
Efficient and Low-Cost Fault Tolerance
for Web-Scale Systems

Vom Fachbereich Informatik der Technischen Universität Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades
eines Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt von

Dott. Marco Serafini

aus Arezzo, Italien

Referenten:
Prof. Neeraj Suri, Ph.D.

Prof. Rodrigo Rodrigues, Ph.D.

Datum der Einreichung: 17. Juni 2010
Datum der mündlichen Prüfung: 16. September 2010

Darmstadt 2010
D17

ii

Summary

Online Web-scale services are being increasingly used to handle critical per-
sonal information. The trend towards storing and managing such information on
the “cloud” is extending the need for dependable services to a growing range of Web
applications, from emailing, to calendars, storage of photos, or finance. This moti-
vates the increased adoption of fault-tolerant replication algorithms in Web-scale
systems, ranging from classic, strongly-consistent replication in systems such as
Chubby [Bur06] and ZooKeeper [HKJR10], to highly-available weakly-consistent
replication as in Amazon’s Dynamo [DHJ+07] or Yahoo!’s PNUTS [CRS+08].

This thesis proposes novel algorithms to make fault-tolerant replication more
efficient, available and cost effective. Although the proposed algorithms are
generic, their goals are motivated by fulfilling two major needs of Web-scale sys-
tems. The first need is tolerating worst-case failures, which are also called Byzan-
tine in the literature after the definition of [LSP82a], in order to reliably han-
dle critical personal information. The second need is investigating proper weak
consistency semantics for systems that must maximize availability and minimize
performance costs and replication costs without relaxing consistency unnecessarily.

Byzantine-Fault Tolerance: There has been a recent burst of research on
Byzantine-Fault Tolerance (BFT) to make it have performance and replication
costs that are feasible and comparable to the fault-tolerance techniques already
in use today. BFT is typically achieved through state-machine replication, which
implements the abstraction of a single reliable server on top of multiple unreliable
replicas [Sch90]. This line of research ultimately aimed at showing the feasibility
of this approach for Web-scale systems [CKL+09] to protect these critical systems
from catastrophic events such as [Das].

This thesis proposes novel algorithms to reduce the performance and replica-
tion costs of BFT. First, the thesis shows how to reduce the cost of BFT without
assuming trusted components. After the seminal PBFT algorithm [CL99], a num-
ber of fast BFT algorithms, as for example [MA06; DGV04; KAD+07], have been
proposed. These papers show the existence of an inherent tradeoff between optimal
redundancy and minimal latency in presence of faulty replicas. This is problematic
in Web-scale systems, where Byzantine faults are very rare but where unresponsive
(benign) replicas are commonplace. This thesis proposes a novel algorithm, called
Scrooge, which reduces the replication costs of fast BFT replication in presence of
unresponsive replicas. Scrooge shows that the additional replication costs needed
for being fast in presence of faulty replicas are only dependent on the number of
tolerated Byzantine faults, and not on the number of tolerated crashes. As an
implication of this result, Scrooge is optimally resilient when it is configured to
tolerate one Byzantine fault and any number of crashes. Such a configuration is
quite common since Byzantine faults are relatively unlikely to happen.

This thesis then explores the advantages of using trusted components. It shows
that these can lead to significant latency and redundancy costs in practical asyn-
chronous systems [SS07]. This dispelled the belief that trusted components need

iii

to be combined with synchronous links to achieve cost reductions, as hinted by
previous work [CNV04; Ver06] . This additional assumption makes previously pro-
posed algorithms unpractical in many settings, including Web-scale systems. In
three-tiered Web-scale systems, for example, one could just leverage the fact that
servers in the first tier (the Web-servers) are typically more stable, standardized
and less prone to vulnerabilities than application servers. The HeterTrust proto-
col, which is presented in this thesis, uses trusted components without assuming
synchronous links. It protects data confidentiality using a number of replicas that
is linear in the number of tolerated faults and has a constant time complexity. This
is a significant improvement over existing approaches which do not rely on trusted
component but entail quadratic redundancy costs and linear latency [YMV+03].
Furthermore, different from existing work on confidential BFT, HeterTrust uses
only symmetric-key cryptography instead of public-key signatures. HeterTrust
features some interesting ideas related to speculation [KAD+07] and tolerance to
denial-of-service attacks [ACKL08; CWA+09] that have been further developed by
work published immediately after [SS07]. In parallel to this thesis’ work, the use
of trusted components in asynchronous systems was also independently explored
in [CMSK07].

Weak consistency: Some replicated Web-scale applications cannot afford
strong consistency guarantees such as Linearizability [HW90]. The reason is the
impossibility of implementing shared objects, as for example databases, that are
available in presence of partitions or asynchrony [GL02]. With few exceptions,
however, all these systems relax Linearizability even in periods when there are no
partitions nor asynchrony and no relaxation is needed to keep the system avail-
able. Since this relaxation is problematic for many applications, recent research
is focusing on stronger consistency guarantees which can be combined with high
availability.

This thesis introduces a novel consistency property, called Eventual Lineariz-
ability, which allows Linearizability to be violated only for finite windows of time.
This thesis also describes Aurora, an algorithm ensuring Linearizability in periods
when a single leader is present in the system. Aurora is gracefully degrading be-
cause it uses a single failure detector and obtains different properties based on the
actual strength of this failure detector, which is not known a priori. For Eventual
Linearizability, a ♦S failure detector is needed. In periods of asynchrony when
links are untimely and no single leader is present, Aurora gracefully degrades to
Eventual Consistency [FGL+96; Vog09] and Causal Consistency [Lam78]. For
these property, Aurora only relies on a strongly complete failure detector C. In
order to complete strong operations, which must be always linearized, a ♦P failure
detector is used. This is stronger than ♦S, the weakest failure detector needed to
implement consensus [CHT96], and thus linearizable shared objects. This thesis
shows that there exists an inherent cost in combining Eventual Linearizability with
Linearizability.

iv

Kurzfassung

Web-basierte Online-Dienste beinhalten in zunehmendem Maße die Verar-
beitung sensibler personenbezogener Daten. Die steigende Tendenz, solche Daten
in der “Cloud” zu speichern und zu verwalten, erhöht den Bedarf verlässlicher
Realisierungen dieser Funktionen für eine steigende Anzahl Web-basierter An-
wendungen, wie etwa E-Mail, Kalender, Fotoalben oder Online-Banking. Dieser
Trend erklärt die zunehmende Verwendung fehlertoleranter Replikationsalgorith-
men bei der Implementierung Web-basierter Anwendungen. Die zur Anwen-
dung kommenden Implementierungen reichen von klassischer, stark konsisten-
ter Replikation in Systemen wie Chubby [Bur06] und ZooKeeper [HKJR10] hin
zu hochverfügbarer, schwach konsistenter Replikation, etwa in Amazons Dynamo
[DHJ+07] oder Yahoo!s PNUTS [CRS+08].

Die vorliegende Arbeit stellt neuartige Algorithmen für fehlertolerante Replika-
tion vor, mit dem Ziel die Effizienz, Verfügbarkeit und Wirtschaftlichkeit dieser
Mechanismen zu erhöhen. Wenngleich die vorgestellten Algorithmen allgemein
anwendbar sind, erfüllen sie zwei Eigenschaften, die wesentlich durch den Einsatz
in Web-basierten Systemen motiviert sind. Die erste Eigenschaft ist die Toler-
anz von Worstcase-Fehlern, in der Literatur auch als “Byzantine” [LSP82a] beze-
ichnet, um eine zuverlässige Verarbeitung sensibler personenbezogener Daten zu
gewährleisten. Die zweite Eigenschaft ist die Entwicklung einer geeigneten Se-
mantik schwacher Konsistenz für Systeme, für die höchstmögliche Verfügbarkeit
und geringstmöglicher Zusatzaufwand hinsichtlich Performanz und Replikation
sicherzustellen, Abschwächungen der Konsistenz aber weitgehend zu vermeiden
sind.

Toleranz von “Byzantine” Fehlern: Die Toleranz von “Byzantine” Fehlern
(englisch Byzantine Fault Tolerance, BFT) wurde kürzlich zum Gegenstand in-
tensivierter Forschung mit dem vordergründigen Ziel, ihren implizierten Zusatza-
ufwand (bzgl. Performanz und erforderlicher Replikation) auf ein Maß zu re-
duzieren, das mit dem herkömmlicher Fehlertoleranzmechanismen vergleichbar ist.
BFT wird zumeist durch die Replikation von Zustandsautomaten erzielt, indem die
Illusion eines einzelnen zuverlässigen Servers durch die (für den Nutzer transpar-
ente) Koordination mehrerer unzuverlässiger Server erzeugt wird [Sch90]. Als ul-
timatives Ziel dieser Forschungsrichtung ist die Anwendbarkeit dieses Ansatzes für
Web-basierte Systeme zu sehen [CKL+09], um die so implementierten kritischen
Anwendungen vor folgenschwerem Fehlverhalten, wie es etwa in [Das] beschrieben
ist, zu schützen.

Die vorliegende Arbeit stellt neue Algorithmen vor, die den Performanz- und
Replikationsaufwand von BFT reduzieren. Zunächst wird gezeigt, wie dieses Ziel
ohne die Annahme vertrauenswürdiger Komponenten erreicht werden kann. Nach
der Vorstellung des einflussreichen PBFT-Algorithmus [CL99] wurde eine Reihe
schneller BFT-Algorithmen, wie zum Beispiel [MA06; DGV04; KAD+07] entwick-
elt. Diese Arbeiten zeigen unter der Annahme fehlerbehafteter Repliken einen
inhärenten Kompromiss zwischen optimaler Redundanz und minimaler Latenz auf.

v

In Web-basierten Systemen, in denen “Byzantine” Fehler nur selten, Ausfälle von
Repliken hingegen häufig auftreten, stellt sich dieser unvermeidbare Kompromiss
als problematisch heraus. Der in dieser Arbeit vorgestellte Algorithmus “Scrooge”
reduziert den Replikationsaufwand schneller BFT-Replikation in Gegenwart nicht
reagierender Repliken. Scrooge zeigt, dass der zusätzliche Replikationsaufwand
zur Erzielung einer höheren Geschwindigkeit ausschließlich von der Anzahl der
zu tolerierenden fehlerbehafteten Repliken abhängt und nicht von der Anzahl zu
tolerierender Ausfälle. Als Konsequenz erzielt Scrooge optimale Robustheit für
die Toleranz eines einzelnen “Byzantine”-Fehlers und einer beliebigen Anzahl von
Ausfällen. Solche Szenarien sind charakteristisch für Web-basierte Systeme, in
denen “Byzantine”-Fehler selten sind.

Anschließend daran untersucht die vorliegende Arbeit potenzielle Vorteile der
Verwendung vertrauenswürdiger Komponenten. Es wird gezeigt, dass diese zu
einer signifikanten Reduktion der Latenz und durch Redundanz verursachten
Kosten in anwendungstypischen asynchronen Systemen führen können [SS07].
Dies verwirft die These früherer Arbeiten [CNV04; Ver06], dass eine Kostenre-
duktion durch vertrauenswürdige Komponenten zwingend die Verfügbarkeit syn-
chroner Kommunikationskanäle erfordert. Diese zusätzliche Forderung nach Syn-
chronität führt zu einer deutlichen Beschränkung möglicher Einsatzgebiete beste-
hender Lösungen, beispielsweise in Web-basierten Systemen. In dreistufig organ-
isierten Web-basierten Systemen, zum Beispiel, kann man sich zunutze machen,
dass Server in der ersten Ebene des Systems (die Webserver) üblicherweise stan-
dardisiert, stabiler und weniger fehleranfällig sind als beispielsweise Application-
Server. Der “HeterTrust” Protokoll, der in dieser These eingeführt wird, erfordert
eine zur Anzahl der zu tolerierenden Fehler lineare Anzahl von Repliken um die
Vertraulichkeit von Daten sicher zu stellen, und hat konstante Komplexität. Dies
ist eine Deutliche Verbesserung gegenüber bestehenden Ansätzen, die zwar keine
vertrauenswürdigen Komponenten erfordern, aber quadratische Redundanzkosten
und lineare Latenzen mit sich bringen [YMV+03]. Ebenfalls im Gegensatz zu
anderen die Vertraulichkeit berücksichtigenden BFT-Ansätzen verwendet Het-
erTrust symmetrische Kryptoverfahren anstelle von Public-Key-Verfahren. Het-
erTrust beinhaltet einige interessante Ideen in den Bereichen der Spekulation
[KAD+07] und der Toleranz von Denial-of-Service-Angriffen [ACKL08; CWA+09],
deren Eigenschaften in weiteren Arbeiten untersucht und in unmittelbarer Folge
von [SS07] publiziert wurden. In der selben Zeit wie der vorliegende Arbeit wurde
die Verwendung vertrauenswürdiger Komponenten in asynchronen Systemen un-
abhängig in [CMSK07] untersucht.

Schwache Konsistenz: Für einige Web-basierte Anwendungen ist die Zu-
sicherung starker Konsistenzeigenschaften wie Linearisierbarkeit nicht möglich
[HW90]. Die Ursache dafür liegt in der Unmöglichkeit einer Implementierung
von “Shared Objects”, wie zum Beispiel Databases, in Fällen von Partitionierung
oder Asynchronität [GL02]. Allerdings geben bis auf wenige Ausnahmen alle diese
Systeme Linearisierbarkeit auch in Betriebsabschnitten auf, in denen weder Par-

vi

titionierung, noch Asynchronität vorliegen. Da dieser Lockerung der Konsistenz
für einige Anwendungen problematisch ist, konzentriert sich neuliche Forschung
auf stärkere Konsistenzeigenschaften, die sich mit Hochverfügbarkeit kombinieren
lassen.

Die vorliegende Arbeit führt “Eventual Linearizability” als neue Konsisten-
zeigenschaft ein, die eine Verletzung der Linearisierbarkeit für endliche Zeitab-
schnitte gestattet. Sie beschreibt weiterhin Aurora, einen Algorithmus zur Sicher-
stellung von Linearisierbarkeit in Phasen, in denen ein einzelner Leader im System
vorhanden ist. Die Leistungsfähigkeit von Aurora vermindert sich schrittweise im
Falle sich verschlechternder Ausführungsbedingungen. Aurora verwendet einen
einzelnen a priori nicht näher bestimmten Fehlerdetektor, von dessen Stärke aber
Eigenschaften Auroras abhängen. “Eventual Linearizability” erfordert einen ♦S
Fehlerdetektor. In Phasen von Asynchronität, in denen die Pünktlichkeit von
Nachrichten und die Präsenz eines einzelnen Leaders nicht gewährleistet wer-
den kann, reduziert sich die von Aurora getroffene Zusicherung auf “Eventual
Consistency” [FGL+96; Vog09] und “Causal Consistency” [Lam78]. Für diese
Eigenschaften benötigt Aurora lediglich einen Fehlerdetektor C mit “Strongly
Complete”-Eigenschaft. Für die Durchführung sogenannter “Strong Operations”,
die “Linearizability” erfordern, wird ein ♦P Fehlerdetektor verwendet. Dieser ist
stärker als ♦S, welches der schwächste Fehlerdetektor für die Implementierung
von “Consensus” ist [CHT96] und somit auch “Linearizable Shared Objects”. Die
vorliegende Arbeit zeigt, dass ein inhärenter Aufwand bei der Kombination von
“Eventual Linearizability” und “Linearizability” existiert.

vii

viii

Acknowledgements

When I was I kid and people asked me what I would have liked to do once
grown-up, I always said that I wanted to become like Gyro Gearloose and
invent marvelous machines. But I was not really serious, and for most of my
life I just fancied about becoming a researcher, among many other things.
There have been twists and turns on the way to get here.

I might owe my choice of becoming a computer scientist to my friend
Lorenzo. We were children, and during an endless summer on the Tuscan
countryside he showed me his new toy: a Commodore 64. It was the fist
machine I saw that you could have actually hacked! But all he did with it
was inserting videogame tapes and pressing play to load them. I promised
myself that I one day I would have learned how computers really work.

My parents have kept a loving eye on me, supporting me without ever
being oppressive. They had imagined a different future for me, working on
their side, but they always gave me a chance to do things my way, even when
it was not clear what I was up to. Now they are proud of my choices and
that is the best reward ever. Thanks a lot!

A big twist was talking to Neeraj in Florence, on a June afternoon. By
inviting me to join his group, he introduced me to a profession that still
seems too good to be true. He made me a great gift: the total freedom to
pursue whatever topic I found exciting, learning from my own failures. I had
to struggle, but it has paid off.

Many friends and colleagues made my life in Darmstadt easier and con-
tributed to my personal and technical growth. It is fun to work and to be
friend with Péter, our trips to the Zoo were indeed very cool. I had no doubt
when I chose him as best man for my wedding. Dan is a great friend who
helped me a lot to get acquainted to Germany. By stopping by, talking about
his ideas, and being critical towards mine, he was fundamental in letting me
rediscover my early love for theoretical computer science. Andreas, Piotr,
Matthias, Dinu, Vinay, Birgit, Sabine, and all the other DEEDS folks made
the working place a special, fun place.

I was lucky enough to get feedback from great senior researchers such as
Cristian Cachin, Rachid Guerraoui, Flavio Junqueira, Stefan Katzenbeisser,
András Pataricza, Rodrigo Rodrigues, Fred Schneider, Helmut Veith. I ap-
preciated the value of the time they dedicated to my work.

The best result of my PhD was definitively meeting Ilaria. That, alone,
would have made graduating worth it.

Marco Serafini
Barcelona, June 17, 2010

ix

x

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Open issues . 3

1.1.1 What is the Minimal Replication Cost for High-
Performance BFT? . 3

1.1.2 Is Using Trusted Components in BFT Systems Useful
in Practice? . 4

1.1.3 Are There Viable Alternatives to Eventual Consistency? 5

1.2 Thesis Contributions . 6

1.2.1 Fast BFT with Unresponsive Replicas 6

1.2.2 Trusted Processors with Asynchrony 7

1.2.3 Eventual Linearizability and Aurora 10

1.2.4 Publications Resulting from the Thesis 12

1.3 Thesis Structure . 14

2 State of the Art and Background 17

2.1 The Consensus Problem and Replication 18

2.1.1 Failure Detectors . 18

2.1.2 The Paxos Protocol . 19

2.1.3 State-Machine Replication 20

2.2 Modern Byzantine-Fault Tolerance 21

2.2.1 The PBFT algorithm 21

2.2.2 Efficient Byzantine-Fault Tolerance 23

2.2.3 Trusted Components and Confidentiality 24

2.3 Weak Consistency Semantics 26

2.4 Chapter Summary . 28

xi

3 Fast BFT at Low Cost 29
3.1 Technical Highlights . 30

3.1.1 First Technique: Replier Quorums 30
3.1.2 Second Technique: Message Histories 31

3.2 System and Fault Model . 31
3.3 The Scrooge Protocol . 32

3.3.1 Normal Execution . 33
3.3.2 Reconfiguration . 34

3.4 Scrooge View Change . 36
3.4.1 Communication Pattern 36
3.4.2 The Recover Function 39

3.5 Evaluation and Comparison 43
3.6 Chapter Summary . 47

4 BFT with Trusted Components 49
4.1 Introduction . 50
4.2 System Model . 50
4.3 Service Properties . 51
4.4 The HeterTrust Protocol . 52

4.4.1 Overview . 52
4.4.2 Normal Operations . 54
4.4.3 Recovery . 59
4.4.4 Garbage Collection . 61

4.5 Chapter Summary . 62

5 Eventual Linearizability 63
5.1 Definitions . 64

5.1.1 Model of Concurrent Executions 64
5.1.2 Definition of Eventual Linearizability 64

5.2 Implementations . 66
5.2.1 System Model for Implementations 66
5.2.2 Eventual Consistency and Eventual Consensus 67

5.3 Combination with Linearizability 71
5.3.1 Impossibility Result . 72
5.3.2 A Gracefully Degrading Implementation 75

5.4 Chapter Summary . 83

6 Conclusions and Future Research 85
6.1 Overall Thesis Contributions 86

6.1.1 Low-Cost and Fast BFT 86
6.1.2 Fail-Heterogeneous Architectures 87

xii

6.1.3 Eventual Linearizability and Gracefully Degrading Im-
plementations . 87

6.2 Open Ends . 88
6.2.1 Negative Results . 88
6.2.2 Understanding Byzantine Faults 89
6.2.3 Applications of Eventual Linearizability 90

A Scrooge 93
A.1 Correctness of the Scrooge Protocol 93

A.1.1 Replica State and Definitions 93
A.1.2 Agreement and Helper Procedures 95
A.1.3 Proof Sketch . 95
A.1.4 Scrooge Safety . 98
A.1.5 Scrooge Liveness . 105

A.2 Integrating Garbage Collection 109
A.2.1 Garbage Collection . 109
A.2.2 Modifications to Normal Executions 110
A.2.3 Modifications to View Change 110
A.2.4 Correctness . 111

B Correctness of HeterTrust 115

C Eventual Linearizability 119
C.1 Locality and nonblocking . 119
C.2 Eventual Consistency, Eventual Consensus and Consensus . . 121
C.3 Correctness of the Aurora protocol 126

C.3.1 Definitions . 126
C.3.2 Correctness proof . 128

Bibliography 143

xiii

xiv

List of Figures

2.1 Communication pattern of the Paxos protocol 20

3.1 Communication patterns of Scrooge 32
3.2 Scrooge view change subprotocol 38
3.3 Throughput of Scrooge . 45
3.4 Latency of Scrooge . 45
3.5 Latency-throughput plot for Scrooge 47

4.1 The fail-heterogeneous architecture used by HeterTrust 51
4.2 HeterTrust: Normal operations 54
4.3 HeterTrust: failure scenarios 59

xv

xvi

List of Tables

1.1 Comparison of Scrooge with the state of the art 6
1.2 Comparison of HeterTrust and the state of the art 8

2.1 Comparison of Scrooge with the state of the art 23
2.2 Comparison of HeterTrust and the state of the art 26

3.1 Scrooge: Global variables . 32
3.2 Scrooge: Pseudocode predicates 41

4.1 HeterTrust: Global variables 53

5.1 Auorora: Pseudocode predicates 82

A.1 Scrooge: Global variables . 95

xvii

xviii

Chapter 1

Introduction

Online applications and services are becoming ubiquitous. Their convenience,
easy accessibility and potential for integration are convincing many users to
increasingly entrust these services with critical data, as for example emails,
pictures, backup files, financial information, and many others. Because of the
immense potential audience such services have, they need to face scalability
issues that were never faced by previous computer systems. Major Internet
companies run their infrastructure on datacenters with tens of thousands
of processors connected by sophisticated high-speed network infrastructures.
In these systems, which we call Web-scale, even failures that would be quite
unlikely in a system with few nodes become frequent and unavoidable. This
explains the popularity of techniques for tolerating faults in these systems.

Fault tolerance in distributed systems is typically achieved through repli-
cation. The same logical functionality is replicated over multiple physical
nodes, which are kept consistent using a replication algorithm.

Web-scale systems pose significant challenges for replication. Replicated
services must support a high volume of requests with low latency. For ex-
ample, a ZooKeeper cluster is typically shared by multiple large-scale ap-
plications, and it is critical that it does not become a performance bottle-
neck [HKJR10]. Furthermore, since multiple instances of a replicated service
are deployed for scalability, it is important to reduce the number of replicas
of each instance. Crashes in these systems are also very common, and should
not result in a degradation of performance [DHJ+07]. Finally, these appli-
cations have strict latency and availability requirements, and they sometime
decide to trade consistency for these goals [GGL03; DHJ+07; CRS+08].

Efficient Byzantine-Fault Tolerance The increased adoption of replica-
tion techniques in Web-scale systems has led to an interesting contamination
between theory and practice of distributed computing. One direction where

1

2 CHAPTER 1. INTRODUCTION

this contamination has been particularly promising is Byzantine-Fault Tol-
erance (BFT). The goal of BFT is to increase the reliability of replicated
applications by making them tolerant to worst-case faults that cannot be
easily detected using error detection. These faults are becoming more and
more relevant. It is known, for example, that modern hardware tends to have
lower reliability due to decreased feature size [Con02; Bor05]. Storage compo-
nents in large scale systems also have quite high failure rates [PWB07; SG07].
As a result, there are relatively many cases of Web-scale systems becoming
unavailable due to undetected errors, the most notable cases being the July
2008 outage of the Amazon S3 service [Das] or the July 2009 outage of the
Google File System [SJR09].

BFT uses the so-called state-machine approach [Sch90] to mask repli-
cas returning arbitrary results through voting. State-machine replication
implements the abstraction of a logical reliable server using a set of un-
reliable replicas. A consensus algorithm is used by replicas to agree a
consistent order of execution for all requests. This enables voting on the
results of the requests by ensuring that all correct replicas output the
same result for each request. Simple and practical techniques for state-
machine replication to tolerate crashes, such as the Paxos algorithm, are
well known [Lam98]. Despite early theoretical results [BT85], tolerance to
Byzantine faults was thought to be practically unfeasible in asynchronous sys-
tems until Castro and Liskov proposed their PBFT protocol [CL99]. PBFT
resembles Paxos and does not use public-key cryptography. A number of
subsequent paper showed how to make BFT more efficient and practical
(for example [CML+06; AEMGG+05; DGV04; MA06; KAD+07]), includ-
ing recent work on applying BFT to popular Web-scale systems [CKL+09].
Another line of work has explored how to reduce the replication costs of
BFT using trusted components with a restricted failure mode (for exam-
ple [CVN02; CNV04; Ver06; CMSK07; LDLM09]).

Weak consistency Another direction where fault-tolerance in Web-scale
systems has potential for improvement is the use of weak consistency se-
mantics. State-machine replication implements one of the strongest known
form of consistency, Linearizability [HW90]. As discussed, this entails solv-
ing consensus, a problem whose intrinsic complexity is quite high because it
requires the availability of a single leader process that can communicate with
a majority of correct processes [CHT96; CT96]. The latency requirements
of some Web-scale applications, however, are so strict that using consensus
would result in frequent timing failures, i.e., in the system being unavailable.

The latency problem is further exacerbated by the presence of partitions.

1.1. OPEN ISSUES 3

Unavailability in widea-area-network (WAN) links is generally recognized as
an important issue (see for example [DCGN03] for an experimental evaluation
of the problem). However, it has been reported that partitions occur even
within datacenters, most likely due to failures of network devices [Vog09].
Applications that need to remain available in presence of partitions trade
consistency for high availability. Example of such applications are Amazon’s
Dynamo [DHJ+07] or Yahoo!’s PNUTS [CRS+08]. A typical a form of weak
consistency, which is for example implemented by Dynamo, is Eventual Con-
sistency [SS05; Vog09]

1.1 Open issues

This thesis tackles three open issues in building efficient fault-tolerant repli-
cation algorithms for Web-scale systems.

1.1.1 What is the Minimal Replication Cost for High-
Performance BFT?

The latency, and in some cases throughput, overhead of Byzantine fault tol-
erant consensus can be reduced by using fast agreement algorithms, such
as DGV [DGV04], FaB [MA06] or Zyzzyva [KAD+07]. The minimum re-
quired number of replicas for BFT is 2f + b + 1, where b is the number of
Byzantine failures and f the total number of failures tolerated, including
also crashes [BT85; Lam03]. Current approaches can achieve the theoreti-
cally minimal latency in presence of f unresponsive replicas only if f + b− 2
or more additional replicas are used [MA06; DGV04; KAD+07]. Theoretical
lower bound results show that these upper bounds are tight. This implies
that fast agreement in presence of faulty replicas is only possible if the num-
ber of replicas used in the system is at least two times higher than the number
needed for crash tolerance [DGV04; MA06]. This represents an obstacle for
the adoption of BFT in Web-scale systems that need be fast even in presence
of crashes or partitions, such as [GGL03; DHJ+07], because crashes can be
quite frequent in large-scale systems. It must be noted that a large number
of instances of a given replicated service can be deployed in a Web-scale sys-
tem, and each of these instances corresponds to a BFT replication cluster.
This implies that additional replication costs in each cluster can result in a
significant increase of the overall costs of adopting BFT.

Another limitation of fast agreement protocols is that they can only re-
main fast in runs where a specific replica, called primary, is correct. If this
becomes unresponsive, these algorithms suffer a performance degradation.

4 CHAPTER 1. INTRODUCTION

In other word, these algorithms are fast in all runs except those where the
primary is faulty.

1.1.2 Is Using Trusted Components in BFT Systems
Useful in Practice?

Fault tolerant distributed protocols typically utilize a homogeneous fault
model where all processes are assumed to fail in the same manner. However,
different processes can have different degrees of reliability, depending for
example on their complexity or on the range of functionalities they offer to
external entities. This implies that some processes may be more trustworthy
than others. These trusted processes can be assumed to fail only by crashing,
while other components may fail in a Byzantine manner.

Consider for example three-tiered Web-scale systems, where the first tier
handling client requests consists of Web server, the second of application
servers and the third of databases. It has been observed that Web servers in
the first tier are typically more reliable than application servers in the second
tier [ZBWM08]. The reason is that Web servers are typically generic off-the-
shelf services which withstand rigorous testing. Application servers, on the
contrary, often run software that cannot undergo a very through testing due
to its shorter time-to-market. Another example of relatively more trustwor-
thy nodes are network routers, which are usually more reliable than end users’
PCs because they execute a restricted and well-known functionality. Unexpe-
rienced users do not typically install new and potentially malicious software
on routers. Finally, trustworthy components can also be implemented as
protected hardware components [Gro].

At the time when this thesis was written, some papers examined how
to use trusted computing elements in the context of Byzantine-fault tol-
erant replication [CNV04; Ver06]. These algorithms, however, required a
specific architecture with a trusted coprocessor and, more importantly, as-
sumed the availability of a synchronous, reliable and trusted network between
these trusted entities. This last assumption is hard to require even in local
area networks. Furthermore, previous work only focused on integrity and
did not consider the use of trusted entities to improve the confidentiality of
the system. Protecting confidentiality in systems where processes can only
fail in a Byzantine manner entail a latency overhead, measured in terms of
communication steps, that is linear in the number of tolerated faults, and
a redundancy cost that is quadratic [YMV+03]. The way replication can
be integrated with the protection of confidentiality in systems using trusted
components was still an open issue.

1.1. OPEN ISSUES 5

1.1.3 Are There Viable Alternatives to Eventual Con-
sistency?

When designing such replication algorithms, there is a fundamental trade-off
between consistency of service state and availability. The CAP Theorem cap-
tures this trade-off (Consistency, Availability, and Partition-Tolerance: pick
two [GL02]). Strong consistency guarantees simplify the task of developing
applications for such systems, but have stronger requirements on the connec-
tivity of replicas for progress. Weakly consistent replication provides higher
availability, but is harder to deal with.

A strong consistency guarantee often used as a correctness property
is Linearizability [HW90]. Linearizability ensures that all clients observe
changes of the service state according to the real-time precedence order
of operations and that operations are serializable. At a high level, it
provides clients with the view of a single, robust server. The simplic-
ity of this abstraction explains its popularity in Web-scale replication li-
braries [Bur06; HKJR10]. However, the high latency and low availability
entailed in providing Linearizability motivates the use of weaker consistency
semantics.

Weakly consistent replication can terminate in worst-case runs and typ-
ically has lower latency. An established weak semantic is Eventual Con-
sistency: if no new operation is invoked, all replicas converge to the same
state [SS05; Vog09]. Whenever concurrent operations are present, however,
replicas can transition to an inconsistent state and thus violate Linearizabil-
ity. This is common to weakly consistent replication algorithms [SS05]. It
has been observed, however, that Eventual Consistency has several draw-
backs [GHOS96; BCvR09]. This calls for more fundamental research on this
topic and for a better understanding of the fundamental tradeoffs involved
in building weakly consistent systems.

Eventual Consistency is too weak to solve some distributed problem.
Consider for example the problem of implementing a replicated and highly-
available master in a master-worker scheme. These schemes are very com-
mon in Web-scale systems, which use often a master process to partition
large workloads over a large number of worker processes. If each master
replica assigns task in isolation, multiple workers can execute duplicated
work. Since master replicas coordinate only asynchronously, there is no limit
to the amount of duplicated work done by the workers even in runs where
the system is synchronous. This makes the use of Eventual Consistency for
master-worker schemes unpractical. On the other hand, using Linearizability
might not result in an adequate level of availability.

6 CHAPTER 1. INTRODUCTION

Replication Fast w. Fast w. f
costs (min. no unrespon- unrespon-

2f + b+ 1 [Lam03]) sive replica sive replicas
PBFT [CL99] 3f + 1 NO NO
Zyzzyva [KAD+07] 3f + 1 YES NO
Zyzzyva5 [KAD+07] 5f + 1 YES YES
DGV [DGV04] 3f + 2b− 1 YES YES
Scrooge 2f + 2b YES YES

Table 1.1: Comparison of primary-based BFT replication protocols that tol-
erate f failures, including b Byzantine ones.

1.2 Thesis Contributions

This thesis proposes three novel algorithms addressing each of the research
problems that have been identified previously.

1.2.1 Fast BFT with Unresponsive Replicas

This thesis aims at improving on the tradeoff between high performance (in
terms of both throughput and latency) and redundancy costs. It proposes
Scrooge, a new BFT replication algorithm that reduces the replication costs
of fast BFT. Scrooge turns around existing lower bounds by providing slightly
relaxed performance properties. Existing fast algorithms are fast in all runs
except those where the primary is faulty, whereas Scrooge allows some per-
formance degradation also if other replicas become faulty. This relaxation
is acceptable in many systems. Another insight used in Scrooge is that the
Message Authentication Codes (MACs) used in all practical BFT algorithms
to authenticate messages can also be used to identify faulty replicas. Consid-
ering MACs explicitly results in a stronger system model than just assuming
the use of authenticated channels, as done by other algorithms, although this
is a non-assumption in practice.

The Scrooge protocol is fast in presence of f unresponsive replicas using
only b − 1 additional replicas. It thus shows that the additional replication
costs can be independent of f and thus of the number of tolerated crashes.
This makes Scrooge cheaper than the cost lower bound of [DGV04] and
particularly cost-effective for systems that must tolerate many crashes (large
f) and few Byzantine faults (small b). When tolerance to f faults including
only one Byzantine fault is sought, Scrooge achieves the minimal replication
cost of 2f + 2 and requires only one replica more than protocol tolerating f
crashes only. These requirements are common in systems where Byzantine
failures are only an unlikely corner case.

1.2. THESIS CONTRIBUTIONS 7

A comparison between Scrooge and other state machine replication pro-
tocols tolerating Byzantine faults is illustrated in Table 1.1. The first three
protocols in the Table assume f = b. A protocol is denoted as fast if it
has minimal best case latency to solve consensus [MA06; DGV04]. If the
primary is faulty or the clients are Byzantine none of these protocols is fast.
Upon failures of other replicas, Scrooge is fast after a bounded time whereas
Zyzzyva5 is always fast. For DGV, the cost for f > 1 in order to be fast
with f unresponsive replicas is depicted. For f = 1 the corresponding cost
is 2f + 2b+ 1 replicas.

Although Scrooge can detect and isolate Byzantine failures of non-
primary replicas, this thesis uses the notion of unresponsive replicas to stress
that the goal of Scrooge and of the other cited algorithms is not to be fast in
presence of attacks. Achieving acceptable performance in presence of worst-
case attacks requires using different techniques, such as using specific network
topologies, which are mostly orthogonal to the work of this thesis (see for
example [ACKL08; CWA+09]). However, Scrooge explicitly considers the
use of public-key signatures1 for client requests, as indicated in [CWA+09],
and leverages it for correctness.

The thesis includes an experimental evaluation of Scrooge. Scrooge
performs as well as state-of-the-art fast BFT protocols like Zyzzyva and
Zyzzyva5 if all replicas are responsive. In scenarios with at least one unre-
sponsive replica the thesis shows that:

• The peak throughput advantage of Scrooge is more than 1.3 over
Zyzzyva. Scrooge also has lower latency with high load;

• Scrooge reduces latency with low load by at least 20% and up to 98%
compared to Zyzzyva;

• Scrooge performs as well as Zyzzyva5, which uses f + 1 more replicas
than Scrooge (with f = b);

• As the number of tolerated faults increases, the overhead of Scrooge
degrades more slowly than in other protocols using equal or lower re-
dundancy.

1.2.2 Trusted Processors with Asynchrony

Assuming a synchronous trusted network can introduce a vulnerability in
the system and make its implementation challenging. This thesis examines

1Note that public-key signatures are stronger and more expensive to produce and verify
than MACs, since the latter are based on symmetric-key cryptography.

8 CHAPTER 1. INTRODUCTION

Protocol SM FM n Latency Confid. Crypt.

Paxos [Lam98; Lam01] PS C 2g + 1 4/5 - -
BFT [CL99] PS B 3f + 1 4 no MAC
FaB [MA06] PS B 5f + 1 3 no MAC

Correia et.al [CNV04] W W 2m+ 1 5 no MAC
Marchetti et.al [MBTPV06] PS C 3g + 2 4/5 - -

Yin et.al [YMV+03] PS B f2 + 6f + 2 2f + 7 yes TS

HeterTrust PS H 2f + 2g + 2 4 yes MAC

n = lower bound on # nodes; g/f/m = upper bound on # fail-crash / Byzantine / mixed nodes
SM = System Model (Partially Synchronous / Wormhole)

FM = Fault Model (Crash / Byzantine / Wormhole / Heterogeneous)
MAC = Message Authentication Codes; TS = Threshold Signatures

Table 1.2: Comparison between HeterTrust and other deterministic state
machine replication protocols

how processes with restricted failure mode can be leveraged to simplify BFT
and to reduce the costs of obtaining confidentiality even in asynchronous
networks where timeliness is only required for progress.

In order to leverage the heterogeneity of fault models in practical dis-
tributed systems, as for example in Web-scale systems, this thesis proposes
a novel fail-heterogeneous architectural model for distributed systems which
considers two classes of nodes: (a) full-fledged execution nodes, which can
be fail-Byzantine, and (b) lightweight, validated coordination nodes, which
can only be fail-crash. To illustrate how the model can be used to reduce
the costs BFT, the thesis introduces HeterTrust, a practical state machine
replication protocol that prevents intruded servers from disclosing confiden-
tial data. The challenge in using trusted nodes is to define the interface and
the functionalities that they should offer to the rest of the system. These
must be simple (to ease bug-free design and error detection), generic (to ease
adoption and eliminate the need for potentially faulty extensions) and re-
quire little storage and computational capability (to make it cost effective).
In fact, many coordination tasks that are typical of state machine replication
have these three characteristics and can thus be abstracted and encapsulated
into these trusted nodes, which are called coordinators.

In HeterTrust, coordinators are physically interposed between clients and
execution servers. One of the coordinators, called the leader, has the role of
proposing the order of execution of the operations to the execution servers.
The execution servers execute the operations in the proposed order and send
replies back to the coordinators. These check that the replies are correct by
waiting for a set of consistent reply messages such that at least one correct
replica has sent one of the messages. Only then is the reply forwarded to
the clients. Executing this check ensures that no spurious reply, which is
generated by malicious servers to leak confidential data to the clients, is ever

1.2. THESIS CONTRIBUTIONS 9

sent to any client. Coordinators also agree on the order of the operations to
handle failures of the current leader.

Compared to systems using homogeneous fault models and achieving sim-
ilar goals, HeterTrust has lower latency, requires fewer execution nodes, and
does not require the use of expensive asymmetric cryptography. Compared
to other existing algorithms using trusted components, HeterTrust does not
require synchrony in a partition of the system as required by the Worm-
hole model [CNV04; Ver06]. A comparison of HeterTrust with other state
machine replication algorithm is in Table 1.2

Overall, the thesis presents the following contributions:

• It introduces and motivates the fail-heterogeneous architectural model,
taking the problem of practical trustworthy state machine replication
as a case study and presenting the HeterTrust protocol;

• It demonstrates that, by using a majority of coordination nodes with
the same correct design and without a trusted synchronous network,
the minimal number of replicas with diversified design to tolerate f
malicious faults can be reduced from 3f + 1 [BT85] to 2f + 1;

• It indicates how attackers can be prevented from disclosing confidential
data of intruded servers by means of simple symmetric-key cryptogra-
phy and using only 2g + 1 coordinators out of which g can fail by
crashing;

• It shows that the latency overhead for replication and confidentiality
with respect to a non replicated service is two communication steps;

• It discusses for the first time how to handle Denial-of-Service (DoS)
attacks in BFT systems.

A relevant additional result related to the second and third contributions
is the following: If trusted coordinators model subcomponents of execution
servers, then the same reduction of redundancy cost achieved in [CNV04]
using dedicated synchronous channels can be obtained in asynchronous sys-
tems.

Results similar to some of these contributions have been also proposed
by independent research carried out in parallel with the work of this thesis.
Algorithms using trusted components in asynchronous systems to reduce the
cost of BFT replication were proposed in [CMSK07]. Follow up work have
further explored this model, for example [LDLM09].

HeterTrust achieves latency reduction by letting servers execute requests
before the order proposed by the leader is agreed upon, a technique closely

10 CHAPTER 1. INTRODUCTION

related to speculation [KAD+07]. Similar to speculation, clients determine
that agreement has been reached before coordinator and servers know it.
This occurs when replies are delivered.2

Another innovative line of work introduced by this thesis and further
later developed in [ACKL08; CWA+09] was the tolerance of BFT replication
algorithms to DoS attacks.

1.2.3 Eventual Linearizability and Aurora

Current consistency semantics ensure Linearizability either always or never.
This thesis aims at finding better tradeoffs between availability and consis-
tency. In fact, current weakly consistent systems remain inconsistent also
in periods where the system is perfectly timely and there are no partitions,
which in some sense contradicts the sense of the CAP Theorem.

Weak consistency leverages the fact that in many real world applications
requiring high availability, processes often issue operations that do not need
to be linearized. We call these operations weak as opposed to strong opera-
tions that must be linearized. Ideally, weak operations applied to a shared
object should terminate irrespective of the failure detector output or of the
number of faulty processes. In a gracefully-degrading approach to weak con-
sistency, it is acceptable that weak operations violate Linearizability when
the system deviates from its “normal” behavior, but only if such violations
cease when the anomalies terminate [HW87; AAL+08]. We call this property
Eventual Linearizability.

Shared objects with Eventual Linearizability can be used, for example,
in master-worker applications to replicate the master. Consider again the
example of a replicated real-time queue used to dispatch taxi requests to
taxi cabs [HW87]. Some degree of redundant work, such as having multiple
cabs respond to the same call, can be accepted if this prevents the system
from becoming unavailable in presence of anomalies, guaranteeing that cabs
can always dequeue requests. However, no redundant work should take place
when there is no anomaly.

A surprising result of this thesis is the answer to the following question:
Is it possible to achieve these desirable properties of weak operations without
sacrificing Linearizability and termination of strong operations? The thesis
answers this question in the negative. In fact, combining Linearizability and
Eventual Linearizability requires using a stronger failure detector to complete
strong operations than the one sufficient for Consensus.

2Using the Paxos terminology, which is also explained in this thesis in section 2, clients
act as learners.

