is, the less transmissions are required by Comprensus to disseminate
the data. Comprensus proves a significant performance gain over consensus
techniques by exploiting the compressibility of the sensed data and reducing
the number of transmissions.

Our approach has two advantages over the straightforward solution that
gathers data at a stationary sink and sends it to the mobile end user. First,
our method allows each SN to be a potential sink. Second, there is no need for
the end user to be in radio range of the stationary sink. The mobile end user
can extract the global state of the environment from any SN in its vicinity.
This is especially useful for in-door applications where the base station is not
necessarily accessible from any arbitrary location in the environment.

Evaluations show that using Comprensus each SN can have an estima-
tion of the global state with a Signal-to-Noise Ratio (SNR) of more than 50
decibels. This level of SNR indicates that Comprensus can achieve a highly
accurate estimation of the global state at all SNs. In Section 7.3 we show that
under a fixed accuracy requirement, a tradeoff between latency and energy
consumption can be settled depending on specific application requirements.
We investigate scenarios ranging from low-latency energy-aggressive mode
to energy-preserving high-latency mode. Comprensus proves to be easily
tunable to each of these configurations.

Next, we briefly review the so called RIPless version of the CS theory
and study its applications in WSNs. As we will see later in this chapter,
the CS theory without the RIP (Restricted Isometry Property) allows us to
define a custom measurement matrix that better suites our network coding
technqiue.

7.1 RIPless Compressed Sensing

The CS theory is initially based on the Restricted Isometry Property (RIP)
Candes [2008]. The Comprensus protocol is based on the newer version of the
CS theory that does not require the RIP. The so called RIPless CS theory
allows for a computationally feasible method to certify whether the precon-
ditions of accurate signal recovery hold for a particular setup of Comprensus
Candes and Plan [2011].

Definition 14. We call a vector φ ∈ Rn a sensing vector, and the inner
product of a sensing vector and vector f is called a measurement.

7.1. RIPLESS COMPRESSED SENSING 109

Let y1, y2, . . . , ym be m measurements such that

yj = φj
T f + zj , j ∈ {1, 2, . . . ,m} (7.1)

where φj are the sensing vectors, {zj} is the white noise sequence with vari-
ance σ2. This can be also written using matrix notations:

y = Φf + z (7.2)

where y = [y1 y2 . . . ym]T is the measurement vector, Φ = [φ1 φ2 . . . φm]T

is the measurement matrix and z = [z1 z2 . . . zm]T is the noise vector.
According to the CS theory, it is possible to recover vector f from m < n

measurements under certain conditions for f and the sensing vectors as fol-
lows.

We assume that f can be sparsely represented under a linear projection
using an orthonormal matrix Ψ. Suppose that f = Ψx for a suitably chosen
orthonormal matrix Ψ such that x is sparse. Remeber that a vector x is
called a sparse vector when it has s � n non-zero components and all its
other (n−s) components are zero. As we have seen in the previous chapters,
sparsity plays an important role in the CS theory. The sparser the vector x
is, the fewer measurements are required to recover f .

7.1.1 Isotropy and incoherence

Isotropy and incoherence are the other necessary conditions in order to re-
cover f from y Candes and Plan [2011]. Let φ ∈ Rn be a random sensing
vector with independent and identically distributed components drawn from

distribution F , i.e., φ
iid∼ F .

Definition 15. Distribution F has the isotropy property, when φφT is ex-
pected to be the identity matrix. Mathematically,

E[φφT] = I , φ ∼ F. (7.3)

The isotropy condition can be weakened to near isotropy, i.e., E[φφT] ≈ I
and still f is accurately recoverable from the measurement vector y Candes
and Plan [2011].

Definition 16. Coherence parameter µ is defined as the smallest value µ
such that

|φTj ψi|2 ≤ µ (7.4)

for all sensing vectors φj and columns ψi of matrix Ψ, j ∈ {1, 2, . . . ,m} and
i ∈ {1, 2, . . . , n}.

110 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

We say that the sensing vectors are more incoherent if the value of µ is a
smaller number. According to Candes and Plan [2011], the more incoherent
the sensing vectors are, the less random measurements are required for accu-
rate recovery. Candes et al. in their RIPless theory of CS Candes and Plan
[2011] discuss some of the random distributions F obeying the isotropy con-
dition. These include the Gaussian distribution, Rademacher distribution
and random Fourier sampling Candes and Plan [2011]. Randomized sam-
pling brings a key benefit for WSNs by eliminating the need for centralized
coordination Bajwa et al. [2007]; Luo et al. [2009].

It is shown in Candes and Plan [2011] that if the isotropy condition holds
and the number of measurements m is in the order of O(µs log n), then f can
be recovered from y with an overwhelming probability. Therefore, we need
a basis1 Ψ and a set of sensing vectors with isotropy property such that f is
compressible under the Ψ-transform and the columns of the transformation
matrix Ψ have the least coherence with the sensing vectors. In this chapter,
we propose a novel network coding technique that fulfills these conditions.

7.1.2 Signal recovery

In order to recover f from y, first we need to solve the following convex
optimization problem Candes and Plan [2011].

minimize
x̃∈Rn

1

2
‖ΦΨx̃− y‖22 + λσ‖x̃‖1 (7.5)

where λ = 10
√
m log n, ‖·‖1 is the norm-1 operator and ‖·‖2 is the norm-2

operator.
Some of the efficient and accurate algorithms for solving this problem can

be found in Kim et al. [2007] and Blumensath and Davies [2009]. If x̂ is the so-
lution to the convex optimization problem in Equation 7.5, then f̂ = Ψx̂ will
estimate the original signal f with an error bounded by polylog(n)(s/m)σ2

Candes and Plan [2011]. In practice, signal f is not strictly sparse under
the Ψ-transform. Instead, x has a few components with larger magnitudes
and most of its remaining components are nearly zero. Suppose that xs is
a sparse approximation of x by keeping s most significant components of x
and zeroing its remaining (n − s) components. It is shown that, in such a
case the recovery error will not grow much more than O(‖x− xs‖2) Candes
and Plan [2011]; Candes [2006].

1A basis for Rn is a set of vectors ψi, i ∈ {1, . . . , n}, such that any vector f ∈ Rn can
be represented as f =

∑n
i=1 xiψi where xi are called the coefficients of f in basis Ψ. The

corresponding transformation matrix Ψ is made by putting the vectors ψi in a matrix,
i.e., Ψ = [ψ1 ψ2 . . . ψn] and f = Ψx where x = [x1 x2 . . . xn]T .

7.2. DISTRIBUTED COMPRESSION AND PREDISTRIBUTION VIA RANDOMIZEDGOSSIPING111

7.2 Distributed compression and predistribu-

tion via randomized gossiping

Randomized gossiping is a data dissemination approach which employs av-
erage consensus algorithm Rabbat et al. [2006]. It makes use of gossiping
average consensus technique to compute and distribute random projections
of the sensed data. These random projections are the measurements yj where
j ∈ {1, 2, ...,m}.

