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Changes in the Corrected Version

The purpose of this document is to correct errors that were introduced in the publi-
cation process of my Ph.D. thesis. Due to unresolved and incorrectly resolved refer-
ences, the version of my thesis that has been published under http://tuprints.ulb.
tu-darmstadt.de/4559/ differs from the version that I had originally submitted and
that has been accepted and evaluated by the examination committee. The correspond-
ing corrections have been typeset in red color to facilitate their identification in the
text. In addition to these corrections, the only changes that have been introduced, and
that are also highlighted, are the designation of the document as a corrected version
on the title page and the explanation on this page.
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Abstract

Fault injection (FI) is an experimental technique to assess the robustness of software
by deliberately exposing it to faulty inputs and stressful environmental conditions
specified by fault models. As computing hardware is becoming increasingly parallel,
software execution is becoming increasingly concurrent. Moreover, to exploit the po-
tential of increasingly parallel and interconnected computing systems, the complexity
of the software stack, comprising operating systems, drivers, protocol stacks, middle-
ware and distributed applications, also grows. As a consequence, the fault models
classically used for in-lab robustness assessments no longer match the reality of fault
conditions that modern systems are exposed to.

In my thesis I account for this development by proposing the construction of higher
order fault models from classical models by different means of composition. To demon-
strate the effectiveness of such higher order models, I define a set of four comparative
fault model efficiency metrics and apply them for both classical and higher order mod-
els. The results show that higher order models identify robustness issues that classical
models fail to detect, which supports their adoption in the assessment of modern
software systems. While higher order models can be implemented with moderate ef-
fort, they result in a combinatorial explosion of possible fault conditions to test with
and, more severely, they introduce an ambiguity to experimental result interpretation
that results in an increased number of required tests to maintain the expressiveness of
assessment results.

To mitigate the overhead that the adoption of higher order fault models entails,
I propose to increase the experiment throughput by concurrently executing exper-
iments on parallel hardware. The results show that such parallelization yields the
desired throughput improvements, but also that care has to be taken in order not
to threaten the metrological compatibility of the results. To account for resource
contention in concurrent experiment executions that can lead to result deviations, I
present a calibration approach that provides timeout values for the safe configuration
of hang failure detectors.

The experimental environment to conduct concurrent experiments is based on a
generic FI framework developed in the context of my thesis that is highly adaptable
to a variety of different target systems and that has been released under an open source
license.
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Kurzfassung

Fehlerinjektion (FI) ist eine experimentelle Methode zur Bewertung von Softwarero-
bustheit, bei der Software gezielt fehlerhaften Eingaben und widrigen Betriebsbedin-
gungen, gemäß spezifizierter Fehlermodelle, ausgesetzt wird. Mit zunehmend paral-
leler Hardware wird die Ausführung von Software zunehmend nebenläufig. Mit der
Bestrebung das Potenzial dieser zunehmend parallelen und vernetzten Systeme aus-
zuschöpfen, wächst die Komplexität des gesamten Softwarestacks über hardwarenahe
Schichten wie Betriebsysteme, Treiber und Netzwerkprotokolle bis hin zu Middlewa-
re und verteilten Anwendungen. In der Folge ändern sich die Fehlermanifestationen,
denen Softwarekomponenten in dieser geänderten Umgebung ausgesetzt sind, in ei-
ner Weise, die durch jeher zur Anwendung kommenden Fehlermodelle nicht abgedeckt
wird.

Mit dem Ziel dieser Entwicklung entgegenzuwirken, entwerfe ich im Rahmen meiner
Arbeit Fehlermodelle höherer Ordnung durch Kombination bestehender Fehlermodel-
le. Um die Nutzbarkeit dieser Modelle vergleichend bewerten zu können, entwickle ich
vier Effizienzmetriken, anhand derer ich Modelle höherer Ordnung mit herkömmlichen
Modellen vergleiche. Das Ergebnis der Studie zeigt, dass Modelle höherer Ordnung
Robustheitsschwächen aufdecken, die bei der Verwendung herkömmlicher Modelle un-
entdeckt bleiben, was ihre Anwendung bei der Robustheitsbewertung moderner Soft-
waresysteme nahelegt. Wenngleich sich der Entwicklungsaufwand für Modelle höherer
Ordnung in Grenzen hält, führt ihre Anwendung zu einer kombinatorischen Explosion
der Anzahl möglicher Fehlerzustände und, gravierender, zu einer Mehrdeutigkeit der
experimentellen Ergebnisse, die eine höhere Anzahl von Tests zwingend erfordert um
die Aussagekraft der Bewertung zu erhalten.

Um den so mit der Verwendung von Modellen höherer Ordnung einhergehenden
zeitlichen Mehraufwand bei der Bewertung zu mindern, verfolge ich einen Ansatz
zur nebenläufigen Ausführung von Experimenten auf paralleler Hardware. Obwohl
der Ansatz die gewünschte Durchsatzsteigerung erzielt, zeigen die Ergebnisse auch,
dass er bei unachtsamer Anwendung die metrologische Kompatibilität der Ergebnisse
kompromittiert. Um den ursächlichen Ressourcenkonflikten entgegenzuwirken, stelle
ich einen Ansatz zur Kalibrierung von Zeitbeschränkungen zur Fehlerdetektion vor,
der diese Probleme vermeidet.

Die Umgebung zur Durchführung nebenläufiger Experimente basiert auf einem im
Rahmen meiner Arbeit entwickelten generischen Framework für Fehlerinjektionen, das
für eine Vielzahl von Zielsystemen anwendbar ist und unter einer Open-Source-Lizenz
veröffentlicht wurde.
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1 Introduction

Computer systems increasingly permeate our daily lives. According to estimates,
the number of mobile computing devices exceeded the world population for the first
time in 2014 and a continuing sharp increase by more than 50% is expected by 2019
[Cis15]. At the same time, these systems become highly interconnected. Until 2019 the
fraction of networked mobile devices for the implementation of “smart” applications is
estimated to increase (from 7% in 2014) to 28%, i.e., 3.2 billion networked devices,
by 2019. As these numbers only cover estimates for mobile consumer electronics
and neither include embedded controllers, which have become the main driver for
innovation in automobiles and industrial applications, nor the powerful processing
and storage infrastructure, which enables computationally demanding applications for
the growing Internet of Things, they must be considered a gross underestimation.

The steeply increasing pervasiveness of information technology (IT), in large parts,
is based on the expectation that we can depend on these systems to reliably provide
the services expected from them, where the consequences of failures range from the
nuisances of, for instance, calendar bugs [App15] to outages of critical infrastructures
(e.g., [Gro+04]). Achieving dependable operation is challenging in a rapidly changing
ecosystem of many, complex, and interconnected systems that heavily rely on software.
The discrete nature of software renders classical approaches to reliability engineering
of mechanical and other continuous systems inapplicable, as these heavily exploit
continuity assumptions to statistically extrapolate universal reliability from a limited
number of samples (tests). These continuity assumptions rarely hold for discrete
software-based systems.

Moreover, to utilize complex and interconnected hardware systems and to implement
feature-rich smart applications, software complexity is massively increasing. A popular
example are operating systems1 (OSs), as they are directly affected by changes in
the underlying system hardware and provide the basic communication primitives for
distributed applications. If the defect rate for these systems remains constant, their
increase in size implies an increase in the absolute number of defects that need to be
found and eliminated.

Furthermore, even if confidence in a software-based system’s correctness is estab-
lished (which is a hard problem by itself), the system can still behave undesirably
in cases of unforeseen or unintended interactions with other systems or its opera-
tional environment, exemplified by effects labeled as emergent (mis)behavior [Mog06]

1The Linux kernel, for instance, on which the Android mobile operating system (OS) is based, has
grown from around 6 million lines of code in version 2.6.0 (released 2003) to more than 14.5
million lines of code in version 3.0 (released 2011), from which only 20% of the 2.6.0 source lines
had remained unchanged [PTS+11].
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1 Introduction

or transmogrification [Dri10]. The ability of systems to gracefully handle such un-
foreseen, and often unforeseeable, interactions and to not fail in ways that threaten
human lives, cause environmental damage, or massive financial loss, is termed robust-
ness. Fault injection (FI) is an experimental technique to assess and improve system
robustness by deliberately exposing systems to invalid inputs and other stressful op-
erational conditions. The major challenge in FI-based robustness assessments is the
choice of the right fault model, i.e., the specification of what “unforeseeable” stressful
conditions are.

The problem of fault model selection has been an active field of research and a
large body of work on the topic exists, covering perturbations originating from both
hardware and software and leading to sophisticated fault taxonomies, as discussed
in Chapter 2 of this thesis. As most of the existing work stems from a time when
parallel and distributed computing was still uncommon in commodity systems, the
utilized fault models and taxonomies are based on an IT ecosystem that became
rapidly outdated over the last decade.

On this general background, this thesis

1. proposes to utilize higher order fault models as combinations of existing fault
models to account for the impact of increasing software complexity and its exe-
cution on parallel hardware,

2. demonstrates the value of these fault models in a comparison with classical
models, and

3. proposes a solution strategy to cope with the higher complexity of robustness
assessments, which they imply.

The experimental studies conducted to validate these contributions focus on robust-
ness assessments of complex mobile OSs, which constitute a relevant target as outlined
above. The remainder of this chapter introduces basic terminology, details the prob-
lem statement, and lays out the research questions that have been driving the work
presented in this thesis.

1.1 Basic Concepts and Terminology

Many terms used in this thesis have a technical denotation in addition to their common
meaning in ordinary language. Moreover, most of them have multiple definitions that
differ for different communities. The terminology in this thesis is mostly adopted
from the dependability and fault-tolerance research community, mainly in line with
Avizienis et al. [ALR+04].

1.1.1 Failures, Errors, Faults: The Threats to Dependability

The subject of study in this thesis are software systems and I use the term system
synonymously, unless explicitly stated elsewise. Systems interact with other systems
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1.1 Basic Concepts and Terminology

(hardware or software) in their environment, from which they are distinguishable by
their system boundaries. A system’s intended behavior is specified as a function of
system input and is, hence, referred to as functional specification. The input is a
sequence of system-external stimuli that trigger its behavior. The behavior of a system
results from the implementation of its functional specification and is described by a
sequence of system states that result from exposing the system to an input. The
fraction of a system’s state at any point in time that is observable from outside the
system boundary is called the external state of the system, whereas the externally not
observable fraction is called its internal state. The sequence of external states resulting
from exposure to an input is referred to as the system’s service. Exposure to inputs
and observation of external states are provided by system access points collectively
referred to as the system’s interface. As these access points enable service reception,
they are also referred to as services in this thesis.

A provided service is correct if the system behaves according to its specified function.
Any deviation from correct service constitutes a system failure. Being a property of
system services, failures are part of the external state. The cause of a failure is a
system’s deviation from its correct internal state, termed error. The transformation
of an error manifestation within the system’s internal state and its ultimate progression
to the system’s external state are referred to as error propagation. The cause of an
error is the activation of a fault. Figure 1.1 illustrates the causation chain implied by
the provided definitions.

fault error failure
activation

propagation
(external state)

propagation
(internal state)

Figure 1.1: The causal relation of faults, errors, and failures

Faults are divided into two classes, internal faults and external faults, depending on
the circumstances of their activation. Avizienis et al. [ALR+04] note the difference of
internal and external faults, but their distinction is partially implicit. They state:

Faults can be internal or external of a system. The prior presence of a
vulnerability, i.e., an internal fault that enables an external fault to harm
the system, is necessary for an external fault to cause an error and possibly
subsequent failure(s).

By this definition, an internal fault is a necessary prerequisite for an external fault,
but an external fault is not stated as a necessary prerequisite for an internal fault. This
means that system external events that can lead to the activation of internal faults
fall into two categories, (1) external faults and (2) “benign” input as trigger conditions
of internal faults. The distinction is not explicitly stated by the authors, but follows
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1 Introduction

from the definition of what a fault is; a potential cause2 of failure. Considering that a
failure is the deviation of a system’s service from its specified function, any input that
is covered by the domain of that function and that leads to system service deviation
from what the function specifies must be the sole consequence of an internal fault.
The corresponding input must be considered benign, as it is explicitly covered by
the functional specification. Therefore, I refer to external faults as system external
conditions that are not covered by the domain of the corresponding system function,
i.e., conditions for which the system behavior is unspecified.

This understanding is not without problems: If the behavior for a given input is
unspecified, what constitutes a failure, i.e., a deviation from specified behavior, for
that input? The general interpretation of unspecified behavior is that any behavior is
valid (cf. “nasal demons” in ANSI C compilers [Ray04]), i.e., not a failure, although it
comprises arbitrarily adverse and dangerous behavior. As this is clearly undesirable,
I follow a different interpretation: Undefined behavior is considered a failure, if its
manifestation in the sequence of external states that constitute the system service
matches a failure mode specified by the user (a human or other system). This opens
the possibility to state negative requirements, i.e., what a system should not do, as I
elaborate in Section 1.1.2.

The alternative understanding of the relation between internal and external faults
is that every fault necessarily has an external and internal fraction. In that case,
where external faults are a necessary precondition for failure, any input eventually
causing a failure is an external fault. This implies that there is no distinction between
benign and faulty inputs. Hence, the concept of an external fault does not require
the existence of unspecified behavior and external faults would also exist for systems
specified by total functions, for which there (theoretically) is no unspecified behavior.
This understanding has a different problem, however: If a fault always consists of
internal and external fault fractions, a problem of attribution arises. If the input and
the system implementation are equally necessary conditions of any observed failure, a
change of the implementation and a change of the specification would be equally valid
remedies and lead to the awkward situation where functional specifications would no
longer be driven by required functionality, but by implementations. Hence, I follow
the first interpretation of internal and external fault notions, where only internal faults
are considered a necessary precondition for failures and external faults are unspecified
inputs that trigger undesired behavior.

Having a clear understanding of failures and their causation, dependability can be
defined as their absence: A system is dependable if it fails less frequently and less
severely than is acceptable. As acceptability is subject to a system’s application con-
text and requirements, dependability may change if the system is applied in different
contexts, by different users, or if the application context evolves over time. The absence
of failures according to the definitions in this thesis is achieved by the combination of
two properties, correctness and robustness, as discussed in the following.

2a necessary, but insufficient precondition
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1.1 Basic Concepts and Terminology

1.1.2 The Interplay of Correctness and Robustness

As stated in Section 1.1.1, I distinguish between the specified functionality of a system
and its implementation. The consistency of a system’s behavior with its specification
is termed correctness. As detailed in the discourse on the distinction between exter-
nal and internal faults, the provision of correctness is no sufficient precondition for
dependability if the functional specification (implicitly or explicitly) includes partial
functions. In these cases, the implementation provides unspecified behavior, of which
a variable subset is dangerous, depending on the (differing) behavior semantics in
different system environments. The absence of dangerous behavior upon undefined
input is termed robustness. As the classification of behavior as dangerous depends
on the system’s application context, it is safe to consider all unspecified behavior as
a (potential) robustness issue. Whether a robustness issue constitutes a robustness
violation or not, is determined by the severity of failure modes. Failure modes are
stated as negative requirements [Mus96]. In contrast to Musa [Mus96] and Koopman
and DeVale [KD00], I avoid the term severity class for negative requirements specifi-
cations, as the severity of failure modes varies with application scenarios, whereas the
behavioral description of failure modes is invariant. The scenario-agnostic description
of failure modes allows to conduct robustness assessments of reusable and off-the-shelf
systems, for which operational conditions vary and cannot be accurately predicted.

Dependability requires both correctness and robustness. The Venn diagram in Fig-
ure 1.2, which is inspired by a figure from Whittaker and Thompson [WT04], depicts
the relation between specification and implementation and the dependability threats
resulting from their deviation. Specification and implementation are depicted as sets
of two-dimensional tuples that relate system input and system behavior. The system’s
specification relates specified input to specified behavior and the system’s implemen-
tation relates possible input to implemented behavior. Note that what is labeled as
correctness and robustness issues indicate internal and external faults. Correctness
issues result if specified behavior is not implemented, whereas robustness issues result
if a systems exhibit unspecified behavior. Both indicate internal faults and robustness
issues additionally indicate external faults, i.e., input that triggers unspecified behav-
ior, which leads to the violation of a negative requirement. Internal and external faults
are necessary, but not sufficient preconditions for failures as per their definitions.

Specification Implementation

Dependable behavior

Correctness issues Robustness issues

Figure 1.2: Specification, implementation, and the threats to dependable behavior
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1 Introduction

1.1.3 Assessing (the Absence of) Robustness: Fault Injections

Fault injection (FI) is a technique to assess and improve system robustness (or, in the
context of this thesis, the lack thereof) by deliberately exposing systems to undefined
inputs (called fault load), including stressful operational conditions in the system’s en-
vironment. The system’s response is monitored via failure detectors that are derived
from the stated negative requirements and indicate if the system behaves in a poten-
tially dangerous manner. If a detector indicates a failure in response to an injection,
the applied fault load constitutes an external fault that has triggered an internal fault
within the system under test (SUT). The corresponding information can be used to
harden the system, either by fixing the internal fault or by preventing the external fault
from affecting the system, e.g., by adding subsystems that filter the faulty input (e.g.,
by so-called fault containment wrappers). The major challenge in FI-based robustness
assessments is the choice of the right fault model, i.e., a systematic description of how
the fault load is chosen. Existing strategies fall in two broad classes, depending on
the intention of their application, and the distinction is analog to that of operational
and debug (correctness) testing [FHL+98]: While the purpose of operational testing
is to provide reliability estimates for a given input distribution, the purpose of debug
testing is to find internal faults.

Operational FI: FI has been advocated as a tool for dependability benchmarking
(e.g., [TIJ96; MK01; KM02; VM03; DVM04; KKC+04; KCK+05]). The pur-
pose is to assess the dependability of a system for a known application scenario
and environment. Since the application scenario and environment are known,
corresponding statistically representative distributions of external faults can be
derived and applied in the tests [DM03a; DM06; NCD+10; NCD+13a].

Debug FI: FI can be used to identify robustness issues and apply counter measures.
In contrast to operational FI, little guidance can be given for the selection of
“good” fault models. Fault models that find higher numbers of robustness issues
are better than those that find fewer, but no absolute measure of their quality
can be given, as the total number of robustness issues is unknown (and may differ
for different application scenarios). Similar to debug (correctness) testing, which
is similarly lacking an absolute effectiveness measure for test case selections, test
inputs are usually chosen based on experience. I provide a detailed discussion
of the existing approaches to fault load generation for debug FI in Chapters 2
and 4.

A common assumption that all of the classically applied fault models share is the
restriction to external faults that only manifest in a single location in the SUT’s
environment at a time. The hypothesized reason for this assumption is twofold. First,
if an FI experiment reveals a robustness issue, identifying the causation chain that
relates the injected external fault with the observed failure is usually a complex task
that involves a great deal of manual investigation and the more complex the fault
load is, the more complex becomes this analysis. Keeping the fault models simple
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facilitates the isolation of the faults’ effects. Second, most documented fault models
have been used and analyzed in studies before 2005, when the commodity computing
landscape began to change substantially, as discussed in the next section. While such
old system models still apply for today’s embedded controllers, they will be outdated
soon, similar to the development of mobile devices, where high performance multicore
CPUs have quickly become the norm.

1.2 Evolution of Computing Systems: The Need for
New Fault Models

As existing fault models for debug FI derive from research more than a decade ago,
they do not reflect recent changes in hardware architectures that had, and continue
to have, a high impact on the performance, but also scale and complexity, of software
systems. I discuss two significant changes in this section and detail their expected
influence on fault models for software system assessments.

1.2.1 Compositional Faults

While computing systems have been subject to significant changes at high pace ever
since, few have had a similar impact on software systems as the shift from single- to
multi-core computer architectures in the desktop market starting from 2005. Although
parallel computing had steadily evolved since the 80s, when the advent of wide and
local area networking technology and the availability of powerful microprocessors at
reasonable cost fostered the development of distributed systems, the computational
power of mainstream applications increased mostly with CPU clock rates for the next
20 years. By executing instructions faster, higher performance was achieved without
necessitating software adjustments. This changed around 2005, when the cost for suf-
ficiently powerful cooling systems to accommodate the high heat dissipation resulting
from high clock rates exceeded the cost for replicating processing units.

To exploit the computational power of parallel computing architectures, existing
software had to undergo, and is still undergoing, massive changes. In the follow-
ing years, the steady improvement in broadband networking technology added to the
evolution of an inherently parallel computing landscape and necessitated additional
software infrastructure, such as protocol stacks and complex middleware, for commu-
nication and synchronization among asynchronous, parallel, and networked systems.
The simultaneous execution of software systems across physically replicated comput-
ing hardware enables the simultaneous activation of faults, propagation of errors, and
occurrence of failures in different parts of the system. The possible interaction of
several faults in compositional faults are not addressed by classical fault models.
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1.2.2 High Fault Densities

A second trend in hardware development is the increase of transistor and wire densi-
ties. As this development is known to cause increased soft error rates in MOS-based
processors [SKK+02], it has fostered research on suitable counter measures in recent
years [Bor05]. As the continuous reduction in transistor size is expected to reach its
physical limits in the near future and alternative technologies are reported to yield even
higher soft error rates [WNL+08], the development of software-implemented hardware
fault tolerance (e.g., [KNS10; FGA+10]) and probabilistic/approximate computation
paradigms (e.g., [CMR13]) have become an active field of research.

These developments of computer hardware necessitate software of increasing com-
plexity to (1) manage hardware resources (e.g., device drivers and OSs) and (2) exploit
the hardware’s potential in sophisticated applications. In addition to this hardware-
induced growth of software complexity, the demand for software-based control in an
wide range of applications (advanced driver assistance, electronic stock trading, etc.)
entails a feature-driven growth. A premium car in 2009 contained around 100 million
lines of code [Cha09]. With an optimistically assumed rate of 0.1 residual defects
per thousand lines of code (the exceptional defect rate achieved for the space shuttle
control software [Ash95]), the software of such a premium car contains 10 000 defects.
Given the numbers commonly reported for less critical and expensive systems than
space shuttles, a more realistic estimate (for a safety-critical system) would be one or
two magnitudes higher.

In summary, the combination of increased failure probabilities for individual compo-
nents and their composition in increasingly parallel systems entails an increased risk
of simultaneously occurring subsystem failures. This raises the question if the classical
fault models for debug FI, which only consider effects of a single fault per experiment,
are suitable for assessing contemporary and future systems.

1.3 Research Questions and Contributions

The question of fault model adequacy is not easily answered. While studies of fault
distributions in existing software provide guidance for operational FI [DM03a; DM06;
NCD+10; NCD+13a; LNW+14], the value of debug FI fault models lies in their ability
to identify robustness issues. Although few corresponding metrics exist, none of them
is suitable for the comparative assessment across diverse fault models as intended in
this thesis. Consequently, a suitable set of metrics has to be found before the question
of fault model adequacy can even be phrased in technical terms.

Research Question (RQ1): How can the effectiveness (and efficiency) of fault
models for debug FI be assessed?

In order to assess and compare the suitability of classical fault models and the new
compositional fault models proposed in this thesis, corresponding metrics need to be
established. As stated in Section 1.1.3, measuring the utility of fault models for debug
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FI is challenging. Existing metrics mostly focus on failure rates without considering
failure root causes, whose identification is the main driver behind debug FI.

Contribution (C1): A set of metrics to quantify fault model effectiveness and
cost

Inspired by structural coverage metrics used in correctness testing, I define a set of
metrics to assess the effectiveness of fault models for debug FI and the overheads
their usage implies in Chapter 4. I validate the metrics in an extensive robustness
test campaign of the Windows CE kernel using four classical fault models to perturb
interactions of the kernel and three widely used device drivers. The results have been
presented at ICSE 2011 [WSS+11].

Research Question (RQ2): Is debug FI with complex fault conditions more
effective than the classical fault models?

The question is a direct consequence of the development described in Section 1.2.
Building on (C1) the effectiveness of debug FI can be quantified and a comparative
study can be conducted.

Contribution (C2): A taxonomy for fault coincidence and framework for fault
model combination

Based on the observed inconsistency between the system models that classical fault
models were derived from and the systems found in wide spread use today, I develop

• a taxonomy for fault coincidence,

• a systematic approach to derive compositional higher order fault models from
classical fault models, and

• a set of three higher order fault models to demonstrate the approach’s utility in
a case study.

In Chapter 5 of this thesis, which is based on results presented at DSN 2013 [WTS+13],
I compare the effectiveness of these higher order fault models against the effectiveness
of classical models. The results show that debug FI using higher order fault models
yields significantly different results, but also exacerbates the test case selection problem
due to a combinatorial explosion in the number of relevant faults to test with. This
observation leads to the next research question.

Research Question (RQ3): Can parallel hardware help to increase the
efficiency of debug FI to mitigate the overhead that higher order fault models
entail?

In Section 1.2, I have argued that parallel hardware entails software complexity, which
in turn leads to more complex fault conditions. By (C2), I have shown that these
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conditions identify different robustness issues than classical models and, consequently,
should be considered in debug FI tests. Unfortunately, higher order fault models also
imply higher numbers of FI tests that can be conducted. As the root cause of the
observed problem, i.e., parallel hardware, has the purpose of improving computing
performance, I investigate if it can be exploited to mitigate the problem of higher
experiment volumes by speeding up FI tests in parallel executions.

Contribution (C3): A framework for parallel FI experiments

In Chapter 6, which is based on an article accepted for presentation at ICSE 2015
[WSN+15], I propose PAIN (PArallel fault INjections), a framework for conducting
FI experiments that exploits parallel hardware. Using PAIN, I conduct a set of higher
order FI experiments on the Android mobile OS and assess both experiment through-
put and the obtained metrological compatibility, i.e., result equivalence, of parallel and
sequential test executions. The results show that significant throughput improvements
are feasible without loss of result accuracy, when the implementation and configuration
of failure detectors are adjusted. A corresponding approach for time-out adjustments,
which are a critical factor in failure detector implementations, is proposed.

Contribution (C4): A generic FI tool

PAIN is based on a generic fault injection tool called GRINDER, developed to over-
come the difficulty of adapting existing FI tools to new SUTs experienced during the
work on this thesis. GRINDER defines an abstract interface for controlling arbitrary
SUTs. I discuss GRINDER in Chapter 7, which is based on an article accepted for
presentation at AST 2015 [WPS+15].

1.4 Publications

The following previously published material has been, in parts verbatim, included in
this thesis.

• S. Winter, C. Sârbu, N. Suri, and B. Murphy. “The Impact of Fault Models
on Software Robustness Evaluations”. In: Proceedings of the 33rd International
Conference on Software Engineering. ICSE ’11. 2011, pp. 51–60

• S. Winter, M. Tretter, B. Sattler, and N. Suri. “simFI: From single to simulta-
neous software fault injections”. In: Proceedings of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). June
2013, pp. 1–12

• S. Winter, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo. “No PAIN, No
Gain? The utility of PArallel fault INjections”. In: Proceedings of the Interna-
tional Conference on Software Engineering (ICSE) (to appear). 2015
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• S. Winter, T. Piper, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo. “GRINDER:
On Reusability of Fault Injection Tools”. In: Proceedings of the IEEE/ACM In-
ternational Workshop on Automation of Software Test (AST) (to appear). 2015

The following publications are related to different aspects covered in this thesis, but
have not been included.

• S. Winter, C. Sarbu, A. Johansson, and N. Suri. “Impact of Error Models on
OS Robustness Evaluations”. In: Supplemental Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE). 2009

• C. Sarbu, S. Winter, N. Nagappan, and N. Suri. “OS Driver Test Effort Re-
duction via Operational Profiling”. In: Supplemental Proceedings of the Inter-
national Symposium on Software Reliability Engineering (ISSRE). 2009

• S. Winter, D. Germanus, H. Ghani, T. Piper, A. Khelil, and N. Suri. “Trust-
worthiness Evaluation Of Critical Information Infrastructures”. In: Critical In-
frastructure Security: Assessment, Prevention, Detection, Response. Ed. by F.
Flammini. WIT Press, 2012

• T. Piper, S. Winter, P. Manns, and N. Suri. “Instrumenting AUTOSAR for
dependability assessment: A guidance framework”. In: Proceedings of the 42nd
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). June 2012, pp. 1–12

• A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri. “An Empirical
Study of Injected Versus Actual Interface Errors”. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis. ISSTA 2014. 2014,
pp. 397–408
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2 Related Work

In line with the research questions and contributions stated in Section 1.3, related
work falls in three main categories:

1. Work on FI and test efficiency metrics (Chapter 4)

2. Work on higher order fault models and injections (Chapter 5)

3. Work on test parallelization (Chapter 6)

The related work in these three areas is discussed in the corresponding chapters.
In this chapter I review work that builds the fundamental context for the work

presented in this thesis, i.e., work on debug FI for robustness testing and assessments,
FI approaches, and fault models.