1.2. THESIS CONTRIBUTIONS 11

This thesis introduces the notion of Eventual Linearizability for weak
operations, which is the strongest known consistency property that can be
attained with ♦S despite any number of crashes. Eventual Linearizability
guarantees that Linearizability is violated only for a finite time window. It
satisfies the same locality and nonblocking properties as Linearizability. An
additional result is that Eventual Linearizability for weak operations cannot
be provided using existing notions of Eventual Consistency [SS05; Vog09;
FGL+96]. With Eventual Consistency, in fact, Linearizability can be violated
whenever multiple operations are invoked concurrently. Therefore, Eventual
Consistency never ensures Linearizability.

This thesis also introduces a primitive, called Eventual Consensus, that
it proves to be necessary and sufficient to implement Eventual Linearizabil-
ity. Eventual Consensus is strictly weaker than Consensus, since it can be
implemented with ♦S despite any number of faulty processes. Inputs to
Eventual Consensus are operations proposed by processes, and outputs are
sequences of operations. Informally, Eventual Consensus requires that after
some unknown time t, all operations proposed after t are totally ordered at
each process before being completed.

Beyond introducing and formalizing Eventual Linearizability and Even-
tual Consensus, the thesis studies whether Consensus implementations can
be extended to provide Eventual Consensus without degrading their proper-
ties. It presents a shared object implementation, called Aurora, which pro-
vides Linearizability for strong operations and Eventual Linearizability for
weak operations using the Eventual Consensus primitive. Aurora is grace-
fully degrading because it achieves different consistency properties based on
the actual strength of the failure detector it uses. In particular, it degrades
Eventual Linearizability to Eventual Consistency only in periods where Con-
sensus would block due to the absence of a single leader process.

For high availability, Aurora ensures termination of weak operations
in asynchronous runs. In these runs, Aurora guarantees Eventual Consis-
tency and also causal consistency [Lam78] of weak operations. Unlike other
weakly consistent implementations such as Lazy Replication [LLSG92] and
Bayou [TTP+95], Aurora additionally implements Eventual Linearizability
for weak operations in runs where processes have access to a failure detector
of class ♦S. In this case, strong operations terminate in the absence of con-
current weak operations if a majority of correct processes exists. Finally, if
the processes have access to a failure detector of class ♦P , then all operations
terminate even in presence of concurrency.

It may seem unnecessary that Aurora requires a stronger failure detec-
tor than a Consensus algorithm to terminate strong operations. This the-
sis shows, perhaps unexpectedly, that this reflects a fundamental tradeoff.

12 CHAPTER 1. INTRODUCTION

Specifically, the thesis shows that with ♦S, it is impossible to ensure termi-
nation of strong operations with a majority of correct processes and at the
same time to achieve Eventual Consensus and termination of weak operations
with a minority of correct processes.

Interestingly, at the heart of circumventing the impossibility lies the abil-
ity to eventually tell if consensus will terminate, which is possible with ♦P
but impossible with ♦S. This seems to be a fundamental and unexplored
difference between the two classes of failure detectors. On the other hand,
a strongly complete failure detector is sufficient to eventually detect that
consensus will not terminate.

1.2.4 Publications Resulting from the Thesis

The work reported in this thesis is supported by several international con-
ference publications:

• Marco Serafini, Dan Dobre, Matthias Majuntke, Péter Bokor and
Neeraj Suri, Eventually Linearizable Shared Objects, in Proceedings of
the 29th Annual ACM SIGACT-SIGOPS Syposium on Principles of
Distributed Computing (PODC), Zürich (CH), 2010.

• Marco Serafini, Péter Bokor, Dan Dobre, Matthias Majuntke and
Neeraj Suri, Scrooge: Reducing the Costs of Fast Byzantine Replication
in Presence of Unresponsive Replicas, in Proceedings of the 40th IEEE
International Conference on Dependable Systems and Networks (DSN-
DCCS), Chicago (US), 2010.

• Marco Serafini and Neeraj Suri, Reducing the Costs of Large-Scale
BFT Replication, in Proceedings of Large-Scale Distributed Systems
and Middleware (LADIS), White Plains (US), 2008.

• Marco Serafini and Neeraj Suri, The Fail-Heterogeneous Architectural
Model, in Proceedings of the 26th IEEE International Symposium on
Reliable Distributed Systems (SRDS), Beijing (China), pp. 103–113,
2007

The following publications in international conferences and journals were
developed in the context of the PhD work of this thesis. These publications
span different topics, such as membership in synchronous embedded systems
to and formal verification of distributed algorithms.

1.2. THESIS CONTRIBUTIONS 13

Applications of eventually linearizable shared objects

• Marco Serafini and Flavio Junqueira, Weak Consistency as Last Re-
sort, in Proceedings of the 4th ACM SIGOPS/SIGACT Workshop
on Large Scale Distributed Systems and Middleware (LADIS), Zürich
(CH), 2010.

Membership algorithms for transient faults in synchronous systems

• Marco Serafini, Péter Bokor, Neeraj Suri, Jonny Vinter, Astrit
Ademaj, Wolfgang Brandstätter, Fulvio Tagliabó and Jens Koch,
Application-Level Diagnostic and Membership Protocols for Generic
Time-Triggered Systems, IEEE Transactions on Dependable and Se-
cure Computing (IEEE TDSC) – accepted, to appear

• Kohei Sakurai, Masahiro Matsubara, Marco Serafini and Neeraj Suri,
“Dependable and Cost-Effective Architecture for X-by-Wire Systems
with Membership Middleware”, Proc. of FISITA World Automotive
Congress, 2008.

• Marco Serafini, Andrea Bondavalli and Neeraj Suri, On-Line Diag-
nosis and Recovery: On the Choice and Impact of Tuning Parame-
ters, IEEE Transactions of Dependable and Secure Computing (IEEE
TDSC), 4(4), pp. 295–312, Oct. 2007

• Marco Serafini, Neeraj Suri, Jonny Vinter, Astrit Ademaj, Wolfgang
Brandstätter, Fulvio Tagliabó and Jens Koch, A Tunable Add-On Diag-
nostic Protocol for Time-Triggered Systems, in Proceedings of the 37th
IEEE International Conference on Dependable Systems and Networks
(DSN-DCCS), Edinburgh (UK), pp. 164–174, 2007

Model checking of distributed algorithms

• Peter Bokor, Marco Serafini and Neeraj Suri, “Efficient Models for
Model Checking Message-Passing Distributed Protocols”, Proc. of
Formal Techniques for Networked and Distributed Systems (FORTE),
2010.

• Peter Bokor, Marco Serafini and Neeraj Suri, “Role-Based Reduction
of Fault-Tolerant Distributed Protocols with Language Support”, Proc.
of Int’l Conf. on Formal Engineering Methods (ICFEM), 2009.

14 CHAPTER 1. INTRODUCTION

• Peter Bokor, Marco Serafini, Helmut Veith and Neeraj Suri, “Ef-
ficient Model Checking of Fault-tolerant Distributed Protocols Using
Symmetry Reduction (Brief Announcement)”, Proc. Int’l Symp. on
Distributed Computing (DISC), 2009.

• Peter Bokor, Marco Serafini, Aron Sisak, Andras Pataricza and
Neeraj Suri, “Sustaining Property Verification of Synchronous Depend-
able Protocols Over Implementation”, Proc. of the IEEE Int’l Symp.
on High Assurance Systems Engineering (HASE), 2007.

Byzantine-fault tolerant storage

• Matthias Majuntke, Dan Dobre, Marco Serafini and Neeraj Suri,
“Abortable Fork-Linearizable Storage”, Proc. of Int’l Conf. on Princi-
ples of Distributed Systems (OPODIS), 2009.

• Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri,
“Efficient Robust Storage using Secret Tokens”, Proc. of Int’l Symp.
on Stabilization, Safety, and Security of Distributed Systems (SSS),
2009.

Crash-tolerant consensus over Wide Area Networks

• Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri,
“HP: Hybrid Paxos for WANs”, Proc. European Dependable Comput-
ing Conference (EDCC), 2010.

1.3 Thesis Structure

The structure of the following chapters follows the structure of the research
questions described earlier:

Chapter 1 presents the background of the problems driving this research,
introduces the research problems and the contributions of this thesis.

Chapter 2 introduces the terminology used throughout the thesis and
surveys the state of the art in fault-tolerant replication, with a particular
interest for its application for Web-scale systems.

Chapter 3 describes the Scrooge protocol.

Chapter 4 defines the fail-heterogeneous fault model and introduces the
HereTrust protocol.

1.3. THESIS STRUCTURE 15

Chapter 5 introduces eventual linearizability, shows inherent tradeoffs
in implementing it, and describes the gracefully-degrading Aurora protocol.

Chapter 6 finally concludes the thesis, re-evaluating the value of the
conceptual and experimental contributions. A discussion on the applicability
of the thesis results to different fields of distributed systems, especially on
a Web-application scale, alongside with an outline of the future research
directions opened by the novel approach presented by this thesis.

16 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art and
Background

Fault-tolerant replication over a message-passing distributed system is a long-
established problem that spurred a large volume of research over the last
decades. This chapter reviews some basic concepts of fault-tolerant repli-
cation, which are necessary to understand the contributions of this thesis.
It then makes an overview of the two specific topics treated in this thesis:
Byzantine-fault tolerant replication and weakly consistent replication.

17

18 CHAPTER 2. STATE OF THE ART AND BACKGROUND

2.1 The Consensus Problem and Replication

Consensus is a fundamental problem in distributed computing. It requires
a set of processes starting with possibly different initial values to eventually
output a single common output value. Consensus is a paradigmatic problem
in distributed coordination and has been extensively studied over the last
decades.

The problem of fault-tolerant consensus over message-passing distributed
systems was first introduced by Lamport, Pease and Shostak in the early
eighties [PSL80; LSP82a]. Byzantine-fault tolerant consensus algorithms
where initially used to implement clock synchronization in avionic sys-
tems [WLG+78]. In these real-time dedicated systems, it is safe to assume
that the message-passing system is synchronous, that is, there exists a known
upper bound on the message communication and processing delay of each pro-
cess. The initial work of Lamport, Pease and Shostak also established the
lower bound on the number of replicas necessary to tolerate a given number
of Byzantine faults using a synchronous message-passing system. The lower
bound on the time complexity, expressed in terms of number of communica-
tion rounds, followed shortly thereafter [FL81].

Subsequent research examined the problem of consensus in different
classes of systems where communication may be asynchronous, or partially
synchronous, but only crashes are tolerated. In the crash fault model, pro-
cesses follow their specification until they stop taking any step, and messages
can not be corrupted. An early, fundamental result was the impossibility of
solving consensus in asynchronous systems, where there is no upper bound on
message communication and processing delays [FLP85]. A palette of differ-
ent partial synchrony models representing the minimal synchrony conditions
to solve consensus was proposed in [DDS87].

2.1.1 Failure Detectors

Partial synchrony can be expressed by augmenting the asynchronous system
model with the abstraction of failure detectors [CT96]. Failure detectors are
oracles providing information on which processes have crashed. Each process
runs a failure detector module that outputs at any time a set of process
indices. Failure detectors are grouped in different classes based on their
completeness and accuracy. Completeness refers to the ability of a failure
detector to eventually suspect all crashed processes. Accuracy requires that
correct processes are not suspected. Partially synchronous systems can be
modeled as systems with an eventually accurate failure detector, which can
mistakenly suspect all correct processes as faulty for a finite time. Since

2.1. THE CONSENSUS PROBLEM AND REPLICATION 19

suspects of these failure detectors are unreliable, consensus algorithms need
to be indulgent and deal with false suspicions [Gue00].

Failure detectors represent a way to express the inherent complexity of
solving a distributed computing problem. A good survey on the failure de-
tector abstraction is [FGK06]. Much work has dealt with identifying the
weakest failure detectors that are necessary to solve distributed computing
problems, as for example [CHT96; DGFG+04]. In this thesis we consider four
classes of failure detectors. The class Ω is the weakest class of failure detector
to solve consensus. Failure detectors of class Ω output at most one process
id at each process pi. The process whose id is output is said to be trusted by
pi. All failure detectors of class Ω eventually let a single correct process be
permanently trusted by all correct processes [CHT96]. The class of strongly
complete failure detectors, which we denote C, includes all failure detectors
that output a set of suspected processes and that ensure strong completeness,
i.e., eventually every process that crashes is permanently suspected by every
correct process [CT96]. The classes of eventually strong (resp. eventually
perfect) failure detectors ♦S (resp. ♦P) include all strongly complete failure
detectors having eventually weak accuracy (resp. eventually strong accuracy),
i.e., eventually some correct process is (resp. all correct processes are) not
suspected by any correct process [CT96].

2.1.2 The Paxos Protocol

Paxos is a very simple and efficient algorithm to solve consensus in the crash
model using a leader oracle [Lam98; Lam01]. It identifies three roles for
processes. Proposers have an initial value and propose it to become the
final output value. They send their proposals only when the leader oracle
indicates them as leader. Acceptors accept proposals. If enough acceptors
has accepted a proposal, this is termed as chosen and can be safely learned as
output value by learners. Learners establish that a proposal can be decided
as output.

The communication pattern of Paxos in “good runs” where there is only
one leader proposer is depicted in Figure 2.1 Before making a proposal, a
leader reads from the acceptors to find out if any previous proposed value
may have been learned. If such a value is found, the leader adopts it as its own
initial value. In this step, acceptors promise to the leader that they will ignore
all messages sent by any other previous leader. In order to establish a total
order between the leaders, a proposal number is associated to each message
sent by the leader. Whenever a process is elected as a leader, it increases its
proposal number. Proposal numbers are unique: no two different processes
ever use the same proposal number.

20 CHAPTER 2. STATE OF THE ART AND BACKGROUND

Figure 2.1: Communication pattern of the Paxos protocol, described using
the terminology of [Lam01]. For simplicity, we depict the leader process as
the only learner.

In the second round, the leader sends its proposal to all acceptors. If
an acceptor accepts the proposal (because it has not previously promised to
ignore it) it sends an acknowledgement to the leader. If enough acceptors
have accepted a proposed value, learners can decide to output it.

Paxos requires 2t + 1 processes to tolerate t crashes, which is shown to
be minimal in [CT96]. The following is an informal explanation of why this
number of replicas is necessary. Consensus requires that if a learner has
decided a value, no other learner will decide on a different value. If at most t
processes can fail by crashing, a process can wait for at most n− t messages
at each round. This is a consequence of the unreliability of failure detection,
which makes it impossible to determine with certainty whether the sender
of the t missing messages are faulty or simply slow. A learner must thus
be able to learn a value after receiving n − t acknowledgements. If a new
leader is elected, it must be able to read the chosen value by contacting n− t
acceptors in the read phase. This is key for safety. It is thus easy to see that
having at least 2t+ 1 replicas ensures that any two sets of acceptors having
cardinality n− t intersect in at least one acceptor, which then reports to the
new leader the chosen value.

2.1.3 State-Machine Replication

Replicating functionalities over multiple physical devices for fault tolerance
is a common technique in systems design. It is used at different layers of
abstraction, from hardware design to software applications. A fundamental
fault-tolerant replication technique is the state-machine approach [Sch90].
State machines model deterministic servers. They atomically execute com-
mands issued by clients. This results in a modification of the internal state
of the state machine and/or in the production of an output to a client. An
execution of a state machine is completely determined by the sequence of

2.2. MODERN BYZANTINE-FAULT TOLERANCE 21

commands it executes, and is independent of external inputs such as time-
outs.

A fault-tolerant state machine can be implemented by replicating it over
multiple processors. Commands need to be executed by every replica in a
consistent order, despite the fact that different replicas might receive them
in different orders. In state machine replication, consensus, or the equivalent
atomic broadcast primitive [CT96], can be used by replicas to agree on a single
execution order. In this case, an instance of consensus is executed to agree
on the command corresponding to each sequence number in the execution
order.

The Paxos algorithm uses consensus as fundamental building block to
implement state machine replication. A key aspect for the efficiency of Paxos
in this case is that a new leader can execute the read phase only once for all
instances of consensus, or equivalently, for all sequence numbers. Therefore,
the actual processing overhead for each command when there is a stable
leader consists only of executing the write phase.

The correctness property implemented by state machine replication is
Linearizability [HW90], which requires that clients observe commands from
other clients in a total order that is consistent with the real-time order of
these commands. Linearizability implicitly identifies a single “linearization
point” in time where a command takes effect. This must be enclosed between
the times of invocation and of completion of a command.

2.2 Modern Byzantine-Fault Tolerance

As already discussed, initial work on Byzantine-Fault Tolerance (BFT) fo-
cused on synchronous systems. Algorithms for asynchronous Byzantine
agreement where already proposed in the eighties [BT85]. However, these are
randomized algorithms with a highly variable performance overhead. A more
recent revamp of interest on BFT started with Malkhi’s and Reiter’s work on
Byzantine-fault tolerant quorum system, which were advocated as a method
to tolerate worst-case failures in storage [MR97]. Interest in the Byzantine
fault model became particularly strong after the work on the PBFT algo-
rithm, which showed that state machine replication in partially synchronous
systems can be efficient and have stable performance [CL99].

2.2.1 The PBFT algorithm

The PBFT algorithm shares some commonalities with Paxos, such as the
use of a single leader to order operations, but tolerates Byzantine faults.

22 CHAPTER 2. STATE OF THE ART AND BACKGROUND

Some work, as for example [CC10; LAC07; RMS10], attempted to provide
an unified view of the two algorithms.

Despite many commonalities, there are also important differences between
Paxos and PBFT. First, Byzantine leaders need to be tolerated. The write
phase of PBFT has three communication steps. The first two steps ensure
that all replicas receive the same order of operations from the leader even
if this is Byzantine. These two steps constitute an instance of consistent
broadcast, which is similar to the echoing techniques introduced in [BT83].
The third communication step of the write phase guarantees that enough
replicas have observed the order of a given operation and that this order can
be recovered. After this third step is completed, an operation can be com-
mitted and completed. The communication pattern of read phase of PBFT
is also more complex because the new leader needs to convince the acceptors
that the value it proposes has been correctly determined by executing the
read phase.

The second difference between PBFT and Paxos is that Byzantine ac-
ceptors need to be tolerated. A correct leader needs to take into account
the presence of Byzantine acceptors that might lie about the values they
have accepted from previous leaders. This results in a much more complex
procedure used by new leaders to chose their proposed value [Cas01].

Finally, PBFT uses an eventual synchrony model requiring that eventu-
ally all messages sent among correct processes are received before receivers
timeout. The reason is that designing failure detectors for Byzantine faults
is still an unsolved problem because, unlike crashes, the semantic of these
faults is specific to the particular application or protocol being executed
(see [FGK06] for a survey).

Note that none of these problems can be solved simply by using crypto-
graphic techniques. Byzantine processes, in fact, can disrupt the algorithm in
more subtle ways than by forging messages. For example, they can pretend
that they did not send or receive some message. However, using public-
key cryptography does simplify aspects of the design of BFT algorithms,
although at the cost of a high computational overhead. A key advantage
for the efficiency of the PBFT algorithm is its exclusive use of symmetric-
key cryptography, different from previous algorithms such as [KMMS98] that
heavily rely on digital signatures.

PBFT uses a minimal number of replicas, matching the lower bound
shown in [BT85]. In fact, it requires 3f +1 processes to tolerate f Byzantine
faults.

2.2. MODERN BYZANTINE-FAULT TOLERANCE 23

Replication Fast w. no Fast w. f
costs (min. unresponsive unresponsive

2f + b+ 1 [Lam03]) replicas replicas
PBFT [CL99] 3f + 1 NO NO
Zyzzyva [KAD+07] 3f + 1 YES NO
Zyzzyva5 [KAD+07] 5f + 1 YES YES
DGV [DGV04] 3f + 2b− 1 YES YES
Scrooge 2f + 2b YES YES

Table 2.1: Comparison of primary-based BFT replication protocols that
tolerate f failures, including b Byzantine ones.

2.2.2 Efficient Byzantine-Fault Tolerance

Many algorithms subsequent to PBFT tried to improve its efficiency, in
particular by reducing the number of steps executed when there exists a
stable leader. Multiple results showed an implicit tradeoff between latency
and replication costs, and introduced matching algorithms such as Fab and
DGV [MA06; DGV04]. These fast algorithms merge the last two steps of
the write phase into a single one one. As a result, processing a command
in presence of a stable leader requires only two steps instead of three. The
resulting communication pattern for the write phase is similar to the one
of Paxos in Figure 2.1, with the difference that there are multiple learners
receiving the message in the last step.

The Zyzzyva protocol further optimized these algorithms by letting
clients, rather than replicas act as learners. This reduces the latency in
presence of a stable leader to only three steps: from client to the leader,
from the leader to the other replicas, and from these to the client. This
leads to important advantages in terms of latency and throughput, but still
must adhere to the implicit tradeoffs between being fast and having minimal
replication costs identified in [MA06; DGV04].

A comparison of Scrooge with PBFT [CL99], Zyzzyva [KAD+07] and
DGV [DGV04] is already dicussed in chapter 1, and is summarized again in
Table 2.2.

In [GKQV10] a framework is proposed where different protocols can be
combined to react to different systems conditions. The authors present two
new protocols which improve the latency or the throughput of BFT repli-
cation in fault-free runs where specific preconditions are met (e.g. clients
do not submit requests concurrently). In presence of unresponsive replicas,
these protocols need to switch to a backup protocol such as PBFT.

Protocols like Q/U [AEMGG+05] and HQ [CML+06] let clients directly
interact with the replicas to establish an execution order. This reduces

24 CHAPTER 2. STATE OF THE ART AND BACKGROUND

latency in some cases but is more expensive in terms of of MACs opera-
tions [KAD+07; SDM+08].

Preferred quorums is an optimization used by clients in some quorum-
based BFT replication protocols to reduce the cryptographic overhead or
to keep persistent data of previous operations of the client [CML+06;
AEMGG+05]. Preferred quorums are not agreed-upon using reconfigurations
and are not used during view change. This technique is thus fundamentally
different from replier quorums because using (or not using) it has no effect
on the replication cost of the protocol.

2.2.3 Trusted Components and Confidentiality

Byzantine agreement protocols and the homogeneous fail-Byzantine model
were introduced to tolerate arbitrary physical faults in synchronous safety-
critical systems [LSP82b]. Distributed systems designed to tolerate f Byzan-
tine faults can in general handle m ≥ f less severe faults, although not
necessarily at the same time. In order to model this, hybrid fault mod-
els [Lam03; MP91; WS03] assume that any node in the system can fail in a
malicious or benign manner, as long as the upper bound on the number of
faulty nodes is respected.

Hybrid architectures partition the system into different subsystems with
different sets of assumptions. For example, the Wormhole model [Ver06]
considers systems that are partitioned into multiple subsystems, which can
be characterized by different failure modes and synchrony assumptions. An
example of architecture built conforming to this model is TTCB [CVN02],
where each node is composed of two different subsystems. The first is an
asynchronous, fail-Byzantine payload subsystem connected to the payload
subsystems of the other nodes through an asynchronous payload channel.
The second is a synchronous, fail-crash control subsystem with limited com-
putational capabilities and usually connected to the other control subsystems
in other nodes through a dedicated, low bandwidth and synchronous control
channel.

The fail-heterogeneous architectural model differs from hybrid fault mod-
els as it associates different fault models to specific nodes of the distributed
system. It also differs from the Wormhole model as it does not consider dif-
ferent subsystems internal to nodes, nor different degrees of synchrony within
specific subsystems.

The BFT protocol [CL99] for homogeneous fail-Byzantine systems imple-
ments state machine replication and guarantees that replicas do not diverge
even in presence of malicious attacks and intruded participants. Compared
to the Paxos protocol [Lam98; Lam01], which is its fail-crash counterpart,

2.2. MODERN BYZANTINE-FAULT TOLERANCE 25

BFT requires more replicas to tolerate f faults (3f +1 instead of 2f +1) and
has a higher latency. Subsequent work showed that a latency comparable to
the crash-only case is achievable at the cost of a higher degree of replication
(5f + 1) [MA06].

If agreement and execution are separated, as proposed in [YMV+03],
agreement processes can have a simple design and require fewer local re-
sources, while only 2f + 1 complex replicas of the servers need to be diver-
sified (using a proper abstraction layer such as [RCL01]). However, to keep
the number of faulty processes below the upper bound f there should be
no correlation between failures, i.e., intrusions, at any different replica. As
intrusions are made possible by design faults, such as vulnerabilities, failure
independence requires diversified design of each node participating in the pro-
tocol (e.g., different operating systems must be used, different applications
etc.) regardless of its role.

Based on similar considerations, our HeterTrust protocol assumes the
availability of a set of simple nodes dedicated to replica coordination. Since
the coordination algorithm is generic and can be re-used in multiple contexts,
a thorough verification and validation of its design can be worthy.

As pointed out in [YMV+03], replication of confidential data increases
the likelihood that an attacker can intrude a replicated server and obtains
confidential information. The authors of [YMV+03] propose a privacy firewall
to make sure that (a) only replies processed by at least one correct process
might be sent out by the service, and (b) replies should be as deterministic
as possible to prevent attackers from using steganography. This represents
the best solution proposed so far under a fail-Byzantine model. However,
it requires a high number of replicas, a long latency to filter replies, and
expensive threshold cryptography to make replies deterministic. The fail-
heterogeneous architecture of HeterTrust represents a viable alternative to
achieve the same properties with lower overhead and fewer replicas.

HeterTrust uses a majority of correct fail-crash coordination nodes to
reduce the number of complex fail-Byzantine execution nodes with diver-
sified design to 2f + 1. If trusted coordinators are incorporated as sub-
components of execution servers, the HeterTrust only needs a majority of
correct processes. In [CNV04], a similar result was achieved by relying on
the synchrony of TTCB communication for agreement. HeterTrust tolerates
periods of asynchrony and requires only an Ω leader election protocol for
liveness.

In [MBTPV06] agreement and execution are also separated in fail-crash
systems to take advantage of regions with “early” partial synchrony, where
reaching agreement is easier. A hierarchical protocol decomposition approach
for WANs is proposed in [ACKL07]. It allows choosing different combinations

26 CHAPTER 2. STATE OF THE ART AND BACKGROUND

Protocol SM FM n Latency Confid. Crypt.

Paxos [Lam98; Lam01] PS C 2g + 1 4/5 - -
BFT [CL99] PS B 3f + 1 4 no MAC
FaB [MA06] PS B 5f + 1 3 no MAC

Correia et.al [CNV04] W W 2m+ 1 5 no MAC
Marchetti et.al [MBTPV06] PS C 3g + 2 4/5 - -

Yin et.al [YMV+03] PS B f2 + 6f + 2 2f + 7 yes TS

HeterTrust PS H 2f + 2g + 2 4 yes MAC

n = lower bound on # nodes; g/f/m = upper bound on # fail-crash / Byzantine / mixed nodes
SM = System Model (Partially Synchronous / Wormhole)

FM = Fault Model (Crash / Byzantine / Wormhole / Heterogeneous)
MAC = Message Authentication Codes; TS = Threshold Signatures

Table 2.2: HeterTrust - comparison with other deterministic state machine
replication protocols

of fault tolerance protocols at each site and among sites in a customizable
manner to mask Byzantine faults. Our approach differs from this as it binds
failure modes to specific nodes based on their design.

Table 2.2 presents a comparison between HeterTrust and other deter-
ministic state machine replication protocols. Most of the compared pro-
tocols assume partially synchronous system models similar to [DLS88], ex-
cept [CNV04] where a Wormhole model is assumed. We report the upper
bounds on crash (g) and Byzantine (f) faults tolerated. In general, only a
subset of the nodes required for agreement (n) needs to actually implement
the replicated service (e). Multi-tier architectures require additional nodes
(a), for confidentiality or for faster agreement. In this case g and f represent
upper bounds for each layer. The state machine message complexity and
latency is measured during best-case runs as the number of communication
steps on the critical path from a client request to its reply. Where indicated
by the authors, we consider the use of tentative executions [KPA+03]. For
confidentiality, additional communication steps are necessary in [YMV+03]
and HeterTrust. A simple variation of HeterTrust exists that does not pro-
vide confidentiality and allows saving one communication step. Table 2.2
also indicates the type of cryptography used during normal operation in the
critical path. All mentioned fail-Byzantine protocols use public keys during
recovery.

2.3 Weak Consistency Semantics

The previous sections have illustrated that Paxos can only make progress,
when a correct leader is trusted by all correct processes and is able to com-
municate with n − t correct acceptors. If these conditions are not met, due

2.3. WEAK CONSISTENCY SEMANTICS 27

to asynchrony in the network, process failures or partitions, then Paxos and
other algorithm implementing consensus block.1 This is unacceptable for
some applications. Also, the latency of solving consensus might be too high
for some applications. These are the reasons motivating relaxations of con-
sistency in replicated systems.

The following previous work has studied how to extend Linearizability
with weaker consistency properties. Eventual Serializability requires that
“strict” operations and all operations preceding them be totally ordered at
the time of their response, while other operations may only be totally ordered
after their response [FGL+96]. Most existing systems implementing opti-
mistic replication provide variations of this property, often called Eventual
Consistency [SS05; Vog09]. As we show, Eventual Consistency is weaker than
Eventual Linearizability. Timed Consistency strengthens sequential consis-
tency by setting a real-time bound ∆ after which operations must be seen
by any other process [TRAR99]. If ∆ = 0 the specification is equivalent to
Linearizability. If not, Timed Consistency allows completed operation to re-
main invisible to subsequent operations, similar to Eventual Consistency. In
this case, our result can be easily extended to show that Timed Consistency
is not stronger than Eventual Linearizability. Like Eventual Serializability,
Hybrid Consistency requires strong operations to be linearizable with each
other but relaxes the ordering between pairs of weak operations [AF92]. None
of these papers discusses how to strengthen consistency in “good periods”
where Consensus may be solved.

A few replication algorithms have some similarity with Aurora because
they seem to implement Eventual Consensus in some “good” runs, although
this property is not explicitly stated. Zeno extends Byzantine-fault toler-
ant state machine replication to guarantee availability and Eventual Consis-
tency for weak operations in presence of partitions [SFK+09]. Zeno appears
to achieve Eventual Consensus in some “good” runs. However, Zeno re-
laxes Linearizability for strong operations. In fact, processes invoking weak
operations are allowed to observe concurrent strong operations in different
orders. The COReL algorithm is a total order algorithm using partition-
able group membership, rather than failure detectors, as underlying building
block [KD96]. It optimistically outputs operations before their total order
is known. In runs where all correct processes are eventually in the same
partition, it ensures that eventually the optimistic order of the operations is
equal to the definitive, total order.

1Note that we refer to deterministic consensus algorithms. Randomized algorithms
can achieve progress with asynchronous links but only solve consensus with probability
converging to 1.

28 CHAPTER 2. STATE OF THE ART AND BACKGROUND

A number of distributed systems, including modern highly-available data
center services such as Amazon’s Dynamo [DHJ+07], the Google File Sys-
tem [GGL03] and Yahoo’s PNUTS [CRS+08] allow trading Linearizability
for availability in presence of partitions, which occur between geographically
remote data centers as well as inside data centers [Vog09]. A survey on
many practical weakly consistent systems is provided in [SS05]. A drawback
of weakly consistent systems is that they are notoriously hard to program
and to understand [BCvR09]. Authors of [AAL+08] argue, with motivations
similar to ours, that many systems aim at being “usually consistent”. They
propose a quantitative measure, called consistability, to study the tradeoffs
between performance, fault-tolerance and consistency.

There is a large body of work on weak consistency semantics for dis-
tributed shared memories having read/write semantics. For a survey we
refer to [RS95]. Eventual Linearizability is an eventual safety property that
can be combined with any of these safety properties. For example, Aurora
has a causal consistency property that allows implementing causal memo-
ries [Lam78]. Refined specifications of graceful degradation and correspond-
ing implementations for transactions taking snapshots of the state of multiple
objects are presented in [ZPR+07]. Authors of [AT10] study graceful degra-
dation of liveness, rather than consistency. The stronger the properties of
the failure detector used by the protocol, the stronger the liveness guarantees
offered to clients.

2.4 Chapter Summary

This chapter has informally overviewed some fundamental concepts and al-
gorithms of fault-tolerant replication. It has also discussed the state of the
art in the fields where this thesis contributes to allow a comparison with the
contributions of the thesis, which are described in the previous chapter 1.

Chapter 3

Fast BFT at Low Cost

BFT incurs a fundamental trade-off between being fast (i.e. optimal latency)
and achieving optimal resilience (i.e. 2f+b+1 replicas, where f is the bound
on failures and b the bound on Byzantine failures [BT85; Lam03]). Achiev-
ing fast Byzantine replication despite f failures requires at least f + b − 2
additional replicas [MA06; DGV04; KAD+07]. This chapter shows, perhaps
surprisingly, that fast Byzantine agreement despite f failures is practically
attainable using only b − 1 additional replicas, which is independent of the
number of crashes tolerated. This makes Scrooge particularly appealing for
systems that must tolerate many crashes (large f) and few Byzantine faults
(small b). The first core principle of Scrooge is to have replicas agree on a
quorum of responsive replicas before agreeing on requests. This is key to cir-
cumventing the resilience lower bound of fast Byzantine agreement [DGV04].
The second is the use of the cryptographic information contained in message
authenticators to detect faulty replicas.

29

30 CHAPTER 3. FAST BFT AT LOW COST

3.1 Technical Highlights

This chapter describes the Scrooge protocol. Before introducing the details
of the algorithm, however, this section gives an overview of the two main
novel techniques used by the algorithm to improve on the state of the art:
replier quorums and message histories.

3.1.1 First Technique: Replier Quorums

Scrooge uses two novel techniques, replier quorums and message histories,
to reduce replication costs. The first technique consists of having replicas
agree on a set of replicas, termed replier quorum, whose members are the
only ones responsible for sending replies to clients in normal runs. A distin-
guished replica, called the primary, sends messages to the other replicas that
dictate the order of execution of requests. Scrooge uses speculation so repli-
cas directly reply to the client without reaching agreement on the execution
order first (Figure 3.1.a). This allows clients to immediately deliver a reply
if all the repliers are responsive and correct. If a replier becomes unrespon-
sive or starts behaving incorrectly, this is indicated by clients to the replicas,
which then execute a reconfiguration to a new replier quorum excluding the
suspected replica.

During reconfigurations, explicit agreement is performed by the replicas
(Figure 3.1.b). This is similar to PBFT, but the agreed-upon value contains
two types of information: the execution order of client requests and the new
replier quorum. Agreeing on the order of requests ensures that all client
requests can complete even in presence of faulty or unresponsive repliers.
Agreeing on the new replier quorum allows future requests to be efficiently
completed using speculation. Coupling these agreements reduces the over-
head incurred by reconfiguration. The goal of the first explicit agreement
in Figure 3.1.b is just completing the ongoing request from client i. When
the request of client j is received, the primary has a chance to propose a
new replier quorum and let all replicas explicitly agree on it. Speculation is
re-established as soon as this agreement is reached.

Scrooge requires clients to participate in the selection of repliers. Giving
more responsibility to clients is common in many BFT replication protocols,
such as Q/U, HQ and Zyzzyva. This is reasonable as clients are ultimately
entrusted not to corrupt the state of the replicated state machine with their
requests. Scrooge protects the system from Byzantine clients and ensures
that they can not make replica states diverge. However, Byzantine clients
can reduce the performance of the system by forcing it to perform frequent
reconfigurations and to use the communication pattern of PBFT (like in

3.2. SYSTEM AND FAULT MODEL 31

the request of client j in Figure 3.1.b), which anyway allows achieving good
performance, instead of using speculation (like in Figure 3.1.a). This kind
of client attacks can be easily addressed by simple heuristics, for example
by bounding the number of accusations a client can send in a given unit of
time. This reliance on clients to indicate suspected replicas results from the
use of speculation. Replicas can not observe if other replicas prevent fast
agreement by not sending correct speculative replies.

Reconfigurations are avoided in existing speculative protocols such as
Zyzzyva5 by using more replicas than Scrooge. Replier quorums allow re-
ducing the replication costs to 4f + 1 replicas when f = b.

3.1.2 Second Technique: Message Histories

Scrooge leverages the Message Authentication Codes (MACs) used in BFT
replication protocols to implement authenticated channels and to detect
forged and corrupted messages. The sender of a message generates an au-
thenticator, which is a vector of MACs with one entry for each other re-
ceiver, and attaches it to the message. In current primary-based protocols
such as [CL99; KAD+07], replicas store the history of operations dictated by
the primary but discard the authenticator of the messages from the primary
after their authenticity has been verified. Scrooge lets replicas store the en-
tire content of these messages, including the authenticator, in their message
histories. This further reduces the replication cost from 4f + 1 to 4f (again
with f = b).

3.2 System and Fault Model

The system is composed of a finite set of clients and replicas. At most
f replicas can be faulty, out of which at most b can be Byzantine (with
0 < b ≤ f) while the others can only crash. The system has N ≥ 2f + 2b
replicas. Any number of clients can be Byzantine. Clients and replicas are
connected via an unreliable asynchronous network. The network has timely
periods when all messages sent among correct nodes are delivered within a
bounded delay.

We assume the availability of computationally secure symmetric key cryp-
tography, to calculate MACs, and public key cryptography, to sign messages.
If message m is sent by process i to process j and is authenticated using sim-
ple MACs, this is denoted as 〈m〉µi,j . In case m is sent to all replicas by
process i, an authenticator consisting of a vector of MACs with one entry
per replica is sent with m and this is denoted as 〈m〉µi . If m is signed by i

32 CHAPTER 3. FAST BFT AT LOW COST

REQ

ORD-REQ SP
EC

-R
EP

deliver

backup
replicas

client

primary
replica

(a)

N-f
start timer

a replier is
unresponsive

(b)

REQ

ORD-REQ ST
AB

-R
EP

Client delivers even if
a replier is unresponsive

backup
replicas

client i

primary
replica

AGREESP
EC

-R
EP

REQ+SUSP

COMMIT

b+1< N-f
timeoutstart timer

client j

AGREE COMMIT ST
AB

-R
EP

b+1

REQ

Replicas observe that
the speculation has failed in this instance
and complete it with explicit agreement

Explicit agreement
on the order of this operation
and on the new replier quorum

The primary proposes
the new replier quorum

ORD-REQ

SP
EC

U
LA

TI
O

N
R

EE
ST

AB
LI

SH
ED

Figure 3.1: Communication patterns: (a) with speculation, during normal
periods; (b) with explicit agreement, during transient reconfiguration periods
where two client requests are processed. Repliers are indicated with a thicker
line.

Name Description Type

v current view timestamp
RQ replier quorum set of pids
n current seq. number timestamp
mh message history array of 〈req., RQ, auth.〉
h history digests array of digests
aw agreed watermark timestamp
cw commit watermark timestamp
SL suspect list set of f pids
v′ new view timestamp
ih initial history array of 〈m,RQ, auth.〉

view establishment set of N − f signed
E

certificate EST-VIEW messages

Table 3.1: Global Variables of a Replica

using its private key, this is denoted as 〈m〉σi . Scrooge also assumes the avail-
ability of a collision-resistant hash function H ensuring that for any value m
is impossible, given H(m), to find a value m′ 6= m such that H(m) = H(m′).

3.3 The Scrooge Protocol

Scrooge replicates deterministic applications, modeled as state machines, over
multiple servers. Clients use Scrooge to interact with the replicated servers
as if they were interacting with a single reliable server. Beyond the clas-
sic safety and liveness properties necessary for BFT replication, in Scrooge
clients eventually complete all their requests from speculative replies if the
basic conditions for speculation are satisfied (i.e. the primary is fault-free,
the clients are non-Byzantine and the system is timely).

For easier understanding, this thesis presents a simplified version of
Scrooge which assumes that replicas process unbounded histories. A com-
plete description of the full Scrooge protocol with garbage collection, together
with full correctness proofs, can be found in Appendix A.

3.3. THE SCROOGE PROTOCOL 33

Algorithm 1: Scrooge - Normal Execution
upon client invokes operation o1.1

t← t+ 1; SL← ⊥;1.2
send m = 〈REQ, o, t, c, SL〉σc to the primary;1.3
start timer;1.4

1.5
upon primary p(v) receives REQ message m from client m.c or a replica1.6

if not IN-HISTORY(m, mh) then1.7
n← n+ 1; d← H(m); RQp ← replicas 6∈ SL;1.8
send (〈ORD-REQ, v, n, d, RQp〉µp , m) to all replicas;1.9

else if not COMMITTED(m, mh, cw) then1.10
update(m.SL);1.11
agree(m);1.12

else reply-cache(m.c);1.13

1.14
upon replica i receives ORD-REQ message orq from primary p(v)1.15

if i = p(v) or (orq.v = v and orq.n = n+ 1 and p(v) ∈ orq.RQp) and not1.16
IN-HISTORY(orq.m, mh) then

n← n+ 1; h[n]← H(h[n− 1],mh[n]);1.17
mh[n]← 〈orq.m, orq.RQp, orq.µp〉;1.18
r ← execute(orq.m.o);1.19
if SPEC-RUN(i, orq.m, orq.RQp, RQ) then1.20

if i ∈ RQ then1.21
send 〈SPEC-REP, v, n, h[n], RQ, orq.m.c, orq.m.t, r, i〉µp,c to client orq.m.c;1.22

else1.23
agree(orq.m);1.24
if RQ 6= orq.RQp then RQ← ⊥;1.25

if AGREEMENT-STARTED(i, n, v) then agree(orq.m);1.26

1.27
upon client receives SPEC-REP message sp from replica sp.i1.28

if |sp.RQ| = N − f and client received speculative replies matching sp from all replicas in1.29
sp.RQ then

deliver (o, t, sp.r); stop timer ;1.30

1.31

3.3.1 Normal Execution

In normal executions where the system is timely, the primary is fault-free
and the replier quorum is agreed by all replicas and contains only fault-free
replicas, Scrooge behaves as illustrated in Figure 3.1.a and Algorithm 1.1

Table 3.1 summarizes the local variables used by the replicas. Replicas use
only MACs for normal runs and reconfigurations.

Scrooge runs proceed through a sequence of views. In each view v, one
replica, which is called the primary and whose ID is p(v) = v mod N , is given
the role of assigning a total execution order to each request before executing
it. The other replicas, called backups, execute requests in the order indicated
by the primary.

1Upon receiving a message, clients and replicas discard them if they are not well-formed,
i.e., if the signatures, MACs, message digests or certificates are not consistent with their
definitions. Such non well-formed messages are ignored in the pseudocode.

34 CHAPTER 3. FAST BFT AT LOW COST

Clients start the protocol for an operation o with local timestamp t by
sending a signed request message REQ to the primary. Clients then start a
timer and wait for speculative replies (Lines 1.1 – 1.4). When the primary
receives a request for the first time (Lines 1.6 – 1.9) it assigns it a sequence
number and sends an order request message ORD-REQ to mandate the same
assignment to all backups. The primary also stores the request in its message
history together with the current replier quorum RQp and the authenticator
µp of the ORD-REQ message.

