
Data Consistency and Coordination for
Untrusted Environments

Vom Fachbereich Informatik der Technischen Universität Darmstadt
genehmigte Dissertation zur Erlangung des akademischen Grades eines

Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Matthias Majuntke
geboren in Dernbach (Westerwald)

Referenten:
Prof. Neeraj Suri, PhD

Prof. Christof Fetzer, PhD

Datum der Einreichung: 18.07.2012
Datum der mündlichen Prüfung: 21.09.2012
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Abstract

Users of today’s computing devices are accustomed to having a permanent and capa-
ble connection to the Internet. Personal data and computational tasks are increasingly
assigned to online services. Besides many advantages, online services may not be fully
trusted by the users as they are usually hosted by a third party provider. Cryptographic
techniques are able to prevent a provider from leaking or modifying sensitive user data.
However, other attacks are still possible: When clients interact only through an untrusted
online service, the latter may send diverging and inconsistent replies. In this context,
fork-consistent semantics make it much easier for the clients to detect such violations.
They ensure that if an untrusted service only once sent a wrong response to some client,
then this client remains forever forked from those other clients to which the service replied
differently. If fork-consistency is provided, clients may easily detect service misbehavior
by out-of-band communication.

Recent research results have shown that it is impossible to implement a service that
provides full consistency and wait-free operations in the fault-free case and gracefully
degrades to fork-linearizability, the strongest notion of fork-consistency, if the service acts
maliciously. All existing solutions are based on locks, and thus, client operations may block
even if the service is correct. This thesis introduces the first lock-free implementations
with fork-linearizability, providing abortable (and therefore obstruction-free) operations if
the service behaves correctly. In practical settings, obstruction-free solutions can easily
be boosted to wait-freedom.

In the context of fork-consistency, the thesis demonstrates that the underlying system
assumptions can be significantly reduced. Existing works require the shared service to
execute non-trivial computation steps. In the thesis at hand it is shown that for a wide
range of fork-consistent implementations a service providing only a simple read/write
interface is sufficient. For practical systems this makes a big difference in cost as full-
fledged servers are typically more expensive than simple storage devices.

The second part of this thesis deals with the orthogonal question how to implement
shared storage abstractions that do not exhibit malicious, i.e., Byzantine faulty, behavior.
The basic principle is to achieve Byzantine fault-tolerance by replication over a set of
replicas out of which a fraction may act maliciously. The thesis presents lightweight,
Byzantine fault-tolerant implementations of an atomic register and a key-value-store as
required for many modern services in the cloud. The notion of lightweight comprises
several aspects to reduce the costs incurred by replication, e.g., a minimal number of
replicas and communication rounds, no employment of self-verifying data, and the support
of an unbounded number of possible malicious readers.
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Kurzfassung

Die Nutzer aktueller Computergeräte erwarten einen permanenten und leistungsfähigen
Zugang zum Internet. Deshalb werden persönliche Daten und Aufgaben zunehmend von
Online-Services verarbeitet. Neben vielen gebotenen Vorteilen können Benutzer solchen
Services jedoch nicht vollumfänglich vertrauen, da diese üblicherweise von Drittanbietern
bereitgestellt werden. Mithilfe kryptographischer Techniken kann eine nichtauthorisierte
Offenlegung oder Änderung von Benutzerdaten durch den Service-Anbieter wirkungsvoll
verhindert werden. Andere Angriffe sind jedoch weiterhin möglich: Wenn Clients nur
durch einen nicht vertrauenswürdigen Online-Service kommunizieren, kann dieser von-
einander abweichende und inkonsistente Antworten an die Clients versenden. In diesem
Kontext erleichtert die Eigenschaft Verzweigungskonsistenz (fork-consistency) es den Cli-
ents, ein solches Fehlverhalten des Services zu erkennen. Verzweigungskonsistenz garan-
tiert, dass, sobald ein nicht vertrauenswürdiger Service eine inkonsistente Antwort an einen
Client sendet, dieser Client für immer isoliert (und damit verzweigt) von den anderen
Clients bleibt. In einem System, das Verzweigungskonsistenz erfüllt, können Clients einen
fehlerhaft agierenden Server durch systemexterne Kommunikation leicht detektieren.

Aktuelle Forschungsergebnisse zeigen, dass es nicht möglich ist einen Service zu im-
plementieren, der volle Konsistenz und unabhängig terminierende (wait-free) Operatio-
nen im fehlerfreien Fall ermöglicht und, falls sich der Service bösartig verhält, niemals
Verzweigungslinearisierbarkeit, die stärkste verzweigungskonsistente Eigenschaft, verletzt.
Alle bislang existierenden Ansätze benötigen dafür Locks, so dass Operationen der Clients
selbst dann blockieren können, wenn der Service korrekt ist. Diese Dissertation stellt die
ersten lock-freien Implementierungen mit Verzweigungslinearisierbarkeit vor, die neben-
läufige Operationen abbrechen um ein Blockieren zu verhindern. Für praktische Anwen-
dungen können solche abbrechbaren Operation leicht in unabhängig terminierende Oper-
ationen überführt werden.

Weiterhin zeigt die vorliegende Dissertation wie im Kontext von Verzweigungskonsis-
tenz die zugrundeliegenden Systemannahmen signifikant reduziert werden können. In exis-
tierenden Ansätzen muss der benötigte, gemeinsam genutzte Service nichttriviale Berech-
nungsschritte ausführen. In dieser Arbeit wird gezeigt, dass für ein großes Spektrum
von verzeigungskonsistenten Implementierungen ein Service ausreicht, der nur eine ein-
fache Schreib/Lese-Schnittstelle bereitstellt. Für Systeme in der Praxis besteht ein großer
Kostenunterschied zwischen vollwertigen Servern und einfachen Speichermodulen.