2.1 The Origins of FI

FI has first been applied to assess the fault-tolerance of digital circuit designs in
simulations [HS67; Arm72; UBW72] and was, therefore, later termed simulation-based
FI [HTI97]. Consequently, the corresponding fault models comprised effects that were
deemed representative for failing logic elements, in particular stuck-at logical 0 or 1.
FI was also used to test the resilience of computer systems against non-systematic

hardware errors resulting, for instance, from electromagnetic interference [Bel89] or
heavy-ion radiation [GKT89]. As the precise effects of these physical phenomena on
the system implementation were difficult to predict, they could not be simulated in
combinational logic designs. The corresponding approaches were termed physical FI
[Avi78] or hardware FI without contact [HTI97].
As computer systems became more software-centric, FI was used to determine the

impact of hardware faults on software execution, e.g., to develop mechanisms for error
detection or recovery. For software assessments, simulation-based FI was not suitable,
as the used hardware simulators did not provide any support for software execution on
the simulated circuitry. Physical FI also suffers from a number of practical drawbacks
for software assessments. The effects of heavy-ion radiation and other physical injec-
tions are difficult to control and repeatability of observed effects is hard to achieve.
However, in order to efficiently validate software detection or correction mechanisms,
experiments need to be deterministically repeatable. As a consequence, injection mech-
anisms to emulate the effects of physical perturbations on the hardware or software
in a more repeatable manner, such as pin-level FI [AAA+90] (also called hardware FI
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with contact [HTI97]) and software-implemented FI (SWIFI), gained popularity (e.g.,
FERRARI [KKA92], DOCTOR [HSR95], FTAPE [TI95], Xception [CMS98]).

2.1.1 From Hardware to Software FI

Although FI was traditionally intended to emulate hardware errors, the software-
based injection techniques arising from SWIFI were soon utilized to emulate software
defects as well. FIAT [SVS+88; BCS+90] was explicitly designed to emulate the ef-
fects of both hardware and software defects. The term software fault injection (SFI)
[CLN+12; CM13; CN13; NCD+13a] was later used to distinguish the emulation of
residual software defects from hardware error emulation in SWIFI. While for the emu-
lation of expected hardware errors only operational FI was relevant1, both operational
and debug FI (the latter often also termed robustness testing [KKS98]) became valu-
able strategies for SFI with similar applications to operational and debug (correctness)
testing [FHL+98].

A large body of research work covers fault models for operational FI. As this thesis
focuses on fault models for debug FI, software defect models for operational FI are
not discussed in further detail. I refer the interested reader to Roberto Natella’s PhD
thesis [Nat11] as a concise documentation and discussion of the state-of-the-art in
operational FI models for emulating software defects.

2.2 Fault Models for FI: What, Where, and When
to Inject

Although the goals of the approaches differ, fault models for both operational and
debug FI have evolved from the same basic fault taxonomy, which classifies faults
according to:

Type: How a fault manifests

Location: Where a fault is located in the system

Trigger: The circumstances that lead to the fault’s activation

Persistence: Whether the fault is permanent2, transient, or intermittent

The classification of software faults according to defect types [CKC91] and de-
fect triggers [SC91] forms the foundation of orthogonal defect classification (ODC)
[CBC+92]. The classification of defect types provides feedback on the development

1As all aspects of software execution depend on hardware, software systems may fail arbitrarily
upon arbitrary hardware failures. Consequently, software failures cannot be expected to manifest
as a finite set of failure modes. This limits the utility of debug FI, as no practical test oracle can
be established.

2In other taxonomies, such as IEC 61508 [IEC99] and derived functional safety standards, these
faults are called systematic, as they are deterministically reproducible.
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process, whereas the defect trigger classification provides feedback on testing and other
verification processes. The term “defect” denotes the same concept as “fault” in this
thesis and the terms are used interchangeably to maintain consistency with different
taxonomies in the discussed articles.

Fault persistence is an important fault property of hardware faults that may occur,
vanish, and re-occur in a non-deterministic manner. While software faults are always
permanent, unless evolving or self-modifying code has to be considered, transient
or intermittent faults may be suitable to achieve accelerated failure causation for
improved debug FI experiment throughput. The concept of such failure acceleration
has first been proposed by Chillarege and Bowen [CB89] with the restriction that “the
fault model is not altered” by such modifications. The authors, thereby, implicitly
state that a fault model comprises any properties related to the fault occurrence, but
not to its activation or propagation. They proceed to describe an injection scenario
with a fault type that is chosen by its expected impact on the system and replicate it
over an entire memory page to increase the likelihood for activation. The selection of
the fault type according to a goal (the deliberate provocation of a failure) rather than
resembling typical faults as closely as possible marks an early approach to debug FI.

Christmansson and Chillarege [CC96] use the ODC classification to specify a soft-
ware fault model for FI and attempt to achieve high failure rates through modification
of the injection mechanics. Besides selecting types and locations according to obser-
vations of residual faults in deployed software, they discuss injection timing strategies
for software faults that aim for failure acceleration.

Motivated by empirical data indicating that rare events, which are by definition
seldom covered by operational FI, are a frequent cause of critical failures in deployed
systems [Hec93], Voas and Miller [VM95] propose to use inverted probability distri-
butions to select test cases. This strategy is the exact opposite of operational FI or
testing approaches and has been proposed to assess the error propagation sensitivity
of different source code locations [VM95; VCM+97] within a SUT. For robustness
assessments, however, it is important that the SUT is not modified to obtain depend-
able results on the SUT behavior. The SUT is, consequently, only exposed to external
faults.

2.3 FI for Robustness Testing

A variety of robustness testing tools have used and are using FI to expose software to
external faults. Ballista [KD00] exposes POSIX implementations to data-type-specific
boundary and exceptional values. The SUT reaction is classified according to a set
of failure modes classified by the CRASH scale [KKS98]. The acronym is constructed
from the first letters of the failure mode names.

Catastrophic The injected fault has a system-wide effect on any provided service.
For POSIX operating systems, a system crash or hang that renders the entire
system unresponsive is catastrophic.
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Restart The injected fault causes the invoked SUT service to hang, i.e., a service
is requested and no observable behavior results within acceptable time. The
amount of time that is deemed acceptable is usually derived from response times
for fault free operation.

Abort The injected fault causes the abnormal termination of the system issuing the
service request to the SUT. In the context of POSIX invocations, this is usually
caused by a signal from the operating system. Segmentation faults are prominent
examples of this class.

Silent The SUT service terminates without producing a valid result and without
indicating an error, when it should have.

Hindering The SUT service terminates without producing a valid result and indicates
a different error than it should have, thereby misleading debugging efforts.

The CRASH scale originates from correctness testing approaches and is well suited for
classifying observed behavior according to specified behavior for invalid and stressful
inputs. The silent and hindering failure classes explicitly refer to expected return
values that require specification. The catastrophic, restart, and abort failure classes
classify SUT responses to unspecified conditions. Consequently, the Ballista authors
focus their robustness tests on these failure modes, which they summarize as “doesn’t
crash, doesn’t hang” [Koo; KKS98; KDD08]. The CRASH scale and variants have been
widely adopted for failure mode classifications in the robustness testing literature. The
failure modes considered in this thesis are discussed in detail in the setup discussions
for each conducted experimental study (Chapters 4 to 6).

Ballista has been applied to different operating systems that implement POSIX,
such as different Unices and the microkernel-based QNX operating system. While
the Windows operating system family does not implement POSIX, it provides similar
functions via the win32 system library. By mapping the data types commonly used
in the Windows programming ecosystem to the POSIX data types, Ballista has been
ported and applied to Windows systems as well [SKD00]. The RIDDLE tool [GSS98]
followed a similar goal, but targeted Windows utility programs, rather than actual
operating system functions. RIDDLE creates faulty inputs by randomly generating
syntactically valid command line parameter strings. Fault models with a random
component are commonly referred to as fuzzing approaches.

Following a similar philosophy as Ballista, HEALERS [FX02] automatically tests
C library functions for robustness issues using a data type fault model and automati-
cally applies protective function wrappers in case any robustness issues are identified.
HEALERS starts with tests for the data types specified in the function signatures.
If a robustness issue is detected (e.g., a segmentation fault), the data type from the
signature is narrowed down to the next smaller3 subtype and tests are executed for
this subtype. This iterative process continues until no robustness issues are found.
After identifying these robust types for the function parameters, function wrappers

3in terms of bit length
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are generated that return error codes if arguments passed to the function exceed their
robust types.

Approaches similar to those that were first implemented by Ballista and RIDDLE
became popular for testing commercial off-the-shelf (COTS) systems. As these sys-
tems are applied in scenarios that were not necessarily envisioned by their creators,
they may fail in dangerous ways if exposed to unanticipated input. Moreover, to
protect their intellectual property and ensure the corresponding systems remain a
continuous source of revenue, their source code is usually not made available for re-
view by users. Hence, COTS systems are often integrated as black-box components
within larger systems. For economical considerations COTS systems became widely
applied, even in critical applications [Voa97; Dal00].

Ballista, RIDDLE, and HEALERS inject faults into parameters of individual func-
tion calls to the SUT and evaluate the SUT’s response by classifying the behavior
of this single invocation according to the CRASH scale. This restriction of failure
observations to that fraction of the external state, which is only directly related to
the perturbed invocation, bears both benefits and drawbacks. On the one hand, ro-
bustness tests of this type can be performed at high frequencies, as the results can
be classified quickly, and the results from both projects have demonstrated that large
numbers of robustness issues are found. On the other hand, it bears a high risk for
false negatives, as actual robustness issues cannot be identified because only a subset
of the external state is considered for failure detection and failures may manifest in
the disregarded part. Furthermore, if robustness issues (i.e., internal faults) exist and
they get activated by a test invocation, they may result in an erroneous SUT state
that does not manifest as a failure immediately. Such issues would require further
stimulation of the SUT to foster the propagation of errors to the SUT’s interface.
Finally, robustness tests that comprise only individual function calls do not account
for SUTs that require warm-up phases to achieve their operational steady state (cf.
spurious faults [GKT13]), such as operating systems and other complex and stateful
SUTs. In order to compensate for these drawbacks of the proposed techniques for
stateful systems, a number of approaches have been developed that implement fault
injections by intercepting SUT interactions with its operational environment, rather
than testing the SUT in isolation. These approaches, which I refer to as robustness
assessment in contrast to robustness testing, are discussed in the following section.

2.4 FI for Robustness Assessments

MAFALDA [FSM+99; RSF+99] has been developed to assess the robustness and prop-
agation properties of off-the-shelf microkernel-based operating systems often found in
safety- and mission-critical systems. The tool provides two different injection mecha-
nisms.

Parameter bit flips Upon microkernel invocations, a randomly selected bit in a ran-
domly selected parameter is changed from logical 0 to logical 1 or vice versa.
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Microkernel address space bit flips Upon memory access to a randomly preselected
address in the microkernel, either for reading/writing data or fetching instruc-
tions, a random bit in the accessed memory is flipped.

While the second injection mechanism apparently implements classical SWIFI to em-
ulate hardware defects and is not suitable to assess system robustness (as the SUT is
altered), the first approach resembles the Ballista and RIDDLE robustness testing ap-
proaches. It mainly differs from these tools by the targeted SUT, the chosen fault type
for injections, and the FI test setup. In contrast to Ballista and RIDDLE, MAFALDA
intercepts SUT invocations from its actual environment and thereby circumvents the
aforementioned dilemma of these tools that generated inputs are either very complex
or of limited utility for testing stateful systems. Rather than crafting external faults
as a possibly long sequence of artificial inputs, external faults are created by trans-
forming subsequences of legitimate input. To mitigate identified robustness issues, the
authors suggest to use fault containment wrappers for additional parameter validation
at the COTS microkernel’s interfaces.

Voas [Voa98] discusses the problem of COTS integration in critical systems on a
more abstract level and proposes a general approach for testing the consequences of
COTS system failures via FI. Similar to MAFALDA, the COTS system’s interfaces
are intercepted and erroneous behavior of the COTS system is simulated by modifying
the interface-mediated interactions with other systems. The author discusses three
mitigation strategies (static fault-tree analysis, slice testing, and fault containment
wrappers) for COTS systems and recommends their comparative assessment using FI.

Following these composition-focused approaches, Hiller, Jhumka, and Suri [HJS01]
developed a framework to quantify data error propagation across interacting compo-
nents in a composition and implemented the approach as an FI-based tool for propa-
gation analysis [HJS02]. Building on this conceptual framework, Johansson and Suri
[JS05] built a fault injection tool to measure the robustness of a COTS operating
system kernel against driver failures and to assess the propagation of COTS device
driver failures to the operating system’s application interface [JSJ+05; JS05; JSM07b;
JSM07a]. The supported fault models, also termed error models in the referenced ar-
ticles, are specified according to the fault properties identified by Christmansson and
Chillarege [CC96], as discussed earlier in this chapter: The fault location (where to
inject), the fault type (what to inject), and the fault timing (when to inject). As fault
locations, any data transferred as function call parameters or function return values
from drivers to the OS kernel are chosen. The fault types are those previously intro-
duced and used by other robustness testing tools: Data-type-specific values (inspired
by Ballista), parameter fuzzing (inspired by RIDDLE), and parameter bit flips (in-
spired by MAFALDA). The tool supports a large variety of fault timing configurations
in terms of event-based fault triggers (cf. [CC96]) and fault latencies (for how long
to inject). The published results mostly cover transient faults that are triggered upon
first invocation of the targeted kernel or driver services. The influence of injection
timing on propagation analyses is discussed in detail in [JSM07a].
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Marinescu and Candea [MC09] applied fault injections to analyze error checking and
recovery code for third-party library invocations in programs. Their tool (library fault
injector, LFI) first identifies all shared libraries that a program uses and then creates
a fault profile for each function exported by each library. The fault profile consists of
all error codes that can possibly be returned to a caller. This set is determined by
disassembling the library machine code, constructing the control flow graph (CFG) for
each function (including functions of other libraries, if any are used), and searching for
paths in the CFG that propagate error codes to the registers or memory locations via
which return codes are passed back to a caller. The robustness notion, on which LFI
is based, overlaps with the robustness notion in this thesis, but they are not identical.
As LFI covers error codes returned by library functions, these would be considered
valid inputs in this thesis if they are documented. As the documentation of third-party
libraries may be incomplete, undocumented error codes would fall under the definition
applied in this thesis.

I adopt the widely used fault model notion (e.g., [CC96; JS05; JSM07b; JSM07a;
MC11]), where fault models for FI-based robustness assessments were defined by three
basic attributes: the fault location (where to inject), the fault type (what to inject), and
the fault timing (when to inject), where the latter was further qualified as injection
trigger and fault latency. Table 2.1 lists a number of existing FI frameworks that
have been applied for software robustness assessments similar to those considered
in this thesis, along with their reported fault model support. Fault models are often
discussed only implicitly in the literature and some FI frameworks provide mechanisms
for flexibly extending the set of supported fault models, e.g., by user defined injection
triggers or fault types. Thus, Table 2.1 is likely incomplete, but already indicates
potentially large numbers of applicable fault models offered to evaluators, e.g., more
than 90 possible attribute combinations for Xception [CMS98].

For the injection of external faults, two different injection locations exist, for which a
detailed discussion in the context of injection mechanisms is provided in Section 3.1.1:

• External components interacting with the SUT (ext. comp.)

• A chosen interface under test (IUT) of the SUT, via which it interacts with
external components

The spectrum of fault types in the related literature includes:

• Single bit flips (single-event upset, SEU)

• Multiple simultaneous bit flips (multiple bit upset, MBU)

• Data type dependent corruptions of data fields or parameters (DT)

• Substitutions by random bit patterns (fuzzing, FZ)

The fault latency addresses the duration of an injection in terms of repeated fault
activation. Transient faults are activated exactly once, intermittent faults are activated
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a finite number of times, and permanent faults are activated every time. Injection
triggers determine when a fault is injected, respectively when it can be activated for
the first time. The following triggers are used by the listed frameworks:

• Upon first execution of an injection location (1st occ.)

• After a defined number of n executions of an injection location (nth occ.)

• After a predefined amount of time has passed (Timer)

• After some predefined exception or function call occurs (X-call)

• After a predefined sequence of function calls (Call Block)

Table 2.1: Fault models for robustness evaluations in the literature

Framework/Authors Fault Location Fault Type Fault Latency Injection Trigger

MAFALDA [AFR02] ext. comp. SEU Transient 1st occ.IUT MBU PermanentDT

Albinet et al. [AAF04] IUT DT Transient 1st occ.

Kalakech et al. [KKC+04] IUT SEU Transient 1st occ.DT

Xception [CMS98]
ext. comp. SEU Transient 1st occ.

MBU Intermittent nth occ.

IUT DT Permanent Timer
FZ X-call

G-SWFIT [DM02] ext. comp. Coding Permanent 1st occ.mistakes

Medonça & Neves [MN07] ext. comp. Coding Permanent 1st occ.mistakes

Johansson [Joh08] IUT

SEU Transient 1st occ.
nth occ.

DT Intermittent Timer

FZ Permanent X-call
Call Block
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3 System Model

In Section 3.1 of this chapter I provide an abstract description of the FI process and
terminology assumed in Chapters 4 to 6. As the target platforms, which I used to
validate the proposed metrics, models, and performance improvements, are commodity
mobile operating systems, I discuss their common structure and abstractions and how
these match the abstract system model applied in the FI process in Section 3.2. The
detailed experiment configurations used for the studies in Chapters 4 to 6 are presented
in the respective chapters. Parts of this chapter are based on material that has been
published or accepted for publication [WSS+11; WTS+13; WSN+15; WPS+15].

3.1 FI Process and Abstract System Model

As detailed in Section 1.1.3, the subject of this thesis is the usage of FI for detecting
robustness issues, which is termed debug FI. As discussed in Chapter 2, there are two
different strategies to debug FI, which are both widely used, but differently suitable for
different types of SUTs. I refer to debug FI for stateful, complex, and interconnected
SUTs within their operational environment (OE), similar to the methodology applied
by Fabre et al. [FSM+99], Voas [Voa98], Hiller, Jhumka, and Suri [HJS01], and Jo-
hansson et al. [JSJ+05], as robustness assessments. This differs from early robustness
testing approaches, such as Ballista [KD00] and RIDDLE [GSS98], which test SUTs
as isolated units (cf. Chapter 2). The relation between SUT and OE is depicted in
Figure 3.1.
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Figure 3.1: System under test (SUT) and operational environment (OE) in FI-based
robustness assessments
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Components in the OE interact by requesting (invoking) other components’ ser-
vices. Interfaces are sets of services and, therefore, constitute the means by which
each component’s functionality can be accessed. An interface via which a component
provides services is called an export interface of the component. If a component C1
invokes services from an export interface of another component C2, these services be-
long to C1’s import interface. Figure 3.2 illustrates interactions in compositions, where
arrows indicate service invocations (more precisely, possible invocations, also termed
references [Ryd79]). A component that provides services to the SUT is referred to as
a SUT server component. A component that uses services that the SUT provides is
referred to as a SUT client component.

Component 1

Component 2

Export Import

ExportImport

Figure 3.2: Import and export interfaces

In order to assess its robustness, FI exposes the SUT to external faults. As any
external fault affecting the SUT must be mediated by its interfaces, the injection of
external faults can be achieved by either provoking actual OE component failures
through code mutations of these components or by directly perturbing interactions
between OE components and the SUT, as I detail in Section 3.1.1. The interface via
which the SUT is exposed to external faults is called the interface under evaluation
(IUT). Injections into the SUT itself are not considered, since the robustness of a
SUT is defined by its response to external faults. Figure 3.3 illustrates the different
injection locations for external faults, represented by the filled circles.

Robustness assessments comprise three phases that are repeated for each chosen
fault model, workload, and OE.

Configuration: A fault model and workload are selected and the SUT’s OE is set up
accordingly. The OE is instrumented with interceptors (e.g., interface wrappers)
to perform injections during the SUT’s interactions with the OE and to monitor
the SUT’s response to these interactions, including failure detection.

Campaign execution: FI campaign refers to a sequence of FI runs, pertaining to
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Figure 3.3: Injection locations in the SUT’s OE considered in this thesis

a specific fault model, workload, SUT, IUT, and OE. A FI run comprises the
following steps:

1. Starting the SUT and other components of the OE if necessary

2. (Re-)setting the SUT and other components of the OE to a known and
reproducible state

3. Injecting a specific fault derived from the chosen fault model

4. Executing the workload

5. Detecting (and logging) the injection’s effects

6. Stopping the SUT/OE, if required

The start and stop operations are usually only required for the first, respectively
last, runs of a campaign. Between runs of the same campaign, the reset operation
commonly suffices for software SUTs, unless the entire OE is rendered inoperable
as a consequence of injections. I discuss the corresponding failure modes and
their implications on the FI process separately for each conducted assessment in
Chapters 4 to 6. I use the terms FI run and experiment interchangeably in this
thesis.

Data analysis: After campaign execution, the detected injection effects are investi-
gated to determine violations of the previously specified negative requirements.
Identified robustness issues can be tracked back and fixed, if the source code of
the SUT is available, or error handling code (e.g., fault containment wrappers
[Voa98; SRF+99]) can be applied in the OE upon SUT deployment.

As performing FI runs in the campaign execution phase is a highly repetitive task,
it is usually automated to optimize experiment throughput and to prevent human
errors from threatening result validity. To illustrate the FI setup, the functionality of
individual components, and their interplay, Figure 3.4 (adopted from Hsueh, Tsai, and
Iyer [HTI97] with modifications) displays the general structure of FI tools. The Fault
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Injector component exposes the SUT to external faults by performing fault injections
into the OE. It is configured and triggered by a central controller, which also triggers
SUT and OE initialization and exposes it to a workload via the Workload Generator.
The exposure to a workload in addition to the faultload is required to trigger fault
injections or activations in the interaction with passive server components that do
not trigger SUT execution themselves. SUT execution is a prerequisite for robustness
assessments, as internal faults need to be activated and their effects propagated to
their external states for detection. The test result is evaluated by the Data Analyzer
based on data that the Monitor component collected during the test.

Fault injection tool

Fault Injector Workload
Generator Monitor

Data Collector
Data Analyzer

Controller

Fault
Library

Workload
Library

OE

Figure 3.4: Common modules of a fault injection tool. Adopted from Hsueh, Tsai, and
Iyer [HTI97] with modifications

Failure detectors, internal and external to the OE (not visualized in Figure 3.5),
monitor the SUT, its clients, and its servers for symptoms of predefined SUT failure
modes of interest. The corresponding information is forwarded to the monitoring
component of the framework, where it is aggregated for failure mode inference. These
inferred failure modes are reported to the data collector component as the results of
the injection experiments and the data is then used for offline analysis by the data
analyzer component, from which robustness properties of the SUT (more precisely,
their violation in the case of debug FI) are derived.

3.1.1 FI Mechanisms: Code Mutations vs. Interface Error
Injections

In order to expose a SUT to external faults in its OE, two different mechanisms are
widely applied:

Code mutations The most straight-forward way to emulate the effects of faulty com-
ponents in the SUT’s OE is to inject faults into these components. The corre-

24



3.1 FI Process and Abstract System Model

sponding modifications are referred to as code mutations [VM97], as they usually
require changes to the components’ source code.

Interface error injections The work on robustness testing (e.g., [GSS98; KD00; FX02])
inspired injections into data that is passed via the interfaces between the SUT
and components in its OE to emulate the effects of faulty OE components. As
these injections are supposed to reflect the result of activated intra-component
faults, the approach is commonly referred to as interface error injection.

Both approaches have methodological strengths and weaknesses that carry more
or less weight depending on their intended application. With code mutations, it is
possible to closely resemble software fault distributions encountered in software de-
velopment processes or actual operation after deployment [DM03a; DM06; NCD+10;
NCD+13a]. This makes code mutations the preferred choice for operational FI, as
widely used interface error models (such as bit flips, fuzzing, and data type models)
lack representativeness of actual residual software faults [LNW+14].

However, interface error injections have a practical advantage over code mutations,
as they do not require the availability of component source code. For interface error
injections, access to the SUT’s interface with its interacting components suffices and
such access is usually given, as its lack would severely restrict its integration with other
systems. Moreover, the use of interface injections does not require a different OE to
be set up for each experiment. While code mutation results in a set of mutated com-
ponents, which need to be loaded individually for each expeiment, the modification
of interface data is a much simpler operation and the same interface injector can be
configured at run time to perform a large variety of diverse perturbations. Although
techniques exist to modify binary components dynamically at run time and without
source code access, they often turn out to be imprecise (e.g., [NCD+10]). A corre-
sponding technique is used for the SEU fault model introduced for the validation of
the fault model efficiency criteria introduced in Chapter 4.

As representativeness of injected faults is a lesser issue for debug FI, with which
this thesis is concerned, and, given the practical advantages of interface error injec-
tions, the metrics and fault models developed in this thesis focus on interface injection
scenarios. Although this focus is reflected by the case studies conducted for exper-
imental validation of the proposed concepts, the metrics, models, and performance
tuning mechanisms at the core of this thesis do apply for code mutations as well with
little or no modification. Although interface injections are often referred to as error
injection in the literature, as it evolved as a variant of robustness testing, I equally
use the terms fault, fault model, and fault injection for code mutations and interface
error injections in this thesis, as my interest is not an evaluation of the OE, its fault
tolerance or propagation characteristics, but on the SUT. For the SUT, injections at
the interface do not constitute errors, but external faults.

Interface injections are assumed in Chapters 4 and 5 due to their wide adoption
in debug FI. The achievable performance improvements for debug FI investigated in
Chapter 6 equally apply for code mutations and interface injections and I chose to
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perform code mutations instead of interface injections. The fault injection framework
presented in Chapter 7 is capable of performing both types of experiments.

3.2 Operating System Robustness Assessments

The metrics, models, and approaches introduced in this thesis are validated in debug FI
campaigns for robustness assessments of mobile commodity operating systems (OSs).
The conducted campaigns specifically target the kernels’ device driver interfaces for
two reasons:

Practical relevance Device drivers have been shown to contain significantly higher
numbers of defects than other kernel subsystems [CYC+01; PTS+11] and at
the same time their failures have severe consequences on overall system sta-
bility [Sim03; GGP06]. Although this vulnerability of monolithic kernels has
been identified early [CYC+01; Sim03] and considerable efforts have been made
to improve device driver testing and verification [BCL+04; BBC+06; SJF+06;
SJS+10; KV10], the defect counts of drivers have not decreased [PTS+11]. As
device driver faults are apparently difficult to find and eliminate, other ap-
proaches have focused on fault tolerance mechanisms to prevent the effects of
faulty device drivers from affecting overall system stability [SBL03a; LUS+;
ZCA+06; TCF+07; WRW+08; CCM+09; HBG+09; JKJ+10]. FI is commonly
applied to assess whether these mechanisms operate correctly and in all relevant
locations where driver faults manifest as errors (e.g., [FSM+99; JSJ+05; JS05;
MN07]). In summary, debug FI for identifying robustness issues in OS driver
interfaces has practical relevance. If robustness assessments with higher order
fault models uncover issues that are not identified in assessments with tradi-
tional models, these results should be taken into consideration for the design
and validation of fault tolerance mechanisms in OSs.