When a replica receives order requests from the primary of the current
view (Lines 1.15 – 1.19), it checks that its view number is the current one,
that it contains the next sequence number not yet associated with a request
in the message history (predicate IN-HISTORY), and that the primary has
included itself in the replier quorum. If all these checks are positive, the
request is executed and the fields of the ORD-REQ message are added to the
message history.

Speculative runs where the pattern of Figure 3.1.a is executed are the
common-case runs (Lines 1.20 – 1.22). A replica checks the predicate SPEC-
RUN to distinguish speculative runs. The predicate is true unless (i) a client
could not complete the request out of speculative replies and has resent its
request to all replicas, including backups, or (ii) the primary has proposed
a new replier quorum which has not yet been agreed upon. In speculative
runs, replicas send a speculative reply to the client if it is a replier. Beyond
the reply r, the view number v and the sequence number n associated to the
client request, speculative replies contain the digest of the current history
h[n] and the replier quorum RQ. The former allows clients to verify that the
senders of speculative replies have a consistent history; the latter to identify
the replicas in the current replier quorum. If a client receives matching
speculative replies from all the N − f replicas in RQ, it delivers the reply
(Lines 1.28 – 1.30).

3.3.2 Reconfiguration

If a replica in the replier quorum fails, the client can not complete requests out
of speculative replies. The replier quorum is then reconfigured by eliminat-
ing faulty repliers to re-establish the communication pattern of Figure 3.1.a.
Replicas start a full three-phase agreement similar to PBFT by calling the
agree procedure, which takes the client request as argument (see Appendix A
for the full pseudocode). An example of reconfiguration over two client re-
quests is in Figure 3.1.b.

3.3. THE SCROOGE PROTOCOL 35

Completion of client requests When clients cannot deliver speculative
replies before the timer expires, they double the timer, indicate the IDs of the
repliers which have failed to respond and require replicas to explicitly agree
on a common message history. Similar to client i in Figure 3.1.b, they do
this by simply resending their requests, together with the set SL of suspect
replicas, to all replicas.

When the primary receives a request which is already in its message his-
tory, it checks with the predicate COMMITTED if a three-phase agreement
on the order of the request has already been completed. If not, the primary
adds the suspect list provided by the client to its list of the f most-recently
suspected servers SL and starts agreement (Lines 1.10 – 1.12). The back-
ups similarly start agreement because receiving the client request invalidates
SPEC-RUN. However, they need to receive the corresponding ordered re-
quest from the primary first (Lines 1.23 – 1.25). A replica i also starts an
agreement phase whenever another replica previously sent it an agreement
message (Line 1.26).

Replicas then execute the remaining two phases of agreement, agree and
commit, to converge to a consistent history and send stable replies to the
client. In each phase replicas send an agree or a commit message and wait
for N − f − 1 matching messages from the other replicas before completing
the phase. The agree and commit watermarks aw and cw mark the end of
the history prefix which has been respectively agreed and committed. Similar
to PBFT, all correct replicas completing the agreement phase for sequence
number n′ have the same message history prefix up to n′. When correct
replicas complete the commit phase for n′, they know that a sufficient number
of correct replicas have completed agreement on the history prefix up to n′

to ensure that the prefix will be recovered during view change. Replicas thus
send stable reply messages to the client. Stable replies differ from speculative
replies as they indicate that the history prefix up to the replied request can
be recovered. Clients can deliver after receiving a stable reply from at least
one correct replica, that is, after receiving matching stable replies from any
set of b + 1 replicas. Replicas cache the replies to committed requests to
respond to clients re-sending their requests (Line 1.13).

Agreement on a new replier quorum The classic three-phases agree-
ment is also executed for all subsequent requests until a new replier quorum
is agreed, as in case of the request of client j in Figure 3.1.b. The primary
computes a new replier quorum RQp from the suspect list SL in Line 1.8. It
then proposes RQp along with the next request which is ordered. Proposing
a new replier quorum invalidates the SPEC-RUN predicate for all backups

36 CHAPTER 3. FAST BFT AT LOW COST

and lets them start agreement (Lines 1.23 – 1.25). Replicas register ongoing
reconfigurations by setting RQ to ⊥ until a reconfiguration is completed.
They then start the successive two phases of agreement. Explicit agreement
on RQp lets replicas converge not only on a common history but also on a
new replier quorum. When a replica commits, it sets RQ to the new replier
quorum proposed by the primary so that SPEC-RUN holds again for future
requests and speculation is re-established. The commit on the new replier
quorum ensures that it will be recovered if view changes take place.

3.4 Scrooge View Change

If backups receive requests from the clients and see that the system is not
able to commit them, they start a view change to replace the current pri-
mary. In contrast to PBFT, one can only expect replicas to have explicitly
agreed on a prefix of the request history completed by clients. Also, different
from existing fast protocols allowing speculation in presence of unresponsive
replicas, Scrooge uses a lower number of replicas. This thesis presents a novel
view change protocol (see Algorithm 2) to achieve these challenging goals.
As customary, replicas now use signed messages.

3.4.1 Communication Pattern

View change to a new view v′ tries to build an initial history ih for v′, which
is then adopted as new message history when v′ is started. When a replica
initiates view change from the current view v to view v′, it stops processing
requests, starts a timer, and sends a view change message VIEW-CHANGE
to all replicas (see Figure 3.2(a) and Lines 2.1 – 2.5). A view change can also
be initiated when a replica receives b + 1 view change messages for a newer
view (Lines 2.15 – 2.16).

A view change message contains the new view v′ that the replica wants
to establish, the old view v, its message history mh, the view establishment
certificate E and the agreement watermark aw. The message history mh
contains, as prefix, the initial history ihv of v, which was stored at the end
of the view change to the current view v. By induction on the correctness of
the view change subprotocol for a given view, ihv contains every operation
completed by any client in the views prior to v. The view establishment
certificate E contains the EST-VIEW messages received at the end of the
view change to view v and proves the correctness of ihv. The remaining suffix
of mh contains the ORD-REQ messages received by i from the primary of
view v. These requests need to be recovered by the view change if they have

3.4. SCROOGE VIEW CHANGE 37

Algorithm 2: Scrooge - View change
procedure view-change(nv)2.1

stop executing request processing;2.2
v′ ← nv;2.3
send 〈VIEW-CHANGE, v′, v, mh, aw, E, i〉σi to all replicas;2.4
start timer;2.5

2.6
upon replica i receives VIEW-CHANGE message vc from replica vc.i2.7

if vc.v′ > v and not yet received a VIEW-CHANGE message vc for view nv = vc.v′ from2.8
vc.i then

k ← n′ + 1 : ∀ev ∈ vc.E, cv.n = n′;2.9
while mh[k] 6= ⊥ do2.10

res[k]← verify(vc.v, k, vc.mh[k]);2.11
k ← k + 1;2.12

d← H(vc); j ← vc.i; vj ← vc.v;2.13
send 〈CHECK, j, vj , d, res, i〉σi to p(vc.v′);2.14
if received b+ 1 vc msgs with vc.v′ > v′ then2.15

view-change(vc.v′);2.16
if i = p(v′) and vc.v′ = v′ and recover-prim() then2.17

send 〈NEW-VIEW, v′, V C, CH, i〉µi to all replicas;2.18

2.19
upon replica i receives a CHECK message ch2.20

if i = p(v′) and ch.vj = v′ and recover-prim() then2.21
send 〈NEW-VIEW, v′, V C, CH, i〉µi to all replicas;2.22

2.23
upon replica i receives a NEW-VIEW message nv2.24

if not yet received nv with nv.v′ = v′ from p(v′) and recover(nv.V C, nv.CH) then2.25
h← H(ih);2.26
n← length(ih);2.27
send 〈EST-VIEW, v′, n, h, i〉σi to all replicas;2.28

2.29
upon replica i receives an EST-VIEW message ev2.30

if received set Ev′ of N − f − 1 ev msgs: ev.v′ = v′ and ev.h = H(ih) and ev.n = length(ih)2.31
then

mh← ih; v ← v′; E ← Ev′ ;2.32
aw, cw ← max{k : mh[k] 6= ⊥}; RQ← mh[cw].RQ;2.33
start executing request processing;2.34

2.35

been observed by any client.

A novelty of Scrooge is that each replica which receives the view change
message from i checks if the messages in the history mh has been actually
sent by the primary of view v (see Figure 3.2(b)). Let vc.v be the value of
the current view field v contained in a view change message vc sent by replica
i to replica j. Scrooge executes one additional step during view change to
validate that all history elements in vc, except those in the initial history
of view vc.v, have been built from original order request messages from the
primary of view vc.v (Lines 2.7 – 2.14). When j receives vc, it first verifies
that the new view field vc.v′ is higher than the current view v of j and that
i has not already sent to j a view change message for the same view. Next,
j checks if the elements in the message history of i are “authentic”. For each
element with sequence number k, j calls the verify function (see Algorithm 3)

38 CHAPTER 3. FAST BFT AT LOW COST

which first rebuilds the order request message sent by the primary of view
vc.v to i for sequence number k, and then verifies the authenticator of the
message. Message histories make the first operation possible because they
contain sufficient information to rebuild the original order request messages,
including the message authenticator µp(vc.v) used by the primary of view vc.v.
Replica j verifies the authenticator by calculating the MAC of the rebuilt
order request message and by returning true if and only if this MAC is equal
with the entry of j in µp(vc.v). The results of the verification of each element
in the message history of vc is stored in a vector res, which is sent to the
primary of the new view v′ in a CHECK message together with additional
information to associate the check message to vc.

Different from existing algorithms, the new primary only recovers from
stable view change messages that are consistently checked by at least b + 1
replicas (Figure 3.2(c)). If these messages claim that the message history is
authentic, the history is termed as verified. The purpose of the additional
check step will become clearer at the end of this section, when the details
of recovery are discussed. For the moment, it is sufficient to note that all
view change messages eventually become stable in timely periods and that
the goal of this step is ensuring that if the primary of the old view v is non-
Byzantine and i stores correct ORD-REQ messages in its history, then: (P1)
the message history becomes verified because it receives positive CHECK
messages from all correct replicas, which are at least b + 1, and (P2) no
forged, inconsistent history can receive a positive CHECK message by any
correct replica and thus become verified.

The primary of a new view v′ calls the recover function (see Algorithm 3)
to try to recover the initial history ih whenever it receives a view change
message (Lines 2.17 – 2.18) or a check message (Lines 2.20 – 2.22) for v′. Re-

Sender replica i

Primary of the new view v’

VIEW-CHANGE CHECK

(a) (b)

(c)

...

NEW-VIEW EST-VIEW

(d)

Same pattern
for other sender replicas

Figure 3.2: Scrooge view change subprotocol. (a) Replica i sends a VIEW-
CHANGE message vc. (b) Other replicas verify the authenticator of vc. The
outcome is included in a CHECK message sent to the new primary. (c)
View change messages is stable when it is consistently checked by at least
f + 1 replicas. (d) The same is repeated for other replicas until the primary
proposes an initial history for the new view, which is then agreed.

3.4. SCROOGE VIEW CHANGE 39

covery examines only stable VIEW-CHANGE message for the new view. The
procedure returns true only if it is able to successfully recover all operations
completed by any client in all views prior to v′. In this case, the resulting
history forms the initial history of v′ and is stored in ih. We now continue
illustrating the communication pattern and argue about the correctness of
the recover function in the next subsection.

If history ih is recovered, the primary sends a new view message to all
other replicas with the sets of view change and check messages V C and CH
used for the recovery (see Figure 3.2(d)). When a backup receives a new view
message for the view it is trying to establish (Lines 2.24 – 2.28) it executes
the same deterministic recover function as the primary does on the same set
of view change and check messages to build the same initial history. If the
backup recovers an initial history ih for a new view v′, it sends an establish
view message to all other replicas in order to agree on ih. If it later receives
N − f − 1 establish view messages for v′ consistent with ih, it forms a view
establishment certificate for ih, sets v′ as its current view and ih as its agreed
history prefix, and updates the watermarks (Lines 2.30 – 2.34). The replica
then starts processing messages in the new view.

If the replica timer expires before the new view is established, a view
change to a successive new view v′ + 1 is started, the timer is doubled and
all messages related to the view change to v′ are discarded.

3.4.2 The Recover Function

The recover function (see Algorithm 3) is a critical component because it
guarantees that safety is preserved and that each history prefix observed by
any correct client in previous views is also a prefix of the initial history ih of
the next view. In order to allow the expert reader to verify all the nuances
of the algorithm, and in particular of recovery, Table 3.2 lists the predicates
used in the pseudocode.

Before starting recovery, a replica i makes sure that it has received a
set V Cs of at least N − f stable view change messages for the new view
v′. A view change message vc is stable if each element in the corresponding
message history vc.mh is consistently verified by at least b+1 check messages
received by the new primary (Lines 3.9 – 3.10). In timely periods each view
change message vc sent by correct replicas eventually become stable as all
N − f ≥ f + 2b > 2b correct replicas send CHECK messages containing
binary vectors res for vc.mh.

Recovery starts by selecting an initial prefix for the initial history ih
(Lines 3.11 – 3.15). The highest current view mv included in a view change
message in V Cs is either the last view lv < v′ where some client has completed

40 CHAPTER 3. FAST BFT AT LOW COST

Algorithm 3: Scrooge - View change procedures
function verify(v, n, e)3.1

d← H(e.m); or ← (ORD-REQ, v, n, d, e.RQ);3.2
µ← calculate-MAC(or, p);3.3
if µ = e.µp[i] then return true;3.4
else return false;3.5

3.6
function recover(V C, CH)3.7

recovered← false;3.8
V Cs ← V C \ {vc ∈ V C : ¬STABLE(vc, CH) ∨ vc.v′ 6= v′};3.9
if |V Cs| ≥ N − f then3.10

mv ← max{v : ∃vc ∈ V Cs with vc.v = v};3.11
vcmv ← vc ∈ V Cs with vc.v = mv;3.12
nmv ← n : ∀ev ∈ vc.E, ev.nv = n;3.13
ih← {vcmv .mh[k] : (k ≤ nmv)};3.14
RQmv ← vcmv .mh[nmv].RQ;3.15
k ← nmv + 1; loop← true; recovered← true;3.16
while loop do3.17

A← {e : AGREED-CAND(e, k, mv, V Cs, ih)};3.18
O ← {e : ORDERED-CAND(e, k, mv, V Cs, RQk−1, ih)};3.19
if WAIT-AGR(A, k,mv, V Cs) or WAIT-ORD(A,O, k,mv, V Cs) then3.20

loop, recovered← false;3.21
else3.22

if ∃e ∈ A then3.23
ih[k]← e;3.24

else if ∃e ∈ O : VERIFIED(e, V Cs, CH) then3.25
ih[k]← e;3.26

else if ∃e ∈ O then3.27
ih[k]← e;3.28

else loop← false;3.29
RQk ← ih[k].RQ;3.30

k ← k + 1;3.31

return recovered;3.32

3.33
function recover-prim()3.34

V C ← set of received view change messages for view v′;3.35
CH ← set of received check messages for view v′;3.36
return recover(V C,CH);3.37

3.38

a request, or a successive view where all requests completed in lv have been
recovered. This is because at least N − f − b ≥ f + b correct replicas must
have established lv and at least b > 0 of them have sent a message included in
V Cs. Scrooge first recovers the initial history ih of mv from any view change
message containing a message history for mv. View change messages include
a view establishment certificate E composed of N − f signed messages all
containing the same length nmv of the initial history of mv and the same
corresponding history digest. The certificate ensures that the initial history
ih recovered from the view change message vcmv is the correct initial history
for mv and is not forged by a Byzantine replica. Together with the initial
history also the initial recovery quorum RQmv is recovered.

The next step is recovering the history elements observed by clients during

3.4. SCROOGE VIEW CHANGE 41

IN-HISTORY(m, mh)
4
= ∃k : mh[k].m.c = m.c ∧

mh[k].m.t ≥ m.t
COMMITTED(m, mh, cw)

4
= ∃k ≤ cw : mh[k].m.c = m.c ∧

mh[k].m.t ≥ m.t
NEXT(mh, k)

4
= (∀k′ < k,mh[k′] 6= ⊥) ∧ mh[k] = ⊥

SPEC-RUN(i, m, RQp, RQ)
4
= RQ 6= ⊥ ∧ RQp = RQ ∧

i is backup and has never received a message
with timestamp ≥ m.t from m.c

AGREEMENT-STARTED(i, n, v)
4
= i has received

an agree message ag with ag.n = n and ag.v = v in view v

STABLE(vc, CH)
4
= ∃bool : ∀k : vc.mh[k] 6= ⊥,

∃(b+ 1) ch ∈ CH : ch.vj = vc.v ∧ ch.j = vc.i ∧
ch.d = digest(vc) ∧ ch.res[k] = bool

AGREED-CAND(e, k, v, V C, ih)
4
=

not IN-HISTORY(e, ih) ∧“
∃ (b+ 1) vc′ ∈ V C : vc′.v = v ∧ vc′.mh[k] = e

”
∧“

∃(|V C| − f − b) vc ∈ V C :

e = vc.mh[k] ∧ vc.v = v ∧ vc.aw ≥ k
”

ORDERED-CAND(e, k, v, RQ, V C, ih)
4
=

not IN-HISTORY(e, ih) ∧
∃(|V C| − f − b) vc ∈ V C :

e = vc.mh[k] ∧ vc.v = v ∧ vc.i ∈ RQ ∧ vc.aw < k

WAIT-AGR(A, k, v, V C)
4
= ∃e ∈ A :“

6 ∃ (b+ 1) vc ∈ V C : vc.v = v ∧ vc.mh[k] = e)
”
∧“

6 ∃ (f + b+ 1) vc′ ∈ V C :

(vc′.v 6= v) ∨ (vc′.v = v ∧ vc′.mh[k] 6= e
”

WAIT-ORD(A, O, k, v, V C)
4
= |A ∪O| > 1 ∧ |V C| ≤ N − f ∧

(∃ vc ∈ V C : vc.i = p(v) ∧ vc.v = v)

VERIFIED(e, V C, CH)
4
= ∃k, vc ∈ V C : e = vc.mh[k] ∧

(∃(b+ 1) ch ∈ CH : ch.vj = vc.v ∧ ch.j = vc.i
∧ ch.d = digest(vc) ∧ ch.res[k] = true)

Table 3.2: Predicates used in the pseudocode

view mv for sequence numbers k > nmv (Lines 3.16 – 3.31). If a request has
been completed by a client from b+1 stable replies, at least one correct replica
has committed the entire history prefix up to that request (Lines 3.23 – 3.24).
Committed histories are recovered like in PBFT (see predicates AGREED-
CAND and WAIT-AGR). Therefore, this discussion will focus on recover-
ing histories completed by clients through speculative replies.

Why are replier quorums useful? If a reply is delivered by clients in a
fast manner, i.e., out of speculative replies (Lines 1.28 – 1.30), then recovering
it requires a higher redundancy than the minimum. Scrooge reduces these ad-
ditional costs. By recovering agreed history elements, a replica also recovers
the replier quorum which has been updated when the element has been com-

42 CHAPTER 3. FAST BFT AT LOW COST

mitted. Recovering the replier quorum RQn committed for sequence number
n allows to clearly identify the set of repliers for sequence numbers greater
than n and thus to reduce the number of required replicas to 2f + 2b + 1.
To see that, consider a system having N = 2f + 2b+ 1 replicas where replier
quorums consist of N − f replicas. Assume that a client completes a request
in a view v for sequence number n′ > n after receiving matching speculative
replies from all repliers, at least N − f − b of which are correct, and assume
that RQn is the last recovered replier quorum for sequence numbers smaller
than n′.

If the primary fails, the history prefix up to n′ must be recovered to ensure
safety. To this end, all replicas share their history, but only the histories of
repliers in the replier quorum need to be considered. During view change up
to f of the N − f − b correct repliers might be slow and might fail to send
a stable VIEW-CHANGE message. Due to the asynchrony of the system,
the primary can not indefinitely wait for these messages because it can not
distinguish if the replicas are faulty or simply slow. Despite this, the new
primary can always receive view change messages from at least N −2f − b =
b + 1 correct repliers reporting the history prefix observed by the client.
As the primary knows the identity of the repliers and as only b Byzantine
repliers can report incorrect histories, the observed prefix can be recovered
by selecting a history reported in the VIEW-CHANGE message of at least
b+ 1 repliers.

Why are message histories useful? Scrooge further reduces the repli-
cation costs to N = 2f + 2b replicas by using message histories and the
check messages. Assume that a client has delivered a reply to a request m
after receiving matching speculative replies from all repliers for a sequence
number n′. During view change, as Scrooge uses one replica less than the
previous case, the history observed by the client is reported in the VIEW-
CHANGE message of at least N − 2f − b = b repliers. Let |V Cs| ≥ N − f
be the number of stable view change messages received by the primary of
the new view. We call a history element reported by |V Cs| − f − b repliers
an ordered candidate. The set of ordered candidates is defined by the pred-
icate ORDERED-CAND. It follows from this definition that two different
ordered candidates may be reported for sequence number n′ and view v by
two sets Q and Q′ of |V Cs| − f − b = b repliers each, where Q contains
correct repliers and Q′ the Byzantine ones. The problem is distinguishing
the candidate containing m from other candidates.

If two sets of b replicas claim to have two inconsistent histories for the
same view v and the old primary p of view v is in one of these sets, then

3.5. EVALUATION AND COMPARISON 43

either p is Byzantine and has sent inconsistent order requests to the backups,
or b backups are Byzantine and are reporting a forged history. Therefore, at
least one Byzantine replier is contained in one of these two sets and it is thus
live to wait for the view change message from one additional correct replier
as indicated by the predicate WAIT-ORD. After the additional VIEW-
CHANGE message has been received and has become stable, |V Cs| > N−f .
As only the correct history is reported by at least |V Cs| − f − b > b repliers,
it is recovered as the only remaining ordered candidate (Lines 3.27 – 3.28).

If there are two different candidates reported by b replicas each and the
primary is none of these sets, there are two cases to consider. If p is not
Byzantine, but potentially faulty, it might be impossible to wait until only
one ordered candidate remains. In this case the predicate WAIT-ORD is
false and a verified candidate is recovered if present (Lines 3.25 – 3.26).
Message histories and the novel check phase allow to identify in these cases
the history prefix observed by the client. In fact, recovery uses stable view
change messages whose history elements are verified by b+ 1 check messages
in CH with consistent positive outcomes (Lines 3.9 – 3.10). Clients only
deliver a speculative reply if all the repliers, including the non-Byzantine
primary, have the same message history of ORD-REQ messages. This and
the properties (P1) and (P2) of the check phase ensure that the history
element observed by the client is verified and recovered.

The second case is when the old primary p is Byzantine. This implies
that at most b− 1 Byzantine repliers are included in the two sets reporting
the two different ordered candidates. Two correct repliers have thus received
inconsistent histories from the primary. This inconsistency is detected by the
client by checking the history digest of the SPEC-REP messages. Therefore
the client does not deliver the reply, a contradiction.

Validity Unlike other protocols, Scrooge allows a request to be included
into ih even if it is only reported by b Byzantine replicas. As client requests
are signed, no request in ih is fabricated on behalf of correct clients, as
commonly required for Validity by BFT replication protocols, e.g. [GKQV10].

3.5 Evaluation and Comparison

We conduct a comparative evaluation of Scrooge with other existing pro-
tocols: the standard PBFT protocol and two state-of-the-art fast protocols
with publicly-available implementation, Zyzzyva and Zyzzyva5. The goal of
the evaluation is to show that, during normal executions, Scrooge does not
introduce significant additional overheads in the critical path compared to

44 CHAPTER 3. FAST BFT AT LOW COST

other speculative protocols such as Zyzzyva and Zyzzyva5. We also show
that Scrooge improves over the performance of Zyzzyva in presence of unre-
sponsive replicas, reaching the same performance as Zyzzyva5 but with less
replicas. Scrooge adds two types of overhead in the critical path. First, it
uses larger history elements which include authenticators. This increases the
overhead of calculating the history digests included in the speculative replies.
Second, speculative replies must include a bitmap representing the current
replier quorum. The experimental evaluation shows that these overheads are
negligible.

We refer to [SDM+08] for a comparison between quorum- and primary-
based algorithms. As a reference, however, the performance figures of
Q/U [AEMGG+05] scaled to the considered experimental setting are re-
ported.

Optimizations Scrooge uses optimizations similar to PBFT and Zyzzyva
to improve the performance of the protocol. The main difference between
Zyzzyva and Scrooge is the read-only optimization. This lets clients send
read-only requests directly to the replicas, which immediately reply to the
request without having the primary order them. If this does not succeed, the
client sends the read as a regular request [CL99; KAD+07]. In Scrooge, the
optimization succeeds if clients receive N − f consistent replies from replicas
in the same replier quorum. In Zyzzyva, all replicas need to send consis-
tent replies for the read optimization to succeed. Also, the Zyzzyva library
uses a commit optimization to avoid excessive performance degradation with
unresponsive replicas. If clients cannot receive speculative replies from all
replicas, the protocol stops using speculation for successive requests and use
one all-to-all agreement round instead [KAD+07].

Batching improves the performance of BFT algorithms under high load
by letting replicas execute the protocol on groups of client requests [CL99].
Using batching similarly impacts all evaluated algorithms, making it more
difficult to compare their performance under high load [SDM+08].

PBFT, Zyzzyva and Zyzzyva5 use MACs for client requests but this makes
them vulnerable to client attacks [CWA+09]. Scrooge tolerates such attacks
by using signed client requests. For fairness and consistency with previously
published results, this comparison lets all algorithms use MACs.

Evaluation setup The experimental setting tolerates a single fault (f =
b = 1). PBFT, Zyzzyva and Scrooge use four replicas while Zyzzyva5 uses
six. All machines in the experiments have Intel Core2DUO 6400 2.1GHz pro-
cessors, 4 GB of memory and Intel E1000 network cards, and are connected

3.5. EVALUATION AND COMPARISON 45

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (k

op
s/

se
c)

Number of clients

PBFT
QU (proj)
Scrooge

Zyzzyva (all responsive)
Zyzzyva (one unresponsive)

Zyzzyva 5

Figure 3.3: Throughput for 0/0 microbenchmark without batching and with
f = 1.

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

)or(0/4)or(4/0)or(0/0)rw(0/4)rw(4/0)rw(0/0

La
te

nc
y

(m
s)

TFBP)detcejorp(U/Q
a (all resp)vyzzyZ (one unresp) avyzzyZ
5avyzzyZ egoorcS

Figure 3.4: Latency for different benchmarks with a single client and no
batching.

through a Gigabit switched star network. All servers are single-threaded
processes. Nodes run Fedora Linux 8 with kernel version 2.6.23. We use
MD5 to compute MACs and the AdHash library for incremental hashes as
in [CL99; KAD+07]. For performance stability, measurements are initiated
after the execution of the first 10,000 operations, and are stopped after the
successive 10,000 operations. We use the same X/Y micro-benchmark used
by the authors of PBFT [CL99], where X and Y are the size (in KB) of
client requests and replica replies respectively. We consider scenarios where
all replicas are responsive and where one replica is initially crashed.

Throughput We first examine the throughput of Scrooge. Figure 3.3
shows the throughput achieved by the 0/0 micro-benchmark without batch-
ing. Scrooge is the protocol which achieves the highest throughput with the
lowest, and in this case minimal, number of replicas. Zyzzyva5 displays sim-
ilar trends but a slightly lower peak throughput. This is probably due to

46 CHAPTER 3. FAST BFT AT LOW COST

the use of a larger number of replicas, which forces the primary to calculate
a higher number of MACs (40% more than Scrooge) to authenticate order
request messages. Zyzzyva can perform as well as Scrooge only in runs with
all responsive replicas because it cannot otherwise use speculation. In runs
with one unresponsive replica, the peak throughput improvement of Scrooge
over Zyzzyva is more than one third. PBFT has lower peak throughput be-
cause it calculates at least twice as many MACs as Scrooge and has quadratic
message complexity.

If read-only requests with one unresponsive replica are considered, the
difference becomes even more evident because Zyzzyva is not able to use
the read optimization, as previously discussed. Even using batches of size
10, Zyzzyva achieves 52 kops/s peak throughput in presence of read-only
workloads, whereas Scrooge achieves a peak of 85 kops/s.

Latency The latency of different protocols using different micro-
benchmarks is shown in Figure 3.4. Scrooge performs in line with Zyzzyva5
with all micro-benchmarks. PBFT has approximately 40% higher latency
than Scrooge for write requests and similar latency as Scrooge for read-only
requests. Zyzzyva suffers a significant performance degradation in runs with
unresponsive replicas. In case of write requests the difference with Scrooge
ranges between 14% for the 0/4 case to 22% for the 0/0 case. The difference
becomes much higher for read-only operations because unresponsive replicas
disable the read-only optimization. The time a client needs to wait when
it tries to use the read optimization without success depends on the timer
settings of the client and is hard to evaluate. Figure 3.4 only considers for
Zyzzyva the optimistic latency given by processing read requests upfront as
normal writes. Even in this scenario, the latency of Zyzzyva compared to
Scrooge is 29% higher in the 0/0 case and up to 98% higher for the 4/0 case.

Figure 3.5 illustrates how latency scales with the throughput when batch-
ing is not used. Scrooge is the protocol achieving the best latency at lowest,
and in this case minimal, cost. Scrooge and Zyzzyva5 have almost equal
measurement results. Zyzzyva displays higher latency (∼ 0.9 kops/sec) in
runs with unresponsive replicas and 10 clients.

Fault scalability A fault scalable replication protocol keeps costs
low when the number of replicas, and thus of tolerated faults,
grows [AEMGG+05]. Scrooge is the most fault-scalable primary-based pro-
tocol in presence of unresponsive replicas. In Scrooge a primary computes
2 + (4f − 1)/s MACs operations per request if b = f and s is the size of a
batch. This is also the number of messages sent and received by the primary.

3.6. CHAPTER SUMMARY 47

 0

 0.5

 1

 1.5

 2

 0 20 40

La
te

nc
y

(m
s)

Throughput (kops/sec)

PBFT
QU (proj)
Scrooge

Zyzz. (resp)
Zyzz. (unresp)

Zyzzyva 5

Figure 3.5: Latency-throughput curves for 0/0 microbenchmark without
batching and with f = 1.

Zyzzyva has a slightly lower overhead in fault-free runs, 2 + 3f/s. Scrooge is
more scalable than PBFT (2 + 8f/s), Zyzzyva5 (2 + 5f/s) and Zyzzyva with
one unresponsive replica (2 + 5f/s). In Q/U the bottleneck replica makes
only 2 MACs operations per request.

Scrooge uses 1+3f +(4f −1)/s messages per request, similar to Zyzzyva
in fault-free runs (2 + 3f + 3f/s), Zyzzyva5 (2 + 4f + 5f/s) and, with s = 1,
Q/U (2 + 8f). With unresponsive replicas, PBFT and Zyzzyva with com-
mit optimization have quadratic complexity. Without commit optimization,
Zyzzyva has lower message complexity but also significantly lower perfor-
mance [KAD+07].

3.6 Chapter Summary

BFT state machine replication requires making a tradeoff between optimal
performance and replication costs. Scrooge mitigates this tradeoff through
two novel techniques: replier quorums and message histories. Compared
with Scrooge, PBFT is less performant, Zyzzyva matches its performance
only in fault-free runs, and Zyzzyva5 has similar performance but higher
replication costs. In systems where tolerating any number of crashes but
only one Byzantine failure is sufficient, Scrooge is the best choice as it is
always fast and uses a minimal number of replicas.

48 CHAPTER 3. FAST BFT AT LOW COST

Chapter 4

BFT with Trusted Components

Fault tolerant distributed protocols typically utilize a homogeneous fault
model, either fail-crash or fail-Byzantine, where all processors are assumed
to fail in the same manner. In practice, due to complexity and evolvability
reasons, only a subset of the nodes can actually be designed to have a re-
stricted, fail-crash failure mode, provided that they are free of design faults.
Based on this consideration, this thesis proposes a fail-heterogeneous archi-
tectural model for distributed systems that considers two classes of nodes: (a)
full-fledged execution nodes, which can be fail-Byzantine, and (b) lightweight,
validated coordination nodes, which can only be fail-crash. This chapter also
introduces HeterTrust, a practical trustworthy service replication protocol.
It has a low latency overhead, requires few execution nodes with diversified
design, prevents intruded servers from disclosing confidential data, and can
withstand DoS attacks.

49

50 CHAPTER 4. BFT WITH TRUSTED COMPONENTS

4.1 Introduction

This chapter describes HeterTrust, a practical trustworthy state machine
replication protocol for asynchronous systems. HeterTrust only relies on Ω
for progress. It uses dedicated coordination nodes (called coordinators in the
following) to order client requests and filter replies coming from the execution
nodes (called servers in the following) for confidentiality. Coordinators are
more trustworthy than servers and can only fail by crashing. Figure 4.1
illustrates a typical fail-heterogeneous architecture. Three-tiered Web-scale
systems running relatively unreliable applications software in the second and
third tier and and more stable Web servers in the first tier such as those
described in [ZBWM08] can be modeled as a fail-heterogeneous architecture.
The description of the algorithm uses some Paxos-related terminology taken
from [Lam01] and reviewed in section 2.1.2.

4.2 System Model

The system is composed of c fail-crash coordinators, s fail-Byzantine servers
and a bounded number of authenticated clients. If the system is to tolerate
up to g coordinator crashes and up to f Byzantine servers, it is assumed to
have c ≥ 2g + 1 coordinators and s ≥ 2f + 1 servers. The protocol toler-
ates any number of malicious clients. Correct clients have only one pending
operation at a time. We also assume that all client operations are uniquely
identifiable. This can be easily implemented by having clients attach their
unique id and a monotonically increasing local timestamp to each operation.
Note that if trusted coordinators are sub-components of execution servers,
as assumed in [CNV04], only a majority of correct replicas is required. Het-
erTrust would then achieve the same redundancy reduction as [CNV04] but
without assuming synchronous channels.

Participants communicate through an asynchronous, unreliable network.
Channels are authenticated, that is, if a correct process receives a message
from a correct sender then the message was actually sent by the correct
sender. Channels between any pair of correct hosts are fair-lossy, i.e., they
eventually deliver messages that are repeatedly resent. Coordinators use an
Ω failure detector to eventually elect a single leader among them. In order
to provide confidentiality and protect from DoS attacks, coordinators must
be physically interposed between clients and servers (see Figure 4.1).

4.3. SERVICE PROPERTIES 51

Execution
servers

Dedicated
coordinators

Clients

Partially synchronous network

Figure 4.1: The fail-heterogeneous architecture used by HeterTrust

4.3 Service Properties

The protocol allows clients to send requests to the trustworthy replication
service through the coordinators. The leader coordinator assigns a progres-
sive sequence number to each received request and sends it to the servers,
which execute the request and send it back, together with the reply, to all
coordinators. These filter out spurious or incorrect replies and forward the
correct ones to the client, which delivers it (see Figure 4.2). Formally, the
properties provided by the trustworthy state machine replication service are
the following (adapted from [MBTPV06]):

Termination: If a correct client cl invokes an operation op then it eventually
delivers a reply repl.

Uniform Agreed Order: If a correct server commits an operation op as
the kth operation, then every correct server that commits the kth oper-
ation must commit op as the kth operation.

Update Integrity: For each operation op, every correct server commits op
at most once, and only if a client has issued op.

Response Correctness: If a client receives an operation op, then the client
has sent op and at least one correct server has sent repl as a reply to
op in the commit order.

Termination is the liveness condition of the service. Uniform Agreed Or-
der prevents correct servers from diverging and is sufficient for linearizability,
i.e., clients sending concurrent requests to the service can observe the same
course of action. Update Integrity guarantees that operations take effect
exactly-once and that operations are not forged. Response Correctness en-
forces both integrity and confidentiality as it requires filtering out spurious
and incorrect replies. These may be originated from Byzantine servers also
to convey confidential information.

52 CHAPTER 4. BFT WITH TRUSTED COMPONENTS

4.4 The HeterTrust Protocol

The algorithms executed by the clients, by the coordinators during normal
operations and during recovery, and by servers are Algorithm 4, 5, 7 and
6 respectively. Table 4.1 explains the local variables used by the processes
and their initial values. After an overview of the algorithm in section 4.4.1,
sections 4.4.2 and 4.4.3 describe the normal operations of the protocol and
the recovery from leader crashes, respectively.

4.4.1 Overview

Beyond showing the use of trusted coordinators, HeterTrust introduces two
innovative algorithmic methods. First, it lets requests be executed before
they are learned, and lets the client act as a learner. In this sense, HeterTrust
is similar to speculative algorithms developed in parallel to this thesis’ work,
such as Zyzzyva [KAD+07]. Second, HeterTrust includes algorithmic mech-
anisms to tolerate Denial of Service (DoS) attacks.

Using clients as learners HeterTrust lets clients act as learners in or-
der to reduce the latency of the algorithm. Clients deliver replies to their
operations before coordinators and servers know that they are committed.
Servers use tentative executions, similar to PBFT. With tentative executions,
servers can execute a single operation before knowing that it is committed.
The Zyzzyva protocol pushes these ideas further by letting replicas execute
multiple requests tentatively. The client in this case must learn that all
replicas agree on all operation up to its request. This is achieved by using
history digests. Different from HeterTrust, Zyzzyva considers a weaker, ho-
mogeneous Byzantine model where there are no trusted coordinators. On
the other hand, it requires a higher number of replicas.

DoS tolerance HeterTrust is safe in periods of asynchrony but relies on ad-
ditional synchrony for liveness [FL81]. If one can expect that these properties
are generally met by the network in a benign (i.e., crash-only) environment,
they cannot be in general preserved if an attacker is able to introduce “ma-
licious asynchrony” and make communication unreliable by means of DoS
attacks. Therefore, unless specific countermeasures are taken, replicated ser-
vices can be made unavailable through DoS attacks. In a fail-heterogeneous
architecture, crash-only coordinators can participate in the consensus proto-
col as filtering elements to accurately recognize and handle malicious traffic
in an end-to-end manner on the whole protocol stack up to the state ma-
chine replication level. This overcomes the major limitation of network layer

4.4. THE HETERTRUST PROTOCOL 53

Initial
Name Description

value
coordinators

k next sequence number 0
accval[k′] accepted request ⊥

learntval[k′] learnt request ⊥
maxProp maximum proposal number observed 0
prop proposal number i

propval[k′] proposed value ⊥
Retr set of sequence numbers with retrievable requests ∅

execution servers
bComm[k′] buffered request to be committed ⊥
bProp[k′] buffered request to be executed ⊥
endGap end of a gap in the requests received by a server -
lastComm sequence number of the last committed request 0
maxProp maximum proposal number observed 0

Table 4.1: Global Variables (for sequence number k′)

DoS detection mechanism: the lack of information on viable communication
patterns at the application layer.

In closed and controlled networks, such as LANs, network layer attacks
can be prevented by eliminating network-level shared resources (e.g., network
links and interfaces) and by establishing dedicated links between protocol
participants, possibly including clients and coordinators. At a higher lever
of the protocol stack, HeterTrust includes algorithmic mechanisms to pre-
vent faulty execution servers from launching replication-layer DoS attacks.
The core idea is that coordinators are able to determine when requests are
completed. This is because, using the Paxos terminology, coordinators act
as learners.

Execution servers are only connected to the coordinators and are not
connected with each other. In normal runs, servers only reply to requests
sent by the coordinators. The only case when servers may need to initiate
communication with other entities is when they have temporarily lagged
behind the other processes and have missed requests that were executed by
other servers. In this case, servers may need to fetch requests to participate
again in the algorithm.

In HeterTrust, servers that fetch requests only have to communicate with
a single coordinator. This enables each single coordinator to use conventional
rate-limiting techniques in isolation, without requiring expensive communi-
cation. Rate-limiting can thus be used to handle both faulty servers trying to
fetch too many requests, and faulty clients trying to send too many requests
to the system. For clients, rate-limiting can be used to limit both the num-
ber of different request they submit and the frequency of re-sending previous
requests. Different from servers, single clients can be rate-limited without
compromising progress for other clients. The description of the algorithm

54 CHAPTER 4. BFT WITH TRUSTED COMPONENTS

REQUEST

PR
O

PO
SE

EX
EC

U
TE

D

deliver

AC
C

EPTED

LEARNT

After receiving f+1 equal replies from
different servers, a coordinator can
trust the reply, accept the value,
and send the reply to the client

After receiving equal proposals and
replies from a majority of coordinators,
the client knows that the decision
will not be retracted and delivers the reply

Similar to clients, servers can commit
a request if a majority of coordinators
have accepted it and replied to the client

If g+1 coordinators
have learnt that a
request was delivered
by a client and
committed by a server
a slow server will be
able to retrieve it

servers

client

coordinators

Phase 1 Phase 2 Phase 3

commit
commit
commit

Figure 4.2: HeterTrust: Normal operations

abstracts away rate-limiting issues.

Work on DoS tolerance subsequent to the work of this thesis has
developed DoS-tolerance mechanisms for homogeneous Byzantine mod-
els [ACKL08; CWA+09].

4.4.2 Normal Operations

This section describes runs where there is no message loss and there is a single
correct leader coordinator which has completed recovery and which is trusted
by all correct coordinators. In these runs, the protocol proceeds through
three phases upon the reception of a request from a client (see Figure 4.2).
In Phase 1, it tries to provide a quick answer to the client. In Phase 2, it goes
through an additional coordination step to let coordinators and servers know
about the reply (potentially) delivered by the client. Finally, in Phase 3 it
ensures that slow servers can directly retrieve old requests from at least one
coordinator without triggering other instances of the agreement protocol.

Phase 1: Replying to clients. When the client wants the service to
perform an operation op, it initiates the protocol by sending a REQUEST
message to all coordinators (lines 4.1–4.3). Clients periodically resend pend-
ing requests to the coordinators (lines 4.11–4.13).

When the leader coordinator receives a request (line 5.1), it forms a pro-
posal by attaching a proposal number prop to the request. The proposal
number is used by the other coordinators to discard messages coming from
old leaders. Each coordinator is assigned a partition of the set of positive

4.4. THE HETERTRUST PROTOCOL 55

Algorithm 4: Client cl
upon invoke(op)4.1

send (REQUEST, op) to all coordinators;4.2
start timer;4.3

4.4
upon receive (ACCEPTED, k, op, prop, repl) message from coordinator co4.5

if op is pending then4.6
if received (ACCEPTED, k, op, prop, repl) from d(c+ 1)/2e coordinators then4.7

stop timer;4.8
deliver(repl);4.9

4.10
upon timeout4.11

resend the pending REQUEST message to all coordinators;4.12
start timer;4.13

4.14

integers. Upon election, a leader coordinator increases its proposal num-
ber until it becomes the highest observed by a sufficient number of others
participants, which will then endorse it (see section 4.4.3 for details). A
leader proposes only a bounded number of requests in parallel and queues
the remaining requests (at most one for each client, line 5.3).