Let αi refer to the ith column of measurement matrix Φ. Note that αi is
generated in a decentralized manner by employing a pseudo-random number
generator. Suppose that SN i computes fiαi and stores the result in an array
of m real numbers. Let wi[t] ∈ Rm refer to the content of the array inside
SN i at time t. SN l1 is activated uniformly at random at time t and chooses
one of its neighbors l2 uniformly at random. SN l1 and SN l2 exchange wl1 [t]
and wl2 [t] and update wl1 [t+ 1] = wl2 [t+ 1] = (wl1 [t] + wl2 [t])/2.

According to the work by Rabbat, when t → ∞, wi → Φf for all
i ∈ {1, 2, . . . , n} Rabbat et al. [2006]. Therefore, after sufficiently many it-
erations of this protocol, the content of array wi in all SNs will get close
enough to y = Φf . According to the discussion in Section 7.1.2, signal f can
be recovered at any SN after solving Equation 7.5. Since the size of y and
also the array wi is in the order of µs log n, randomized gossiping requires
O(µs log n) transmissions per iteration. The number of required iterations
depends on the network topology Rabbat et al. [2006].

If we assume that s log n measurements are required for accurate signal
recovery, then 2s log n transmissions per iteration is performed by the two
SNs that are randomly chosen for data exchange. One drawback of this
method is that the measurements are inaccurate unless sufficiently many
iterations of this protocol are executed. In practice, too many iterations and
message exchanges are required to achieve the consensus below an acceptable
error threshold.

7.2.1 Comprensus and randomized gossipting

In practice, achieving a negligible recovery error requires a large number of
iterations. This is one important drawback of randomized gossiping. Com-
prensus proves to be more efficient in terms of number of iterations and
transmissions required for data dissemination. The novelty of the Compren-
sus is its efficient network coding technique, which makes a faster convergence
to the minimum recovery error possible. In Comprensus, each SN receives
a different measurement vector yi where i ∈ {1, 2, ..., n}. For all of these

112 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

measurement vectors, some necessary conditions are satisfied ensuring that
accurate signal recovery is possible.

We propose a novel network coding mechanism which is still as simple
as consensus, nevertheless, requires less time and communications to dissem-
inate the measurements. In randomized gossiping, the SNs run a protocol
such that all of them converge to a measurement vector y which is common
among all SNs Rabbat et al. [2006].

In Comprensus, each SN receives a different measurement vector yi, i ∈
{1, 2, . . . , n}. We show that for all of these measurement vectors, the isotropy
and incoherence properties hold. Therefore, Comprensus does not need too
many iterations for convergence to the same measurement vector among all
SNs. Instead, our proposed method guarantees that the same signal f is
accurately recoverable from each individual measurement vector yi received
by SN i, i ∈ {1, 2, . . . , n}.

After calculating, disseminating and acquiring the measurements, the
original signal can be recovered by solving a convex optimization problem
as explained in Section 3.2.3, while minimizing the expected squared error.

7.3 The Comprensus protocol

In this section, we explain Comprensus, a simple distributed protocol to
disseminate random linear measurements in a WSN with static topology. We
assume that the network topology corresponds to a connected regular graph
of degree d. It is easy to create a regular graph topology in a WSN when n×d
is an even number. For a given degree d each SN selects at most d neighbors
with the highest Received Signal Strength Indicator (RSSI) assuming that
each SN has at least d SNs in its communication range Santi [2005]. At the
end of this process, we will have a topology corresponding to a regular graph
of degree d.

We start by defining the variables and definitions used in our protocol.
Suppose that each SN is equipped with two pseudo-random number genera-
tors as defined below.

• Rademacher random generator produces either +1 or −1 each with
probability 1/2.

• Bernoulli random generator produces 1 with probability p = k/n and
0 with probability 1− p.

We assume that SN i keeps a real number ui in its internal memory.
SN i also keeps a list Li of real numbers in its memory. The data type of

7.3. THE COMPRENSUS PROTOCOL 113

the elements of Li is the same as the data type of ui. Memory requirement
for this list is O(µs log n) items. We will see shortly that µ will be a small
constant. This list actually holds the random linear measurements which
are used thereafter for signal recovery. One can have an estimation of s
in an appropriate basis Ψ based on a previous knowledge about the data
gathered from the WSN. Since this estimation is not necessarily accurate, it is
recommended to use a worst case estimation for s in a real-world deployment
of Comprensus.

7.3.1 Distributed Comprensus algorithm

The Comprensus protocol is executed in three phases: Initialization, Dis-
semination and Recovery. The instructions described below will be executed
in parallel by every SN i, i ∈ {1, 2, . . . , n}.

Initialization

First, the list Li is emptied. Then, SN i reads the value fi from its sensor and
stores it into variable ui. We assume that each SN is given a unique id and
initializes the seeds of the Rademacher and Bernoulli random generators by
its id. By choosing an efficient and reliable pseudo-random number generator
we minimize the chance that two SNs generate the same sequence of random
values Niederreiter [1991].

Dissemination

This phase is repeated r times in parallel by all n SNs. At each iteration
t ∈ {1, 2, . . . , r} all of the SNs execute Algorithm 2 simultaneously.

• hi[t] is the value generated by the Rademacher random generator of SN
i at iteration t.

• bi[t] is the value generated by the Bernoulli random generator of SN i
at iteration t.

114 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

1: ui ← hi[t] · ui
2: if bi[t] = 1 then
3: Transmit ui
4: else
5: for all SN j in neighborhood of SN i do
6: if SN j is transmitting the value uj[t] then
7: ui ← ui + uj[t]/n
8: end if
9: end for

10: end if
11: if at least one neighbor has transmitted then
12: add ui to the rear of Li
13: end if

Algorithm 2: Dissemination phase of Comprensus

Remark: We assume that the SNs cannot transmit and listen at the
same time. Also the wireless channel of two adjacent nodes cannot be used
simultaneously. Therefore, if a set of adjacent SNs want to transmit at the
same iteration, they transmit one by one according to the descending order
of their ids. They aggregate their received measurements in a temporary
variable and update their corresponding ui only after all of these concurrent
transmissions are completed.

If the SNs are perfectly synchronized, aggregation by signal superposition
helps to perform the dissemination phase faster. Signal superposition allows
multiple nodes to transmit simultaneously and the receiver accumulates the
received values at the same time Bajwa et al. [2007, 2006].

Recovery

SN i derives a vector yi by stacking the entries in list Li. When all SNs agree
on a common random generator algorithm, the linear combinations that led
to the values in Li are reproducible as described in Section 3.3. These linear
measurements are then placed in Equation 7.5 to recover f . We show in
Section 7.3.3 that the linear measurements acquired in the dissemination
phase obey the isotropy condition and have low coherence with DCT.

Line 1 of Algorithm 2 generates a new Rademacher value and multiplies
it by the current value of ui which is first set to fi in the initialization phase.
Line 2 decides whether SN i is to transmit in this iteration or not. Since bi[t]
returns 1 with probability k/n, this is equivalent to the case that almost k
out of n SNs select themselves uniformly at random to transmit. Executing
the line 3 consumes the most amount of battery power, as using the radio in
transmitting mode is the major energy drain of a SN Mahfoudh and Minet

7.3. THE COMPRENSUS PROTOCOL 115

[2008]. If SN i is not in transmitting mode at iteration t, i.e., bi[t] = 0, then
it listens to the communication channel and accumulates the values sent by
neighboring nodes onto ui after dividing them by n as instructed in lines 5
through 9. Summing the received values from neighboring nodes can be done
arithmetically by using a simple Time Division Multiple Access (TDMA)
mechanism Akyildiz et al. [2002]. A faster alternative is signal superposition
when the SNs are perfectly synchronized Bajwa et al. [2007, 2006]. It can
also happen that no neighbor of SN i does a transmission at iteration t. In
this case, no value is added to the list Li. This condition is checked in line
11, and thus, line 12 is executed only when at least one neighboring node
has transmitted. We will explain shortly why this restriction is necessary.