Higher order fault impact In Section 1.2, I have motivated the need for new fault
models by the increasing degree of parallelism in computer hardware and its
impact on software that is operating such systems. Given that the main pur-
pose of OSs is to abstract from hardware configurations and hide their details
from application programs, any changes in the computing hardware landscape
directly affect OS implementations. The change from sequential to parallel com-
puters required OS kernels and any subsystems executing in kernel mode, such
as device drivers, to become thread safe to fully exploit the potential of par-
allel hardware. While thread safety has been a concern for multiprogramming
OSs (e.g., [Dij68]) executing on sequential hardware as well, it was achievable
(and in most cases achieved) by coarse-grained locking in the kernel. In Linux,
for instance, the big kernel lock (BKL) originally prevented the simultaneous
execution of kernel code for different processes. Although such coarse-grained
locking provides thread safety, it hampers performance by making the execution
of unnecessarily large code portions exclusive for a single process or thread at
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a time. Although fine grained locking better exploits performance gains from
parallel processing, it bears the risk of unprotected code portions that would
actually require protection by locks. For device drivers this risk is higher than
for other kernel code portions, as drivers are commonly developed and main-
tained by third parties, usually hardware manufacturers, rather than core kernel
developers. Moreover, a number of previously common mechanisms to achieve
locking do not equally work on sequential and parallel hardware. Disabling in-
terrupts, for instance, allows for exclusive execution on single processors, but not
on multiprocessor systems, where interrupts are usually processor-local. Incor-
rect locking is known to lead to data races and other synchronization problems,
which are difficult to identify and debug (e.g., [XPZ+10; LVT+11; KZC12a;
KZC12b]).

Fault injection tool
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Generator Monitor

Data Collector
Data Analyzer

Controller

Fault
Library

Workload
Library
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User Mode
Application

Device
Driver

IUT

Operational Environment (OE)

Figure 3.5: Robustness assessment setup

To perform robustness assessments as described in Section 3.1 for OSs, the ker-
nel (the SUT) is exposed to external faults at its device driver interface. Figure 3.5
displays the experiment setup, taking the OE structure and considered injection loca-
tions from Figure 3.3 into account and mapping OE components to relevant entities
in the OS assessment setup. Besides the SUT, the OE comprises the drivers that are
targeted for injections and other drivers that are required to execute the system on
the chosen platform. While injections can be performed by code mutations, the focus
of this thesis is on interface injections, as discussed in Section 3.1.1. The injection of
interface errors is performed by interceptors that are implemented as interface wrap-
pers at the driver interface. To trigger faults injected into driver code or to trigger
the execution of interface injections, the SUT is exposed to a workload generated by
user space applications. These applications specifically request kernel functions that
are related to the device drivers targeted for injection, which is a common practice in
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debug FI to achieve failure acceleration (for a discussion of failure acceleration see Sec-
tion 2.2). Apart from injection interceptors and monitors, all experiment control logic
is separated from the target system by hardware-supported virtualization or an “air
gap” (an actual physical separation of hardware) to prevent it from being corrupted
by the effects of injected faults. The experiment controller is responsible for storing
experiment configurations and data, orchestrating the interplay of OE, SUT, injec-
tions and detection during experiment runs, and performing experiment campaigns in
an automated manner, including OE/SUT start-up and reset between runs.
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Assessments

While for operational FI the fault models to be used are dictated by the intended
application scenario for the SUT, fault model selection criteria for debug FI are rarely
discussed in the research literature. In order to assess the comparative effectiveness of
higher order fault models, suitable metrics for their effectiveness need to be determined
and put into relation with the expected costs that their usage entails. This chapter
proposes a set of four metrics to capture both effectiveness and costs of fault models
for debug FI. Their suitability is evaluated in a case study of an off-the-shelf real-
time operating system that is exposed to faults at the driver interface. The metrics
presented in this chapter form the basis of the fault model efficiency evaluation of
higher order fault models in Chapter 5. This chapter is based on a conference paper
presented at ICSE 2011 [WSS+11].

4.1 The Fault Model Selection Problem

Under a constant feature-driven market pressure and due to their ever increasing com-
plexity, many software systems are often released without being sufficiently tested.
Even if a software component is considered to be sufficiently tested for one applica-
tion scenario or operational environment, it may be insufficiently tested for reuse in
another one. Especially off-the-shelf (OTS) software systems pose a problem in this
respect. They are subject to (re-)use in a variety of application scenarios that may
well be unforeseen by their developers. This lack of knowledge on the intended ap-
plication scenario makes it difficult for developers to estimate the sufficiency of their
verification and validation efforts. Moreover, the same component may be applied
in numerous almost arbitrarily different application scenarios and configurations that
are impossible to foresee, let alone test, by developers. Thus, failures frequently result
when the operational environment of a deployed system differs from the pre-release
lab configurations used in the testing phase of the software development process. As
a consequence, released software may exhibit potentially dangerous behavior in oper-
ation due to deviations from specified behavior or undesired unspecified behavior (cf.
Section 1.1.2).

To cope with this deployment variability aspect, FI has become a popular technique
for robustness assessments of OTS software systems with respect to unexpected oper-
ational conditions. In order to assess whether a software component is “sufficiently”
robust for release, it is exposed to external faults in a controlled manner while its
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reactions are closely monitored. The downside of this approach is that it is well suited
for demonstrating the presence of robustness issues, but not the absence thereof. In
order to show their absence using FI, it would be necessary to expose the SUT to
every possible external fault. While this is theoretically possible if the component’s
input space is finite, it is generally considered impracticable, as the problem is equiva-
lent to that of exhaustive testing [Hua75]. FI-based robustness assessments, therefore,
require the selection of suitable faults from the set of all possible faults. This raises
the question which faults to select for the assessment.
A common solution to this problem is provided by application-specific operational

profiles, i.e., probability distributions for stimuli that the SUT is exposed to during
operation. Their application to the fault selection problem is based on the argument
that a total absence of robustness issues is too strong a condition, since a robustness
issue (an internal fault) does not necessarily result in a failure mode that is of im-
portance for a given application context. It does so only if the system is exposed to
an external fault which triggers the issue. This relaxes the problem to proving the
absence of any internal faults that can be triggered by external faults during opera-
tion. For this purpose, operational profiles of the SUT are derived from its intended
operational context, including (but not limited to) typical classes of faults, i.e., faults
that are expected to be frequently encountered during operation.

This approach, which I refer to as operational FI (cf. Section 1.1.3), has two major
drawbacks. First, the robustness evidence derived from such an evaluation is only
valid for the considered operational context of the evaluated system. This implies
that a system needs to be re-evaluated for every intended context, thereby impeding
its reusability. Second, a vulnerability, whose exploitation is highly unlikely in a given
application scenario but whose exploitation consequences are of disastrous impact,
would be ignored by operational profiles. However, critical system failures often result
from highly unlikely and, hence, unanticipated conditions that are by definition not
covered by operational profiles [Hec93; VCM+97; LM03].

Considering these drawbacks, I investigate an alternative fault selection criterion
based on fault effects. Instead of selecting typical faults for robustness assessments,
preference is given to those faults that make evaluations most efficient in terms of
detected robustness issues and the required effort for their detection. I refer to this
approach as debug FI (cf. Section 1.1.3). Debug FI also relies on application scenario
specific information, as it relies on negative requirements (i.e., how the SUT should not
behave) for the identification of relevant failure modes and implementation of suitable
failure detectors. However, different application scenarios, and even different SUTs,
often share a common subset of negative requirements for safe operation, as the wide
adoption of the CRASH scale for robustness testing demonstrates (cf. Section 2.3).

It is easy to state a perfect fault model selection criterion for debug FI, but difficult
to find a criterion that is practical and approximates the perfect criterion well. The
perfect criterion for debug FI selects faults that uncover the largest fraction of all
robustness issues in a system with the smallest experiment overhead. As the number
of total robustness issues in a system is unknown, the fraction of uncovered robustness
issues cannot be known, either. Consequently, the criterion is not practical, as it can-
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not be applied in practice. A similar problem is known in (debug) correctness testing,
where the goal is to uncover the largest possible fraction of correctness issues (cf. Sec-
tion 1.1.2). For correctness testing, a large number of practical test adequacy criteria
and even an axiomatic theory of test quality have been proposed to approximate the
impractical perfect criterion. Inspired by these criteria, which I review in Section 4.2.2,
I propose a set of imperfect but practical metrics for the comparative evaluation of
fault models to aid the selection of suitable models for debug FI experiments.

This chapter makes the following contributions:

• A method to compare the efficiency of different fault models for FI-based ro-
bustness assessments

• A set of fault model efficiency metrics for this purpose based on structural criteria
applicable in both black-box and white-box scenarios1

• A pragmatic set of guidelines for the application of these metrics in FI-based
robustness assessments

As a case study, I perform FI experiments on an embedded operating system (OS)
kernel (Windows CE 4.2) and demonstrate the effectiveness of the proposed approach,
comparing four commonly applied fault models.

The chapter is organized as follows: Section 4.2 introduces basic terminology and
related work. Section 4.3 introduces the metrics developed for cross-model efficiency
evaluations, whose application is demonstrated in an experimental evaluation pre-
sented in Section 4.4 along with a demonstration and discussion of their utility in
Section 4.5.

4.2 Related Work

Although the fault model selection problem has conceptual commonality with the test
case selection and prioritization problem, it has attracted much less discussion com-
pared to its correctness testing counterpart. Following a discussion of fault model
selection and comparison in Section 4.2.1, I review testing adequacy criteria in Sec-
tion 4.2.2, as the metrics proposed in this chapter are inspired by structural criteria
from correctness testing.

4.2.1 Comparative Assessments of Fault Models

Although a multitude of fault models for software robustness evaluations are discussed
in the literature, most of them have been developed for operational FI assessments.
Consequently, their adequacy derives solely from similarity with actual operational
faults that they are intended to mimic. Sophisticated analyses have been conducted

1i.e., no source code access is required to apply the structural criterion
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to assess and ensure the representativeness of injected faults [DM03a; DM06; NCD+10;
NCD+13a].

For debug FI, in contrast, where the most important property of a fault model is
the identification of robustness issues, fault model assessments and comparisons are
surprisingly rare. Moraes et al. [MBD+06] compare the effects of fault injections at
different locations in the SUT’s environment. To assess whether fault injections into
systems that interact with the SUT yield different results than direct injections into
SUT services, the authors perform injections of representative software defects using
G-SWFIT [DM06] and compare the effects with those of injections into interface ser-
vices using a data type fault model inspired by Ballista (see Section 2.3). The tests
are performed on two SUTs: A database management system and a mission-critical
real-time system configuration based on RTEMS [OnL]. The authors conclude that
service-level injections, which are generally less costly in terms of implementation
complexity and execution time, have different effects than software defects in interact-
ing components. Although the study provides limited insight into the nature of and
reasons for the observed deviations, this is an important result, which indicates that
operational FI models (emulated software defects) do not automatically yield high
detection rates for robustness issues, as required for effective debug FI. Except for
the RTEMS system startup interface, interface injections provoke higher numbers of
SUT failures. While undesirable for operational FI due to apparent lack of represen-
tativeness, the interface injections are favorable for debug FI, as their higher failure
rates entail a higher probability for identifying robustness issues. Consequently, the
adequacy criteria for operational FI cannot be easily adopted for debug FI.

With the goal to assess the degree by which the Windows CE kernel propagates
driver errors to the user space API interface and the effect of fault models on the
assessment, Johansson, Suri, and Murphy [JSM07b] compare the effectiveness of three
different fault models (a single bit flip model, a Ballista-style data type model, and
a parameter fuzzing model) in interface injections between device drivers and the
Windows CE kernel. The conducted propagation analysis constitutes a special case of
robustness assessments, where the service interfaces for test input and failure detection
differ. The applied effectiveness criteria are (i) the observed propagation probability
(driver error diffusion [JS05]) and (ii) the number of observed system outages (crash
failures) in response to injections (error impact). In order to account for overheads
the different models imply, their (iii) implementation complexities and (iv) entailed
execution times are also measured and compared. Using the error impact criterion,
the bit flip model is identified as most effective in detecting robustness issues, but
also as prohibitively costly in terms of execution time. The fuzzing model entails a
significantly lower execution time, but also fewer detections. As a consequence, the
authors propose a composite model that combines few effective bit flip tests with 10
fuzzing injections. The composite model saves approximately half of the injections,
while providing similar diffusion results as the individual models it is composed from.

While the chosen metrics match the intuitive understanding of fault model effective-
ness and performance well, the chosen metric definitions have a number of drawbacks
for comparative fault model evaluations.
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1. None of the used metrics is normalized. The bit flip model, for instance, is
identified as expensive because of the overall experiment run time for all tests
and the model simply yields the highest test counts. At the same time, the high
number of test counts also contributes to the model’s higher failure rate.

2. Driver error diffusion is a metric specific to propagation analysis and not directly
applicable to measure the suitability of fault models for general robustness as-
sessments. Moreover, the metric is not used to comparatively evaluate and rank
different models in the assessment, but only as an argument for the composite
model adequacy.

3. Rather than driver error diffusion, the effectiveness of the bit flip model de-
rives from the number of services identified as exhibiting non-robust behavior
in the paper. However, the comparison is only based on an implicit procedural
description and no metric is defined.

4. Implementation complexity is only informally discussed without giving any def-
inition.

I propose a set of metrics that is based on the ideas from Johansson, Suri, and
Murphy [JSM07b], but addresses the aforementioned issues. As the total number of
robustness issues is unknown, it is impossible to derive a coverage metric that is both
accurate and normalized. Since the same problem applies for test adequacy criteria in
correctness testing, I review related work on the issue in the following.

4.2.2 Correctness and Security Test Adequacy Criteria

While the purpose of debug FI effectiveness criteria in this thesis is the comparison
of fault models, the main purpose of assessing the effectiveness of test cases for cor-
rectness testing are test adequacy/end criteria. In order to decide when software is
sufficiently tested, test adequacy criteria are commonly stated in terms of achieved
test effectiveness. As the purpose of software testing traditionally is the detection of
software faults [Dij72], software is adequately tested if all or a large fraction of its
faults have been identified by the tests. However, as the total number of faults in a
program are unknown, no normalized fault coverage measure of test effectiveness can
be defined that is both accurate and practical. In order to achieve practical normalized
measures, requirements on accuracy are relaxed and approximations to fault coverage
are proposed and comparatively evaluated in the literature.

Existing work distinguishes between specification based and program based test ad-
equacy criteria. Although it is intuitive to base test adequacy criteria on specifications,
because failures are violations of the specification and faults are the attributed causes
for failures, program based approaches are more widely used, as they can be derived in
an automated manner by program analyses, for instance, on control flow graph (CFG)
representations [Wey86]. Specification analyses usually require human interaction, as
they commonly rely on natural language comprehension, with the exception of formal
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specifications [ROT89]. In their comprehensive review of test adequacy and coverage
metrics, Zhu, Hall, and May [ZHM97] include a combination of specification and pro-
gram based adequacy criteria in their classification. They further classify adequacy
criteria as (1) structural, (2) error-based, and (3) fault-based.

In contrast to the structural and error-based criteria, which are detailed in Sec-
tions 4.2.2.1 and 4.2.2.3, the metrics proposed in this thesis also consider test outcomes,
i.e., the SUT’s behavior in response to test stimuli, rather than purely syntactic el-
ements. In that sense they are similar to fault-based criteria, which are based on
test outcomes for behavioral deviations of the SUT, as discussed in Section 4.2.2.3.
However, the proposed metrics do not entail the high measurement overhead that
fault-based criteria impose. A similar trade-off has been achieved for the state-based
correctness test adequacy criterion discussed in Section 4.2.2.4. The criterion cannot
be directly applied for FI effectiveness assessments, as it relates adequacy (i.e., test
quality, respectively experiment effectiveness) only to a coverage property of the ap-
plied test assertion. The test assertion, which compares the observed SUT behavior
with specified behavior, corresponds to SUT failure detectors applied in debug FI.
As the detectors are defined by application-specific negative requirements (cf. Sec-
tion 1.1.1), state-based criteria would be suitable to assess how accurately failure
detectors test these requirements. The aim of this thesis, in contrast, is to assess
the effectiveness of debug FI fault models, rather than failure detectors. These fault
models are part of the input to the SUT in debug FI. An approach that relates test
adequacy to test input for fuzzing is discussed in Section 4.2.2.5. In this approach test
adequacy is directly derived from coverage of a chosen fraction of the test input space.
Although a positive correlation with test effectiveness is empirically demonstrated,
the criterion does not resemble effectiveness, as highly effective (i.e., fault revealing)
tests may constitute a subset of the input space that has little or no overlap with the
deliberately chosen fraction of the input space.

4.2.2.1 Structural Adequacy Criteria for Correctness Testing

Structural adequacy criteria are based on the coverage of syntactic elements of pro-
grams. Three widely adopted structural adequacy criteria are statement adequacy,
branch adequacy, and path adequacy, which are based on the coverage of program
statements (nodes in the CFG), branches in the program (edges in the CFG), or
execution sequences (paths in the CFG) respectively. Which adequacy criteria are
suitable and if a degree of coverage achieved by a test set is considered “sufficient” or
not usually depends on the test policy for a given software project. Full coverage of
all statements, branches, or paths is a common requirement for adequacy [ZHM97].
While they can be easily calculated, structural adequacy criteria have a number of
shortcomings.

Coincidental correctness: Control flow based adequacy criteria assume that any test
data that lead to the coverage of a certain statement, branch, or path are equally
suitable for revealing faults. This leads to insufficient detection of, for instance,
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neglected conditions [CPY07], i.e., missing branching instructions to handle ex-
ceptional cases. Such issues could only be detected if the exceptional cases were
by coincidence chosen as test values. For other values, structural adequacy cri-
teria likely give a false sense of safety. Such coincidental correctness, i.e., the
observation of a seemingly correct result despite presence of a fault in the cov-
ered statements/branches/paths, has been recognized as a significant threat to
the soundness of structural adequacy criteria and is increasingly addressed in
recent work [WCC+09; CLZ+10; WGY+13; ACD+14; ZXZ14].

Unachievable adequacy: In some cases, full coverage of a structural adequacy crite-
rion may not be achievable. Obviously, full statement, branch, and path coverage
cannot be achieved if a program contains dead code. A less obvious example is
lazy evaluation of branching conditions in some programming languages (e.g.,
[HGW04; RWH08]), which leads to reduced coverage for condition based ad-
equacy criteria, such as MC/DC [Mil94], which is a common requirement in
functional safety standards [Aer92; Aer12; ISO11c].

Adequacy axiom violations: With the goal to provide a general theoretical frame-
work for reasoning about test adequacy, Weyuker [Wey86] introduces a set of
eight axioms that are derived from intuitive arguments on properties that a
“good” set of tests should fulfill. The introduced axioms are validated in a
discussion of weaknesses that several adequacy criteria expose. For instance,
the unachievable adequacy for statement, branch, and path coverage discussed
above is phrased as the violation of an axiom (termed Applicability Property in
the article). These structural adequacy criteria (and others as well) furthermore
violate the Anticomposition Property and the Antidecomposition Property, ac-
cording to which adequacy for a composition does not derive from adequacy for
its components and vice versa [Wey86].

4.2.2.2 Error-based Adequacy Criteria for Correctness Testing

Error-based adequacy criteria focus on the selection of test inputs to a SUT that
are likely to result in failures. In contrast to fault-based adequacy criteria, there
is a stronger emphasis on the observability of fault effects. Based on conditional
branching instructions in the SUT’s implementation, subdomains are identified, for
which all output is derived from the input in an equivalent manner. Any deviation
from correct service is attributed to either computation or domain faults. Domain
faults result from incorrect implementations of branching conditions. As a result, the
border between adjacent subdomains derived from path predicates in the source code
does not match the specification and some input is processed by the wrong sequence
of statements. Computation faults are faults within the basic blocks2 of the SUT’s
implementation.

2“sections of a program which have the property that if any instruction in the block is executed all
must be” [Coc70]
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Error-based adequacy criteria focus on the detection of domain faults, i.e., misplaced
subdomain boundaries. To detect the misplacement of a subdomain boundary, test
values are derived from path predicates. Such values are referred to as boundary (or
ON ) test values, as they lie on the boundary between two subdomains. Boundary
values always belong to one of the adjacent domains and the domain containing the
boundary values is referred to as the domain being tested. In order to detect a boundary
shift within the domain being tested (the domain being tested is smaller than it should
be due to a misplaced boundary), values in its adjacent domain (OFF test values) also
need to be tested. Error-based criteria provide upper bounds for undetected domain
faults under the assumption of continuous input domains and linear borders if ON
and OFF values are carefully chosen. This considerate selection of ON and OFF
value combinations has been the main focus of error-based adequacy criteria [WC80;
CHR82].

Three common criteria are N × 1, N ×N , and V × V , where N and V are integer
variables. The first number in the notation specifies the number of ON tests and the
second the number of OFF tests to be executed. The value N denotes the dimension-
ality of the input of the SUT. The value V denotes the number of vertices resulting
from domain border intersections, if domain borders are geometrically interpreted
as hyperplanes and lower dimensional structures in the N-dimensional input space.
While error-based testing provides analytical guarantees for the detection of domain
faults (cf. White and Cohen [WC80] and Clarke, Hassell, and Richardson [CHR82]
for the discussed criteria), the approach makes a number of assumptions that limit its
applicability.

1. The analytical guarantees only hold if coincidental correctness is excluded by
assumption.

2. Borders are linear. If the borders between adjacent subdomains are non-linear,
the analytical guarantees provided by the discussed criteria do not hold and
the provision of similar guarantees would require an “inordinate number of test
points” [CHR82] in the general case.

3. Input domains are continuous. If they are not, test points cannot be chosen
from subdomains without additional analysis. Borders could, for instance, lie
within undefined “gaps” of the input space, in which case no border test points
could be selected and the above discussed adequacy criteria could not be fulfilled.
Furthermore, undefined spots in the input domain would intuitively require ad-
ditional tests for adjacent values, thereby increasing the required numbers of
tests.

4. The input domain can be partitioned into a reasonable number of subdomains.
If each input value was treated as its own subdomain, the N × 1 and N × N
criteria could only be fulfilled for functions of dimensionality 1.

These assumptions severely limit the practical applicability of error-based criteria
for a large faction of modern software systems.
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4.2.2.3 Fault-based Adequacy Criteria for Correctness Testing

In contrast to structural and error-based adequacy criteria, fault-based adequacy cri-
teria are based on the capability to detect behavioral deviations in programs, so-called
mutations. Under the assumption that mutations resemble actual software faults
closely, fault-based adequacy criteria closely approximate fault detection capabilities of
tests. The downside of fault-based adequacy is that tests need to be evaluated against
a usually large number of automatically created mutants. Furthermore, mutation test-
ing cannot be entirely automated in the general case. The general undecidability of
program equivalence3 directly implies the necessity of human intervention (1) to avoid
the execution overhead for equivalent mutants and, more importantly, (2) to decide if
a mutant that was not identified by the tests is functionally equivalent to the original
program. Interface mutation [DMP+01] is a fault-based adequacy criterion focused
on integration testing. Interface mutation employs data corruptions at software (sub-
)system interfaces similar to the debug FI fault models in this thesis. While interface
mutations are an effectiveness measure for integration tests, the effectiveness metrics
proposed in this thesis are intended to rate the effectiveness of mechanisms similar to
interface mutations.

4.2.2.4 State-based Adequacy Criteria for Correctness Testing

The motivation for the development of state-based criteria [KK07] is to combine the
behavior-focused nature of fault-based criteria with the simplicity of measuring struc-
tural criteria. For this purpose, tests and test suites are assessed according to the
fraction of covered output defining statements, where an output defining statement
is one that is part of the dynamic program slice (see [Tip95] for an overview) of the
test assertion, the variables it references, and the chosen test input. The test asser-
tion checks the result of the SUT’s execution by comparing its output (or a fraction
thereof) against the expected output (fraction) derived from the SUT’s specification.
The last defining statement of a variable in the SUT that is within the dynamic slice
of such an assertion is influencing the SUT’s external state and must be considered
a possible contributor to a failure. As a fault is defined as necessary but insufficient
precondition for a failure, fault detection requires failure observation. The larger the
fraction of the checked external state is, the likelier is the observation of a failure and,
hence, the detection of a fault.

4.2.2.5 Input-based Adequacy Criteria for Security Testing

Whereas structural and error-based adequacy criteria focus on syntactic properties of
the SUT and fault- and state-based criteria on the tests’ ability to identify incorrect
SUT behavior, a third possibility is to state adequacy criteria based on the coverage
of the SUT’s input space. Full coverage of all possible SUT inputs during test is

3Program equivalence requires both programs to halt (respectively, not halt) on the same input and
thereby necessitates a solution to the halting problem.
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referred to as exhaustive testing and is commonly considered impracticable [Hua75].
Tsankov, Dashti, and Basin [TDB13] propose an input-based adequacy criterion called
semi-valid input coverage (SVCov) for fuzzing. Instead of relating the number of test
inputs to the number of all possible inputs to the SUT, the authors propose to relate
the number of test inputs to the number of semi-valid inputs, which are considered
particularly effective for fuzzing. Semi-valid inputs are inputs that violate a single
input constraint, where input constraints specify requirements for inputs to be deemed
valid. An input that fulfills all input constraints of a SUT is valid. The rationale
behind the authors’ focus on inputs that are only “slightly off” from valid input is
that completely invalid inputs are likely to be rejected if only a single input constraint
is validated properly by the SUT. Slightly off inputs are more likely to pass the first
input validation barrier of the SUT and reveal security issues.

4.2.2.6 Discussion

In order to determine test adequacy, a large variety of practical measures to approx-
imate the effectiveness of correctness tests have been proposed. Structural test ade-
quacy criteria relate test coverage to elements of the control flow graph, which represent
syntactic elements of programs. While structural criteria imply modest measurement
effort, they have several drawbacks. Full coverage may not always be achievable, even
by exhaustive testing. Moreover, arbitrary numbers of present faults in a software may
remain undetected despite high structural coverage if the test cases do not activate
faults or fail to propagate the effects of activated faults to the checked SUT output
(coincidental correctness). Error-based adequacy criteria relate test coverage to path
predicates and the subdomains of basic block sequences they define. While they suffer
from the same weaknesses as structural criteria, the literature on error-based criteria
explicitly states the assumptions under which these issues do not occur. Full cover-
age may not be achievable with error-based criteria if subdomains are too small or
not executable due to contradicting predicates in the path predicate. Differing from
the purely syntactic measures used in structural and error-based criteria, fault-based
adequacy criteria focus on the ability to identify behavioral deviations introduced by
source code mutations. While fault-based criteria arguably have a smaller semantic
gap between what they measure and what they are intended to measure, the actual
extent of this gap highly depends on how representative mutations are of real faults.
Similar to structural and error-based criteria, full coverage may not be reachable if
mutants are created that are equivalent to the original program. However, determining
program equivalence is considerably harder than identifying dead code or contradicting
branching conditions, as it requires comprehension of the entire program, and cannot
be automated in the general case. Furthermore, fault-based criteria entail considerable
run time overhead, as the entire test suite has to be evaluated against a usually large
number of mutants.

To fill the gap between behavior-based, but difficult to measure, fault-based ade-
quacy criteria and easy to measure, but purely syntax-based, adequacy criteria, state-
based criteria that assess the covered fraction of the SUT’s external state have been
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proposed. The dynamic slice of the test assertion used to identify the set of output-
defining statements that should have been checked by the assertion depends on the
SUT’s code structure, its external state, and the chosen test input. The covered
fraction of the external state depends on the test assertion. As the test assertion
is commonly derived from a test oracle, such as the SUT’s specification, there are
two possibilities for imperfect state coverage: (1) The oracle is flawed and does not
specify relevant success/failure conditions. (2) The test assertion does not accurately
resemble the oracle. While the test assertion is an important part of any test, an
extensive check of the SUT’s external state alone does not determine test effectiveness
in the general case. Even if the external state of a SUT is always thoroughly assessed
and perfect state adequacy is achieved, this does not indicate the extent by which the
SUT’s specification has been covered. If all tests happen to execute the same path, de-
fects in other paths may remain undetected despite perfect state coverage. Therefore,
the achievement of perfect state adequacy does not necessarily imply proper testing,
but its absence implies test deficiencies. Consequently, state-based criteria could be
used in debug FI to assess failure detectors, but do not reflect FI effectiveness well.