The operation is then given an increasing sequence number k, stored in
propval[k], and sent in a PROPOSE message to all servers. Following the
terminology of [Lam01] the request is now proposed. The sequence number
will be used by each correct server to order the execution of requests and thus
to keep a consistent state with the other correct servers. As long as there
is only one leader coordinator, a single request will be assigned a unique
increasing sequence number.

On receiving a PROPOSE message from the current leader, the servers
produce a reply repl (lines 6.1–6.10). New requests are only tentatively ex-
ecuted, i.e., the changes to the service state are written in a temporary log
before being committed. If the leader crashes the new leader can change the
order of some requests, and this can cause tentative executions to roll back.
Otherwise, tentative executions are eventually and definitively committed.
HeterTrust admits only one non-committed tentative execution at a time.
However, it is possible to extend the algorithm to execute multiple consecu-
tive tentative request as done in [KAD+07]. This would require coordinators
to attach the digest of their current history onto ACCEPTED messages.
Clients and servers can check these digests to make sure that the histories of
all coordinators are consistent up to the considered operation.

Servers should only accept messages from the latest leader. For this
purpose, they store the highest proposal number they have observed
(maxProp). They also store the sequence number of the last committed
request (lastComm) and only execute the next request (line 6.8). Requests

56 CHAPTER 4. BFT WITH TRUSTED COMPONENTS

Algorithm 5: Coordinator i - normal operations
upon receive (REQUEST, op) message from client cl5.1

if Ω = i then5.2
if never sent a (PROPOSE, k′, op, prop) message for some value of k′ then5.3

k ← k + 1;5.4
propval[k] ← op;5.5
send (PROPOSE, k, op, prop) to all servers;5.6
start timer;5.7

else5.8
resend the prior (PROPOSE, k′, op, prop) message to all servers;5.9
start timer;5.10

5.11
upon receive (EXECUTED, k′, op, prop, repl) message from a server5.12

if prop ≥ maxProp then5.13
maxProp← prop;5.14
if received (EXECUTED, k′, op, prop, repl) messages from f + 1 servers then5.15

accval[k′]← (op, prop);5.16
send (ACCEPTED, k′,op,prop,repl) to client req.cl;5.17
send (ACCEPTED, k′,op,prop) to all coordinators and servers;5.18

5.19
upon received (ACCEPTED, k′, op, prop) message from a coordinator5.20

if received (ACCEPTED, k′, op, prop) messages from d(c+ 1)/2e coordinators then5.21
learntval[k′]← (op, prop);5.22
send (LEARNT, k′, op, prop) to all coordinators;5.23

5.24
upon received (LEARNT, k′, op, prop) message from a coordinator5.25

if (learntval[k′] = ⊥) then5.26
learntval[k′]← (k′, op, prop);5.27

if received (LEARNT, k′, op, prop) messages from g + 1 coordinators then5.28
Retr ← Retr ∪ {k′};5.29

5.30
upon received (RETRIEVE, k′) message from server se5.31

if (learntval[k′] 6= ⊥) then5.32
send (LEARNT, learntval[k′]) to se;5.33

5.34
upon timeout5.35

if Ω = i then5.36
foreach k′ 6∈ Retr: propval[k′] 6= ⊥ do5.37

send (PROPOSE, k′, propval[k′], prop) to all servers;5.38
start timer;5.39

5.40

with higher sequence number are buffered in bProp unless they have been
already buffered or if they come from a previous leader (lines 6.11–6.12).

A server first checks if the operation it receives has already been executed
(line 6.4), and retrieve the previous reply in this case. Servers cache the last
operation executed for each client. If a server receives a new operation with
sequence number following the last committed operation, it obtains the reply
by tentatively executing the operation possibly after performing a rollback
of previous tentative executions (line 6.9). Servers attach the reply, together
with the proposal, in an EXECUTED message sent to all the coordinators.

The coordinators ignore proposals from previous leaders (line 5.13). They
also filter out malicious and spurious replies from servers by waiting for f+1

4.4. THE HETERTRUST PROTOCOL 57

Algorithm 6: Server
upon receive (PROPOSE, k′, op, prop) message from a coordinator6.1

if prop ≥ maxProp then6.2
maxProp← prop;6.3
if op has been already locally executed with sequence number k′ then6.4

repl ← output of the last local execution of op;6.5
send (EXECUTED, k′, op, prop, repl) to all coordinators;6.6

else6.7
if k′ = lastComm+ 1 then6.8

repl← execute(op);6.9
send (EXECUTED, k′, op, prop, repl) to all coordinators;6.10

else if k′ > lastComm+ 1 ∧ (bProp[k′] = ⊥ ∨ prop > bProp[k′].prop) then6.11
bProp[k′]← (op, prop);6.12

6.13
upon receive (ACCEPTED, k′, op, prop) message from a coordinator6.14

if received (ACCEPTED, k′, op, prop) messages from d(c+ 1)/2e coordinators then6.15
if k′ = (lastComm+ 1) then6.16

learnt(k′, op, prop);6.17
if k′ > (lastComm+ 1) then6.18

bComm[k′]← (op, prop);6.19

6.20
procedure learnt(k′, op, prop)6.21

if op has been already locally executed then6.22
repl← output of the last local execution of op;6.23

else6.24
repl← execute(op);6.25

commit the execution of op;6.26
k′′ ← k′ + 1;6.27
lastComm← lastComm+ 1;6.28
if bComm[k′′] 6= ⊥ then6.29

learnt(k′′, bComm[k′′].op, bComm[k′′].prop);6.30
else if bProp[k′′] 6= ⊥ then6.31

trigger event handler for receipt of a (PROPOSE, k′′, bProp[k′′].op, bProp[k′′].prop)6.32
message from a coordinator;

6.33
upon timeout6.34

endGap← min{k′ | (k′ > lastComm) ∧ ((bProp[k′] 6= ⊥) ∨ (bComm[k′] 6= ⊥))} ;6.35
foreach k′ ∈ [lastComm+ 1, endGap− 1] do6.36

send (RETRIEVE, k′) to all coordinators ;6.37
start timer;6.38

6.39

equal EXECUTED messages (line 5.15). This ensures that the reply was
sent by at least one correct server and that it is an actual reply to a request
proposed by the leader. In this case coordinators accept [Lam01] the proposal
for a sequence number k′ by storing it in the variable accval[k′] (line 5.16) . It
then notifies, through an ACCEPTED message, all coordinators, servers and
the client req.cl which issued the request (lines 5.17–5.18). The ACCEPTED
message sent to the client also contains the correct reply.

When the client receives an ACCEPTED message (line 4.5) for an ongo-
ing request (line 4.6), it knows that the reply to its request was tentatively
executed by at least one correct server. However, such a reply will only be
delivered after it is guaranteed that this tentative execution will not roll back.

58 CHAPTER 4. BFT WITH TRUSTED COMPONENTS

As discussed in section 4.4.3, the recovery protocol ensures that if a request
is chosen for a sequence number [Lam01], i.e., it is contained in a proposal
that is accepted by a majority of coordinators, then its execution will never
be rolled back even if the leader and other coordinators crash. The client
thus waits until it receives ACCEPTED messages for the same proposal from
a majority of coordinators before delivering the reply (line 4.9). Thus, after
four communication steps a client can deliver the reply.

If confidentiality is not required, one communication step can be saved
by having servers send EXECUTED messages directly to the clients, which
can thus filter out incorrect replies by waiting for f + 1 equal replies. In
this case, the leader sends PROPOSE messages to servers and coordinators
in the same communication step, and clients will deliver a correct reply only
after receiving ACCEPT messages by a majority of coordinators.

Phase 2: Committing the reply. In order to ensure progress, co-
ordinators take additional steps to guarantee that the servers can commit
tentative executions. Coordinators and servers try to determine if a request
was chosen for a sequence number and is therefore indissolubly bound to
it. Similar to clients, they do this by waiting for ACCEPTED messages by
a majority of coordinators (lines 5.20–6.15 and 6.14–6.17). When this hap-
pens, the request is learnt for a sequence number [Lam01]. Coordinators store
learnt requests for sequence number k′ in the variable learntval[k′] (line 5.22),
and communicate this to all the other coordinators (line 5.23). Coordinators
can also learn that a request was chosen by receiving a LEARNT message
(line 5.25–5.27).

A server learns that a request was chosen (line 6.21) if it has sequence
number lastCommit + 1. Commits for higher sequence numbers, as well as
requests, are buffered in bComm (line 6.19). If a chosen request has not
already been executed, it is tentatively executed, after executing a roll back
if necessary, and then committed (lines 6.22–6.26). Subsequently, further
buffered requests for the next sequence numbers, which have been learnt or
proposed, can be processed (lines 6.27–6.32).

Phase 3: Handling slow servers and message losses. Some servers
might not learn that a request was chosen, either because they are slow
or due to message losses. This prevents them from committing a tentative
execution, and thus from executing further requests they receive. In this
case the server sends a RETRIEVE message to the coordinators to learn the
chosen request (lines 6.34–6.37 and 5.31–5.33). To guarantee that at least
one coordinator will be able to reply to RETRIEVE messages, the leader
has to keep sending PROPOSE messages and thus push protocol messages
until it receives g+1 LEARN messages from different coordinators (lines 5.29
and (lines 5.35–5.38). One option for a server to recover an operation for a

4.4. THE HETERTRUST PROTOCOL 59

REQUEST
PRO

PO
SE

EX
EC

U
TE

D

deliver

AC
C

EPTED

The client has delivered the reply,
which cannot be retracted

The leader crashes
after having learnt
the value, before it
is retrievable

The servers cannot
establish whether to
commit or abort
(should commit as
the client delivered
the reply). The new
leader takes care of
proposing the
delivered request

PRO
PO

SE

EX
EC

UT
ED

Correct servers ignore messages
from the old leader, but not the
Byzantine server

The new leader is endorsed by the other
coordinator (necessary to send proposals)

The Byzantine server lets the old leader accept
different replies and forward them to the client,
to the servers and to other acceptors

A new leader is
always endorsed
by a majority
of coordinators.
Messages from
the old leader
cannot thus induce
clients and servers
to irretrievable
decisions

servers

client

coordinators

I - Leader crash II - Two leaders + Byzantine server

old
new

AC
C

EPTED

Figure 4.3: Two fail-prone scenarios

given sequence number would be to trigger a consensus instance. However,
having coordinators act as learners prevents malicious servers from flooding
the system by triggering consensus instances for request retrieval. A request
is called retrievable if at least g + 1 coordinators have learnt it. Retrievable
requests can be obtained by servers by contacting one correct coordinator,
without initiating new consensus instances.

4.4.3 Recovery

Due to system asynchrony and crashes, the leader election protocol can out-
put multiple coordinators as leaders, possibly at the same time. It is then
necessary to prevent newly elected leaders from retracting decisions which
already caused irreversible evolutions of the system state, such as the delivery
of a reply to a client or the commit of an execution done by a server. In par-
ticular, if a request is chosen, i.e., it is accepted by a majority of coordinators,
it is necessary to prevent new leaders from proposing different requests and
having them accepted. Consider for example scenario (I) of Figure 4.3. In
this case, the new leader must ensure that servers will commit the (chosen)
request used to compute the reply delivered by the client. To guarantee this,
the protocol adopts a recovery procedure (Algorithm 7) which is similar to
the one used by the Paxos protocol [Lam98]. The similarity is natural given
that only fail-crash participants (i.e. the coordinators) are directly involved.

Upon being elected, a leader selects a new proposal number and sends
a QUERY message asking all other coordinators to endorse it (lines 7.1–
7.10). It also asks them if (a) they have accepted some request accval[k′]
for the sequence numbers k′ that are not yet bound to a retrievable request
in its local view (i.e., they are not in Retr), or (b) they know that there is
a retrievable request for these numbers. Unless the other coordinators have
already endorsed another leader with a higher sequence number (line 7.25),

60 CHAPTER 4. BFT WITH TRUSTED COMPONENTS

Algorithm 7: Coordinator - recovery
upon Ω changes its value to i7.1

query();7.2
7.3

procedure query()7.4
prop← minimum p > maxPropco of any correct coordinator co such that p mod i = 0;7.5
send (QUERY, prop, Retr) to all coordinators;7.6
start timer-rec;7.7

7.8
upon received (ENDORSE, prop, Accco, Retrco) message from coordinator co7.9

if Ω = i and received (ENDORSE, prop, Accco′ , Retrco′) from d(c+ 1)/2e coordinators co′7.10
then

stop timer-rec;7.11
Retr ← Retr ∪co Retrco;7.12
maxRetr ← max{k′ | (k′ ∈ Retr) ∧ (∀ k′′ ≤ k′, j ∈ Retr)};7.13
maxAcc← max{k′ | ∃av, co′′ : (k′, av) ∈ Accco′′};7.14
propval← ⊥;7.15
foreach k′ ∈ [max(Retr) + 1, maxAcc] : k′ 6∈ Retr do7.16

Proposals← {av | ∃co′′ : (k′, av) ∈ Accco′′};7.17
if Proposals 6= ∅ then7.18

propval[k′]← av.op such that av ∈ Proposals and has maximum av.prop;7.19
else7.20

propval[k′]← no op;7.21

k ← maxAcc+ 1;7.22

7.23
upon receive (QUERY, p′, Retrl) message from coordinator co7.24

if p′ > maxProp then7.25
maxProp← p′;7.26
Retr ← Retr ∪Retrco;7.27
Acc← ∅;7.28
foreach k′ : (k′ 6∈ Retr) ∧ (accval[k′] 6= ⊥) do7.29

Acc← Acc ∪ {(k′, accval[k′],)};7.30
send (ENDORSE, endorse, Acc, Retr) to coordinator co;7.31

7.32
upon timeout-rec7.33

if Ω = i then7.34
query();7.35

7.36

they endorse the new leader (line 7.26) and form their set of accepted requests
Acc and retrievable requests Retr (which do not require further operations).
They then send both sets to the new leader (lines 7.27–7.31).

Upon receiving ENDORSE messages from a majority of coordinators, the
leader can start proposing requests (lines 7.12–7.21). For sequence numbers
with an associated retrievable request, no operation is needed. For other
sequence numbers where some accepted request is reported, the new leader
must send its proposals without contradicting previously chosen requests.
This is done by selecting the proposal from the latest previous leader, i.e.,
the one with the highest proposal number (lines 7.19). Gaps are filled with
special no op requests (line 7.21). If a request proposed from a certain leader
is accepted by a majority of coordinators, each subsequent leader will receive
notification of it in at least one ENDORSE message and select it for proposal.

4.4. THE HETERTRUST PROTOCOL 61

This guarantees that chosen requests are not overwritten.
For progress, the leader has to send a proposal number that is higher

than any proposal number observed by any correct process. This can be
easily guaranteed by having each coordinator co send a message to a leader
l when they receive a message from l with a proposal number lower than
maxPropco. The leader in this case starts recovery again with a proposal
number higher than maxPropco. For simplicity, we abstract away these de-
tails in the pseudocode and assume that the proposal number selected by the
leader is high enough (line 7.5).

It is surprising how efficiently a Paxos-like recovery protocol under the
fail-heterogeneous model tolerates the effect of Byzantine faults at the
servers. For example, in scenario (II) of Figure 4.3, two leaders are simulta-
neously present and a Byzantine server sends them inconsistent information.
Each leader waits for an endorsement from a majority of coordinators before
issuing proposals, and Byzantine servers are not involved in this decision.
Although servers can forward messages from an old leader to a minority
of coordinators and have them accepted, these coordinators cannot induce
correct clients and servers to take wrong delivery or commit actions.

4.4.4 Garbage Collection

Servers can discard all data regarding sequence numbers of committed re-
quests. Coordinators could as well garbage-collect the data structures of
sequence numbers of retrievable request, but they need to indefinitely keep
them in learntval[i] to reply to RETRIEVE messages from slow servers. To
avoid this, a simple checkpointing protocol is used. This is not included in
the previous algorithms, but it is described briefly in the following.

When the commit procedure at an execution server commits a request
with sequence number i such that (i mod k) = 0 for a given checkpoint
frequency k, it produces a tentative checkpoint of the local service state,
calculates a digest of it and sends a (CHECKPOINT, i, cpd) message with
the MAC of the digest cpd to all coordinators. After receiving f + 1 such
equal messages from different servers, coordinators know that at least one
correct server has an available checkpoint of the service state up to sequence
number i. They then send an (ACKCP, i) message to all servers. When a
server receives g + 1 such messages, it can delete the previous checkpoints,
complete the commit procedure, and start processing the next executable
requests.

A coordinator receiving a checkpoint digest from f+1 servers for sequence
number i knows that it can garbage collect entries previous to learntval[i]
as, if necessary, slow servers trying to retrieve old chosen requests can be

62 CHAPTER 4. BFT WITH TRUSTED COMPONENTS

sent a complete checkpoint. However, to minimize state transfers, it tries to
reply with simple requests when possible. Therefore, it only deletes entries
of learnt requests in the array learntval for sequence numbers preceding the
prior checkpoint, i.e., prior to i−k+1. A slow server receives the checkpoint
state for sequence number i only if it tries to retrieve a request for a sequence
number j ≤ i− k. In this case, coordinators obtain the checkpoint state by
sending a (QUERYCP, i) message to all servers until they receive at least
one correct checkpoint, which is recognized using the digest. They then store
the checkpoint state (at most one at a time) for further requests, and send
it to the slow server.

4.5 Chapter Summary

This chapter introduced a new fail-heterogeneous architectural model, which
represents an intermediate step between benign fail-crash models and conser-
vative fail-Byzantine models. It is based on a separation of concerns between
unconstrained execution nodes and lightweight coordination nodes, with re-
duced functionalities and thus restricted failure mode. The chapter showed
how new Byzantine-fault tolerant replication algorithms under the new model
can be developed that keep many advantages of fail-crash protocols, while
tolerating more severe failures at the server nodes providing the service of
interest. It introduces the HeterTrust protocol, which allows an efficient com-
munication pattern similar to a crash-only protocol, but still ensures prop-
erties, such as confidentiality, that are extremely expensive to provide in a
homogeneous fail-Byzantine model. Last but not least, HeterTrust reduces
the number of required replicas with diversified design.

HeterTrust introduces some interesting algorithmic ideas. It lets clients
act as learners to reduce the latency of the algorithms, leveraging the
technique of tentative executions introduced in [CL99] and later developed
in [KAD+07]. It introduced the problem of tolerance to DoS attacks, a prob-
lem developed in subsequent work [ACKL08; CWA+09]. The use of trusted
subcomponents in untrusted nodes in asynchronous systems, has been dis-
cussed by work developed in parallel [CMSK07] or after [LDLM09] the work
reported in this thesis.

Chapter 5

Eventual Linearizability

Linearizability is the strongest known consistency property of shared objects.
In asynchronous message passing systems, Linearizability can be achieved
with ♦S and a majority of correct processes. This thesis introduces the
notion of Eventual Linearizability, the strongest known consistency property
that can be attained with ♦S and any number of crashes. This chapter
shows that linearizable shared object implementations can be augmented
to support weak operations, which need to be linearized only eventually.
Unlike strong operations that require to be always linearized, weak operations
terminate in worst case runs. However, there is a tradeoff between ensuring
termination of weak and strong operations when processes have only access
to ♦S. If weak operations terminate in the worst case, then this chapter
shows that strong operations terminate only in the absence of concurrent
weak operations. Finally, this chapter shows that an implementation based
on ♦P exists that guarantees termination of all operations.

63

64 CHAPTER 5. EVENTUAL LINEARIZABILITY

5.1 Definitions

This section first defines a model of concurrent executions. Next, it defines
Eventual Linearizability and show that, like Linearizability, it is local and
nonblocking.

5.1.1 Model of Concurrent Executions

This chapter considers concurrent systems consisting of a set of processes
{pi | i ∈ [0, n − 1]} accessing a set of shared objects. Processes interact
with objects through operations. An execution is a history consisting of
a finite sequence of operation invocation and response events taking place
at a process and referring to an object. Invocations contain the arguments
of the operation, while responses contain the results of the operation. All
operations are unique and are ordered in the history according to the time of
their occurrence. The presence of a global clock providing a time reference
for the whole system is assumed, which starts from 0 and is often referred
to as real-time order. Processes do not have access to this clock. Given a
history H and a process pj (resp. an object x), H|j (resp. H|x) denotes the
restriction of H to call and response events of pj (resp. on x).

A history is sequential if (i) the first event is an invocation, (ii) all in-
vocation events, except possibly the last, are immediately followed by the
response event for the same operation, and (iii) response events are immedi-
ately preceded by the invocation event for the same operation. A sequential
history H is legal if, for each object x, H|x is correct according to the se-
quential specification of x. The relation <H denotes the order of operations
defined by a sequential history H. A sequential permutation of a history H
is a sequential history obtained by permuting the events of H. A history
that is not sequential is called concurrent. An operation is called completed
if the history includes an invocation and a completion event for it. For a
history H, completed(H) denotes the subsequence of events in H related to
all completed operations. A history is well-formed if the subhistory of events
of each process is sequential. All histories are assumed to be well-formed.

5.1.2 Definition of Eventual Linearizability

Eventual linearizable implementations need to always ensure some minimal
weak consistency property that rules out arbitrary behaviors. For each his-
tory H, it requires that the response to every completed operation o of every
process pi is the result of a legal sequential history τ(i, o). The history τ(i, o)

5.1. DEFINITIONS 65

must terminate with o, it must consist only of operations invoked in H before
o is completed, and it must include all operations observed by pi before o.

Formally, a history H is weakly consistent if, for every process pi and
operation o completed by pi in H, there exists a legal sequential history
τ(i, o) such that: (i) the last event in τ(i, o) is a response event of o having
the same result as the response event of o in H, (ii) every operation invoked in
τ(i, o) is also invoked in H before o is completed, and (iii) for each operation
o′ invoked by pi before o, τ(i, o′) ⊆ τ(i, o).1

This definition of weak consistency is very generic. It allows processes to
ignore operations of other processes. Furthermore, subsequent serializations
observed by a process can reorder previously-observed operations. Eventual
Linearizability can be combined with stronger weak consistency semantic
than this. For example, section 5.3.2 shows that it is possible to combine
Eventual Linearizability with causal consistency [Lam78].

Eventual Linearizability requires all operations that are invoked after a
certain time t to be ordered with respect to all other operations according
to their real-time order. Pairs of operations invoked before t can be ordered
arbitrarily. This requirement on the order is formalized by the following
relation. Let H be a history and t a value of the clock. The irreflexive
partial order <H,t is defined as follows: o1 <H,t o2 iff o2 is invoked after t and
the response event of o1 precedes the invocation event of o2.

A t-permutation P of a history H is a legal sequential history that orders
operations of H according to <H,t. The results of operations in P do not
have to match with those of the corresponding operations in H. Formally,
the following two properties must hold for a legal sequential history P to be
a t-permutation of H: (P1) an operation o is invoked in P if and only if o
is invoked in H; (P2) <H,t⊆<P . It is worth noting that every well-formed
history H has a t-permutation P for each value of t. However, not every
well-formed history has a linearization as defined in [HW90].

Eventual Linearizability is a property of histories that may initially be
weakly consistent but that eventually start behaving like in a linearization.
This constraint is formalized as follows. A t-linearization L of a history H is
defined as a t-permutation where the results of all operations invoked after t
are the same as in H. Operations invoked before t may have observed incon-
sistent histories that do not correspond to any single legal sequential history.
A history H is t-linearizable if there exists a t-linearization of H. Note that
all well-formed histories having a linearization also have a t-linearization.

It is now possible to define Eventual Linearizability as follows.

1The ⊆ notation is abused here to indicate that the set of operations of τ(i, o′) is
included in the set of operations of τ(i, o).

66 CHAPTER 5. EVENTUAL LINEARIZABILITY

Eventual Linearizability: An implementation of a shared object is even-
tually linearizable if all its histories are weakly consistent and t-
linearizable for some finite and unknown time t.

Linearizability differs from Eventual Linearizability because the con-
vergence time t is known and equal to zero. In general, any form of t-
linearizability where t is known can be easily reduced to Linearizability in
systems where processors have access to a local clock with bounded drift.
This is why the properties consider more general scenarios where t exists but
is unknown. It is worth noting that, different from t-linearizability, Even-
tual Linearizability is a property of implementations, not of histories. In
fact, all finite histories are trivially t-linearizable for some value of t larger
than the time of their last event. Showing Eventual Linearizability on an
implementation entails identifying a single value of t for all histories.

Eventual Linearizability has two fundamental properties of Linearizabil-
ity. Locality implies that any composition of eventually linearizable object
implementations is eventually linearizable. Nonblocking requires that there
exist no history such that every extension of the history violates Eventual
Linearizability.

Theorem 1. Eventual Linearizability is nonblocking and satisfies locality.

5.2 Implementations

Eventual Linearizability only requires that operations are linearized even-
tually. It can thus be implemented using primitives that are weaker than
Consensus. This section identifies which properties must be satisfied by
these primitives. It focuses on weak operations where Eventual Lineariz-
ability is sufficient. Strong operations are introduced in section 5.3. Many
weakly consistent implementations provide properties such as Eventual Se-
rializability [FGL+96] or Eventual Consistency [SS05; Vog09]. This section
shows that these properties are not sufficient to implement Eventual Lineariz-
ability, and therefore defines a stronger problem, called Eventual Consensus,
that is stronger than Eventual Consistency but weaker than Consensus. It fi-
nally shows that Eventual Consensus is necessary and sufficient to implement
Eventual Linearizability.

5.2.1 System Model for Implementations

This section considers shared object implementations using an underlying
consistency layer to keep replicas consistent. If Linearizability is required for

5.2. IMPLEMENTATIONS 67

all operations then the consistency layer implements Consensus. The specifi-
cations defined in this section refer to properties of consistency layers, unlike
Eventual Linearizability which is a property of shared object implementa-
tions. For simplicity, the discussion refers to implementations of a single
shared object.

The interface of the consistency layer has two types of events: submit
events, which are input events, and delivery events, which are output events.
Submit events include as input value an operation on the shared objects;
delivery events return a sequence of operations on the shared object. S(i, t)
denotes the last sequence delivered to process pi at time t > 0 and define
S(i, 0) to be equal to the empty sequence for each i. The processes interacting
with the shared object can fail by crashing. If pi is crashed at time t, S(i, t)
is the last sequence delivered by pi before crashing. A submitted operation
terminates when it is included in a sequence that is delivered at each correct
process.

The consistency layer itself is implemented on top of an asynchronous
message passing system with reliable channels. Implementations can use
failure detectors [CT96; CHT96]. A failure detector D is a module running
at each process that outputs at any time a set of process indices [CT96].
The classes of failure detectors used in this paper are defined in [CT96] and
reviewed in section 2.1.1.

5.2.2 Eventual Consistency and Eventual Consensus

The formalization of Eventual Consistency given in the following builds upon
the properties of Eventual Serializability [FGL+96] and Eventual Consistency
[SS05] and is expressed in terms of a weakened form of Consensus. Like
Eventual Serializability, it allows processes to temporarily diverge from each
other on the order of operations and to eventually converge to a total order.
Eventual Serializability supports defining precedence relations with each op-
eration to constraint their execution order. These relations are typically
used to specify causal consistency [FGL+96; LLSG92]. Since the discussion
here focuses on Eventual Consistency properties, these orthogonal aspects
are abstracted away.

Eventual Consistency: A consistency layer satisfies Eventual Consistency
if the following properties hold.

Nontriviality: For any process pi and time t, every operation in S(i, t)
has been invoked at a time t′ ≤ t and appears only once in S(i, t);

Set stability: For any process pi, if t ≤ t′ then each operation in
S(i, t) is included in S(i, t′);

68 CHAPTER 5. EVENTUAL LINEARIZABILITY

Algorithm 8: An eventually linearizable implementation of a generic ob-
ject using Eventual Consensus.

execute(o, H): returns the result of executing the sequence H up to and including the operation o;8.1

upon invoke (o)8.2
curr ← o;8.3
submit(o);8.4

8.5
upon deliver(H)8.6

if curr 6= ⊥ ∧ curr ∈ H then8.7
r ← execute(curr, H);8.8
curr ← ⊥;8.9
complete (o,r);8.10

8.11

Algorithm 9: Solving Eventual Consensus using an eventually linearizable
implementation of an append/read sequence object.

append(o): appends an operation o at the end of the sequence;9.1
read(): returns the current value of the sequence;9.2

upon submit (o)9.3
append(o);9.4

9.5
upon periodic tick9.6

H ← read();9.7
deliver (H);9.8

9.9

Prefix consistency: For any time t there exists a sequence of opera-
tions Pt such that:
(C1) For any correct process pi, Pt is a prefix of S(i, t′) if t ≤ t′;
(C2) Pt is a prefix of Pt′ if t ≤ t′;
(C3) Every operation o submitted at time t′ by a correct process
is included in Pt′′ for some t′′ ≥ t′.

Note that property (C3) of prefix consistency implies Liveness, i.e., for
any correct processes pi and pj and time t, every operation submitted by pi
at time t is included in S(j, tj) for some tj ≥ t.

This definition of Eventual Consistency is a relaxation of Consensus on
sequences of operations [Lam05].2 Consensus requires the same nontrivial-
ity and liveness properties as Eventual Consistency, but requires stronger
stability and consistency properties. Stability requires that for any process
pi, S(i, t) is a prefix of S(i, t′) if t < t′. Consistency requires that for any
processes pi and pj and time t, one of S(i, t) and S(j, t) is a prefix of the
other.

2The definition considers the case where all processes are proposers and learners. It
also modifies nontriviality to rule out sequences with duplicates.

5.2. IMPLEMENTATIONS 69

Set stability allows reordering the sequence of operations returned as
an output, provided that all operations returned previously are included in
the new sequence. Prefix consistency allows replicas to temporarily diverge
in a suffix of operations. However, it requires eventual convergence among
all replicas on a common prefix Pt of operations. Property (C1) of prefix
consistency says that a common prefix Pt of operations has been delivered
by each replica; (C2) constraints this prefix to be monotonically increasing;
(C3) ensures that all completed operations are eventually included in the
common prefix.

Eventual Consistency is not sufficient to implement Eventual Lineariz-
ability, not even for simple read/write registers, as shown in Theorem 2.
This and the following results in this section consider a non-uniform notion
of Eventual Linearizability, where operations invoked by faulty processes may
never appear in the final t-linearization. The focus on non-uniformity is moti-
vated by two observations. The first is that this strengthens the impossibility
results of this chapter, while extending the possibility results to the uniform
case is not difficult. The second observation is that, as it can be derived by
using a simple partitioning argument, ensuring a uniform notion of Even-
tual Linearizability would require the existence of f + 1 correct processes to
complete weak operations if f replicas can crash. The availability of f + 1
correct replicas for completing weak operations is not assumed by most repli-
cation algorithms implementing Eventual Consistency [SS05]. For example,
the specification of Eventual Serializability [FGL+96], which models the be-
havior of Lazy replication [LLSG92], does not distinguish between operations
of correct and faulty processes. However, Lazy replication implements a non-
uniform form of Eventual Serializability, where operations observed only by
faulty replicas may never appear in the eventual serialization.

Some eventually consistent (or eventually serializable) algorithms ensure
that all completed operations appear in the eventual serialization. The Zeno
algorithm, for example, requires clients to contact a quorum of replicas in
order to complete weak operations [SFK+09]. This is needed to prevent
clients from returning replies from Byzantine replicas. Dynamo implements
uniformity by writing values to “sloppy quorums” that might not intersect
with read quorums [DHJ+07]. If f failures are to be tolerated, both these
algorithms require that that at least one quorum of f + 1 correct replicas is
always available even in worst case runs.

Theorem 2. An eventually linearizable implementation of a single-writer,
single-reader binary register cannot be simulated using only an eventually
consistent consistency layer.

The intuition for this result can be given by a simple example. Consider

70 CHAPTER 5. EVENTUAL LINEARIZABILITY

two processes p0 and p1 that share one single-writer, single-reader binary
register holding a current value 1 at a given time t. Assume that p0 is the
writer of the register and p1 is the reader. Process p0 invokes a write0(0) op-
eration after t. After this operation is completed, process p1 invokes a read1()
operation. Prefix consistency allows the consistency layer to delay conver-
gence to a common prefix Pt for an arbitrarily long time. Before completing
read1(), p1 may thus not distinguish this run from a run where write0(0) was
never invoked. Therefore, read1() returns the previous value 1. A consistent
ordering Pt of these two operations can be delivered by the consistency layer
of both processes after both operations are completed. This is sufficient to
satisfy Eventual Consistency. Such a pattern can occur after any finite time,
making t-linearizability impossible for any t.

The key to achieve Eventual Linearizability is in strengthening stability.
Assume in the previous example that the consistency layer is not allowed to
change the order of the operations it has delivered after t. p0 can complete
its operation only after the consistency layer delivers a sequence containing
write0(0). In order to prevent the consistency layer of p0 from reordering
its delivered sequence, the first non-empty consistent prefix Pt′ must include
write0(0). This implies that the consistency layer of p1 has to deliver write0(0)
before read1() in order to preserve stability. p1 can thus execute this sequence
and return 0, respecting linearizability. In other words, an Eventually Con-
sistent consistency layer satisfying eventual stability must eventually start
to deliver all operations in a total order before the operations are completed.
This total order also includes all the operations that have been submitted
before t.

The previous example gives us the insight for the definition of Eventual
Consensus. Different from Eventual Consistency, the delivered sequences
eventually stop reordering operations that were previously delivered.

Eventual Consensus: A consistency layer satisfies Eventual Consensus if
Eventual Consistency and the following additional property hold:

Eventual Stability: There exists a time t such that for any times t′

and t′′ with t ≤ t′ ≤ t′′ and for any process pi, S(i, t′) is a prefix
of S(i, t′′).

Implementing Eventual Consensus is both necessary and sufficient to
achieve Eventual Linearizability for generic objects as shown in Theorem 3.
This result reduces the problem of obtaining eventually linearizable shared
object implementations to the problem of implementing a consistency layer
satisfying Eventual Consensus. The following Theorem 3 shows the equiva-
lence to Eventual Linearizability

5.3. COMBINATION WITH LINEARIZABILITY 71

Theorem 3. Eventual Consensus is a necessary and sufficient property of a
consistency layer to implement arbitrary shared objects respecting Eventual
Linearizability.

Algorithm 8 shows the sufficiency part of the result. Whenever an oper-
ation is invoked, it is submitted to the consistency layer. The operation is
then completed as soon as a sequence containing the operation is delivered.
The returned sequence is executed and the result is returned in a completion
event. Before stability eventually holds, nontriviality and set stability are
sufficient to satisfy weak consistency. As discussed in the previous register
example, eventual stability ensures that processes eventually start delivering
operations in the same total order, which is identified by the consistent prefix
Pt, before the operations are completed. This allows implementing Eventual
Linearizability.

Necessity is shown by Algorithm 9, which uses a shared sequence having
an append and a read operation. Whenever an operation is submitted, it is
appended onto the sequence. The object is periodically read and its value
is delivered. The weak consistency property of the sequence is sufficient to
ensure nontriviality and set stability. When the object starts to be eventually
linearizable, all reads and appends are totally ordered in a legal sequential
history. This ensures that eventually all operations are included in the same
total order, as required by prefix consistency, and that read sequences that are
delivered are never reordered in the future, as required by eventual stability.

5.3 Combination with Linearizability

The previous discussion has distinguished between strong operations that
need to be linearized and weak operations that require to be eventually lin-
earized. Strong operations are delivered only if Consensus is reached on the
prefix including them as last operation. This is called a strong prefix. The
specification of Eventual Consensus is extended accordingly.

Strong prefix stability: For any process pi, time t, strong operation s and
sequence π, if π s is a prefix of S(i, t) and t′ ≥ t then π s is a prefix of
S(i, t′).

Strong prefix consistency: For any processes pi and pj, time t, strong
operations si and sj and prefixes πi and πj, if πi si is a prefix of S(i, t)
and πj sj is a prefix of S(j, t) then one of πi si and πj sj is prefix of the
other.

If all operations are strong, Eventual Consensus is equivalent to Consen-
sus. One would desire to achieve termination of weak operations in all runs

72 CHAPTER 5. EVENTUAL LINEARIZABILITY

together with termination of strong operations in runs where Linearizability
can be achieved. This section discusses impossibility and possibility results
on this topic.

5.3.1 Impossibility Result

This section shows that even if a ♦S failure detector is given for termina-
tion of weak operations, strong operations cannot terminate in runs where
consensus can be solved (see Theorem 4).

The intuition behind the impossibility lays in the concurrency between
weak and strong operations. The impossibility proof constructs an infinite
run where some strong operation s is never completed. For this, it considers
an Eventual Consensus layer ensuring stability after a time t in a run where all
events occur after the time t. Assume that a strong operation s is submitted
by a correct process and that the processes are trying to reach consensus
on a strong prefix π s. Let a submit event for an operation w 6∈ π occur at
a correct process pi before consensus on π s is reached. Process pi cannot
know whether consensus will terminate or not, as it accesses only failure
detector ♦S, but it must deliver weak operations in either case. Therefore,
pi cannot wait until consensus on π s is reached before delivering w. pi is
thus forced to deliver w before consensus on π s is reached. When consensus
on π s is reached, eventual stability forbids pi to deliver π s because w is not
in π. Therefore, consensus needs to be reached on a new strong prefix ϕ s
with w ∈ ϕ. However, a new weak operation w′ may be submitted before
consensus on ϕ s is reached. This pattern can be repeated forever. As a
result, the strong operation s is never completed even if consensus can be
solved.

This result highlights an implicit tradeoff in implementing Eventual Lin-
earizability. As a consequence of the impossibility result, shared object im-
plementations using ♦S can ensure Eventual Linearizability and give up ter-
mination of strong operations in presence of concurrent weak operations.
Alternatively, they can choose to violate Eventual Linearizability in order to
ensure termination of both weak and strong operations. In the latter case, it
follows from the impossibility that Eventual Linearizability can be violated
whenever there are concurrent weak and strong operations.

The proof of the following theorem describes asynchronous computations
in terms of events as in [AW04]. Input events submitting operation o at pi are
denoted as submiti(o). An output event occurs when a sequence π is delivered.
An operation is delivered when a sequence containing it is delivered. Message
receipt events occur when a process receives a message. The occurrence
of these events at a process pi might enable the occurrence of computation

5.3. COMBINATION WITH LINEARIZABILITY 73

events at pi, which might in turn result in pi sending new messages.3 A
message m is causally dependent on an event e if the computation event that
generated m is causally dependent on e according to the classical definition
of Lamport [Lam78].

Theorem 4. In a system with n ≥ 3 processes out of which f can crash, it is
impossible to implement a consistency layer that satisfies the following prop-
erties using a failure detector ♦S: (P1) termination of weak operations; (P2)
termination of strong operations if f < n/2; and (P3) Eventual Consensus.

Proof. Assume by contradiction that a consistency layer satisfying prop-
erties (P1), (P2) and (P3) exists. Let processes be partitioned into two sets,
Πm of size b(n − 1)/2c and ΠM of size d(n + 1)/2e. By (P3), there exists a
time t after which eventual stability holds for each run. Consider all runs
where no process fails and where the ♦S modules of all processes suspect
ΠM . This proof builds one such run σ that begins with an event submith(s),
with ph ∈ ΠM occurring after time t, where s is a strong operation. σ is
an infinite and fair run that is built using an infinite number of finite runs
σk with k ≥ 0 in which s is never delivered by any process, thus violating
(P2). Each run σk with k > 0 is built by extending σk−1. The run σ is the
result of an infinite number of such extensions. Run σ is fair by construction
because all messages sent in σk−1 are received in σk, and because all enabled
computation events occur.

Let Mk be the set of messages that are sent, but not yet received, in σk.
For each σk, this proof shows by induction on k the following invariant (I):
No process delivers s in σk or in any extension of σk where (i) all processes in
ΠM crash immediately after σk, and (ii) all messages in Mk sent by processes
in ΠM are lost.

First the case k = 0 is considered, and σ0 is defined as follows. Let
submith(s) be the first and only input event of the system. Assume that no
process crashes in σ0. Assume also that no message is received in σ0 and that
all enabled computation events occur. Let M0 be set of initial messages sent
in σ0.

It is easy to see that (I) is satisfied in σ0. Since only a strong operation
has been submitted, delivering s entails solving consensus on s by definition.
Property (I) directly follows from the facts that no message is received in σ0

and that consensus cannot be solved using ♦S in any extension satisfying
conditions (i) and (ii) since f ≥ dn/2e (see proof in [CT96]).

For the inductive step, σk is constructed for k > 0 by extending σk−1.
Assume that no process crashes in σk and that ♦S permanently suspects

3If a process sends a message to itself, then the receipt of this message is considered as
a local computation event.

74 CHAPTER 5. EVENTUAL LINEARIZABILITY

ΠM . Let an event submiti(wk) occur at a process pi ∈ Πm after σk−1, where
wk is a weak operation that has never been submitted earlier. Let process pi
eventually deliver a sequence ϕk at a time tk such that wk ∈ ϕk and s 6∈ ϕk.
Assume that no event occurs at any process in ΠM after σk−1 and before tk.
Assume that all messages in Mk−1 sent by processes in ΠM (resp. Πm) are
received by processes in Πm (resp. ΠM) in σk but after tk . Let all enabled
computation events occur. Finally, assume that all messages sent after σk−1

are included in Mk and are not received in σk.
This proof first shows that the construction of σk is valid by showing

that tk and ϕk exist. It constructs an extension of σk−1 called σE1. Assume
that in σE1 all processes in ΠM crash immediately after σk−1 (i.e., before
submiti(wk)) and ♦S suspects ΠM at all processes. Assume that all messages
in Mk−1 that are sent by processes in ΠM are lost. By property (P1), and
since ♦S permanently satisfies weak accuracy, process pi eventually delivers
a sequence ϕk with wk ∈ ϕk at time tk. Therefore, ϕk and tk exist. As σk−1

satisfies (I), process pi cannot deliver s in σE1 because all messages in Mk−1

sent by processes in ΠM are lost. This implies that s 6∈ ϕk. Since process pi
cannot distinguish σk and σE1 up to tk, ϕk is delivered by pi at time tk in σk
too.

The proof now shows the inductive step, i.e., that σk satisfies (I). Assume
by contradiction that a sequence π s εd for some sequences π and εd is deliv-
ered for the first time by a process pd in σk or in an extension of σk respecting
(i)-(ii). As s was not delivered in σk−1, sequence π s εd is delivered after σk−1

and, by the argument above, also after tk.
Consider first the case pd ∈ Πm. Let σE21 be an extension of σk where

pd delivers π s εd and let t′k be the time when this delivery occurs. Let all
processes in ΠM crash immediately after σk and let all the messages sent by
processes in ΠM sent after σk−1 to processes in Πm be lost. Finally, let ♦S
return ΠM at all processes. From eventual stability and since pi has already
delivered at time tk < t′k a sequence ϕ such that wk ∈ ϕ but s 6∈ ϕ, it follows
wk ∈ π.