Der zweite Teil der vorliegenden Dissertation behandelt die orthogonale Fragestellung,
wie gemeinsam genutzter Speicher implementiert werden kann, der kein fehlerhaftes Ver-
halten zeigt. Das Grundprinzip ist, durch Replikation Fehlertoleranz gegenüber beliebigen
Fehlertypen zu erreichen. Das bedeutet, dass aus einer Menge von replizierten Servern ein
Teil der Server beliebiges, fehlerhaftes Verhalten aufweisen kann. In dieser Arbeit werden
effiziente, fehlertolerante Implementierungen von atomischen Registern und Key-Value-
Stores vorgestellt. Key-Value-Stores werden hauptsächlich in vielen modernen Cloud-
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Services eingesetzt. Die vorgestellten Implementierungen reduzieren in mehrfacher Hin-
sicht den durch Replikation verursachten Overhead, z.B. durch eine minimale Anzahl von
Replikas und Kommunikationsrunden, den Verzicht auf Datenauthentifizierung sowie die
Unterstützung einer beliebingen Anzahl von möglicherweise bösartigen Lese-Clients.
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1 Introduction

1.1 Thesis in a Nutshell

The Times They are A-Changing

In the last decade, we have observed the increasing trend that a wide range of
computing devices has a nearly permanent broadband access to the Internet. This
development has fundamentally changed the way how computers are used nowa-
days and enabled the origin of a new kind of online services: Instead of storing and
processing data only on the local device, users assign these tasks to online services
“in the cloud”. This paradigm shift exists for different types of devices ranging
from smart phones, tablets, and personal computers to server systems. The range
of offered services is equally wide: Simple online services like storage, email, online
documents [Goo] and further upcoming Web 2.0 applications [YWG+08]; applica-
tions for online collaboration like the revision control systems CVS [CVS] and SVN
[SVN]; storage management systems like WebDAV [Whi97] and a large number of
distributed file systems [Wik]; the full “cloud” services like Amazon S3, Nirvanix
CloudNAS, and Microsoft SkyDrive [CKS09b] that provide Software-, Platform-,
and even Infrastructure-as-a-Service (SaaS, PaaS, IaaS).

Users benefit from such online services as they offer full data administration.
Hence, the user does not need to care for backups, software updates or server
maintenance. From an economic point of view, the expenses for setting up and
running a whole server infrastructure can be outsourced. Moreover, the data is
always available and can be accessed from everywhere. The latter also makes online
collaboration, where multiple users work on the same logical data, very attractive.
For instance, it enables cooperation among agencies of a large company or it allows
members of a project from different countries or time zones to work on the same
shared data.

However, all these key benefits of online services are at the same time a ma-
jor issue — the services are provided by a third party, i.e., they are usually not
inside the user’s administrative domain. Thus, the user may not fully trust the
online service as the service provider might corrupt or leak sensitive data in many
ways: It may grant unauthorized access to confidential data, data might be al-
tered undetectably, different users might have inconsistent views of the service,
and the provider might refuse to grant access to user data at all. Such malicious
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behaviors can be classified as violations of confidentiality, integrity, consistency,
and availability. Cryptographic encryption techniques are able to prevent unau-
thorized access to data (confidentiality). Digital signatures, hash functions, and
message authentication codes (MACs) ensure that each data corruption becomes
easily detectable, thus ensuring integrity. Availability, however, cannot be guar-
anteed in case the service provider is untrusted, as it may simply refuse to reply to
user requests. The only possibility to compensate a not responding service is for
the user to replicate the data over multiple service providers which may be then
used as backups.

A similar problem as with availability exists for the consistency of data: A user
cannot prevent that an untrusted service does not return the most recent but
stale data to the user. Such an attack especially arises when several users are
collaborating on the same logical data: a recent update of one user is omitted
and an outdated value is presented to another user. This split brain attack is
called forking and cannot be prevented. Starting from a forking attack an even
worse situation can appear in the presence of an untrusted service. Let Alice and
Bob be two users of some untrusted service that allows online collaboration on
text documents. Alice stores her most recent version of the shared document at
the service, while the service presents an outdated version of Alice’s document to
Bob. Bob is unable to distinguish an up-to-date version from an outdated one and
thus, from his point of view no malicious behavior has appeared. Bob proceeds by
editing the shared document and uploading his newest version back to the service.
Finally, Bob’s version is now presented to Alice. In this situation, Alice finds a
document which lacks her newest contributions (that have been omitted by the
untrusted service) but where Bob also did his editing. This means, that Alice has
to compare Bob’s version with her most recent version to find out that some of
her updates are missing. However, these changes might also have been done by
Bob. Unless Alice does not do such a consistency check with her own versions
and as long there is no out-of-band communication with Bob (e.g., per phone or
email), the misbehavior of the service cannot be easily detected, making reliable
collaboration impossible. In such a situation fork-consistent semantics, which is
a main topic of the thesis at hand, come into play to preclude that an untrusted
service may raise such an attack without being caught in the act.

Caught In The Act

Fork-Consistency is a safety property implemented among the users (i.e., clients)
and the untrusted service. Intuitively, it ensures that once two clients are forked,
they never see each others’ updates after that, or they may reveal the service as
faulty. Hence, with respect to consistency it remains for the malicious service only
to partition the users’ views of the system by omitting updates without being

2
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detected. Once such a partitioning occurs, the users stop hearing from each other.
If Alice has not seen updates from user Bob for a while she may now use out-of-
band communication (e.g., phone or e-mail) to easily find out whether the server
is misbehaving or if Bob did not do any updates.

Fork-consistent semantics comprise a number of properties that can be ordered
according to their strength. Fork-linearizability [MS02] is the strongest existing
fork-consistent property. Is is based on the well-known consistency property lin-
earizability [HW90]. Linearizability is defined as a property on shared objects that
may be concurrently accessed by several clients. A shared object provides opera-
tions at its API that can be called by the clients. Two operations (of two clients)
are said to be concurrent if the one is initiated while the other one has not yet
finished. Each operation may have some input parameters, changes the state of
the shared object, and returns a result to the client. Hence, the operations occur
on a shared object as an interleaved sequence of invocation and response events.
Such a shared object satisfies linearizability if the sequence of operations can be
ordered such that operations appear one after the other while neither the real-time
ordering nor the sequential specification of the object is violated — e.g., if a read
operation returns some value v from the object, the corresponding operation writ-
ing value v has to be scheduled before the read operation. As an untrusted service
can also be seen as a shared object, linearizability would be violated by omitting
updates and presenting it later on. Linearizability is a very desirable property as
it gives the illusion of atomic operations taking effect instantaneously.