SVCov derives test effectiveness from achieved input coverage of a specific input
space subset that is considered more effective for finding security vulnerabilities issues
than other subsets. The intention of finding security vulnerabilities is similar to the
goal of this thesis, as security issues are mostly related to unspecified (undesired)
behavior of a SUT, rather than incomplete implementations of the SUT’s specification
[WT04] (cf. Section 1.1.2). Any reasonable restriction of the SUT’s input space
to a known effective subset requires detailed knowledge (or assumptions) about the
interaction between the input generation process (as specified by fault models in the
case of debug FI) and the SUT. While this may be feasible for individual fault models,
such as fuzzing, it is highly SUT-dependent for other models. Bit flips, for instance,
have been shown to be most effective if applied to bits at both “ends” of considered
data words [JSM07b]. However, this sensitivity is due to data representations and the
meaning of individual bits in these representations. As data representations commonly
differ for different platforms, so do the input subsets that are expected to be effective
as injections.

In order to provide widely applicable measures for the effectiveness of debug FI,
structural metrics are proposed in this thesis. The chosen syntactic properties of the
SUT are defined on the level of interfaces and services that SUTs implement and should
apply for most software components and compositions. Moreover, the proposed met-
rics have the same benefits as other structural metrics, i.e., their measurement entails
modest overhead. Similar to other structural metrics, they violate the applicability,
anticomposition, and antidecomposition properties postulated by Weyuker [Wey86]
(cf. Section 4.2.2.1). A more severe concern about the adoption of structural met-
rics is the semantic gap between syntactic properties and SUT behavior. To address
this issue, I include failure mode observations in the definition of structural coverage,
similar to the state-based adequacy criterion discussed in Section 4.2.2.4, which com-
bines structural coverage of output-defining statements and their occurrence in test
assertions.
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4.3 Fault Model Efficiency Metrics

To capture the efficiency of fault models in injection campaigns that utilize them, I
propose a set of four different metrics. Two of the metrics are benefit-oriented, i.e.,
the measures are preferably maximized, and the other two are cost-oriented, i.e., the
measures are preferably minimized.

The proposed metrics are intended to lay the foundation for objective fault model
comparisons. They provide campaign-granularity measures that can either be used for
post-evaluation comparisons (in order to guide future evaluations of similar systems)
or in-evaluation comparisons (in order to design campaigns based on evaluations of
previous campaigns within the same evaluation).

The proposed metrics are defined in a way that reflects the considered failure mode of
the SUT, i.e., most of the metrics provide measures for each failure mode individually.
Having separate measurements for different failure modes enables evaluators to weigh
the obtained results according to the (application-specific) severity associated with the
respective failure mode. Measurements for all possible failure modes can be performed
in one single campaign.

4.3.1 Metric 1: IUT Coverage

The IUT Coverage of a fault model is the extent to which it enables the identification
of non-robust services provided by the SUT. A service of the SUT is non-robust,
also termed vulnerable with respect to a certain failure mode if there is a known
injection run targeting this service that results in a respective SUT failure. A model’s
coverage cannot directly be used for comparisons across different SUTs, because no
relative measure can be established due to the unknown total number of vulnerable
services. It may, however, be used for the comparison of different fault models applied
in robustness assessments of the same SUT. Unique coverage denotes the number of
vulnerable services detected by only one model among all compared fault models.

Definition 1 For a given injection campaign c, let Vfm(c) denote the set of identified
vulnerable services with respect to failure mode fm and let SIUT

t (c) denote the set of
all services in the IUT that are targeted during campaign c with IUT(c) denoting the
IUT targeted in c. The IUT coverage covIUT

fm (c) of this campaign with respect to fm is
then defined by the cardinalities of Vfm and SIUT

t (c) as

covIUT
fm (c) =

|Vfm(c)|
|SIUT

t (c)|
(4.1)

For a set of injection campaigns C = {c1, c2, . . . , cn} that only differ in terms of the
applied fault model, the number of services uniquely covered during some injection
campaign ci ∈ C is given by

covIUT
fm (ci) =

|Vfm(ci) \
⋃

cj∈C

j 6=i

Vfm(cj)|

|SIUT
t (ci)|

(4.2)

40



4.3 Fault Model Efficiency Metrics

I have defined coverage to reflect the targeted IUT to prevent structural properties,
such as the number of services an interface comprises, from affecting the metric. This
information is lost when coverage is defined globally for all services that the SUT uses
for interaction. Consider, for instance, the case where a SUT has two interfaces with
unequal numbers of services and that each interface is exclusively targeted by some
specific fault model. Then each model may cover all of the services belonging to the
interface it targets. Overall, the model targeting the “larger” interface would yield
a better coverage (and a better unique coverage) and might consequently be given
preference over the model targeting the “smaller” interface. While this is perfectly
valid if all interfaces are equally used and important in the SUT’s intended application
scenario, it masks important information in cases where this is not the case. Often only
a fraction of OTS systems’ functionality is required and used in specific application
scenarios and it would be misleading if coverage indicated preference for a model due to
an interface that is actually never used, while a relevant interface remains completely
uncovered.

If an injected fault triggers multiple internal faults, the effect of one internal fault
may be masked by the effect of the other one and may therefore remain undetected.
This can be interpreted as a weakness of the applied fault model that fails to trigger
the vulnerabilities independently, which is reflected by the definition of coverage. The
advantage of triggering multiple vulnerabilities in a single run vanishes with the ability
to detect them. This property is particularly relevant for the evaluation of higher order
fault models presented in Chapter 5. As coverage denotes the ability of a fault model
to trigger present robustness vulnerabilities, it is a benefit-oriented metric and thus
preferably maximized.

4.3.2 Metric 2: Injection Efficiency

Injection efficiency is defined by the number of failures observed per injection. This
metric puts the number of observed failures (which is considered a measure for the
experiments’ effectiveness) in relation to the number of injections necessary to pro-
voke this number of failures. If several distinct failure modes are considered in a ro-
bustness assessment, the obtained injection efficiencies have to be weighted according
to (application-specific) robustness requirements of the SUT’s intended application.
Since the presented metric is intended to abstract as far as possible from concrete ap-
plication requirements, a separate injection efficiency measure is considered for every
failure mode. With respect to possible error masking effects in cases where multiple
vulnerabilities are triggered during a single injection run, the inutility argument from
the coverage metric introduction applies equally and is consistently reflected by the
metric definition. As injection efficiency displays the ability of a fault model to trigger
vulnerabilities leading to failures of a particular failure mode, it is a benefit-oriented
metric and, thus, preferably maximized.

Definition 2 If for a given injection campaign c the number of injection runs is de-
noted by r(c) and for each failure mode fm the number of observed failures is denoted
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by ffm(c), then the injection efficiency iefm(c) is given by

iefm(c) =
ffm(c)

r(c)
(4.3)

4.3.3 Metric 3: Average Execution Time

The average execution time of an injection run shows how efficiently a robustness as-
sessment can be performed with a specific model. Since an absolute measure (for an
entire assessment) or even a per-injection measure would ignore the fact that the out-
come of an injection influences the execution time dramatically (e.g., system crashes
usually require a restart), the metric must also take the outcome of each injection run
into consideration. Hence, the execution time for the (in terms of correlated processing
overhead) lowest common failure mode among evaluations with different fault models
is a promising indicator. However “System Crash” or “Hang” failure modes should be
excluded, as the timeouts usually applied for their detection can strongly influence
the results. A potentially considered “No Failure” mode might as well be excluded
because system failures eventually necessitate further processing of the results, for in-
stance, to provide more detailed (potentially fault type specific) logging and reporting
functionality in the detector and monitoring components of the FI setup. However, as
there may be scenarios when an inclusion of this mode is indispensable for provision
of meaningful results4, its assessment is highly recommended, even if its contribution
in a specific comparison may be of lesser significance. The average execution time per
injection run is a cost-oriented metric and, hence, preferably minimized.

Definition 3 If for a given injection campaign c the cumulated execution time of all
injection runs that resulted in failure mode fm is denoted by cetfm(c) and the number
of observed failures of mode fm is given by ffm(c), the execution time etfm(c) for each
failure mode is defined as

etfm(c) =
cetfm(c)

ffm(c)
(4.4)

4.3.4 Metric 4: Implementation Complexity

The implementation complexity of a fault model indicates the required effort to im-
plement a fault injection mechanism for the respective model. This may be measured
a posteriori by the amount of implementation time (e.g., in so-called man hours of
uninterrupted work), source lines of code (SLOC), or any other software complexity
measure as long as it is measured uniformly for all model implementations. Any im-
plementation complexity metric suitable for fault model comparison should mainly
rely on comparisons of implementation efforts inherent to the model’s requirements
or properties. If, for example, the injection mechanism of one model requires the

4e.g., if there are only two distinct failure modes or in case of comparing fault models evaluated
among experimental setups with different SUT failure modes/detectors
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modification of one service invocation, while another requires setting up a table and
monitoring a number of invocations before the actual injection can take place, the im-
plementation complexity is clearly higher than in the first case, since additional logic
and data structures are required. Notably, these attributes are related to properties of
the applied fault model and not a purely syntactical complexity measure of the actual
injector’s implementation.

I have considered several approaches for estimating the implementation effort a
priori on the basis of functionality-related properties, e.g., IFPUG function points
[ISO03b] and COSMIC full function points [ISO03a], but none of them seems to be
sufficiently accurate without experience in terms of either expert knowledge or statisti-
cal data on previous projects. In lack of practical alternatives, I propose to use physical
SLOC to measure implementation complexity a posteriori. A number of different defi-
nitions and counting policies exist for physical SLOC and I follow the definition applied
in David A. Wheeler’s SLOCCount tool [Whe], i.e., “non-blank, non-comment lines”.
Being a SLOC metric, physical SLOC exhibit the disadvantages of purely syntactical
metrics discussed above. However, as conceptually preferable function point metrics
cannot be expected to provide more accurate measures without a considerable amount
of expertise, physical SLOC is chosen as a more easily applicable alternative. Restric-
tions to the validity of measurement comparisons based on SLOC metrics apply if they
are performed across different developers, implementation languages, or develpment
environments and tools. If these are the same for all compared models, SLOC metrics
impose no restrictions for cross-model comparisons. In the targeted scenario, the ap-
plication of different fault models with one given injection framework maintained by
one (or few) evaluators is being considered.

Another a posteriori measure used to compensate the lack of a direct functional
measure is McCabe’s cyclomatic complexity [McC76]. While physical SLOC measure
implementation complexity as the amount of code lines, cyclomatic complexity takes
a more algorithmic and less implementation specific approach, considering the control
flow of the algorithm rather than the size of its implementation.

Both implementation complexity measures are cumulated for all source code related
to the fault model implementation.

Definition 4 The implementation complexity of a fault model is given by (1) the
physical SLOC sum icpSLOC of all related source code files and (2) the sum of the
cyclomatic complexities of all associated functions iccyc.

Physical SLOC fulfill COCOMO’s [BCH+00] requirements on code counting and
the obtained measures can thus directly be applied for COCOMO estimations by any
software project manager using estimation variable values that match the situation of
his or her particular development team best.

The definition of implementation complexity does not include efforts for instru-
menting software components or for setting up the SUT’s OE for the assessment. The
reason is that many modern fault injection frameworks perform instrumentation for
fault injection online to enable more flexible injection triggers. In order to inject a
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transient fault into a SUT server component after a certain time interval, for instance,
the SUT server needs to be modified during operation in the course of the evaluation.
Such instrumentation overhead is, therefore, captured and reflected by the execution
time metric. Any generic instrumentation is usually automated with SUT- and OE-
specific tools and its overhead, thus, rather depends on the assessed SUT and its OE
than the applied fault model. Furthermore, efforts related to the installation, integra-
tion, or configuration of third-party fault models are not considered, as fault injection
frameworks cannot integrate existing fault model implementations from other frame-
works. The integration of new fault models, thus, require re-implementation, which
is reflected by the definition of the implementation complexity metric. Efforts related
to the initial setup of the injection framework are also not considered, because they
depend more on the actual framework than on a specific fault model.

While SLOC-based complexity metrics are often criticized for their inaccuracy, sur-
prisingly few alternatives exist that arguably provide better accuracy. In lack of
better alternatives, the implementation complexity metric is also SLOC-based and
augmented with cyclomatic complexity to compensate for the limitations of purely
SLOC-based metrics to a certain degree. Both physical SLOC and cyclomatic com-
plexity provide ratio scale measures. Implementation complexity is a cost-oriented
metric and, thus, preferably minimized.

4.4 Metric Application

I have validated the applicability of the proposed metrics, applying four different
fault models in a robustness assessment of the Windows CE 4.2 kernel. This section
discusses the experiment setup and presents the results that were obtained using the
previously introduced metrics.

4.4.1 Experiment Setup

Figure 4.1 provides an overview on the experiment setup. The SUT is the OS kernel of
Windows CE .NET 4.2. The SUT server components targeted for injection are device
drivers, which are used by the SUT to access the system’s hardware. The OS’s driver
interfaces are targeted as IUTs for evaluation, as drivers constitute a major cause for
OS outages (see Section 3.2 for a discussion).

The targeted drivers (SUT servers) are a serial port driver, an Ethernet driver, and
a CompactFlash card driver. Each of these drivers provides an interface (the driver’s
export interface, EXP) to the OS kernel and in turn uses a number of interfaces (import
interfaces) provided by the kernel, i.e., the Device Driver Kit (DDK) [MSDb], kernel
core functionality (CORE) [MSDa], and the Network Driver Interface Specification
(NDIS) [MSDc].
Test applications constitute the SUT clients intended to trigger the execution of tar-

geted services. Test applications that were specifically designed to trigger executions
of the targeted drivers are used as the workload these clients implement.
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Figure 4.1: Setup for debug FI assessments on the Windows CE .NET 4.2 kernel,
adopted from [JSM07a]

The fault injectors are implemented as software wrappers located between the SUT
and the targeted SUT servers, in order to intercept mutual service invocations. Faults
are injected either by corrupting parameters of intercepted service invocations or by
modifying drivers’ binary images.

Using this setup, We evaluate the performance of four different fault models for
a robustness assessment of the SUT are comparatively evaluated using a modified
version of the FI tool from [Joh08]. Three models have been used previously for
extensive experimentation [JSM07b; JSM07a]. The fourth model was additionally
implemented to enable comparisons of models with differing fault locations, such as in
[MBD+06]. The applied fault types are representative for a large class of fault models
(cf. Table 2.1 in Section 2.4) spanning:
Parameter Bit Flips (BF) A parameter of an intercepted service call in the

IUT is altered by changing the value of one or more bits in its binary value. This
model is intended to simulate single event upsets (SEUs) in hardware components
that propagate through the SUT servers to the IUT. Injections of these faults are
frequently performed at the IUT for efficiency considerations.
Data Type Dependent Parameter Corruption (DT) A parameter of an inter-

cepted service call in the IUT is changed to another value of the same data type. The
main reason for taking the range of a data type into account when altering a value is
the considered type of faults. If a data-type-related fault results from a programming
mistake in a software component, then at least obvious violations of a programming
language’s type system can be detected at compile time and removed prior to deploy-
ment. Thus, a large fraction of the faults that remain in a deployed component can be
expected to result in erroneous run time values that are of the same or a similar data
type as the correct value. Data type fault models have proven effective for revealing
robustness issues in robustness testing approaches (cf. Chapter 2).
Parameter Fuzzing (FZ) Parameters of intercepted service calls in the IUT are

replaced by random values, uniformly selected across all possible values for the con-
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sidered parameter’s bit length. As opposed to the BF and DT fault models, FZ is
inspired by random testing rather than systematic test case derivation.
Single Event Upsets in Binaries (SEU) Faults are injected by randomly flipping

single bits in SUT server binaries. The fault type is derived from SEU effects that
physical perturbations have on computer hardware, i.e., bit flips in memory and the
processing circuitry. The SEU model differs from the BF model only in terms of the
injection location.

The conducted comparative study is restricted to fault models with equal fault
timing properties in order to single out the effects of differing fault types and locations
more clearly. I deliberately chose to inject transient faults occurring on the first call
to a targeted service in order to minimize the run time of the comparison.

The experiment manager component controls the execution of experiments. While
the interceptors (i.e., tracker and injector in Figure 4.1) are monitored for experiment
progress, the SUT (operating system) and its interacting components (test applications
and target driver) are monitored for failures during an injection run. Evaluation-
relevant events are logged by sending them to a logging server on the host computer.
After the completion of an injection run, the target manager restarts the system in
order to run the next injection on a clean system image that does not carry any possibly
induced dormant faults or errors. This is necessary to keep individual injection runs
as independent as possible and, thus, their results individually reproducible. The
implications of this practice are discussed in greater detail in Chapter 5.

We consider four different SUT failure modes commonly considered in related liter-
ature (cf. [KSD+97; JSM07b; JSM07a]).

No Failure (NF) No effect is detected. An injected fault may be either not activated
or masked by the OS.

Application Error (AE) The injected fault is activated and the error propagates to
the test applications, but no indication of the error is given. Incorrect results
returned by an OS service according to its functional specification fall in this
category. These types of failures, also referred to as silent data corruption (e.g.,
[LPG+14]), correspond to the silent failure mode in the CRASH scale (cf. Chap-
ter 2). As there is no indication of failure by the OS service, clients use returned
data as if it were correct. This often leads to erroneous behavior of the client,
as data obtained from the OS is inconsistent with data provided to the OS and
the OS service specification. In the experimental setup, AE failures are detected
by executable assertions that correspond to the OS API specifications and the
data provided to API services to detect these failures early.

Application Hang (AH) The injected fault is activated and the error propagates to
the application interface. The specification of the fault triggering OS service
is violated in an obvious manner. The detectable effect is either the abnormal
termination or an absence of intended termination of the workload application,
where the effect is limited to a single application in the system. In either case
a client component in the system becomes unresponsive as a consequence of the
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OS’s behavior. AH failures are detected by a watchdog timer for clients that
signals detection if an application’s execution time is significantly exceeded.

System Crash (SC) The injected fault is activated and causes the OS to hang or
crash, meaning that it stops to provide services to any client. Although the
system may manage to reboot autonomously in some cases, external monitoring
and control is generally required for SC failure detection and the system is usually
recovered by a manual hardware reset. SC failures are detected by a watchdog
timer in the experiment controller that is external to the OE.

4.4.2 Experimental Results

As the performed injection campaigns only differ in terms of the applied fault models
and the injection target, these two properties are used to identify particular campaigns
in the following discussion.

Three of the proposed metrics (IUT coverage, injection efficiency, execution time)
were directly derived from the same data that was collected for evaluating the robust-
ness of the SUT. Additional tools were used to assess the implementation complexity
of the implemented fault models. Physical SLOC were counted using SLOCCount 2.26
[Whe]. McCabe’s cyclomatic complexity was measured using SourceMonitor 2.5 [Sof].
Following an overview of the experimental results for the four targeted metric types,
I discuss their implications in Section 4.5. The results were obtained by conducting
more than 300 injections per model and driver.

IUT Coverage The obtained coverage values are grouped by detected failure modes
in Tables 4.1 to 4.3. For each IUT (DDK, CORE, NDIS, EXP), the coverage covIUT

fm

and unique coverage covIUT
fm are given in the tables according to Definition 1. The

presented numbers reflect the fraction of all services in the respective IUT that were
covered by each model. The first column of Table 4.1, for instance, provides a com-
parison of the four applied fault models with respect to the percentage of services in
the DDK interface for which they have detected vulnerabilities that led to AE failures.
The second column reveals that although BF and DT cover a larger fraction of DDK
services, FZ covers 14.29% of all DDK services uniquely, i.e., these services are not
covered by BF or DT. A combination of FZ and either DT or BF would thus yield a
coverage of 85.72% of all services provided by the DDK interface. A coverage of 0.0
means that no service of the respective IUT was identified as vulnerable. A unique
coverage of 0.0 means that every covered service was also identified by some other
model. The presented data noticeably contains identical numbers, e.g. 14.29 occurs
five times. The reason is that every targeted interface comprises less than 100 services.
14.29% is one out of 7, which is the number of services used by the drivers in the DDK
and the NDIS interfaces.

Injection Campaign Efficiency Figure 4.2 illustrates the cumulated injection effi-
ciencies for each model and every targeted driver. Regarding the SC failure mode,
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Table 4.1: Coverages for failure mode Application Error (AE) [%]

Campaign covDDK
AE covDDK

AE covCORE
AE covCORE

AE covNDIS
AE covNDIS

AE covEXP
AE covEXP

AE

cBF 71.43 0.0 31.03 0.0 57.14 0.0 30.77 0.0
cDT 71.43 0.0 27.59 1.15 9.92 0.0 0.0 0.0
cFZ 28.57 14.29 40.23 16.09 64.29 7.14 0.0 0.0
cSEU 0.0 0.0 0.0 0.0 0.0 0.0 92.31 46.15

Table 4.2: Coverages for failure mode Application Hang (AH) [%]

Campaign covDDK
AH covDDK

AH covCORE
AH covCORE

AH covNDIS
AH covNDIS

AH covEXP
AH covEXP

AH

cBF 14.29 0.0 14.94 4.60 57.14 57.14 7.69 0.0
cDT 28.57 0.0 13.79 4.60 0.0 0.0 15.38 0.0
cFZ 57.14 42.86 25.29 13.79 0.0 0.0 30.77 7.69
cSEU 0.0 0.0 0.0 0.0 0.0 0.0 53.38 23.08

Table 4.3: Coverages for failure mode System Crash (SC) [%]

Campaign covDDK
SC covDDK

SC covCORE
SC covCORE

SC covNDIS
SC covNDIS

SC covEXP
SC covEXP

SC

cBF 14.29 0.0 18.39 5.75 35.71 14.29 0.0 0.0
cDT 14.29 0.0 9.20 0.0 21.43 0.0 0.0 0.0
cFZ 14.29 0.0 10.34 2.30 7.14 0.0 0.0 0.0
cSEU 0.0 0.0 0.0 0.0 0.0 0.0 92.31 92.31

SEU outperforms all other models for each targeted driver. For AE and AH, no such
clear statement can be made; the results also depend on the targeted driver. However,
except for the AH efficiency with the Ethernet driver as targeted SUT server, the
highest efficiency values are either obtained for the Fuzzing model or the SEU model.
An injection efficiency of 0 was obtained for AH failures of the Ethernet driver when
exposed to FZ faults and for the flash disk driver when exposed to SEU faults, because
no such failures were detected during the respective campaigns. The corresponding
values are missing in the comparison of average execution times for the same reason.

Average Execution Time The results obtained for the execution time metric of
injection runs with different experiment outcomes are listed in Table 4.4. The units are
minutes and seconds (before and after the colon). Experiments resulting in AH or SC
failures tend to take more time than experiments resulting in AE failures or no failures
as they usually imply failure detection by application or system response timeout.
If a faster detection mechanism can be implemented for these failure modes, their
execution time and overall evaluation efficiency will greatly improve. The detection
of AE failures seems to add no complexity in terms of execution time; it is even less
than the execution time for NF experiments in more than half of the cases.

If the execution time metric is applied as proposed in Section 4.3, i.e., if models are
compared with respect to the execution times for their lowest common failure modes,
BF is the fastest model for the Ethernet driver and DT is fastest for the serial port
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Figure 4.2: Comparison of the applied models’s injection efficiencies for each targeted
driver

and flash disk drivers. The least performant models in terms of injection efficiency
perform best in terms of execution time and vice versa. This relationship suggests
that the weakness of a model with respect to one metric may be compensated by its
strength with respect to another one.

Implementation Complexity Table 4.5 provides an overview on the assessed im-
plementation complexity of the models. From both the physical SLOC count and
the McCabe complexity, DT is by far the most expensive model and BF is the least
expensive model investigated. Being slightly less expensive, SEU’s complexity hardly
differs from FZ’s. We see that implementation complexity and execution time do not
correlate in general. The two costliest models in terms of execution time (SEU and
FZ) are of considerably low implementation complexity and the least costly model in
terms of execution time (DT) caused the highest implementation effort. However, BF
exhibits low overheads in terms of both execution time and implementation complex-
ity. It is worth noting that the use (and obtained rankings) of this metric are bound
to the specific FI tool being used. However, the use of different tools for the same
SUT are a rare occurrence, which renders the metric applicable for most debug FI
scenarios.

4.5 Metric Utility

In the following the obtained results are used to demonstrate the utility of the proposed
metrics by comparing the applied fault models. Table 4.6 gives a simplified overview
of the results, assuming that all SUT failure modes and IUTs are of equal interest to
the tester. The rankings were derived according to how often the models performed
best among all investigated models. The details of these tendencies are highlighted
and discussed onwards.
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Table 4.4: Average execution times (m:s)

Target Campaign etNF etAE etAH etSC

cBF 00:57 00:53 01:34 03:31
Serial Port cDT 00:33 00:34 01:15 04:39
Driver cFZ 01:06 01:14 01:55 03:37

cSEU 01:19 01:20 02:03 04:39

cBF 00:34 00:29 01:19 04:15
Ethernet cDT 00:42 00:39 00:39 02:24
Driver cFZ 00:51 00:48 – 03:12

cSEU 01:04 01:03 01:44 04:24

cBF 00:43 00:43 01:25 03:41
Flash Disk cDT 00:36 00:37 01:16 03:53
Driver cFZ 01:03 01:02 01:19 03:38

cSEU 02:01 01:57 – 05:09

Table 4.5: Implementation complexities

Model icpSLOC iccyc

BF 133 30
DT 635 222
FZ 272 58
SEU 259 48

Parameter Bit Flips (BF) The BF model performs comparatively well at identifying
service vulnerabilities that lead to AE failures in all targeted interfaces. However,
it only detects vulnerabilities that are also detected by other models. The model
performs best at identifying service vulnerabilities leading to AH and SC failures in
the NDIS and (especially in the case of SC failures) CORE interfaces, where it also
detects vulnerabilities that none of the other investigated models manages to detect.
BF requires the least implementation effort, but performs worst in terms of injection
efficiency. In terms of execution time it entails modest overhead.

Data Type Dependent Parameter Corruption (DT) Although it manages to iden-
tify a few unique AE vulnerabilities, the DT model provides average to poor coverage
compared to the other investigated models. Moreover, DT entails the highest imple-
mentation complexity among the used models. This result is intuitive, since separate
logic is required for each considered data type used for data exchange in the OS/driver
(SUT/server) interface, leading to a higher number of physical SLOCs and a higher
cyclomatic complexity. Overall, DT has a fair injection efficiency. It requires the least
amount of time per injection run, meaning that it allows to perform more experiments

50



4.5 Metric Utility

Table 4.6: Fault model ranking obtained from the conducted assessment

Model Coverage Implementation Injection Execution
Complexity Efficiency Time

BF F F F ? F F F F F ? ? ? F F F ?
DT F F ? ? F ? ? ? F F ? ? F F F F
FZ F F F F F F ? ? F F F ? F F ? ?
SEU F ? ? ? F F ? ? F F F ? F ? ? ?

Legend: ? ? ? ? Poor, F F F F Good.

than any other model in a given amount of time. Although the physical SLOC count
for the model is high, only small fractions of its code are actually executed for a param-
eter corruption of a specific data type. This is also indicated by the high cyclomatic
complexity.

Parameter Fuzzing (FZ) The FZ model identifies a large number of vulnerabilities
for all considered failure modes and most targeted interfaces. Except for the EXP,
CORE and NDIS interfaces (the latter two only for SC failures), it outperforms all
other models in terms of unique coverage, i.e., it detects large numbers of service
vulnerabilities that remain undetected by other models. In terms of implementation
complexity, the FZ model comes at almost twice the cost of the BF model, but is
still less than half as costly as DT. FZ outperforms BF and DT in terms of injection
efficiency, but is outperformed by these models in terms of execution time.

Single Event Upsets in Binaries (SEU) The SEU model performs very well at
identifying vulnerabilities in the EXP interface but poorly at identifying vulnerabilities
in any other interface. This result is intuitive, as (according to the SEU model) faults
are only injected to services belonging to this interface, i.e., into the the driver binary
and, thus, into services exported by the driver. The implementation complexity for
the SEU model is slightly less than for the FZ model. However, FI mechanisms
for supporting code mutations with flexible injection triggers require a considerable
implementation effort. The fraction of code that is solely related to code mutation
mechanisms accounts for a total of 1050 physical SLOC with a cumulated cyclomatic
complexity of 262 in the applied FI tool, in addition to about 50 lines of assembly
code. However, if binary code mutations and run time patching are natively supported
by a chosen FI framework, SEU is a modest model to implement. From an injection
efficiency point of view, SEU is, similarly to FZ, a very efficient model with a particular
strength in provoking SC failures, but is (also like FZ) expensive in terms of execution
time.