Considers now a run σE22 where the same events as in σE21 occur until
time t′k but no process crashes before t′k. All processes in Πm crash imme-
diately after t′k. All messages sent from processes in Πm to processes in ΠM

after σk−1 are lost. Assume that after t′k, ♦S eventually returns Πm at all
processes in ΠM . pd cannot distinguish σE21 and σE22 until t′k, so it deliv-
ers π s εd at time t′k in σE22 too. As all processes in ΠM are correct, they
must eventually deliver a sequence containing s by (P2). From strong prefix
consistency and strong prefix stability, this sequence must have π s as prefix
with wk ∈ π.

Finally, consider a run σE23 that is similar to σE22 but where the

5.3. COMBINATION WITH LINEARIZABILITY 75

submiti(wk) event does not occur. Let all processes in Πm crash at the same
time as in σE22, and let all messages sent by processes in Πm after σk−1 be
lost. Assume that no other process crashes. Let the outputs of ♦S be at
any time the same as in σE21. Runs σE21 and σE22 are indistinguishable for
the processes in ΠM , which thus eventually deliver a sequence having π s as
a prefix with wk ∈ π. However, wk has never been submitted in σE23. This
violates nontriviality, showing that pd 6∈ Πm.

Next, consider the case pd ∈ ΠM . By assumption, (I) holds so pd must de-
liver π s εd in σk. Let t′′k be the time when this occurs. Consider an extension
σE31 of σk where no process crashes. By (P2), all processes must eventually
deliver a sequence containing s. By strong prefix consistency, all processes
must eventually deliver a sequence having π s as prefix. By eventual stability,
since pi has already delivered at time tk a sequence ϕk including wk and not
s, it must hold wk ∈ π. Before t′′k, process pd cannot distinguish σk from
a similar run σE32 where submiti(wk) does not occur. In fact, pd does not
receive any message before t′′k that is causally related with submiti(wk). At
time t′′k, therefore, pd delivers π s εd with wk ∈ π in σE32 too, a violation of
nontriviality. This ends the proof that σk satisfies (I).

The infinite run σ can be built iteratively by extending σk as it has been
done with σk−1. The resulting run is fair by construction because all messages
in Mk−1 are delivered in σk and no computation event is enabled forever
without occurring. During the whole run no process crashes. According to
(P2), s should be delivered in a finite prefix of σ. By construction, however,
each finite prefix τ of σ is also prefix of a run σk′ for some k′. From the
invariant (I), s is never delivered in σk′ , a contradiction. �

5.3.2 A Gracefully Degrading Implementation

In this section introduces Aurora, an algorithm implementing Eventual Con-
sensus and thus, from Theorem 3, Eventual Linearizability. Aurora shows
that Eventual Consensus can be implemented with any number of correct
processes using ♦S, still ensuring termination of weak operations and Even-
tual Consistency in worst-case asynchronous runs. The algorithm also shows
that causal consistency can be combined with Eventual Consensus.

Failure detectors and communication primitives Aurora ensures ter-
mination of weak operations and Eventual Consistency in asynchronous runs.
To this end, Aurora uses a failure detector module D ∈ C, which outputs the
set of indices of the processes that have been suspected to crash. Virtually
all failure detector implementations are of class C in asynchronous runs. The
key property of Eventual Consensus, eventual stability, is achieved by letting

76 CHAPTER 5. EVENTUAL LINEARIZABILITY

a leader order all operations. For this, Aurora requires that D ∈ ♦S ⊆ C,
while for termination of strong operations it requires D ∈ ♦P ⊆ ♦S. This
models the fact that even if Aurora optimistically relies on additional syn-
chrony in order to achieve Eventual Consensus, the algorithm falls back to
Eventual Consistency to ensure termination of weak operations in runs where
Consensus would not terminate, including asynchronous runs. The use of ♦P
to complete strong operations is a consequence of Theorem 4. For simplic-
ity, ΩD is used to denote a simulation of a leader election oracle ensuring
the properties of Ω on top of D in runs where D ∈ ♦S similar to [Chu98].
The simulation ensures that the leader trusted by ΩD is not suspected by D.
The process that is permanently trusted by D when D ∈ ΩD is called the
permanent leader.

Processes use two communication primitives: a reliable channel provid-
ing send and receive primitives, and a (uniform) FIFO atomic broadcast
primitive providing abcast and abdeliver primitives [AW04]. Implementing
atomic broadcast is equivalent to solving consensus [CT96]. Aurora relies
on an atomic broadcast implementations that use a failure detector Ω and a
majority of correct processes for termination and that always respect their
safety properties [Lam98; CT96]. The algorithm assumes that a predefined
deterministic total order relationship <D exists. For simplicity, the algo-
rithm sends and delivers whole histories although it is simple to optimize
this away [FGL+96]. Garbage collection can be executed by periodically
issuing strong operations for this purpose [SFK+09].

Properties of the Aurora algorithm Similar to weakly consistent im-
plementations such as [LLSG92; TTP+95], Aurora ensures termination of
weak operations, causal consistency and Eventual Consistency if D ∈ C. If
D ∈ ♦S, Eventual Consensus is implemented. Termination of strong opera-
tions is ensured if D ∈ ♦P or, in absence of concurrent weak operations, if
D ∈ ♦S. All proofs are available in section C.

Checking if consensus will terminate A direct consequence of Theo-
rem 4 is that if a leader pld has started consensus on a strong prefix π s and
it receives a weak operation w afterwards, it needs to distinguish whether
consensus will terminate. If this is the case, w must wait to be ordered after
π s once consensus is reached. Else, w must be immediately be delivered
since consensus will not terminate, and thus the strong operation will have
to wait before being completed. Consensus will terminate if eventually there

5.3. COMBINATION WITH LINEARIZABILITY 77

exists a stable majority of correct processes permanently trusting pld.
4

Aurora uses trust messages to let pld know which processes trust it. When-
ever ΩD outputs a new leader pj at a process pi, pi sends a TRUST(j) mes-
sage to all processes through FIFO reliable channels. Each process pi keeps
a trusted-by set TB including the indices of all the processes pj such that
TRUST(i) is the last trust message received by pi from pj. This processing
of trust messages is not included in the pseudocode.

The leader uses the trusted-by set and a failure detector of class C to stop
waiting for consensus unless consensus terminates. When a consensus in-
stance is started, the leader remembers the subset T of TB that is composed
only by correct processes (according to D). Even in worst-case runs where
D ∈ C, T will eventually include only correct processes. If T never changes
and is a majority quorum, then there exists a majority of correct processes
permanently trusting the leader. Consensus on π s will thus eventually ter-
minate, so the leader can wait to order and deliver w until this happens. The
wait-consensus predicate is defined to reflect the aforementioned condition.

From Theorem 4, having a failure detector ♦S, so a single leader, and
a majority of correct processes is not sufficient to implement the properties
of Aurora. The leader needs to eventually detect that such majority exists,
which is ensured ifD ∈ ♦P . This eventually lets the predicate wait-consensus
be true whenever a consensus instance is ongoing, a sufficient condition for
termination of strong operations. In fact, T will eventually be equal to the
set of correct processes.

Note that if there is no concurrency between weak and strong opera-
tions, termination can be guaranteed for all operations without the need for
distinguishing whether consensus can terminate.

Processing weak operations The processing of weak operations is de-
scribed by Algorithm 10. When a weak operation o is submitted at a process
pi, pi sends it in a weak request message to the current leader pld and waits for
an answer from the leader. In order to preserve causal consistency, a weak
request of pi also contains its current history H and an associated round
counter d which will be explained later. H contains all operations causally
preceding o. When a weak request message m is received by pld, it merges its
local history with the one received in m before adding o to its local history.

4A stable majority is defined as a majority quorum that does not change over time.
The weakest failure detector to solve consensus, which is Ω, requires that eventually all
correct processes permanently trust the same correct process pld. Appendix ?? shows that
Ω can be simulated if eventually a stable majority of correct processes permanently trusts
pld.

78 CHAPTER 5. EVENTUAL LINEARIZABILITY

This is done in order to preserve causal consistency. The details of the merge
operation (see Algorithm 11) will be discussed later on.

If the leader has proposed a strong prefix and is waiting to deliver it, it
might wait until consensus on it is completed. This occurs if the leader thinks
that consensus can be solved and therefore wait-consensus is true. In this
case, the leader stores the request in the set W and waits until the strong
prefix is delivered or wait-consensus becomes false. When pld processes the
weak request, it sends a push message containing its local history, including
also o, back to pi. When pi receives the push message, it merges the history
of pld with its own history to order o respecting the causal dependencies of all
the operations ordered by the leader before o. The resulting history contains
o and is now delivered by pi.

As already discussed, wait-consensus eventually becomes false unless con-
sensus can be solved. Also, if pld is crashed, the failure detector will eventually
suspect it. In the latter case, process pi knows that no permanent leader is
yet elected so eventual stability cannot yet be achieved. Therefore, pi locally
appends o to its current local history and delivers it without further waiting
for a push message.

Processing strong operations - Overview The handling of strong op-
erations is described by Algorithm 12 and is more complex. For eventual
stability, if there is a permanent leader pld then strong operations should be
delivered according to the order indicated by pld. However, the algorithm
cannot rely on a leader to be permanent for strong prefix stability and con-
sistency.

The properties of strong operations imply that delivering a strong prefix
π s requires solving consensus on π s. Equivalently, processes can propose
strong prefixes by atomically broadcasting them and using some deterministic
decision criteria to consistently choose one proposal. The main implication
of Theorem 4, however, is that processes cannot just deliver the first strong
prefix π s proposed by a leader pld, even if this pld uses atomic broadcast.
In fact, as long as pld believes that atomic broadcast will not terminate,
it might have delivered some weak operation w 6∈ π before being able to
abdeliver π s. In this case, pld cannot deliver π s for eventual stability and it
needs to propose a new prefix for s.

Processes need to decide when a proposed strong prefix can be delivered
because it is stable, i.e. it has been abdelivered by atomic broadcast and
no weak operation has been delivered in the meanwhile. Establishing that
a prefix is stable is a local decision of a leader pld. The problem now is
how pld can communicate this local decision and let other processes agree

5.3. COMBINATION WITH LINEARIZABILITY 79

Algorithm 10: Handling of weak operations
upon submit (o) and o is weak10.1

ld ← ΩD;10.2
send WREQ(H, d op) to pld;10.3

10.4
upon receive WREQ(H′, d′, op′) from j10.5

if wait-consensus and (H′, d′, op′) 6∈W then10.6
add (H′, d′, op′) into W ;10.7

else10.8
(H, d) ← merge(H′, d′, H, d);10.9
if op′ 6∈ H then append op′ onto H;10.10
send PUSH(H, d) to pj ;10.11

10.12
upon receive PUSH(H′, d′)10.13

(H, d) ← merge(H′, d′, H, d);10.14
deliver(H);10.15

10.16
upon suspect-ld10.17

append last locally submitted weak operation onto H;10.18
deliver(H);10.19

10.20
upon stop-waiting-consensus10.21

foreach (H′, d′, op′) ∈ W do10.22
(H, d) ← merge(H′, d′, H, d);10.23
if op′ 6∈ H then append op′ onto H;10.24
send PUSH(H, d) to pj ;10.25
remove (H′, d′, op′) from W ;10.26

10.27

on its decision in presence of concurrent proposals from multiple leaders. If
pld just atomically broadcasts that a prefix is stable, this creates again the
same problem as before: all processes would have to wait that a stability
confirmation from the leader is successfully broadcast before delivering the
strong prefix. In the meanwhile, pld might locally store and deliver some new
weak operation.

The problem of multiple concurrent leaders is solved in Aurora by using
rounds and identifying a single leader as the winner of each round. Processes
store the current round k and deliver a single strong prefix at each round.
Leader processes that receive a new strong operation atomically broadcast
the strong operation in a proposal message for the current round. The leader
whose proposal is the first one to be atomically delivered for a round is the
winner of that round. The winner of a round can propose multiple new
strong prefixes for the round. These are received in the same order as they
are abcast by the leader since the broadcast primitive is FIFO.

Assume that a proposed strong prefix becomes stable at the winner of
the current round, that is, the winner abdelivers the stable prefix and sees
that it is consistent with its current local history. The winner can now safely
decide to locally store the strong prefix in its local history, deliver it, and

80 CHAPTER 5. EVENTUAL LINEARIZABILITY

Algorithm 11: Background dissemination and merge
upon periodic tick11.1

send PUSH(H, d) to all other processes;11.2
11.3

function merge(H′, d′, H, d)11.4
dnew ← max(d, d′);11.5
if d = dnew then Hnew ← longest strong prefix of H;11.6
else Hnew ← longest strong prefix of H′;11.7
O ← set of weak operations in (H′ ∪H) \Hnew;11.8
R ← order O according to <H ∪ <H′ and break cycles according to <D;11.9
append R onto Hnew in R order;11.10
return (Hnew, dnew);11.11

11.12

stop sending proposals for the round. The winner abcasts in this case a
close round message indicating that the other processes can deliver its last
proposed strong prefix for the round. A process abdelivering a close round
message m for the current round delivers the last strong prefix proposed by
the winner for that round and abdelivered before m. To ensure liveness in
case a winner crashes, each process that suspects the winner of the current
round can send a close round message.

Since proposal and close round messages are atomically broadcast, it is
evident that all processes that did not win a round abdeliver the same strong
prefix π for that round. Consistency with a winner of a round that has
delivered a stable strong prefix based only on a local decision is ensured as
follows. The prefix π is contained in the last proposal message m abdelivered
by the winner, and thus by any other process, for the round, and it is not
preceded by any close round message for the same round. Even if the winner
crashes, all close round messages for the round will be abdelivered after m,
ensuring consistency with the winner.

Eventually, only the permanent leader sends proposal and close round
messages. This ensures that eventual stability is reached. Furthermore, if
a majority is present in the system and D ∈ ♦P , eventually wait-consensus
will be true during ongoing rounds of strong prefixes. This ensures that the
leader eventually only adds weak operations between two rounds, ensuring
termination of strong operations.

Processing strong operations - Detailed description In Algo-
rithm 12, all processes keep two round counters: k stores the last round
number of a proposed strong prefix, or the next round number if a prefix
has just been delivered for a round; d denotes the highest round number
for which a strong prefix has been stored in the local history. A submitted
strong operation o is sent to all processes in a strong request message. When

5.3. COMBINATION WITH LINEARIZABILITY 81

Algorithm 12: Handling of strong operations
upon submit (o) and o is strong12.1

send SREQ(H, d, op) to all processes;12.2
12.3

upon receive SREQ(H′, d′, op) from j12.4
(H, d) ← merge(H′, d′, H, d);12.5
add op into N ;12.6

12.7
upon must-propose-new-prefix12.8

S ← N \H;12.9
Q ← H;12.10
T ← TB \ D;12.11
abcast PROP(Q, S, k);12.12

12.13
upon abdeliver PROP(H′, S, k′) from pj12.14

if from-round-winner then12.15
P ← (H′, S, k′, j);12.16

if proposal-stable then12.17
foreach op ∈ S in <D order do12.18

append op onto H;12.19
d ← k;12.20
deliver(H);12.21
abcast CLOSE-RND(k′);12.22

12.23
upon suspect-round-winner12.24

abcast CLOSE-RND(k′);12.25
12.26

upon abdeliver CLOSE-RND(k′) from pj and P = (∗, ∗, k′, ∗)12.27
P ← ⊥;12.28
Q ← ⊥;12.29
k ← k′ + 1;12.30
let H′ and S′ be such that P = (H′, S′, k′, h);12.31
Hnew ← H′;12.32
foreach op ∈ S′ in <D order do12.33

append op onto Hnew;12.34
(H, d) ← merge(Hnew, k′, H, d);12.35
deliver(H);12.36

12.37

a process receives such a message, it adds o to the set N containing all strong
operations that have been received by the process.

If a process pi believes to be a leader, it can make a proposal for a round
if it has operations in N that have not yet been locally delivered and thus not
yet inserted in the local history H. The sequence Q stores the last prefix that
was proposed by pi as a prefix of some new strong operation in the current
round. A proposal is done by pi only if pi has not yet sent any proposal for
the round, so Q = ⊥,5 or if a prefix has been proposed by pi but some weak
operations has been added to the local history H in the meanwhile so H 6= Q
(must-propose-new-prefix predicate). The proposal message contains H and
the set S = N \H of new strong operations.

5The symbol ⊥ denotes the value “undefined”.

82 CHAPTER 5. EVENTUAL LINEARIZABILITY

wait-consensus
4
= Q 6= ⊥ and

T = TB \ D and |T | > n/2

suspect-ld
4
= ld 6= ΩD and last locally submitted

weak operation is not in H

stop-waiting-consensus
4
= W 6= ∅ and ¬ wait-consensus

suspect-round-winner
4
= P = (∗, ∗, k′, j) and j 6= ΩD

must-propose-new-prefix
4
= i = ΩD and N \H 6= ∅ and

(Q = ⊥ or H 6= Q)

from-round-winner
4
= (P = ⊥ and k′ = k) or P = (∗, ∗, k′, j)

proposal-stable
4
= j = i and P = (∗, ∗, k′, i) and

H′ = H and k′ = k > d

Table 5.1: Predicates used by the Aurora protocol

If a new proposal message from the round winner is abdelivered, it is
stored in the record P . If the winner decides that a proposal is stable, it
stores it in H, delivers it, sends a close round message to all, and updates
d. A close round message is also sent by any process that suspects the
current round winner to be faulty. Whenever a close round message for the
current round is received, the corresponding strong prefix is delivered. Before
delivering a strong prefix, this is merged in the local history as described in
Algorithm 11. The merge operation gives as result a history containing the
strong prefix delivered in the largest round. All remaining weak operations
are ordered after this prefix.

Background dissemination and merge In order to eventually converge
to the same history, processes periodically send push messages to all other
processes (Algorithm 11). The push mechanism is not only used to achieve
Eventual Consistency. The permanent leader of a run uses push messages
to fetch the histories of all processes and to aggregate them in a single con-
sistent history. This is the key to achieve eventual stability. Strong prefix
consistency and strong prefix stability are preserved by merges because, by
construction, the longest strong prefix stored in a history H for round d is
a prefix of the longest strong prefix stored in a history H ′ for round d′ if
d ≤ d′. Causal consistency is preserved because all merged histories preserve
it by construction. The merge only reorders operations that are ordered in-
consistently in the two input histories. These operations, however, cannot be
causally dependent. Inconsistent orderings of operations are eventually prop-
agated to all processes and deterministically ordered using the <D relation.
This is the key to eventual stability and consistency.

5.4. CHAPTER SUMMARY 83

5.4 Chapter Summary

This chapter presented Eventual Linearizability and a related problem, Even-
tual Consensus. It established that combining Eventual Consensus with
Consensus comes at the price of using a stronger failure detector than ♦S,
which is sufficient for Consensus. Finally, it presented Aurora, a gracefully-
degrading shared object implementation extending Consensus with Eventual
Consensus. Aurora only degrades consistency in periods when Consensus
would block. It uses a failure detector of class ♦P to tell if Consensus will
terminate, and one of class C to detect that Consensus will not terminate.

84 CHAPTER 5. EVENTUAL LINEARIZABILITY

Chapter 6

Conclusions and Future
Research

The thesis of this dissertation is that novel fault-tolerant replication algo-
rithms are needed that fully adhere to the needs of Web-scale systems. In
particular, the dissertation focuses on two main open issues. The first is re-
ducing the performance and replication costs of tolerating worst-case failures,
which are unlikely in general but do appear in very large-scale systems. The
second is improving the efficiency of replication by increasing its availability,
which has a positive impact both on latency and throughput, still keeping the
same degree of consistency whenever possible. In this chapted we summarize
the contributions of this thesis and indicate some new research directions for
the future.

85

86 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

6.1 Overall Thesis Contributions

This section reviews the main contributions of this thesis and refers to the
papers which have resulted from the thesis’ work.

6.1.1 Low-Cost and Fast BFT

There has been a large deal of work on efficient and cheap BFT algorithms.
The Scrooge algorithm represents a fresh look on existing lower bounds on
the tradeoff between fast agreement and replication costs. The main idea
is that a fast algorithm may not need to be always fast. By admitting a
minor performance degradation upon failure events, Scrooge introduces a
new upper bound on the replication cost of fast agreement. This is 2f + 2b
replicas, where f is the overall number of tolerated faults (both crashes and
Byzantine faults) and b ≤ f is the number of tolerated Byzantine faults.
The existing lower bound for achieving fast agreement even in runs where
a backup replica fails is 3f + 2b − 1. This is f + b − 2 replicas more than
the lower bound for Byzantine agreement, which is 2f + b+ 1. Scrooge thus
shows for the first time that the additional costs to be fast in presence of
faulty replicas is f − 1, that is, it is only a function of the number of the
tolerated Byzantine faults. This makes Scrooge convenient in systems, like
most Web-scale systems, where Byzantine faults are very rare.

Experimental evaluation shows that Scrooge performs as well as Zyzzyva
and Zyzzyva5 in fault-free runs and that it performs like Zyzzyva5, and better
than Zyzzyva, in runs with faults. These properties are achieved with strictly
less replicas than Zyzzyva5. Scrooge also greatly outperforms Zyzzyva in
presence of faults on read-only workloads.

The reduction of replication costs is particularly critical for Web-scale
systems, which might include a large number of BFT clusters. A small
reduction on the cost of a single cluster results in a significant reduction of
hardware and energy costs if the number of clusters is high.

Resultant publication

• Marco Serafini and Neeraj Suri, Reducing the Costs of Large-Scale
BFT Replication, in Proc. of Large-Scale Distributed Systems and
Middleware (LADIS), 2008.

• Marco Serafini, Peter Bokor, Dan Dobre, Matthias Majuntke and
Neeraj Suri, Scrooge: Reducing the Costs of Fast Byzantine Replication
in Presence of Unresponsive Replicas, in Proc. of IEEE Int’l. Conf. on
Dependable Systems and Networks (DSN-DCCS), 2010.

6.1. OVERALL THESIS CONTRIBUTIONS 87

6.1.2 Fail-Heterogeneous Architectures

This thesis shows for the first time that trusted components can be used
to reduce the replication costs of BFT even in general asynchronous sys-
tems. Relaxing the synchrony requirements compared to prior work on using
trusted components is fundamental to enable the use of these components in
Web-scale systems. The potential of this approach has been confirmed by the
interest it has attracted. Immediately after HeterTrust, related and indepen-
dently developed work has appeared. The A2M protocol aims at reducing
replication costs by using an attested append-only memory [CMSK07]. This
results in a symmetric failure mode for Byzantine processes, which resembles
the hybrid fault model defined in [TP88]. Work on TRINC showed that such
memory can be implemented using only a monotonically increasing counter
which is associated with a key [LDLM09]. These papers propose using spe-
cialized hardware components that are deeply integrated into the processors’
hardware. The fail-heterogeneous fault model does not impose such a restric-
tion and is thus more generic. Trusted coordinators can be external processes
with restricted software functionalities (only related to agreement) running
on commodity hardware. However, the verification of trustworthiness for
software processes is more complex than for hardware components.

The fail-heterogeneous architecture is also innovative in its use of trusted
components as filters. While other work focuses only on integrity issues,
HeterTrust shows that trusted components can also be used to preserve data
confidentiality. Filtering in HeterTrust is not only done for confidentiality but
also for tolerance to DoS attacks. Later work has shown that such filtering
can also be done without assuming trusted components [ACKL08; CWA+09],
at the cost of degraded performance in “good” runs where no fault appears.

Resultant publication

• Marco Serafini and Neeraj Suri, The Fail-Heterogeneous Architec-
tural Model, in Proc. of the IEEE Int’l Symp. on Reliable Distributed
Systems (SRDS), 2007

6.1.3 Eventual Linearizability and Gracefully Degrad-
ing Implementations

Eventual Linearizability is a natural way of expressing gracefully degrading
shared objects. In normal runs, these objects must respect the standard
correctness condition of Linearizability. Whenever consistency deviates from
Linearizability, it must eventually converge back to it.

88 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

This thesis introduced the first gracefully degrading replication algorithm,
Aurora, which only relaxes Linearizability when a single leader is not avail-
able in the system. In such runs, consensus can not be solved and thus
preserving Linearizability would mean blocking. Eventual Linearizability
prevents blocking by relaxing consistency only in these cases. Aurora can
be used to increase the consistency of existing weak consistency solutions for
Web-scale systems without reducing availability.

It is often necessary to offer to applications the possibility of specify-
ing different consistency degrees to different operations. Some operations
may always require Linearizability, whereas other might be better off with
Eventual Linearizability. The thesis shows that there are fundamental trade-
offs in combining Linearizability and Eventual Linearizability. In particular,
strong operations can only be completed using a stronger failure detector
than needed to solve Consensus.

A first investigation on the applicability of Eventual Linearizability to
practical Web-scale applications, such as crawling, is in [SJ10]. These ap-
plications often partition their large workload over a large number of pro-
cessors using master-worker schemes. Using Eventual Linearizability has the
potential to be significantly more advantageous than using Linearizability in
systems where partitions are not very rare.

Resultant publications

• Marco Serafini, Dan Dobre, Matthias Majuntke, Peter Bokor and
Neeraj Suri, Eventually Linearizable Shared Objects, in Proc. of ACM
Symp. on Principles of Distributed Computing (PODC), 2010.

6.2 Open Ends

Web-scale systems represent an evolving class of systems with mutating re-
quirements. This thesis identifies some solutions but also opens up new
research questions, as discussed in this section.

6.2.1 Negative Results

This thesis focuses on introducing positive, algorithmic results on the pos-
sibility of solving certain problems. The only negative results, which is the
impossibility of section 5.3.1, was made necessary to justify the counterintu-
itive requirements of the Aurora protocol for completing strong operations.
The positive results of this thesis call for further negative result that establish

6.2. OPEN ENDS 89

the necessity of some of the requirements of the proposed algorithms. There
are two issues that are particularly interesting in this sense.

The Scrooge protocol shows that 2f + 2b replicas are sufficient for a BFT
algorithm to be eventually fast in presence of faulty (unresponsive) replicas.
It still remains to show a lower bounds matching this upper bound, that is,
a proof that 2f + 2b replicas are minimal for being eventually fast.

Similarly, this thesis shows that a ♦S failure detector is sufficient to im-
plement eventual linearizability. The open question is whether it is also nec-
essary, that is, whether ♦S is the weakest failure detector which implements
eventual linearizability.

6.2.2 Understanding Byzantine Faults

The design of BFT algorithms has reached a very mature state, which in-
cluded the design of BFT versions of existing Web-scale services such as
HDFS [CKL+09]. Assuming that the problem of designing efficient BFT
systems can be solved, the main question that remains is whether using
these systems is worth their additional complexity. In other words, it is not
yet clear whether non-silent faults appearing in practice are best modeled
using the Byzantine fault model [SJR09]. While in general the Byzantine
fault model is attractive due to its generality, there still are a number of
unresolved issues that are preliminary to the use of BFT.

First, many non-silent fault are caused by hardware malfunctions rather
than malicious activity [Con02; Bor05; PWB07; SG07]. These faults do not
require the use of cryptographic techniques. In fact, more efficient coding
techniques can be used to detect errors induced by hardware faults. These
do not only offer performance advantages, but also reduce the administrative
complexity of setting up cryptographic algorithm, as for example generating
and sharing secret keys.

Second, bugs and other software faults tend to be correlated, and may vi-
olate the assumption of failure independence. Design diversity is not proven
to be effective and in many cases is not an option [LPS01]. Also, design di-
versity is unlikely to protect the system from configuration and maintenance
faults, which often also have correlated nature [SJR09].

Third, using the Byzantine fault model for malicious intrusions still leaves
many security issues open. Protecting confidentiality requires a very large
number of nodes [YMV+03] unless, as this thesis shows, trusted components
are used. Even with trusted components, however, confidentiality requires
specific network topologies to prevent data leaks. It is not clear whether
mandating the use of such topologies is realistic in data centers. Another
issue is that BFT systems, like any other distributed system, are vulnerable

90 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

to denial of service attacks. Although some solutions have been proposed to
mitigate this problem, such as [ACKL08; CWA+09], these again require the
use of specific network topologies.

Overall, the application of BFT is limited by the lack of clear evidence
that these faults occur in practice.

Research topics In the field of BFT replication, there are two main open
issues that need to be solved to make a good case for the usefulness of this
approach, also in the context of Web-scale systems. The first is establishing
whether the Byzantine faults that appear in practical systems can be toler-
ated using BFT. The second and perhaps more important issue is whether it
is possible to design algorithms that tolerate arbitrary but accidental faults
(hardware) and that are more efficient and cheaper than BFT algorithms.

6.2.3 Applications of Eventual Linearizability

Evaluating the practical impact of Eventual Linearizability is also an open
issue. Eventual Linearizability is useful for systems where weak consistency
is acceptable but it is the last resort. These are systems where availability is
of paramount importance, but the loss of consistency must be limited.

Follow-up work already made some evaluations related to the application
of eventual linearizability in highly-available master-workers schemes [SJ10].
There are also other examples where eventual linearizability can be useful.
Consider for example a system handling bids. Consider for example a bid-
ding system. High availability is crucial to always ensure that users can do
their bids, especially when the end of the bid is approaching. However, it is
desirable that bidders can base their decisions on the most up-to-date infor-
mation available. This is particularly true if the actual value of the bid is a
function of the current state of the system. Another example where Even-
tual Linearizability is beneficial could be a flight booking system. Ensuring
high availability is essential avoid keeping seats unsold. Relaxing consistency
to preserve high availability might result in over-bookings, that are anyway
tolerated by the application. However, in the normal case, updated real-time
information should be provided to each retailer and customer. A final ex-
ample could be a social networking application. In order to increase data
locality, user accounts can be spread over a wide-area system. Each user
might have friends worldwide who want to observe updates to its profile and
to comment them. It is desirable that, when multiple users are concurrently
commenting on a friend’s picture or on a status update, they observe a real-
time flow of comments. Degradation of consistency, however, is preferable

6.2. OPEN ENDS 91

to unavailability, which can demotivate the user from interacting with the
system.

Existing weakly consistent solutions have some limitations which are a
direct consequence of their consistency semantics. First, they either always
degrade to causal consistency, as Dynamo [DHJ+07] or have stronger consis-
tency but become unavailable if one of the replicas, identified as the master,
becomes unavailable, as for example PNUTS [CRS+08]. Eventual Lineariz-
ability provides strong consistency most of the time, and degrades consistency
only when implementing Linearizability would mean blocking the system. It
offers the same advantages as eventually consistent systems in terms of avail-
ability, but it only allows divergences when it is necessary.

Research topics Evaluating Eventual Linearizability in practical applica-
tions scenarios could be done on multiple dimensions. Existing work shows
some initial results indicating that it can be beneficial in highly available
master-worker schemes when the likelihood of partitions or timing failures
using strong consistency is not negligible [SJ10]. Eventual Linearizability
seems also to be attractive for other applications, such as bidding, retail or
social networking applications, where the loss of consistency is acceptable
but not desirable and should be minimized. This claim must be validated
considering some specific use case.

92 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

Appendix A

Scrooge

This section presents additional results related to the Scrooge protocol. Sec-
tion A.1 shows the correctness of the algorithm. Section A.2 presents an
extension to Scrooge enabling garbage collection and shows it correct.

A.1 Correctness of the Scrooge Protocol

This section proves the correctness of the simplified Scrooge protocol. The
next two sections describe the full version of Scrooge by extending the sim-
plified version, and prove that the introduced modifications preserve correct-
ness. As customary, first it is proven that the protocol never violates some
invariant properties (safety) and that the protocol eventually achieves some
useful results (liveness).

A.1.1 Replica State and Definitions

Consider systems composed by N ≥ 2f + 2b replicas. At most f > 0 replicas
can be faulty and at most b can be Byzantine, with 0 < b ≤ f , while the
others only crash.

Proofs reason in terms of the message history, or simply history, stored
by replicas. A history is an array indexed by a unique sequence number n.
Each history element is a triple including the following fields:

• a client request m

• a replier quorum RQ

• a primary authenticator µp

93

94 APPENDIX A. SCROOGE

Replicas go through a sequence of views, and accept messages of the
agreement protocol for a view v > 0 only if after the view change to v is
completed. In this case the view is called is established. A replica is in view v
if v is its last established view. If a correct replica i in view v participates to
a view change to a view v′ > v, it can build a tentative history for v′, which
is denoted as t-hist(v, i). Tentative histories are indicated by the primary
of the new view v′. When a correct replica i establishes view v′, it agrees
with the other replicas on the tentative history (Lines 2.30 – 2.34), which
then becomes an established history and is denoted as e-hist(v, i). Each view
v has a pre-defined primary p(v). In the pseudocode, both tentative and
established histories are denoted by ih during view change.

A history prefix in view v for sequence number n and correct replica i
is denoted as prefix(n, v, i) and is defined as the subset of the message
history elements stored in view v by i with sequence number n′ ≤ n. Given
two histories h and h′, h is a prefix of h′ iff for each element of h there is
also one identical element of h′ associated with the same sequence number.
Furthermore, h is a request prefix of h′ iff for each history element of h there
is an element in h′ associated with the same sequence number, client request
and replier quorum.

An agreed history prefix in view v for sequence number n and correct
replica i is any history prefix in view v for n and i where n ≤ aw and aw is
the agreement watermark of i at the end of view v. It is denoted as a-prefix(n,
v, i). Committed history prefixes c-prefix(n, v, i) are defined similarly.

View establishment certificates are attached to each view change message.
A view establishment certificate E received from a replica i is valid for a
view change message vc if E = vc.E and all its N − f signed establish view
messages ev from different replicas contain the same view number ev.v =
vc.v, the same sequence number ev.n ≤ vc.aw and the same correct digest
ev.h of the history prefix {vc.mh[0], . . . , vc.mh[ev.n]}.

A replier quorum RQ′ 6= ⊥ is said to be valid for correct replica i in
view v at sequence number n if, given the highest sequence number nc ≤ n
such that c-prefix(nc, v, i), all the history elements with sequence number
in [nc, n] contain RQ′. This is denoted as RQ-valid(RQ′, n, v, i). A replier
quorum RQ′ 6= ⊥ is said to be current for correct replica i in view v at
request n if replica i in view v has set RQ to RQ′ when it handles the order
request for sequence number n in Lines 1.15 – 1.26. This is denoted as RQ-
current(RQ′, n, v, i). The difference between the two predicates is that the
first refers to replier quorums stored in the history logged by a replica, while
the second refers to the current replier quorum of the replica when an order
request message is processed.

A correct client c completes an operation o after receiving replies from

A.1. CORRECTNESS OF THE SCROOGE PROTOCOL 95

Name Description Type Init

v current view timestamp 0
RQ replier quorum set of pids [0,N-f-1]
n current seq. number timestamp 0
mh message history array of 〈req.,RQ,auth.〉 ⊥
h history digests array of digests ⊥
aw agreed watermark timestamp 0
cw commit watermark timestamp 0
SL suspect list set of f pids [N-f,N-1]
nSL seq. number of SL timestamp 0

v′ new view timestamp 0
ih initial history array of 〈m,RQ, auth.〉 ⊥

view establishment set of N − f signed default
E

certificate EST-VIEW messages value

Table A.1: Global variables of a replica

a quorum of replicas in view v which executed the request with the same
sequence number n and history prefix h. This is denoted as complete(o, n,
v, h, c).

A.1.2 Agreement and Helper Procedures

The pseudocode of the reconfiguration phase is Algorithm 13, the one of the
helper procedures is Algorithm 14, and the list of variables of the algorithm
is in Table A.1.

A.1.3 Proof Sketch

This section provides proof sketches for the safety and liveness properties of
the protocol. For simplicity, it is assumed in the proof sketch that f = b.

Safety

The safety property of BFT replication protocols is that clients have the
abstraction of interacting with a non-replicated server executing all requests
according to a total order [Sch90]. Therefore, if two clients issue two differ-
ent requests and complete them, these must have been consistently ordered
by the replicas which have generated the delivered replies. The following
argument argues that this property holds within a view and across views.

Within a view: A client can complete requests in a view in two cases:
either after receiving 3f matching speculative replies or after receiving f + 1
stable replies. If two clients complete a request, they receive speculative
replies from two sets of replicas which intersect in one correct replica i. Since
correct replicas execute requests in the order dictated by sequence numbers,

96 APPENDIX A. SCROOGE

replica i has established a local order between the two requests. A client
completes a request from speculative replies only if 3f repliers have sent a
consistent history digest. This implies that these replicas have the same
history as i, so the requests are consistently ordered. A similar reasoning can
be done if one of the client, or both, deliver after receiving stable replies. In
fact, stable replies are agreed by replicas after receiving a set of 3f agreement
messages with matching histories and any two such set intersect in a correct
replica i.

Across views: If a client completes a request m after receiving replies
for view v and sequence number n and a view change to view v + 1 occurs
afterwards, mmust be associated with n in the new view as well. This ensures
that if a second client completes a request in v + 1, and by induction in any
successive view too, the two requests will be consistently ordered. Consider
now consider how m is recovered during view change.

Ifm has completed from f+1 stable replies, at least one correct replica has
received in view v matching commit messages for n from at least 2f correct
replicas. These replicas have a common agreed history prefix including all
elements with sequence numbers n′ ≤ n. During the view change protocol,
at least f of these correct replicas will send a view change message to the
new primary. Request m is thus included in one agreed candidate. However,
at most f other faulty replicas might report a different agreed candidate.
In order not to be discarded, agreed candidates must be contained in the
history of at least f + 1 replicas, one of which is correct. If this holds for
both candidates, it implies that the primary has sent two different ordered
request messages for n and is thus one of the f replicas reporting a different
candidate. The view change message from the primary is discarded in this
case and a view change message from a correct replica, which can only report
m as agreed candidate for n, is awaited. After that, only the agreed candidate
containing m remains and is selected by the recovery function.

If m has completed after the client has received 3f speculative replies
from a replier quorum RQ, at least 2f correct repliers i had updated their
current quorum RQi to RQ when they had committed on an agreement
watermark nia < n. The history element for nia, and thus the replier quorum
RQ contained in it, can thus be recovered. Before delivering, the client
has also checked that all the 2f correct repliers i have a common history
consisting of elements with sequence numbers n′ ≤ n. Also, as the request
has been speculatively replied by all correct replicas in RQ, the SPEC-RUN
predicate was true when the repliers received the order request message for
n. This implies that RQi was not set to ⊥ by any of the correct repliers.
The replier quorum RQ is thus contained in all history elements stored with
sequence number n′ such that nia ≤ n′ ≤ n by each correct replier. By

A.1. CORRECTNESS OF THE SCROOGE PROTOCOL 97

induction on n′, RQn−1 is set equal to RQ when a agreement is reached
for n. During view change, the primary will receive at least f view change
messages from elements in RQn−1 associating m to n. The request m is
thus associated with an ordered candidate, which is selected for sequence
number n by the recovery function and included into the initial history of v′

as discussed in section 3.4.2. If a different request m′ is reported as agreed
candidate by f faulty replicas and is included in the histories of f + 1 view
change messages, this indicates that the old primary of view v was faulty
and has sent inconsistent ordered requests. Its message is thus discarded and
another message from a correct replica is awaited. After this is received, m′

is not an agreed candidate any longer as correct replicas can only agree on
m.

Liveness

Liveness is guaranteed when the system is in timely periods and thus the same
view can be established by all correct replicas. If a client c cannot complete
its request m from speculative replies, it resends m to all replicas. If the
primary is correct, the SPEC-RUN condition ensures that the agreement
and commit phases are executed by each correct replica once one correct
replica receives both m from c and the corresponding order request message
from the primary. All correct replicas initiate and complete the agreement
and commit phases on the entire history prior tom and send to f+1 matching
stable replies to c. These are sufficient to complete the request. If this does
not eventually happen, the primary is faulty and at least f+1 correct replicas
accuse it. This is sufficient to let all replicas initiate a view change.

The protocol cannot block during view change in timely periods. A new
correct primary can always wait for 3f well-formed view change messages
from correct replicas. Each of them eventually becomes stable as the out-
come vectors o contain binary boolean values and the new primary receives
outcome vectors from 3f correct replicas for each of these view change mes-
sages. Additional messages are waited if there are multiple candidates for a
sequence number and one of them is included in the view change message
sent by the primary of the last established view v. This implies that at least
one faulty replica has sent a view change message and is thus possible to
wait for one additional view change message. Also, if an agreed candidate e
is sent by correct replicas, at least 2f correct replicas have it in their local
history. If an incorrect agreed candidate is reported by a faulty replica, all
3f correct replicas send view change messages reporting that no agreement
on it was reached. In both cases progress is ensured.

98 APPENDIX A. SCROOGE

A.1.4 Scrooge Safety

The safety property provided by BFT replication protocols is that different
correct clients always observe consistent histories, as reflected in the following
safety property.

Property 1. For each pair of correct clients c1 and c2 and for each pair of
operations o1 and o2 completed by client c1 and c2 respectively, let n1 and n2

be the sequence numbers associated with o1 and o2 respectively and h1 and h2

the history prefixes stored in any view by any correct replica for n1 and n2

respectively. If n1 ≤ n2, then h1 is a request prefix of h2.

The purpose of this section is to prove that Property 1 is an invariant.
First some consistency properties within a view v are proven, and then it

is shown how consistency is preserved across views.

Lemma 1. If h = e-hist(v, i) and h′ = e-hist(v, j), then h = h′.

Proof: If v = 0 all replicas have the same established initial history,
which is empty.

If v > 0, replicas consider their initial history for view v as established
in Lines 2.30 – 2.34 after having received valid establish view messages with
matching history digests from a quorum of N − f replicas, including at least
N − f − b ≥ f + b correct replicas. If two correct replicas i and j have
established the same view v, there are at least b > 0 correct replicas k in
the intersection of the quorums of i and j. Since a correct replica accepts
only one new view message per view in Lines 2.24 – 2.28, it never sends two
different establish view message. The initial histories for i and j are thus the
same.

Lemma 2. If h = prefix(n, v, i) and h′ = prefix(n′, v, i) and n ≤ n′ then h
is a prefix of h′.

Proof: A correct replica i in view v adds an entry to its history
only upon receiving order request messages from the current primary p(v)
(Lines 1.15 – 1.26). The entry for sequence number n is added only if n is the
smallest sequence number not yet associated with an entry in the history of i.
This implies that (a) only one entry can be associated with a given sequence
number in a history in view v, (b) there are no gaps and (c) if h is the history
prefix for sequence number n, requests for higher sequence numbers n′ added
in view v are appended to h.

Lemma 3. If RQ-current(Q, n, v, i) then RQ-valid(Q, n, v, i).

