Time-Efficient Asynchronous Service Replication

Vom Fachbereich Informatik der Technischen Universitat Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doktor-Ingenieur (Dr.-Ing.)
vorgelegt von

Dipl.-Inform. Dan Dobre

aus Lugoj, Rumanien

Referenten:
Prof. Neeraj Suri
Prof. Michel Raynal

Datum der Einreichung: 23.06.2010
Datum der miindlichen Priifung: 30.09.2010

Darmstadt 2010
D17

i

Abstract

Modern critical computer applications often require continuous and correct oper-
ation despite the failure of critical system components. In a distributed system,
fault-tolerance can be achieved by creating multiple copies of the functionality and
placing them at different processes. The core constitutes a distributed protocol
run among the processes whose goal is to provide the end user with the illusion of
sequentially accessing a single correct copy. Not surprisingly, the efficiency of the
distributed protocol used has a severe impact on the application performance.

This thesis investigates the cost associated with implementing fundamental
abstractions constituting the core of service replication in asynchronous distributed
systems, namely (a) consensus and (b) the read/write register. The main question
addressed by this thesis is how efficient implementations of these abstractions
can be. The focus of the thesis lies on time complexity (or latency) as the main
efficiency metric, expressed as the number of communication steps carried out by
the algorithm before it terminates. Besides latency, important cost factors are the
resilience of an algorithm (i.e. the fraction of failures tolerated) and its message
complexity (the number of messages exchanged).

Consensus is perhaps the most fundamental problem in distributed computing.
In the consensus problem, processes propose values and unanimously agree on one
of the proposed values. In a purely asynchronous system, in which there is no
upper bound on message transmission delays, consensus is impossible if a single
process may crash. In practice however, systems are not asynchronous. They are
timely in the common case and exhibit asynchronous behavior only occasionally.
This observation has led to the concept of unreliable failure detectors to capture
the synchrony conditions sufficient to solve consensus.

This thesis studies the consensus problem in asynchronous systems in which
processes may fail by crashing, enriched with unreliable failure detectors. It de-
termines how quickly consensus can be solved in the common case, characterized
by stable executions in which all failures have reliably been detected, settling im-
portant questions about consensus time complexity.

Besides consensus, the read/write register abstraction is essential to sharing
information in distributed systems, also referred to as distributed storage for its
importance as a building-block in practical distributed storage and file systems. We
study fault-tolerant read/write register implementations in which the data shared
by a set of clients is replicated on a set of storage base objects. We consider
robust storage implementations characterized by (a) wait-freedom (i.e. the fact
the read/write operations invoked by correct clients always return) and (b) strong
consistency guarantees despite a threshold of object failures. We allow for the most
general type of object failure, Byzantine, without assuming authenticated data to
limit the adversary. In this model, we determine the worst-case time complexity
of accessing such a robust storage, closing several fundamental complexity gaps.

il

Kurzfassung

Fiir moderne sicherheitskritische Computeranwendungen ist eine ununterbrochene
und fehlerfreie Funktion erforderlich, oft auch dem Ausfall kritischer Systemkom-
ponenten zum Trotz. In einem verteilten System kann Fehlertoleranz dadurch
erreicht werden, dass mehrere identische Kopien einer Applikation erstellt, und
auf verschiedene, moglicherweise fehleranfillige Prozesse plaziert werden. Kern
dieses Verfahrens ist ein verteiltes Protokoll, das von den Prozessen im verteil-
ten System ausgefiihrt wird, mit dem Ziel eine einzelne und ausfallsichere Kopie
zu simulieren. Endbenutzern wird der Eindruck vermittelt, auf eine korrekte,
hochverfiigbare Kopie sequentiell zuzugreifen. Wie nicht anders zu erwarten hat
die Effizienz des verwendeten, verteilten Protokolls eine signifikante Auswirkung
auf die Performanz der Applikation.

Diese Dissertation untersucht die Kosten grundlegender Abstraktionen verteil-
ten Rechnens, die den Kern der Replikation von Diensten in verteilten Systemen
bilden, namlich (a) Consensus und (b) das Lese-/Schreibregister. Die Haupt-
fragestellung dieser Arbeit ist wie effizient Implementierungen dieser Abstraktio-
nen iberhaupt sein kénnen. Dabei liegt das Augenmerk der Dissertation auf der
Zeitkomplexitat (oder Latenzzeit) als mafigebliche Effizienzmetrik, gegeben durch
die Anzahl der Kommunikationsphasen (oder -schritte) die ein verteiltes Protokoll
bendtigt bevor es terminieren kann. Zwei wichtige Kostenfaktoren neben der
Latenzzeit sind die Ausfallsicherheit (die Anzahl der tolerierten Ausfille) und die
Nachrichtenkomplexitét (die Anzahl der gesendeten Nachrichen) eines Protokolls.

Consensus ist hochstwahrscheinlich das grundlegendste Problem auf dem Ge-
biet des verteilten Rechnens. Es kann wie folgt beschrieben werden: Prozesse
schlagen jeweils einen Wert vor und miissen sich auf einen der vorgeschlagenen
Werte einigen. In einem rein asynchronen System, in dem keine oberen Schranken
fir die Kommunikationszeit zwischen Prozessen existieren, ist Consensus unlésbar,
selbst wenn nur ein einziger Prozess ausfallen darf. In der praktischen Anwen-
dung sind allerdings solche Systeme meistens synchron (d.h. es gibt solche oberen
Schranken), und sie verhalten sich nur gelegentlich asynchron. Diese Beobach-
tung fithrte zu dem Konzept des unverldsslichen Fehlerdetektors, der die hinre-
ichenden Synchronitéatsbedingungen fiir die Losbarkeit von Consensus erfasst und
abstrahiert.

Diese Arbeit untersucht das Consensus-Problem in asynchronen Syste-
men mit Anhalte-Ausfillen von Prozessen, und Verfiigbarkeit von Fehlerdetek-
toren, die auch unverléssliche Angaben iiber den Fehlerzustand von Prozessen
machen diirfen. Es wird ermittelt wie schnell Consensus in Fallen die in der
Praxis haufig auftreten gelost werden kann in, z.B. in sogenannten stabilen
Ausfithrungsinstanzen, in denen geschehene Ausfille bereits verlisslich erkannt
worden sind, und keine weiteren Ausfille mehr stattfinden. Offene Fragen nach
der Latenzzeit von Consensus werden durch die Ergebnisse dieser Arbeit geklart.

Neben Consensus, ist auch das Lese- und Schreibregister eine grundlegende

v

Abstraktion auf dem Gebiet des verteilten Rechnens, und erméglicht den Prozessen
in einem verteilten System auf gemeinsame Daten zuzugreifen. Das Lese- und
Schreibregister wird oft auch, wegen seiner Relevanz als Baustein in praktischen
verteilten Speicher- und Dateisystemen, als Storage bezeichnet.

Diese Dissertation erforscht fehlertolerante Storage-Implementierungen, in
denen Daten, die von Clients gemeinsam genutzt werden, aus Griinden der
Verlasslichkeit und Hochverfligbarkeit auf mehrere Storage-Server repliziert und
damit redundant gespeichert werden.

Es werden robuste Storage-Implementierungen betrachtet, die sich (a) durch
Wartefreiheit (d.h. von korrekten Clients aufgerufene Lese- und Schreiboperatio-
nen miissen stets terminieren) und (b) durch starke Konsistenzeigenschaften ausze-
ichnen, trotz der Fehlfunktion von Storage-Servern und Clients. Das untersuchte
Systemmodell erlaubt die allgemeinste Klasse von Funktionsfehlern, sogenannte
Byzantinische Fehler, ohne eine Authentifizierung der Daten anzunehmen um den
Angreifer zu begrenzen. In diesem Rahmen wird die Worst-Case Latenzzeit von
Lese- und Schreibzugriffen auf ein robustes Storage untersucht und ermittelt, und
dadurch werden etliche grundlegende Komplexitétsliicken geschlossen.

vi

Acknowledgements

To begin with, I am deeply grateful to my advisor Prof. Neeraj Suri for
the huge amount of confidence he has placed in me, and for the unlimited
freedom I received for developing my own ideas and research direction. To
the thesis committee for the time spent reading and evaluating my thesis.
Special thanks goes to my co-advisor Prof. Michel Raynal who’s scientific
writings have opened an entire new chapter in my professional life.

A big thanks goes to my close colleagues and dear friends, Marco and
Matthias, from the distributed computing “subgroup” at DEEDS. They al-
ways have offered their availability and devoted their time and attention to
endless discussions about various research topics, and also about personal
subjects. Special thanks goes to Marco for helping me to improve most of
my writings, for the good time we had in Darmstadt, and the weeks spent
together on our fun travels to foreign countries. Also, special thanks to
Matthias who always took the time to listen to my ideas, pointing out the
bad and the boring ones, since the first day he joined. I thank all my coau-
thor colleagues for their commitment to our joint publications, and the more
senior ones for their guidance.

I am grateful to my colleagues and friends Dinu, Marco, Matthias, Pe-
ter and Piotr with whom I've spent reams of pleasant lunch breaks and
“Stammtisch” evenings. To all DEEDS members, for making my stay in the
group an extremely enjoyable experience. To our secretary Sabine for taking
care of the paper work I never had to handle, and to our technical assistant
Ute, who always provided me with a flawless machine setup.

I am deeply grateful to my parents, for always caring, for all their love
and unconditional support. I'm dedicating this thesis to my wife Alina, for
her love and understanding, and for the most beautiful present — the baby
we are eagerly awaiting.

Dan
Darmstadt, October 4, 2010

vil

viii

Preface

This thesis concerns the Ph.D. work I did under the supervision of Prof.
Neeraj Suri at the Computer Science Department, Technische Universitat
Darmstadt, from 2004 to 2010. The thesis focuses on time-efficient asyn-
chronous distributed algorithms and lower bounds in the context of (a) con-
sensus and state machine replication resilient to crash failures, and (b) dis-
tributed storage resilient to Byzantine failures. This work is a composi-
tion of four published papers [DS06, DMS08, DMSS09, DMSS10], as well
one paper that has been submitted for publication to peer reviewed confer-
ences/journals [DGM*10].

[DGM*10] Dan Dobre, Rachid Guerraoui, Matthias Majuntke, Neeraj Suri,

[DMS08]

[DMSS09)]

[DMSS10]

[DSO6]

and Marko Vukolic. The Complexity of Robust Atomic Storage.
2010. Technical Report TR-TUD-DEEDS-06-01-2010.

Dan Dobre, Matthias Majuntke, and Neeraj Suri. On the Time-
complexity of Robust and Amnesic Storage. In OPODIS ’08:
Proceedings of the 12th International Conference on Principles
of Distributed Systems, pages 197-216, 2008.

Dan Dobre, Matthias Majuntke, Marco Serafini, and Neeraj Suri.
Efficient Robust Storage Using Secret Tokens. In Proceedings of
the 11th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pages 269-283, 20009.

Dan Dobre, Matthias Majuntke, Marco Serafini, and Neeraj Suri.
HP: Hybrid Paxos for WANs. In EDCC’10: Proceedings of the
8th Furopean Dependable Computing Conference, pages 117-126,
2010.

Dan Dobre and Neeraj Suri. One-step Consensus with Zero-
Degradation. In DSN °06: Proceedings of the International Con-
ference on Dependable Systems and Networks, pages 137-146,
2006.

X

During this period, besides the work presented in the thesis, I also
worked on (1) Byzantine resilient atomic broadcast and state machine replica-
tion algorithms [DRS07, SBD*10], (2) on abortable fork-linearizable storage
[MDSS09] and (3) on eventually lincarizable concurrent objects [SBD*10].