Derived Metrics As already hinted at in the previous section, the comparative eval-
uation points out a trade-off between injection efficiency and execution time for three
out of four models (DT, FZ, SEU). In order to quantify this trade-off more precisely for
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cross-model comparison, a combined metric displaying the number of observed failures
per unit of evaluation time can be derived. This metric should be of particular inter-
est to evaluators in the software industry, where testing ends when resources (time,
money) are depleted, since it enables the selection of a model that maximizes the num-
ber of internal fault activations for a given resource constraint. The results displayed
in Figure 4.3 show that, when the metrics are combined, the ranking for overall fail-
ure stimulation and also the failure mode distribution from Figure 4.2 change, in this
case in favor of DT for AE failures. However, since we have observed weak coverage
capabilities for the DT model, the presented combination of only two metrics alone
must not be considered sufficiently expressive. The obtained coverage values suggest
to spend at least some evaluation effort using the FZ and SEU models, since these
two models identify large numbers of vulnerable services that remain undetected with
any other model. If vulnerable services have been identified using these models, the
degree and criticality of these vulnerabilities can be further quantified using the DT
and BF models as time and available resources permit. From Figure 4.3, we also see
that a general preference of IUT injections over SUT server injections due to efficiency
considerations is not always justified. Bit flips that are injected into drivers instead of
the OS/driver interface are apparently more efficient if both injection efficiency and
execution time are considered.

Contributions and Limitations The metrics proposed in this chapter are intended
to guide fault model selections for robustness evaluations. The results of the conducted
case study demonstrate the applicability and validity of the presented approach and the
discussion above stresses that each of the proposed metrics provides valuable insights.
In any concrete evaluation, better-than and worse-than relations can be established for
every individual metric by simply applying numerical greater-than and less-than oper-
ators respectively to benefit- and cost-oriented metrics, as we have shown throughout
the presentation and discussion of our results. The individual measures of each met-
ric are well suited for combinations, as all metrics provide ratio scale measures and
can thus be quantified precisely. If, for instance, a model performs twice as good as
another one in terms of injection efficiency and execution time, but only half as good
in terms of implementation complexity and coverage, they are equally efficient for
the robustness evaluation if all metrics are weighted equally. The proposed coverage
criterion approximates the detection effectiveness of robustness issues by structural
coverage of interface services of a SUT and classified SUT behavior (failure modes).
As the total number of services with robustness issues is unknown, the total number of
services per interface are used to normalize the obtained counts of vulnerable services.
As a consequence, perfect coverage is not achievable if any service of an interface is
perfectly robust. Therefore, the proposed coverage metric violates the applicability
property postulated by Weyuker [Wey86]. As discussed in Section 4.2.2, the violation
of this property by a large variety of practical adequacy criteria does by no means
hamper their effective application in successful software projects. The proposed met-
ric is sound, as it is based on the number of misbehaving services found, which is the
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defined intent of debug FI. If a model is identified as effective by the coverage metrics,
it is capable of identifying non-robust services.

Figure 4.3: Cumulated failures of the serial port driver per hour of evaluation time

Caveats The presented approach has some limitations that testers should be aware
of for objective usage. The proposed metrics and measurement approach is restricted
to assessment methodologies that follow the system model outlined in Chapter 3. The
introduced model assumes explicit interactions of the SUT with its environment via
interfaces and, thereby, excludes certain classes of robustness assessment approaches,
such as emulations of hardware-induced software errors in the SUT. Certain classes of
SUTs that heavily rely on implicit interactions with their runtime environments can
only be used if the implicit interactions can be intercepted for injections or monitoring.

The applicability of the approach has been demonstrated in a case study using
a specific SUT and specific selections of SUT servers and clients. The validity of
fault model rankings obtained from the results of this case study is restricted to the
particular experimental setup, including the configuration of the OE and the selection
of failure modes to detect. For instance, we have seen that the resulting injection
efficiency measures do not solely depend on the applied fault model, but also on the
targeted driver. For the serial port driver, the obtained injection efficiencies for AH
failures are significantly larger than for the other drivers, independent from the applied
fault model. It is also unclear whether the obtained results are comparable for other
SUTs, as this was neither targeted by the presented fault model selection approach
nor evaluated in the presented case study. However, as mentioned in the metrics
introduction in Section 4.3, the main concern of this chapter is to provide a method
to comparatively evaluate contending fault models for a given robustness assessment,
i.e., a fixed SUT.
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Up to now, the results of fault model evaluations according to the proposed approach
can only be applied for feedback on an ongoing evaluation with injection campaign
granularity. A campaign needs to be planned, executed, and evaluated before any
feedback on the efficiency of the applied fault model can be derived and used for plan-
ning subsequent campaigns. While it is compelling to reduce this effort by reverting
to simpler robustness testing strategies or simplifying these required pre-assessment
campaigns by other means, the attempt to speed up experimentation presented in
Chapter 6 shows that such simplifications can easily skew the results if not applied
with due care.

4.6 Conclusion

Considering the importance of robustness assessments for OTS software components,
this chapter addressed the problem of robustness assessment sufficiency in absence of
both a single application scenario and source code access. To this end, it presents an
approach to comparatively evaluate the efficiency of different fault models applied in
FI-based robustness assessments in order to guide their selection.

The proposed evaluation metrics cover both cost and benefit aspects of fault model
implementations and usage. Except for the implementation complexity of fault mod-
els, for which existing measurement tools are referenced, the proposed metrics do
not require additional measurements beyond those required for the actual robustness
assessments. The viability of the approach has been demonstrated in a robustness
evaluation of the Windows CE 4.2 kernel, comparing the efficiency of four commonly
applied fault models in a case study.
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While a large number of FI frameworks and a considerably larger number of supported
fault models exist, virtually all of them are based on a single fault assumption, i.e.,
interactions of simultaneously occurring independent faults are not investigated. As
software systems containing more than a single fault often are the norm than an ex-
ception and newer safety standards require the consideration of so-called “multi-point
faults” as a consequence of increasingly parallel computing platforms, the validity of
this single fault assumption is at question for contemporary software systems. To ad-
dress the issue and support simultaneous injections, this chapter provides a discussion
how independent faults can manifest in a software composition, derives correspond-
ing higher order fault models by fault composition, and demonstrates their utility
in a robustness assessment of the Windows CE kernel. The developed higher order
fault models prove highly efficient for identifying robustness issues in the assessment.
The contents of this chapter is based on a conference paper presented at DSN 2013
[WTS+13].

5.1 The Single Fault Assumption in Robustness
Assessments

As previous studies by Moraes et al. [MBD+06] and Johansson, Suri, and Murphy
[JSM07b] and, in particular, the results from Chapter 4 of this thesis indicate, the
conclusiveness of robustness assessments fundamentally depends on the proper choice
of the applied fault models that specify how faults manifest in the OE, spanning fault
dimensions of timing, duration, and location [CC96; JSM07b].

Despite the large number of fault models behind the various proposed FI frameworks
(see Table 2.1 in Section 2.4, and [Nat11] for a more comprehensive overview), virtually
all of them consider only injections of a single fault per experiment run. The implicit
assumptions driving this design choice usually are that

1. apart from error propagation [ALR+04], no error interactions occur (i.e., all
errors resulting from different fault activations are independent) or that

2. such effects are of no or negligible relevance for the outcome of the experiments.

Therefore, experimental assessments with existing tools do not account for the possi-
bility of interactions between multiple faults. However, if the consideration of multiple
coincident faults significantly affects the outcome of a robustness evaluation, it would
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be a fallacy to disregard them. Given that software systems containing more than a
single fault are a common occurrence (e.g., [CGN+13; CYC+01; CDC+03; PTS+11])
and even highly critical systems compliant with the DO-178B functional safety stan-
dard have been found to contain between 4 and 170 faults per thousand lines of code
(kLOC) [Ger03; KM06], the independence of their effects appears to be a strong as-
sumption. Moreover, as systems become more complex, even exceptionally small fault
rates of 0.1 faults/kLOC result in thousands of residual defects in deployed software
systems1.
As a consequence, newer safety standards, such as the ISO standard 26262 for

the functional safety of road vehicles, explicitly consider multiple-point failures, i.e.,
failures resulting from the combination of several independent faults [ISO11a]. In order
to assess the degree to which systems are vulnerable to such multiple-fault conditions,
corresponding testing approaches and fault models are needed.

The goal of this chapter is to (a) conceptually develop a notion of what fault coin-
cidence actually implies in the context of FI-based robustness assessments, and (b) to
experimentally assess the impact (positive or negative) of its consideration on the
assessment effectiveness and applicable overheads. On this background, the chapter
contributions are:

Coincidence notion Section 5.3 establishes fault coincidence notions and discusses
their applicability within a general model of FI-based robustness assessments for
software compositions (cf. Section 3.1).

Higher order fault model design The utility of coincident injections is shown via
the design and implementation of three higher order fault models (Section 5.5)
complying with the developed fault coincidence notion.

Quantitative evaluation of higher order models The proposed models are quanti-
tatively evaluated and compared against classical fault models using the metrics
from Chapter 4.

5.2 Higher Order Fault Impact on FI-based
Software Assessments

In cases where multiple independent faults can affect the dependable operation of a
software system, the application of tools and processes based on a single fault assump-
tion is likely to generate incorrect or imprecise results. In addition to this obvious
impact on the validity of obtained results, the consideration of higher order faults in
FI-based assessments may have a number of conceptual and technical implications on
experimental assessments, which are discussed in the following.

1For instance, premium cars in 2009 contained 100 million lines of code [Cha09].
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5.2.1 Likelihood vs. Criticality of Rare Events

Assuming that the probability of some fault f being activated is pf , the probability
of n independent faults f1 . . . fn being active at the same time is

∏
i∈1...n pfi ≤ pfj for

any j ∈ 1 . . . n. The activation of n faults is less probable than the activation of an
individual fault fj if at least one other fault has an activation probability less than 1.
This makes the co-occurrence of multiple fault activations less likely than individual
fault activations. Thus, the risk they impose may be regarded negligible for very low
probabilities of occurrence, especially when contrasted with high testing efforts re-
quired to cover all possible cases. This resembles the fundamental assumption driving
test case reductions in combinatorial testing [KWG04]: Complex fault interactions
are so rare that they can be neglected during tests without significantly affecting the
outcome in the common case.

However, in system safety engineering, critical failures (accidents) are often consid-
ered to result from unlikely, rare, and unconsidered combinations of events, which is
also reflected by the explicit consideration of multi-point faults the ISO 26262 safety
standard [ISO11a; ISO11b]. Due to their improbability, such conditions often escape
the focus of testers and are sometimes very difficult to construct in the test environ-
ment. Empirical work shows this to apply for critical software failures as well [Hec93;
LM03].

5.2.2 Experiment Acceleration vs. Counts

Single fault injections are capable of identifying at most one internal fault per injection
run. If a higher order fault injection reveals multiple internal faults at the same time,
this implies a considerable speed-up in terms of experiment time required for the
identification of the same amount of internal faults. However, the outcome of a higher
order fault injection run may also lead to more ambiguous results.

If multiple faults are injected, one activated fault (i.e., an error) can potentially
mask another fault or error. If, for instance, a fault f1 leads to a corrupted data value
in memory and by activation of a different fault f2 that particular memory location
is never referenced or overwritten before it is referenced, the effect of f1’s activation
never becomes visible although it would have if f2 had not been activated. From such
an experiment, it is not possible to determine whether the activation of f1 would have
been tolerated or whether it would have caused the component to fail.

If the injection of a higher order fault results in a system failure, a similar ambiguity
can occur: It is unclear whether the activations of all injected faults it is composed
of are actually necessary to trigger the observed failure. This makes it difficult to
identify the internal fault(s) responsible for the failure. Note that this problem is
different from error masking, as error masking may lead to an error being tolerated
or mitigated unlike the presumed software failure in this case. In both cases, the
ambiguity can be resolved at the cost of additional experiments with the single faults
that constitute the combined higher order fault. However, this also adds considerably
to the total number of overall required experiments.
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Even without the potential need for additional experiments to resolve ambiguities,
the consideration of higher order faults by itself leads to higher numbers of possible
experiments, thereby aggravating test case selection: While the individual injection of
n faults yields n experiments, this expands to

(
n
k

)
experiments for the combination of

k simultaneously occurring faults, assuming all possible combinations are feasible.
I experimentally investigate the impact of coincident faults on the evaluation effi-

ciency in Section 5.5.

5.3 Modeling Higher Order Faults

The main goal of this chapter is to relax the single fault assumption omnipresent in FI-
based robustness assessments by combining several faults of the same or different fault
models in a higher order fault model. While there are many possibilities to combine
faults for injection, not all of these combinations result in an effective violation of
the single fault assumption. For instance, if the same location and the same time
for a parameter fuzzing are chosen, the same parameter is altered twice for the same
SUT service invocation. The result would be identical to a single injection, as both
modifications would be performed in sequence, even on a multiprocessor system, where
memory access for data of certain size is mutually exclusive for each bus cycle due to
the shared memory bus. As the resulting fault exposure to the SUT would not differ,
such a model is not suitable to assess the validity of the single fault assumption as the
SUT is exposed to only one of the injected faults. Fault interference is legitimate (and
desired) if it creates previously unconsidered stimuli for the SUT, i.e., interference in
the sense of fault effects on the SUT. This is the case if either different internal faults of
the SUT are activated by the external fault combination or if the same internal faults
are activated repeatedly and the resulting errors interfere such that a different error
state of the SUT results. Fault interference is undesired if it occurs before affecting
the SUT’s interface(s). In order to prevent fault interference of the undesired type,
the combined faults must remain distinguishable from each other. In the following,
I define two fault coincidence criteria that higher order fault models must satisfy to
achieve this. According to the following definitions, combined faults must differ in
either injection time or location (or both) to qualify as higher order faults.

5.3.1 Temporal Spread, Temporal Resolution, and Spatial
Coincidence

Definition 5 An external fault of a SUT is termed temporally spread if it covers
more than one temporal usage sequence of the SUT. Temporal usage sequence may
refer to an individual service invocation during an injection run, an injection run, an
injection campaign, or an assessment that consists of several campaigns. The choice
of the usage sequence is referred to as temporal resolution. Faults that are temporally
spread, but always target the same injection location, are termed spatially coincident.
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SUT

Interface 0 Interface 1 . . . Interface k . . . Interface n

Service 0 Service 1 . . . Service k . . . Service n

Parameter 0 Parameter 1 . . . Parameter k . . . Parameter n

Bit 0 Bit 1 . . . Bit k . . . Bit n

Figure 5.1: Relationship of spatial entities

An example for a temporally spread fault with coarse-grained temporal resolution is
the injection into a component that maintains some state across different evaluations,
e.g., injections that lead to accumulating corruptions in persistent storage. An example
of a fine-grained temporal resolution is the repeated injection of the same external fault
into the same service over multiple service invocations.

Temporally spread and spatially coincident fault injections (e.g., the injection of
intermittent or permanent faults) are more widely applied than spatially spread and
temporally coincident fault injections discussed in Section 5.3.2. They are also applied
to investigate fault effect accumulation, often referred to as “software aging”. While I
do not develop temporally spread fault models in this thesis, I discuss existing work
addressing temporally spread injections in Section 5.6.

5.3.2 Temporal Coincidence and Spatial Resolution

Definition 6 An external fault is termed temporally coincident if it covers more than
one spatial entity in the SUT’s interface during the same temporal usage sequence.
Spatial entity may refer to a component interface, a service provided by the component,
a parameter passed to the component upon service invocation, or a data element of the
parameter. The choice of the spatial entity is referred to as spatial resolution.

Figure 5.1 depicts the relationship between the considered spatial entities. An ex-
ample for a temporally coincident fault with a spatially coarse-grained resolution is
when services of different component interfaces are invoked with illegal parameter val-
ues within a single injection run. An example of a fine-grained spatial resolution is
the simultaneous modification of two individual bits within the same parameter.

The definition of temporal coincidence uses the the previously introduced notion
of temporal usage sequences. As a consequence, the temporal and spatial dimensions
(when and where to inject) of higher order fault models are not independent. This
restriction is necessary to prevent the aforementioned issues that could cause higher
order fault models to effectively revert to single faults (at the cost of higher order
models, as discussed in Section 5.2). Depending on the considered temporal resolution
(i.e., the choice of the temporal usage sequence), only a subset of spatial entity choices
(i.e., spatial resolutions) is possible. If, for instance, an individual service invocation
is the temporal scope, only different parameters of that service or multiple locations
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within one parameter are possible choices for temporally coincident spatial entities. I
develop and evluate higher order fault models for these two cases in the remainder of
this chapter.

5.4 Fault Models: From Discrete to Higher Order

In the following, I define three higher order fault models according to the temporal
coincidence notion developed in Section 5.3.

The injection framework, for which the higher order models are developed, supports
a large number of classical fault models (in the following also referred to as discrete)
with a variety of injection triggers and latencies. While various injection locations are
supported, i.e., injections into device driver binaries as well as injections into service
parameter values, we only consider the latter in our evaluation because of the strong
effects this difference in location has on the evaluation outcome (see [MBD+06] and
Section 4.4.2). For parameter value corruptions, the framework supports three classical
discrete fault models.

• Bit flips (BF): An individual bit in the binary representation of the passed pa-
rameter value is being flipped, i.e., altered to one if it was zero and vice versa.

• Fuzzing (FZ): A passed parameter value is replaced by a random value of the
same binary length.

• Data type-specific (DT): Similar to the fault model applied in Ballista [KD00], a
passed parameter value is replaced by a data type-specific boundary value, e.g.,
Maxint, Minint, −1, 0, or 1 for the integer data type.

I use the BF and FZ models as a basis for constructing three temporally coincident
fault models, i.e., models of faults that are activated within the same temporal usage
sequence in different spatial locations. The considered temporal usage sequence are
individual service invocations. Higher order faults can then manifest as faults covering
distinct parameters of the same service invocation or covering distinct faults within
one single parameter of the targeted service call, depending on the spatial resolution.

5.4.1 The FuzzFuzz Higher Order Fault Model

While the FZ fault model mandates the replacement of an individual parameter value
of a service call, the FuzzFuzz model applies fuzzing to two distinct parameters of
the same service invocation. As mentioned in Section 5.3, fuzzing is only usefully
applicable for spatial resolutions lower than the individual parameter level: If multiple
fuzzing operations were applied to the same parameter, the resulting injection would
not differ from a single fuzzing injection (one parameter value is replaced by a random
value). Consequently FuzzFuzz mandates fuzzing different parameters of the same
service invocation, thereby implicitly restricting its applicability to services that are
taking at least two parameters as inputs.
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For a service with n parameters p1 . . . pn,
∑n

i=1 2
bl(pi) possible FZ injections and∑n−1

i=1 (2
bl(pi) ·

∑n
j=i+1 2

bl(pj)) possible FuzzFuzz injections exist, where bl(pi) denotes
the number of bits (the bit length) of the parameter value pi. Even for the FZ model
an exhaustive assessment covering all possible input combinations is impracticable.
We restrict ourselves to 30 experiments for each parameter targeted by FZ and each
parameter combination targeted by FuzzFuzz. This restriction is based on a stability
finding from Johansson, Suri, and Murphy [JSM07b], who report error propagation
measures to stabilize for the same SUT after approximately 10 injections.

5.4.2 The Simultaneous FuzzBF Model

Johansson, Suri, and Murphy [JSM07b] report the fuzzing and bit flip models to
perform well in robustness assessments of the same SUT considered in this thesis
and derive a composite fault model from these two models. Despite its compositional
character, this composite fault model is not a higher order fault model in the sense
of this thesis, as it combines faults on a campaign level with SUT resets between
individual runs, thereby adhering to the single fault assumption. I combine these
models in a higher order model for injection experiments: Upon invocation of services
with two or more parameters, FZ is applied to one parameter value and BF to another.
The spatial resolution of the FuzzBF simultaneity is, as for the FuzzFuzz model,
different parameters of the same service call. The considered temporal usage sequence
is an individual service invocation.

For a service with n parameters p1 . . . pn, there exist
∑n

i=1 2
bl(pi) possible test cases

for individual fuzzing injections and
∑n

i=1 bl(pi) possible individual bit flips. For the
FuzzBF model the amount of possible test cases expands to∑

1≤i≤n

(2bl(pi) ·
∑

1≤j≤n
j 6=i

bl(pj))−
∑

1≤i<n

∑
i<j≤n

bl(pi) · bl(pj)

This considers that all single bit flip cases for a parameter are contained in the number
of possible Fuzzing values. The part before the minus counts the number of combina-
tions for fuzzing any parameter pi with bit flips in any other parameter pj. Fuzzing
can result in any possible value that a parameter can take, including those that would
result from single bit flip injections. Therefore, bl(pi) · bl(pj) cases are identical among
the injections produced when fuzzing pi is combined with single bit flips in pj and vice
versa. These cases are easily detectable when injection campaigns are defined and,
thus, subtracted from the total number of injection runs.

5.4.3 The Simultaneous SimBF Model

As opposed to the FuzzFuzz and FuzzBF models, the SimBF model has a spatial
resolution of an individual parameter value in a service invocation: Two bits are
flipped in the binary value of the same parameter.
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For a service with n parameters p1 . . . pn, there exist
∑n

i=1 bl(pi) possible single bit
flips and

∑n
i=1

(
bl(pi)

2

)
possible SimBF test cases. While this may result in large test

case numbers for large numbers of parameters or high bit lengths, exhaustive testing
is generally feasible. Although multi bit fault models have been applied in previous
work (see Chapter 2), they have not been discussed as simultaneous single bit faults
and their efficiency has, therefore, not been assessed comparatively. Moreover, as
multi bit faults in the literature are mostly applied to simulate hardware burst faults,
they usually only consider flips of adjacent bits, whereas the SimBF model considers
arbitrary combinations of dual bit flips.

From the differing applicability of the fuzzing and bit flip models to different spatial
resolutions, we observe that, for higher order fault models, the fault type and the fault
location (what and where to inject) are not independent from each other. If the spatial
resolution (i.e., the considered location) of an injection is an individual parameter,
simultaneous fuzzing would not differ from non-simultaneous fuzzing as previously
discussed. For bit flips instead, it is possible to differentiate between simultaneous
and non-simultaneous injections into the same parameter value. The reason is that
the non-simultaneous fuzzing and bit flip fault models are defined according to different
spatial resolutions.

5.5 Experimental Evaluation

I investigate the impact of the proposed higher order fault models on the assessment
efficiency using the metrics developed in Chapter 4. In order to analyze masking ef-
fects of higher order faults discussed in Section 5.2, I investigate where combinations
of two individual faults lead to an outcome that differs from the outcomes for the
individual injections, reflected by the failure class distributions for each spatial entity
for which higher order FI experiments are conducted. The obtained distributions are
compared against the failure class distributions of experiments with the discrete faults
from which the higher order faults have been composed. If fewer failures are observed
for higher order faults than for any of the corresponding discrete faults, masking has
taken place. If higher failure rates are observed in the higher order cases, I denote this
effect as amplification. Amplification, therefore, implies that services are quicker iden-
tified as non-robust on average, whereas masking implies that higher order models take
more experimentation effort on average to identify non-robust behavior. If the aim of
a robustness assessment is the removal of robustness issues or the efficient placement of
fault-tolerance mechanisms in the system, the occurrence of masking and amplification
indicate that both discrete and higher order models should be used for injections to
precisely identify the trigger condition for observed failures. In order to obtain reliable
results for the masking and amplification analyses of models that involve fuzzing, ad-
ditional single injection experiments have been performed for each random value used
in a simultaneous fuzzing experiment. This is necessary as the application of fuzzing
may result in different random values for the single and higher order injections, which
would lead to incomparable results and, hence, render the proposed approximations
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of masking and amplification invalid. Before going into the details of the developed
models and their performance, I briefly describe the experimental setup for the case
study.

5.5.1 Experimental Setup

For comparability of results, I apply FI to the driver interface of the Windows CE
4.2 operating system (OS) as previously described in Chapter 4. For readability I
briefly summarize the setup. A fuller discussion of the failure mode definitions and
other details of the experimental setup can be found in Section 4.4.1. The serial port
and Ethernet drivers are used for the assessment. Both drivers export a Windows
stream driver interface [MSDd]. The serial port driver imports the CEDDK [MSDb]
and COREDLL [MSDa] kernel interfaces. The Ethernet driver imports COREDLL
and NDIS [MSDc].

External faults are injected at the kernel interface by intercepting service invoca-
tions between the drivers and the kernel, and modifying parameter and return values
passed to the kernel. Service invocations at the kernel/driver interface are triggered
by synthetic workloads designed to trigger executions of the targeted drivers. The ap-
plied failure detectors are capable of detecting four different outcomes of an injection
run. Upon fault injection the system may respond with the following:

• Not Failing (NF) in any detectable manner

• Failing without violating OS specifications by delivering wrong, yet plausible
results (Application Error, AE )

• Violating the service specification of an individual OS service upon which the
application fails and becomes unresponsive (Application Hang, AH )

• System Crash (SC), rendering the whole system unavailable and often necessi-
tating a manual restart.

5.5.2 Experimental Results: Exploring Higher Order Injections

The comparative assessment of all single and higher order fault models is mainly based
on interactions of the serial port driver and the OS kernel. A number of additional
experiments using an Ethernet driver have been performed for all fault models apart
from the SimBF model. As discussed in Section 5.4.3, exhaustive tests with this model
are considered feasible and, consequently, an exhaustive campaign has been conducted
for the serial port driver. However, this resulted in more than 34 000 individual injec-
tion runs taking up more than two months of experiment run time for only this model
and a single driver. Thus, the experiments with this model have been restricted to
the serial port driver.
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5 Higher Order Fault Models

5.5.2.1 Coverage and Unique Coverage

Figures 5.2 to 5.4 show the coverage and unique coverage measures for the three
considered failure classes (AE, AH, SC) obtained from a comparative evaluation of
all six fault models (grouped by the three targeted interfaces) using the serial port
driver. The unique coverage is indicated as a fraction of the coverage in the bar
diagrams. Neither the FuzzFuzz model nor the FuzzBF model achieve particularly high
coverages. This occurs as these models target injections into two distinct parameters
and, therefore, (by definition) cannot cover any service taking less than two input
parameters, while the other evaluated models can. For the same reason, FuzzFuzz and
FuzzBF cannot cover any services of the export interface. Data communicated to the
kernel via this interface are return values of services offered by the driver. Since return
values are considered as single parameters, FuzzFuzz and FuzzBF cannot be applied
for injections in the export interface.

SimBF, in contrast, outperforms all other models in most of the cases, showing
coverages of up to 100% for the CEDDK interface in Figures 5.2 and 5.3, i.e., it
identifies a robustness issue in each service of this interface. The obtained low coverage
values for the simultaneous FuzzFuzz and FuzzBF models indicate that they should not
be applied as substitutes for discrete models. This conclusion is supported by a direct
comparison of the unique coverages in Figures 5.5 to 5.7. For the COREDLL interface,
we see substantially higher unique coverages for vulnerabilities that result in AE or
AH failures (Figures 5.5 and 5.6), when the FZ model is applied. However, Figures 5.5
to 5.7 also show that the higher order models cannot be neglected when testing for
defects that lead to system crashes (SC), as all three higher order models identify
some services as vulnerable that would go undetected by their discrete counterparts.
This is supported by results obtained for the CEDDK and export interfaces that show
clear polarizations for the different failure modes (Figures 5.8 to 5.11).

5.5.2.2 Injection Efficiency

Figures 5.12 and 5.13 illustrate the injection efficiency in terms of achieved failure class
distributions using the serial and Ethernet drivers. The SimBF model achieves an
overall injection efficiency of almost 100% for every interface used by the serial driver.
SimBF provokes AE failures particularly well. While the FuzzFuzz and FuzzBF models
perform well for the COREDLL interface, they are outperformed by single fault models
in the CEDDK interface, when applied to serial driver interactions. Surprisingly, these
models outperform the other models for the Ethernet driver both in terms of overall
failure probability and in particular AE failure probability.