The goal for the thesis at hand is for systems with an untrusted service to
achieve a graceful degradation of service semantics (also defined in the notion of
a Byzantine emulation [CSS07]): As long as the service behaves correctly, user
operations are processed atomically, and thus, satisfying linearizability. In any
case where the untrusted service deviates from its specified behavior, the fork-
linearizability property makes sure that each user still observes operations (and
their effects on the shared object) in a linearizable order, although operations
might have been omitted. This implies that the untrusted server can still fork the
views of two users but once forked they will remain forked forever (the so-called
no-join property). More formally, fork-linearizability guarantees that every two
users observe a common prefix of the linearizable order of operations up to the
forking point.

Mission Impossible

During the last decade a number of protocols and systems implementing fork-
linearizability have been published [MS02, LKMS04, CSS07, CG09, Cac11]. All
these protocols have in common that they are based on locks. The use of locks is a
well-known and generic principle to serialize the access to a shared object. A lock
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r2()→ vr1()→ u

S

w1(u) w2(v)

vu

C1

C2

(a) Server behaves correctly

r1()→ u

S

w1(u) w2(v)
C1

C2

vu u

r2()→ v

(b) Server behaves maliciously; indistinguishable for client C2

Figure 1.1: Intuition behind Cachin’s impossibility result [CSS07]

is a unique data item, which grants the client holding the lock exclusive access to
the shared object. The fundamental problem of a lock-based approach is that if
the lock is lost, e.g., when the client holding the lock crashes or is permanently
disconnected from the network, the whole system is blocked. The system may
even block if the untrusted service does not act maliciously. Moreover, it has been
found that there exists a fundamental limitation of fork-linearizable implementa-
tions: Cachin et al. have shown [CSS07] that even if the service behaves correctly,
clients cannot complete their operations independently from each other as this
introduces a vulnerability that can be exploited to violate fork-linearizability. To
have operations complete independently of each other is a desirable liveness prop-
erty called wait-freedom [Her91]. It is stronger than the liveness property provided
by lock-based systems — a client has to wait for the lock to be released before it
can take any action on the shared object, therefore not being independent of the
behavior of other clients. In a more formal way as shown by Cachin’s impossibil-
ity result [CSS07], in an asynchronous system there is no wait-free emulation of a
fork-linearizable storage on an untrusted server.

To get the intuition behind Cachin’s impossibility result, let us assume a simple
system with an untrusted server S and two clients C1 and C2. Here, all operations
are assumed to be wait-free and complete after two rounds of communication with
the server (see Figure 1.1). Figure 1.1(a), where the servers behaves correctly,
shows two write operations executed by client C1 storing values u and v one after
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S

w1(u) w2(v)

u

C1

C2
r2()→ ur1()→ u

abort

Figure 1.2: Intuition behind abortable operations

the other on server S. Read operation r1 of client C2 is concurrent with write
operation w2 and is thus allowed to return value u. The second read operation
happens after operation w2 and returns the newer value v. In this example it can
be observed that the information sent by C1 in the second communication round
of write operation w2 does not depend on any action taken by client C2. This
fact is exploited by the maliciously behaving server in Figure 1.1(b) to violate
fork-linearizability. Here, server S omits value v from client C2 and presents the
outdated value u. During read operation r1 client C2 is unable to distinguish
the real concurrency from Figure 1.1(a) from the simulated concurrency in Figure
1.1(b). Hence, if operations are wait-free fork-linearizability may be violated.

How to Get Around

The first contribution of the thesis at hand is to show how the impossibility re-
sult can be circumvented without using a lock-based approach. The main idea
to prevent a case like in Figure 1.1 is to allow operations to abort. Aborting
means that an operation completes by returning the special value abort and
without having an effect to the shared server. Obviously, any protocol imple-
menting abortable [AFH+07] operations does not satisfy wait-freedom. Instead,
the weaker progress condition obstruction-freedom [HLM03] is ensured. Building
upon the idea of abortable operation the first contribution of this thesis con-
stitutes a protocol implementing a fork-linearizable shared memory with
abortable operations (C1). It circumvents the impossibility result by sacrific-
ing the wait-freedom progress condition for guaranteeing fork-linearizability. As
mentioned before, key of this protocol is to avoid a situation like in the example
in Figure 1.1(a). In this case, the proposed algorithm aborts write operation w2

(Figure 1.2) such that it does not interfere with read operation r1 anymore and
fork-linearizability is not violated.

There are three lock-free1 progress conditions that have been extensively stud-

1In some papers the term lock-free is used synonymously for non-blocking. However, in the
remainder of the thesis these two notions are used as proposed by Valois [Val94] — distin-
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ied (in decreasing oder of strength): wait-freedom, non-blocking, and obstruction-
freedom. Differently from wait-freedom [Her91], the non-blocking progress con-
dition ensures that under concurrency, at least one operation is able to com-
plete [HW90]. Finally, obstruction-freedom [HLM03] guarantees that each opera-
tion that runs in isolation eventually completes. In practical settings the differ-
ences between these three progress conditions have shown to be vincible making
obstruction-free protocols very attractive. It has been shown that abortable im-
plementations (and therefore also obstruction-free ones) can be boosted to wait-
freedom in practical systems [AT08, FLMS05] that are partially synchronous.

The protocol proposed as the first contribution of this thesis implements a shared
service, termed shared memory. It consists of n simple storage objects known as
single-writer multiple-reader (SWMR) registers. There are n clients in the system,
i.e., the total number of readers and writers. Each register of the shared memory
provides a read operation that may be called by any client and a write operation
that can only be invoked by a dedicated client. By this, each client can exclu-
sively write into its “own” register and read from all other registers. Therefore,
the implemented operations of the shared memory take an additional argument
indicating the register of the memory that shall be accessed: write(v, i) denotes
that value v is written into register with index i, while read(i) returns the most
current content from register with index i. Whenever two of these operations of
the shared memory are called concurrently, i.e., the one is invoked while the other
has not yet returned, the pending operation is aborted. Thereby, contribution
(C1) constitutes the first lock-free fork-linearizable implementation at all. More-
over, the implemented fork-linearizable shared memory with abortable operations
(C1) [MDSS09] offers a very low communication complexity, i.e., the complexity
of the length of the sent messages, of O(n).