[DRS07]

[MDSS09]

[SBD*10]

[SDM*10)]

Dan Dobre, HariGovind V. Ramasamy, and Neeraj Suri. On
the Latency Efficiency of Message-Parsimonious Asynchronous
Atomic Broadcast. In SRDS °07: Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems (SRDS
2007), pages 311-322, 2007.

Matthias Majuntke, Dan Dobre, Marco Serafini, and Neeraj Suri.
Abortable Fork-Linearizable Storage. In OPODIS '09: Proceed-
ings of the 13th International Conference on Principles of Dis-
tributed Systems, pages 255-269, 2009.

Marco Serafini, Peter Bokor, Dan Dobre, Matthias Majuntke,
and Neeraj Suri. Scrooge: Reducing the Costs of Fast Byzantine
Replication in Presence of Unresponsive Replicas. In DSN ’10:
Proceedings of the 40th International Conference on Dependable
Systems and Networks, 2010. To Appear.

Marco Serafini, Dan Dobre, Matthias Majuntke, Peter Bokor,
and Neeraj Suri. Eventually Linearizable Shared Objects. In
PODC ’10: Proceedings of the 29th ACM Symposium on Princi-
ples of Distributed Computing, 2010. To Appear.

Contents

1 Introduction
1.1 Comtext
1.1.1 Consensus
1.1.2 Distributed Storage
1.1.3 On Time Complexity and Related Metrics
1.2 Motivation
1.2.1 Consensus Time Complexity and Open Questions . . .
1.2.2 Storage Time Complexity and Open Questions
1.3 Contributions o
1.3.1 (C1) One-step Consensus with Zero-Degradation
1.3.2 (C2) Generalized Consensus and Hybrid Paxos
1.3.3 (C3) Optimal Robust Amnesic Storage
1.3.4 (C4) Robust Storage using Secret Tokens
1.3.5 (C5) Robust Atomic Storage Complexity
1.4 Roadmap

2 Preliminaries
2.1 Model
2.2 Consensus
2.2.1 Traditional Consensus
2.2.2 Failure Detectors
2.2.3 The Atomic Broadcast Problem
2.2.4 Spontaneous Total Order
2.2.5 Revisiting Consensus in Lamport’s Framework
2.2.6 Generalized Consensus
2.2.7 Complexity Measures
2.3 Distributed Storage
2.3.1 Register Types
2.3.2 Time Complexity

X1

3 One-Step Consensus with Zero-Degradation

3.1 Introduction
3.1.1 Previous and Related Work
3.1.2 Contributions

3.2 Model

3.3 The Lower Bound

3.4 Circumventing the Impossibility with €.
3.4.1 Detailed Description
3.4.2 Correctnesso

3.5 Circumventing the Impossibility with 3P
3.5.1 Detailed Description
3.5.2 Correctness

3.6 The Atomic Broadcast Protocol
3.6.1 Correctness

3.7 Performance Evaluation
3.7.1 Experimental Evaluation

3.8 Summary of the Results

4 Generalized Consensus and Hybrid Paxos

4.1 Introduction
4.1.1 Contributions
4.1.2 No Clear Winner with CPand GP

4.2 Model

4.3 Generalized Consensus and Paxos
4.3.1 The rule of picking a history

4.4 The Hybrid Paxos Protocol
4.4.1 Overview
4.4.2 The Protocol
4.4.3 Discussion

4.5 Evaluation
4.5.1 Experimental Settings
4.5.2 Latency
4.5.3 Throughput

4.6 Proof of Correctness,

4.7 Summary of the Results

5 Robust Amnesic Storage

5.1 Introduction
5.1.1 Previous and Related Work
5.1.2 Contributions

5.2 Model and Preliminaries

xil

5.2.1 Shared Memory Model 86

5.2.2 Preliminaries 87

5.3 Fast Robust and Amnesic Storage 89
5.3.1 Protocol Description 89

5.3.2 Protocol Correctness, 93

5.4 An Optimally Resilient Algorithm 94
5.4.1 A Safe Counter with Optimal Resilience 95

54.2 The DMS3 Protocol 99

5.5 The Optimized DMS Protocol 103
5.6 The Optimized DMS3 Protocol (3t +1) 106
5.7 Summary of the Results 109

6 Robust Storage with Secret Tokens 111
6.1 Introduction 111
6.1.1 Contributions 113

6.2 Model 113
6.3 An Implementation Supporting Unbounded Readers 114
6.3.1 Overview 114

6.3.2 READ Implementation 115

6.3.3 Correctness 117

6.3.4 Optimality: Fast Reads Must Write 119

6.4 An Implementation of Fast READs 121
6.4.1 Overview 121

6.4.2 READ Implementation 123

6.4.3 Correctness 125

6.5 Summary of the Results 126

7 Complexity of Robust Atomic Storage 129
7.1 Introduction 129
7.1.1 Previous and Related work 130

7.1.2 Contributions L. 132

7.2 Model 133
7.3 The Read Lower Bound 133
7.4 The Write Lower Bound 137
7.5 Summary of the Results 144

8 Conclusion 147
A Computing Digests of Large Histories 153
B Read Lower Bound (The Hybrid Model) 155

xiii

List of Figures
List of Tables
Bibliography

Curriculum Vitae

Xiv

161

163

165

175

Chapter 1

Introduction

A core engineering principle when building safety-critical systems is to avoid
a single point of failure. By relying on the correct operation of individual
components, the failure of a single component may result in the unavailability,
or even worse, the corruption of the entire system. A widely used approach
for solving this problem is to design the system in a redundant way, by using
replication. This is also true for modern critical computer applications that
cannot afford data loss or data corruption resulting from failures. This thesis
is about efficiently implementing reliable computer systems from unreliable
components, by means of replication in distributed systems.

A distributed system consists of a set of computing entities, also called
processes, which are able to perform local computation and to communicate
with each other. Distributed computing encompasses the study of funda-
mental problems and algorithms in distributed systems.

The main two challenges distributed computing is facing are failures and
asynchrony. With the advent of cheaper storage, computing and communi-
cation resources, distributed systems have been increasingly built to support
massive scalability in clusters often consisting of thousands of commodity
servers [GGL03, DHJ*07]. In order to meet the needs of high throughput
and low latency, business critical data is partitioned and processed in paral-
lel on multiple machines. In such large-scale systems, it has been recognized
that failures are commonplace rather than being exceptions [GGL03]. Some
failures are accidental, and can be detected (e.g. by using cross check sums)
and semantically turned into simple crash failures. However, when corporate
networks are exposed to the internet, the provided service can be compro-
mised by malicious intruders resulting in undetectable arbitrary behavior of
the faulty components, called Byzantine failures [PSL80].

Besides failures, asynchrony poses a considerable challenge to distributed
computing. In asynchronous systems there are no bounds on transmission

1

2 CHAPTER 1. INTRODUCTION

delays nor on processor speed, making it impossible to distinguish between a
crashed process and a very slow one. Since processes can be arbitrarily fast
or arbitrarily slow, the correctness of a solution cannot rely on the timely
delivery of messages from processes. It would seem easier to design algorithms
in a model which assumes bounds on processing and communication delays
(i.e. the synchronous model). In such a model, unresponsive processes can
be easily detected using end-to-end timeouts. However, modern applications
are composed of many layers, each with complex timing assumptions and
thus they cannot always guarantee end-to-end timing properties. At best,
these systems have predictable response time in the common case, but even
a slight deviation of the load or the operating conditions can lead to long
delays which may violate the timing assumptions made. Additionally, when
dealing with open networks, such as the Internet, malicious break-ins by
attackers may target the timely delivery of messages in order to compromise
the service.

1.1 Context

Above we have given an overview of the main challenges that need to be ad-
dressed by fault-tolerant asynchronous distributed computing research. This
thesis concentrates on two fundamental abstractions in distributed comput-
ing, namely consensus [LSP82, FLP85, DLS88, CT96, Lam98] and read/write
storage (equivalently read/write register) [Lam86, ABD95, MR98, JCT98|.

1.1.1 Consensus

Consensus is perhaps the most fundamental and mostly studied problem
in distributed computing. It has been introduced by Pease, Shostak and
Lamport [PSL80]. In the consensus problem, processes propose values and
are required to irrevocably agree on a value such that: (a) no two processes
decide differently (Agreement), (b) eventually every correct process decides
(Termination) and (c) if a process decides a value v, then some process has
proposed v (Validity) [CT96].

Consensus is an essential building block for many critical applications.
For instance, the most popular way to maintain application consistency and
availability in the presence of failures (and asynchrony) is state machine
replication [Lam78, Sch90]. A reliable server is emulated by a collection
of unreliable replica servers, some of which may fail, and replicas agree on a
sequence of requests to be executed. With this approach, all replicas perform
operations that update the data in the same order, and thus remain mutually

1.1. CONTEXT 3

consistent. Agreement on a sequence of requests boils down to running a
sequence of consensus instances, one per client request (or group of client
requests).

Another example for the relevance of consensus are distributed transac-
tions [Gra78, GL06|, where processes need to agree whether to commit or
to abort a transaction. Generally speaking, consensus is universal, meaning
that the problem of implementing any type of shared object can be reduced
to solving consensus [Her91].

Despite its importance as a distributed computing abstraction, determin-
istic consensus has no solution in the asynchronous model if a single process
may crash [FLP85]. However, real systems are not completely asynchronous.
As a consequence, a great number of works have explored ways to circumvent
this impossibility [BO83, DDS87, DLS88, CT96, CF98, MRRO03].

One way of solving consensus is by extending the asynchronous model
with timing assumptions about message transmission times. The eventually
synchronous model [DLS88| assumes the existence of an wunknown upper
bound on transmission time. The bound is not even required to hold a
priory. However, there is a time called global stabilization time (GST), such
that after GST this bound on message transmission time holds.

A particularly interesting and widely adopted approach constitutes the
seminal concept of unreliable failure detectors and their classification [CT96].
Since the impossibility of consensus in the asynchronous model stems from
the inherent difficulty to tell a crashed process from a very slow one, the idea
was to extend the asynchronous model with failure detection capabilities.
Local failure detector modules monitor a subset of processes and output
information about suspected processes. After a finite time (e.g. GST), a
failure detector is required to cease making mistakes. For instance, faulty
processes eventually must not be mistakenly taken for correct and vice versa.
Obviously, failure detectors cannot be implemented in a purely asynchronous
model. Their role is merely to encapsulate sophisticated timing assumption
and to abstract the synchrony requirements sufficient for solving consensus.

One failure detector type which is of particular interest is the eventual
leader oracle,), that eventually outputs the same correct leader process at
all processes. () has been shown to be the weakest failure detector for solving
consensus [CHT96], and many consensus algorithms have been devised for
this model, e.g. [DG02, GR04, Lam98].

In this thesis we study the consensus problem in the asynchronous system
model with crash failures, enhanced with failure detectors. Under the notion
of asynchronous consensus we consider indulgent [Gue00] algorithms. An
algorithm is indulgent if it always preserves its safety properties (e.g. agree-
ment) even in asynchronous executions, and ensures termination in execu-

4 CHAPTER 1. INTRODUCTION

tions in which failure detection eventually is reliable. The price payed for the
indulgence is that no more than a minority of processes can be faulty [CT96],
no matter what (unreliable) failure detector is used.

Besides consensus, the thesis investigates the equivalent problem of
atomic broadcast [CT96]. Atomic broadcast constitutes the core of state
machine replication. It ensures that requests broadcast by clients to a group
of replica servers are delivered to all servers in the group in the same order.
Given that atomic broadcast is typically built from consensus (e.g. [CT96]),
its performance is determined by the consensus algorithm used.