In general, the results demonstrate increased coverage and high failure probabilities,
which means that the increased coverage can likely be gained with a modest number
of additional experiments using higher order models. Given these expected benefits,
I investigate the costs for these additional experiment runs and the higher order fault
model implementations next.
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Figure 5.2: (Unique) coverage of AE vulnerabilities using the serial driver
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Figure 5.3: (Unique) coverage of AH vulnerabilities using the serial driver
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Figure 5.4: (Unique) coverage of SC vulnerabilities using the serial driver
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Figure 5.5: Unique coverages of FuzzFuzz & FZ evaluating the COREDLL interface
using the serial driver
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Figure 5.6: Unique coverages of FuzzBF, FZ & BF evaluating the COREDLL interface
using the serial driver
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Figure 5.7: Unique coverages of SimBF & BF evaluating the COREDLL interface using
the serial driver
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Figure 5.8: Unique coverages of FuzzFuzz & FZ evaluating the CEDDK interface using
the serial driver
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Figure 5.9: Unique coverages of FuzzBF, FZ & BF evaluating the CEDDK interface
using the serial driver
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Figure 5.10: Unique coverages of SimBF & BF evaluating the CEDDK interface using
the serial driver
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Figure 5.11: Unique coverages of SimBF & BF evaluating the export interface of the
serial driver
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Figure 5.12: Injection efficiencies of experiments using the serial driver
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Figure 5.13: Injection efficiencies of experiments using the Ethernet driver
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5.5.2.3 Average Execution Time

Figure 5.14 shows the average execution time for injection runs using the serial driver
grouped by failure classes. The higher order models always take the longest execution
times. As the actual injection overhead from the implementations of the higher order
models is negligible, the observed delays likely result from parsing and processing the
more complex test case definitions necessitated by these models. The increased execu-
tion times for the AH and SC failure classes result from the application of timeouts for
detecting these failure types. The diagram shows a relatively stable order for the exe-
cution times among the models, except for the SC failure class. The reason for this is
that, after a system crash, the system sometimes manages to restart autonomously, in
which case the time until the autonomous restart is measured. Otherwise, it requires
a manual reboot, in which case the timeout expiration is measured.
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Figure 5.14: Average experiment execution times using the serial driver

5.5.2.4 Implementation Complexity

The implementation complexities in terms of physical SLOC and accumulated cyclo-
matic complexity are presented in Table 5.1. Being the least complex higher model
among the assessed models, SimBF also is the second-least complex model overall and
only outperformed by the BF model. The physical SLOC and cyclomatic complexity
counts for the FuzzFuzz and FuzzBF models include the respective counts for the FZ
and BF models (we assume that these are not previously implemented). The actual
mechanism for combining any two existing models for higher order injections into dif-
ferent parameters of the same service invocation accounts for only 105 physical SLOC
and an accumulated cyclomatic complexity of 18. In conclusion, higher order fault
injections entail moderate overhead for implementation and execution time.

5.5.2.5 Masking and Amplification

Masking and amplification effects highly depend on the individual injection target,
i.e., parameter for the SimBF model and service for the FuzzFuzz and FuzzBF models.
These effects need to be discussed for each such target individually, and I restrict the
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Table 5.1: Implementation complexities

Model pSLOC cyclomatic
complexity

BF 133 30
FZ 272 58
DT 635 222

FuzzFuzz 377 76
FuzzBF 510 106
SimBF 245 39

detailed discussion to two illustrative examples. Detailed plots for all tested services
are available on the public web site for the higher order FI project [DEE]. In summary,
the obtained results for the masking and amplification analysis show that both masking
and amplification are a common occurrence and that both effects can occur for the
same service if different fault models are used or different failure modes are considered.

Figure 5.15 shows an example of masking using the FuzzFuzz model. While the FZ
model provokes SC failures in more than 80% of the injections into parameters 0 and
1 and achieves injection efficiencies of 100% for both parameters, their combination
in the FuzzFuzz model yields an injection efficiency of less than 10%, all of which are
AE failures. Also for combinations with injections into parameter 2, the SC failure
causes for the first two parameters do not dominate the experiment outcome.

In contrast, Figure 5.16 shows an example of amplification for the same model
targeting a different service. While single fuzzing only results in a modest amount of
SC failures in parameter 2, the higher order injections into parameters 0 and 2 result
in higher SC failure rates. To avoid sampling effects in the comparisons, the presented
results of the masking and amplification analysis are based on additional experiments,
as discussed in the beginning of this section.

5.5.3 Discussion

The higher order models add value to the performed evaluation, as they detect ser-
vice faults that are not covered by other models. This result demonstrates that the
single fault assumption, on which many frameworks and studies are based, does not
generally hold. Given that many of the systems for which FI assessments are ap-
plied are employed in safety-critical scenarios, neglecting possible fault interactions is
dangerous and their exclusion should be based on thorough analysis rather than by
assumption. On efficiency considerations, the SimBF model outperforms discrete fault
models in most cases, which shows that effective higher order injections do not need
to entail hight execution overheads. The implementation overhead of all considered
higher order models is moderate compared to the discrete models. Therefore, the
consideration of higher order faults threatening dependability may well be worth the
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Figure 5.15: Example for masking effects of the FuzzFuzz model

effort, especially for critical applications.
The biggest downside of higher order fault injections lies in the larger number of ex-

periments. As discussed for the FuzzFuzz and FuzzBF models, the number of possible
faults to test against is significantly larger. As a consequence, many more runs would
need to be performed to obtain a relative coverage of the entire fault space similar to
what is achieved for classical models. On the other hand, given that classical models
fail to uncover robustness issues that higher order models reveal, the value of such
“input-based” coverage criteria appears questionable. A less debatable increase in ex-
periment numbers is mandated by the findings on masking and amplification effects.
While higher order fault models prove effective in identifying robustness issues that re-
main undetected by classical models and, therefore, cannot be neglected in robustness
assessments relying on debug FI, they require additional experiments with the classical
models to isolate cause-effect relationships in the experiment results.

Caveats: As previously discussed, exhaustive tests are feasible for the BF and SimBF
models, while they are not for the FZ-based models. Consequently, the presented re-
sults are based on exhaustive injections with BF and SimBF, whereas a fixed number
of test cases has been selected for the FZ-based models. Interestingly, the BF and
SimBF faults that were injected are also among the injection candidates of the FZ
model. However, the results for the (higher order) bit flips differ significantly, indi-
cating that there are strong effects depending on the chosen samples for the FZ-based
models. An investigation of why and how systematically derived faults, e.g., the BF-
based models, give better evaluation results is beyond the scope of this thesis and
most likely also SUT-specific, as the discussion of the role of bit locations for bit flip
models by [JSM07b] indicates.
The performance of the evaluated fault models differed for different drivers. Fur-

73



5 Higher Order Fault Models

 0

 0.2

 0.4

 0.6

 0.8

 1

FZ0
FZ1

FZ2
FZ0/FZ1

FZ0/FZ2

FZ1/FZ2

O
bs

er
ve

d 
Fa

ilu
re

 C
la

ss
es

pe
r 

In
je

ct
io

n

Injection into Parameter(s)

Service: CEDDK - MmMapIoSpace

Failure Class
AE
AH
SC

Figure 5.16: Example for amplification effects of the FuzzFuzz model

thermore, some interfaces are only used by some drivers and not by others. Therefore,
the efficiency of an assessment depends on an interplay of fault models and the precise
system configuration, comprising fault loads and applied workloads. Consequently,
details of the presented results, such as the perceived rankings among fault models for
the different criteria, cannot be simply extrapolated and likely do not equally apply
for other systems. As the single fault assumption is uniformly applied, the goal of
the conducted study was to investigate whether there are systems for which it does
not apply. The presented results clearly show this and the conclusion that should be
drawn from this result is that the validity of the single fault assumption has to be
carefully investigated for each conducted robustness assessment.

5.6 Related Work

Compositional and higher order fault models have been used in previous studies, e.g.,
to evaluate the fault-tolerance of systems with respect to coincident subsystem failures.
I discuss these cases in the following and argue why I consider them higher order
models. The main differences of these studies and the work presented in this thesis
are that (1) the used models are commonly derived as classes of representative faults
for operational FI2, whereas this thesis develops a taxonomy and framework for fault
composition, and (2) the effects of fault composition on experimental results are not
assessed.

2often even without notice of their parallel nature
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5.6.1 Higher Order Injections into Function Call Parameters

In the Ballista project (cf. Section 2.3), higher order injections into multiple parame-
ters of a function call have been performed with a data-type fault model [KKS98]. The
authors do not differentiate between valid and invalid parameters that are combined in
the tests and do not quantitatively analyze the impact of higher order injections, i.e.,
the combination of invalid inputs. However, they report that higher order injections
have not had a significant impact on the detection probability of robustness issues
[Pan99; KDD08], which contradicts the results presented in Chapter 5. There are four
possible reasons for this deviation:

1. Ballista and the case study conducted for the validation of the higher order
models’ applicability and effects in Chapter 5 target different interfaces of the
OS (API vs. driver interface).

2. The quoted Ballista results were obtained more than a decade ago and may not
hold for newer systems.

3. The results may significantly differ due to the different fault models the compo-
sitional models were composed from.

4. The experimental methodologies for robustness testing and debug FI differ (cf.
Chapter 2).

Although not discussed explicitly, automated fault injections applied for the deter-
mination of the robust argument type for n-ary functions in HEALERS [FX02] (see
also Chapter 2) probably also use higher order injections into different parameters: If
the robust types of multiple arguments depend on each other, this dependency can only
be reflected by higher order injections. If there is no such dependency, simultaneous
tests for robust types of independent arguments can reduce the test effort.

5.6.2 Validating Software-Implemented Hardware
Fault-Tolerance

Software replication (e.g., N-copy programming, NCP [AK88], or process-level redun-
dancy, PLR [SBM+09]) is a prominent technique to flexibly tolerate the effects of
non-deterministic hardware errors on software, e.g., single-event upsets, at run-time.
In order to validate the effectiveness of setups with more than two replicas, multi-
ple hardware faults are emulated to provoke the coincident failure of several replicas.
Joshi, Gunawi, and Sen [JGS11] discuss the problem of exponentially increasing test
candidates if multiple hardware failures are considered in a distributed setting and
suggest strategies to reduce them. In contrast to our evaluation of fault coincidence
effects on experiment outcomes, their pruning heuristics use static properties that do
not account for test results.

Another motivation behind the emulation of multiple correlated or uncorrelated
hardware errors affecting software is the increasing error rate expected from future
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hardware architectures with ever increasing transistor densities as motivated in Sec-
tion 1.2. In order to evaluate the impact increasing error rates would have on soft-
ware built on the assumption of perfectly reliable hardware, the effects of coincident
hardware errors on software are emulated, e.g., by modifying machine instructions
generated by a compiler [KS09]. The work presented in this thesis differs from other
work in that the developed models are not motivated by representativeness for any
operationally observed manifestations. Hence, in contrast to other multi bit flip mod-
els from related literature, the flips in this thesis are not confined to consecutive bit
positions, as expected by typical hardware burst models (e.g., [BSS13]).

5.6.3 Higher Order Mutation Testing

As discussed in Section 4.2.2.3, mutation testing [JH11] is an approach to assess the
quality of test suites. Mutants of programs are created using mutation operators. A
test suite that is capable of distinguishing the original program from the mutant is
considered better than one that cannot. Program mutation can be considered fault
injection, as it alters software in a controlled manner to assess defect detection. Jia
and Harman [JH09] introduced higher order mutants resulting from consecutive ap-
plications of multiple traditional first-order mutation operators.

Rather than focusing on the simultaneous occurrence of faults within one single
subsystem (e.g., multiple mutations in the same program), the compositional fault
notion in this chapter is concerned with the simultaneous effect of any subsystems’
faults on the SUT. Due to this difference, the presented framework for higher order
fault models can be applied in both white-box and black-box assessment scenarios.

5.6.4 Accumulating Fault Effects

If fault activations do not immediately result in a detectable failure, errors may re-
main dormant in the system. In such cases, the effects of multiple fault activations
can accumulate in the system. Software aging is an example of minor deviations ac-
cumulating over time. For accumulating fault effects, related work on fault injections
falls in two categories. One class of work (e.g., [CVM+03; VLM07]) tries to avoid
accumulating effects for methodological reasons, as these complicate the identification
of effects that an individual fault activation has on the system. The second class of
work (e.g., [KRK+98; KLB00; KDD08]) considers accumulating fault effects and ei-
ther accepts that no direct causal relation between an individual fault activation and
observed failure can be established or performs additional experiments to establish
these relations. The approaches presented in this thesis fall in the latter category.

5.7 Conclusion

Surprisingly, the interaction of coincident fault effects is often neglected in software
robustness assessments. In this chapter, I have investigated the benefits and costs that
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come with a consideration of higher order faults in terms of evaluation efficiency.
The proposed coincidence notions enable a large number of novel fault models for

FI experiments and although the discussion in this chapter is limited to the design and
assessment of only three models, the experimental results indicate that coincident fault
models can have significant effects on the coverage in a software robustness evaluation.
Depending on the temporal and spatial resolution, there may be defects that cannot
be covered by certain coincident models by design, as discussed for the FuzzFuzz and
FuzzBF models. However, even these models cover a number of defects that are not
covered by discrete models in our experiments.

The conducted analyses of the Windows CE driver interface have shown significant
fault interactions in kernel functions. This finding contradicts a fundamental assump-
tion, i.e., the absence of fault interactions, on which most contemporary fault injection
frameworks and combinatorial testing [KWG04] as a test case reduction technique are
based on. Thus, our results indicate that such reductions could potentially be falla-
cious, and results based on such assumptions may need careful re-investigation.

The conducted analyses have also shown significant masking and amplification ef-
fects, which prevent higher order fault injections from replacing classical models. As
a consequence, robustness assessments should be conducted using both higher order
models and the single faults that the higher faults are composed of to establish re-
liable cause-effect relations between injections and observed failures and to prevent
relevant robustness issues from escaping detection through masking effects. I propose
the parallel execution of fault injection experiments on parallel hardware as a remedy
for these increased experiment counts necessitated by higher order fault models in
Chapter 6.

77





6 Coping with the Combinatorial
Explosion for Higher Order
Faults

In Chapter 5, I have introduced higher order fault models that challenge the single
fault assumption underlying most debug FI frameworks. An evaluation of these mod-
els’ performance in robustness assessments using the metrics introduced in Chapter 4
revealed that the single fault assumption is not generally valid and that the proposed
higher order fault models prove effective for revealing robustness issues that classical
models fail to detect. However, a number of robustness issues that were identified by
classical models were missed by the higher order models. Moreover, an analysis of
fault interactions resulting from higher order injections showed that additional experi-
ments with classical models are required to establish accurate cause-effect relations for
injected faults and observed failures. In conclusion, while higher order fault models
proved efficient for the conducted robustness assessments, they are no substitute for
classical models and should be used in addition. Together with the higher number
of fault conditions that fault compositions in higher models impose, this leads to a
significant increase in the number of injection runs.

In order to counteract this increase, I propose to exploit parallel hardware to ex-
ecute multiple experiments at the same time. While such PArallel fault INjections
(PAIN) yield higher experiment throughput, they are based on an assumption of non-
interference among the simultaneously executing experiments. I therefore investigate
the validity of this assumption and determine the trade-off between increased through-
put and the accuracy of experimental results obtained from PAIN experiments to as-
certain the feasibility of experiment speedup through parallel execution. The contents
of this chapter is based on a conference paper accepted for presentation at ICSE 2015
[WSN+15].

6.1 The Performance-Validity Trade-Off for PAIN
Experiments

Given the high complexity of modern software systems, debug FI typically requires a
significant number of experiments to cover all relevant faults in a SUT’s OE, with stud-
ies reporting thousands, or even millions, of injected faults [KD00; AFR02; DAS+12;
NCD+13a]. The problem of high experiment counts is exacerbated by the result that
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higher order fault injections, i.e., combinations of several injected faults, need to be
considered as well (see Chapter 5). Moreover, recent studies show that failure recov-
ery protocols in distributed systems exhibit vulnerabilities to simultaneously occurring
faults that can only be uncovered by injecting fault combinations [GDJ+11; JGS11],
and that software faults cause the simultaneous corruption of several interface param-
eters as well as shared memory contents [LNW+14]. A “combinatorial explosion” of
the number of experiments is the consequence.

Finally, the injection of several faults (namely, higher order mutations, HOMs)
is being increasingly investigated in the field of mutation testing1, as HOMs have
proven effective at improving the quality of test suites [JH09; PM10]. Despite the
demonstrated utility of higher order fault injections, the entailed increase in numbers
of experiments remains a considerable challenge for their applicability.

In order to cope with the high number of FI experiments, two different strategies
can be adopted. The first strategy attempts to reduce the number of experiments
that need to be performed. Search-based techniques and sampling strategies for large
test sets (e.g., [JH08; SAM08; JGS11; NCD+13a]) fall into this category. The second
strategy attempts to utilize the increasing computational power of modern hardware,
where several experiments are executed at the same time on the same machine (par-
allelization) to better utilize the parallelism of the underlying hardware (e.g., [Las05;
DCB+06; OU10]). While parallelization (“throwing hardware at the problem”) is less
elegant, it is an appealing solution, as it is generally applicable, whereas the applica-
bility of sampling and search-based techniques depends on domain-specific knowledge
in most cases. Parallelization, therefore, seems to be a promising solution to cope with
the high number of experiments, especially as it can be combined with domain-specific
sampling and pruning.

Nevertheless, parallelization relies on an implicit assumption that executing several
experiments in parallel does not affect the validity of results, although the validity of
this assumption is not trivial. Even if the experimenter takes great care to avoid
interference between experiments (e.g., by running them on separate CPUs or virtual
machines), there is a number of subtle factors (such as resource contention and timing
of events) that can change the behavior of the OE and SUT (e.g., faults can lead to
different failure mode distributions than those observed under sequential execution),
thereby invalidating the results and negating the benefits of parallelization. This is
a concern especially for embedded, real-time, and systems software, which are an
important target of FI experiments, and where studies have shown that faults often
exhibit non-determinism and time-sensitive behavior [CGN+13; AFR02].

Hence, in order to conduct efficient and accurate parallelization, this chapter pro-
poses PArallel fault INjections (PAIN) as an FI framework. As FI is applied mostly for
the assessment of critical systems, a major concern that outweighs performance con-
siderations is the confidence in the validity of the experimental results; it is of utmost

1FI and mutation testing use similar techniques to achieve their objectives, but these objectives differ
with mutation testing primarily targeting the quality of test suites versus robustness assessments
for FI. The interested reader is referred to [JH11] for a fuller discourse.
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importance to avoid interference of PAIN experiments that affects their outcome. In
addition to experiment throughput, the validity of results from parallel experiments
is also assessed. The chapter makes the following contributions:

• A qualitative and quantitative analysis of the impact of parallelism on the ex-
periment throughput and the validity of the results using results from extensive
PAIN experiments on the Linux kernel under an Android emulator environment

• Guidelines to tune the main factors that affect experiment throughput and the
validity of PAIN experiments, including the degree of parallelism and failure
detection timeouts

Following the related work in Section 6.2 the hypotheses that the conducted analyses
are based on are presented, followed by the corresponding experiment design and
setup discussion over Sections 6.3 and 6.4. Section 6.5 presents the obtained results
and provides an in-depth analysis of the factors contributing to the observed effects.
Sections 6.6 and 6.7 summarize the lessons learned and discuss threats to the validity
of the empirical study.

6.2 Related Work: Fault Injection & Test
Parallelization

Similar to higher order mutation, higher order fault models for debug FI lead to
massively increased numbers of experiment candidates. To cope with these effects, I
propose an FI framework for test parallelization. Similar ideas have been explored for
correctness testing, as discussed in Section 6.2.1. For debug FI, the result accuracy
is of particular concern, as the discussion in Section 6.2.2 emphasizes, whereas the
discussed approaches to parallel correctness testing mostly disregard this issue.

6.2.1 Perspectives on Test Parallelization

In the software community, the idea of test parallelization has been mostly driven by
the advent of increasingly parallel system architectures, such as multiprocessor and
networked systems [Sta00]. Kapfhammer proposed parallel executions to complement
sampling techniques for improving the performance of regression testing [Kap01]. Las-
tovetsky used parallel computing to achieve a throughput improvement (speedup) of
factor 6.8 to 7.7 compared to sequential execution [Las05] for testing of a complex
CORBA implementation on several platforms. Duarte et al. developed GridUnit as
an extension of the JUnit testing framework to support parallel test execution in a grid
computing environment, achieving speedups ranging between 2 and 71.11 [DCB+05;
DCB+06; DWB+06]. Parveen et al. reported a speedup of 30 for a 150-node cluster
using their MapReduce-based unit testing tool HadoopUnit [PTD+09]. Li et al. de-
scribe the design of a grid-based unit testing framework and comparatively evaluate
the performance of different task (i.e. test) scheduling mechanisms [LDZ+06]. Oriol

81



6 Coping with the Combinatorial Explosion for Higher Order Faults

and Ullah ported the York Extensible Testing Infrastructure (YETI) to MapReduce
architectures using Hadoop [OU10]. They reported a speedup of 4.76 for a fivefold
increase in computational resources. In contrast to other work, which only reported
on performance, they also compared the results of sequential versus parallel tests and
reported that the numbers of detected defects are equal in both cases. However, they
did not specify whether the same defects were detected or just equal numbers, thereby
leaving the question of effects on result accuracy open. Other recent approaches dealt
with Testing-as-a-Service (TaaS) for both dynamic tests [YZX+09; YTC+10] and
program analyses [SP10; CBZ10; CZB+10; MEK+12].

While multiple test parallelization approaches have been advocated, their primary
focus was to increase test throughput. Interferences between parallel tests were not in-
vestigated in these studies, because tests were performed on individual software units
rather than integrated systems, and the execution of test cases was not influenced by
non-deterministic factors such as timing and resource contention [DCB+05; OU10].
In other cases, tests that contended for shared resources were executed sequentially
or on distinct hardware machines to conservatively avoid any interference [Las05]. In-
terferences between parallel experiments are a potential, yet unexplored, issue for FI
experiments, since they usually target complex, integrated systems rather than indi-
vidual components, and since injected faults (like real faults) can result in unforeseen
and non-deterministic behavior [Gra86; GT07].

6.2.2 FI Validity in Parallel Execution Environments

There are numerous factors that can affect the accuracy and validity of FI, possibly
leading experimenters to false conclusions about the dependability of a system if they
are disregarded. As pointed out by Bondavalli et al. [BCF+07], FI tools and experi-
ments should be regarded as measuring instruments for dependability attributes and
designed with the principles of measurement theory in mind.

For this reason, much research in this field is focused on metrological aspects of FI.
Several techniques were developed to reduce the intrusiveness of FI tools on the target
system, by taking advantage of debugging and monitoring facilities provided by hard-
ware circuitry [CMS98; AVF+01], and by minimizing changes in the target software
[SFB+00]. Skarin, Barbosa, and Karlsson [SBK10] assessed the metrological compat-
ibility (i.e., statistical equivalence) of results obtained from these alternative FI tech-
niques. Kouwe, Giuffrida, and Tanenbaum [KGT14] evaluated the distortion of results
due to injected faults that have no effect on the system and are under-represented. In
[CLJ+04; CNR+13], the precision and the repeatability of FI is evaluated in the con-
text of distributed systems, which are affected by non-determinism and by clock skew
issues. Irrera et al. [IDM+13] assessed whether virtualization environments could be
used for FI experiments without impacting on system metrics related to performance
and resource usage: While their conclusions are positive, their experiments show that
virtualization actually had a noticeable impact on some of the monitored metrics.

While some studies have advocated the potential benefits of parallelizing FI experi-
ments [BKK+10; HBK+10; MEK+12; BC12], none of them investigated the impact of
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parallelism on the validity of results (i.e., whether results from parallel experiments are
metrologically compatible to sequential ones). In these studies, FI experiments were
executed in separate virtual machines [BKK+10; HBK+10] and OS processes [BC12]
to isolate the experiments. Memory protection mechanisms provided by virtualiza-
tion and the OS can prevent data corruptions from propagating among experiments.
For this reason, experiments are assumed to be independent from each other, and are
treated as an “embarrassingly parallel” problem (i.e., experiments can be arbitrarily
parallelized). Nevertheless, there are potentially adverse effects of parallelization: In
fact, it is difficult to enforce perfect performance isolation among virtual environments
[GCG+06; SC09], and performance interferences (e.g., the shortage of resources or the
timing of events) can significantly change the behavior of a system, and even affect its
security [HL13; NVN+13]. To account for such effects, this chapter investigates the
interplay between parallelism and the experimental results in addition to its effects on
experiment throughput.

6.3 Experimental Design

The following research questions (RQ) are addressed by experimentally investigating
the feasibility of increasing SFI experiments throughput by parallel execution without
compromising the accuracy of the results.

RQ 1 Can parallel executions of FI experiments on the same machine increase the
throughput of FI experiments?

RQ 2 Can parallel executions of FI experiments on the same machine change the
results obtained from FI experiments?

If the answer to RQ 1 is positive and to RQ 2 negative, then FI parallelization
has no adverse effects and should be applied whenever parallel hardware is available.
However, if RQ 1 is negative and RQ 2 positive, parallelization should be avoided. If
both answers are negative, the decision whether to parallelize or not should be driven
by other factors, such as hardware cost or complexity of the experiment setup. If
both are positive, parallelism can be beneficial, but it can also potentially affect the
accuracy of results. In this case, an additional question needs investigation.

RQ 3 If RQ 1 and RQ 2 hold, can the parallelization of experiments be tuned to
achieve both a (desirable) throughput increase and avoid the (undesirable) inaccuracy
of results?

6.3.1 System Model

The impact of parallelism is investigated in an experimental context similar to other
contemporary FI studies. Deviating from the robustness assessments of the Win-
dows CE kernel conducted in Chapters 4 and 5, the Linux-based Android OS kernel
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[Gooa] is considered as the SUT in this chapter. Similar to the previous chapters,
the SUT is exposed to external faults at its device driver interface. An important
difference between the two SUTs is that Windows CE, in contrast to Android, is a
real-time OS. Due to its suitability for real-time applications, Windows CE features
a far more precise control over which components are loaded when, and how they are
scheduled for execution, leaving much less room for non-deterministic preemption in
task scheduling if configured properly. For Android, the absence of non-determinism
of interleaving task executions is difficult to achieve without drastic changes in the
Linux kernel, on which Android is based. This difference leads to non-deterministic
activation sequences for the fault load, which in turn leads to non-deterministic exper-
iment results. To achieve statistically stable results, each campaign has to be executed
multiple times. Consequently, the number of required experiments is also increased
by non-deterministic behavior of systems in addition to the aforementioned increase
due to the adoption of higher order fault models.

OS kernel

Workloads

Monitor

Monitor
User
space

Kernel
space

Driver
interface

Device
Drivers

Failure
Detection

Experiment
Control

Operational Environment (OE) Experiment Controller

Figure 6.1: System model and experiment setup

In order to expose the SUT to external faults at its driver interface, faulty versions of
driver code are created using code mutation (see Section 3.1.1). The mutated drivers
are loaded as kernel modules and a workload is executed to trigger the altered code.
Figure 6.1 details the experiment setup, which follows the abstract model introduced
in Chapter 3. All experiment control logic is external to the target system, which is
encapsulated in a virtual machine (VM) to prevent it from being corrupted by the
effects of injected faults. To detect failures of the target system, external failure detec-
tors are used that collect and analyze messages from the target system, while running
in the experiment controller’s separate virtual environment. Using these detectors,
the following failure modes are reliably detected:

• System crashes (SC) by monitoring kernel messages emitted by the VM,

• severe system errors (SE) in a similar manner, and
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• workload failures (WF) by monitoring application log information from the
workloads forwarded to the system log that the VM emits.