7.3.2 Matrix representation of the distributed proto-
col

In this section we examine the network-wide implication of Algorithm 2 by
using the equivalent matrix representation of Comprensus.

Let Ni denote the set of the d neighbors of SN i.

Definition 17. Transition matrix Mt at iteration t is an n× n real matrix
with the following attributes.

1) Mt[i, i] = hi[t] for 1 ≤ i ≤ n.
2) Mt[j, i] = hi[t]/n when j ∈ Ni and bi[t] = 1.

It is easy to verify that after iteration t of the dissemination phase,
u1[t]
u2[t]

...
un[t]

 = (Mt ×Mt−1 × · · · ×M1) f (7.6)

describes the contents of variables ui , i ∈ {1, 2, . . . , n}. We address the effect
of noise at the end of our matrix analysis. We also define the n × n matrix
Qt as

Qt :=

q1,t

q2,t
...

qn,t

 := Mt ×Mt−1 × · · · ×M1 (7.7)

where q1,t, q2,t , . . . , qn,t are the rows of matrix Qt.
We define a set Ri as

Ri := {t | ∃j ∈ Ni : bj[t] = 1} (7.8)

116 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

to refer to the set of iterations in which at least one neighboring node of SN
i is transmitting. We also define matrix Ai as

Ai := [qTi,t1 qTi,t2 . . . qTi,tm(i)
]T (7.9)

where m(i) = |Ri| is the number of measurements received by SN i and
{t1, t2, . . . , tm(i)} = Ri. The number of received measurements may differ
from one SN to other. Nevertheless, when the network topology corresponds
to a regular graph, all of the nodes are expected to receive almost the same
amount of measurements, since each SN has an equal chance to transmit and
receive messages. It can be shown that the measurement vector y(i) made
by stacking the values in list Li will be

y(i) = Aif + z (7.10)

where z is the additive noise. The noise is added either by the communication
channel or can be regarded as a side effect of low precision floating pointing
storage and processing inside the SNs. We model z by a white Gaussian
noise vector in our simulations and experiments.

If the rows of Ai obey the isotropy property and have low coherence with
a compressive basis, then f can be recovered at SN i from y(i) with high
probability as detailed in Section 7.1.2. Now the reason for the restriction in
Line 11 of Algorithm 2 becomes clear. We only let newly received measure-
ments to be aggregated and added to the measurement list Li. Otherwise,
Ai will have at least two rows which are linearly dependent, and thus, Ai is
not full rank. In other words, we will have redundant measurements stored
in Li if we do not check the condition in Line 11 of Algorithm 2.

Suppose that m̄ is the average number of measurements received per
SN. m̄ should be in order of O(µs log n) to allow successful recovery. When
these conditions are fulfilled, the signal vector f can be recovered at every
SN after running the Comprensus protocol. Next, we examine isotropy and
incoherence properties of our measurement matrix Ai for i ∈ {1, 2, . . . , n}.

7.3.3 Numerical experiments

In this section, we investigate the isotropy and incoherence of our measure-
ment method through numerical experiments on simulated WSNs. We per-
form comprehensive numerical experiments on simulated WSNs consisting of
n = 128 SNs. The network graph is a random regular graph of degree d = 5
which is freshly generated in each experiment and the results are averaged
over multiple simulation runs.

7.3. THE COMPRENSUS PROTOCOL 117

We let the SNs to generate their corresponding hi and bi random numbers
and execute the Comprensus protocol for varying values of r and k. Each
experiment is run several times and all of the results are averaged to eliminate
randomness effects.

In Section 7.1.1, we have seen that even if the set of sensing vectors have
the near-isotropy property, the signal f can be recovered from measurement
vector y. In Comprensus, the set of the sensing vectors for SN i are the
rows of Ai and the measurement vector for SN i is y(i). We define a metric
for deviation from isotropy and show that the rows of Ai have a very low
deviation from the isotropy property.

Definition 18. Deviation from isotropy for a random sensing vector a is
defined as

∑
e∈Ea(1− e)2 where Ea is the the set of eigenvalues of the square

matrix E[aaT].

This metric determines how much E[aaT] behaves like an identity matrix.
In the ideal case, E[aaT] = I and has only one eigenvalue, i.e., 1, and thus,
the deviation from isotropy is zero. For random sensing vector a, if the
eigenvalues of E[aaT] are all very close to 1, E[aaT] behaves like an identity
matrix and deviation from isotropy as defined in Definition 18 will be low.

In our numerical experiments, a large set of measurement matrices Ai are
generated. Our random sensing vectors are actually the rows of the randomly
generated measurement matrices Ai. For each row aT of these matrices, we
calculate aaT and sum up all of the results. E[aaT] is then numerically
calculated by dividing this summation by the total number of the randomly
generated sensing vectors.

Observation 1 – near-isotropy: Deviation from isotropy according to
Definition 18 is calculated over all randomly generated measurement matrices
Ai, i ∈ {1, 2, . . . , n} and a full range of experiments with k varying from 1 to
n and r ∈ {32, 64, 128}. The results as illustrated in Figure 7.1.a prove that
our measurement mechanism obeys the near-isotropy property with negligible
deviation, i.e., E[aaT] ≈ I.

Observation 2 – low coherence: We set Ψ to be the inverse DCT ma-
trix and calculate the coherence with the DCT basis according to Definition
16 for randomly generated measurement matrices with k varying from 1 to
n and r ∈ {32, 64, 128}. The averaged results over a large set simulations as
illustrated in Figure 7.1.b shows that the coherence factor is also low.

Next, we evaluate the performance of Comprensus and compare it with
randomized gossiping and an oracle-based approach.

118 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

0 20 40 60 80 100 120
140
Number of active sensor nodes (k)

0.000000

0.000001

0.000002

0.000003

0.000004

0.000005

D
ev
ia
tio
n
fr
om

is
ot
ro
p
y

(a) Deviation from isotropy

r= 32

r= 64

r= 128

0 20 40 60 80 100 120
140
Number of active sensor nodes (k)

4

5

6

7

8

9

10

11

C
oh
er
en
ce
co
ns
ta
nt
μ

(b) Coherence factor with DCT basis

r= 32

r= 64

r= 128

Figure 7.1: Near-isotropy and low coherence of Comprensus measurement
scheme

7.4. EVALUATION 119

7.4 Evaluation

We simulate the Comprensus protocol by distributed execution of
Algorithm 2 for different values of r and k on a large set of synthesized
spatial signals. After running each instance of the Comprensus protocol, the
Signal to Noise Ratio (SNR) of the recovered signal is calculated. The SNR
is measured in decibels (dB) and the recovery algorithm is run at a randomly
chosen SN. This guarantees that the recovery is possible at any arbitrarily
chosen node.