1.1.2 Distributed Storage

Although the problem of implementing a reliable service from unreliable com-
ponents involves some form of agreement, not all reliable service implementa-
tions translate to consensus. An example of such a service is the read/write
register abstraction, for its relevance in practical distributed storage and file
system architectures also called read/write storage. It provides two primi-
tives, a write operation which writes a value into the register, and a read
operation which returns a value previously written. The read/write reg-
ister abstraction is essential to sharing information in distributed systems
because it abstracts away the complexity incurred by concurrent access to
shared data. Besides its API being very simple, it is today the heart of
modern “cloud” key-value storage APIs (e.g. Amazon S3 [AWS]).

Distributed storage algorithms constitute an active area of research and
are appealing alternatives to centralized storage systems based on specialized
hardware [AEMCC*05, CDH*06, ASV06, SFVT04]. Typically, a reliable
read/write storage is implemented by replicating the data on a set of fault-
prone base objects, of which a threshold may fail. The clients access the base
objects over which the storage is implemented, and the end user is provided
with the illusion of accessing a centralized storage.

Read/write storage can be classified according to the consistency se-
mantics it provides and the cardinality of readers and writers it sup-
ports [Lam86, AW98]. This thesis concentrates on a fundamental class of
read/write storage, in which there are multiple readers and a single writer
(MRSW) [ABD95, ACKM06, ACKMO07, GV06, GV07]. Standard transfor-
mations known in the literature can be applied to implement a multi-writer
storage from a single-writer one [AW9S].

Also, read/write storage comes in three consistency flavors safe, reqular
and atomic in increasing strength [Lam86]. A safe storage guarantees that
a read which does not overlap with any write returns the last value written.
However, if a read is concurrent with a write, the read may return an ar-

1.1. CONTEXT 5

bitrary value, which clearly limits the applicability of safe storage. Regular
storage strengthens safety, requiring that a read returns an actually written
value that is not older than the last value written. This makes regular stor-
age appealing as a direct building block for other applications (e.g. shared
memory consensus [ACKMO06]). However, the most desirable consistency cri-
terion is atomicity (also called linearizability [HW90]). Atomicity provides
to the clients accessing the storage (possibly in a concurrent manner) the
illusion that data is accessed sequentially.

In this thesis we focus on distributed storage in the arbitrary failure model
(also called Byzantine), which becomes increasingly relevant in absence of the
full trust in the cloud [CKS09]. In this model, we study distributed storage
that provides strong consistency guarantees (i.e., regularity or atomicity)
and wait-freedom [Her91], (i.e., the fact that read/write operations invoked
by correct clients always eventually return) despite (a) asynchrony and the
failure (possibly Byzantine) of any number of clients and (b) the largest
possible number of Byzantine base object failures.

1.1.3 On Time Complexity and Related Metrics

Two of the most important challenges when devising a distributed algorithm
is (a) to tolerate the largest possible number of faults, called optimal resilience
and (b) to provide optimal efficiency with respect to some relevant complex-
ity metric. An essential efficiency measure of distributed algorithms is their
time complexity, (also called latency). Roughly speaking, latency captures
how quickly a given algorithm can terminate. Time complexity is typically
measured as the number of message delays (or steps of communication) an
algorithm takes before it terminates [Awe85, Sch97, AW98] (Figure 1.1 (a)).
In data centric storage, often communication takes place only between clients
and servers (e.g. when servers are active disks). Then, the latency of an al-
gorithm is measured as the number of communication round-trips (or simply
rounds) [ACKMO06, GV06], where one round is equivalent to two message
delays (illustrated in Figure 1.1 (b)).

The focus of the this thesis lies on designing latency efficient algorithms.
Besides being of great theoretical importance, the exploration of the latency
metric extends beyond the associated intellectual challenge. With the growth
in data processing and storage outsourcing driven by the advent of cloud
computing, the number of remote interactions among processes maps to our
latency metric and is often directly associated with the monetary cost. This
obviously increases the practical relevance of devising algorithms which are
latency efficient.

Two other relevant efficiency metrics considered in the thesis are through-

6 CHAPTER 1. INTRODUCTION

put and message complexity. Throughput is measured as the number of re-
quests that can be handled per time unit [GGLO03, vRS04, MJMO08] and mes-
sage complexity [RC05, GGKO07] is the total number of messages exchanged.

i i NZANW

P2 P2

. B\

Pa P4 \/ \/
(a) 3 communication steps (b) 2 rounds (4 steps)

Figure 1.1: Time complexity (Latency)

1.2 Motivation

1.2.1 Consensus Time Complexity and Open Ques-
tions

Given that the synchrony models that we have discussed allow completely
asynchronous executions which are finite but unbounded, it is generally im-
possible to bound the running time of consensus in the worst case. In real
systems however, there are often long periods during which communication
is timely, i.e., many executions are actually synchronous. In such executions,
failure detection based on time-outs can be reliable. Therefore, the perfor-
mance of asynchronous consensus is studied in synchronous executions, or
equivalently in executions in which failure detectors are accurate.

Two major research trends have emerged in investigating the latency of
consensus. A large amount of effort has been devoted to executions which
are synchronous from the outset, with and without failures [MRO1, KRO1,
DGO02, GR04, DG05]. More recently, it has been studied how long it takes
for consensus to recover from arbitrary periods of asynchrony once the sys-
tem becomes synchronous and no more failures occur [DGKO07, KS06]. The
latter is relevant for understanding consensus performance in systems that
frequently oscillate between periods of stability and instability.

Keidar and Rajsbaum [KRO01] established a tight bound on the latency of
consensus of fwo communication steps before global decision is reached, (i.e.,
before all correct processes decide) in nice executions which are failure-free
and synchronous. This result contrasts with the synchronous model, in which

1.2. MOTIVATION 7

global decision is reached after one step in failure-free executions, pointing
out the inherent cost associated with tolerating asynchrony.

In practice, nice executions are the exception rather than the norm, as
observed in [GGLO3]. Hence, the question arises if the optimal latency of
two communication steps can also be attained in executions with failures,
e.g. in which all failures have occurred before the execution starts? Recall
that, state machine replication involves executing many instances of consen-
sus, and therefore, it is important that failures which have occurred earlier
do not affect the performance of later instances. Executions in which fail-
ure detection is reliable and all failures are initial are termed stable, and
algorithms that attain the optimal latency in stable executions are called
zero-degrading [DGO02, GRO4].

A large amount of work has went into circumventing the above two-
step lower bound, and several papers have been published devising asyn-
chronous consensus algorithms which, for certain vectors of input values
(also called configuration), expedite global decision to one communication
step, e.g. [BGMRO1, PSUC02, PS03, Lam06a].

Special attention is paid to the case when all processes propose the same
value, which is particularly relevant in the context of state machine replica-
tion, e.g. in datacenters [PS03]. To see why, it is important to understand
that atomic broadcast, which lies at the heart of state machine replication,
typically consists of two phases, a broadcast phase followed by a consensus
phase [CT96]. In the broadcast phase, clients send their requests to the
server processes. When a server process receives a request, it triggers a new
consensus instance proposing that particular request.

In many networks, such as LANSs; it often happens that requests broadcast
by different clients are received by all servers in the same order, a phenomenon
called spontaneous total order [PS03]. Thus, when a new consensus instance
is triggered, all server processes propose the same value in that particular
instance. Optimizing consensus in this regard expedites atomic broadcast
from three message delays in the common case to just two.

The original one-step consensus algorithm is due to Brasileiro et
al. [BGMRO1]. The algorithm attains global decision after a single all-to-all
message exchange if all proposals are equal; otherwise it falls back to a generic
consensus algorithm. While being very efficient from a configuration where
all proposals are the same, the algorithm requires at least three communica-
tion steps from other configurations. A closer look at other algorithms that
reach consensus in one communication step [PS03, MR00, PSUC02, CMP06,
Lam06a] reveals that they also fail to match the two-step lower bound of
Keidar and Rajsbaum [KRO1].

A natural question to ask is whether a single algorithm exists that matches

8 CHAPTER 1. INTRODUCTION

both lower bounds. More specifically, a number of intriguing questions arise:

(Q1.1) Does a single consensus algorithm exist that attains global decision (a)
in one communication step when all proposals are equal and (b) in two
communication steps in stable runs?

(Q1.2) What failure detector is sufficient to attain these two properties? Is €,
which is sufficient for (b) also sufficient for both (a) and (b)?

(Q1.3) If Q is insufficient, then what are possible ways to circumvent the im-
possibility? Does it help to employ a stronger failure detector, or even
to weaken the problem in a meaningful way?

In arbitrary networks, e.g. a WAN, the assumption that messages broad-
cast from clients to servers experience a spontaneous total order is too op-
timistic [SPMO02]. When different clients broadcast their requests roughly
at the same time, it often happens that they are received in different orders
by the replicas, which is termed a collision. Thus, ways have been inves-
tigated to minimize the impact of collisions on consensus performance, for
instance by relaxing the assumptions under which consensus ca be expe-
dited [PS02, Lam05, Zie05].

Pedone and Schiper [PS02] point out that more efficient algorithms can
be devised by taking into account the “semantics” of messages. Instead of
blindly totally ordering all the messages, the authors propose to totally order
only conflicting messages, according to a binary conflict relation defined on
the messages. The practical relevance is obvious. For instance, real-world ap-
plications often encounter read-dominated workloads and “read” operations
never conflict with each other, so they can be applied in any order. In con-
trast, “writes” conflict with other operations applied to the same object, and
consequently have to be totally ordered. The authors of [PS02] introduce the
generic broadcast problem in which only the conflicting messages are totally
ordered, and describe an algorithm that attains the optimal latency of two
message delays with non-conflicting messages.

Inspired by this work, Lamport [Lam05] introduces a very clean and pre-
cise generalization of consensus, from agreement on a single value, to agree-
ment on a growing partially ordered set of values (called generalized consen-
sus). The algorithm that solves the problem is a variation of the well-known
Fast Paxos protocol [Lam06a], called Generalized Paxos, featuring optimal
message complexity and optimal resilience (i.e., 2f + 1 servers, where f is the
bound on faults). It requires the optimal two message delays when requests
are non-conflicting (including the additional broadcast step from clients to

1.2. MOTIVATION 9

servers). However, it incurs four additional message delays to recover from
collisions caused by conflicting requests.

Zielinski’s generic broadcast [Zie05] effectively eliminates collision recov-
ery, by running multiple protocols in parallel and choosing the quickest out-
come. Although the implementation is latency optimal, the authors acknowl-
edge that it is prohibitively expensive in terms of message and computation
complexity. Taking a practical perspective, we raise the following question:

(Q2) Isit possible to devise a high throughput and low latency algorithm that
shares all the nice features of Generalized Paxos (i.e., optimal messages
and optimal resilience) without the expense of collision recovery?

1.2.2 Storage Time Complexity and Open Questions

We now turn our attention to the second subject of the thesis, namely the
read /write register abstraction. Several papers have explored the solvability
and the time complexity metric in the context of a read/write register.

The Crash-failure Model

A seminal crash-tolerant and wait-free atomic MRSW register implemen-
tation with optimal resilience (i.e., 2t + 1 processes, where t is the bound
on faults) was presented in [ABD95]. As it constitutes a key paradigm for
distributed storage design, we briefly discuss its main ideas.

In [ABD95], each process assumes both the roles of client and base object
and up to a minority of processes may crash. Every write operation completes
in a single round. The writer holds a monotonically increasing timestamp,
which induces a total order on the values written, corresponding to the real-
time order of write operations. A write operation assigns a fresh timestamp
to the value it writes, and broadcasts a message containing the timestamp-
value pair to all processes. Each process locally stores the value with the
highest timestamp received so far. After receiving a higher timestamped
value, each process stores the timestamp-value pair and acknowledges the
receipt. The write operation completes when it collects acknowledgments
from a majority of processes.