The configured setup also detects stalls (so-called hangs) of the SUT, in which exper-
iments neither make any progress nor produce any information about the failure. The
SUT is assumed to hang if the applied workload does not terminate within a timeout
interval, which is calculated by adding a generous safety margin to the maximum time
needed to produce the correct result when no fault is present. These timeout-based
external detectors assume hangs using these timeouts:

• During system initialization (init hang assumed, IHA),

• after system initialization (system hang assumed, SHA), or

• during workload execution (workload hang assumed, WHA).

As such timeout-based external detectors are known to be possibly imprecise or inef-
ficient depending on their configuration policy [CNR09; BCC+11; ZLX+12], sophisti-
cated hang detectors inspired by the approach of Zhu et al. [ZLX+12] are additionally
used. Two such additional hang detectors are placed in the OE: A light detector, exe-
cuting as a user space process, monitors basic system load statistics. If these statistics
indicate lack of progress, the light detector triggers a heavy detector executing in ker-
nel space. The heavy detector performs a more accurate (but also more complex and
time consuming) analysis and triggers a controlled system crash if a hang is detected.
The tests that the light and heavy detectors apply are identical to those suggested
in [ZLX+12]. The SUT- and platform-specific threshold values for the experimen-
tal configuration in this chapter can be found in the source code at [DM15b]. This
target-internal hang detection infrastructure provides two additional failure modes:

• system hang detected (SHD)

• workload hang detected (WHD)

6.3.2 The Higher Order Code Mutation Fault Model

In the experiments, driver source code changes are introduced to emulate residual
defects of device drivers in a similar way to recent studies on OS software fault tolerance
[NC01; SBL03b] and on dependability benchmarking [DM03b; VM03; DVM04]. The
SAFE tool [NCD+13a] has been adopted to inject realistic code changes that were
defined on the basis of actual faults found in commercial and open-source OSs [CC96;
DM06]. The interested reader is referred to [NCD+13a] for a detailed exposition on
fault types.

As faulty drivers are known to constitute a severe threat to system stability, the
SUT and OE have to be executed in a strictly isolated environment that (a) prevents
experiments from affecting the test bench and (b) enables subsequent experiments
to start from a clean environment free from effects of previous experiments. These
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requirements result in high experiment overheads for FI-based robustness assessments
and thereby limit experiment throughput, which parallelism could compensate for,
even for classical experiments that do not take higher order faults into account.

The main purpose for investigating throughput improvements in this thesis, how-
ever, is to mitigate overheads from higher numbers of experiments resulting from
higher order fault models. In order to investigate the impact of parallelism on high
volumes of FI experiments, faults are selected from both single and higher order injec-
tions into driver code. Higher order faults are injected by repeatedly invoking SAFE
on previously mutated driver code in a similar way to emerging higher order mutation
testing approaches [JH09]. The injection of multiple faults leads to a combinatorial
explosion of the number of faulty drivers to test with, and allows experimentation with
a high volume of injection runs.

6.3.3 Performance and Result Accuracy Measures

As stated in Section 6.1, there are two aspects of interest for the PAIN experiment
executions. On the one hand, PAIN is intended to mitigate the experimentation
overhead resulting from the usage of higher order fault models proposed in this thesis.
On the other hand, the strategy is only viable if it does not affect result validity. I
detail the corresponding measures applied in the evaluation of the PAIN approach in
the following.

Performance measure: The performance metric considered for evaluating PAIN
is experiment throughput, measured as the average number of experiments per hour.
Besides the increase in experiment counts required by higher order FI, a speedup of
FI experiments is generally desirable to achieve a better coverage of fault conditions
to test with [BKK+10; HBK+10].

The accuracy of FI results needs to be defined in statistical terms, since the outcome
of FI experiments is influenced by non-deterministic factors, as mentioned in the be-
ginning of this section. This aspect may not be intuitive and requires a more detailed
discussion. In order to observe the effects of injections, the injected code needs to
be activated during experiment execution [GT07]. As the abstraction from hardware
configuration details and the orchestration of access to hardware devices are among
the core functions of OSs, most of them do not provide a direct interface to driver
functions for programmers. As a consequence, a large and complex software layer
interposes between device drivers and user programs (cf. Figure 6.1). Some driver
functions (e.g., those related to power management) may even be entirely hidden from
user programs and invoked by the OS upon (possibly non-deterministic) hardware
events and task scheduling.

Accuracy measures: The measure for result accuracy has two aspects. First, it is
important whether result distributions of failure modes (Section 6.3.1) change with
increased parallelism. Second, the degree of result heterogeneity across repetitions
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of identical campaigns is of relevance, as this indicates the reproducibility and repre-
sentativeness of the results. While for the first case, a binary measure that indicates
statistically significant deviations suffices, a comparative metric is required for the lat-
ter. A Chi square test for independence is conducted to decide whether or not result
distributions for parallel experiments differ significantly from result distribution for se-
quential experiments. To measure the variance of distribution samples, the obtained
distributions are interpreted as vectors and their Euclidean distances from the mean
are calculated. The mean value of all such distances within a set of repetitions for the
same setup is used and denoted as heterogeneity metric d.

6.3.4 Hypotheses

On the background of the introduced models and terminology, precise hypotheses can
be derived from the research questions stated in the beginning of Section 6.3. In the
following, only the null hypotheses to be tested are stated. The alternative hypotheses
are the negation of the stated null hypotheses.

Hypothesis H0 1 If the number of parallel experiment instances running on the same
physical machine is increased, the experiment throughput does not increase.

Hypothesis H0 2 If the number of parallel experiment instances running on the same
physical machine is increased, the obtained result distribution of failure modes is in-
dependent from that increase.

Hypothesis H0 3 If the number of parallel experiment instances running on the same
physical machine is increased, the heterogeneity among repeated injection campaigns
does not increase.

6.4 Experiment Setup and Execution

All software developed to conduct the experiments in this chapter (currently 14 159
physical SLOC2) is publicly available at github [DM15b] for the reproduction and
cross-validation of the results.

6.4.1 Target System

The Android OS targeted as SUT is Android 4.4.2 “KitKat” with a 3.4 kernel from
Google’s repositories [Gooc]. The SUT and OE are running in the goldfish System-on-
Chip emulator [Goob], which is based on the QEMU emulator/virtualizer [Bel] and
ships with the Android SDK.

The MMC driver for the emulated SD card reader of the goldfish platform is targeted
for injections. The driver has 435 physical source lines of code. Two different synthetic

2generated using David A. Wheeler’s SLOCCount
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workloads are applied to trigger injected faults in the MMC driver, both of which based
on code from Roy Longbottom’s Android benchmarks [Lon].

The first workload (“pure”) performs file operations on the emulator’s virtual SD
card in order to (indirectly) exercise the MMC driver and faults injected there. The
workload is based on code from the DriveSpeed benchmark app and configured to
stress the SD card driver for approximately 30 seconds.

A “mixed” workload adds CPU and memory load to the pure workload. The goal
is to create a more diverse utilization of system resources by the emulator to cover a
wider range of possible interference between emulator instances competing for shared
system resources. Besides DriveSpeed, code from the LinpackJava and RandMem
benchmarks is used. All benchmarks are executed as parallel threads, leaving their
scheduling to the Android OS.

An additional thread in the workload apps is used to perform WF failure detection,
since application failures are signaled as exceptions within Android’s Dalvik runtime
and need to be explicitly forwarded to the external failure detector residing outside of
the emulator.

6.4.2 Fault Load

Applying SAFE for creating faulty versions of the MMC driver results in 273 mutants
to test with. The recursive application of SAFE to each of these mutants, as described
in Section 6.3.2, yields 70 167 second order mutants and, hence, a total of 70 440 faulty
driver variants to test with. This drastic increase in numbers from first to second
order mutants illustrates the combinatorial explosion resulting from simultaneous fault
injections and higher order mutation testing.

To test the hypotheses outlined in Section 6.3.4, the conducted campaigns are re-
stricted to 400 randomly sampled mutants from the set of first and second order
mutants. As the outcomes of experiments are subject to non-determinism and ex-
periment repetitions are required to establish confidence in the obtained results, each
campaign is repeated three times to account for non-determinism (Section 6.3.3).

6.4.3 Execution Environments

In order to conduct parallel tests on the same hardware, instances of the goldfish emu-
lator, in which the target system is executing, are replicated on a single host machine.
This parallelization by replication of emulator instances reflects the implicit assump-
tion of non-interference at question, as emulation and virtualization form the basis
of recent approaches to test parallelization [YZX+09; YTC+10; BKK+10; HBK+10;
MEK+12].

In order to avoid effects from a single platform to bias the results, all experiments
are executed on two different platforms:

• A desktop configuration with an AMD quad-core CPU, 8GiB main memory, and
a 500GB hard drive operating at 7200RPM.
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• A server configuration with two Intel Xeon octa-core CPUs, 64GiB main mem-
ory, and a 500GB hard drive operating at 7200RPM.

To avoid differing CPU frequencies from biasing results, frequency scaling has been
disabled and all cores on both machines have been configured to constantly operate
at 1.8GHz (which was the only possible common configuration on both platforms).
Hyper threading has been disabled on the Intel processors to achieve better compa-
rability with the AMD processors, which do not provide this feature. The desktop
configuration is running Ubuntu 13.10, the server configuration CentOS 6.5.
The number of parallel instances running on the same machine, which is the con-

trolled variable in our experiments, is initially chosen as a) 1 (sequential) and b) 2N,
where N is the total number of physical cores available in the machine. 2N is a com-
mon configuration to maximize hardware utilization. By launching more instances
than actually available CPU cores, the cores are more likely to be utilized when some
processes wait for I/O, without requiring frequent migration between cores, which
would impair the effectiveness of L1 and L2 caches. These two basic settings suffice
for a fundamental assessment of the hypotheses stated in Section 6.3.4. To answer
RQ 3, the analysis is extended to further degrees of parallelism.

The different factors outlined above yield 8 different configurations (2 workloads,
2 hardware platforms, 2 degrees of parallelism). For each of these, campaigns of 400
experiments are executed three times (cf. Section 6.4.2), resulting in 24 campaigns
with 400 experiments each to test Hypotheses 1 to 3. The results of these experiments
are reported in the following section, along with a set of additional experiments for an
in-depth analysis of the initial result set.

6.5 Experimental Results and Data Analysis

6.5.1 Initial Results

Table 6.1 shows the results of the 24 campaigns to test Hypotheses 1 and 2. Each
row lists the results for a different setup. The HW column specifies the hardware
platform, the # column the number of parallel instances of the emulator performing
the experiments, and the WL column the used workload. The next ten columns
contain the average number of experiments that resulted in the corresponding failure
mode. In addition to the eight failure modes specified in Section 6.3.1, there are two
additional columns for possible experiment results: An Invalid class of experiment
results for cases in which the experiment control logic had to abort the experiment
due to unforeseen failures within the control logic, and a No Failure (NF) class
for experiments that finished execution without any failure detection. Unforeseen
failures include (for instance) cases when the host OS cannot fulfill requests for resource
allocations. The last three columns list the throughput in experiments per hour,
the average experiment duration in seconds, and the average Euclidean distance of
obtained samples from the mean values as introduced in Section 6.3.3.
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From the obtained experiment throughput data, Hypothesis 1 is clearly re-
jected: In the parallel case the average experiment throughput is considerably higher
than in the sequential case. An average speedup between 4 and 4.5 is achieved for an
8-fold increase of instances on the desktop machines and an average speedup between
9.4 and 10 for a 32-fold increase on the servers. The throughput calculation is not only
based on experiment execution times, but also includes the processing overhead of the
experiment control logic. In the conducted experiments, however, this overhead was
small (less than one second per experiment) compared to the experiment duration.

To test Hypothesis 2, a Chi-square test for independence has been conducted to
assess if the observed result distributions are statistically independent from the degree
of parallelism. As multiple tests are performed simultaneously on the same popula-
tion, the p-values have been adjusted according to the Benjamini-Hochberg procedure
[BH95] to account for the risk of false discoveries (i.e., incorrect rejections of the null
hypothesis) in such cases. These adjusted p-values (p) and the corresponding test
results are shown in Table 6.2, along with the normalized Pearson coefficients (r).
The normalized Pearson coefficient indicates the relative “strength” of correlation and
can be used to compare the degree of correlation between parallel/sequential execution
and the different result distributions. The coefficient also indicates positive or negative
correlation. For the Chi square tests the absolute numbers from the distributions have
been used rather than the mean values reported in Table 6.1. The results in Table 6.2
indicate that there is no independence of the result distributions from parallelism in
three out of four cases, and Hypothesis 2 is, therefore, rejected.

Table 6.2: Chi-square test of independence for parallelism and initial result distribu-
tions

HW WL p r Result

Desktop pure 3.2× 10−55 0.45 reject
Desktop mixed 0 0.90 reject
Server pure 2.1× 10−1 0.1 do not reject
Server mixed 4.3× 10−41 0.40 reject

To test Hypothesis 3, the Euclidean distance of the mean distributions shown in
Table 6.1 to each of the three distribution samples they were derived from has been
calculated. The mean values of these distance measures are shown in the d column
of Table 6.1. The heterogeneity of result distributions from parallel experiments is
between 1.7 and 10.1 times higher than the heterogeneity of sequential results and,
therefore, Hypothesis 3 is rejected.

From the presented results, both RQs 1 and 2 are positively answered and, conse-
quently, RQ 3 is addressed in the following.
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6.5.2 Influence of Timeout-Values on the Result Distribution

In order to better understand the trade-off between experiment throughput and re-
sult accuracy, a closer look at the observed changes in the result distributions is re-
quired. While the numbers for the result classes Invalid, SC, SE, WHD, and SHA
only marginally differ across the different setups, we see major deviations in SHD and
WHA failure modes, especially illustrated by the drastic change in the distribution
for 8 instances on the desktop setup with the mixed workload (cf. Table 6.1). As
both failure modes are related to hang detectors and these depend on timeouts for
detection, the increased rates for parallel experiments are suspected false positives of
these detectors and that their timeouts need adjustment in the parallel case. Indeed,
the experiments exhibit longer execution times in the parallel case, as the Experiment
Duration column of Table 6.1 shows. Compared to sequential experiments, the execu-
tion times are roughly doubled. To prevent the longer execution times from affecting
results, the timeout values for the WHA, SHA, and IHA detectors are tripled for the
re-execution of the experiments. Higher timeout values lead to unnecessarily long wait
times in the case of an actual hang failure and Section 6.5.3 discusses better strate-
gies. In the results from the sequential experiments of the conducted study, there is
a relatively small fraction of hang failures and the longer detection time for those few
cases are considered a reasonable cost for more accurate results in the parallel case.

After eliminating this potential source of deviations in the result distributions, the
parallel campaigns were re-executed with the modified setup. All further analyses
presented in this chapter focus on experiments with the mixed workload, as these
exhibit higher correlation coefficients in both setups. Table 6.3 shows the obtained
results, which are closer to the distributions obtained for sequential runs. However,
while the heterogeneity of results has decreased for the server setup, it has increased
for the desktop setup and this divergence of result accuracy is also reflected by the
Chi square test results in the first two rows of Table 6.5: While the result distribution
for the desktop setup still significantly correlates with the degree of parallelism, it is
statistically independent for the server setup. The distribution differences that lead
to this indication of diverging results are mostly due to differing SHD and WHA
failure counts. As a consequence, appropriate timeout selection strategies for the
corresponding detectors on this platform are investigated in Section 6.5.3.

The improved accuracy of experimental results on the server platform raises the
question, whether similar systematic causes of result divergence can be identified. In
order to provoke a stronger impact of such potential effects on the result distribu-
tions, additional campaigns on the server platform with 36, 40, 44, and 48 instances
have been conducted. The results are shown in Table 6.4. The comparatively large
improvement in terms of throughput is probably due to a minor change in the exper-
iment logic to regularly clean parts of the host file system from temporary files used
by the experiment controller. As the Chi square tests for independence in Table 6.5
show, the result distributions for 36, 40, and 44 instances do not significantly differ
from the results obtained from the sequential campaigns, whereas the distributions
for 48 instances do. We also observe a strong increase of the heterogeneity measure
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d for the latter. Although the results for the setups with 36, 40, and 44 instances
are still more heterogeneous than the results obtained from sequential experiments,
it is deemed acceptable and results are expected to further stabilize with moderately
higher numbers of campaign repetitions.

Table 6.5: Chi-square test of independence for parallelism and additional result distri-
butions

HW # WL p r Result

Desktop 8 mixed 6.7× 10−7 0.18 reject
Server 32 mixed 1.0 0.05 do not reject

Server 36 mixed 1.0 0.05 do not reject
Server 40 mixed 7.8× 10−1 0.08 do not reject
Server 44 mixed 2.1× 10−1 0.10 do not reject
Server 48 mixed 1.3× 10−4 0.17 reject

6.5.3 Selection of Timeout Values for PAIN Experiments

As the results of the conducted experiments indicate, the selection of suitable timeout
values for the employed hang detectors is crucial to avoid false positive hang detec-
tions, and good estimates become challenging for PAIN experiments. The timeout
values for the initial experiments had been based on experience with previous sequen-
tial experiments to which a generous safety margin had been added. This turned out
to be insufficient for parallel executions, as is evident from the drastically increased
WHA detections in Table 6.1. A naïve approach to avoid these false positives would
be to upscale the timeout values with the number of parallel instances. However, as
the degree by which execution times increase with the numbers of instances is gener-
ally unknown and, according to the presented results, also depends on the execution
platform (hardware and OS), this entails an iterative process of trial and error until
suitable timeout values are found.

A better strategy is to estimate values based on observations made during so-called
golden runs on the intended execution platform without injections. Such runs should
be performed for each targeted level of parallelism and relevant timing data be recorded
as a baseline to derive suitable timeout values. To assess the suitability of the approach
for estimating accurate timeout values, a number of such calibration runs have been
performed for the parallel desktop setup with the mixed workload using a modified
version of the experiment controller to record additional data. During calibration runs
the times needed for system initialization (sysinit) and for workload completion are
measured, as these two time values are relevant for the IHA and WHA detectors. As
the recorded times appear to be normally distributed, the 99.99 percentiles of a fitted
normal distribution are considered as timeout values, i.e., 99.99% of experiments
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should execute without false hang detections if the fitted distribution matches the
actual distribution of run times.

However, the repetition of the original experiments for the same setup using these
timeout values yielded unsatisfactory results with 106 WHA and 3 IHA detections
in average. While the number of IHA detections is in the expected range for the
99.99 percentile, the number of WHA detections, which is considerably lower than
with our original timeout values (cf. Table 6.1), is still 10 times higher than with our
tripled timeouts (cf. Table 6.3). The difference in the quality of the estimated timeout
values indicates that the chosen calibration approach is suitable for estimating system
initialization timeouts, but not workload timeouts. Since a modified version of the
experiment controller was used to perform the calibration runs, the workload behavior
for real experiments is suspected to differ from the observations in the calibration runs.

To further investigate the timing behavior for real experiments, the original experi-
ments for the desktop setup with the mixed workload have been repeated with stepwise
increased degrees of parallelism. To avoid interference from any spurious detections,
extremely high timeout values were configured for the hang detectors. The system
initialization and workload times were inferred by parsing experiment logs. In order
to exclude outliers in the collected data, only time values between the 0.5 and 99.5
percentiles have been included in the analysis. The graph in Figure 6.2 visualizes the
minimum and maximum times observed. With increasing parallelism, the difference
between the observed minimum and maximum times also increases, with a maximum
difference of about 618 seconds for the system initialization and about 323 seconds
for the workload times. Moreover, the maximum times increase with increasing par-
allelism whereas the minimum times are almost constant.

A comparison of the observed time distributions for our calibration runs and the
repeated experiment runs shows that the workload execution completes significantly
faster in the calibration setup: With 8 parallel instances, for instance, the workload
completes after about 98 seconds on average in the calibration, but needs about 304
seconds on average in the experiment setup.

As these results show that a dedicated calibration setup may exhibit different timing
behavior than real experiments, the choice of suitable timeout values should be based
on timing data from real experiments rather than calibration runs. Timeout values
based on the 99.99 percentile of a distribution fitted to the timing data from actual
experiments yields hang detection counts comparable to the original experiments with
tripled timeout values (cf. Table 6.3), confirming the suitability of the approach. The
new timeout value for the IHA detector is about 300 seconds shorter than the original
tripled value, whereas the new WHA detector timeout is about 30 seconds longer.

With timeout values of comparable or even better accuracy than the previous trial
and error approach, the proposed systematic approach to calculating timeout values
is preferable if it results in acceptable overhead. Timing data from 3 complete experi-
ment campaigns were used for the systematic timeout estimation, summing up to 1200
experiments. While this overhead is acceptable for large FI campaigns, fewer experi-
ments would be desirable, if they provide similarly accurate estimates. To improve the
performance of our timeout value assessment by finding a subset of the available data
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Figure 6.2: Minimum and maximum times for system initialization and mixed work-
load execution observed during experiment runs with increasing levels of
parallelism for the desktop setup.

samples that provides sufficiently accurate estimates, timing data subsets of varying
sizes are selected and used in the estimation process outlined above. The resulting
timeout values for 10% steps in sample sizes are illustrated in Figure 6.3. 1.0 in the
figure corresponds to 873 samples for the sysinit times and 298 samples for the work-
load times. This is a subset of the total experiment count, as only timing data from
experiments, which did not finish their execution prematurely, could be used. For
instance, if in an experiment the system crashed during initialization, no valid sysinit
time for that test case exists. Since the workload times have a narrower distribution
(cf. Figure 6.2), less overall samples are needed to obtain a robust estimation than
for the sysinit times. Starting from a sample size of 0.5 to 0.6, the estimated timeout
values are very close to the value estimated using all available samples. Thus, the
execution of only 2 experiment campaigns would have sufficed for the estimation of
suitable timeout values.
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Figure 6.3: Estimated timeout values for different samples sizes of observed real ex-
periment times.

6.6 Discussion

The experiments performed in this study provide interesting insights about the result
accuracy and performance of FI experiments. The main lessons that can be drawn
from them are summarized in the following. A subtle aspect that turned out to be
more important than initially expected was:

The correct setup and tuning of parallel experiments may prove difficult and re-
quires special care.

The parallel execution of experiments had a significant impact on the duration and
the timing behavior of individual experiments. Besides changing the mean experi-
ment duration, parallelism also led to incorrect failure detections in the first round of
experiments. Even though failure detector timeouts were calibrated on the basis of
preliminary fault-free parallel runs, they turned out to be inadequate to account for
non-deterministic execution delays caused by unexpected interactions among failing
and non-failing VMs that were not observed in fault-free runs.
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Moreover, the technical implementation of the PAIN setup, being concurrent and
complex by itself, required significant efforts for testing and debugging. To achieve a
reliable setup, a number of transient and subtle issues had to be found and fixed that
were related to

• portability across different platforms (e.g., the desktop and the server platforms
had different limits on the maximum number of processes and on other resources,
causing experiment failures),

• resource leaks of the OE (in the case of the Android emulator, temporary files),
and

• communication between the experiment controller and the OE, which in some
cases went out of sync due to unexpected timing behavior and the loss of mes-
sages.

On the basis of this experience, it is advisable for researchers and practitioners, who
design parallel FI setups, to pay attention to these aspects. As the PAIN framework
presented in this chapter has matured to avoid a number of such issues, I hope that
it provides a useful basis for future parallel experiments and experimentation frame-
works. PAIN is based on GRINDER, a versatile fault injection framework designed
for reuse in a wide range of FI-based assessment scenarios with different SUTs and
OEs. Both PAIN and GRINDER, which is described in more detail in Chapter 7, are
provided on github [DM15b; DM15a] under the AGPL v3 license.

Going back to the initial research questions, the conducted experiments provide
evidence that parallelism can influence both experiment performance and results. Ex-
ecuting experiments in parallel can significantly RQ 1 increase experiment throughput
with a speedup factor of up to 10. Thus, FI experiments can be included among the
computer applications that can benefit from parallelism. Nevertheless, it was also
observed that:

The parallel execution of FI experiments can improve experiment throughput, but
can also affect the accuracy of results.

The statistically significant differences observed in result distributions demonstrate
that there are cases in which parallelism can actually change the results of experi-
ments RQ 2, both in terms of failure mode distributions and of result stability across
repetitions. Such effects, ultimately, affect the conclusions about fault tolerance prop-
erties of the target system. In the presented study, performance interferences between
parallel instances changed the failure mode of a subset of experiments (that were orig-
inally not failing or failing differently) to hang failures of the OS and the workload.
Moreover, these hang failures were not easily reproducible and led to unstable failure
distributions.

Such changes in the results were observed for very high degrees of parallelism, e.g.,
up to three times the number of cores (48 parallel experiments) in the case of the server
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setup. Nevertheless, running parallel experiments at a lower degree of parallelism (e.g.,
32 parallel experiments for the server setup with appropriate timeouts) was found to
not cause statistically significant variations from the results of sequential executions.
This observation indicates that parallelism does not necessarily harm result accuracy
RQ 3, if the degree of parallelism is not too high.

Therefore, to maximize the experiment throughput while preserving result accuracy,
it is important to properly tune the degree of parallelism. For instance, the best
throughput in the server setup with mixed workload was achieved when running 36
parallel instances (157.1 experiments per hour on average). Further increasing the
number of parallel instances to 48 gradually reduced the throughput (down to 102.5
experiments per hour) and caused statistically significant inaccuracies. This behavior
illustrates that result inaccuracies occur when the number of parallel instances exceeds
the system’s capacity:

Negative effects on result accuracy can be avoided, if the degree of parallelism is
carefully tuned for best throughput.

Consequently, testers have to determine the appropriate degree of parallelism for
their considered setup by running parallel experiments. For instance, performing pre-
liminary parallel runs with an increasing number of instances is a viable method for
finding a suitable degree of parallelism. The timeout value analysis presented in Sec-
tion 6.5.3 indicates that such runs should not use modified or even simplified versions of
the intended experiment workload, as these may yield significantly different loads that,
for instance, lead to different timing behavior and inaccurate assessments of resource
utilization. While the analyses presented in this chapter focus on FI experiments and
are influenced by the way these tests are conducted, the obtained insights also apply to
other forms of testing (e.g., unit testing frameworks using fixed timeouts per test case
are affected by longer execution times in the parallel case) and systems that exhibit
non-deterministic behavior (e.g., concurrent software systems with non-deterministic
interleavings are vulnerable to the discussed test result deviations).

6.7 Threats to Validity

For any empirical study, care must be taken when interpreting the results and drawing
conclusions. The main threats to validity are the choices for the SUT, the fault model,
and the workload. Although the SUT, fault model, and workload differ from those
in the previous chapters, the drawn conclusions on experiment throughput and result
stability equally apply for those, as detailed below.

SUT selection: The Android kernel was used as the SUT in the presented study.
Android is representative of embedded systems software, like Windows CE, and as
such among the most relevant targets for FI. In contrast to Windows CE, Android
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features more sources for non-deterministic behavior, including concurrency in both
user and kernel space, I/O interactions, and the use of non-deterministic heuristics
adopted in many parts of the OS, such as in task and I/O scheduling and page reclaim
algorithms. As a consequence, experiment result distributions are expected to be more
stable for Windows CE and the effectiveness of parallel experiment execution observed
for Android should, thus, be even higher for Windows CE. Therefore, the effectiveness
conclusion drawn from the study in this chapter also applies for the SUT used in the
previous chapters and a wider range of SUTs.

Fault model selection: For the conducted experiments, a higher order fault model
based on code mutations was used instead of the interface injection based models
introduced in Chapter 5. The model is based on mutations, whose representativeness is
supported by extensive analyses of real faults and mutants, and which are an accepted
practice for operational FI [ABL05; DR06; DM06; NCD+13b]. In order to investigate
the utility of parallelization for coping with the high number of experiments that
result from multiple FIs, both 1st and 2nd order mutants are created and used in the
experiments. As discussed in Section 3.1.1, interface injections are often preferable
for debug FI, as representativeness of injected faults is of little concern and interface
injections usually provide higher injection efficiency. This higher injection efficiency
could lead to a greater influence of timeout values, as hang failures are expected to
occur more often. If the proposed mechanism for timeout value selections presented
in Section 6.5.3 is followed, higher hang failure rates from interface injections should
be reflected in the chosen values and should not pose a threat to the validity of the
conclusions drawn from the study in this chapter. While the achievable throughput for
experiments with high hang rates is expected to be lower, a higher injection efficiency
also entails that less experiments are required for the detection of robustness issues,
which likely compensates for the higher waiting times for hang failures.