If f is the original signal and f̂ is the recovered signal, we define SNR as

SNR := 10 log10

(
‖f‖22
‖f − f̂‖22

)
. (7.11)

Figure 7.2 shows the results of simulating a network consisting of 128
nodes. Number of iterations and number of active nodes are varying from 1
to 128. Each point on the SNR diagrams corresponds to one simulation run.
Brighter area shows higher SNR which means accurate signal recovery at
an arbitrary SN and darker area shows lower SNR which means that signal
recovery is not possible, and hence, the sensed data is not accessible from an
arbitrary node.

An interesting observation in our evaluations is that the transition to
the condition where accurate recovery is possible is relatively sharp. Look-
ing at the SNR diagrams of Figure 7.2, the border between the bright area
(successful dissemination) and dark area (non-recoverability) has a recogniz-
able contrast. Sharp transition between recoverability and non-recoverability
states in CS is comprehensively studied in the Donoho-Tanner universal phase
transition inspections Donoho and Tanner [2009].

We conduct a large set of simulations with different configurations of the
Comprensus protocol and for different values of the sparsity parameter s.
Next, we compare Comprensus to randomized gossiping for three illustrative
values for s. Our evaluations show that Comprensus outperforms randomized
gossiping in terms of message cost and the dissemination time. In Section
7.4.2, we show that Comprensus performs close to the optimal case when no
packet loss occurs.

7.4.1 Comparison to randomized gossiping methods

In this section, we compare Comprensus to decentralized compression based
on randomized gossiping Rabbat et al. [2006]. We set our SNR requirement
for both protocols to 40 dB and compare their performance in achieving this

120 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

0 20 40 60 80 100 120

Number of iterations

0

20

40

60

80

100

120

Nu
m

be
r o

f a
ct

iv
e

no
de

s
pe

r i
te

ra
tio

n

0

15

30

45

60

75

90

SN
R

[d
B]

(a) Signal recovery for s = 5

0 20 40 60 80 100 120

Number of iterations

0

20

40

60

80

100

120

Nu
m

be
r o

f a
ct

iv
e

no
de

s
pe

r i
te

ra
tio

n

0

10

20

30

40

50

60

70

80

SN
R

[d
B]

(b) Signal recovery for s = 10

0 20 40 60 80 100 120

Number of iterations

0

20

40

60

80

100

120

Nu
m

be
r o

f a
ct

iv
e

no
de

s
pe

r i
te

ra
tio

n

0

10

20

30

40

50

60

70

80

SN
R

[d
B]

(c) Signal recovery for s = 20

Figure 7.2: Accuracy of signal recovery for different sparsity levels

7.4. EVALUATION 121

requirement. Network topology and all other conditions are also the same
for both protocols.

As described in Section 7.2, randomized gossiping requires at least s log n
data exchanges per iteration. The number of required iterations is dependent
on the network topology and maximum allowed measurement error. Assume
that wi[t] is the content of the measurement vector of SN i at iteration t of
randomized gossiping as defined in Section 7.2. As we have seen in Section
7.2, the difference between wi[t] and y = Φf shrinks to zero when t→∞.

We define the measurement error of SN i at iteration t as

εi,t := ‖wi[t]− y‖2. (7.12)

We also define average measurement error at iteration t as εt := (
∑n

i=1 εi,t)/n.
From the arguments in Section 7.1.2 we know that for recovering f with SNR
of at least 40 dB, the measurement error εi,t must be lower than ‖f‖2×10−4

for the measurement vector received by SN i at time t.
Figure 7.3 shows how εt decays with the number of randomized gossiping

iterations for a WSN consisting of n = 128 SNs with a network topology
corresponding to a connected regular graph of degree d = 5. We observe
that, average measurement error goes below our required threshold after
almost 1200 iterations. We round down this number to 1000 iterations in
favor of the randomized gossiping method.

400 600 800 1000 1200 1400
Number of iterations

0

100

200

300

400

500

A
v
e
ra

g
e
 m

e
a
su

re
m

e
n
t

e
rr

o
r

(ε
t
)

Figure 7.3: Measurement error decay with iterations of randomized gossiping

Now we compare the total amount of transmissions in Comprensus and
randomized gossiping. We consider the three test cases illustrated in Figure

122 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

7.2. For s ∈ {5, 10, 20}, randomized gossiping requires s log n ≈ 2.1 × s
transmissions per iteration when n = 128, and thus, almost 2.1 × 103 × s
transmissions in total, since it requires to execute 1000 iterations. Com-
prensus needs rk transmission corresponding to point (r, k) that falls on the
bright part of the SNR diagram of Figure 7.2. For s being 5, 10 and 20 we
set (r = 50, k = 30), (r = 60, k = 40) and (r = 80, k = 40) respectively.
Looking at Figure 7.2, we see that these are rather conservative selections
and signal recovery is possible with fewer numbers of transmissions. Never-
theless, we run Comprensus with these conservative settings and compare its
performance to the randomized gossiping method. The comparison result is
summarized in Table 7.1.

Table 7.1: Comparing Comprensus to randomized gossiping

s
Total number of transmissions

Comprensus Randomized
gossiping

5 1.5× 103 1.0× 104

10 2.4× 103 2.1× 104

20 3.2× 103 4.2× 104

Comprensus proves to disseminate the random linear measurements not
only in significantly less number of iterations, but also using much less
amount of in-network transmissions. Using its efficient network coding tech-
nique, Comprensus disseminates compressible data with low latency and high
quality while keeping the number of transmissions as low as possible in order
to preserve more battery power of the SNs.

7.4.2 Comparison to oracle-based approach

Comparison with an oracle-based approach gives us a better understanding
of Comprensus’ performance in comparison to the optimal solution. We
assume that an oracle knows all of the sensed data, i.e., the vector f in
advance, and hence, it also knows its sparse transform, i.e., x. The oracle
broadcasts only the s significant coefficients of x into the network. Thus,
the communication cost of the oracle-based approach is O(sn). Note that
broadcasting is performed hop by hop. For a limited number of neighboring
hops, the broadcast of a single data item requires O(n) transmissions, and

7.5. CHAPTER SUMMARY 123

0 5 10 15 20
Sparsity

0

1000

2000

3000

4000

5000
Co

m
m

un
ic

at
io

n
co

st
n*s
2*n*s
k*r

Figure 7.4: Communication cost for SNR-threshold of 30 dB

thus, the total number of transmissions for broadcasting the s significant
coefficients of x is O(sn).

Figure 7.4, Figure 7.5, Figure 7.6, demonstrate communication cost of
Comprensus for different values of sparsity and for 30 dB 35 dB and 40 dB
SNR-thresholds respectively. We observe that, the communication cost of
Comprensus is bounded between O(s × n) and O(3 × s × n). These nu-
merical experiments indicate that Comprensus functions almost optimally
under the conditions that are applied for the simulation. A generalization of
these results or a formal proof of optimality of Comprensus is regarded as an
interesting direction for future work.

In Appendix A we include more diagrams extracted from the database of
our simulation results.