Beside writes, regular reads in [ABD95] also complete in a single round.
The reader broadcasts a message to all processes requesting the timestamp-
value pair stored on each of them. A process that receives the message simply
replies with the timestamp-value pair it has locally stored. After receiving
timestamp-value pairs from a majority of processes, the read completes by
returning the value with the highest timestamp.

10 CHAPTER 1. INTRODUCTION

It is not difficult to see that the implementation is wait-free, i.e., that
read/write operations always return. Regularity is ensured by the intersec-
tion property of majority sets (also called quorums). If a write operation
with timestamp ts has completed, then a quorum is updated with ts and the
corresponding value. A subsequent read operation accessing a quorum, reads
from at least one of the processes updated by the write. Thus, a read never
returns a value with a timestamp lower than ts.

Atomic reads in [ABD95] require one additional write back phase, whose
purpose is for the reader to update a quorum with the timestamp-value it is
going to read. This ensures that if a read returns a value with timestamp ts,
then no subsequent read returns a value with a lower timestamp. Atomicity
comes at the expense of two communication rounds for read operations.

The problem of modifying [ABD95] to enable single round reads was ex-
plored in [DGLCO04], which showed that such fast atomic implementations,
(i.e. every operation completes in one round) are possible, albeit they come
with the price of limited number of readers and suboptimal resilience. More-
over, the reader in [DGLC04] needs to write (i.e., modify the objects’ state) as
dictated by the lower bound of [FL03] which showed that every atomic read
must write into at least t objects. The limitation on the number of readers
of [DGLCO04], was relaxed in [GNS09], where a crash-tolerant MRSW atomic
register implementation was presented, in which most of the reads complete
in a single round, yet a fraction of reads is permitted to be slow and complete
in two rounds.

The Byzantine-failure Model

The study of reliable distributed storage initiated in [ABD95] for the crash
model was extended to the Byzantine model in [MR98, JCT98], in which (a)
any number of clients may crash and (b) a threshold of base objects may
manifest arbitrary failures. An essential difference to the crash model is that
any safe storage implementation tolerating t Byzantine faults requires at least
3t 4+ 1 base objects (optimal resilience) [MADO02]. To see why, note that any
two quorums must overlap in t+ 1 objects to ensure that some non-malicious
object is contained in the intersection.

In the Byzantine setting, several different data and communication mod-
els have been explored. Some works assume a model where data is authen-
ticated (called self-verifying data) [MR98, CT06, DGLV05], typically using
digital signatures. The time complexity of these algorithms is in line with
that of crash-tolerant distributed storage protocols, e.g. [ABD95, DGLCO04].
On the downside, they involve a certification and a key pre-distribution phase
and entail a noticeable computation overhead. Also, they are typically based

1.2. MOTIVATION 11

on unproven cryptographic assumptions and they are not secure against com-
putationally unbounded adversaries.

Thus, a great number of works have tackled the problem of Byzantine-
fault tolerant storage in a model in which data is unauthenticated [MADO02,
BD04, GWGRO04, AABO07, ACKM06, ACKMO07, GV06, GLV06, GV07,
CGKO07, HGROT7]. Research in the unauthenticated model comes in two dif-
ferent flavors, according to the power of the base objects assumed.

In the server centric model base objects are active, characterized by the
ability to push messages to subscribed clients and to communicate with other
base objects, e.g. [MAD02, BD04, AABO7]. Protocols in this model however,
do not scale well with the number of clients and base object faults, due
to their high message complexities. A different flavor is the data centric
model, in which objects are passive. Passive objects only reply in response to
client requests and do not communicate with other base objects. Algorithms
designed for this model are more general, because little is assumed about
passive base objects.

Robust Storage

In the thesis, we focus on robust storage [CGKO07] implemented from passive
storage components. A robust storage algorithm wait-free implements (at
least) a regular storage from Byzantine base objects in the unauthenticated
data model.

Robust algorithms for unauthenticated data are particularly difficult to
design when values previously stored are not permanently kept in stor-
age, but similar to a circular buffer, they can be overwritten by a se-
quence of values written after them. Obviously, this is desirable because
it enforces a limited amount of data to be stored, preventing the base ob-
jects from exhausting their memory. Algorithms that satisfy this prop-
erty are called amnesic [CGKO07]. Amnesic algorithms store in the base
objects only a limited, typically small history of written values (if any).
Thus, the amnesic property captures an important aspect of the space
requirements of a distributed storage implementation. In contrast, non-
amnesic algorithms store an unlimited number of values in the base objects,
e.g. [IMADO2, BD04, GWGRO04, GV06, GV07, AABO7].

The difficulty of implementing robust amnesic storage stems from the fact
that in the unauthenticated data model, the value read must be sampled from
more than one base object, to guarantee that it is not forged. When during a
read operation, written values are progressively erased by a sufficient number
of overlapping writes, it has been shown to be impossible for the read to
complete, if readers are precluded from writing [CGKO07].

12 CHAPTER 1. INTRODUCTION

Many Byzantine resilient algorithms avoid the problem of storing an un-
limited number of values in the base objects by relaxing robustness. For in-
stance, some implementations do not ensure wait-freedom [Her91] but weaker
termination guarantees, such as obstruction-freedom [HGRO7] introduced
in [HLMO3], or finite-writes [ACKMO6]. Other works implement only weaker
safe storage semantics [JCT98, MR98, ACKMO06, GV06]. Only two works
have explored the feasibility of robust and amnesic storage [GV06, ACKMO07].
The algorithm presented in [GVO06] is not bounded wait-free and reads re-
quire an unbounded number of rounds in the worst case. The one described
in [ACKMOT7], albeit very elegant and simple, has non-optimal resilience and
non-optimal time complexity. Thus, a natural question to ask is whether
robust algorithms which are also amnesic are inherently more costly than
non-amnesic ones. Specifically, the state of the art leaves the following ques-
tions open:

(Q3.1) What is the worst-case time complexity of robust amnesic storage? Is
it possible to devise a robust and amnesic algorithm that is fast, i.e.,
where each operation completes in one round?

(Q3.2) What is the worst-case time complexity of robust amnesic storage with
optimal resilience? Does a bounded wait-free algorithm exist, and if
yes can it match the latency of non-amnesic storage?

Robust storage implementations for unauthenticated data are particularly
attractive because they do not incur the overhead of cryptography and they
are invulnerable to cryptographic attacks. However, existing unauthenticated
algorithms with optimal resilience and optimal time complexity [ACKMO6,
GV06] have a much higher (worst-case) read latency compared to algorithms
storing self-verifying data, using digital signatures [MR98]. This is critical
because many practical workloads are dominated by read operations.

For instance, [ACKMO06] studied the read/write latency of unauthenti-
cated storage with optimal resilience, under the constraint that readers are
precluded from writing. The authors of [ACKMO06] showed a tight lower
bound on writing of two rounds into MRSW safe storage, and a tight lower
bound on reading of t+1 rounds from such a storage. Precluding readers from
writing is appealing because it results in implementations able to support an
unbounded number of possibly malicious readers with constant memory at
the servers. However, allowing readers to modify the base objects’ state helps
improve latency as shown in [GV06], through a two-round tight lower bound
on reading from optimally resilient robust MRSW regular storage.

Altogether compared to optimally resilient algorithms in the authenti-
cated model, which feature fast read/write operations [MR98, CT06], these

1.3. CONTRIBUTIONS 13

results are rather sobering. Thus, the question arises if it is possible to
achieve better latency in the unauthenticated model without fundamentally
strengthening the assumptions. Specifically, we raise the following questions:

(Q4.1) Is the unauthenticated model inherently more costly in terms of read
complexity compared to the authenticated model?

(Q4.2) Is there a way to circumvent the above read lower bounds without the
overhead of cryptography? Specifically, can we achieve constant read
complexity if readers do not write? Can we expedite reads to be fast?

Robust Atomic Storage

In the context of Byzantine-fault tolerant storage, few papers have explored
the best-case latency of optimally resilient robust atomic storage. Here, best-
case encompasses synchrony, no or few object failures and the absence of
read/write concurrency. [GLV06] presented the first atomic storage imple-
mentation in which both reads and writes are fast in the best-case (i.e., com-
plete in a single round-trip). Furthermore, [GV07] considered robust atomic
storage implementations with the possibility of having fast reads and writes
gracefully degrade to two or three rounds, depending on the size of the avail-
able quorum of correct objects. Surprisingly, despite the wealth of research
on robust atomic storage, there is no general picture about the worst-case,
leaving the following question open:

(Q5) What is the worst-case time complexity of robust atomic storage?

1.3 Contributions

In the previous section, we have motivated the need for further exploration of
the time complexity of consensus and read/write storage. The contributions
of the thesis consist of a series of results, including algorithms and lower
bounds, that collectively aim at providing adequate answers to the questions
raised in the sections 1.2.1 and 1.2.2. Onwards we give an overview of the
results by briefly describing each of this thesis’ contributions.

1.3.1 (C1) One-step Consensus with Zero-Degradation

Our first goal is to explore if there is a single consensus algorithm that is (a)
one-step if all proposal values are equal and (b) matches the lower bound of
two communication steps in every stable execution (i.e., is zero-degrading).

14 CHAPTER 1. INTRODUCTION

Thus, we aim at determining if one-step consensus needs at least three com-
munication steps in general, answering questions Q1.1, Q1.2 and Q1.3.

As a first contribution we show that no consensus algorithm relying on €2
can be at the same time one-step and zero-degrading. In a sense, these two
properties are incompatible. To get a rough idea why, note that in a leader
based consensus algorithm, a correct process decides the value proposed by
the current leader (in the first communication step) after being echoed by
a quorum of processes (in the second communication step). In a one-step
algorithm, a correct process decides the value proposed by a quorum of pro-
cesses, not necessarily including the leader process. Obviously, agreement is
violated if the two decision values are different. Thus, a third step is needed
to resolve the conflict.

Our second goal is to find sufficient conditions for circumventing the es-
tablished impossibility and to eliminate the third step. We consider two
different treatments of the problem and present corresponding consensus pro-
tocols. In the first approach, we condition one-step decision on the behavior
of the failure detector. With this relaxation, one-step decision is guaran-
teed only in stable executions. The corresponding consensus algorithm we
describe in the thesis extends beyond theoretical interest. The stability of
executions mostly depends on how hard it is to implement the properties of
the failure detector used (e.g. how many timely links are needed). Among
the failure detectors that allow solving consensus, € is the easiest to imple-
ment in a real system. Since, algorithms using €2 are more likely to exhibit
stable behavior, optimizing latency in this respect is appealing.

The second approach circumvents the impossibility by using the strictly
stronger failure detector 3 P, which eventually outputs exactly the set of
faulty processes. The algorithm is inspired by Lamport’s work on Fast
Paxos [Lam06a], and guarantees both one-step decision (irrespective of the
failure detector output) and zero-degradation. However, it is important to
note that 3 P being strictly stronger than 2, its properties are harder to
satisfy in practice.

Furthermore, we present a consensus-based atomic broadcast algorithm
that has a latency of two message delays in every (stable and) collision-free
execution and three message delays in every stable execution (which is opti-
mal). We evaluate the algorithm using our two consensus implementations
in a LAN of workstations and compare them to the state of the art. The
results indicate that the theoretical latency bounds are reflected only for low
to moderate load. With increasing load, the frequency of collisions also in-
creases, and the protocol mostly operates in the slower mode. Moreover, the
additional messages exchanged to enforce fast message delivery, negatively
affects peak throughput.