Better is the Enemy of Good

Referring back to Figure 1.1(b) let us now have a closer look to why fork-lineariza-
bility is violated in this example. Here, all operations are executed sequentially
in the following order, called real-time order: w1, w2, r1, r2. However, as read
operation r1 returns u, the value written by operation w1, r1 must not be ordered
before w2 according to the sequential specification. This implies that no order
of the operations exists satisfying both, the real-time order and the sequential
specification, and thus fork-linearizability is violated. Hence, the problem in this
situation (i.e., why no order satisfying fork-linearizability can be found) arises from
the fact that operations w2 and r1 are not completely independent — r1 has to be
ordered before w2 and after w1. However, considering the operations provided by

guishing protocols that are not based on any locking mechanism (i.e., lock-free ones) from
protocols that satisfy the non-blocking progress condition.

6



1.1 Thesis in a Nutshell

the fork-linearizable shared memory implementation of contribution (C1), there
may exist a run of the protocol where concurrent operations are independent. As
an example, we consider two operations write(v, i) and read(j) where i 6= j.
Note, that both operations access different registers of the shared memory, and
hence, the sequential specification does not dictate any order on them. Thus, for
such operations the argumentation of Cachin’s impossibility result [CSS07] does
not apply anymore. This further means, that aborting, as done by the protocol of
contribution (C1), is unnecessary in case write(v, i) and read(j) are concurrent.
In general, concurrent operations need not to be aborted if they access different
registers of the shared memory.

The second contribution of this thesis improves on the handling of concurrent
operations and reduces the number of unnecessarily aborted operations in com-
parison to the protocol of contribution (C1). The second contribution of the thesis
at hand comprises a protocol implementing a fork-linearizable shared mem-
ory with abortable operations, where concurrent operations accessing
different registers are not aborted (C2). The protocol of contribution (C2)
is an improvement over the one presented in contribution (C1) as in any run of
the protocol from (C2) as many as or more operations successfully complete than
if the same run was executed by the protocol from (C1).

However, the second protocol achieves this improvement by a higher communi-
cation complexity of O(n2) (where n is the total number of clients that also equals
the number of registers of the shared memory). Intuitively, the reason for this is
the following: To serialize all operations, the protocol of contribution (C1) makes
use of a vector of timestamps (of length n) that is digitally signed and appended
to each value written into the shared memory. As the second protocol allows for
concurrent operations if they are applied to distinct registers, only operations on
the same register are serialized. Hence, we apply the “serialization” mechanism
based on a timestamp vector of length n to each of the n registers of the shared
memory which results in a timestamp matrix of size n × n. This in turn leads
to the communication complexity of O(n2) as such a matrix is assigned to each
operation.

In summary, the two protocols of contribution (C1) and (C2) are the first im-
plementations that ensure fork-linearizable semantics while not being based on
locks. These protocols exhibit different characteristics: The first one is very effi-
cient given its linear communication complexity while the second one reduces the
number of aborted operations arguably to a minimum. As long as the untrusted
service (i.e., the shared memory in this case) behaves correctly, both protocols
ensure linearizability and obstruction-freedom. If the service deviates from its de-
sired behavior, the safety property of the properties gracefully degrades such that
fork-linearizability is never violated.
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Make it Easy

After having introduced the first two contributions of this thesis, we will now have
a closer look at the assumptions underlying the two presented protocols and other
approaches in the research area of fork-consistency. The two protocols from contri-
bution (C1) and (C2) both implement a shared memory, a service providing a quite
simple interface of just two operations read and write. On the other hand, how-
ever, the shared service itself, underlying these protocols, requires the execution
of non-trivial computation steps. The same observation can be made for exist-
ing works: fork-consistent constructions of shared memory [CKS11, SCC+10] and
file systems [MS02, LKMS04] are based on services that offer stronger operations
than a simple read-write interface. In other words, up to now, all fork-consistent
emulation protocols have required the service to execute non-trivial computation
steps, i.e., the service must implement an object of universal type [Her91], capable
of read-modify-write operations [KRS88].

Such objects, underlying the shared service, are usually classified according to
Herlihy’s wait-free hierarchy [Her91]. This hierarchy classifies shared objects along
their ability to solve the consensus problem in a wait-free manner. Consensus can
be seen as a fundamental building block to construct a shared object with any
functionality (i.e., a universal object) that can be accessed concurrently. The
strongest objects in Herlihy’s wait-free hierarchy are read-modify-write objects,
also constituting the universal object type, as they are able to solve consensus
in a wait-free manner with an arbitrary number of clients. The weakest kind of
objects in this hierarchy are registers, providing only read and write operations to
the clients. Using a register only the trivial instance of consensus with a single
client achieves wait-freedom. That is why the so called consensus number of
registers equals 1, while the universal objects have an infinite consensus number.
However, it is important to point out that there exists a fundamental difference
between the quite weak registers and objects of universal type. This fundamental
difference has also been described by Taubenfeld’s power number [Tau09].

Having this in mind, the requirements of the above mentioned fork-consistent
implementation tend to appear counterintuitive: They rely on the strongest possi-
ble object type while implementing a weaker one. Hence, the fundamental question
comes up whether one can provide a fork-consistent emulation in which the ser-
vice does not execute computation steps (i.e., constituting a universal object),
but can be realized only by memory objects (i.e., registers)? Surprisingly, the
next contributions of the thesis at hand show that this question can be answered
in the affirmative. Contributions (C3) and (C4) imply that for a wide range of
fork-consistent emulations, the underlying universal objects can be replaced by
registers. In practical terms, it is important to reduce the complexity and cost
of a shared service implementation as computation resources are typically more
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expensive than storage.

Also in theory, a long tradition of research has already addressed how to real-
ize more powerful abstractions from weaker base objects (e.g., [Her91, AFH+07,
AKMS11]). Aguilera et al. [AFH+07] showed how to construct a shared object
with universal functionality from simple register objects. Obviously, their con-
struction does not achieve wait-free operations, as this would contradict the clas-
sification of registers and universal objects in Herlihy’s wait-free hierarchy [Her91].
Instead, Aguilera et al. [AFH+07] construct a universal object with abortable op-
erations and argue that the achieved progress condition is as strong as obstruction-
freedom. So far, no stronger progress condition has been achieved for a construc-
tion of a universal object from registers.