7.5 Chapter summary

In this chapter, we studied dissemination of compressible data using local
information exchanges between the nodes in a wireless sensor network. Our
approach is based on the theory of compressed sensing. We present a novel
network coding protocol, named Comprensus, that enables each sensor node
of a wireless sensor network to operate potentially as a sink. Our agile sink

124 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

0 5 10 15 20
sparsity

0

1000

2000

3000

4000

5000
co

m
m

un
ic

at
io

n
co

st

n*s
2*n*s
k*r

Figure 7.5: Communication cost for SNR-threshold of 35 dB

0 5 10 15 20
sparsity

0

1000

2000

3000

4000

5000

6000

7000

8000

co
m

m
un

ic
at

io
n

co
st

n*s
3*n*s
k*r

Figure 7.6: Communication cost for SNR-threshold of 40 dB

7.5. CHAPTER SUMMARY 125

selection techniques can avail the full set of the sensed data by querying
a small amount of measurements from any arbitrary node in the network.
The techniques proposed in this chapter are particulary suitable for scenarios
where the sink of the wireless sensor network is mobile or when each node
should access the global state of the environment.

The main advantage of the Comprensus protocol is its simple dissemina-
tion algorithm that is easily implementable on the scarce hardware resources
of the sensor nodes. The complex part of the protocol, i.e., signal recov-
ery is offloaded to an external sink or data collector that possess enough
computation power.

Our evaluations show that Comprensus outperforms the state of the art
methods for data dissemination in wireless sensor networks that are based
on compressed sensing both in terms of communication cost and the time
required for data dissemination. Our approach benefits from inherent re-
silience of compressed sensing to communication and measurement noise.
Moreover, comprehensive simulation and experiments of our method show a
nearly optimal performance of the Comprensus protocol in a noiseless sce-
nario. Our experiments provide a basis for further theoretical and practical
investigations of our proposed method, especially for dynamic topologies.

126 CHAPTER 7. DATA DISSEMINATION VIA NETWORK CODING

Chapter 8

Conclusions and Future
Research

The main distinguishing aspect of WSNs from other sensory systems, is their
ability to encode the data while it is being transmitted to the base station.
Therefore, distributed network coding techniques have been always in focus
of designing effective data collection techniques for WSNs. We have seen that
in general there is a trade-off between decentralization of encoding and the
efficiency and or overhead of the data collection technique. Less centralized
processing often requires less coordination overhead. On the other hand,
centralized processing of data helps data compression or aggregation methods
to achieve a better compression ratio.

The trade-off between compression ratio and centralized processing over-
head, makes in-network compression particularly challenging for WSNs. Es-
pecially, because the limited computation and energy resources of the SNs
does not allow complex computation and high-rate data transfer.

Compressed Sensing (CS) is a sub-sampling method that allows a good
integration of in-network compression in WSNs. We have seen that CS pro-
vides a well-defined and quantitative trade-off measurement between the cost
of data collection and quality of information that is received by the sink.

The CS-based methods discussed in this thesis provide a multi-tier solu-
tion that covers different layers of WSN sensory systems, from sampling up to
data transfer and information reconstruction at the sink. At each of the data
collection steps, some unwanted distortion may be present that decreases the
quality of the information received by the sink. While CS intrinsically pro-
vides a certain level of robustness, we have extended the existing techniques
to better handle failure models of WSNs such as node or link failures.

127

128 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

8.1 Contributions of this thesis

This thesis focuses on data reduction techniques in WSNs that are based
on the CS theory. CS makes it possible to acquire signals more efficiently
in scenarios where collecting all samples of the signal is either infeasible or
costly. The contributions of this thesis can be summarized as the following:

8.1.1 Reordering technique for better signal compress-
ibility

We have shown that samples of spatial signals can be reordered to provide
a more compressible view of the phenomena that are being recorded by a
WSN. In most of WSN deployments, the numbering or indexing of the SNs
is done by convention. The identification numbers of the SNs are labels that
are given to those SNs and can be changed to produce a new ordering of the
samples. In Chapter 4 we discussed techniques to define a mapping between
the physical identification indices of the SNs and the sequence of the samples
in the permuted signal vector. Also a polynomial-time algorithm to find a
more compressible permutation of the samples is provided. The algorithm
accepts a set of sensed data and a compressive basis Ψ. Our proposed al-
gorithm finds a permutation of the samples that is more compressible in Ψ.
In our simulation, we run the algorithm at a time instance t and the WSN
continues its sensing operation to collect the data at time t + 1. The SNs
are relabeled or re-indexed according to the more compressible permutation
calculated from the previous sampling round. After running multiple simu-
lations with different configurations, we conclude that compressible ordering
leads to a better performance of compressed sensing at time instance t+ 1.

8.1.2 Concept of sliding sampling window for spatio-
temporal compressed sensing in WSNs

As discussed in Chapter 2, data compression algorithms are mainly based on
finding a correlation between a large amount of data. The more structured
the data is, the higher compression ratio can be achieved by the compression
algorithm. Especially when the structure or correlation is found for a larger
set of data, better data reduction is expectable. Larger data sets in time
domain requires longer delays to gather the data over an extended time
period. A larger sampling window can improve the efficiency of compressed
sensing, but requires a longer time to fill the sampling buffer.

We have presented the concept and implementation of a sliding sampling

8.1. CONTRIBUTIONS OF THIS THESIS 129

window in Chapter 5 to solve the issue of longer delays when the sampling
period is extended. Our proposed method requires an initialization phase to
fill its sampling buffer. After the initialization phase, the data is delivered
to the user without any additional delay. Our concept of sliding sampling
window takes advantage of the temporal compression as well spatial compres-
sion. At the same time, it does not introduce additional delays for sampling
the data. The penalty of refilling the sampling buffer occurs only when a
non-recoverable error failure happens. In most cases of transient failures, the
location of the failure is detected.

8.1.3 Methods to detect and isolate the failing nodes

Node failure and link breakage are two of the main challenges towards an ef-
ficient data collection technique for WSNs. In traditional compression tech-
niques, the value of data packages increases drastically when the data is
compressed, because the loss of those packages means losing a larger amount
of raw data. In compressed sensing, the measurements are all considered to
carry an equally valuable amount of data.

In our proposed methods, failures of the sensor nodes are modeled as ab-
normal events. We propose an event detection mechanism for our spatiotem-
poral sampling window mechanism. Our method uses an over-complete dic-
tionary in its signal reconstruction phase to cancel the negative impact of
missing samples caused by the failing nodes or the broken links.

In a second approach that suits better for WSNs with chain or linear
topology, we proposed using Haar wavelet domain as the compressive domain
to detect the location of the missing samples that are caused by network
failures. This is possible when we elevate the values sensed by the SNs by an
offset that is much larger than the SNs’ valid sensing range. Elevation of the
signal allows us to distinguish the locations of the signal with zero value from
the locations where the SN actually sensed a value of zero for the physical
parameter.

After detecting the location of the node failures, the failing nodes are
excluded (isolated) from the data reconstruction process. Only that part
of the sensed data that is successfully transmitted is reconstructed. Our
evaluations show that the quality of the reconstructed signal is much higher
when the erroneous samples are excluded from the signal recovery process.