1.3. CONTRIBUTIONS 15

1.3.2 (C2) Generalized Consensus and Hybrid Paxos

We address the problem of degraded performance caused by frequent colli-
sions, by turning our attention to the generalized consensus problem, recently
introduced by Lamport [Lam05]. Our contribution is to devise a general-
ized consensus algorithm that meets all latency, message complexity and
resilience lower bounds, and that provides a competitive peak throughput.
Thus we answer question Q2, on the practicality of generalized consensus, in
the affirmative. To fully appreciate our contribution, prior to describing our
result, we first give a short introduction to Lamport’s novel consensus frame-
work [LamO6b] and the Paxos protocol family [Lam98, Lam06a, Lam05].

Background

In traditional state machine replication, a sequence of instances of a consen-
sus protocol are used to agree on the sequence of client commands, where
the ith consensus instance chooses the ith command. Alternatively, a single
instance of consensus can be used to choose a sequence of commands. More-
over, if many commands commute, only non-commutable commands need
to be ordered. Exploiting this observation, generalized consensus [Lam05]
chooses a growing partially ordered set of commands, called a history, in
which every pair of non-commutable commands is ordered.

Lamport’s definition of (generalized) consensus is stated in a slightly dif-
ferent framework than the traditional consensus considered so far, making
it directly applicable to state machine replication in a client/server environ-
ment. Specifically, Lamport [Lam03] considers three different types of roles,
played by the processes: proposers that propose commands, acceptors that
choose an increasing command history and learners that learn what history
has been chosen. In a client/server architecture, clients might play the roles
of proposer and learner, and servers might play the role of acceptor. In addi-
tion, a leader is elected among the acceptors to coordinate their actions. In
the traditional consensus framework considered thus far, each process takes
the role of proposer, acceptor and learner.

Optimal consensus protocols expressed in this framework are the well
known Classic Paxos (CP) [Lam98| and the more recent Generalized Paxos
(GP) [Lam05]. In stable executions, CP requires three message delays. The
communication pattern during normal operation is Client — Leader — Ac-
ceptors — Learners. GP saves one message delay by having the clients send
their proposals directly to the acceptors and bypassing the leader, thus re-
quiring two message delays. Note that these latencies are identical to those
of atomic broadcast. Also, they map to the optimal two message delays

16 CHAPTER 1. INTRODUCTION

(respectively one) of traditional consensus, where the first step is ignored.

GP works fine if the acceptors receive the same sequence of conflicting
commands. However, when conflicting commands are received in different
orders, this results in no command being chosen. To ensure progress, GP
runs a collision recovery procedure, adding four extra message delays, and
a significant computational and message overhead. Thus, if collisions are
frequent, GP has a higher latency and a lower throughput than CP.

Also, we found that even in the absence of collisions, depending on the
layout of clients and servers, CP can outperform GP (for many clients). This
stems from the fact that in order to be fast, GP neceds larger quorums than
CP. The quorums accessed by GP are termed fast quorums.

Our Contribution

Our contribution is a novel generalized consensus protocol called Hybrid
Paxos (HP), which provides the best features of GP and CP together. HP
essentially is an extension of CP by an additional “fast mode”, enabling fast
learning in the absence of collisions. By fast learning we mean learning in
two message delays like in GP. However, unlike GP, in stable executions HP
takes at most three message delays, which is the best-case latency of CP. In
addition to these latencies being optimal [Lam06b], they are attained with
linear messages and 2f + 1 acceptors, which is also optimal.

We show for the first time that generalized consensus can be used to
build efficient replicated services in practice. The key to efficiency is that
fast learning must not impact the bottleneck, which in CP is the leader.
Additional messages in HP are exchanged only between clients (which are
both proposers and learners) and acceptors. Thereby, HP is able to exploit
the underutilization of acceptors in CP, offering a lower latency than CP up
to 70% of its peak throughput. In addition, fast learning is enabled only if
spare capacity is available. This is done by adaptively switching fast learning
on and off based on the load. Our evaluation using Emulab [WLS*03] shows
that the latency of HP indeed reaches the theoretical minimum. Also, that
in the presence of collisions and with increasing load, HP behaves like CP.

1.3.3 (C3) Optimal Robust Amnesic Storage

In the context of distributed storage, we first study the read complexity of
robust amnesic algorithms. The goal is to determine if robust algorithms
which are also amnesic, are inherently more expensive in terms of latency
than non-amnesic ones, answering questions Q3.1 and Q3.2. Given that
with robust amnesic storage, on each read, the reader must write into the

1.3. CONTRIBUTIONS 17

base objects, as dictated by the impossibility of [CGKO07], one may intuitively
think that there is no fast read implementation. Maybe surprisingly, we show
that such fast read implementations exist, and also that reading from amnesic
storage in general can be as fast as reading from non-amnesic storage.

Specifically, our contribution consists of two robust and amnesic algo-
rithms. The first algorithm is optimal in terms of latency while the second
one exhibits minimal latency combined with optimal resilience. The devel-
oped algorithms are based on a novel concurrency detection mechanism and
a helping procedure, by which a writer detects overlapping reads and helps
them to complete.

Our first developed algorithm is fast, meaning that every operation (read
and write) completes in only one round of communication with the base
objects. It requires 4t + 1 base objects to tolerate t Byzantine failures. It is
worthwhile noting that the combination of latency and resilience is optimal,
as with fewer base objects at least two rounds are needed for both reads and
writes to complete [ACKMO06, GV06].

The second developed algorithm uses the optimal number of 3t + 1 base
objects and is the first bounded wait-free algorithm with optimal resilience.
Moreover, every read operation completes in two communication rounds,
which has been shown to be optimal [GV06]. The only other existing robust
and amnesic algorithm with optimal resilience has an unbounded read latency
in the worst case [GLV06].

We now briefly explain the intuition behind the approach. Our algorithms
employ a novel reverse communication scheme between writer and reader, in
which the reader stores information used by the writer to detect concurrent
operations. This communication between reader and writer is abstracted in
a separate shared object called a safe counter (one per reader), whose value
is advanced by the reader and read by the writer. The values returned by the
counter are termed views and each read operation is associated with a unique
view. When a read operation has advanced its current view, a subsequent
write operation can read the new updated view. When the writer detects a
concurrent read operation rd, indicated by a view change, it freezes the last
value Vv previously written. Freezing v means that v is not overwritten unless
the read operation rd has completed. Basically, this scheme guarantees that
rd samples t + 1 copies of v, which would ensure that v is not forged. We
note that rd does not violate regularity by returning v. Essentially this is
true because all the values written after v are written by concurrent write
operations. However, to preclude that read operations return old values
previously frozen, the writer assigns to each frozen value the latest view, as
a freshness indicator for the reader.

18 CHAPTER 1. INTRODUCTION

1.3.4 (C4) Robust Storage using Secret Tokens

Our second contribution in the context of robust storage aims at bridging
the complexity gap between robust algorithms and algorithms storing self-
verifying data, answering questions Q4.1 and Q4.2.

We describe two robust storage implementations for unauthenticated data
with optimal resilience and optimal time complexity. The first algorithm
supports unbounded readers and features constant read complexity, while
the second algorithm features fast reads. Our algorithms circumvent the
lower bounds established in [GV06, ACKMO06] by using secret tokens. A
secret token (briefly token) is a value randomly selected by the client and
attached to the messages sent to the base objects. The secrecy property of a
token selected by a correct client is that the adversary can not generate its
value before the client actually uses the token.

Secret tokens are useful because they prevent faulty base objects from
simulating client operations (read or write) that have not yet been invoked
but will actually occur at some later point in time. Tokens are strictly weaker
than signatures, because they cannot prevent a faulty base object from suc-
cessfully forging a value that is never written. Consider for instance the lower
bound of reading from a safe storage with optimal resilience [ACKMO06]. It
states that with t faulty objects, a read that does not modify the base objects
takes at least t + 1 rounds before it can read a value. In each read round,
a different malicious object simulates a concurrency with the same write,
thereby triggering a new read round. With secret tokens, the second read
round definitely reveals which value can be returned and the read terminates.

The assumption that tokens are secret can be violated with some prob-
ability. However, this probability can be arbitrarily reduced, for example,
by uniformly and independently generating random tokens of K bits and by
increasing the value of k. Note that in practice, assumptions generally hold
only with a certain probability, e.g., the assumption that no more than t base
objects fail.

Our first algorithm does not require readers to modify the base objects.
As a consequence, it supports an unbounded number of possibly malicious
readers. Every read completes after two communication rounds, which we
show to be a tight bound. Thus, the algorithm improves on the read com-
plexity of t + 1 rounds established for unauthenticated storage with optimal
resilience when readers do not write [ACKMO06]. Our second algorithin guar-
antees that every read is fast, by allowing readers to modify the base objects.
The general lower bound of two rounds for reading from a robust storage with
optimal resilience [GV06] is circumvented by having readers writing secret
tokens into storage.

1.3. CONTRIBUTIONS 19

1.3.5 (C5) Robust Atomic Storage Complexity

As the final contribution of this thesis we determine the worst-case time
complexity of robust atomic storage, which despite the wealth of research
in distributed storage, is still an unsolved problem. We focus on optimally
resilient robust (briefly robust) atomic storage and present two lower bounds
on time complexity of reading from such a storage, answering question Q5.
Together, our lower bounds imply that there is no scalable robust atomic
storage implementation in which all reads complete in less than four rounds,
where by scalable we mean constant time complexity.

The first lower bound, referred to as the read lower bound, demonstrates
the impossibility of reading from robust MRSW atomic storage in two rounds.
More precisely, we show that if the number of storage objects is at most 4t
and if the number of readers R is greater than 3, then no MRSW atomic
implementation may have all reads complete in two rounds.

Our proof scheme resembles that of [DGLC04] and relies on sequentially
appending reads on a write operation, while progressively deleting the steps
of a write and preceding read operations, exploiting asynchrony and possible
failures. This deletion ultimately allows reusing readers and reaching an
impossibility with as few as R = 4 readers. As none of these appended
operations are concurrent under step contention, the impossibility also holds
under the assumption of secret tokens, in which the adversary is unable to
simulate step contention among operations.

Our second lower bound, referred to as the write lower bound, shows that
if read operations are required to complete in three communication rounds,
then the number of write rounds k is Q(log(t)). More precisely, we show
that if the number of storage objects is at most 3t + |t/tx], where tx <t and
R > Kk, then no implementation of a MRSW atomic storage may have all
reads complete in three rounds and all writes in k < [log([25t1])| rounds.
In a sense, our lower bound generalizes the write lower bound of [ACKMO06],
which proves our result for the special case of k = 1.

While using a similar approach as in showing the read lower bound, the
write lower bound proof is much more involved and differs from our read
lower bound proof in several key aspects. Due to the additional third read
round, read steps cannot be entirely deleted, which prohibits the reuse of
readers. Consequently, the number of supported readers R and the number
of write rounds k are related (R = k). Furthermore, the proof relies on a
set of malicious objects that forges critical steps of the write and of prior
reads with respect to subsequent reads. This set grows with the number of

20 CHAPTER 1. INTRODUCTION

appended reads, relating the number of faulty objects t and the number of
readers (which is at least k). At the heart of the proof we use a recurrent
formula that relates t and k, similar to a Fibonacci sequence, which describes
the exact relation between the two parameters. In its closed form, the formula
transforms to the log function (k = Q(log(t))).

1.4 Roadmap

Chapter 2 of the thesis gives our system model and important definitions used
in the remainder of the thesis. Chapter 3 presents the impossibility of one-
step consensus with zero-degradation using €), two ways to circumvent the
impossibility, and our latency-optimal atomic broadcast algorithm. Chapter
4 extends these results and presents our optimal and practical generalized
consensus implementation. The algorithm combines optimal latency with
optimal resilience and linear messages. In Chapter 5 we turn our attention
to read/write storage and show that amnesic robust storage can be as fast as
non-amnesic storage by ways of two algorithms. In Chapter 6 we introduce
the notion of secret tokens to bridge the complexity of authenticated and
unauthenticated storage. The resulting algorithms combine optimal latency
with optimal resilience. Chapter 7 provides two lower bounds on the read
complexity of robust atomic storage with optimal resilience. The thesis con-
cludes in Chapter 8, which summarizes the contributions and opens some
avenues for future research.