There Ain’t No Such Thing As a Free Lunch

Referring back to Cachin’s impossibility result [CSS07], there is no wait-free im-
plementation of a shared memory that satisfies fork-linearizability. Needles to say,
this impossibility also applies for implementations built from registers. As fork-
linearizability and wait-freedom are the desired properties, any solution consti-
tutes a trade-off sacrificing either the safety or the liveness side of the properties.
However, implementations of a universal shared object using only registers are,
even without fork-linearizable semantics, restricted to a progress condition weaker
than wait-freedom — the strongest known implementation is only obstruction-
free. Hence, if there was an implementation which is based only on registers and
satisfies fork-linearizability, it would not sacrifice any property in comparison to
its counterpart without fork-linearizable semantics.

This goal is achieved by contribution (C3) constituting a fork-linearizable
implementation of a universal object from registers where operations
are abortable (C3). In comparison to the universal object construction from
registers of Aguilera [AFH+07], the implementation of contribution (C3) shows
that fork-linearizability can be added to such an implementation without being
faced with new trade-offs. Moreover, contribution (C3) constitutes the first con-
struction of a universal object with fork-linearizability only from registers. The
only existing fork-linearizable universal object implementation is based on a server
that implements a universal object [Cac11]. In comparison to further existing fork-
linearizability implementations, contribution (C3) allows to replace the server used
in contribution (C1) and (C2) by one that implements only weaker register ob-
jects. Analogously, existing fork-linearizable services that are based on a server
executing non-trivial computation steps and that use locks may be implemented
with the universal construction from contribution (C3) only from registers and
without using locks (as operations are abortable). Works from this category are
the fork-linearizable file system SUNDR of Mazières and Shasha [MS02], and the
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fork-linearizable memory implementation of Cachin et al. [CSS07].

To implement the protocol of contribution (C3) a number of registers is required
that is linear in the number of clients (in total there are n clients). The implemen-
tation from contribution (C3), as well as the protocol from (C1) and the one of
Cachin [CSS07], makes use of vector of timestamps to ensure fork-linearizability.
Unlike the latter protocols, contribution (C3) exhibits a communication complex-
ity of O(n2). This however is a direct consequence of using a server that imple-
ments only registers instead of computationally stronger one: While the latter
one is able to return the most recent data on request, in a register based imple-
mentation this is impossible. Here, the client has to read from all n registers
on the server to find the most recent data and thereby increasing communication
complexity by factor of n.

A Good Deal

Up to now, all fork-consistent implementations discussed in the thesis at hand have
sacrificed wait-freedom to enable fork-linearizability as satisfying both is ruled
out by Cachin’s impossibility result [CSS07]. Given the fact that for practical
applications obstruction-freedom is also a desirable property that can be easily
boosted to wait-freedom [AT08], these approaches turn out to be a good deal.
However, there exists also another possibility to circumvent Cachin’s impossibility
result by keeping wait-freedom and trading fork-linearizability.

As mentioned earlier, fork-linearizability is the strongest fork-consistent prop-
erty, being based on linearizability. A property weaker than linearizability is se-
quential consistency that gives up the property of real-time order required for lin-
earizability. There also exists a fork-consistent counterpart, called fork-sequential
consistency [OR06] that is strictly weaker than fork-linearizability. However, in
a recent paper, Cachin et al. [CKS09a] have shown that there is no wait-free im-
plementation of fork-sequential consistent storage as well. Hence, targeting fork-
sequential consistent approaches does not help in getting around the wait-free
impossibility [CSS07].

A possibly viable solution comes in terms of the notion of weak fork-lineariza-
bility [CKS11] which constitutes the strongest fork-consistent property that allows
for wait-free operations. It is strictly weaker than fork-linearizability but neither
stronger nor weaker than fork-sequential consistency. It relaxes fork-linearizability
in two ways: Weak fork-linearizability allows two clients, after being forked, to
observe a single operation of the other one (at-most-one-join), and that the real-
time order induced by linearizability may be violated by the last operation of each
client (weak real-time order). Although weaker than fork-linearizability, weak
fork-linearizability is also very attractive as it has shown to be of practical rel-
evance: The storage service FAUST [CKS11] achieves weak fork-linearizability.
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Register
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Figure 1.3: Overview on Contributions (C1) – (C4)

The Venus system [SCC+10] implements the mechanisms behind FAUST and de-
scribes a practical solution for ensuring integrity and consistency to the users of
cloud storage.

Contribution (C4) strikes the path of trading fork-linearizability to achieve wait-
freedom: It constitutes a weak fork-linearizable implementation of a shared
memory from registers where operations are wait-free (C4). Contribu-
tion (C4) improves over the only existing weak fork-linearizable construction of a
shared memory [CKS11] as it is only based on registers instead of a stronger server
implementing a universal object — i.e., the construction from (C4) allows to elim-
inate the server code from Venus [SCC+10]. However, directly implied by using
a server that implements only registers is the fact that the implementation from
contribution (C4) requires two rounds of communication of the clients with the
server while the FAUST service [CKS11] requires only a single round. The commu-
nication complexity of O(n3) leaves room for further improvements. However, the
main benefit of the construction of contribution (C4) is that the implemented op-
erations are wait-free, which is the only progress condition guaranteeing maximal
independence among client operations [HS11].

As a conclusion, the protocols from contributions (C3) and (C4) [MDCS11] con-
stitute the first known result that fork-consistent semantics can be implemented
only from registers. Both focus on different aspects to circumvent existing impos-
sibility results: The protocol from contribution (C3) satisfies fork-linearizability
and implements a shared object of universal type. Similar to non-fork-consistent
universal constructions from registers, operations may abort under concurrency.
Hence, fork-linearizability may be “added” to such protocols without making ad-
ditional assumptions. The protocol from contribution (C4) implements a shared
memory object that ensures weak fork-linearizability and where operations are
wait-free as long as the base registers behave correctly. Weak fork-linearizability
is the strongest known fork-consistency property that may be implemented in a
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wait-free manner. Moreover, it shows for the first time that registers are sufficient
to implement a fork-consistent shared memory. An overview on contributions (C1)
to (C4) of the thesis at hand is given in Figure 1.3 summarizing all introduced
protocols with fork-consistent semantics.

Going Deeper

Contributions (C3) and (C4) comprise protocols that are built upon atomic reg-
isters. So far, these atomic registers are handled as being untrusted, i.e., the
registers are allowed to arbitrarily deviate from the specified behavior. However,
such worst-case behavior should be an exception and in normal-case the atomic
registers are expected to act as specified. Thus, an obvious question is how to
implement the used atomic registers such that the influence of malicious behavior
is mitigated? The idea is to find a Byzantine fault-tolerant implementation of an
atomic register over a set of replicated servers. The principle of replication allows
to tolerate arbitrary behavior of a fraction of the replicas and, thereby, to mask
[AS85] malicious behavior.