A.1. CORRECTNESS OF THE SCROOGE PROTOCOL 99

Proof: Let nc be the highest sequence number smaller than n such
that c-prefix(nc, v, i) and assume by contradiction that RQ-valid(Q, n− 1,
v, i) does not hold. This implies that some history element with sequence
number in [nc, n− 1] contains a replier quorum S 6= Q. Let nS ≥ nc be the
highest sequence number of such an element. From RQ-current(Q, n, v, i)
it follows that RQ = Q for i when the order request with sequence number n
is processed by i in view v (Lines 1.15 – 1.26). Order requests are processed
following their sequence numbers and the replier quorum RQ is set to ⊥ if
the predicate SPEC-RUN does not hold. RQ is set to a value Q 6= ⊥ in
view v only when a new commit watermark is reached in v and all history
elements from the commit watermark up to the current sequence number
are associated with Q in the message history of i (Lines 13.30 – 13.40).
Therefore, RQ-current(Q, n, v, i) implies that (a) there exists a sequence
number nQ < n such that a commit on nQ is reached in view v before an
order request with sequence number k < n is processed and Q is associated
to all history elements in [nQ, k− 1], and (b) RQ is not set to ⊥ when order
request with sequence numbers in [k, n] are processed, so SPEC-RUN holds
and RQp = Q for all the corresponding history elements. This implies that
nQ > nS ≥ nc, which contradicts the definition of nc.

Lemma 4. If a correct replica i in view v sends a speculative reply for a
request associated with sequence number n in its history, then there exists a
replier quorum Q such that RQ-valid(Q, n, v, i) and i ∈ Q.

Proof: If i sends the speculative reply in Lines 1.15 – 1.26 it follows
from SPEC-RUN that it received an order request message for n from the
primary p(v) containing a replier quorumRQ 6= ⊥ such that RQ-current(RQ,
n, v, i) holds and i ∈ Q. The result thus follows from Lemma 3.

If i sends the speculative reply after a commit in Line 13.40, the result
follows from the fact that the procedure send-missing-spec-rep checks that
i ∈ Q and that Q is associated to the history element with the highest
committed sequence number nc ≤ n and to all history elements with sequence
numbers in [nc, n]. This ensures that each commit with sequence number in
[nc, n] is associated with Q, as required by RQ-valid(Q, n, v, i).

Lemma 5. If h = a-prefix(n, v, i) then either h is a prefix of e-hist(v, i) or
there exist N − f − b correct replicas j such that h = prefix(n, v, j).

Proof: A correct replica i can update its agreed watermark to aw ≥ n
in two cases: when it establishes the view v in Lines 2.30 – 2.34 or when
it completes an agreement phase for sequence number aw in Lines 13.23 –
13.28. In the first case, h is a prefix of e-hist(v, i) as from Lines 2.30 – 2.34.

100 APPENDIX A. SCROOGE

In the second case, replica i has received equal agree messages containing
a history digest for h and sequence number n from a quorum Q of N − f
replicas in view v. At least N − f − b replicas in Q are correct and have thus
sent matching agree messages only if h = prefix(n, v, j).

Lemma 6. If ai = a-prefix(ni, v, i) and aj = a-prefix(nj, v, j) and ni ≤ nj,
then ai is a prefix of aj.

Proof: From ai = a-prefix(ni, v, i) and Lemma 5 either ai is a prefix
of e-hist(v, i) or there exist at least N − f − b correct replicas k such that ai
= prefix(ni, v, k).

In the first case, it follows that if any correct replica j has a history prefix
aj in view v, then e-hist(v, j) is a prefix of aj (from Lemma 1) and e-hist(v,
j) = e-hist(v, i) (from Lemma 2). It thus follows that ai is a prefix of aj.

In the second case, it follows from Lemma 5 that there exists a set of at
least N − f − b ≥ f + b correct replicas k such that ai = prefix(ni, v, k). As
nj ≥ ni, replica j also sets its agreement watermark in Lines 13.23 – 13.28
after receiving agree messages from at least b > 0 of these correct replicas k
reporting that aj = ak = prefix(nj, v, k). Since k is correct, from Lemma 2
and nj ≥ ni it follows that prefix(ni, v, k) is a prefix of prefix(nj, v, k), and
thus ai is a prefix of aj.

Lemma 7. If h = a-prefix(n, v, i) and there exist at least f + 1 correct
replicas j and a history prefix h′ = prefix(n′, v, j) for n′ ≥ n, then h is a
prefix of h′.

Proof: From h = a-prefix(n, v, i) and Lemma 5 either h is a prefix of
e-hist(v, i) or there exist N − f − b correct replicas k such that h = prefix(n,
v, k).

In the first case, it follows that if any correct replica j has a history prefix
h′ in view v, then e-hist(v, j) is a prefix of h′ (from Lemma 1) and e-hist(v,
j) = e-hist(v, i) (from Lemma 2). It thus follows that h is a prefix of h′.

In the second case, a set S of at least N − f − b correct replicas k have h
= prefix(n, v, k). From Lemma 2 it follows that if any of these replicas has
an history prefix h′′ = prefix(n′, v, k) for n′ ≥ n, then h is a prefix of h′′.
Since each set of f + 1 correct replicas j intersect with one correct replica in
S, their common history prefix h′ is equal to h′′.

It is now possible to show how the protocol preserves consistency across
views. The following lemmas are the core lemmas to prove the safety of the
protocol.

A.1. CORRECTNESS OF THE SCROOGE PROTOCOL 101

Lemma 8. If ih = t-hist(v + 1, i) and there exist a sequence number n and
N − f replicas j such that a-prefix(nj, v, j) for nj ≥ n if j is correct, then
all j have the same history prefix hp = prefix(n, v, j) and hp is a request
prefix of ih.

Proof: Consider the case where i is the primary of view v + 1. The
case of the other backup replicas is similar since the same decision procedure
recover used by the primary to recover ih is used by the backups.

In Lines 2.7 – 2.18 of the view change to view v+1, the primary of the new
view v + 1 receives view change messages vc with message histories vc.mh
including h′ as a prefix and with vc.aw ≥ n from at least N − 2f − b of the
at least N − f − b correct replicas j. Since v is the highest established view
smaller than v+1 and since it is contained in N−2f−b ≥ b > 0 view change
messages in V C, v is selected as the highest previous established view mv
in Lines 3.11 – 3.15. From Lemmas 1 and 2, e-hist(v, i) is a prefix of hp.
Also, e-hist(v, i) is a prefix of ih because mv = v implies that the initial
history ih is set to e-hist(v, i) in Lines 3.11 – 3.15. The proof first shows
that the suffix of hp which is not included in e-hist(v, i) is also included in
ih in Lines 3.16 – 3.31.

From the hypothesis, there exist at most f correct replicas l such that
h′ 6= a-prefix(n, v, l). For each history element e with sequence number
n′ ≤ n in the suffix of hp, AGREED-CAND(e, n′, v, V C) holds. In fact,
apart at most b Byzantine replicas and f correct replicas, all other correct
replicas j send view change messages vc to the new primary of v′ such that
vc.v = mv = v, e = vc.mh[n′] and vc.aw ≥ n. This is because for all replicas
j, hp = a-prefix(n, v, j) as nj ≥ n for all j and from Lemma 6. It is now
shown that e is the only possible agreed candidate which is selected for n′ in
ih in Lines 3.23 – 3.24.

Assume by contradiction that a candidate g 6= e is selected for n′. As e
is an agreed candidate, g must be an agreed candidate which is selected in
Lines 3.23 – 3.24 and predicates WAIT-AGR(A, n′, v, V C) and WAIT-
ORD(A, O, n′, v, V C) are false. As g is an agreed candidate, b+ 1 replicas,
including at least a correct one, have received from the primary of view v
a different order request for n′ than the replicas which agreed on e. The
old primary p(v) of view v is thus Byzantine. From Lemma 6, no correct
replica can send a view change message with g in its agreed history prefix
for n′. By definition of AGREED-CAND, g is an agreed candidate only if
all |V C| − f − b ≥ b Byzantine replicas, including the primary, have sent a
view change message with g in the agreed history prefix for n′ and v and all
these messages are in V C. As WAIT-ORD is false and there are multiple
different candidates, the new primary of view v+1 waits until |V C| > N−f .

102 APPENDIX A. SCROOGE

This implies that g is not selected as an agreed candidate as g is included in
the agreed prefix of view change messages in V C sent by at most b replicas
but |V C| − f − b > N − 2f − b ≥ b.

Lemma 9. If ih = t-hist(v + 1, i) and there exist a history prefix hp and
a replier quorum RQ such that |RQ| = N − f and Q ⊆ RQ is the subset
of all correct replicas in RQ and for each j ∈ Q, hp = prefix(n, v, j) and
RQ-valid(RQ, n, v, j), then hp is a request prefix of ih.

Proof: Consider the case where i is the primary of view v+ 1. The case
of the other backup replicas is similar since the same recover function used
by the primary to recover ih is used the the backups.

Let l be the replica having the the smallest agreement watermark awl
among the replicas in Q. As Q contains N − f − b correct replicas, Lemma 8
implies that the history prefix h′ = prefix(awl, v, l) is a prefix of the initial
history ih. If n ≤ awl, then it follows from Lemma 2 that hp is a prefix
of h′, q.e.d. If n > awl then RQ-valid(RQ, n, v, l) implies by definition
that RQ is contained in the history element s of h′ for awl, which is the
highest agreement watermark ≤ n of replica l. It thus follows from Lemma 8
that RQ is contained in the candidate which is selected for sequence number
awl and subsequently used to identify the observed candidates for sequence
number awl + 1. The next step is proving by induction that for all sequence
numbers n′ such that awl < n′ ≤ n, the client request included in hp for n′

is selected for the initial history ih.

The inductive hypothesis implies that RQn′−1 = RQ. As Q ⊆ RQ con-
tains at least N−f−b correct replicas, the new primary of view v+1 receives
view change messages from at least b of them. All these replicas report the
same history element for n′, which is thus a candidate e. The replier quorum
RQ is included in e since for all j ∈ Q it holds that RQ-valid(RQ, n, v,
j). Assume by contradiction that a candidate g 6= e is selected for n′. The
candidate g must be selected in one of the three cases of Lines 3.23 – 3.28.
The following shows that in each of these cases a contradiction is reached.

If g is selected in Lines 3.23 – 3.24, this implies that g is an agreed candi-
date, AGREED-CAND(g, n′, v, V C) holds and the predicates WAIT-
AGR(A, n′, v, V C) and WAIT-ORD(A, O, n′, v, V C) are false. As
AGREED-CAND holds, g is included in the local history of b+ 1 replicas,
including a correct one. This implies that g, as well as e, has been associated
by the old primary p(v) to sequence number n. The old primary p(v) has
thus sent inconsistent order request messages for n′ and is thus Byzantine.
From Lemma 7, as Q contains N − f − b ≥ f + b > f replicas, only Byzan-
tine replicas can claim to have agreed on g for n′ and view v. It follows from

A.1. CORRECTNESS OF THE SCROOGE PROTOCOL 103

AGREED-CAND that all |V C| − f − b ≥ b Byzantine replicas, includ-
ing the primary, have included g in the agreed history prefixes of their view
change messages, and all these view change messages are included in V C. If
g is selected then WAIT-ORD is false and |V C| > N − f as there are two
different candidates. In order to be selected as an agreed candidate, g there
must be at least one correct replica which has agreed on g. This contradicts
Lemma 7 as Q contains more than f correct replicas.

If g is an observed candidate selected in Lines 3.25 – 3.28, either g satisfies
VERIFIED(g, V C, CH) because at least one correct replica was able to
verify that the corresponding order request message was generated from the
old primary p(v), or e does not satisfy VERIFIED(e, V C, CH). This
in turns implies that p(v) is Byzantine. In fact, if p(v) were correct then
p(v) ∈ Q, since RQ-valid(RQ, n′, v, j) holds for some correct replica j
which always checks that the primary of a view is a member of the replier
quorums in that view. All replicas j ∈ Q would have the same history prefix
hp = prefix(n, v, j) as p(v), including the same authenticator which was
generated by p(v) for the order request message corresponding to e. The
candidate e, which would be the only one generated by primary p(v), would
thus be the only verified candidate, a contradiction.

By hypothesis, only faulty replicas in Q = RQn′−1 can associate g to n′.
In order to be a candidate, g must be associated to n′ in the view change
messages sent to the new primary of v by all the |V C| − f − b ≥ b Byzantine
replicas, including at the old primary p(v), and all these messages must be
included in V C. As there are multiple candidates and WAIT-ORD must
be false for a candidate to be selected, |V C| > N − f . From the definition
of ORDERED-CAND, g must be contained in the local history of at least
|V C| − f − b > b replicas in RQn−1. As there are at most b Byzantine
replicas, g is associated to n′ in the message history of at least one correct
replica in RQn−1, which is also included in Q by definition. This contradicts
the fact that e 6= g corresponds to a common history element for n′ and for
all replicas j ∈ Q.

Lemma 10. If complete(o, n, v, h, c) and h′ = t-hist(v + 1, i) then h is a
request prefix of h′.

Proof: A client completes the request m in Lines 1.28 – 1.30 or in
Lines 13.13 – 13.14.

If the client completes o in Lines 13.13 – 13.14, it has received b+1 stable
replies from correct replicas j whose committed prefixes include h as a prefix
and whose commit watermarks are nj ≥ n. This implies that at least one
correct replica has received in Lines 13.30 – 13.40 consistent agree messages

104 APPENDIX A. SCROOGE

for its agreed history prefix from at least N − f replicas. From Lemma 8 it
follows that for each correct replica i, h is a prefix of h′.

If the client completes o in Lines 1.28 – 1.304, it has received speculative
replies from a set RQ of 3f replicas j claiming to have the same history prefix
h = prefix (n, v, j) and to be members of the same replier quorum RQ such
that p(v) ∈ RQ. Let Q be the subset of correct replicas in RQ. From
Lemma 4, for each j ∈ Q, RQ-valid(RQ, n, v, j) and j ∈ RQ. Therefore,
Q ⊆ RQ. From Lemma 9, it follows that for each correct replica i, h is a
prefix of h′.

Lemma 11. If complete(o, n, v, h, c) and h′ = t-hist(v′, i) and v < v′ then
h is a request prefix of h′.

Proof: Assume by contradiction that h is not a prefix of h′. If no
correct replica had established a view v′′ such that v < v′′ < v′, then all
correct replicas would send for view v′ the same view change messages as
the ones sent for view v + 1 except from the new view field. A contradiction
would thus follow from Lemma 10. Therefore, the primary of view v′ must
have received view change messages from some replicas j having a valid view
establishment certificate for an established view vj with v < vj < v′ and for a
corresponding established history hj = e-hist(vj, j) = t-hist(vj, j). Let k be,
among the replicas j, the replica which sends the view change message with
the highest established view vk. This implies that hk is selected as initial
history ihvk by the recover function. From complete(o, n, v, h, c) and v < vk
it follows that if h is not a prefix of h′, then h is not a prefix of hk = t-hist(vj,
j). This argument for v′ can be inductively be applied to vk. By induction on
the largest established view v′′ < v′ reported to the new primary of view v′′,
h is not a prefix of t-hist(v′′, i). Let vi be the smallest view v′′ > v established
by any correct replica i. All correct replicas send for view vi the same view
change messages as the ones sent for view v + 1 except from the new view
field, but h is not a prefix of t-hist(vi, i). This contradicts Lemma 10.

Lemma 12. If complete(o, n, v, h, c) and complete(o′, n′, v, h′, c′) and
n ≤ n′ then h is a request prefix of h′.

Proof: Two clients c and c′ can complete a request either in Lines 1.28 –
1.30 or in Lines 13.13 – 13.14. If client c completes a request after receiving
b + 1 stable replies in Lines 13.13 – 13.14, then h = a-prefix(n, v, i) for
at least N − f − b correct replicas i. If client c′ completes a request after
receiving b+ 1 stable replies in Lines 13.13 – 13.14, then h′ = a-prefix(n′, v,
j) for at least N − f − b correct replicas j. From Lemma 6 and n ≤ n′ it
follows that h is a prefix of h′. If client c′ delivers from 3f speculative replies

A.1. CORRECTNESS OF THE SCROOGE PROTOCOL 105

in Lines 1.28 – 1.30, then h′ = prefix(n′, v, j) for at least N − f − b correct
replicas j. From Lemma 7, it follows that h is a prefix of h.

If client c completes after receivingN−f speculative replies in Lines 1.28 –
1.30, then h = prefix(n, v, i) for a set Q of at least N −f − b correct replicas
i. In order to deliver either Lines 1.28 – 1.30, client c′ must receive one reply
from at least one correct replica i ∈ Q, and the result follows from Lemma 2.
If c′ completes a request after receiving b + 1 stable replies in Lines 13.13 –
13.14, then h′ = a-prefix(n′, v, j) for at least N − f − b correct replicas j,
including at least one replica in Q. From Lemma 2, this implies that h is a
prefix of h′.

Lemma 13. If complete(o, n, v, h, c) and complete(o′, n′, v′, h′, c′) and
n ≤ n′ and v < v′, then h is a request prefix of h′.

Proof: If client c′ completes a request in view v′, this implies that it
receives speculative or stable replies from at least one correct replica i in view
v′ and that h′ = prefix(n′, v′, i). Since this replica has established v′, there
exists an established history h′′ = e-hist(v′, i) = t-hist(v′, i) = prefix(n′′, v′,
i). From complete(o, n, v, h, c), v < v′ and Lemma 11, h is a prefix of h′′.
It follows that h = prefix(n, v′, i) and thus that h, h′ and h′′ are all prefixes
of i in view v′. As n ≤ n′, h is a prefix of h′ from Lemma 2.

Lemma 14. If complete(o, n, v, h, c) and complete(o′, n′, v′, h′, c′) and
n ≤ n′ and v > v′, then h is a request prefix of h′.

Proof: If client c completes a request in view v, this implies that it
receives speculative or stable replies from at least one correct replica i in view
v such that h = prefix(n, v, i). Since this replica has established v, there
exists an established history h′′ = e-hist(v, i) = t-hist(v, i) = prefix(n′′, v,
i). From complete(o′, n′, v′, h′, c′), v′ < v and Lemma 11, h′ is a prefix of
h′′. It follows that h′ = prefix(n, v, i) and thus that h, h′ and h′′ are all
prefixes of i in view v. As n ≤ n′, h is a prefix of h′ from Lemma 2.

Theorem 5. Property 1 holds.

Proof: Two clients can complete requests by receiving enough replies
from replicas in the same view. If they complete their operations in the same
view, the result follows from Lemma 12. Else, it follows from Lemmas 13
and 14.

A.1.5 Scrooge Liveness

The liveness property of Scrooge is the following:

106 APPENDIX A. SCROOGE

Property 2. If a correct client issues a request, it eventually completes it.

Additionally, Scrooge ensures the following property:

Property 3. If the system is in a timely period, v is the current established
view for all correct replicas, the primary of v is correct and faulty clients only
crash, eventually all correct clients complete their requests from speculative
replies.

The proofs assume that the system eventually enters a timely period where
no timeout is fired and all sent messages are received. First it is shown that
Property 2 holds.

Lemma 15. If the system is in a timely period and there exists a view v′

such that the primary of v′ is correct and all correct replicas initiate a view
change to v′, then all correct replicas eventually establish v′.

The view change protocol can block under this hypothesis because the
recover function never completes correctly or because a new view can not be
established. It is now shown that the protocol does not block in either case.

For recovery, the new primary will eventually receive N − f well-formed
view change and check messages from correct replicas. These also eventually
satisfy the predicate STABLE as the vector res of each check message in CH
contain binary values (see Lines 2.20 – 2.22) and each correct replica even-
tually sends its own outcome vector for each of these view change messages.
As the system is composed of at least N − f ≥ f + 2b > 2b correct replicas,
at least one of the two outcomes collects b+1 check messages. Therefore, for
recovery to block, either the predicate WAIT-ORD or the predicate WAIT-
AGREED must still hold after N − f view change and check messages are
received from correct replicas and |V C| ≥ N − f (Lines 3.20 – 3.21).

For WAIT-ORD, let mv < v′ be the highest view vc.v reported by a
view change message vc ∈ V C (Lines 3.11 – 3.15). If the old primary of
p(mv) were correct, each history element stored by a correct replica in view
mv would be consistent with those of the primary of that view. If p(mv)
were correct and only correct replicas would have sent view change messages
to the new primary of view v, there would not be inconsistent candidates.
As multiple inconsistent candidates are present and one of them is sent by
p(mv), it follows that at least one Byzantine replica, either a backup which
reports a forged element of the old primary, has sent a view change message
which is included in |V C|. This implies tat |V C| > N − f so WAIT-ORD
does not hold.

For WAIT-AGREED to hold, the primary of view v′ must have received
an agreed candidate e for sequence number n and view mv. According to

A.1. CORRECTNESS OF THE SCROOGE PROTOCOL 107

the predicate definition, this implies that (i) at most b correct replicas have
associated e in their local history for n and mv is their last established view,
and (ii) at most f+b correct replicas have a view v′′ 6= mv as last established
view or do not associate e to their agreed history prefix for sequence number
n and view mv. From (i) and from the fact that mv is the highest estab-
lished view contained in any view change message received by the primary
of the new view v, it follows that at least f + b correct replicas have not yet
established mv or have established mv but have not included e in their local
history for n. Therefore, from Lemma 5, no correct replica in view mv can
include e in their agreed history prefix for sequence number n. This implies
that all N−f correct replicas either have a view v′′ 6= mv as their last estab-
lished view, or do not associate e to their agreed history prefix for sequence
number n and view mv. This contradicts (ii). Therefore, WAIT-AGREED
does not hold and the protocol does not block due to the recover function.

After recovery is concluded, the new correct primary sends new view
messages to all correct replicas, which then compute the same decision pro-
cedure as the primary in Lines 2.24 – 2.28 and send consistent establish view
messages. Lines 2.30 – 2.34 can thus be completed and the new view is
established.

Lemma 16. If the system is in a timely period, v is the current view es-
tablished by all correct replicas and a correct replica sends an agreement
message for sequence number n and view v, then all other correct replicas
eventually do the same.

Proof: If a correct replica executes Lines 14.9 – 14.11 for n, then every
other replica will receive an agreement message for n. If the replica i has
already received an order request for n, it starts agreement in Lines 13.23 –
13.28. Else, the agreement message makes the predicate AGREEMENT-
STARTED(i, n, v) hold. Agreement is started by replica i when the replica
receives the order request for sequence number n (Line 1.26).

Lemma 17. If the primary of a view v is correct, the system is in a timely
period and v is the current view established by all correct replicas, then
a view change is never initiated by a correct replica and all requests from
correct clients are completed.

Proof: A correct replica which does not suspect the primary and never
executes Lines 13.42 – 13.44 initiates view change only if at least another
correct replica accuses the primary (Lines 2.15 – 2.16). A correct replica
accuses the primary of the current view v in Lines 13.42 – 13.44 only if it
starts an agreement phase for a sequence number n in Lines 14.9 – 14.11

108 APPENDIX A. SCROOGE

and the timer expires. From Lemma 16, if a correct replica starts agreement
each other correct replica do the same. If the primary is correct and the
system is timely, the agreement phase is concluded by each correct replica
(Lines 13.23 – 13.28). This implies that the commit phase is also concluded
before the timer at any correct replica expires (Lines 13.30 – 13.40) and
consistent stable replies are sent by all the N − f correct replicas. A correct
client can thus complete all its requests in Lines 13.13 – 13.14 by re-sending
them to all replicas.

Theorem 6. Property 2 holds.

Proof: Consider the system behavior when the the system eventually
enters a timely period. If the correct client cannot complete a request from
speculative replies in view v in Lines 1.28 – 1.30, it contacts all correct
replicas until it can deliver a reply in Lines 13.13 – 13.14. When correct
backups receive from the client a request in Lines 13.16 – 13.21, they start a
timer and accuse the primary if the reconfiguration phase is not completed
when this expires (Lines 13.42 – 13.44). If the primary is correct, all correct
replicas obtain an order request, start agreement in Lines 1.10 – 1.12 or
13.16 – 13.21 or 1.26, and complete the agreement and the commit phases.
Since there are at least N − f correct replicas in the system, the client can
receive b+1 consistent stable replies and complete its requests in Lines 13.13 –
13.14. If the primary is faulty and less than b + 1 correct replicas conclude
the commit phase and send a stable reply, at least f + b replicas timeout and
send a view change message to all other replicas. From Lines 2.15 – 2.16,
all correct replicas also start a view change to remove the faulty primary.
This is iterated until either the client completes the request in a view, or all
replicas execute a view change to a view v′ with a correct primary. From
Lemma 15, the view change to v′ is completed by all correct replicas. From
Lemma 17, no correct replica initiate a further view change and all requests
from correct clients are completed.

Scrooge also ensures the following additional liveness property to re-
establish speculation after a failure event.

Theorem 7. Property 3 holds.

Proof: Consider the system behavior when the the system eventually
enters a timely period. The first step is proving that SPEC-RUN eventually
holds for each correct replica i. The primary proposes a replier quorum
RQp = Q along with an order request for sequence number n. If SPEC-
RUN does not hold for a correct replica i, the replica send an agreement
message for n in Lines 1.23 – 1.26. From Lemma 16, all other correct replicas

A.2. INTEGRATING GARBAGE COLLECTION 109

do the same. If the primary never changes its replier quorum again, this
implies that no client re-sends a request suspecting a replica in Q because all
requests are completed from speculative replies, q.e.d. Let us thus assume
by contradiction that n′ is the lowest sequence number after n where the
primary associate a replier quorum RQp 6= Q to an ordered sequest. As the
system is timely, all correct replicas commit on sequence number n and send
speculative replies for all sequence numbers in (n, n′). Replicas do this in
Lines 1.15 – 1.22 if they receive the order request for the sequence number
after the commit is reached, or in Line 13.40 otherwise. The primary updates
its suspect list in Lines 1.10 – 1.12 and proposes a different replier quorum
RQp = S for n′ only if the client of a request with sequence number in (n, n′)
has suspected some replica in Q as faulty and has indicated this while re-
sending the request (see Lines 14.1 – 14.6). The client re-sends a request
only if it has not received a speculative reply from at least one replica in Q,
which is thus faulty. If f = 1, the new replier quorum S does not contain
the faulty replica. S is eventually committed as, as explained previously, all
replicas send speculative replies for all sequence number greater than n′, a
contradiction. If f > 1, the result follows by simple induction on the number
of faults detected by clients.

A.2 Integrating Garbage Collection

This subsection describes how garbage collection is integrated intro Scrooge.
Readers who are familiar with PBFT [CL99] will notice that Scrooge uses
the very same mechanisms.

A.2.1 Garbage Collection

In BFT replication protocols, the checkpoint subprotocol is used to curb the
size of the message history. With checkpoiting, replicas only store history
elements with sequence numbers in the range [l + 1, l + L] where l is called
lower watermark, L is the size of the history log, and l + L is called higher
watermark.

Given a constant checkpoint interval K, a tentative checkpoint of the
application state is built after requests with sequence number n such that
(n mod K) = 0 are executed. The checkpoint subprotocol indicates that a
tentative checkpoint can be retrieved by any correct replica because it has
been established by enough (i.e. b+ 1) correct replicas. When this happens,
the checkpoint is considered as stable, all history elements prior to n are
garbage-collected, and the lower watermark l is set to n. The protocol steps

110 APPENDIX A. SCROOGE

are the following:

Step GC.1: Replica executes the nth request and n mod K = 0
Replica i initiates an agreement phase by executing the procedure agree

for the request.

Step GC.2: Replica commits the nth request and n mod K = 0
Replica i builds a tentative checkpoint composed by the application state

and the replier quorum associated with sequence number n in the history,
and sends a checkpoint message 〈CHECKPOINT, n, i〉µi to all other replicas.

Step GC.3: Replica receives a checkpoint message
If a replica i receives f + b+ 1 checkpoint messages corresponding to one

of its tentative checkpoints for sequence number n, it considers it as stable,
it sets the lower watermark l to n and garbage-collects the history elements
and tentative checkpoints for sequence numbers n′ < n.

A.2.2 Modifications to Normal Executions

Replicas simply need to check that their history log does not overflow.

Lines 1.6 – 1.13: Primary receives a request
The primary assigns sequence number n to the request only if n is not

greater than its higher watermark l + L.

Lines 1.15 – 1.26: Primary receives an order request
A replica accepts an order request message or only if its sequence number

or.n is not greater than its higher watermark l + L.

A.2.3 Modifications to View Change

With checkpointing it is not necessary to recover the entire history of previous
requests but only a small subset of it. Replicas include information about
their current checkpoint in their view change messages. An initial checkpoint
for the new view is selected by the recovery function based on this additional
information. The specific modifications are the following:

Lines 2.1 – 2.5: Initiating view change
The format of the view change message is modified to 〈VIEW-CHANGE,

v′, v, mh, C, E i〉σi , where C is a set containing, for each checkpoint stored
by the replica, a tuple 〈n, d,RQ〉 where n is the sequence number where
the checkpoint was taken, d is the digest of the application state, and RQ

A.2. INTEGRATING GARBAGE COLLECTION 111

is the repliers quorum associated to n. Also, the message history mh only
includes the messages which are currently in the log and have not yet been
garbage-collected.

Recover function: Recovering the observed history
The primary selects the checkpoint tuple 〈n′, d, RQn′〉 with the highest

sequence number n′ which is contained in the view change messages of at least
b + 1 replicas and such that the view change messages of at least f + b + 1
replicas report checkpoints for sequence numbers n ≤ n′. This is called
initial checkpoint. The history is then recovered as in the previous case but
only for sequence numbers in the range [n′ + 1, n′ + L], where L is the size
of the history log. As in the previous case, the last established view mv
is still identified using view establishment certificates, but the entire initial
history ihv is not recovered. Therefore, the instructions after Line 3.11 and
until 3.15 are removed. RQn′ is used to identify observed candidates for
sequence number n′ + 1.

Lines 2.24 – 2.28: Backup receives a new view message
Backup replicas also perform the same steps as the primary to recover

the initial history for the new view.

A.2.4 Correctness

In the following, it is proven that checkpointing preserves both safety and
liveness. For safety, the following must be proven.

Lemma 18. If an initial checkpoint 〈n′, d, RQn′〉 is selected and L is the size
of the history log, then d and RQn′ are respectively the only digest of the
application checkpoint and the only replier quorum associated with sequence
number n′ by any correct replica in any view.

Proof: A initial checkpoint is selected only if it has been sent by b+ 1
replicas, including a correct one. This correct replica has thus completed the
commit phase for sequence number n′. It follows from an argument similar
to those of Lemmas 8 and 11 that the agreed history prefix for n′ is recovered
in any view by any correct replica.

Lemma 19. If an initial checkpoint 〈n′, d, RQn′〉 is selected and L is the size
of the history log, then no request with sequence number greater than n′+L
has completed.

Proof: Let us assume by contradiction that a request r is completed
with sequence number n greater than n′+L. If r is completed in Lines 1.28 –
1.30 or 13.13 – 13.14, at least N − f replicas have accepted an order request

112 APPENDIX A. SCROOGE

message with sequence number n. From Lines 1.15 – 1.26 it follows that
n is not greater than their higher watermark. This implies that the lower
watermark of these N − f replicas is strictly greater than n′ and, from Step
GC.3, that their checkpoint for n′ has been garbage-collected. At most f
correct replicas and b Byzantine replicas can thus report a checkpoint for n′

in their view change messages. This checkpoint can not be chosen as initial
checkpoint by the recovery function as it is included in the view change
messages from at most f + b replicas.

Liveness is also ensured as follows.

Lemma 20. A correct replica can always recover one provably correct check-
point.

Proof: Consider a period where the system is timely and let c =
〈n, d,RQn〉 be the stable checkpoint with the highest sequence number among
those established by any correct replica at any given moment t. The next
step is proving that there are at least b+ 1 correct replicas storing c as ten-
tative or stable checkpoint c. This ensures that, by receiving b+ 1 consistent
checkpoints from these replicas, any other correct replica can prove that the
checkpoint is correct. Assume by contradiction that at most b correct repli-
cas store c. This implies that a set Q of at least f + b correct replicas only
store checkpoints for either smaller or larger sequence numbers than n. As
a correct replica has set c as stable checkpoint, at least f + b + 1 replicas
have once stored c as tentative checkpoint (Step GC.3). It is thus impossible
that all the f + b correct replicas in Q only store checkpoints for sequence
numbers smaller than n. At least one of them, say j, must have only stored
checkpoints for sequence numbers larger than n. This implies that the ten-
tative checkpoint c has been garbage-collected by j because a higher stable
checkpoint has been reached. Therefore, c is not the stable checkpoint with
the highest sequence number among those established by any correct replica
at time t, a contradiction.

A.2. INTEGRATING GARBAGE COLLECTION 113

Algorithm 13: Scrooge - Explicit agreement
procedure agree(m)13.1

if ∃k : mh[k].m = m and never sent agree message for sequence number k in view v then13.2
send 〈AGREE, v, k, h[k], i〉µi to all replicas;13.3
start timer if not already running;13.4

13.5
upon client timeout13.6

SL← ⊥;13.7
if ∃RQ : received matching speculative replies sp to m with sp.RQ = RQ from a set S ⊂ RQ13.8
of N − 2f replicas then

SL← RQ \ S;13.9
stop waiting for sp messages; timer ← timer · 2;13.10
repeat13.11

send m = 〈REQ, o, t, c, SL〉σc to all replicas;13.12
until client receives b+ 1 matching stable replies st to m ;13.13
deliver (o, t, st.r);13.14

13.15
upon backup i receives request m from client m.c13.16

if not IN-HISTORY(m, mh) then13.17
send m to primary p(v);13.18
start timer if not already running;13.19

else if not COMMITTED(m, mh, cw) then agree(m);13.20
else reply-cache(m.c);13.21

13.22
upon replica i receives an agree message ag from replica ag.i13.23

if ag.v = v and ag.h = h[ag.n] then13.24
agree(mh[ag.n].m);13.25
if received N − f − 1 matching agree messages for ag.n from other replicas then13.26

send 〈COMMIT, vi, n, i〉µi to all replicas;13.27
aw ← ag.n;13.28

13.29
upon replica i receives a commit message cm from replica cm.i13.30

if cm.v = v and cm.n ≤ aw and received N − f − 1 matching commit messages for cm.n13.31
from other replicas then

c← mh[cm.n].m.c; t← mh[cm.n].m.t;13.32
r ← stored reply for mh[cm.n];13.33
send 〈STAB-REP, v, n′, c, t, r, i〉µi,c to client c;13.34

if cw ≤ cm.n then13.35
cw ← cm.n; RQcw ← mh[cw].RQ;13.36
if ∀k ∈ [cw, n] : mh[k].RQ = RQcw then13.37

RQ← RQcw;13.38

if never sent agree message for sequence number n′ > cw and view v then stop timer;13.39
send-missing-spec-rep(cw, RQcw);13.40

13.41
upon replica timer expires13.42

timer ← timer · 2;13.43
view-change(v′ + 1) ;13.44

13.45

114 APPENDIX A. SCROOGE

Algorithm 14: Scrooge - Helper procedures
procedure update (SL′)14.1

if n > nSL and |SL′| ≤ f then14.2
nSL ← n;14.3
if p(v) ∈ SL′ then SL′ ← SL′ \ {p(v)};14.4
remove the |SL′| oldest elements from SL;14.5
add elements of SL′ into SL;14.6

14.7
procedure agree(m)14.8

if ∃k : mh[k].m.c = m.c and mh[k].m.t = m.t and never sent agree message for sequence14.9
number k in view v then

send 〈AGREE, v, k, h[k], i〉µi to all replicas;14.10
start timer if not already running;14.11

14.12
procedure reply-cache(c)14.13

n′ ← sequence number of last committed operation from c;14.14
r ← stored reply for mh[n′];14.15
send 〈STAB-REP, v, n′, c, mh[n′].t, rc[n′], i〉µi,c to client c;14.16

14.17
procedure send-missing-spec-rep(k, RQ)14.18

if i ∈ RQ then14.19
while mh[k].RQ = RQ and never sent speculative reply for sequence number k in view14.20
v do

m← mh[k].m; r ← stored reply for mh[k];14.21
send 〈SPEC-REP, v, k, h[k], RQ m.c, m.t, r, i〉µi to client m.c; k ← k + 1;14.22

14.23

Appendix B

Correctness of HeterTrust

This section proves that HeterTrust satisfies the specified properties of a
trustworthy replicated service. An operation is pending if it is invoked by a
client but never completed. An operation is proposed if it is issued by a leader
in a PROPOSE message with proposal number prop. A proposal is the pair
(op, prop). A proposal, and therefore the associated request and the corre-
sponding reply, is accepted by a coordinator if this accepts the corresponding
PROPOSE message. This happens if the proposal comes from a leader that
the coordinator currently endorses, or a following one with a higher proposal
number. As coordinators receive proposals through f+1 servers, Lemmas 21
and 22 guarantee that accepted proposals have been sent by a leader coordi-
nator and replied by at least one correct server. If the operation is accepted
by a coordinator, it is accepted together with the corresponding correct reply.
A proposal is chosen for a sequence number k′ if a majority of coordinators
accepted it for k′. An operation is chosen for a sequence number k′ if it is
contained in a proposal accepted for k′. At most one operation can be cho-
sen for each sequence number (Lemma 23). Based on this property, clients
and servers can take irreversible actions on operations (i.e., deliver them and
commit them) if they receive a majority of ACCEPTED messages and thus
learn that the operation was chosen (Lemma 24). A request is retrievable
if it is chosen for a sequence number i and g + 1 coordinators have learnt
it. As leaders continue sending requests for a sequence number until they
become retrievable, eventual progress is guaranteed even if correct servers
are temporarily disconnected and do not commit old requests (Lemma 25).
Finally, the required properties of the protocol are proven by Theorem 8.

Lemma 21. Only an operation that has been proposed by a leader coordinator
is accepted for a given proposal, together with a reply obtained from at least
one correct server.

115

116 APPENDIX B. CORRECTNESS OF HETERTRUST

Proof. By definition, a request is accepted for a sequence number k′ only if
it is contained in a proposal (op, prop) that is accepted by any coordinator
(line 5.16). A coordinator accepts a proposal (op, prop) for k′ only after it
receives f + 1 equal (EXECUTED,op, k′, prop, repl) messages from different
servers (line 5.15). Among these servers, at least one must be correct. This
has thus sent the EXECUTED message containing values k′, op and prop as
from the message proposed by a leader coordinator and the reply repl.

Lemma 22. Only an operation that has been proposed by a leader coordinator
is chosen for a given pair of proposal and sequence numbers, together with a
reply obtained from at least one correct server.

Proof. This follows directly from Lemma 21 as a chosen request must be also
accepted.

Lemma 23. At most one operation can be chosen for a sequence number k′.

Proof. An operation op is chosen for k′ when a proposal (op, prop) is chosen,
i.e., it is accepted by a majority of coordinators. By definition, only one
proposal can be chosen at a time. Assume that p1 = (op1, prop1) is the first
proposal chosen for k′. By Lemma 22, p1 is proposed by a leader coordinator
l1. In order for any another proposal p2 = (op2, prop2) with op1 6= op2 to be
chosen, it is necessary that at least one of the coordinators that accepted p1

accepts p2 afterwards.
From Lemma 21, any accepted value has been proposed by a leader.

As leaders never change their proposals until demoted and re-elected, p2

must have been issued with proposal number prop2 6= prop1. Therefore, a
coordinator accepts the new proposal p2 after having accepted p1 = accval[k′]
only if p2 has a higher proposal number prop2 > prop1 (line 5.13). The next
step is showing that any chosen proposal p2 issued after p1 is such that
op2 = op1.

The proof is by contradiction. Let us assume that p2 is the proposal with
the minimum proposal number prop2 > prop1 such that op2 6= op1. The
general case when p2 is such that prop2 > prop1 follows by simple induction.

When l2 is elected, it sends a QUERY message to all coordinators and
sends new proposals only after it receives ENDORSE messages from a ma-
jority of them (lines 7.1–7.10). At least one of the coordinators member of
the majority which accepted p1 = accval[k′] must have sent an ENDORSE
message reporting either that (a) op1 is retrievable (i ∈ Retrco) or (b) p1 was
accepted (p1 ∈ Accco) (lines 7.27–7.30). In the first case l2 does not send any
new proposal for i (line 7.16). Therefore, if l2 proposes p2 for k′ instead of
p1, there must exist a coordinator co reporting in an ENDORSE message to

117

l2 that it has accepted a proposal p3 from a leader l3 with proposal number
prop3 > prop1 (lines 7.16–7.19). Note that prop3 6= prop2, since l2 has not
yet started making proposals with proposal number prop2 at this point. This
implies that co has set maxProp = prop3 when the proposal was accepted
(line 5.14). Since co replies to the QUERY message of l2 after accepting p3,
it holds prop2 > prop3 (line 7.25). Therefore, p2 is not the accepted proposal
with the minimum proposal number greater than prop1, a contradiction.

Lemma 24. Only a reply to a chosen operation can be delivered by a client,
and only a chosen operation can be learnt by a coordinator or committed by
a server.

Proof. Coordinators send an ACCEPTED message containing a proposal
only after accepting it (lines 5.16–5.18). Receiving ACCEPTED messages
from a majority of coordinators is a necessary condition for clients to deliver
a reply (line 4.7). Coordinators and servers learn that a request is chosen
either by the same condition (lines 5.21 and 6.15), or by receiving a LEARNT
message (line 5.25), which is sent only after some coordinator has learnt that
the request was chosen (line 5.23). A server commits an operation only
after it learns that it is chosen, and executes it unless it has already been
tentatively executed (lines 6.15 and 6.22–6.26).

Lemma 25. For every sequence number k′, eventually either there exist no
pending operations or some operation is chosen for k′ and becomes retrievable.

Proof. The proof is by induction on the sequence numbers, assuming that a
no op request with sequence number 0 is trivially chosen and retrievable.

Assume that requests for all sequence numbers k′′ < k′ have been cho-
sen and are retrievable. Assume by contradiction that some client has an
operation op that remains pending forever but no operation is chosen and
becomes retrievable for k′. By repeatedly sending its request (line 4.11–
4.13), the client can ensure that each request is eventually received by all
coordinators.

By the property of Ω, eventually a single correct leader is elected. Even-
tually, this leader sends QUERY messages with a proposal number that is
accepted by a majority of coordinators, and completes recovery. If a pro-
posal for k′ is not retrievable then the leader proposes some operation for k′,
either op or some other operation, until the operation becomes retrievable
for k′ (lines 5.35–5.38). As all requests with sequence numbers k′′ < k′ are
retrievable, correct servers can eventually obtain them from at least one cor-
rect coordinator (lines 6.34–6.37 and 5.31–5.33) and commit them (line 6.21).
Eventually s − f ≥ f + 1 correct servers can process the operation for se-
quence number k′ (lines 6.4–6.10) and send the corresponding EXECUTED

118 APPENDIX B. CORRECTNESS OF HETERTRUST

message to the coordinators, which then accept the proposal (line 5.16). The
c− g ≥ d(c+ 1)/2e correct coordinators forward ACCEPT messages to each
other, until eventually all of them will learn that the operation is chosen
(line 5.21–5.22) and make it eventually retrievable, by exchanging LEARNT
messages (lines 5.23, 5.25 and 5.33).

Theorem 8. The HeterTrust protocol satisfies the properties of Termination,
Uniform Agreed Order, Update Integrity and Response Integrity.

Proof. Termination: Assume by contradiction that some client operation
remains pending forever. From Lemma 25, some proposed operation is even-
tually chosen for each sequence number, and becomes retrievable. In a fair
run, eventually also the client operation will be chosen and become retriev-
able for a sequence number. The client resends the same request until receives
ACCEPT messages from a majority of coordinators (since the operation is
chosen) and delivers a reply, a contradiction.