Chapter 2

Preliminaries

2.1 Model

In this section, we describe the asynchronous message-passing model assumed
throughout the thesis except in Chapter 5, in which processes communicate
through shared objects. Additional details necessary to describe the shared-
memory-model used, are provided in Chapter 5.

We model processes as deterministic I/O Automata [LR89]. A distributed
system consists of a set of processes and each pair of processes is intercon-
nected with point-to-point communication channels and communicate via
message-passing. The state of the communication channel between two pro-
cesses p and qis viewed as a set of messages mset containing messages that
are sent but not yet received (p and q are called ends of the communication
channel). We assume that every message has two tags which identify the
sender and the receiver of the message.

A distributed algorithm A is modeled as a collection of deterministic
automata, where A, is the automaton assigned to process p. We say that a
process p is benign, if p follows the automaton assigned to it. Note that in a
crash-stop failure model all processes are benign. Computation proceeds in
steps of A. A step of A is denoted by a pair of process id and message set
{p,M > (M might be &&). In step sp = {(p, M), a benign process p atomically
performs the following steps (we say that p takes step sp):

(receive) removes the messages in M from mset,

(compute) applies M and its current state stp to Ap, which outputs a new
state sty and a set of messages to be sent, and then p adopts st as its
new state,

21

22 CHAPTER 2. PRELIMINARIES

(send) puts the output messages in mset.

We assume that the system is asynchronous: there is no bound on message
propagation delays, nor on relative processing speeds. However, for ease
of presentation we sometimes refer to a global clock not accessible by the
processes.

We say that communication channels are reliable iff for every two benign
processes p and q, if p sends a message m to g, and both p and q take an
infinite number of steps, then q eventually receives m. More formally, if p
puts m in mset and q is the receiver of m, and both p and q take an infinite
number of steps of their assigned automata A, and Aq respectively, then
there is a step (g, M) such that me M.

Given any algorithm A, a run (also called ezecution) of A is an infinite
sequence of steps of A taken by benign processes, such that the following
properties hold for each benign process p: (1) initially, for each benign process
p, mset = 7, (2) the current state in the first step of p is a special state | nit,
(3) for each step {p,M), and for every message m € M, p is the receiver of
m and mset contains m immediately before the step (p,M) is taken.

A partial Tun is a finite prefix of some run. A (partial) run r extends
some partial run pr if pr is a prefix of r. At the end of a partial run, all
messages that are sent but not yet received are said to be in transit.

We say that a benign process p is correct (also called non-faulty) in a
run r if p takes an infinite number of steps of A, in r. Otherwise, a benign
process pis crash-faulty. We say that a crash-faulty process p crashes at step
Sp in a run, if sp is the last step of p in that run.

In this thesis we distinguish two failure models, (1) the crash-stop failure
model and (2) the Byzantine failure model [LSP82]. In the crash-stop model,
every process is benign. A benign process is either correct or crash-faulty.

In the Byzantine failure model, a process is either benign or malicious
(also called NR-Arbitrary [JCT98]). A malicious (or Byzantine) process p
can perform arbitrary actions: p can remove or put messages in mset at
arbitrary times and can change its state in an arbitrary manner. However,
p cannot put messages into (resp. remove messages from) a channel p is not
an end of. In practice, this assumption is implemented using message au-
thentication codes [Tsu92]. Malicious processes and benign processes which
are crash-faulty are collectively called faulty.

2.2 Consensus

The distributed system we consider consists of a set of n processes of which
up to f may fail by crashing. Precise assumptions on the number f of failed

2.2. CONSENSUS 23

processes are problem specific and are detailed in the respective Chapters.
However, we say that an algorithm has optimal resilience if n = 2f +1. Solv-
ing for f results in [”—?J being the maximum number of faults any consensus
algorithm can tolerate [CT96].

2.2.1 Traditional Consensus

In the traditional consensus problem, processes have to irrevocably agree on
a value that is one of the values proposed by some process. Formally, tradi-
tional consensus is defined by two safety properties (Validity and Agreement)
and one liveness property (Termination) [CT96]:

Validity: If a process decides v, then some process has proposed V.
Agreement: No two processes decide differently.
Termination: Every correct process decides.

This is the definition of consensus we use in Chapter 3. Given its simplic-
ity, this very popular definition of consensus has been considered in many
(mostly theoretical) works on consensus.

Asynchrony and crashes create a context in which consensus has no deter-
ministic solution [FLP85]. As discussed in the introduction, a popular way
to circumvent this impossibility is to add timing assumptions to the system
model that are required to hold only eventually [DLS8S].

2.2.2 Failure Detectors

Instead of dealing with low level details about synchrony and associated
timing assumptions, failure detectors [CT96] are defined in terms of prop-
erties, allowing a clean separation from the implementation. We assume
that the system is equipped with an appropriate distributed failure detector,
consisting of one failure detector module installed at each process. The rel-
evant failure detectors for this thesis are the leader failure detector) (also
called leader oracle) and the eventually perfect failure detector 3 P. Both
eventually provide consistent and correct information about the state of pro-
cesses, i.e., crashed or non-crashed. While 3 P eventually outputs exactly
the crashed processes,) eventually outputs a single correct leader process.
Q) is strictly weaker than 3 P and it is the weakest failure detector to solve
consensus [CHT96, Chu98]. More formally, 3P is defined in terms of the
following two properties:

24 CHAPTER 2. PRELIMINARIES

Eventual Strong Completeness: Eventually, every crashed process is
suspected by every correct process.

Eventual Strong Accuracy: Eventually, no correct process is suspected
by any correct process.

Q2 is defined in terms of the eventual leadership property:

Eventual Leader: Eventually, 2 outputs the same correct process forever.

2.2.3 The Atomic Broadcast Problem

In the atomic broadcast problem processes have to agree on a unique se-
quence of messages. Formally, the atomic broadcast problem is defined in
terms of two primitives a-broadcast(m) and a-deliver(m), where m is a mes-
sage. When a process p executes a-broadcast(m) (respectively a-deliver(m)),
we say that p a-broadcasts m (respectively p a-delivers m). We assume
that every message m is uniquely identified and carries the identity of its
sender. The atomic broadcast problem is defined by two liveness proper-
ties (Validity and Agreement) and two safety properties (Integrity and Total
Order) [CT96]:

Validity: If a correct process a-broadcasts a message m, then it eventually
a-delivers m.

Agreement: If a process a-delivers message m, then all correct processes
eventually a-deliver m.

Integrity: For any message m, every process a-delivers m at most once, and
only if m was previously a-broadcast.

Total Order: If some process a-delivers message m’ after message m, then
a process a-delivers m’ only after it a-delivers m.

2.2.4 Spontaneous Total Order

As pointed out by Pedone and Schiper [PSUCO02], messages broadcast in
LANSs are likely to be delivered totally ordered. This phenomenon can be
attributed to the small variation of network delays in a LAN. Thus, if two
distinct processes broadcast m and m’ respectively, then it is very likely
that m is delivered by all processes before m’ or viceversa. The authors
of [PSUCO02] propose a new oracle called Weak Atomic Broadcast (WAB)
that captures the property of spontaneous total order. A WAB oracle is

2.2. CONSENSUS 25

defined by the primitives w-broadcast(k,m) and w-deliver(k,m), where k € N
is the kth w-broadcast instance and m is a message. When a process p
executes w-broadcast(k, m), we say that p w-broadcasts m in instance k.
When a process p executes w-deliver(k, m) we say that p w-delivers m that
was w-broadcast in instance K. Intuitively, if WAB is invoked infinitely often,
it gives the same output to every process infinitely often. Formally, a WAB
oracle satisfies the following properties:

Validity: If a correct process invokes w-broadcast(k, m), then all correct
processes eventually output w-deliver(k, m).

Uniform Integrity: For every pair (k,m), w-deliver(k,m) is output at most
once and only if some process invoked w-broadcast(k,m)

Spontaneous Order: If w-broadcast(j,+) is called for infinitely many dif-
ferent instances j then infinitely many instances K exist in which the
first message w-delivered in instance K is the same for every process
that w-delivers messages in K.

2.2.5 Revisiting Consensus in Lamport’s Framework

In the state machine approach, a collection of servers executes a sequence of
consensus instances to choose a sequence of client commands. A client sends
a command to the servers, and the servers propose that command in the
next instance of consensus. By considering only the cost of the consensus
algorithm, the messages sent by the client are ignored. Lamport [Lam03]
introduces a generalization of the traditional consensus framework, which
accounts for all the costs (messages and delays) of state machine replication.
Here, consensus is defined in terms of three types of agents:

Proposers: A proposer can propose values.
Acceptors: The acceptors cooperate to choose a single proposed value.
Learners: A learner can learn what value has been chosen.

The traditional consensus framework is somewhat rigid, in that these sets
are equal and each process is proposer, acceptor and learner. Lamport’s
consensus framework provides more flexibility and allows to better model a
client /server architecture in which each client can be considered to be both
proposer and learner, and the servers to be acceptors.

We are now ready to restate the consensus problem as defined by Lam-
port [Lam06b]:

26 CHAPTER 2. PRELIMINARIES

Nontriviality: Only a proposed value may be chosen.
Consistency: Any two values that are chosen must be equal.
Conservatism: If a learner learns value v, then v is chosen.

Progress: If p and | are correct and p proposes a value v, then | eventually
learns V.

This definition can be applied to client/server systems in which clients
(who can play the roles of proposer and learner) are not necessarily reliable.
For instance, a client could invoke an operation and then vanish. There-
fore, reliability assumptions are made only on acceptors. We reconsider a
distributed system to consist of any number of proposers and learners and n
acceptors of which at most f may crash.

2.2.6 Generalized Consensus

In an effort to define consensus in the way it is actually used in the state
machine approach, Lamport [Lam05] extends the concept of consensus from
agreement on a single value, to agreement on a dynamic set of values. This
is done in two stages. In the first stage, consensus is expressed in terms of
agreement on a growing sequence of commands. The observation that leads
to the second stage is that ordering commutable commands is unnecessary.
Instead of choosing a sequence of commands, it suffices to choose a partially
ordered set of commands in which any two interfering (i.e. non-commuting)
commands are ordered. Such a partially ordered set is called a command
history. FExecuting the commands in a command history in any order con-
sistent with its partial order has the same effect. Thus, a history defines an
equivalence class of command sequences.

Histories are constructed by appending a command sequence O to the
initially empty history L using the special append operator . The resulting
history is | e 0. Histories | e 0 and | eT are equal iff 0 and T are equivalent
command sequences.

The prefix relation = on the set of histories is defined as a partial order.
For two histories h and h’, h © h' iff there is a command sequence G such
that h e 0 = h’. We say that h is a prefix of h’ (or equivalently that h’
is an extension of h). A history h is isomorphic to a directed graph G(h)
whose nodes are the commands. There is an edge between any two interfering
commands G and G from G to g in G(h) iff i < in h. For two histories h
and h’; it holds that h = h’ iff the graph G(h) is a prefix of the graph G(h’).
G(h) =G(h) iff h =Hh".

2.2. CONSENSUS 27

A lower bound of a set H of histories is a history that is a prefix of every
element in H. The greatest lower bound (glb) of H is a lower bound of H
that is an extension of every lower bound of H. We write the glb of H as
[TH and we let h m h’ equal m{h,h’} for any two histories h and h’. The
least upper bound (lub) is defined in the analogous manner. We write [ub of
H as | |H and we let h 1 h’ equal w{h,h’}. Intuitively, the glb (resp. [ub)
of a set of histories is the largest common prefix (resp. the smallest common
extension).