A register is a simple storage object that may store only one value at a time and
that provides operations read and write at its interface. Registers come at dif-
ferent strengths dependent upon their behavior under concurrent access [Lam86].
For a safe register, which is the weakest register type, holds that a read opera-
tion that occurs concurrently with some write operation may return an arbitrary
value. A regular register provides stronger properties than a safe register, as a
read operation either returns the value written by the last preceding write or
a value which is written concurrently with the read operation. The strongest,
atomic register, linearizes all read and write operations: Additionally to the
properties of a regular register it ensure that if a read operation returns a value
v then any succeeding read does not return a value older than v.

For practical settings it is of vital importance to keep the costs incurred by
replication minimal — i.e., to find the maximal number of of malicious servers
that can be tolerated given any number of replicas. Such an implementation is also
denoted as optimally resilient. In the context of fault-tolerant storage, a replicated
implementation is denoted as robust [ABND95] if it is optimally resilient and
provides wait-free operations. The provided resilience depends on the underlying
fault-model. For the most general fault-model, allowing Byzantine behavior of the
replicated servers and which is also applied here, using 3t+ 1 replicas to tolerate
t Byzantine failures has shown to be optimal [MAD02].

Besides low replication costs, as provided by robust atomic register implemen-
tations, for practical settings further aspects have also to be taken into account to
achieve a lightweight solution: To attain low latency, the number of communica-
tion rounds between the client and the replicated servers has to be minimal. To
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avoid the costs of setting-up and operating a public-key cryptosystem, an imple-
mentation not relying on self-verifying data is desirable (i.e., non-authenticated
data model). For reasons of scalability, an unbounded number of readers should
be supported. Furthermore, any number of malicious readers should be tolerated.

Although the research area of fault-tolerant storage has been extensively ex-
plored in the past decades, none of the existing solutions is able to satisfy all
requirements from the above established “wish list”. For optimally resilient Byzan-
tine fault-tolerant storage both read and write operations having a worst-case
latency of a single communication round have shown to be impossible: Work of
Abraham et al. [ACKM06] proves that any Byzantine fault-tolerant storage em-
ploying the optimal number of replicas has at least some write operation com-
pleting in two communication rounds. Work of Guerraoui and Vukolic [GV06]
rules out reading in a single round even from robust safe registers. By allowing
the existence of secret tokens, Dobre et al. [DMSS09] circumvent this impossibility
result only for robust regular registers. Solutions allowing single-round read and
write operations of atomic storage are only optimized for the best case [GLV06],
i.e., for synchronous runs without concurrency and with fewer malicious replicas.
In such runs, the latency of read and write operations gracefully degrades to
two or more communication rounds [GV07], depending on the number of malicious
replicas. To finalize the “wish list”, aiming at a robust atomic register implemen-
tation where read operations complete in two communication rounds is optimal,
even for the stronger model of authenticated data [DGLV10].

No One Knows What the Future Holds

Contribution (C5) achieves in the non-authenticated data model all requirements
on the “wish list” by slightly restricting the behavior of the malicious servers.
As in the system model of Dobre et al. [DMSS09], the existence of secret to-
kens is allowed. In a practical setting this assumption is easily satisfiable by a
(pseudo) random number generator whose output may not be predicted by the
malicious servers. Contribution (C5) leverages this assumption and comprises
the first lightweight Byzantine fault-tolerant, robust implementation of
an atomic register. The implementation is denoted as lightweight, as it satis-
fies optimal resilience, features an optimal latency of two communication rounds
for read and write operations, does not rely on self-verifying data, and sup-
ports and unbounded number of malicious readers. Note, that this is the first
Byzantine fault-tolerant, robust implementation of an atomic register in the non-
authenticated data model that tolerates malicious readers. Moreover, the latency
of two communication rounds for read and write operations achieved by the
protocol introduced as contribution (C5) in the non-authenticated data model is
close to the optimal latency of one round for write and two rounds for read
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operations in the authenticated data model [MR98]. The protocol of contribution
(C5) thereby significantly improves on the best, existing implementation in the
non-authenticated data model featuring two-round write and four-round read
operations [DGM+11].

The key idea behind the atomic register implementation of contribution (C5) is
the concept of a commitment scheme intuitively implementing the functionality of
a lockable box: The writer generates a secret token that is neither known nor may
be predicted by the replicated servers and the readers. Then, the token is locked
in a box by the writer constituting a commitment. Just from the locked box (i.e.,
the commitment) it is impossible to determine the contained token. However, if
the writer sends an opening revealing the token, it can be easily verified if commit-
ment and token correspond. For the implementation of the commitment-scheme,
contribution (C5) gives two options: The use of a cryptographic hash function
[RS04] or a variant of Shamir’s secret sharing scheme [Sha79]. The second option
makes the proposed atomic register implementation even information theoretically
secure [LCAA07, AACL07].

The commitment scheme is employed by contribution (C5) to reduce the latency
of atomic read operations in the non-authenticated data model from four to two
communication rounds. As a generic technique, an atomic read operation can
be implemented from regular read and write operations: The key difference
between atomic and regular registers is that an atomic read operation returning
value v has to ensure that any succeeding read operation does not return a
value older than v. Hence, an atomic read can be constructed from a regular
read if the value, that is going to be returned, is written back to the register
using operation write. Thus, the existing four-round atomic read operation can
be seen as a two-round regular read followed by a two-round write-back. The
employed commitment scheme allows the protocol of contribution (C5) to perform
the write-back in a single communication round (which would result in a three-
round latency for the atomic read operations). The two-round latency of read
operations is achieved in contribution (C5) by the idea to write-back a list of
possible values to be returned that is already written back before the reader knows
which value from the list it is going to return.

The Wheel is Come Full Circle

Within the trend of upcoming services “in the cloud” simple read/write interfaces
for cloud storage solutions have become popular. A key-value store (KVS) is the
most favored storage abstraction for cloud services providing such a simple inter-
face [DHJ+07, MTJ+08, ALM+10, LM10, CWO+11]. A KVS allows concurrent
access of several clients to store and retrieve data in the cloud. It usually provides
four different operations to the clients [BCE+12]: a Put(key, v) operation stores
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value v under a unique key key at the KVS. Operation Get(key) retrieves the
correct value associated with key key from the KVS. The delete(key) operation
removes the value associated with key key, while operation list() returns a list of
all keys with associated values.