8.1.4 Compressive signal dissemination in WSNs

Dissemination of the sensed signal can be a very costly task for a WSN,
because it usually requires a lot of in-network transmissions. Note that in

130 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

signal dissemination, all of the sensed data is to be accessible to all nodes of
the network. It must be possible to recover or reconstruct the global state
of the environment by fetching data from any node of the network. Most of
the existing compression techniques, including the sate of the art methods
that are based on compressed sensing are optimized towards gathering the
data at a single point, i.e., the sink. Extensions to support multiple sinks
are basically generalizations of the central data collection techniques.

This thesis introduces a novel network coding technique based on com-
pressed sensing that is specifically designed for the purpose of signal dissem-
ination in WSNs. It allows dissemination of the sensed data to all sensor
nodes without collecting it at a central point. Our coding mechanism which
is called Comprensus only involves the exchange of numerical values between
neighboring nodes and performing simple arithmetic operations, i.e., addition
and multiplication. Comprensus disseminates a special linear combination
of the sample values. We have shown that it is possible to reconstruct the
whole sensed data by applying the recovery algorithm of compressed sensing
to the accumulated linear combinations that are stored in any of the sensor
nodes.

8.2 Lessons learned

In this thesis, we have have introduced novel data collection techniques by
following a new paradigm of distributed data gathering in WSNs. In most of
the state-of-the-art works, sampling, encoding, compression and failure han-
dling are regarded as separate problems. This thesis provides a simpler and
yet more effective data collection technique by applying compressed sens-
ing as a holistic theory that combines sampling, encoding and compression
into a distributed network coding technique. This network coding is easy
to implement and does not require too much prior information about the
characteristics of the signal that is to be sampled.

The main lesson to learn here is that fundamental rethinking of theories
for distributed coding has led to design of better data collection methods.
Such novel designs would not be achievable if the problems of sampling,
encoding, transmission and failure handling are treated separately and in-
dependent from each other. The theory of compressed sensing which is the
main focus of this thesis allows designing data gathering techniques that span
over different stages of data collection in WSNs, including the sampling stage,
encoding, data transmission and network coding, and finally, post-processing
and decoding of the collected data. By focusing on the characteristic require-
ments of WSNs, we have extended the theory of compressed sensing to per-

8.3. FUTURE WORK 131

form saptio-temporal distributed sampling with abnormal event detection in
WSNs. Most notably, the methods and techniques that we presented in this
thesis do not modify the sampling and network coding parts of compressed
sensing. They mainly provide new signal reconstruction methods. Therefore,
most of the techniques presented in this thesis can be implemented at the
sink of a WSN by having very little or no changes to the hardware or software
of the sensor nodes.

8.3 Future work

Our last two contributions that was described in chapters 6 and 7 can open
new ways towards application of compressed sensing in WSNs with mobile
nodes. This can involve an ad-hoc network of mobile nodes such as robots
that require accessing the sensed data from other robots to achieve a specific
goal. The main challenge of applying compressed sensing in a network with
mobile nodes, is that the topology of the network is not fixed. All of the
methods described in this thesis target WSNs with stationary sensor nodes.
In Chapter 6 we consider a network with stationary sensor nodes, but the
topology of the network can be other than what is fixed during the network
initialization. Our robust compressed sensing method allows the network
topology to be altered during the run time of the WSN. However, topology
changes are captured in form of link and or node failures. The idea of using
over-complete dictionaries and further post-processing during signal recon-
struction can be extended to support more complex topology changes that
occur in a WSN with mobile nodes.

In network of mobile sensor nodes, or mobile sensor and actuator nodes,
it may not be necessary or even feasible to designate a specific node a fixed
set of nodes as the sink(s) of the WSN. For example, mutual localization aims
to localize the robots in a multi-robot configuration relatively to each other
Franchi et al. [2009]. The robots are equipped with some sensors, such as
ranging sensors. The goal of mutual localization is to calculate the location
of each robot relative to its neighboring robots by performing calculations
on the perceived data by all of the robots. This requires efficient sharing of
the sensed signals. Efficient signal sharing can be achieved by extending the
Comprensus protocol discussed in Chapter 7 to mobile topologies.

The application mentioned here is only one example of possible direc-
tions to extend the techniques that are developed in this thesis. There are
also rooms for improvement of the introduced methodologies. As another
example, better event detection techniques can be explored to increase the
detection and isolation capability of our robust compressed sensing scheme

132 CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH

introduced in Chapter 6. The compressed sensing theory itself is a an evolv-
ing research area. New network coding or signal reconstruction algorithms
that are discovered in future can be integrated into the existing frameworks
that are presented in this thesis. Our proposed methods allow the flexibil-
ity of of choosing other measurement ensembles or reconstruction algorithms
other than what used in this thesis. Depending on application requirements,
individual modules of our frameworks can be altered or improved to achieve
even better performance.

Appendices

133

Appendix A

Detailed evaluation of
Comprensus

This appendix provides more detailed evaluation results of simulating the
Comprensus protocol introduced in Chapter 7.

We have seen in Chapter 7 that the compressibility of the spatial signal
plays a crucial role in the communication cost of the Comprensus protocol.
Higher compressibility of the signal, i.e., smaller s, requires a less number of
active nodes per iteration and or less number of iterations overall. The com-
munication cost is the total number of message exchanges which is equal to
the multiplication of the iteration counts and active nodes per each iteration.

Figures A.1 to A.19 illustrate further simulation results when the sparsity
parameter s is set to 1, 2, 3, . . . , 19. Note that the compressibility of the signal
decreases as s increases. Therefore, the communication cost increases for
larger values of s. The communication cost diagrams presented here include
the whole set of simulation results with many different configurations. The
network topology in each simulation is generated randomly, and hence, each
simulation is different from other simulation instances.

The diagrams presented here give a very good understanding of Com-
prensus’ performance when it is run in many different simulation setups.
Each dot in Figures A.1 to A.19 corresponds to one run of Comprensus data
dissemination and recovery. We observe from these diagrams, that Com-
prensus quickly achieves accurate signal recovery, i.e., higher Signal to Noise
Ratio (SNR), as the number of exchanged messages starts to increase from
the minimum. This means that with slightly more communication cost, it is
possible to achieve an accurate dissemination. Usually a very high quality is
achievable with not a so much communication cost.

135

136 APPENDIX A. DETAILED EVALUATION OF COMPRENSUS

Figure A.1: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 1

Figure A.2: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 2

137

Figure A.3: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 3

Figure A.4: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 4

138 APPENDIX A. DETAILED EVALUATION OF COMPRENSUS

Figure A.5: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 5

Figure A.6: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 6

139

Figure A.7: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 7

Figure A.8: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 8

140 APPENDIX A. DETAILED EVALUATION OF COMPRENSUS

Figure A.9: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 9

Figure A.10: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 10

141

Figure A.11: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 11

Figure A.12: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 12

142 APPENDIX A. DETAILED EVALUATION OF COMPRENSUS

Figure A.13: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 13

Figure A.14: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 14

143

Figure A.15: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 15

Figure A.16: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 16

144 APPENDIX A. DETAILED EVALUATION OF COMPRENSUS

Figure A.17: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 17

Figure A.18: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 18

145

Figure A.19: Average signal accuracy vs. communication cost when sparsity
parameter s is equal to 19

146 APPENDIX A. DETAILED EVALUATION OF COMPRENSUS

Bibliography

Sensorscope LUCE deployment at École Polytechnique Fédérale de Lau-
sanne, 2008. URL http://lcav.epfl.ch/op/edit/sensorscope-en.