We define two histories h and h’ to be compatible iff they have a common
upper bound, i.e., there is some history g with h £ gand b’ = g. A set of
histories H is compatible iff every pair of histories in H are compatible.

We are now ready to state the properties of generalized consensus.

Nontriviality: If history h is chosen, then there exists a proposed command
sequence O, such that h= 1 e 0

Consistency: If any two histories h and h’ are chosen, then h and h’ are
compatible.

Conservatism: If a history h is learned, then h is chosen.

Progress: If pand | are correct and p proposes command €, then eventually
| learns a history containing C.

2.2.7 Complexity Measures

As the main complexity measures characterizing the efficiency of consensus
and atomic broadcast, we consider time and message complexity.

Time Complexity

Since we assume an asynchronous model, in the worst case, the latency of
consensus (respectively atomic broadcast) is unbounded. Therefore, we mea-
sure latency in the best case. The best case is characterized by stable runs
in which the failure detector used by the respective algorithm provides (a)
accurate information about the correct/crashed processes and (b) its output
does not change during the run.

In this thesis, we rely on the definition of time complexity for asyn-
chronous algorithms from [Awe85, AW98] constrained to stable executions.
We define the propagation delay of a message to be the time that elapses
between the event that sends the message and the event that receives the
message. The time complezity (or latency) of an algorithm is defined as the

28 CHAPTER 2. PRELIMINARIES

maximum number of time units from the start until termination of the algo-
rithm, taken over all stable executions, assuming that the propagation delay
is one time unit. We refer to the latency of k time units as k communication
steps (or equivalently k message delays).

The definition of termination is problem specific. In the traditional con-
sensus (resp. atomic broadcast) problem we say that the algorithm termi-
nates when all correct processes have decided (resp. have a-delivered the
a-broadcast message). In generalized consensus, termination means that a
correct learner | has learned a history containing a command ¢ proposed by
correct proposer p, where in our model, | and p are mapped to the same
client process (see Chapter 4 for details).

Message Complexity We measure the message complexity of an algo-
rithm as the maximum number of messages sent from the start until the
termination of the algorithm, taken over all stable executions.

2.3 Distributed Storage

A distributed storage can be viewed as a read/write data structure imple-
mented by two disjoint sets: (1) a set objects of n processes, called base objects
(we sometimes refer to them as servers) and (2) a possibly unbounded set of
processes called clients. Any number of clients may be faulty, whereas only
a threshold t of base objects may fail. Precise statements on the relation be-
tween t and n are problem specific and are given in the respective Chapters.
However, we say that an algorithm has optimal resilience when n = 3t + 1.
Solving for t results in [”—?J, being the maximum number of base object
failures a storage algorithm can tolerate [MADO02].

In the thesis we consider the fundamental class of multiple-reader single-
writer (MRSW) storage, in which the set of clients consists of two disjoint
subsets, a singleton writer and a possibly unbounded set readers with cardi-
nality R (if bounded). In our model we assume that base objects are passive:
(a) they send messages to clients only in reply to a request and (b) base ob-
jects do not communicate with each other. This model is in line with a large
amount of recent work in distributed storage, motivated by the advent of stor-
age area networks (SANs) and network attached storage (NAS), where base
objects model active disks supporting read-modify-write operations [AW9S].

In this thesis we assume the worst-case behavior of base objects, allow-
ing base objects to fail Byzantine. However, we assume that clients fail by
crashing. The reason for modeling clients as benign is that a Byzantine writer
which is writing bogus values into the storage, and otherwise follows the pro-

2.3. DISTRIBUTED STORAGE 29

tocol, may be undetectable. The same holds for a Byzantine reader that is
allowed to write (back) values. Sometimes we can relax the assumption that
readers are benign, for instance when dealing with regular storage, detailed
in Chapters 5 and 6.

A read/write storage abstraction provides two operations: write(v), which
stores v in the register, and read(), which returns the value from the register.
We assume that each client invokes at most one operation at a time (i.e.,
it does not invoke the next operation until it receives the response for the
current, operation). Only readers invoke read operations and only the writer
invokes write operations. We further assume that the initial value of a reg-
ister is a special value vog = 1, which is not a valid input value for a write
operation. We say that an operation op is complete in a (partial) run if the
run contains a response step for op. In any run, we say that a complete op-
eration opy precedes operation op, (or op, succeeds 0pq) if the response step
of opy precedes the invocation step of op, in that run. If neither ops nor op,
precedes the other, then the operations are said to be concurrent. We say of
an operation which does not overlap with any write that it is uncontended.

2.3.1 Register Types

Lamport [Lam86] defines three types of a register, safe, reqular and atomic,
in increasing strength. A storage algorithm is safe, regular or atomic iff it
satisfies the properties of safety, regularity and atomicity respectively. In
the following we give definitions of safety, regularity and atomicity for single-
writer registers. In the single-writer setting, the writes in a run have a natural
ordering which corresponds to their physical order. Let wry denote the k"
write in a Tun (K > 1), and let v be the value written by the k' write.
Further, let vo = L.

We say that a partial run satisfies safety if every uncontended read oper-
ation returns the value written by the last preceding write. More formally,
if rd is an uncontended read operation and rd returns Vg, then (a) there is
a write operation wy preceding rd or vx = Vg and (b) there is no | > k such
that w; precedes rd (wg is the last preceding write).

A (partial) run satisfies regularity if it satisfies safety and every read
operation (contented or uncontended) returns the value of the last preceding
write or a value written by one of the concurrent writes.

Finally, a (partial) run satisfies atomicity if it satisfies regularity and no
read inversion. Roughly speaking, a read operation never returns an older
value than the one returned by a preceding read operation. More formally,
a partial run satisfies atomicity if the following properties hold: (1) if a read
returns X then there is K such that v = X, (2) if a read rd is complete and it

30 CHAPTER 2. PRELIMINARIES

succeeds some write wry (k = 1), then rd returns v; such that | >k, (3) if a
read rd returns v (k > 1), then wry either precedes rd or is concurrent with
rd, and (4) if some read rdy returns vx (k = 0) and a read rd;, that succeeds
rds returns v, then | > k.

An algorithm implements a register if every run of the algorithm satisfies
wait-freedom and the respective consistency property (i.e. safety, regular-
ity, atomicity) of the register. Wait-freedom [Her91] states that if a process
invokes an operation, then eventually, unless that process crashes, the oper-
ation completes (even if all other client processes have crashed).

Following the definition from [CGKO7], we call a storage algorithm A ro-
bust if A wait-free implements a regular register from Byzantine base objects
in the unauthenticated data model.

2.3.2 Time Complexity

In the context of distributed storage we focus on the worst-case time com-
plexity of a register implementation, measured in terms of communication
round-trips (or simply rounds). A round is defined as in [GNS09, LS02,
EGM™*09, DGLCO04]:

Definition 1. Client C performs a communication round rnd during opera-
tion op if the following conditions hold:

1. The client ¢ sends messages to all objects. (Not sending messages to
certain objects can be modeled by having these objects not change their
state or reply).

2. Objects, on receiving such a message, reply to the reader (resp. the
writer) before receiving any other messages.

3. When the invoking client receives replies from at most n —t correct
objects, the round (rnd) terminates (either completing the operation
op or starting a new round).

The time complezity (latency) of a distributed storage algorithm is defined
as the maximum number of rounds taken over all possible executions. Note
that a latency of k rounds is equivalent to 2k message delays.

Since up to t objects might be faulty, ideally, in every round rnd the
invoking client € can only wait for reply messages from at most n —t correct
objects. If in a run r, a round rnd terminates based on replies from a set C
of n—t objects, then (a) either all objects in C are correct or (b) there is run
r’ indistinguishable to client ¢ from r, in which all objects in C are correct.

2.3. DISTRIBUTED STORAGE 31

Also, each round attempts to invoke operations on all objects. If on some
correct object there is a pending invocation (of an earlier round), then the
new invocation awaits the completion of the pending one. This notion of a
round is equivalent to that in the model of [ACKMO6].

32

CHAPTER 2. PRELIMINARIES

Chapter 3

One-Step Consensus with
Zero-Degradation

In this chapter we consider efficient implementations of consensus in the
asynchronous model with crash-failures, enhanced with unreliable failure de-
tectors. In such a setting, if all processes propose the same value, consensus is
reached in one communication step. Assuming f < n/3; this is regardless of
the failure detector output. A zero-degrading protocol reaches consensus in
two communication steps in every stable run, i.e., when the failure detector
makes no mistakes and its output does not change.

Our contribution is to show that leader based consensus implementations
cannot be simultaneously one-step and zero-degrading. Also, we propose two
approaches to circumvent the impossibility and present corresponding con-
sensus protocols. Further, we describe a consensus-based atomic broadcast
implementation which, using our consensus protocols, attains the optimal
latency of three messages delays in every stable run and a latency of two in
the absence of collisions. Collectively, our contributions provide answers to
open research questions Q1.1, Q1.2 and Q1.3 raised in Section 1.2.1.

3.1 Introduction

As already motivated in Chapter 1, consensus is central to distributed system
design, and many fault-tolerant coordination problems can be reduced to
consensus. Specifically, atomic broadcast, which lies at the heart of state
machine replication [Sch90] boils down to executing a sequence of consensus
instances [CT96], one per message (or batch of messages).

If consensus was used only once (e.g. during initialization), then its per-
formance wouldn’t matter. However, consensus is used repeatedly, and thus

33

34CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

its lantecy, measured as the time elapsed until consensus is reached, is a crit-
ical performance indicator. Since the latency of consensus is unlimited in the
worst case [FLP85], we focus on executions common in practice, with few
failures and accurate failure detection.

Given that consensus is utilized in a repeated manner, the overhead
caused by runs with failures is negligible. However, failures occurring during
one instance of consensus can propagate as initial failures to all subsequent
instances. Thus, we are interested in algorithms whose performance is not
degraded in presence of initial failures. To characterize such algorithms, the
notion of stability has been introduced. We say that a run is stable iff the
failure detector makes no mistakes and its output does not change during
that run. Algorithms that reach consensus with optimal latency (i.e. in two
message delays) in every stable run are called zero-degrading [DG02].

Besides being latency optimal in the common case, we seek to expedite the
decision when all processes propose the same value. Assuming f < n/3, no
failure detector is therefore needed and one communication step is sufficient
to achieve global decision.

3.1.1 Previous and Related Work

The idea of one-step consensus stems from Brasileiro et al. [BGMRO1]. Al-
though their solution is optimal when all proposals are equal, the protocol
needs at least three communication steps when starting from other initial
configurations. The algorithm goes through a preliminary voting phase in
which processes exchange their proposals. If a process receives enough equal
values it decides, otherwise it uses an underlying consensus module. If some
process decides v after the first step, all processes that proceed without de-
ciding propose V to the consensus module. Agreement is thus ensured by the
properties of the underlying consensus. The drawback of this algorithm is
that it needs three rounds from other initial configurations.

Based on Brasileiro’s idea, Mostefaoui and Raynal [MRO00] developed an
atomic broadcast protocol that has two message delays in the best case but
needs four in the normal case. Moreover, even if messages are ordered, it
is very unlikely that all buffers have the same length when their content is
proposed. Thus, distinct processes propose different values and the protocol
works in the slower mode.

This problem was recognized by Pedone and Schiper [PS03] and they
suggested agreement on the largest common prefix instead of agreement on
the whole buffer. As long as all buffers share a nonempty common prefix of
messages, their algorithm achieves a latency of two message delays. As soon
as messages are out of order, consensus is needed, which adds a latency of

3.1. INTRODUCTION 35

two additional message delays. This protocol tolerates a minority of faulty
processes, but achieving a latency of 20 requires collecting the proposals from
all processes. Thus, even if a single process crashes, the protocol switches to
the slower mode.