Due to the obvious similarity between the interface of an atomic register and
a KVS, the idea for contribution (C6) is to extend the atomic register from con-
tribution (C5) to implement a lightweight, robust, Byzantine fault-tolerant
key-value store. Intuitively, operation Put(key, v) can be emulated as an atomic
operation write(v) to a register named key, while get(key) means to atomically
read from “register” key. As key key in a KVS may be accessed by multiple
clients to store data, operation Put(key, v) has to be extended from single-writer
to multi-writer capabilities. This achieved by an extra round of communication at
the beginning of a Put(key, v) operation to request the highest timestamp used
for key key so far2. Operation delete(key), may be emulated as an put(key,⊥)
operation storing special null value ⊥ with key into the KVS. The list() operation
is implemented reusing techniques from atomic read() operations, concurrently
accessing all possible keys.

1.2 Contributions in a Nutshell

This section provides an overview on the contributions made in the thesis at hand.
Contributions (C1) and (C2) already appear in the following publications:

[MDCS11] Matthias Majuntke, Dan Dobre, Christian Cachin, and Neeraj Suri.
Fork-Consistent Constructions From Registers. In Proceedings of the 15th
International Conference on Principles of Distributed Systems (OPODIS),
Toulouse, France, 2011.

[MDS11] Matthias Majuntke, Dan Dobre, and Neeraj Suri. Fork-Consistent Con-
structions From Registers (Brief Announcement). In Proceedings of the 30th
annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), San Jose, California, USA, 2011.

Contributions (C3) and (C4) have been published in the following paper:

[MDSS09] Matthias Majuntke, Dan Dobre, Marco Serafini, and Neeraj Suri.
Abortable Fork-Linearizable Storage. In Proceedings of the 13th Interna-
tional Conference on Principles of Distributed Systems (OPODIS), Nı̂mes,
France, 2009.

2This extra round of communication may skipped if writers have access to synchronized clocks.
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Contributions (C5) and (C6) are part of the following technical report:

[MDS12] Matthias Majuntke, Dan Dobre, and Neeraj Suri. Lightweight Robust
Atomic Storage. Technical Report. Technische Universität Darmstadt. TR-
TUD-DEEDS-07-01-2012. July, 2012.

Contributions (C1)–(C4) have in common that they allow the shared server used
to arbitrarily deviate from its specified behavior (also know as Byzantine [PSL80]
or non-responsive-arbitrary [JCT98] faults). As long as the underlying shared
server proceeds correctly, the presented protocols achieve linearizability and the
specified progress condition. In any other case, the protocols from contributions
(C1)–(C4) gracefully degrade to the specified fork-consistent semantics (Figure
1.3 on page 11). As the clients do not trust the Byzantine server, all informa-
tion sent during the execution of the protocols by each client is digitally signed
by the corresponding client. The existence of such a cryptographical signature
scheme that cannot be compromised by the Byzantine server is assumed. More-
over, the correctness of the protocols is also based on the assumption that the
participating clients trust each other — which is also the basis for a reasonable
online collaboration.

Contributions (C5) and (C6) are implemented on top of a collection of 3t + 1
replicated servers, out of which t may be Byzantine faulty. Both implementations
rely on the assumption that the writer has access to a (pseudo) random number
generator whose output cannot be predicted by the malicious servers and clients.
Therefore, the communication channels between writers and correct servers have
to be secure and authenticated. Unless no more than t replicas act maliciously,
both protocols provide wait-freedom and atomic operations.

The thesis at hand makes the following contributions:

(C1) The fork-linearizable shared memory protocol Linear with abortable oper-
ations (Section 1.2.1 and Section 3.5 in Chapter 3).

(C2) The fork-linearizable shared memory protocol Concur with abortable op-
erations that allows concurrent operations (Section 1.2.2 and Section 3.6 in
Chapter 3).

(C3) The fork-linearizable universal object protocol Afl with abortable opera-
tions using only registers (Section 1.2.3 and Section 4.4 in Chapter 4).

(C4) The weak fork-linearizable shared memory protocol Wfl with wait-free op-
erations using only registers (Section 1.2.4 and Section 4.5 in Chapter 4).

(C5) The lightweight, robust, Byzantine fault-tolerant atomic register protocol
LwR (Section 1.2.5 and Section 5.4 in Chapter 5).
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(C6) The lightweight, robust, Byzantine fault-tolerant key-value store protocol
LwKVS (Section 1.2.6 and Section 5.5 in Chapter 5).

1.2.1 Abortable Fork-Linearizable Storage

The first contribution (cf. (C1), page 5, and Section 3.5 in Chapter 3) of the thesis
at hand deals with the problem of implementing a fork-linearizable shared memory
which does not make use of locks. Implied by the impossibility result of Cachin
et al. [CSS07], which rules out the existence of a wait-free Byzantine emulation
of a fork-linearizable shared memory, all existing approaches implementing fork-
linearizable semantics are based on locks [MS02, CSS07].

The Linear protocol, constituting contribution (C1), implements for n clients
C1, . . . , Cn a fork-linearizable shared memory with abortable operations [AFH+07]
using a shared server. The implemented shared memory provides n storage reg-
isters to the clients, where each client may write to a dedicated register and read
from all registers. The shared memory is accessed by two operations read(i),
that returns the most recently written value from the ith register of the shared
memory, and write(i, v), that updates the state of the ith register with value v
and may only be called by client Ci.

The operations read and write implemented by the Linear protocol are
abortable, i.e., operations are allowed to return the special value abort whenever
they access the shared memory concurrently. To handle concurrent operations,
the shared server implements a concurrency detection mechanism that resembles
ideas from recent work of Aguilera et al. [AFH+07]. During the execution of any
read or write operation, clients communicate with the shared server by mes-
sage passing. Hence, from the server’s point of view an operation is initiated on
reception of the first message from the client and finishes as soon as the server has
sent the final message of an operation to the client. To detect concurrency among
operations, the server maintains a list of pending operations, i.e., for which it has
received the initial message from the client but not yet sent the final message.
Upon reception of the initial message of a new operation, the server relabels all
pending operations as “to be aborted” and maintains the new operation as the
only pending operation. The final message of an operation that is labeled for abor-
tion, indicates to the client that the operation has not successfully completed and
the client may return the special abort value. The effects of aborted operations
are rolled-back by the server.