I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks, 38(4):393 – 422, 2002.
ISSN 1389-1286.

W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak. Joint source-channel com-
munication for distributed estimation in sensor networks. IEEE Trans. on
Information Theory, 53(10):3629–3653, 2007.

W. Bajwa et al. Compressive wireless sensing. In Proc. of the 5th inter-
national conference on Information processing in sensor networks (IPSN),
pages 134–142, 2006.

Thomas Blumensath and Mike E Davies. Iterative hard thresholding for
compressed sensing. Applied and Computational Harmonic Analysis, 27
(3):265–274, 2009.

S Allen Broughton and Kurt M Bryan. Discrete Fourier analysis and
wavelets: applications to signal and image processing. John Wiley & Sons,
2011.

C. Caione, D. Brunelli, and L. Benini. Compressive sensing optimization over
zigbee networks. In Proc. of the International Symposium on Industrial
Embedded Systems (SIES), pages 36–44, 2010.

E. J. Candes and Y. Plan. A probabilistic and ripless theory of compressed
sensing. IEEE Trans. on Information Theory, 57(11):7235–7254, 2011.
ISSN 0018-9448.

E. J. Candes and T. Tao. Near-optimal signal recovery from random projec-
tions: Universal encoding strategies? IEEE Trans. on Information Theory,
52(12):5406 –5425, 2006.

147

http://lcav.epfl.ch/op/edit/sensorscope-en

148 BIBLIOGRAPHY

E. J. Candes et al. Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. on Informa-
tion Theory, 52(2):489 – 509, 2006a.

Emanuel J. Candes. Compressive sampling. In Proc. of the International
Congress of Mathematicians, volume 3, pages 1433–1452, 2006.

Emmanuel Candes and Justin Romberg. Sparsity and incoherence in com-
pressive sampling. Inverse Problems, 23(3):969, 2007.

Emmanuel J. Candes. The restricted isometry property and its implications
for compressed sensing. Comptes Rendus Mathematique, 346(9-10):589 –
592, 2008. ISSN 1631-073X.

Emmanuel J. Candes, Justin K. Romberg, and Terence Tao. Stable signal
recovery from incomplete and inaccurate measurements. Communications
on Pure and Applied Mathematics, 59(8):1207–1223, 2006b.

K. Chintalapudi, T. Fu, Jeongyeup Paek, N. Kothari, S. Rangwala, J. Caffrey,
R. Govindan, E. Johnson, and S. Masri. Monitoring civil structures with
a wireless sensor network. IEEE Internet Computing, 10(2):26–34, 2006.

R. Coifman, F. Geshwind, and Y. Meyer. Noiselets. Applied and Computa-
tional Harmonic Analysis, 10(1):27 – 44, 2001. ISSN 1063-5203.

Joachim Dahl and Lieven Vandenberghe. CVXOPT: A python package for
convex optimization, http://www.abel.ee.ucla.edu/cvxopt, 2006.

D. L. Donoho, M. Elad, and V.N. Temlyakov. Stable recovery of sparse
overcomplete representations in the presence of noise. IEEE Trans. on
Information Theory, 52(1):6 – 18, 2006.

David Donoho and Jared Tanner. Observed universality of phase transitions
in high-dimensional geometry, with implications for modern data analysis
and signal processing. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 367(1906):4273–4293,
2009.

D.L. Donoho. Compressed sensing. Information Theory, IEEE Trans. on,
52(4):1289 –1306, 2006. ISSN 0018-9448.

M. F. Duarte, M. B. Wakin, D. Baron, and R.G. Baraniuk. Universal dis-
tributed sensing via random projections. In Proc. of the 5th international
conference on Information processing in sensor networks (IPSN), pages
177–185, 2006.

BIBLIOGRAPHY 149

M.F. Duarte et al. Distributed compressed sensing of jointly sparse signals.
In Conference Record of the 39th Asilomar Conference on Signals, Systems
and Computers, pages 1537 – 1541, 2005.

T. ElBatt. On the trade-offs of cooperative data compression in wireless
sensor networks with spatial correlations. IEEE Tran. on Wireless Com-
munications, 8(5):2546–2557, 2009. ISSN 1536-1276.

Jeremy Elson and Deborah Estrin. Sensor networks: A bridge to the physical
world. In C. S. Raghavendra, Krishna M. Sivalingam, and Taieb Znati,
editors, Wireless Sensor Networks, pages 3–20. Springer US, 2004. ISBN
978-1-4020-7884-2.

Antonio Franchi, Giuseppe Oriolo, and Paolo Stegagno. Mutual localization
in a multi-robot system with anonymous relative position measures. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009. IROS 2009, pages 3974–3980, 2009.

M. Gastpar, P. L. Dragotti, and M. Vetterli. The distributed karhuenen-loève
transform. In IEEE Transactions on Information Theory, volume 52, pages
5177–5196, 2006.

Amara Graps. An introduction to wavelets. IEEE Compututer Science En-
gineering., 2:50–61, June 1995.

J. Haupt and R. Nowak. Signal reconstruction from noisy random projec-
tions. IEEE Transactions on Information Theory, 52(9):4036–4048, 2006.
ISSN 0018-9448.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, http://www.scipy.org, 2001–.

J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile
networking for smart dust. In Mobicom’99, MobiCom ’99, pages 271–278.
ACM, 1999. ISBN 1-58113-142-9.

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior
point method for large-scale 11-regularized least squares. Selected topics
in Signal Processing, IEEE Journal, 1(4):606–617, 2007.

C. Luo, F. Wu, J. Sun, and C. Chen. Efficient measurement generation
and pervasive sparsity for compressive data gathering. IEEE Trans. on
Wireless Communications, (99):1–11, 2010.

150 BIBLIOGRAPHY

Chong Luo et al. Compressive data gathering for large-scale wireless sensor
networks. In Proc. of the 15th annual international conference on Mobile
computing and networking (Mobicom), pages 145–156, 2009.

S. Mahfoudh and P. Minet. Survey of energy efficient strategies in wireless ad
hoc and sensor networks. In Proc. of the Seventh International Conference
on Networking, pages 1–7, 2008.

M. Mahmudimanesh, A. Khelil, and N. Suri. Balanced spatio-temporal com-
pressive sensing for multi-hop wireless sensor networks. In IEEE MASS’12,
pages 389–397, 2012.

Antonio Ortega Marco F. Duarte, Godwin Shen and Richard G. Baraniuk.
Signal compression in wireless sensor networks. Philosophical Trans. of the
Royal Society, 370(1958):118–135, 2012.

Harald Niederreiter. Recent trends in random number and random vector
generation. Annals of Operations Research, 31(1):323–345, 1991. ISSN
0254-5330. doi: 10.1007/BF02204856. URL http://dx.doi.org/10.

1007/BF02204856.

Olfati-Saber et al. Consensus and cooperation in networked multi-agent sys-
tems. Proceedings of the IEEE, 95(1):215–233, 2006. ISSN 0018-9219.