Based on the observation that in LANs, messages are frequently deliv-
ered in total order, Pedone and Schiper [PSUC02] introduced the notion of
ordering oracle to model the spontaneous total order encountered in LANs.
The authors present an atomic broadcast protocol that has a latency of two
message delays in the absence of collisions, performing well in lightly loaded
systems. However, their approach exhibits a dramatic performance degrada-
tion when the load is increased.

Recently, the authors of [CMPO06] have extended the idea of weak or-
dering oracles to Paxos-like [Lam98] protocols. Paxos-like protocols allow
for the recovery of crashed processes [ACT00] and are well suited for the
client/server computation model. The R*-Consensus protocol of [CMP06]
degrades if multiple clients issue requests concurrently and thus it suffers
from the same drawback as the original [PSUCO02].

The key assumption in Brasileiro’s [BGMRO1] one-step consensus is
f < n/3. This is generalized by Lamport [Lam06b] who distinguishes be-
tween the number of correct processes required to reach consensus in one
communication step (n — e with e < f) and the number of correct processes
needed for progress (n—f with f < n/2). Intuitively, if a process p decides v
in one communication step, then it has received n — e equal values v. Conse-
quently, every process q that receives a message from n—f processes receives
vn-—e—f times. Since among the n — f values received by q at most e
values are distinct from v, agreement is ensured if n —e—f > e Thus, the
degree of resilience is given by n > max{2f,2e+ f }. Maximizing e leads to
f < |n/3], while maximizing f leads to e < |n/4].

Recently, Lamport has presented Fast Paxos [Lam06a], an improvement
of the classic Paxos [Lam98] consensus protocol, that achieves a latency of
two message delays in the absence of collisions. However, Fast Paxos has
non-optimal latency if collisions are frequent. Also, if more than e processes
have failed, Fast Paxos is slower than classic Paxos.

3.1.2 Contributions

The state of the art leaves the question open if there is a single consen-
sus algorithm that is both one-step and zero-degrading. Thus, we ask the
following: do one-step consensus protocols need three communication steps
in general? In section 3.3 we show that no leader-based consensus proto-
col can be simultaneously one-step and zero-degrading. This implies that

36CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

leader-based algorithms reaching consensus in one communication step when
all proposals are equal, require three communication steps in the common
case [GRO4].

Our subsequent goal is to find sufficient conditions for circumventing the
established impossibility and to eliminate the incurred latency overhead. In
this chapter we consider two different approaches and present corresponding
consensus protocols. In the first approach, we condition one-step decision on
the behavior of the failure detector. With this approach, one-step decision
is guaranteed only in stable runs. The consensus algorithm we present in
section 3.4 is both of practical and of theoretical interest. It is theoretically
interesting because it uses the (2 failure detector, which is the weakest to solve
consensus [CHT96]. Moreover, since stability frequently holds in practice, it
is appealing to optimize the running time of consensus in stable executions.
Our second approach is to assume a strictly stronger failure detector than
2. The consensus protocol presented in Section 3.5 satisfies both one-step
decision and zero-degradation and uses a 3 P class failure detector.

Furthermore, in Section 3.6 we present a consensus based atomic broad-
cast algorithm that has a latency of 30 in every stable run and a latency 20
in case of no collisions, where 8 is the maximum network delay. Finally, in
Section 3.7 we present both analytical and experimental evaluations of our
protocols.

3.2 Model

We now give an brief summary of the distributed system model formally
defined in Chapter 2. We assume a crash-stop asynchronous distributed
message-passing model consisting of a set of processes II = {py,...,pn} of
which a subset of up to f < |n/3] may fail by crashing. A process that
never crashes is correct, otherwise it is faulty. Processes communicate by
sending and receiving messages over reliable channels. A reliable channel does
not lose, duplicate or (undetectably) corrupt messages. Given two correct
processes p and @, if p sends a message m to q then g eventually receives
m. The system model is enhanced with failure detectors 2 and 3 P. While
(2 eventually outputs the same correct process to every correct process, 3 P
eventually outputs exactly the faulty processes to every correct process.

3.3. THE LOWER BOUND 37

3.3 The Lower Bound

In this section we prove a lower bound on consensus time complexity. We
show that every one-step leader-based protocol has a run in which some
process needs at least three communication steps to decide. In other words
it is impossible to devise a leader-based consensus protocol that is one-step
and zero-degrading. In order to develop an intuition for the impossibility
result, we first describe Brasileiro’s one-step consensus [BGMRO1] and how
we would have to combine it with a leader-based protocol to achieve zero-
degradation.

In the first round of Brasileiro’s one-step consensus, every process broad-
casts its proposal and subsequently waits for a message from n—f processes.
A process p decides v iff it receives n — f equal values v. Hence if a process
p decides Vv, then every process g necessarily receives Vv at least n — 2f times.
To ensure agreement, it is sufficient to require that v is a majority among
the values received by g (which translates to n — 2f > f).

If there are less than n—f equal proposals, then the first round is wasted.
To eliminate this overhead, one straightforward approach is to combine this
scheme with the first round of a leader-based protocol. Here, consensus is
reached in two communication steps if every correct process picks the leader
value in the first round. Hence, in the combined protocol we have to ensure
that if no process decides in the first round, then every correct process picks
the leader value. However, this is only guaranteed if there are less than n—2f
equal proposals. Otherwise, it might happen that some process receives a
majority value v and consequently picks v in order to ensure agreement, while
some other process picks the leader value v; and v # v,. Hence, two distinct
values are proposed in the second round and consequently some process might
not decide before the third round.

Definition 2 (one-step). Assuming f < n/3, a consensus protocol is one-
step iff it reaches consensus in one communication step in every run in which
all proposals are equal.

Definition 3 (stable run). A run of a consensus algorithm is stable iff the
failure detector makes no mistakes and its output does not change during that
TUn.

The stability of the failure detector can be attributed to the fact that
nearly all runs are synchronous and crashes are initial. Even if the failure
detector needs to pass through a temporary stabilization period (e.g. after
a failure), in most runs it will exhibit a stable and accurate behavior. In
a stable run, outputs the same correct process from the beginning of the
run, while 3 P suspects exactly the processes that have crashed initially.

38CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

Definition 4 (zero-degradation). A consensus algorithm A is zero-degrading
iff A reaches consensus in two communication steps in every stable run.

Theorem 1 (Lower Bound). Assuming n < 4f | every one-step consensus
algorithm A based on €1 has a stable run in which some process decides after
three communication steps or more.

Proof. Preliminary notes (see Figure 3.1): We prove the theorem for the case
n = 4 but this solution can be generalized to any value of n by employing the
same technique as used in [GRO4]. The state of a process after k communi-
cation steps is determined by its initial value, the failure detector output and
the value and source of the messages received in every communication round
up to K. To strengthen the result, the processes exchange their complete
state. For the sake of simplicity, €2 outputs the same leader process p; at all
processes in every run considered in the proof until py possibly crashes. The
state of process p after K communication steps denoted by is expressed as
a K-dimensional vector with n entries such that the i-th entry contains the
state of the i-th process after kK — 1 steps. Since in each round a process waits
for a message from at most N —f processes, one entry is empty. The decision
value is bracketed (0)/(1).

Two runs Ry and Ry are similar for process p up to step Kk, iff the state of
p after K steps in Ry is identical to the state of p after K steps in Ry. If two
runs are similar for some process p, then p decides the same value in both
runs.
Idea: The proof is by contradiction. We assume a leader-based one-step
and zero-degrading protocol and show that it does not solve consensus. We
construct a chain of possible runs such that every two neighboring runs are
similar to some process. We start with a run in which all processes propose 1,
and then we construct subsequent runs either by changing the communication
pattern or the initial configuration. The failure detector assumption as well
the expected properties of the protocol finally lead to the violation of one of
the safety properties (validity or agreement).

e Since A is one-step, then it must have a run like Ry in which all correct
processes propose 1 and py; might have proposed the same. Thus, pq4
decides 1 after the first communication step’.

e Since A is zero-degrading, then it must allow a run such as R,. Run R;
is stable because) outputs py at all correct processes and its output
does not change. Thus, ps decides after the second communication step.

" Actually, processes p2 and pz also decide 1 after one communication step but this is
not relevant for the proof.

3.3. THE LOWER BOUND 39

Ry : Rz :
- 0 011- 01 (1)‘
1 > 1 OL1- >
1 > 1 O11- >
) -111 | (1) - -
R Ry :
0 011- o (1) 0 011- o (1)
) 011- .) 01-0 .
) 011- o 1 011- .
0 01-0 02 (1) - 0 01-0 02 (1) -
R Re :
0 011- os (1) 0 01-0 o5 (1) a
7N 7N
1 01-0 Oy =(1) 1 01-0 04 =(1)
) 0-10 o4 ... (1)) 0-10 os |... (1)
0 01-0 Ou |... (1) 0 01-0 Oa ... (1)
R7 RB
0 01-0 o (1) 0 .
1 - X -
0 - 0 >
0 0-00 | (x) - 0 0-00 [(x) -
011- 011- 011- [— 01-0
o — | 011- oo |~ on | 010 o — | 010 o — | 010
7 lo11- 27 |o11- ST - 4~ [o-10 ST -
— 01-0 01-0 | 01-0 01-0

Figure 3.1: Illustration of the lower bound proof.

If p1 decides 0, then we could construct a run R’ that for pq is similar
to Ry (pq decides 0 in R") and that for p4 is similar to Ry (ps decides 1
in R’), violating agreement. Thus, in Ry, py necessarily decides 1.

e Runs R, and Rj3 are similar for p;. Thus, p; decides 1 in Rj3 after the
second communication step. Since Rj is stable, ps also decides 1 after
the second step.

40CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

e Runs R3 and Ry are similar for ps and thus ps decides 1 in R4 after the
second communication step. Since Ry is stable, p; also decides 1 after
the second step.

e Runs R4 and Ry are similar for p;. Consequently pq decides 1 in Rs
after the second communication step. In Rs we crash p; so that all
messages sent to pg, ps and pg after the first communication step are
lost. Since Rs is not stable because {2 eventually outputs a new leader,
P2, P3s and ps are only required to decide eventually. By agreement,
they decide 1.

e In Rg we crash pq such that Rs and Rg are similar for p,, ps and ps.
Thus, they eventually decide 1. As p; cannot distinguish Rg from a
stable run, it decides after the second communication step. In order to
ensure agreement, Py necessarily decides 1.

e Runs Rg and Ry are similar for p;. Thus, py decides 1 in R7 after the
second communication step.

e Since A is one-step, in run Rg, process ps decides X after the first
communication step. Moreover, runs R; and Rg are similar for ps, and
therefore p4 also decides X in Ry.

There are two possible values for X. If X = 0 then agreement is violated in
run R7. Otherwise, if X = 1, then validity is violated in run Rg. n

3.4 Circumventing the Impossibility with Q

In this section we present a leader-based consensus protocol that is zero-
degrading but is not one-step, as this would contradict the established im-
possibility result. However, the protocol has the property that it reaches
consensus in one communication step if all proposals are equal and the run is
stable. The main idea behind the proposed L-Consensus algorithm depicted
in Figure 3.2 is to constrain the processes to decide the value proposed by
the leader. A process decides Vv in the first round if n — f values including
the leader value are equal to v. Consequently, every process that does not
decide can safely pick the leader value. Hence, consensus is achieved in two
rounds in every stable run. If there is no leader, then safety is ensured by
picking the majority value.

The protocol executes in a round by round fashion. In every round,
processes exchange messages, update their state depending on the messages
received and possibly decide or move to the next round. The algorithm