Uniform Agreed Order: A correct server commits only chosen operations
(Lemma 24). If the operation op is committed, and thus chosen, with se-
quence number k′, Lemma 23 ensures that any other correct server that
commits an operation with sequence number k′ will commit op.

Update Integrity: If a server commits an operation op for a sequence num-
ber k, then every future execution of op will return a cached value (line 6.9).
Therefore, a committed operation is never executed again. Furthermore, each
committed operation op 6= no op is issued by a client. In fact, only chosen
operations are committed (Lemma 24), only proposed operations are chosen
(Lemma 22) and an operation op is proposed by a leader coordinator only if
it is received from a client (line 5.1).

Response Integrity: As coordinators are physically interposed between
servers and clients, clients can receive replies rep (as well as any other data)
from servers only through ACCEPTED messages sent by coordinators. These
are sent only for accepted operations, which are associated with replies ob-
tained from at least one correct server and sent by a correct coordinator upon
receiving a client request (Lemma 21).

Appendix C

Eventual Linearizability

This Appendix first shows the locality and nonblocking properties of Even-
tual Linearizability (Appendix C.1). It then shows that Eventual Consensus
is necessary and sufficient to implement of Eventual Linearizability, while
Eventual Consistency is not sufficient (Appendix C.2). Finally, it shows the
correctness of the Aurora protocol (Appendix C.3).

C.1 Locality and nonblocking

This section shows that Eventual Linearizability inherits the most relevant
properties of Linearizability as it is both local and nonblocking. Locality
ensures that if every object of a system is eventually linearizable, then the
system itself is also eventually linearizable. Being nonblocking implies that
the specification of Eventual Linearizability does not result in runs where
some process can not make progress any longer.

In order to define locality, an additional definition is needed. An object
subhistory H|x of an object x is the history composed by all events in H
referring to x. A history H is (t, L)-linearizable if L is a t-linearization of H.

The following two lemmas prove that weakly consistency and t-
linearizability are local properties, which imply the locality of Eventual Lin-
earizability.

Lemma 1. If a history H is weakly consistent then, for each object x, H|x
is weakly consistent. If H|x is weakly consistent for each object x, then H is
weakly consistent.

Proof. Since H is weakly consistent, then for every process pi and op-
eration o completed by pi in H there exists a legal sequential history τ(i, o)
which fulfills (i)-(iii). If o is an operation of x, then H|x and τ(i, o)|x also

119

120 APPENDIX C. EVENTUAL LINEARIZABILITY

fulfill (i)-(iii). Otherwise, o is not invoked in H|x. Therefore, H|x is also
weakly consistent.

On the other hand, given that H|x is weakly consistent and τ(i, o) fulfills
(i)-(iii) for every process pi and operation o completed by pi in H|x, o is also
completed in H by the same process and τ(i, o) is legal sequential history of
H too. Therefore, H is also weakly consistent. �

Lemma 2. If a history H is t-linearizable then, for each object x, H|x is
t-linearizable. If H|x is tx-linearizable for each object x, then H is tmax-
linearizable with tmax = max∀x(tx).

Proof. It is evident from the definitions that if H is t-linearizable then
H|x is t-linearizable for each object x. In fact, if L is a t-linearization of H,
then L|x is a t-linearization of H|x and all response events in L|x after t have
the same results as in H|x. Therefore, H|x is (t, L|x)-linearizable for each
object x.

In order to prove the second implication, assume that for each x, H|x
is tx-linearizable. Let Rx be the response events added to H|x to build the
tx-linearization Lx of H|x, and H ′ the history obtained from appending all
events of Rx to H. Let <x be the total order of all operations in H|x defined
by Lx, and < be a relation built as the transitive closure of

⋃
∀x <x ∪ <H,tmax .

Assuming that < is a partial order, it is possible to build a tmax-linearization
L of H which respects <. For each x, all operations on x are ordered in L
as in Lx. This implies that the results of the response events in L are the
same as in L|x. Since H|x is (tx, L|x)-linearizable, all response events of H
after tx ≤ tmax have the same results as in L, so H is (tmax, L)-linearizable
and thus tmax-linearizable.

The next step is showing that < is a partial order. Assume by contra-
diction that o1 < . . . < on and on < o1, where < can be either <x for some
x or <H,tmax , and assume that this is a cycle with minimal length in <. If
all these operations are on the same object x, then they are totally ordered
by <x. The existence of a cycle implies that there must exist two operations
oi and oj on x such that oi <x oj and oj <H,tmax oi. This contradicts with
(P2) as <x is the order of a tx-linearization Lx of H|x and (P2) implies that
<H,tx⊆<x. This and <H,tmax⊆<H,tx imply that <H,tmax⊆<x, a contradiction.

The cycle must thus contain operations on at least two objects. Assume
oi is an operation on object x. Let ok be an operation in the cycle on a
different object than x and such that o

(k+1modn)
, . . . , o

(i−1modn)
are on x.

Similarly, let oj be an operation in the cycle on a different object than x and
such that o

(i+1modn)
, . . . , o

(j−1modn)
are on x. Since ok < oi < oj, it follows

that ok <H,tmax oi <H,tmax oj, so ok <H,tmax oj. It must thus hold k 6= j, which

C.2. EVENTUAL CONSISTENCY, EVENTUAL CONSENSUS AND CONSENSUS 121

implies that a cycle exists o1 < . . . < ok < oj < . . . < on that is shorter than
the one with minimal length, a contradiction. �

It is now shown that Eventual Linearizability is nonblocking by showing
that weakly consistency and t-linearizability are nonblocking.

Lemma 3. Let inv be an invocation of a total operation o on an object x.
If inv on x is invoked by a process pi in a weakly consistent history H, then
there exists a response resp on x of p such that the history H ′ obtained by
appending resp to H is weakly consistent.

Proof. Given an operation o′ completed by process pj in the weakly
consistent history H (resp. H ′), the corresponding legal sequential history is
denoted by τH(j, o′) (resp. τH′(j, o

′)). Let operation o′ be the last completed
operation in H invoked by process pj. Then, resp is determined by the
execution τH(j, o′) · inv ·resp. In H ′, o is a completed operation. Let τH′(i, o)
be τH(j, o′) · inv · resp. For every other operation o′ completed by pj in H ′,
τH′(j, o

′) equals τH(j, o′). As a result, τH′(i, o) and every τH′(j, o
′) fulfill (i)-

(iii) because H is weakly consistent and <H=<H′ . �

Lemma 4. Let inv be an invocation of a total operation on an object x. If inv
on x is invoked by a process p in a t-linearizable history H, then there exists
a response resp on x of p such that the history H ′ obtained by appending
resp to H is t-linearizable.

Proof. Let L be a t-linearization of H. If L includes a response to
inv, q.e.d. If not, inv is not included in L since L only contains completed
operations. Since the operation is total, there exists a result for a response
event resp that is determined by the execution of L′ = L · inv · resp. L′ is
a t-linearization of H ′. As resp has the same response in H ′ and L′, H ′ is
t-linearizable for any value of t such that H is t-linearizable. �

Theorem 1. Eventual Linearizability is nonblocking and satisfies locality.

Proof. Directly follows from Lemmas 1, 2, 3 and 4. �

C.2 Eventual Consistency, Eventual Consen-

sus and Consensus

This section distinguishes between high-level events, which are executed on
the interface between the application and the execution layer, and low-level

122 APPENDIX C. EVENTUAL LINEARIZABILITY

events, which are executed on the interface between the execution layer and
the consistency layer. Given a run σ of the system, top(σ) is defined as the
history containing all high-level events and bot(σ) the history containing all
low-level events. Eventual Linearizability constraints the set of admissible
high-level histories top(σ) of a run σ. The specifications discussed in this
Section constraint the low-level histories bot(σ) of a run σ.

Eventual Consistency is not sufficient to implement Eventual Lineariz-
ability for arbitrary objects. In fact, the following Theorem 2 shows that it
is not even sufficient to implement an eventually linearizable register.

Theorem 2. An eventually linearizable implementation of a single-writer,
single-reader binary register cannot be simulated using only an eventually
consistent consistency layer.

Proof. Consider a system with two processes p0 and p1, where p0 is a
writer and p1 is a reader. The register stores an initial value 0. Assume
by contradiction that there exists an implementation of a read/write register
with Eventual Linearizability using only an eventually consistent consistency
layer. Let tl be the time such that, for all runs σ such that bot(σ) satisfies
Eventual Consistency, tl-linearizability holds for H = top(σ). The contra-
diction is shown by using three finite runs. The last of these runs leads to a
violation of tl-linearizability.

In the first run σ0, process p0 writes the value 1 onto the register after
time tl. Let tw be the time when the write operation completes and t0 be
the time when the last event of σ0 occurs. Process p1 takes no actions in this
run. Let bot(σ0) satisfy Eventual Consistency in this run.

In the second run σ1, process p1 invokes a read operation after time tw.
Let tr be the time when the read operation completes and t1 be the time
when the last event of σ1 occurs. Process p0 takes no action in this run.
Since no write operation is invoked in this run, the read must return the
initial value 0. Let bot(σ1) satisfy Eventual Consistency in this run too.

In the third run σ2, p0 and p1 observe the same events until tr as in
σ0 and σ1 respectively. For indistinguishability, the read operation of p1

returns 0 even if it is preceded by a write operation writing 1. At a time
t2 > max(t0, t1), the consistency layer delivers at both processes the same
sequence S including all the operations submitted before t2. These delivery
events are the last events of σ2.

In every tl-permutation L of H = top(σ2), the write operation precedes
the read so the read operation returns 1. This contradicts tl-linearizability
of H since the write and read operations are invoked after tl but the result of
the read in H is 0. Therefore, bot(σ2) must violate Eventual Consistency. It
is now shown that it is not the case, which leads us to the final contradiction.

C.2. EVENTUAL CONSISTENCY, EVENTUAL CONSENSUS AND CONSENSUS 123

It is easy to see that if nontriviality, set-stability and liveness hold for bot(σ0)
and bot(σ1), then they also hold for bot(σ2). Prefix consistency holds if Pt
is defined as follows. For t ≤ t2, Pt is equal to the empty sequence. For
t > t2, Pt is equal to the sequence S delivered at time t2. This definition of
Pt satisfies all properties (C1)-(C3) of prefix consistency. �

A consistency layer that satisfies Eventual Consensus satisfies t-stability
if t is the time defined in the definition of Eventual Stability. Combining
Eventual Consistency with Eventual Stability implicitly strengthens consis-
tency. Namely, t-stability ensures t-consistency, which is defined as follows.
A consistency layer satisfies t-consistency if for any correct processes pi and
pj delivering at any times ti, tj > t, one of the sequences S(i, ti) and S(j, tj)
is prefix of the other.

Eventual Consensus satisfies t-consistency.

Lemma 5. If a consistency layer satisfies t-stability then it satisfies t-
consistency.

Proof. Assume that a consistency layer satisfies Eventual Consistency
and eventual stability but contradicts the Lemma. Let t be the time after
which stability holds. This implies that two delivery events occur at two
processes pi and pj at times ti, tj > t such that S(i, ti) and S(j, tj), which are
the two sequences delivered at times ti and tj, are not prefix of each other.

If i = j a contradiction follows directly eventual stability. Consider the
case i 6= j. There must exists an index k and two different operations oi and
oj that are the k-th elements of S(i, ti) and S(j, tj) respectively. It follows
from eventual stability that for each t′i > ti and t′j > tj, oi and oj that are
the k-th elements of S(i, t′i) and S(j, t′j) respectively. From property (C3)
of prefix consistency, there exists a time tci > ti such that Ptci includes oi.
From property (C1), Ptci must be a prefix of all S(i, tc′i) with tc′i > tci so oi
is the k-th element of Ptci . Similarly, from property (C3) and (C1) it follows
that there exists a time tcj such that Ptcj includes oj as the k-th element.
However, Ptci and Ptcj are not prefixes of each other. This violates (C2). �

Lemma 6. An eventually linearizable implementation of an arbitrary ob-
ject can be implemented using only a consistency layer satisfying Eventual
Consensus.

Proof. Assume that the consistency layer satisfies ts-stability. From
Lemma 5, the Eventual Consistency layer also satisfies ts-consistency. The
algorithm for the implementation is the one of Algorithm 8. High-level in-
vocation events at each process pi for each operation o are forwarded to the
lower consistency layer. The implementation then waits for the first sequence

124 APPENDIX C. EVENTUAL LINEARIZABILITY

delivered by the consistency layer at process pi containing o. The time when
this delivery event takes place is denoted as t(o). The implementation then
executes the resulting sequence and returns the results as an upper-layer
response event.

It is clear from the liveness of the consistency layer and from Algorithm 8
that each invoked operation is eventually completed. Weak consistency di-
rectly derives from the set stability and nontriviality properties of the consis-
tency layer. tl-linearizability for some time tl also holds, as it is now shown.

From the prefix consistency (C3) property of the consistency layer, all
operations submitted by correct processes are eventually included in a con-
sistent prefix Pt. From prefix consistency (C2), consistent prefixes are prefixes
of each other. Let tp be the minimum time such that all operations o such that
t(o) ≤ ts are included in Ptp , and tc be the minimum time when all faulty pro-
cesses have crashed. Let tl be the minimum time greater than max(ts, tp, tc)
and show that the simulation of Algorithm 8 satisfies tl-linearizability.

Assume by contradiction that tl-linearizability is violated. Since tl > tc
this implies that there exists, for some run σ, a high-level operation oi of a
correct process pi in H = top(σ) which is invoked after tl and whose result is
different than the result of oi in any tl-linearization L ofH. Assume that there
exists a tl-linearization L of H having Si = S(i, t(oi)) as a prefix. It follows
from the implementation of Algorithm 8 that the result of oi in L is the same
as in H, a contradiction. Therefore, there exists no such L. This implies that
for some operation ok ∈ Si there exists an operation oj such that oj <H,tl ok
and oj 6<Si ok. This in turns implies that either oj 6∈ Si or ok <Si oj. Before
contradicting these two cases, note that from oj <H,tl ok, the completion of
oj precedes the invocation of ok. From nontriviality, Sj = S(j, t(oj)) cannot
include ok,

Assume that the first condition holds and that there exists an operation
oj invoked by a process pj such that oj <H,tl ok, ok ∈ Si and oj 6∈ Si. Consider
two cases based on the value of t(oj). If t(oj) ≤ ts then oj is included in Ptp .
From prefix consistency (C1), Ptp is a prefix of Si so oj ∈ Si. Therefore,
t(oj) > ts so it follows from ts-consistency that one of Si and Sj = S(j, t(oj))
is a prefix of the other. Since oj 6∈ Si but oj ∈ Sj, Si is a prefix of Sj, so
ok ∈ Sj. However, it has been already shown that ok 6∈ Sj.

Consider now the second condition, that is, that there exist two operations
oj and ok in Si such that oj <H,tl ok and ok <Si oj. Consider two cases. If
t(oj) > ts, it follows from ts-consistency that one of Sj and Si are a prefix
of each other. Since ok <Si oj and oj ∈ Sj, ok <Sj oj. However, it has
already been shown that ok 6∈ Sj. If t(oj) ≤ ts then Ptp includes oj. From
nontriviality and since ok is invoked after tl ≥ tp, there exists no process h
such that S(h, tp) includes ok. This and prefix consistency (C1) imply that Ptp

C.2. EVENTUAL CONSISTENCY, EVENTUAL CONSENSUS AND CONSENSUS 125

does not include ok. Since t(ok) > tl ≥ tp, Ptp is a prefix of Sk = S(k, t(ok))
from prefix consistency (C1). This implies that oj <Sk ok. However, one of
Si and Sk is prefix of the other, a contradiction with ok <Si oj. In fact, from
the definition of <H,tl , ok is invoked after tl. This and ts-consistency imply
that one of Sk and Si are prefix of the other. �

Lemma 7. A consistency layer satisfying Eventual Consensus can be imple-
mented using only an eventually linearizable arbitrary object implementation.

Proof. The proof shows that the simulation of Algorithm 9 satisfies
Eventual Consistency and ts-stability for some time ts. Let tl be the time
such that tl-linearizability holds for all histories, td be the time when all
operations submitted by invoked processes before tl are completed at all
correct processes, and ts be the minimum time greater than max(tl, td). The
existence of td is given by the liveness of the sequence implementation.

Set stability and nontriviality directly follow from the weak consistency
property of the sequence. For liveness, it follows from the termination prop-
erty of the sequence implementation that all append operations o invoked by
a correct process upon a submit(o) event terminate. From tl-linearizability,
all appended operations are read by the first read operation o′ invoked by
each correct process after max(o, tl). All submitted operations are thus ap-
pended and eventually delivered by each correct process.

For prefix consistency, let L be the tl-linearization of the operations on
the shared object, and let Pt be defined as follows. Pt is the empty sequence
for t ≤ ts. For t > ts, Pt is the value returned by the last read operation of
any correct process which is ordered in L before all reads invoked by correct
processes and ongoing at time t. Prefix consistency (C1) follows from the
fact that every operation returned by a read invoked after td is observed
by any following read in a tl-linearization. For prefix consistency (C2) it is
sufficient to observe that for each t ≥ tl and t′ > t, either Pt = Pt′ or the read
whose return value defines Pt′ observes a sequence which is an extension of
the sequence observe by the read of Pt. In fact, both sequences are prefixes of
L. Prefix consistency (C3) directly follows from the liveness of the sequence
implementation, from the definition of Pt and from the fact that sequences
are periodically delivered. �

Theorem 3. Eventual Consensus is a necessary and sufficient property of a
consistency layer to implement arbitrary shared objects respecting Eventual
Linearizability.

Proof. The sufficiency of Eventual Consensus is shown by Lemma 6, the
necessity is shown by Lemma 7. �

126 APPENDIX C. EVENTUAL LINEARIZABILITY

C.3 Correctness of the Aurora protocol

The proof starts by providing some additional definitions, notations and con-
ventions which will be used in the following correctness argument.

C.3.1 Definitions

Time Some proofs refer to a global time reference t ≥ 0. Computation
time is ignored, and the state of a process at time t is the one after any event
occurred at t. No two events occur at the same process and at the same
time, and only a finite number of events occur in a finite time. A message
is received or abdelivered when the corresponding receipt or abdelivery event
occurs.

Sequences and histories Two sequence of operations are compatible if one
of the two is a prefix of the other. A strong prefix is a prefix of operations
terminating in a strong operations. Abusing the terminology, a sequence S1

is a subset of another sequence S2 if all operations of S1 are included in S2.
H(i, t) is defined as follows: if pi not crashed at time t, then H(i, t) is

the local history stored by pi at time t; else, it is the last history stored by
pi before crashing. The order induced on operations by the local history of a
process pi at time t is denoted as <i,t. The order on operations determined
by a sequence S is denoted as <S. Local variables and predicates of a process
pi are denoted by a subscript i.

A process pi stores a variable x = val upon receiving or abdelivering a
message m if x = val in the local state of pi at the time of the local receipt
or abdeliver event of m. A process pi stores an operation at a given time if
it includes the operation in its local history Hi. A process pi stores a strong
prefix π for round k when pi stores a local history Hi containing the last
operation of π upon abdelivering a PROP(∗, ∗, k), a PUSH(∗, k) or a CLOSE-
RND(k) message. A process pi directly stores a strong prefix π for round k
when pi stores π for k for the first time upon abdelivering a PROP(∗, ∗, k)
or a CLOSE-RND(k) message. Strong prefixes that are indirectly stored by
pi are stored when pi receives a PUSH message from some other process. π
is a longest strong prefix for pi at a given time t if π is a strong prefix of the
local history H(i, t) and there exists no strong prefix π′ of H(i, t) which is
longer than π.

Sometimes it is necessary to show that the system converges to a common
state after a certain time. Given a process pi and a finite set of operations O,
tw(i, O) is defined as the maximum time t in a given run when the following
holds: at time t process pi appends an operation op = H ′ onto its history

C.3. CORRECTNESS OF THE AURORA PROTOCOL 127

or executes a merge(H ′, ∗, H, ∗) such that either (i) there exists o ∈ O ∩H ′
such that o 6∈ H(i, t), or (ii) there exist o, o′ ∈ H(i, t)∩H ′ such that o <H o′

and o′ <H′ o.

Communication primitives The reliable channel module has the follow-
ing property: if a correct process pi sends a message m to a correct process
pj, then pj eventually receives m. The atomic broadcast module has four
properties: (validity) If a correct process abcasts a message m, then it even-
tually abdelivers m; (uniform agreement) If a process abdelivers a message
m, then all correct processes eventually abdeliver m; (uniform integrity) For
any message m, every process abdelivers m at most once, and only if m was
previously abcast by its sender; (total order) If two correct processes pi and
pj abdeliver two messages m and m′, then pi abdelivers m before m′ if and
only if pj abdelivers m before m′.

Failure detectors and the quorum property The algorithm uses a
failure detector D and a leader oracle ΩD implemented on top of D. A leader
oracle is any failure detector which outputs the id of a single trusted process.
A correct process pld is perpetually trusted at time t if at each time t′ ≥ t and
for each correct process pi, ΩD = ld at pi. A correct process pld is perpetually
trusted if it is perpetually trusted at some time.

A leader oracle is in class ΩQ is it satisfies the following quorum property:
there exists a quorum Q of correct processes and a process pld such that
eventually all processes in Q perpetually trust pld and |Q| > n/2. Clearly, a
leader oracle can satisfy this property only if a majority of correct processes
exists. If this precondition is met, each leader oracle in Ω is trivially in
ΩQ. Furthermore, the simple Lemma 8 shows that given a leader oracle in
ΩQ, a leader oracle in Ω can be simulated using Algorithm 15, which relies
on reliable FIFO channels. Therefore, classes ΩQ and Ω are equivalent if a
majority of correct processes exists.

Causal consistency Causal consistency is defined as follows. First let
the happens-before relation <C be as follows. Let o and o′ be two different
operations, let i the the process that invoked o′, and let t the time when o′

is invoked. o <C o′ if and only if o ∈ S(i, t′) for some t′ < t or there exists
a third different operation o′′ such that o <C o′′ <C o′. A consistency layer
satisfies causal consistency if, for each process i and time t it holds that: (C1)
If o ∈ S(i, t) and o′ <C o then o′ ∈ S(i, t), and (C2) If o, o′ ∈ S(i, t) and o
precedes o′ in S(i, t) then o <C o′. It can be shown that this definition of
causal consistency property is sufficient to implement causal memory [?].

128 APPENDIX C. EVENTUAL LINEARIZABILITY

Algorithm 15: Implementing Ω on top of L ∈ ΩQ

Initially: ld ← ⊥;14.1

T [j] ← ⊥ for each j ∈ [0, n− 1];14.2

L outputs ⊥;14.3

// A process calls this function to query its local

instance of the leader oracle

function query()14.4

if ld 6= ⊥ then14.5

return ld;14.6

else14.7

k ← L;14.8

return k;14.9

14.10

upon L changes its output to k14.11

send TRUST FD(k) to all processes;14.12

14.13

upon receive TRUST FD(k) from process pj14.14

T [j] ← k;14.15

if ∃h,Q : T [l] = h for each l ∈ Q and |Q| ≥ n/2 then14.16

ld ← h;14.17

else14.18

ld ← ⊥;14.19

14.20

C.3.2 Correctness proof

Lemma 8. Algorithm 15 simulates a leader oracle in Ω using a leader oracle
L ∈ ΩQ.

Proof. The proof is by contradiction. Assume that eventually the leader
oracle L in ΩQ permanently outputs the same process id k at a quorum Q
of correct processes such that |Q| > n/2 and that pk is not permanently
trusted by the local instance of the simulation of some correct process. Each
process in Q will eventually send a TRUST FD(k) to all other processes as
last TRUST FD message. Since the communication channel is FIFO and
reliable, these messages are eventually received by each correct process and
are the last messages received from any process in Q. This implies that
for each correct process, eventually it permanently holds T [j] = k for each
j ∈ Q . For each correct process pi, when the last TRUST FD message from

C.3. CORRECTNESS OF THE AURORA PROTOCOL 129

a process in Q is received by pi, ld is permanently set to k. The simulation
thus permanently returns the same process id k to each correct process, a
contradiction. �

Lemma 9. If a process pi abcasts a PROP(H ′, S, k) message m, then H ′ is
an extension of a strong prefix πk−1 stored by pi for round k − 1 and S \H ′
is empty.

Proof. Assume by contradiction that the thesis does not hold. It follows
from the predicate must-propose-new-prefix that if pi abcasts the PROP(H ′,
S, k) message then H ′ is the local history of pi, S \H ′ is empty and ki = k. If
pi has already stored a strong prefix πk−1 for round k− 1, H ′ is an extension
of πk−1, a contradiction. So pi has not yet stored a strong prefix πk−1. If pi
has set its local variable ki to k then it has abdelivered a CLOSE-RND(k−1)
message when Pi = (∗, ∗, k − 1, ∗). If di < k − 1 upon abdelivering CLOSE-
RND(k − 1), then pi stored a strong prefix for πk−1 by doing the following
merge, a contradiction. Therefore, P = (∗, ∗, k− 1, ∗) and di >= k− 1. This
implies that pi has already stored a strong prefix for k− 1 upon abdelivering
a PROP(∗, ∗, k − 1) message or upon receiving a PUSH(∗, k − 1) message,
the final contradiction. �

Lemma 10. If a process pi directly stores a strong prefix for round k then pi
has stored exactly one strong prefix for round k − 1 and d = k − 1 when the
strong prefix is stored for round k.

Proof. The first step of this proof is showing that if pi directly stores
a strong prefix for round k at a certain time tk, then it stores ki = k and
di < k immediately before tk. Two events can induce pi to directly store a
strong prefix. If pi stores a strong prefix upon abdelivering a PROP(∗, ∗, k)
message, then from the definition of proposal-stable it must hold ki = k
and di <= k − 1, q.e.d. If the strong prefix is stored upon abdelivering
a CLOSE-RND(k) message m, it must hold Pi = (∗, ∗, k, ∗) and, from the
merge, di < k. From the definition of from-round-winner, Pi was assigned
this value only if a PROP(∗, ∗, k) message m′ is abdelivered before m and
thus if ki = k > di at that time. It is now only needed to show that the
values of ki and di are not modified between receiving m and m′. This is easy
to see for ki. By contradiction, the value of di would be set to a value higher
than k−1 before storing the strong prefix only if a PUSH(∗, d) message with
d > k − 1 is received. In this case pi would not directly store a strong prefix
for round k, a contradiction.

The next step is showing that at least one strong prefix has been stored
by pi for round k−1 and that di ≥ k−1 immediately before tk. The value of

130 APPENDIX C. EVENTUAL LINEARIZABILITY

ki is set to k only upon abdelivering a CLOSE-RND(k − 1) message. When
this occurs, a new strong prefix for round k−1 is included in the new history
Hnew built by pi. If this strong prefix is stored by pi in the subsequent merge,
the proof is finished since di is set to k−1 by the merge and it holds di ≥ k−1
until tk since di monotonically grows. Else, this implies that pi has already
set di = k − 1. This happens only if pi has abdelivered PROP(∗, ∗, k − 1)
message and has stored a new strong prefix for k − 1, or if it has received a
PUSH(∗, d) message with d = k− 1. In both cases process pi stores a strong
prefix for round k − 1 and sets di = k − 1, q.e.d.

It is only remains to show that no other strong prefix is stored for round
k−1. This follows from the fact that di ≥ k−1 after storing the first prefix for
k−1 and that di monotonically grows. In fact, no following PROP(∗, ∗, k−1)
message will lead pi to the delivery of a strong prefix nor will any merge
executed upon receiving a PUSH(∗, k− 1) or a CLOSE-RND(k− 1) message
do it. �.

Lemma 11. The relation <i,t is a partial order for each process pi and time
t.

Proof. Transitivity and reflexivity are trivial because histories are se-
quences. It is now shown that the relation is antisymmetrical, that is, it
never induces cycles. Since a history is a sequence, it is sufficient to show
that no local history has duplicates. This is trivially true for the initial empty
history.

Histories are modified either by appending operations or by merging other
histories. Assume by contradiction that an append or a merge creates a
duplicate on a history for the first time. Appends of weak operations are
always preceded by a check that an operation is not already present in the
history. Appends of strong operations in a new strong prefix for round k do
not create cycles because strong operations are always stored according to
a proposal message. From Lemmas 10 and 9, this contains no duplicates.
Merging two histories does not create duplicates unless the merged histories
have duplicates, and this would imply that some other prior history contains
duplicates, a contradiction. �

Lemma 12. If before a time t a process pi abdelivers a message mi and a
process pj abdelivers a message mj, then some of the two processes abdelivers
both mi and mj before t.

Proof. Assume by contradiction that this would not be the case. This
implies that abcast never satisfies uniform agreement and total order in runs
where D ∈ ♦S and a majority of correct processes is present. In fact, if

C.3. CORRECTNESS OF THE AURORA PROTOCOL 131

uniform agreement holds, pi and pj will abdeliver mi and mj at some time
after t. Therefore pi will deliver mi before mj and pj will do the opposite.
This represents a violation of total order. �

Lemma 13. For each processes pi and pj, if pi stores Pi = P ′ and ki = k′

upon abdelivering a message m and pj abdelivers m then pj stores Pj = P ′

and kj = k′ upon receiving m.

Proof. The proof is by induction on the delivery order of m at pi. In the
base case, all processes pi have initially the same value of Pi = ⊥. Let m′ be
the last message abdelivered by pi prior to m. For the inductive step, if pi
and pj abdeliver m′ they they both store Pi = Pj = Pprev and ki = kj = kprev
upon abdelivering m′. Assume pi stores Pi = P and ki = k′ upon abdelivering
m and pj abdelivers m. From Lemma 12, when pj abdelivers m, it has
also already abdelivered every message preceding m in the total order of
abcast, so it has abdelivered m′. Upon abdelivering m′, pj stores Pj = Pprev
and kj = kprev. The next values of Pj and kj are only determined upon
abdelivering m and are only dependent on the value of m and on the previous
value of Pj and kj. Therefore, pj also stores Pj = P ′ and kj = k′ upon
receiving m. �

Lemma 14. For each k′, processes pi and pj and times ti and tj, if pi stores
Pi = (∗, ∗, k′, h) at time ti and pj stores Pj = (∗, ∗, k′, l) at time tj, then
h = l.

Proof. By contradiction, assume h 6= l for some times ti and tj. pi must
have set Pi = (∗, ∗, k′, h) upon abdelivering a PROP(∗, ∗, k′) message mi with
k′ = ki before ti and pj must have set Pj = (∗, ∗, k′, l) upon abdelivering a
PROP(∗, ∗, k′) message mj with k′ = kj before tj. From Lemma 12 some
process, assume wlog pj, has received both mi and mj. Also assume wlog
that mi is abdelivered by pj before mj in the total order. From Lemma 13,
pj stores Pj = Pi upon receiving mi and has kj = ki = k′. After this time
and before pj receives mj, pj must have set Pj = ⊥ because it has changed
the third field of Pj. This follows from the definition of from-round-winner.
Whenever Pj is set to ⊥, however, kj is set to kj +1 = k′+1. From predicate
from-round-winner, process pj will thus never set Pj to a value (∗, ∗, k′, l), a
contradiction. �

Lemma 15. If a process pi delivers its local history and stores Pi = P ′

= (∗, ∗, k′, i) upon abdelivering a message m and a process pj stores Pj =
(∗, ∗, k′, ∗) upon abdelivering m or afterwards, then Pj = P ′.

Proof. It follows from proposal-stable that is pi delivers its local history
when Pi = P ′, then pi does this upon abdelivering a PROP(∗, ∗, k′) message

132 APPENDIX C. EVENTUAL LINEARIZABILITY

m from itself. di is set to k′ upon the abdelivery of m. After this time, pi
only abcasts PROP(∗, ∗, ki) messages with ki > di = k′. From Lemma 13,
process pj stores Pj = P ′ upon abdelivering m. After this time, pj modifies
Pj only if it abdelivers a PROP(∗, ∗, k′) from pi, but no such messages is
received after m because of the FIFO property of abcast, or if pj sets Pj to
⊥, but then pj sets kj to k′+ 1 and, by definition of from-round-winner, will
never set Pj to (∗, ∗, k′, ∗) again. �

Lemma 16. If two processes pi and pj store longest strong prefixes πi and
πj for round k, then πi = πj and every ϕk′ stored by any process for round
k′ < k is a prefix of πi and πj

Proof. The proof is by induction on k. The property trivially holds for
k = 0 when the strong prefixes of all processes are empty.

For k > 0, if by contradiction pi and pj would store different strong pre-
fixes πi and πj for round k upon receiving a PUSH message, then some other
process would have directly stored those prefixes. Therefore, the problem is
reduced to showing the thesis if pi and pj directly store πi and πj. Assume by
contradiction that processes pi and pj directly store different strong prefixes
πi and πj upon abdelivering PROP(∗, ∗, k) or CLOSE-RND(k) messages mi

and mj. From Lemma 10, pi and pj have stored exactly one strong prefix,
ϕik−1 and ϕjk−1 respectively di = dj = k−1 upon abdelivering these messages.

By induction, ϕik−1 = ϕjk−1 = ϕk−1 is the current longest strong prefix stored
by both pi and pj immediately before abdelivering mi and mj.

Consider now two different cases. The first case is that at least one of
mi and mj is a PROP(H,S, k). The second is that both mi and mj are
CLOSE-RND(k) messages.

If at least one of pi and pj, say wlog pi, stores πi upon abdelivering a
PROP(H ′, S, k) message mi, then from prop-stable this was sent by pi and,
as it was shown, ϕk−1 is a prefix of H ′. πi is then obtained by pi by appending
elements of S to H ′ in <D order. Since ϕk−1 is a prefix of H ′, it is also a
prefix of πi. Let P = (H ′, S, k, i) the value of Pi stored by pi when πi is
stored.

From prop-stable, pj does not stores πj before abdelivering mi. Assume
by contradiction that mj precedes mi in the total order of abcast. pj would
have stored kj = k + 1 upon abdelivering mj. Since pi abdelivers mi which
follows mj in the total order, it follows from Lemma 12 that pi abdelivers mj

before mi. From Lemma 13, pi would also set ki = k + 1, upon receiving m′

and, from proposal-stable, it would thus not store a strong prefix for round
k upon receiving mi, a contradiction. Therefore, mj follows mi in the total
order of the abcast.

C.3. CORRECTNESS OF THE AURORA PROTOCOL 133

From Lemma 13, pi stores Pj = (H ′, S, k, i) upon abdelivering mi. From
Lemma 15, Pj = P upon abdelivering mj. From proposal-stable, mj can not
be a PROP(∗, ∗, k) message so it must be a CLOSE-RND(k). When mj is
abdelivered by pj, pj builds the same strong prefix Hnew = πi as stored by pi
since Pj = P . πj is obtained by merging the current local history of pj with
Hn. From Lemma 10, dj = k − 1 so k > dj and the merge returns πj = πi.
Also from Lemma 10, ϕk−1 is a prefix of πj and of πi, so the result of the
merge is the longest strong prefix stored by pj. This contradiction concludes
the proof for the first case.

Consider now the second case where both pi and pj store πi and πj upon
abdelivering CLOSE-RND(k) messages mi and mj. Assume wlog that mi

precedes mj in the total order of abcast. Let (H ′, S, k, h) be the value of Pi
when before mi is abdelivered. From round-winner, Pi was set to a value
(∗, ∗, k, h) for the first time only after pi abdelivers a PROP(∗, ∗, k) message
m′ from process ph. mi is the first CLOSE-RND(k) message abdelivered after
mj in the total order of abcast. If this would not be the case, pi would have
set ki > k and would not have stored a strong prefix upon abdelivering mi, a
contradiction. pi obtains Hnew = πi by appending operations of S onto H ′ in
<D order. From Lemma 9 and by the induction hypothesis, ϕk−1 is a prefix
of the local history H ′ stored by a process ph. This implies that ϕk−1 is a
prefix of πi so πi is a new longest strong prefix of pi. From Lemma 12 and
total order of abcast, pj also delivers m′ before mi and mi before mj. From
Lemma 13, pj also sets Pj to (∗, ∗, k, h) for the first time upon abdelivering
m′. It has been already shown that mi is the first CLOSE-RND(k) message
which is abdelivered after m′. From Lemma 13, pj also stores a strong prefix
πj for round k and builds πj = πi upon abdelivering mi. This is the new
longest prefix since ϕk−1 is a prefix of πi. This is the final contradiction. �

Lemma 17. For each processes pi and pj and times ti and tj, if πi is a
strong prefix of H(i, ti) and πj is a strong prefix of H(j, tj) then πi and πj
are compatible.

Proof. When a process pi stores a strong prefix for round k, it sets di = k
and stores no other strong prefixes for rounds k′ ≤ di afterwards. Therefore,
the result follows directly from Lemma 16. �

Lemma 18. For each process pi and times t and t′, if t′ > t and π is a strong
prefix of H(i, ti) then πj is a strong prefix of H(i, t′).

Proof. The result directly follows from Lemma 16 if pi = pj. �

Lemma 19. For each times t and ti and correct processes pi and pj and for
each operation op submitted by any process before t and included in H(i, ti),
if t′ ≥ ord(t) then op ∈ H(j, t′)

134 APPENDIX C. EVENTUAL LINEARIZABILITY

Proof. Assume by contradiction that there exists an operation op sub-
mitted before t and included in H(i, ti such that op not in Hj. Since op not
in H(j, t′) and t′ ≥ ord(t), pj never includes op into its history by definition
of ord(t).

Assume that op is a weak operation. Since op is stored by pi, pi eventually
sends a PUSH(H, ∗) message including op ∈ H to pj. Since pi and pj are
correct, pj eventually receives the PUSH message and calculates its new local
history as a merge between H and its previous local history. The resulting
history contains op, a contradiction.

Assume now that op is strong and let k′ be the round number where
pi stores the first strong prefix πi including op. After storing πi, pi stores
di ≥ k′. If pj stores a strong prefix for round k′′ ≥ k′, it also stores πi from
Lemma 16, a contradiction. Therefore, pj never stores a strong prefix for a
round k′′ ≥ k′ and thus never sets dj ≥ k′. However, pi eventually sends a
PUSH(∗, di) message with di ≥ k′ to pj. Since both pi and pj are correct,
pj eventually receives the PUSH message. After the subsequent merge, pj
stores dj ≥ k′, a contradiction. �

Lemma 20. If there exists a time tld when pld is perpetually trusted, then
for each t′ ≥ ord(ord(tld)) and for each correct process pi, H(i, t′) is a subset
of H(ld, t′).

Proof. The proof is that Hi = H(i, t′) is a subset of Hld = H(ld, t′) and
is by contradiction. Assume that there exists an operation op submitted by
a process pj such that op ∈ Hi and op 6∈ Hld. If op is submitted before tld,
thesis follows from t′ ≥ ord(tld) and Lemma 19. Therefore, op is submitted
after tld.

Consider two cases. If op is a weak operation, pj trusts pld when op is
submitted and sends a WREQ msg only to pld. pld is the first process to add
op to its history and all other processes store op in their history after directly
or indirectly merging their history with the one of pld. Therefore, if op ∈ Hi

then op ∈ Hld.

If op is a strong operation, let k′ be the round number where pi stores
the first strong prefix πk including op. Since op is submitted after tld and
pld is perpetually trusted, it follows from must-propose-prefix that pld is the
only process which abcasts a PROP(∗, ∗, k′) message. This implies that no
process pj 6= pld ever sets Pj = (∗, ∗, k′, j). Therefore, any process pj 6= pld
that directly stores πk for round k′ does it upon abdelivering a CLOSE-
RND(k′) message m. Since pld is the perpetual leader, no process pj 6= pld
abcasts a CLOSE-RND(k′) message. Therefore m is sent by pld after having
stored πld in its history. From Lemma 16, πld is equal to πk and thus includes

C.3. CORRECTNESS OF THE AURORA PROTOCOL 135

op. Any other process, like pi, which stores πi for round k′ does it after pld.
This implies that if op ∈ Hi then op ∈ H. �

Lemma 21. For each time t and t′ ≥ t, if op <i,t op
′, op and op′ are not in

a strong prefix of H(i, t) or of H(i, t′) and op <D op′, then op <i,t′ op
′

Proof. Since operations are never removed from a history and op <i,t′ op
′,

pi stores op and op′ for any time t′ ≥ t. Assume by contradiction that for
some time t′′ ≥ t, pi orders op′ before op for the first time in its local history.
The order of two operations is changed in a local history only by making a
merge. However, any merged history always keeps op <i,t′′ op

′ as op′ <D op
and op and op′ are not in a strong prefix of H(i, t′′). �

Lemma 22. For each time t, if pi and pj are correct processes, op <i,ti op
′

and op′ <j,tj op op and op′ are submitted before t, op and op′ are not in a
strong prefix of H(i, ti) or H(j, tj) and op′ <D op in the deterministic order,
then ti < ord(t).

Proof. Assume by contradiction ti ≥ ord(t). Assume that pi receives
at time t′ ≤ ord(t) a PUSH(Hp, ∗) message m sent by pj at time t′′ ≤ t′

with a history containing op′ <Hp op. Neither op nor op′ are in the strong
prefix of H(i, t′′) or Hp because otherwise they would also be in a strong
prefix of the local history of pi at time ord(t) ≥ t′ from the definition of the
merge operation and from LEMMA 18. When m is received, pi merges the
Hp in its local history. The resulting history orders op′ < op as op′ <D op
and as op and op′ are not in a strong prefix of H(i, t′′) or of Hp. From
Lemma 21, op′ <i,ti op for each time ti ≥ t′′ so also for each time ti ≥ ord(t),
a contradiction.

It remains now to be shown that pi receives a PUSH(Hp, ∗) message m
from pj with a history containing op′ < op at a time t′′ ≤ ord(t). Assume pi
does not receive any history where op′ precedes op before ord(t). By definition
of ord(t) and since op and op′ are both submitted before t, pi never receives
a history containing where op′ precedes op. Since op′ <j,tj op, process pj
eventually send a PUSH(Hp, ∗) message to pi. From Lemma 21, H(j, t′) still
orders op′ before op and so does Hp. Since pi and pj correct, pi eventually
receives Hp, a contradiction. �

Lemma 23. For each time t, if ti, tj ≥ ord(t), pi and pj are correct processes,
op and op′ are submitted before t and are not in a strong prefix of H(i, ti) or
H(j, tj), then it never holds op <i,ti op

′ and op′ <j,tj op.

Proof. Assume by contradiction that op <i,ti op
′ and op′ <j,tj op. If

op <D op′ it follows from Lemma 22 that tj < ord(t), a contradiction. Simi-
larly, if op′ <D op then ti < ord(t), a contradiction. �

136 APPENDIX C. EVENTUAL LINEARIZABILITY

Lemma 24. For each time t, if ti, tj ≥ ord(ord(t)), pi and pj are correct
processes, op is submitted before t, op′ <i,ti op and op and op′ are not in a
strong prefix of H(i, ti) or H(j, tj), then op′ <j,tj op.