Workload selection: As workload, existing performance benchmarks for the An-
droid platform were used to create load for specific hardware elements, rather than
manually crafted workloads targeting a specific driver implementation in the previous
chapters. Although benchmarks may not be representative of specific user scenarios,
they are the most typical workloads in FI experiments, especially in the context of
dependability benchmarks [NC01; VM03; KS08]. Moreover, performance benchmarks
are stressful workloads and increase the likelihood of fault activation during experi-
ments [THZ+99]. The new workloads were chosen, as the Windows CE and Android
APIs significantly differ and required a re-implementation for the workload. Despite
the difference, the type of load that the pure workload in this chapter imposes on the
targeted driver is similar to the workload created by the Windows CE workloads. As
the obtained results show greater interference for the mixed workload, which creates
CPU and memory load in addition to the driver load, this aspect should not threaten
the conclusion on throughput improvements by parallel execution, as interference is
likely lower for the workload in the Windows CE setup.
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6.8 Conclusion

As software systems become more complex and, at the same time, tend to exhibit
sensitivity to higher order faults, the number of relevant fault conditions to test against
also increases drastically. The simultaneous execution of similar tests on parallel
hardware has been advocated as a viable strategy to cope with rapidly increasing
test counts for correctness testing. In this chapter I have addressed the question
whether such strategies can be applied to speed up FI experiments by performing
PArallel INjections (PAIN). Besides assessing the speedup of experiment throughput,
the question whether PAIN affects the accuracy of FI results was also addressed.
Two measures of “metrological compatibility” (i.e., how accurately results from PAIN
reflect results from sequential experiments) for FI results are defined and applied in
an analysis of higher order fault injection experiments on the Android OS.

The results show that while PAIN significantly improves the throughput, it also
impairs the metrological compatibility of the results. The observed result inaccuracy
is related both to the degree of parallelism and to the choice of timeout values for
failure detection, due to resource contention and timing of events that influence the
experiments. To mitigate this interference across PAIN experiments, timeout selection
strategies are assessed and corresponding guidelines to tune experiments using data
from preliminary experiment executions given, in order to achieve high experimental
throughput while preserving result accuracy.
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7 GRINDER: A Generic Fault
Injection Tool

As stated in Chapter 3, FI tests are usually highly automated for efficiency and to
prevent human error from affecting result reliability. While an existing tool was ad-
justed for the studies presented in Chapters 4 and 5, the tool was tightly coupled with
the targeted Windows CE SUT and its OE, and was not reusable for the Android
SUT used for the assessment of PAIN experiments presented in Chapter 6. In fact,
most existing FI automation tools have been built for a specific application domain,
i.e., a certain system under test (SUT) and fault types to test the SUT against, which
significantly restricts their reusability.

To improve reusability, few generalist FI tools have been proposed in the literature
to decouple SUT-independent functionality from SUT-specific code. Unfortunately,
existing generalist tools often embed subtle and implicit assumptions about the target
system that affect their reusability. Moreover, at the time the tool implementation for
the Android robustness assessments in Chapter 6 started, these generalist tools were
not openly available to even assess their applicability for the Android SUT.

In order to avoid future re-implementations of the common fault injection func-
tionality discussed in Section 3.1, the PAIN experiment framework for Android has
been based on GRINDER, a generalist FI tool that provides an abstract interface for
SUT interactions. In this chapter, which is based on a workshop paper accepted for
presentation at AST 2015 [WPS+15], I present GRINDER and its application to the
Android SUT. To illustrate the reusability aspect, I quote numbers from an exten-
sion of GRINDER for a different SUT, an AUTOSAR-based automotive system. This
adaptation has been conducted by Thorsten Piper and constitutes no contribution of
my thesis.

GRINDER is made available under the AGPL v3 license on github [DM15a].

7.1 Introduction & Related Work

Although a variety of FI tools exist (cf. [HTI97; SQP+11; ZAV04; Nat11]), most
of them are tailored for a specific FI mechanism and the targeted SUT. As a result,
testers tend to develop custom tools for new SUTs, either because no FI tool exists
for that SUT or the effort to identify it among the large number of existing tools (and
adjust it) exceeds the effort for re-implementation.

Schirmeier et al. [SHK+12] distinguish between generalist and specialist tools. Spe-
cialists (e.g., Xception [CMS98], FERRARI [KKA95], Ballista [KD99], LFI [MC09],
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SAFE [NCD+13a]) support specific SUT classes and FI mechanisms and are highly
customized for their intended use case. On the positive side, such specialist tools can
provide very efficient implementations with a very low run time overhead, as they can
exploit SUT-specific assumptions. Xception, for instance, makes use of special CPU
debug registers to perform injections with minimal intrusiveness. On the downside,
such high specialization causes a strong coupling between the FI tool and the SUT,
which limits the reusability of the tool for experiments with other SUTs. In the case
of Xception, the applicability of minimally intrusive injections relies on the presence
of the required debug registers and functions in the targeted processor and cannot be
used on hardware platforms that do not feature these mechanisms.
Generalist tools (e.g., GOOFI [AVF+01], NFTAPE [SFB+00], FAIL* [SHK+12])

are adaptable to various SUTs and FI mechanisms. They provide means to reuse com-
mon modules and avoid the overhead for their re-implementation. Generalists are built
around an extensible architecture with interfaces for extensions and customization to
tailor them for specific use cases.

Even though a number of generalist tools have been proposed, none of them has
matured to a point where it could easily be applied to new classes of SUTs unforeseen
by the original authors of the tools. In fact, even if generalist tools are designed for
high portability and reusability, they often embed subtle and implicit assumptions
about the SUT (e.g., assumptions about the OE and the failure modes of the SUT)
that hamper their applicability for other SUTs. As a result, there is no generalist fault
injection tool that is widely adopted outside the context of the research projects in
which it was developed. Unfortunately, no previous experience report on the practical
issues that arise when applying a generalist fault injection tool to a new SUT exists,
thus providing little guidance for prospective users and researchers.

Chapter contribution: To fill this gap, this chapter reports on the architecture and
usage of GRINDER, a generalist FI tool that was implemented to conduct FI experi-
ments for different SUTs and that forms the basis of the PAIN experiment framework
used to analyze experiment parallelization effects in Chapter 6. GRINDER is pub-
lished under an open source license with the goal of lowering the bar for the adoption
of fault injection by researchers and testers [DM15a]. GRINDER achieves reusabil-
ity across diverse SUTs by introducing an abstract interface for SUT and OE control
described in Section 7.3that requires SUT-specific implementations for each targeted
SUT. To provide guidance on GRINDER’s usage I briefly discuss the adaptation of
GRINDER to the Android SUT in Section 7.4. To demonstrate the reusability of
GRINDER I present physical SLOC counts for the reusable and SUT-specific parts
of the FI framework implementations for four different FI scenarios with two dif-
ferent SUTs in Section 7.5.The numbers indicate that a large part of GRINDER is
reusable across the different application scenarios (up to 72%). In order to improve
the performance of fault injection experiments and reduce interference across parallel
experiments in the case of Android, the SUT-specific part of the framework had to
provide alternative implementations for some of GRINDER’s functions, thereby devi-
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Fault injection tool

Fault Injector Workload
Generator Monitor

Data Collector
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Figure 7.1: Common modules of a fault injection tool. Adopted from Hsueh, Tsai, and
Iyer [HTI97] with modifications.

ating from the intended reuse. Nevertheless, even in this case the amount of reused
code accounted for more than 54% of the overall code for conducting the tests.

7.2 Reusability of Fault Injection Tools

Figure 7.1 shows the generic FI setup introduced in Section 3.1. As a different SUT
often implies a different OE1 (for the relationship between SUT and OE, see Sec-
tion 3.1), all components of the FI tool that directly interact with the OE and contain
at least some OE-dependent code usually cannot be reused if the SUT changes. As the
OE contains the SUT, I collectively refer to OE dependence in the following, although
changes in the OE that affect FI tool components mostly result from a changed SUT.
OE-independent code, like reusable fault types or workloads, can be implemented in
corresponding libraries. Components that have no direct OE-dependency (i.e., the
controller, data collection, and data analysis) can be reused, unless implicit couplings
with the OE exist, e.g., data analyses on SUT-specific data. Specifically, the controller
and test data processing components bear a high potential for code reuse, whereas the
fault injector, the workload generator, and the monitor bear a lesser potential for code
reuse, as their direct interaction with the OE implies SUT-dependence to a certain
degree.

1For instance, the Windows CE workloads and drivers from Chapters 4 and 5 could not be used
with the Android kernel in Chapter 6
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7.3 The GRINDER Test Tool

Based on experience building specialist FI tools for various SUTs [HJS02; JSM07b]
and the frequently encountered need for reimplementing previously developed func-
tionality, GRINDER (GeneRic fault INjection tool for DEpendability and Robustness
assessments) has been developed as a generalist tool. Previous specialist tools were
not reusable for new SUTs, such as the Android OS targeted in Chapter 6 or the
AUTOSAR platform targeted by colleagues [PWM+12], and existing generalist tools
were not publically available.

FAIL* [SHK+12] has been made openly available under an open source license after
the work on GRINDER and PAIN had been mostly completed. However, although
FAIL* is a generalist tool, it has been developed with the primary intention to em-
ulate hardware failures and assumes the SUT to execute in an emulator, where the
emulated hardware constitutes the OE, whose malfunction is simulated. This under-
lying assumption on the SUT interface via an emulator renders FAIL* inapplicable for
testing systems that require execution on actual hardware platforms, such as real-time
systems or systems for which no appropriate emulator is available, as was the case for
the targeted AUTOSAR system. Circumventing this constraint would have required
major changes to FAIL*’s architecture, making the development of a new generalist
tool even retrospectively the better decision.

GRINDER is written in Java and follows the general FI tool architecture introduced
in Figure 3.4. Like other state-of-the-art generalists, GRINDER implements the FI
experiment flow independently from a specific OE and injection method. GRINDER
provides two interfaces for OE interactions.

• Test stimuli (faultload and workload), OE configuration data, test logs, etc. are
transmitted via a communication channel. Different communication channels
can be utilized for different OEs. For all experiments with GRINDER to date
TCP was used.

• To control OE components (e.g., start/halt2, initiate and respond to interac-
tions via the communication channel), GRINDER requires OE-specific code. To
supply GRINDER with the required functions, testers implement a TargetAb-
straction interface defined by GRINDER.

Both interfaces are discussed in the following.

7.3.1 Communication between GRINDER and the SUT

The end points of GRINDER’s communication channels within the OE are interceptors
(cf. Section 3.1). These are probes that can be used to expose the SUT to external
faults at run time or monitor information about the SUT’s state, including failure
detection. This separation of mechanism (interception) from functionality (injection,

2for common operations on the SUT and OE components see Section 3.1

106



7.3 The GRINDER Test Tool

TargetAbstraction

start()
stop()
reset()
runExperiment()

TargetController

-campaign : Campaign
-experiment : ExperimentRun

start()
stop()
reset()
setCampaign(c : Campaign)

Reusable GRINDER Code
SUT-specific Code

Figure 7.2: The TargetController class and the TargetAbstraction interface

monitoring) makes injectors and monitors reusable at different interceptor locations
in the OE. If, for instance, debugger probes are used for interception, each such probe
can be utilized to perform injections (e.g., by altering data) or to monitor the results
of injections (e.g., by logging data).
Communication channels between interceptors and the FI framework are highly

OE-dependent, at least on the lower layers of the protocol stack. If the OE is run-
ning in a virtual machine, the communication link may be a virtual network or a
hypervisor-specific interface. If the OE is an embedded control system, network or
debug connectors may be used. To support diverse implementations of the commu-
nication channel in GRINDER, testers can provide corresponding implementations of
interceptors and the TargetAbstraction.
The process of placing interceptors in the OE, commonly referred to as instrumen-

tation, is usually performed automatically by a separate tool that is not part of FI tool
chain, due to the high dependency on implementation details of the OE. Debugging
probes, for instance, can be inserted by compilers.

7.3.2 TargetAbstraction

The TargetAbstraction interface specifies a simple set of functions that must be imple-
mented for an OE to be controllable by GRINDER. The specification of the TargetAb-
straction was driven by the observation that, on an abstract level, the progression of FI
experiments across different tools and SUTs is the same: SUT initialization, workload
invocation, fault injection, and data collection, as outlined in Chapter 3. Consequently,
the TargetAbstraction comprises these basic control functions that GRINDER requires
to automatically run FI tests. The choice of these functions is based on a survey of
FI-related literature (cf. [HTI97; SQP+11; ZAV04; Nat11]) and previous experience
with FI experimentation.
Figure 7.2 shows the TargetAbstraction class that testers have to implement and

GRINDER’s TargetController, which directly maps the functions that the TargetAb-
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Figure 7.3: Adapting GRINDER to an Android SUT

straction provides to its control functions for conducting automated FI campaigns:
GRINDER starts the SUT, runs an experiment, and stores data for offline analysis.
The SUT is then reset to a known stable state to avoid the impact of undetected
residual injection effects on subsequent runs. These steps are repeated for each run
of the chosen campaign from GRINDER’s campaign database for the targeted OE.
After all tests from the database have been performed, the OE is stopped and ex-
changed or reconfigured, if this is required for subsequent campaigns. The framework
automatically stops execution after the last specified test case. GRINDER’s start op-
eration includes (re-)setting the OE to its initial state. The run operation includes
the workload execution. Injections and monitoring are performed upon activation of
interceptors during workload execution.

7.4 GRINDER Adaptation to Android

GRINDER has been used to implement the PAIN framework (see Chapter 6) for An-
droid [Gooa], which is a popular Linux-based operating system for mobile devices.
Android’s development tools ship with a QEMU-based emulator for convenient devel-
opment without access to a mobile hardware platform. GRINDER runs on the same
host as the emulator, controls the emulator process, and interacts with the Android
system via the Android Debugging Bridge (adb).

Figure 7.3 gives an overview of the Android OE. The Android kernel (zImage) is the
SUT. The goldfish SD card driver’s misbehavior is simulated by FI. The workload com-
ponent is an Android app that triggers kernel/driver interactions to activate injections.
System instability is detected by monitoring existing Linux kernel mechanisms that
signal kernel oops/panic (possibly triggered by the more sophisticated light/heavy
detectors discussed in Section 6.3.1) failures via adb. The TargetAbstraction (QE-
MUAbstraction) is implemented by using QEMU’s functions to start/stop/reset the
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OE.
Two versions of the Android experiment setup with GRINDER have been imple-

mented.
In Scenario 1 code mutations are used to emulate representative residual software

defects [NCD+13a] in the driver. Injections are performed upfront on the driver source
code. The OE is started, the corresponding mutant loaded, and the workload started
to trigger the fault. If an error occurs, a corresponding message (workload error, kernel
oops or panic) is parsed from the adb output and the test ends. If the workload finishes
without error, this is also signaled via adb. If none of these events occur, a timeout
triggers and signals a test hang. Upon any of these events, the emulator is shut down
and the corresponding test result stored in GRINDER’s test database. This setup has
been used for the study presented in Chapter 6.

In Scenario 2 faults are injected by corrupting function call parameters in the inter-
face between the driver and the kernel, similar to the studies presented in Chapters 4
and 5. The interceptor is implemented as an interface wrapper between these com-
ponents. The injection logic is contained in libGRINDER, which is built as a Linux
kernel module. GRINDER first starts the emulator, then loads the interceptor after
boot-up, which in turn loads the driver. GRINDER then starts the workload, which
eventually triggers kernel/driver interactions, which are altered for injections by the
interceptor. The detection mechanisms are identical to Scenario 1.

7.5 Software Reuse

Besides Android, GRINDER has been used for automated FI assessments of an adap-
tive cruise control system based on AUTOSAR [AUT], the de facto standard for au-
tomotive systems. On AUTOSAR timing protection mechanisms were assessed in two
scenarios against (Scenario 3) timing errors in applications and (Scenario 4) timing
errors in the AUTOSAR OS kernel.

Table 7.1: Implementation effort in physical SLOC for five different FI assessment
setups

Case Study
Reusable SUT/Scenario

TotalSLOC specific
(GRINDER) SLOC

Android (Scenario 1) 2429 2028 4457
Android (Scenario 2) 2429 1121 3550
AUTOSAR (Scenario 3 & 4) 2429 523 2952
Android (specialist) – 2464 2464

Table 7.1 illustrates the implementation effort for all four scenarios. All SLOC
counts were generated using David A. Wheeler’s SLOCCount. In Scenario 1 the
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scenario-specific implementation effort accounts for 45.5% of the overall code. With
a corresponding reusable fraction of only 54.5%, this scenario required the highest
adaptation effort. The reason for this increase lies in performance optimizations that
were applied to decrease the run time per test. To avoid the time-consuming transmis-
sion of mutated drivers from the host system to the emulator during the execution of
each test, all mutants have been included in the emulator’s data image. This change,
however, required a number of extensions to the QEMUAbstraction, e.g., to detect
when the system was available for loading the mutant. With a per-test transmission,
this detection is implicit: if the system is able to receive TCP data, it is also ready to
load modules. Moreover, the failure detection logic became significantly more complex
due to longer run times in parallel execution of several tests (see Chapter 6).

The Android assessments with interface injections (Scenario 2) only require lightweight
data transmission to configure injection runs, as only information on where and when
which change should be applied to a parameter value is required. As a consequence,
the scenario-specific code accounts for for only 1121 SLOC. More than 68% of the
overall code is reused from GRINDER’s code base.

For both test scenarios on the AUTOSAR SUT, the SUT-specific implementations of
the TargetAbstraction, the interceptors, and the communication channel accounted for
523 SLOC, which is less than 18% of the overall framework implementation for these
case studies. The main reason for the significantly lower implementation overhead of
the injection logic is the diversity of the intercepted interfaces. While the Android
interceptor covers a complex driver/kernel interface with 22 injection-relevant func-
tions for a single driver, the interceptor logic was simple and mostly reusable across
different experiments for the AUTOSAR scenarios.

The last line of the table shows the implementation overhead for a previously devel-
oped FI specialist tool that targeted the same SUT and injection scenario as Scenario
2 and was written in the same language as GRINDER and its extensions (Java). The
scenario-specific implementation for the same scenario (Scenario 2) with GRINDER
is smaller than 46% of the specialist tool SLOC, indicating that the generalist tool
implementation indeed saves re-implementation efforts.

7.6 Conclusion

In order to avoid re-implementation efforts for common functionality across fault injec-
tion setups for different SUTs, several generalist tools have been proposed. While the
proposed tools have been applied for diverse FI scenarios by their authors, the corre-
sponding efforts to adapt these generalists for each application scenario have not been
assessed. In particular, testers cannot assess if the reuse of such a generalist would
outweigh the implementation effort for a specialized tool from scratch. Moreover,
as most generalists are not freely available, testers cannot conduct such assessments
themselves.

To address this issue this chapter introduces GRINDER, a generalist FI tool that
is freely available under an open source license. GRINDER features a generic SUT
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interface that makes it portable to a large variety of SUTs, as demonstrated by its
successful adoption in four different FI scenarios for two different SUTs. GRINDER’s
code reuse across these scenarios ranges between 54.5% and 72%.
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The pervasiveness of software-controlled computing systems and their interconnection
has increased massively over the past decade and, according to estimates [Cis15], will
continue to increase similarly in the future. With the increasing impact these systems
have on our daily lives, our reliance on their dependable operation, i.e., the absence of
unacceptable failures, also grows. To ensure the absence of unacceptable failures, com-
puting systems need to fulfill two properties. They need to behave according to their
specifications (correctness) and must not behave dangerously in the case on unspecified
operational conditions (robustness). Similar to testing approaches for assessing and
improving the correctness of software, fault injection (FI) is an experimental technique
for assessing and improving its robustness by exposing software to external faults and
monitoring its response. Depending on the assessment purpose, FI-based assessments
fall in two classes. For one class, termed operational FI in this thesis, the purpose is
to assess the software’s behavior for a known application context. The focus of my
thesis is on the second class, termed debug FI, for which the purpose is to identify as
many robustness vulnerabilities with as few experiments as possible.

Although a large number of frameworks and fault models for debug FI exist, virtually
all of them are based on a single fault assumption, i.e., the system under test (SUT)
is only exposed to a single fault during each experiment. While this assumption
has practical advantages for the interpretation of FI experiment results, as observed
SUT behavior can always be attributed to the single considered fault condition it was
exposed to, the exclusion of SUT sensitivity to coincident external faults by assumption
bears the risk of residual robustness vulnerabilities that escape detection in the FI
assessment if the assumption does not hold. On this background, my thesis addresses
the following research questions.

Research Question (RQ1): How can the effectiveness (and efficiency) of fault
models for debug FI be assessed?

In order to investigate if the single fault assumption commonly found in debug FI
assessments is justified, corresponding fault models that violate the assumption have
to be developed and compared against the classically applied models. The assumption
is not justified if its violation improves the effectiveness of debug FI assessments or
their performance or both. In order to investigate their relative effectiveness and
performance, a corresponding set of metrics for comparative fault model evaluations
is required. Inspired by related work on test adequacy criteria for correctness testing,
Chapter 4 makes the following contribution.
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Contribution (C1): A set of metrics to quantify fault model effectiveness and
cost

Although fault models have been compared in existing literature, the applied criteria
either targeted representativeness [MBD+06], which is of lesser importance for debug
FI, or propagation measures [JSM07b], which only capture a fraction of debug FI
effectiveness.

I propose a set of four metrics to capture the efficiency, i.e., the effectiveness and
performance, of fault models for debug FI, spanning interface coverage, injection ef-
ficiency, experiment execution time, and implementation complexity. Except for the
implementation complexity of fault models, for which existing measurement tools are
referenced, the proposed metrics do not require additional measurements beyond those
required for the actual robustness assessments. All metrics provide ratio scale mea-
sures, which makes them suitable for combination in derived metrics. To overcome
the impossibility to state a normalized coverage metric due to the unknown number
of vulnerable services in a SUT, I adopt ideas from correctness test adequacy criteria
and relate observed vulnerabilities to the number of services provided by the SUT’s
interfaces.

I demonstrate the utility of the proposed metrics by comparatively evaluating four
classical fault models according to their efficiency in assessing the robustness of Win-
dows CE’s driver interface.

Research Question (RQ2): Is debug FI with complex fault conditions more
effective than the classical fault models?

The question directly targets the single fault assumption. If complex fault conditions
prove effective for revealing robustness issues, the single fault assumption should be
reconsidered. Using the previously developed metrics for the efficiency of debug FI
fault models, complex and classical fault models can be comparatively evaluated.

Contribution (C2): A taxonomy for fault coincidence and framework for fault
model combination

In order to investigate the validity of the single fault assumption, corresponding fault
models that constitute the intended complex fault conditions are required. In Chap-
ter 5, I develop a notion of fault coincidence by stating external fault properties of
temporal and spatial spread that faults need to fulfill in order to violate the single fault
assumption. Based on this coincidence notion, I derive three temporally coincident
and spatially spread higher order fault models that combine classically applied fuzzing
and bit flip fault models. I use these higher order models to conduct robustness as-
sessments on Windows CE’s driver interface, evaluate their efficiency according to the
previously identified metrics, and compare them against the classical fault models they
are composed of. The results show significant differences in coverage, indicating that
the single fault assumption prevents the identification of non-robust services in Win-
dows CE’s driver interface and should, consequently, be dropped for this SUT. The
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observed violation of the single fault assumption counterproves its universal validity
and suggests a re-assessment of the assumption for other SUTs.

Although the developed higher order models identify robustness issues that classical
models do not detect, they also miss a number of service vulnerabilities that the
other fault models detect. Furthermore, a conducted analysis of fault masking and
amplification effects of higher order fault effects indicates that additional experiments
with classical models are required to derive accurate cause-effect relations, e.g., for
the efficient placement of fault containment wrappers. Due to the observed masking
and amplification effects, it is unclear whether the cause of an observed failure is
caused by a higher order fault or by a subset of the individual faults that a higher
order fault is composed of. Both the incomplete coverage of higher order fault models
and the ambiguity they introduce necessitate additional experiments with classical
models, which leads to an increased number of relevant faults to test with if higher
order models are used.

However, due to their achieved coverage of previously undetected robustness issues,
higher order fault models cannot be disregarded, either. In order to cope with the
expected overhead their adoption implies, I investigate the following research question.

Research Question (RQ3): Can parallel hardware help to increase the
efficiency of debug FI to mitigate the overhead that higher order fault models
entail?

To mitigate the increased experiment counts resulting from the adoption of higher
order fault models in debug FI assessments, I propose to exploit parallel hardware by
concurrent experiment executions. Although parallel hardware has been successfully
exploited to speed up correctness testing, its adoption for FI-based assessments is
not trivial. In contrast to unit and integration tests, for which test parallelization
has been mostly applied, FI-based assessments are system level tests of longer run
times and higher hardware utilization. In addition, FI-based assessments require a
complete re-initialization of the SUT and OE between experiments to prevent dormant
faults and errors from affecting subsequent experiments. In the case of OSs, this
entails a complete OS reboot, which adds to the experiment run time and hardware
utilization. For these reasons, FI experiments and other system level tests likely
cause higher interference on shared resources when executing on parallel computing
platforms, on which often only processing units are replicated. If these interferences
lead to deviations of the experiment results, throughput improvements only imply
that wrong results are obtained faster. The applicability of parallelization to speed up
experiment executions, therefore, depends on both the throughput and the integrity
of results.

Contribution (C3): A framework for parallel FI experiments

In Chapter 6, I propose PAIN, a framework for PArallel fault INjections to exploit
the potential of parallel hardware for improved experiment throughput. To ensure
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that PAIN has no adverse effects on experiment results, the metrological compatibility,
i.e., result equivalence, of parallel and sequential test executions is assessed along with
performance measures.

The conducted robustness assessment of the Android OS’s driver interface reveals
that while considerable performance improvements are achieved, the results obtained
from parallel experiment executions significantly differ from the sequential case. A
more detailed analysis identifies timeout configurations in the applied hang failure
detectors as the cause behind the observed result deviations. The respective timeouts
need to be long enough to avoid false positives. However, if they are too long, the
detection of hang failures is delayed and long execution times result for the corre-
sponding experiments, thereby at least partially negating the throughput gains from
parallel execution.

To overcome the issue, a systematic timeout identification approach is proposed
that relies on time measurements from a series of parallel experiment executions with
the intended degree of parallelism and on the targeted hardware platform. For the
conducted study, reliable timeout estimates are achieved from a campaign of around
800 experiments, which entail a moderate calibration overhead, as they run in parallel
and benefit from the according throughput improvements.

Contribution (C4): A generic FI tool

The choice of a different SUT, e.g., Android instead of Windows CE, requires the
re-implementation the applied FI tool, as FI tools are usually highly coupled with
their SUT. However, as most of these tools share common functionality, a modular
framework would allow for code reuse if changes to the SUT only had to be reflected
by few interfacing modules. With this motivation, a number of FI generalist tools have
been proposed in the literature. Unfortunately, none of the proposed tools was openly
accessible at the time the development of the PAIN framework began. In Chapter 7 I
introduce GRINDER (GeneRic fault INjection tool for DEpendability and Robustness
assessments), a generalist FI tool that specifies an abstract interface for SUT control.
In order to adapt GRINDER for experiments with a new SUT, only this interface needs
to be implemented in addition to SUT-specific instrumentation, which is not part of
the FI framework and needs to be performed for every targeted SUT individually.
The adaptation of GRINDER for Android and the AUTOSAR automotive platform
shows that large parts of GRINDER can be reused for both SUTs if the standard
interface control functions provided by GRINDER are used. In the case of PAIN, the
interface between GRINDER and the SUT had to be extended in order to facilitate
experiment control at run time and reduce experiment execution time, which led to
a larger fraction of SUT-specific code. However, even in that case the reused code
fraction from GRINDER accounted for 54.5%

Both GRINDER and PAIN are made available on github [DM15a; DM15b] under
the AGPL v3 license.
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