P. M. Parekar and S. S. Thakare. Lossless data compression algorithm–a
review. International Journal of Computer Science & Information Tech-
nologies, 5(1), 2014.

J. Polastre et al. Telos: enabling ultra-low power wireless research. In ACM
IPSN’05, pages 364–369, 2005.

M. Rabbat, J. Haupt, A. Singh, and R. Nowak. Decentralized compres-
sion and predistribution via randomized gossiping. In The 5th Intl. Conf.
on Information Processing in Sensor Networks, IPSN 2006., pages 51–59,
2006.

Paolo Santi. Topology control in wireless ad hoc and sensor networks. ACM
Comput. Surv., 37(2):164–194, June 2005. ISSN 0360-0300.

G. Shen and A. Ortega. Transform-based distributed data gathering. IEEE
Trans. Signal Processing, 58(7):3802–3815, 2010.

D. Slepian and J.K. Wolf. Noiseless coding of correlated information sources.
IEEE Trans. Inform. Theory, 19(4):471–480, 1973.

http://dx.doi.org/10.1007/BF02204856
http://dx.doi.org/10.1007/BF02204856

BIBLIOGRAPHY 151

K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor Networks, Tech-
nology, Protocols and Applications. Wiley-Interscience, 2007. ISBN
9780471743002.

Tossaporn Srisooksai, Kamol Keamarungsi, Poonlap Lamsrichan, and Kiy-
omichi Araki. Practical data compression in wireless sensor networks: A
survey. Journal of Network and Computer Applications, 35(1):37 – 59,
2012. ISSN 1084-8045.

J. A. Stankovic, T.F. Abdelzaher, Chenyang Lu, Lui Sha, and J.C. Hou.
Real-time communication and coordination in embedded sensor networks.
Proceedings of the IEEE, 91(7):1002–1022, 2003.

F. Stann and J. Heidemann. RMST: reliable data transport in sensor net-
works. In Proc. of the First IEEE International Workshop on Sensor Net-
work Protocols and Applications, pages 102 – 112, 2003.

Hüseyin Özgür Tan and Ibrahim Körpeoǧlu. Power efficient data gathering
and aggregation in wireless sensor networks. SIGMOD Rec., 32(4):66–
71, December 2003. ISSN 0163-5808. doi: 10.1145/959060.959072. URL
http://doi.acm.org/10.1145/959060.959072.

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Trans. on Information Theory, 53
(12):4655 –4666, 2007.

R. Vanderbei. Linear Programming: Foundations and Extensions. Springer-
Verlag, 2001.

Roberto Verdone, Davide Dardari, Gianluca Mazzini, and Andrea Conti.
Wireless Sensor and Actuator Networks: Technologies, Analysis and De-
sign. Academic Press, 2008. ISBN 0123725399, 9780123725394.

Mehmet C. Vuran, A. B. Akan, and Ian F. Akyildiz. Spatio-temporal cor-
relation: Theory and applications for wireless sensor networks. Computer
Networks, 45(3):245 – 259, 2004. ISSN 1389-1286.

Michael B Wakin, Marco F Duarte, Shriram Sarvotham, Dror Baron, and
Richard G Baraniuk. Recovery of jointly sparse signals from few random
projections. In NIPS, 2005.

S. Winter, H. Sawada, and S. Makino. On real and complex valued l1-norm
minimization for overcomplete blind source separation. In IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, pages 86 –
89, 2005.

http://doi.acm.org/10.1145/959060.959072

152 BIBLIOGRAPHY

A. Wyner and J. Ziv. The rate-distortion function for source coding with
side information at the decoder. IEEE Trans. Inform. Theory, 22(1):1–10,
1976.

Han Lun Yap et al. The restricted isometry property for block diagonal
matrices. In Proc. of the 45th Annual Conference on Information Sciences
and Systems (CISS), pages 1 –6, 2011.

	Title page
	Abstract
	Abstract
	Kurzfassung (german)
	Kurzfassung
	Zusammenfassung
	Acknowledgements
	Acknowledgements
	Acknowledgement
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Algorithms
	List of Algorithms
	Introduction and Problem Context
	Problem statement
	Reordering for better compressibility
	Spatiotemporal compressive sampling
	Compressed sensing in presence of link and node failures
	Network coding for data dissemination in WSNs

	Thesis contributions
	Publications

	Thesis structure

	State of the Art and Practice
	Data reduction approaches
	Lossy and lossless compression
	Source coding and network coding
	Transform compression

	Data compression in distributed sensory systems
	Compressibility of signals

	Distributed compression techniques in WSNs
	In-network compression
	Distributed source coding
	Compressed sensing

	Summary

	Compressive Sampling in Sensor Networks
	System model
	Distributed discrete signals

	Basics of Compressive Sensing
	Sparse and compressible signals
	Compressive measurement
	Signal reconstruction

	Compressive Sensing for WSNs
	Compressive Wireless Sensing
	Compressive Data Gathering
	Distributed Compressed Sensing
	Compressive Sensing over ZigBee Networks

	Summary

	Reordering for Better Compressibility
	Motivation for reordering
	Conventional indexing of SNs

	Problem formulation
	Combinatorial problem statement
	Condensing the energy of the signal

	Reordering for enhanced CS in WSNs
	Greedy approximate solution

	Application of reordering in CS-based WSNs
	Adapting the permutation
	Reusing the permutations over multiple sampling rounds
	Iterative feedback and reordering

	The impact of sample reordering
	Simulation environment
	Impact of reordering on signal compressibility
	Reordering of dynamic signals
	Impact of reordering on different WSNs

	Spatiotemporal Compressive Sampling
	Extending CS to temporal domain
	Block-diagonal measurement matrix in DCS
	Balanced spatiotemporal CS for multi-hop WSNs

	The concept of sampling window
	Benefits of sampling window
	Detecting events in sampling window
	Evaluation of the sampling window technique

	Chapter summary

	Handling node and link failures
	CS in WSNs with linear topology
	Failures in a WSN with chain topology

	CDG in chain topology
	Handling node failures
	Communication cost
	Sensor validation criteria
	Scope of applications

	Detecting and isolating failures
	Restoring connectivity in chain topology
	Degrading effect of the missing samples

	Signal elevation during measurement
	Detection and exclusion of the missing samples
	Detecting unrecoverable chain breakage

	Evaluation
	CDG in WSN with chain topology
	CWS in star topology

	Summary

	Data Dissemination via Network Coding
	RIPless Compressed Sensing
	Isotropy and incoherence
	Signal recovery

	Distributed compression and predistribution via randomized gossiping
	Comprensus and randomized gossipting

	The Comprensus protocol
	Distributed Comprensus algorithm
	Matrix representation of the distributed protocol
	Numerical experiments

	Evaluation
	Comparison to randomized gossiping methods
	Comparison to oracle-based approach

	Chapter summary

	Conclusions and Future Research
	Contributions of this thesis
	Reordering technique for better signal compressibility
	Concept of sliding sampling window for spatio-temporal compressed sensing in WSNs
	Methods to detect and isolate the failing nodes
	Compressive signal dissemination in WSNs

	Lessons learned
	Future work

	Appendices
	Detailed evaluation of Comprensus
	Bibliography