Proof. Assume by contradiction that op′ 6<j,tj op. Also, assume that op′

is submitted before ord(t). Since pi stores op and op′, pj stores op and op′ at
time tj ≥ ord(ord(t)) from Lemma 19. This implies that op <j,tj op

′. Since
both op and op′ are submitted before ord(t) and are not in the strong prefix
of H(i, ti) or H(j, tj), a contradiction follows from Lemma 23.

It is now necessary to show that op′ is submitted before ord(t). op and
op′ are weak operations because are not included in a strong prefix. There
are two ways for pi to store op′ before op. pi can directly append op after
op′ in its history or can merge its local history with another history H such
that op′ <H op and contained in a PUSH(H, ∗) message. In both cases,
some process pk has directly appended op after op′. By definition of ord(t)
and since pk stores op, op these operations were already stored by pk at time
ord(t). Since op is appended by pk in its local history after op′, op′ was already
stored by pk at time ord(t). Therefore, op′ is submitted before ord(t). �

Lemma 25. For each pair of operations op and op′, times ti and tj and
correct processes pi and pj if there exists a time tld when pld is perpetually
trusted, ti, tj >= ord(ord(tld)), op and op′ are not in a strong prefix of H(i, ti)
or H(j, tj) and op′ <i,ti op and op ∈ H(j, tj) then op′ <j,tj op.

Proof. If op is submitted before tld, the result directly follows from
Lemma 24. Therefore, op and op′ are submitted after tld.

If op or op′ are in a strong prefix, since pld is the only process which trusts
itself after tld and from must-propose-new-prefix, it follow stat pld is the only
process which abcasts PROP(H,S, ∗) messages with op or op′ in H∪S. Else,
pld is the first process to establish an order for op and op′. In both cases, if a
process pi stores op′ before op, this is the order established by pld. Therefore,
each process pj storing op also lets it precede by op in its local history.

The last remaining case is the one where op′ is submitted before tld and
op is submitted after tld. From Lemma 19 and the fact that pi stores op′, pj
stores op′ before ord(tld). Also, pj stores op by hypothesis, so pj has ordered
op and op′ at time tj. Assume by contradiction that op <j,tj op

′. This and
op′ <i,ti op would contradict Lemma 24. �

Lemma 26. For any pair of operations op and op′, times t′ and t′′, and
correct process pi if there exists a time tld when pld is perpetually trusted
t′, t′′ ≥ ord(ord(ord(tld))) and op <ld,t′ op

′, then op′ 6<i,t′′ op.

C.3. CORRECTNESS OF THE AURORA PROTOCOL 137

Proof. Assume by contradiction that op′ <i,t′′ op. If op (resp. op′) is
strong, a contradiction directly follows from Lemma 17 and op′ <i,t′′ op (resp.
op <ld,t′ op

′). Therefore, op and op′ are weak.

If op and op′ are not in a strong prefix, a contradiction follows directly
from Lemma 25. Therefore, both operations are in a strong prefix.

Let k be the minimum round number such that op or op′ are in a strong
prefix π of H(ld, t′) or H(i, t′′). π either includes op but not op′, or op′ but
not op, else Lemma 17 would be violated by pld or pi. Assume that π includes
op′ but not op. The argument in case π includes op but not op′ is similar.
The main differences are discussed below.

Assume that π has been submitted before ord(ord(t)). Since pi or pld have
stored π, all other correct processes do the same before ord(ord(ord(t))) from
Lemma 19. Therefore, pld stores op′ before op at time t′ > ord(ord(ord(tld)))
but this is inconsistent with π, a contradiction of Lemma 18. In case π only
includes op′, a similar contradiction is built with pi.

It is now necessary to show that π has been submitted before ord(ord(t)).
By definition, π is built by a process after abdelivering a PROP(H ′, S ′, k)
message m from a process ph, and is the result of appending the strong
operations of S ′ onto H ′. Since op′ is weak, op′ ∈ H ′. Let th be the time
when ph sends m. Since op′ is in H ′ then op′ ∈ H(h, th). By definition of k,
neither op nor op′ are in a strong prefix of H(h, th). Assume by contradiction
that th ≥ ord(ord(tld)). It follows from this, Lemma 25, op′ ∈ H(h, th) and
op <ld,t′′ op

′ that op <h,th op
′. Therefore H ′, and thus the strong prefix π

too, would include op and op′, a contradiction. In case π includes op but
not op′, a contradiction would follow from Lemma 25 and op′ <i,ti op since π
would contain op and op′. This implies that th < ord(ord(tld)) so π has been
submitted before ord(ord(tld)). �

Lemma 27. If there exists a time tld when a process pld is trusted by all
processes, then there exists a time t such that for each t′ ≥ t and for each
correct process pi it holds that H(i, t) is a prefix of H(i, t′).

Proof. Let H(i, t) be the history stored by process pi at time t. By
contradiction, assume that t = ord(ord(ord(tld))), and let tm ≥ t be the
minimum time such that H = H(i, t) is not a prefix of Hm = H(i, tm).

H is a subset of Hm and Hm is a subset of H(ld, tm). The first fact
follows from the fact that histories are modified by appending operations or
by merging and that merges return the union of the merged histories. The
second follows from Lemma 20. From Lemma 26, both H and Hm order their
operations as in H(ld, tm), so H is a prefix of Hm, a contradiction. �

138 APPENDIX C. EVENTUAL LINEARIZABILITY

Lemma 28. If a correct process pld which is eventually permanently trusted
by ΩD abcasts a PROP(∗, ∗, k) message and eventually stops modifying Hld

until kld > k, and if ΩD ∈ Ω and a majority of correct processes exists, then
eventually pld sets kld > k and Qld = ⊥.

Proof. The proof is by contradiction. By hypothesis, pld abcasts a
PROP(∗, ∗, k) message. Since ΩD ∈ Ω and a majority of correct processes
exists, abcast terminates. This and the fact that pld is correct implies that
some process will be the winner of round k by having its proposal abdelivered.

If pld is the winner of round k, it sets Pld = (∗, ∗, k, ld) and Q 6= ⊥. If pld
later abdelivers a CLOSE-RND(k) message, it sets kld > k and Qld = ⊥, a
contradiction. Therefore, pld never abdelviers a CLOSE-RND(k) message so,
from validity of abcast, pld never abcasts such a message. This implies that
ΩD at pld always outputs ld. From must-propose-new-prefix, pld keeps sending
proposal messages whenever its local history is modified. From validity of
abcast, process pld abdelivers all the proposal messages that it abcasts. By
hypothesis, pld eventually stops adding operations to its local history Hld dur-
ing round k. Therefore, process pld will eventually abdeliver a PROP(H ′, ∗, k)
message sent from itself with H ′ = Hld. It will therefore abcast a CLOSE-
RND(k) message, a contradiction.

If pj 6= pld is the winner of round k, pld sets Pld = (∗, ∗, k, j). It is suf-
ficient to show that pld abcasts or abdelivers a CLOSE-RND(k) message to
reach a contradiction like in the previous case. Therefore pld never abdelivers
a CLOSE-RND(k) message from the winner pj. This implies that eventually
suspect-round-winnerld will hold since pld is the only process which is perma-
nently trusted by ΩD. Therefore, pld will abcast a CLOSE-RND(k) message,
a contradiction. �

Lemma 29. If a process pi stores a new history Hn by merging its local
history H and another history H ′ and both H and H ′ satisfy properties (C1)
and (C2) of causal consistency, then Hn satisfies (C1) and (C2)

Proof. It is trivial that Hn satisfies (C1) since Hn is the union of H and
H ′. For (C2), let M be the result of the merge and assume by contradiction
that o <C o

′ but o′ <M o. Since M stores o′, one of H and H ′, say H, stores
o′. From (C1), H stores o too. From (C2), o <H o′. Assume that o and o′

are not in a strong prefix π of H or H ′. Both o and o′ are therefore weak
operations. From the merge procedure it follows that if o′ <M o and o <H o′

then o′ <′H o. H ′ thus violates (C2), a contradiction.
Next, it is shown that o and o′ are not in a strong prefix π of H or H ′.

Assume by contradiction that they are. From Lemmas 17 and 18 and the
fact that M is stored by a process as new strong prefix, π is a prefix of M .

C.3. CORRECTNESS OF THE AURORA PROTOCOL 139

If o ∈ π then either o′ 6∈ π or o <π o
′ since (C1) and (C2) are not violated in

π. For the same reason, if o′ is in π then o <π o
′. In all these cases, since π

is a prefix of M then o′ 6<M o, a contradiction. �

Theorem 5. Causal consistency is satisfied.

Proof. Assume that a process pi is the first process to violate (C1) or
(C2) at time t. A process violated these properties only when it modifies
its local history. If pi appends an operation it has submitted to its local
history, a contradiction directly follows from the fact that the prior local
history satisfies (C1) and (C2).

If pi violates (C1) or (C2) upon receiving a PUSH or ORD message m
at time t, the new history of pi is the merge between the old history of pi
and the history contained in the message. Both merged histories are local
histories of processes at a time preceding t so they satisfy (C1) and (C2). A
contradiction follows from Lemma 29.

Consider now the case when pi violates (C1) or (C2) upon receiving a
WREQ(H, o) or SREQ(H, o) message m at time t. pi merges its history with
H and, similar to the previous case, the result satisfies (C1) and (C2). Also,
H contains all operations o′ such that o′ <C o. Appending o to the new local
history of pi preserves (C1) and (C2).

The last case is that pi violates (C1) or (C2) upon abdelivering a PROP
or CLOSE-RND message. If the local history of pi is modified upon receiving
these messages, then pi stores a new strong prefix for round k and sets Pj =
(H,S, k, h). Let Hn be the result of appending all operations of S onto H
in a deterministic order. Since the previous local history of pi satisfies (C1)
and (C2), it is sufficient from Lemma 29 to show that Hn satisfies these
properties.

If pi has set Pi = (H,S, k, h) then a process ph has abcast a PROP(H,S, k)
message. For each strong operation o ∈ S, ph has received from the proposer
processes histories including all operations o′ such that o′ <C o. H is the
local history of ph has merged all these histories and, from Lemma 29, satisfies
(C1) and (C2) and includes all operations causally dependent on operations
in S. From Lemmas 11 and 16, all the operations in S has not yet been
stored by any other process for any other round. This implies that none of
the operations of S is causally dependent on each other, so Hn satisfies (C1)
and (C2). �

Theorem 6. Nontriviality, set stability, strong prefix stability, prefix consis-
tency, strong prefix consistency are always satisfied.

Proof. This proof shows that all properties of Eventual Consistency are
met. For each process pi and time t, the properties of S(i, t) are shown

140 APPENDIX C. EVENTUAL LINEARIZABILITY

for local histories H(i, t). Since only the content of local histories is ever
delivered, and since local histories are delivered whenever they are modified,
this is equivalent to show the properties for delivered sequences.

Nontriviality: Is trivial from the algorithm and from Lemma 11.
Set stability: Directly follows from the fact that histories are modified

either by appending operations or from merges. The latter operation returns
the union of the merged histories, so no operation is removed from a history.

Strong prefix stability: Directly follows from Lemma 18.
Strong prefix consistency: Directly follows from Lemma 17.
Prefix consistency: Pt is defined as follows. For each operation op stored

by a correct process, let t(op) be the time when op is submitted and p(op)
the first correct process storing op. Pt includes all operations stored by a
correct process such that t ≥ ord(ord(t(op))), as well as the prefix including
op in H(p(op), t(op)), in the order of H(p(op), t(op)).

The first step is showing that Pt satisfies (C1) and is a sequence. From
Lemma 19, all operations that are submitted before t(op) and that are stored
by a correct process are stored by each correct process at time t′ ≥ ord(t(op)).
From strong prefix consistency and strong prefix stability, the longest strong
prefix of Pt is a prefix of H(i, t′) for each i and t′ ≥ t. From Lemma 25, the
prefix preceding each remaining operation of Pt in H(i, t′) is equal at each
correct process pi at time t′ ≥ t since t = (ord(ord(t(op))), so Pt is a prefix
of each H(i, t′) with t′ ≥ t.

(C2) can be shown easily because, from (C1), Pt and Pt′ are both prefixes
of H(i, t′) for each i. Also, each operation of Pt is included in Pt′ by definition
since t ≤ t′. Therefore, Pt is a prefix of Pt′ .

As for (C3), it follows from Liveness that all operations invoked by a
correct process are eventually stored by all other processes. From Lemma 19,
all operations stored by a correct process are eventually stored by each correct
process, so all operations stored by a correct process are included in some Pt
for some t. �

Theorem 7. Eventual Stability is satisfied if D ∈ ♦S.

Proof. Eventual stability after for some t follows from Lemma 27. �

Theorem 8. Each weak operation w submitted by a correct process is even-
tually stored by each correct process in its local history.

Proof. Assume a correct process pi submits a weak operation w and
some correct process pj never adds it to its history. Let ld be value of ΩD
when the submit event occurs. The operation w is reliably sent to pld in a
WREQ message m.

C.3. CORRECTNESS OF THE AURORA PROTOCOL 141

If pld suspected by ΩD, pi appends w to its local history. Eventually pi
sends a PUSH(H, d) message with w in H. Since pi and pj are both correct,
the PUSH message is eventually delivered. pj then either adds w into its
history or w is already in its history. Therefore, since by contradiction pi
never delivers w, ΩD never suspects pld. By the strong completeness of D,
this implies that pld is correct. The WREQ message m is thus eventually
delivered by pld.

If wait-consensusld is false when m is received by pld, or it is true, and thus
w is included in Wld, but it eventually becomes false, and thus stop-waiting-
consensusld holds, pld merges the history contained in m with its own, and
the resulting Hld contains w. After this merge, pld eventually sends a PUSH
message containing w to all correct processes, which eventually receive it
and store w in their local history, a contradiction. Therefore, wait-consensus
is always true. Therefore, it always holds that Qld 6= ⊥ and that Tld is a
majority quorum equal to the current set TSld \ D.

If a majority of correct processes does not exist, then eventually |Dld| ≥
dn/2e for strong completeness so |TSld \D| < dn/2e, a contradiction. There-
fore, there exists a majority of correct processes. From Qld 6= ⊥, pld has
sent a PROP(∗, ∗, k) message for some k = kld. If ΩD ∈ Ω, it follows from
Lemma 28 that eventually Qld = ⊥ and thus wait-consensusld stops holding,
a contradiction. Therefore, ΩD 6∈ Ω.

Since wait-consensus always holds, it always holds that |Tld| > n/2 and
Tld = TSld \D. From the strong completeness of D, TSld \D eventually only
includes the ids of correct processes. Since Tld = TSld \ D holds forever, Tld
contains the indexes of a majority of correct processes which permanently
trust pld. Therefore, ΩD satifies the quorum property so ΩD ∈ ΩQ. Since
there exists a majority of correct processes, Ω and ΩQ are equivalent from
Lemma 8. This implies that ΩD ∈ Ω, a contradiction. �

Theorem 9. If a correct process pi submits a strong operation s, there exists
a majority of correct processes, and either D ∈ ♦P or D ∈ ♦S and eventu-
ally no new weak operation is submitted, then each correct process eventually
stores s in their history.

Proof. Assume by contradiction that a correct process pi submits a
strong operation s and there exists a correct process pj which never stores s
in its history.

Let pld be the correct leader which is eventually perpetually trusted by
ΩD. If pi or pld ever store s in their history, then a contradiction is now shown.
Let k′ be the round when pi or pld first store a strong prefix π including s.
Each other correct pj will eventually receive a PUSH(H, d) message from pi
or pld with s in H and d ≥ k′. By Lemma 16, if pj never stores π then it never

142 APPENDIX C. EVENTUAL LINEARIZABILITY

stores a strong prefix for round k′ so dj < k′. When the PUSH message is
received then the result of the merge has π as strong prefix, a contradiction.

Neither pi nor pld thus ever store s in their local history. After s is sub-
mitted, pi sends SREQ(∗, ∗, s) to all processes. Since pi and pld are correct,
this message is eventually received by pld. When this happens, pld adds s to
Nld. However s is never added in Hld of pld by contradiction. This implies
that s is always in Nld \Hld.

Let ks be the current value of kld when s is received by pld. For each
value k ≥ ks of kld, eventually pld either sets kld = k + 1, and thus Qld = ⊥
too, or it abcasts a PROP(∗, S, k) message with s ∈ S. This follows by
simple induction on the value of kld since Nld \Hld always includes s, since
pld eventually trusts itself permanently, and from must-propose-new-prefix.
Assume that eventually pld sets kld = k + 1 in the both the aforementioned
cases. Since pld is the permanent leader, it follows from must-propose-new-
prefix that there exists a round k′ such that pld is the only process abcasting
a proposal messages PROP(∗, S, k′) for k′. Furthermore, abcast terminates
since D ∈ ♦S implies that ΩD ∈ Ω and since a majority of correct processes
exists. Since pld is correct, if follows from validity of abcast that it abdelivers
it proposal message and, since this is the only proposal for k′, that pld is
the winner of round k′. Since eventually kld = k′ + 1, this implies that pld
eventually stores its proposed strong prefix for round k′. This strong prefix
includes s, a contradiction.

It is now shown that if pld abcasts a PROP(∗, ∗, k) message then eventu-
ally kld = k + 1. This would follow from Lemma 28 if pld would eventually
stop modifying its local history Hld until kld = k + 1. Assume by contradic-
tion that pld modifies Hld infinitely often and that kld is always equal to k.
A contradiction is easy to see if eventually no weak operation is submitted.
Therefore, it must hold that D ∈ ♦P and that a majority of correct processes
exists. In this case, infinitely many weak operations are received by pld and
inserted in Hld. From must-propose-new-prefix, this implies that the leader
abcasts infinitely many PROP(∗, ∗, k) messages since Q 6= ⊥ after sending
the first PROP(∗, ∗, k) message. However, since pld is perpetually trusted,
eventually every correct process sends a TRUST(pld) message to pld as last
trust message. This implies that the trust set TSld of pld eventually does not
change any longer. Also, it follows from D ∈ ♦P that eventually D outputs
exactly the ids of the faulty processes, so eventually TSld \ Dld > n/2 holds
forever and D stops changing. Whenever a new proposal message is abcast
by pld, Tld is set to be equal to TSld \D, so eventually Tld is equal to TSld \D
forever. Therefore, eventually wait-consensusld holds forever and pld stops
modifying Hld, a contradiction. �

Bibliography

[AAL+08] A.S. Aiyer, E. Anderson, X. Li, M.A. Shah, and J.J. Wylie.
Consistability: Describing usually consistent systems. In
Proc. of Fourth Workshop on Hot Topics in System Depend-
ability, 2008.

[ACKL07] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Customizable
fault tolerance for wide-area byzantine replication. In Proc.
of the twenty-sixth IEEE International Symposium on Reliable
Distributed Systems, 2007.

[ACKL08] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane.
Byzantine replication under attack. In In Proceedings of the
38th IEEE/IFIP International Conference on Depe ndable
Systems and Networks (DSN ’08, pages 105–114, 2008.

[AEMGG+05] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Good-
son, Michael K. Reiter, and Jay J. Wylie. Fault-scalable
byzantine fault-tolerant services. SIGOPS Oper. Syst. Rev.,
39(5):59–74, 2005.

[AF92] Hagit Attiya and Roy Friedman. A correctness condition
for high-performance multiprocessors (extended abstract). In
STOC ’92: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 679–690, New
York, NY, USA, 1992. ACM.

[AT10] Marcos K. Aguilera and Sam Toueg. Adaptive progress: A
gracefully-degrading liveness property. Distributed Comput-
ing, 22(5–6):303–334, August 2010.

[AW04] H. Attiya and J. Welch. Distributed Computing: Fundamen-
tals, Simulations, and Advanced Topics. J. Wiley and Sons,
2004.

143

144 BIBLIOGRAPHY

[BCvR09] Ken Birman, Gregory Chockler, and Robbert van Renesse.
Toward a cloud computing research agenda. SIGACT News,
40(2):68–80, 2009.

[Bor05] Shekhar Borkar. Designing reliable systems from unreli-
able components: The challenges of transistor variability and
degradation. IEEE Micro, 25(6):10–16, 2005.

[BT83] Gabriel Bracha and Sam Toueg. Resilient consensus proto-
cols. In PODC ’83: Proceedings of the second annual ACM
symposium on Principles of distributed computing, pages 12–
26, New York, NY, USA, 1983. ACM.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and
broadcast protocols. J. ACM, 32(4):824–840, 1985.

[Bur06] Mike Burrows. The chubby lock service for loosely-coupled
distributed systems. In OSDI ’06: Proceedings of the 7th
symposium on Operating systems design and implementation,
pages 335–350, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

[Cas01] Miguel Castro. Practical Byzantine Fault Tolerance. PhD
thesis, MIT, January 2001.

[CC10] Christian Cachin and Christian” Cachin. Yet another visit to
paxos. Technical report, IBM Research Zürich, 2010.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg.
The weakest failure detector for solving consensus. J. ACM,
43(4):685–722, 1996.

[Chu98] F. Chu. Reducing ω to �W . Information Processing Letters,
67:289–293, 1998.

[CKL+09] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang,
Lorenzo Alvisi, Mike Dahlin, and Taylor Riche. Upright clus-
ter services. In SOSP ’09: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages 277–
290, New York, NY, USA, 2009. ACM.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault
tolerance. In Proceedings of the third symposium on Operating
systems design and implementation, pages 173–186, Berkeley,
CA, USA, 1999. USENIX Association.

BIBLIOGRAPHY 145

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. Hq replication: a hybrid quorum
protocol for byzantine fault tolerance. In OSDI ’06: Proceed-
ings of the 7th symposium on Operating systems design and
implementation, pages 177–190, Berkeley, CA, USA, 2006.
USENIX Association.

[CMSK07] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John
Kubiatowicz. Attested append-only memory: making ad-
versaries stick to their word. SIGOPS Oper. Syst. Rev.,
41(6):189–204, 2007.

[CNV04] Miguel Correia, Nuno Ferreira Neves, and Paulo Verissimo.
How to tolerate half less one byzantine nodes in practical
distributed systems. In SRDS ’04: Proceedings of the 23rd
IEEE International Symposium on Reliable Distributed Sys-
tems, pages 174–183, Washington, DC, USA, 2004. IEEE
Computer Society.

[Con02] Cristian Constantinescu. Impact of deep submicron technol-
ogy on dependability of vlsi circuits. In DSN ’02: Proceedings
of the 2002 International Conference on Dependable Systems
and Networks, pages 205–209, Washington, DC, USA, 2002.
IEEE Computer Society.

[CRS+08] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. In Very
Large Data Bases Conference, 2008.

[CT96] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–
267, March 1996.

[CVN02] Miguel Correia, Paulo Verissimo, and Nuno Ferreira Neves.
The design of a cotsreal-time distributed security kernel. In
EDCC-4: Proceedings of the 4th European Dependable Com-
puting Conference on Dependable Computing, pages 234–252,
London, UK, 2002. Springer-Verlag.

[CWA+09] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin,
and Mirco Marchetti. Making byzantine fault tolerant systems
tolerate byzantine faults. In NSDI’09: Proceedings of the 6th

146 BIBLIOGRAPHY

USENIX symposium on Networked systems design and imple-
mentation, pages 153–168, Berkeley, CA, USA, 2009. USENIX
Association.

[Das] Amazon Web Services Service Health Dashboard.
Amazon s3 availability event: July 20, 2008.
http://status.aws.amazon.com/s3-20080720.html.

[DCGN03] Michael Dahlin, Bharat Baddepudi V. Chandra, Lei Gao,
and Amol Nayate. End-to-end wan service availability.
IEEE/ACM Transactions on Networking (TON), 11(2):300–
313, April 2003.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On
the minimal synchronism needed for distributed consensus.
J. ACM, 34(1):77–97, 1987.

[DGFG+04] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guer-
raoui, Vassos Hadzilacos, Petr Kouznetsov, and Sam Toueg.
The weakest failure detectors to solve certain fundamental
problems in distributed computing. In PODC ’04: Proceed-
ings of the twenty-third annual ACM symposium on Princi-
ples of distributed computing, pages 338–346, New York, NY,
USA, 2004. ACM.

[DGV04] P. Dutta, R. Guerraoui, and M. Vukolić. Best-case complexity
of asynchronous byzantine consensus. Technical Report LPD-
REPORT-2008-08, EPFL, 2004.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value store.
In ACM Symposium on Operating Systems Principles, pages
205–220, 2007.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Con-
sensus in the presence of partial synchrony. J. ACM,
35(2):288–323, 1988.

[FGK06] Felix C. Freiling, Rachid Guerraoui, and Petr Kouznetsov.
The failure detector abstraction. Technical report, Universität
Mannheim / Institut für Informatik, 2006.

BIBLIOGRAPHY 147

[FGL+96] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch,
and Alex Shvartsman. Eventually-serializable data services.
In PODC ’96: Proceedings of the fifteenth annual ACM sym-
posium on Principles of distributed computing, pages 300–309,
New York, NY, USA, 1996. ACM.

[FL81] Michael J. Fischer and Nancy A. Lynch. A lower bound for the
time to assure interactive consistency. Information Processing
Letters, 14:183–186, 1981.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of distributed consensus with one faulty process.
J. ACM, 32(2):374–382, 1985.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. In ACM Symposium on Operating
Systems Principles, 2003.

[GHOS96] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha.
The dangers of replication and a solution. In SIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD international confer-
ence on Management of data, pages 173–182, New York, NY,
USA, 1996. ACM.

[GKQV10] Rachid Guerraoui, Nikola Knezevic, Vivien Quéma, and
Marko Vukolic. The next 700 bft protocols. In Proceedings of
Eurosys 2010, 2010.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web ser-
vices. SIGACT News, 33(2):51–59, 2002.

[Gro] Trusted Computing Group. Trusted computing group speci-
fications. www.trustedcomputinggroup.org.

[Gue00] Rachid Guerraoui. Indulgent algorithms (preliminary ver-
sion). In PODC ’00: Proceedings of the nineteenth an-
nual ACM symposium on Principles of distributed computing,
pages 289–297, New York, NY, USA, 2000. ACM.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Ben
Reed. Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of USENIX Annual Technical Con-
ference, 2010.

148 BIBLIOGRAPHY

[HW87] Maurice P. Herlihy and Jeanette M. Wing. Specifying graceful
degradation in distributed systems. In PODC ’87: Proceed-
ings of the sixth annual ACM Symposium on Principles of
distributed computing, pages 167–177, New York, NY, USA,
1987. ACM.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability:
a correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

[KAD+07] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative byzantine fault tolerance. In ACM Sym-
posium on Operating Systems Principles, pages 45–58, 2007.

[KD96] Idit Keidar and Danny Dolev. Efficient message ordering in
dynamic networks. In Proceedings of fifteenth ACM Sympo-
sium on Principles of Distributed Computing (PODC), pages
68–76, 1996.

[KMMS98] Kim Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smith.
The securering protocols for securing group communication.
Hawaii International Conference on System Sciences, 3:317,
1998.

[KPA+03] Bettina Kemme, Fernando Pedone, Gustavo Alonso, André
Schiper, and Matthias Wiesmann. Using optimistic atomic
broadcast in transaction processing systems. IEEE Transac-
tions on Knowledge and Data Engineering, 15(4):1018–1032,
2003.

[LAC07] Harry C. Li, Lorenzo Alvisi, and Allen Clement. The game
of paxos. In Proceedings of the he 26th IEEE International
Symposium on Reliable Distributed Systems (SRDS), 2007.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Com-
put. Syst., 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM SIGACT News,
32(4):18–25, December 2001.

BIBLIOGRAPHY 149

[Lam03] Leslie Lamport. Lower bounds for asynchronous consensus. In
Proceedings of the Future Directions in Distributed Computing
Workshop, pages 22–23, October 2003.

[Lam05] Leslie Lamport. Generalized consensus and paxos. Technical
Report MSR-TR-2005-33, Microsoft Research, 2005.

[LDLM09] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas
Moscibroda. Trinc: small trusted hardware for large dis-
tributed systems. In NSDI’09: Proceedings of the 6th
USENIX symposium on Networked systems design and im-
plementation, pages 1–14, Berkeley, CA, USA, 2009. USENIX
Association.

[LLSG92] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghe-
mawat. Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10(4):360–391, 1992.

[LPS01] Bev Littlewood, Peter Popov, and Lorenzo Strigini. Modeling
software design diversity: a review. ACM Comput. Surv.,
33(2):177–208, 2001.

[LSP82a] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. ACM Trans. Program. Lang.
Syst., 4(3):382–401, 1982.

[LSP82b] Leslie Lamport, Robert Shostak, and Marshall Pease. The
byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems, 4(3), 1982.

[MA06] J.-P. Martin and L. Alvisi. Fast byzantine consensus. IEEE
Transactions on Dependable and Secure Computing, 3(3):202–
215, July 2006.

[MBTPV06] Carlo Marchetti, Roberto Baldoni, Sara Tucci-Piergiovanni,
and Antonino Virgillito. Fully distributed three-tier active
software replication. IEEE Trans. Parallel Distrib. Syst.,
17(7):633–645, 2006.

[MP91] F. J. Meyer and D. K. Pradhan. Consensus with dual failure
modes. IEEE Trans. Parallel Distrib. Syst., 2(2):214–222,
1991.

150 BIBLIOGRAPHY

[MR97] Dahlia Malkhi and Michael Reiter. Byzantine quorum sys-
tems. In STOC ’97: Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 569–578,
New York, NY, USA, 1997. ACM.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults. J. ACM, 27(2):228–234, 1980.

[PWB07] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andr Bar-
roso. Failure trends in a large disk failure trends in a large disk
drive population. In Proceeding of fifth USENIX Conference
on File and Storage Technologies (FAST), 2007.

[RCL01] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. Base:
using abstraction to improve fault tolerance. In SOSP ’01:
Proceedings of the eighteenth ACM symposium on Operating
systems principles, pages 15–28, New York, NY, USA, 2001.
ACM.

[RMS10] O. Rütti, Z. Milosevic, and A. Schiper. Generic construc-
tion of consensus algorithms for benign and byzantine faults.
In Proceedings of the 40th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2010.

[RS95] M. Raynal and A. Schiper. A suite of formal definitions for
consistency criteria in distributed shared memories. Technical
report, IRISA TR. 968, 1995.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299–319, 1990.

[SDM+08] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. Bft
protocols under fire. In Proc. of Fifth USENIX Symposium
on Networked Systems Design and Implementation, 2008.

[SFK+09] Atul Singh, Pedro Fonseca, Petr Kuznetsov, Rodrigo Ro-
drigues, and Petros Maniatis. Zeno: eventually consistent
byzantine-fault tolerance. In NSDI’09: Proceedings of the 6th
USENIX symposium on Networked systems design and imple-
mentation, pages 169–184, Berkeley, CA, USA, 2009. USENIX
Association.

BIBLIOGRAPHY 151

[SG07] Bianca Schroeder and Garth A. Gibson. Disk failures in the
real world: What does an mttf of disk failures in the real
world: What does an mttf of disk failures in the real world:
What does an mttf of 1,000,000 hours mean to you? In
Proceeding of fifth USENIX Conference on File and Storage
Technologies (FAST), 2007.

[SJ10] Marco Serafini and Flavio P. Junqueira. Weak consis-
tency as a last resort. In Proceedings of the the 4th ACM
SIGOPS/SIGACT Workshop on Large Scale Distributed Sys-
tems and Middleware, 2010.

[SJR09] Yee Jiun Song, Flavio P. Junqueira, and Ben Reed. Bft for
the skeptics. In BFTW3 Workshop, 2009.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, 2005.

[SS07] Marco Serafini and Neeraj Suri. The fail-heterogeneous ar-
chitectural model. In SRDS ’07: Proceedings of the 26th
IEEE International Symposium on Reliable Distributed Sys-
tems, pages 103–113, Washington, DC, USA, 2007. IEEE
Computer Society.

[TP88] Philip Thambidurai and You-Keun Park. Interactive con-
sistency with multiple failure modes. In Proceedings of the
Seventh Symposium on Reliable Distributed Systems, pages
93–100, 1988.

[TRAR99] Francisco J. Torres-Rojas, Mustaque Ahamad, and Michel
Raynal. Timed consistency for shared distributed objects. In
PODC ’99: Proceedings of the eighteenth annual ACM sym-
posium on Principles of distributed computing, pages 163–172,
New York, NY, USA, 1999. ACM.

[TTP+95] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update conflicts
in bayou, a weakly connected replicated storage system. In
SOSP ’95: Proceedings of the fifteenth ACM symposium on
Operating systems principles, pages 172–182, New York, NY,
USA, 1995. ACM.

152 BIBLIOGRAPHY

[Ver06] Paulo Verissimo. Travelling through wormholes: a new look at
distributed systems models. ACM SIGACT News, 37(1):66–
81, 2006.

[Vog09] Werner Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, 2009.

[WLG+78] J H WENSLEY, L LAMPORT, J GOLDBERG, M W
GREEN, K N LEVITT, P M MELLIAR-SMITH, R E
SHOSTAK, and C B WEINSTOCK. Sift - design and analysis
of a fault-tolerant computer for aircraft control. Proceedings
of the IEEE, 66:1240–1255, October 1978.

[WS03] Chris J. Walter and Neeraj Suri. The customizable fault/error
model for dependable distributed systems. Journal of Theo-
retical Computer Science, 290:1223–1251, 2003.

[YMV+03] Jian Yin, Jean-Philippe Martin, Arun Venkataramani,
Lorenzo Alvisi, and Mike Dahlin. Separating agreement from
execution for byzantine fault tolerant services. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 253–267, New York, NY, USA, 2003.
ACM.

[ZBWM08] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières.
Securing distributed systems with information flow control.
In NSDI’08: Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, pages 293–
308, Berkeley, CA, USA, 2008. USENIX Association.

[ZPR+07] Lidong Zhou, Vijayan Prabhakaran, Venugopalan Ramasub-
ramanian, Roy Levin, and Chandramohan A. Thekkath.
Graceful degradation via versions: specifications and imple-
mentations. In PODC ’07: Proceedings of the twenty-sixth
annual ACM symposium on Principles of distributed comput-
ing, pages 264–273, New York, NY, USA, 2007. ACM.

Curriculum Vitae

Personal Data

Name: Marco Serafini

Date of birth: January 24th, 1979

Place of birth: Arezzo, Italy

Education

1992-1997 Maturità degree – 60/60 – Liceo Scientifico Francesco Redi,
Arezzo, Italy

1997-2004 Laurea degree in Computer Science – 110/110 “Summa cum
laude” – Faculty of Mathematics, Physics and Natural Sciences, Uni-
versity of Florence, Italy

2004-2010 Ph.D. in Computer Science – Technische Universität Darm-
stadt, Darmstadt, Germany

Awards

• Recipient of DSN 2007 student scholarship

• Recipient of Graduiertenkolleg (GK) scholarship “Cooperative, Adap-
tive and Responsive Monitoring in Mixed Mode Environments“

• Recipient of SOSP and LADIS 2009 student scholarships

• Recipient of Eurosys SOSP 2009 student scholarship

• Recipient of DSN 2010 student scholarship

153

154 BIBLIOGRAPHY

Patents

• “Method and apparatus for monitoring the status of nodes of a com-
munication network“ - Inventor

Invited Talks

• AUDI AG, Ingolstadt, Germany. “Handling Transient and Intermittent
Faults in Embedded Distributed Systems”. September 11, 2006.

• Department of Computer Science, University of Florence, Italy. “From
Paxos to Speculative Byzantine Fault Tolerance”. July 24, 2008.

• Hitachi Research Lab, Omika, Japan. “Design, Validation and Verifi-
cation of a Diagnostic Protocol for Safety Critical System”. December
12, 2008.

• Max Planck Institute for Software Systems (MPI-SWS), Saarbruecken,
Germany. “Reducing the Costs of Fast Byzantine Replication in Pres-
ence of Unresponsive Replicas”. December 22, 2009.

• Newcastle University, Newcastle Upon Tyne, UK. “Reducing the Costs
of Fast Byzantine Replication in Presence of Unresponsive Replicas”.
March 25, 2010.

Publications

Journal articles

1. Marco Serafini, Peter Bokor, Neeraj Suri, Jonny Vinter, Astrit Ademaj,
Wolfgang Brandstaetter, Fulvio Tagliabo’, Jens Koch, “Application-
Level Diagnostic and Membership Protocols for Generic Time-
Triggered Systems”, IEEE Transactions on Dependable and Secure
Computing (IEEE TDSC) – accepted, to appear

2. Marco Serafini, Andrea Bondavalli and Neeraj Suri, “On-Line Diag-
nosis and Recovery: On the Choice and Impact of Tuning Parame-
ters”, IEEE Transactions on Dependable and Secure Computing (IEEE
TDSC), 4(4), Oct. 2007

BIBLIOGRAPHY 155

Conference articles

1. Marco Serafini and Flavio Junqueira, Weak Consistency as Last Re-
sort, in Proc. of ACM SIGOPS/SIGACT Workshop on Large Scale
Distributed Systems and Middleware (LADIS), Zürich (CH), 2010.

2. Marco Serafini, Dan Dobre, Matthias Majuntke, Peter Bokor and
Neeraj Suri, “Eventually Linearizable Shared Objects”, Proc. of ACM
Symp. on Principles of Distributed Computing (PODC), 2010.

3. Marco Serafini, Peter Bokor, Dan Dobre, Matthias Majuntke and
Neeraj Suri, “Scrooge: Reducing the Costs of Fast Byzantine Repli-
cation in Presence of Unresponsive Replicas”, Proc. of IEEE Int’l.
Conf. on Dependable Systems and Networks (DSN-DCCS), 2010.

4. Marco Serafini and Neeraj Suri, “Reducing the Costs of Large-Scale
BFT Replication”, Proc. of Large-Scale Distributed Systems and Mid-
dleware (LADIS), 2008.

5. Marco Serafini and Neeraj Suri, “Trust Characterization for Depend-
able Distributed Systems”, Eurosys student seminar, 2008

6. Marco Serafini and Neeraj Suri, “The Fail-Heterogeneous Architectural
Model”, Proc. of the IEEE Int’l Symp. on Reliable Distributed Sys-
tems (SRDS), 2007

7. Marco Serafini, Neeraj Suri, Jonny Vinter, Astrit Ademaj, Wolfgang
Brandstätter, Fulvio Tagliabo’ and Jens Koch, “A Tunable Add-On
Diagnostic Protocol for Time-Triggered Systems”, Proc. of the IEEE
Int’l Conf. on Dependable Systems and Networks (DSN-DCCS), 2007.

8. Peter Bokor, Marco Serafini and Neeraj Suri, “Efficient Models for
Model Checking Message-Passing Distributed Protocols”, Proc. of
Formal Techniques for Networked and Distributed Systems (FORTE),
2010.

9. Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri, “HP:
Hybrid Paxos for WANs”, Proc. European Dependable Computing
Conference (EDCC), 2010.

10. Matthias Majuntke, Dan Dobre, Marco Serafini and Neeraj Suri,
“Abortable Fork-Linearizable Storage”, Proc. of Int’l Conf. on Princi-
ples of Distributed Systems (OPODIS), 2009.

156 BIBLIOGRAPHY

11. Peter Bokor, Marco Serafini and Neeraj Suri, “Role-Based Reduction
of Fault-Tolerant Distributed Protocols with Language Support”, Proc.
of Int’l Conf. on Formal Engineering Methods (ICFEM), 2009.

12. Dan Dobre, Matthias Majuntke, Marco Serafini and Neeraj Suri, “Ef-
ficient Robust Storage using Secret Tokens”, Proc. of Int’l Symp. on
Stabilization, Safety, and Security of Distributed Systems (SSS), 2009.

13. Peter Bokor, Marco Serafini, Helmut Veith and Neeraj Suri, “Efficient
Model Checking of Fault-tolerant Distributed Protocols Using Sym-
metry Reduction (Brief Announcement)”, Proc. Int’l Symp. on Dis-
tributed Computing (DISC), 2009.

14. Kohei Sakurai, Masahiro Matsubara, Marco Serafini and Neeraj Suri,
“Dependable and Cost-Effective Architecture for X-by-Wire Systems
with Membership Middleware”, Proc. of FISITA World Automotive
Congress, 2008.

15. Peter Bokor, Marco Serafini, Aron Sisak, Andras Pataricza and Neeraj
Suri, “Sustaining Property Verification of Synchronous Dependable
Protocols Over Implementation”, Proc. of the IEEE Int’l Symp. on
High Assurance Systems Engineering (HASE), 2007.

	Title page
	Summary
	Zusammenfassung
	Acknowledgement
	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Introduction
	Open issues
	What is the Minimal Replication Cost for High-Performance BFT?
	Is Using Trusted Components in BFT Systems Useful in Practice?
	Are There Viable Alternatives to Eventual Consistency?

	Thesis Contributions
	Fast BFT with Unresponsive Replicas
	Trusted Processors with Asynchrony
	Eventual Linearizability and Aurora
	Publications Resulting from the Thesis

	Thesis Structure

	State of the Art and Background
	The Consensus Problem and Replication
	Failure Detectors
	The Paxos Protocol
	State-Machine Replication

	Modern Byzantine-Fault Tolerance
	The PBFT algorithm
	Efficient Byzantine-Fault Tolerance
	Trusted Components and Confidentiality

	Weak Consistency Semantics
	Chapter Summary

	Fast BFT at Low Cost
	Technical Highlights
	First Technique: Replier Quorums
	Second Technique: Message Histories

	System and Fault Model
	The Scrooge Protocol
	Normal Execution
	Reconfiguration

	Scrooge View Change
	Communication Pattern
	The Recover Function

	Evaluation and Comparison
	Chapter Summary

	BFT with Trusted Components
	Introduction
	System Model
	Service Properties
	The HeterTrust Protocol
	Overview
	Normal Operations
	Recovery
	Garbage Collection

	Chapter Summary

	Eventual Linearizability
	Definitions
	Model of Concurrent Executions
	Definition of Eventual Linearizability

	Implementations
	System Model for Implementations
	Eventual Consistency and Eventual Consensus

	Combination with Linearizability
	Impossibility Result
	A Gracefully Degrading Implementation

	Chapter Summary

	Conclusions and Future Research
	Overall Thesis Contributions
	Low-Cost and Fast BFT
	Fail-Heterogeneous Architectures
	Eventual Linearizability and Gracefully Degrading Implementations

	Open Ends
	Negative Results
	Understanding Byzantine Faults
	Applications of Eventual Linearizability

	Scrooge
	Correctness of the Scrooge Protocol
	Replica State and Definitions
	Agreement and Helper Procedures
	Proof Sketch
	Scrooge Safety
	Scrooge Liveness

	Integrating Garbage Collection
	Garbage Collection
	Modifications to Normal Executions
	Modifications to View Change
	Correctness

	Correctness of HeterTrust
	Eventual Linearizability
	Locality and nonblocking
	Eventual Consistency, Eventual Consensus and Consensus
	Correctness of the Aurora protocol
	Definitions
	Correctness proof

	Bibliography