Similar to the works of Mazières and Shasha [MS02] and Cachin et al. [CSS07]
the fork-linearizable semantics are realized in the Linear protocol by timestamp
vectors. Each read and write operation is assigned a vector of length n of
timestamps which is written to the shared server. The basic principle is that
a client upon initialization of an operation requests the most recent timestamp
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vector from the server. Next, it performs consistency checks, increments its own
timestamp (i.e., client Ci updates the ith entry) in the vector, and sends the up-
dated timestamp vector back to the server. To perform the consistency check,
the client always stores the timestamp vector assigned to its last successful oper-
ation (i.e., one that has not been aborted). The consistency check is passed (for
client Ci) if the ith entry in the timestamp vector returned from the server is not
smaller than the ith entry in the timestamp vector of the last successful operation
of Ci. It is important to note that all the information exchanged between client
and server is digitally signed by the client. Therefore, the performed consistency
check ensures fork-linearizability as, intuitively, a client may detect if some of its
previous operations have been omitted by the server from other clients.

Combining the ideas of concurrency detection to abort interleaving operations
with timestamp vector based consistency checks to guarantee fork-linearizability,
the presented Linear protocol constitutes the first lock-free implementation of
fork-linearizable shared memory. Its communication complexity of O(n) is as
low as the complexity of the most-efficient lock-based fork-linearizable emula-
tion [CSS07].

1.2.2 Concurrent Abortable Fork-Linearizable Storage

The second contribution (cf. (C2), page 7, and Section 3.6 in Chapter 3) com-
prises the Concur protocol that improves the handling of concurrent operations
compared to the Linear protocol of contribution (C1). The Concur protocol
as well constructs a fork-linearizable shared memory for n clients with abortable
operations. It implements the same interface as the Linear protocol providing
operations read(i) and write(i, v) to each client Ci, i = 1, . . . , n. In contrast to
the Linear protocol, the presented Concur protocol does not abort concurrent
operations as long as they access different registers of the shared memory, e.g.,
operation write(i, v) writing value v into the ith register and operation read(j)
that concurrently reads from the jth register.

However, this implies that the Concur protocol has to be able to cope with
concurrent operations: The basic principle of reading, updating, and writing times-
tamp vectors to ensure fork-linearizability is adopted from the Linear protocol.
By allowing concurrent operations, a situation may arise where the server returns
the same timestamp vector to two different operations of clients Ci and Cj . Here,
client Ci would increase the ith entry in the timestamp vector while Cj increases
the jth entry. Hence, neither the new timestamp vector of Ci would pass the
next consistency check of client Cj nor vice versa. To overcome this problem, the
Concur protocol applies the timestamp vector scheme from the Linear proto-
col separately to each of the n registers. Thus, each operation is now assigned n
timestamp vectors that can be arranged as the rows of an n× n matrix.
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Relying on a timestamp matrix rather than a timestamp vector, the communi-
cation complexity of the Concur protocol increases to O(n2). In comparison to
the Linear protocol, however, a higher number of operations complete without
being aborted in the Concur protocol. In a direct comparison, there exists no run
where the Concur protocol aborts an operation while the Linear protocol does
not. To implement the refined concurrency detection mechanism, the Concur
protocol maintains a separate list of pending operations for each register of the
shared memory. Hence, the Concur protocol is the first fork-linearizable imple-
mentation of a shared memory that allows operations to be successfully executed
concurrently.

1.2.3 An Abortable Fork-Linearizable Universal Object from Registers

The third contribution (cf. (C3), page 9, and Section 4.4 in Chapter 4) of this thesis
reduces the assumptions made in comparison to the Linear and Concur proto-
cols from contribution (C1) and (C2). The presented protocol Afl implements a
shared object of universal type only from registers, that satisfies fork-linearizability
and where operations are allowed to abort under concurrency.

The basic idea of the Afl protocol follows the construction of a universal object
from registers developed by Aguilera et al. [AFH+07]: To implement an arbitrary
functionality, the client reads the most recent state stored in the registers at the
shared server, applies the corresponding state transformation, and writes the new
state into its “own” register (i.e., client Ci writes to the ith register). Before, a
state is written to a register on the server, the assigned timestamp vector has to
pass a consistency check, analogously as in the Linear protocol.

Similar to the Linear protocol, the Afl protocol makes use of timestamp vec-
tors to ensure fork-linearizability and implements a concurrency detection mech-
anism to determine operations that have to be aborted. As the used registers
offer a very limited functionality in comparison to the shared server underlying
contributions (C1) and (C2), the concurrency detection has to be changed funda-
mentally. Therefore, the Afl protocol uses a special inc&read counter object
C. This counter object C is a wait-free variant of the one proposed by Aguilera
et al. [AFH+07] to construct a universal object with abortable operations from
registers. The inc&read counter offers two operations: read(C) that returns the
latest counter value, and inc&read(C) that increments the counter and returns
the new counter value in an atomic operation. The operations of the inc&read
counter object C are wait-free and it can be constructed from n registers.

The Afl protocol uses the inc&read counter for two different purposes, to
detect concurrent operations and to determine the most recent state of the im-
plemented universal object. To detect concurrent operations, the client calls
inc&read(C) upon initiation of an operation and stores the returned counter
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value. Before completing an operation, the client reads from the inc&read
counter (using read(C)) and compares the new counter value with the stored
one. If it has changed, another client has incremented the counter in the mean-
while, implying that the operation is under concurrency and has to be aborted.
Furthermore, the returned counter value of C is written together with the updated
state of the universal object, which allows the client to determine the state with
the highest assigned counter value as the most recent.

The proposed Afl protocol is the first construction of a universal object from
registers that features fork-linearizable semantics. All previous implementations of
fork-linearizability are based on computationally stronger servers [MS02, CSS07,
MDSS09]. In comparison to these works, the Afl protocol, by requiring only
registers, achieves a significant reduction of the underlying assumptions. Com-
pared to the only other existing construction of a universal object from registers
with abortable operations [AFH+07], the Afl protocol additionally achieves fork-
linearizability without making further assumptions.

1.2.4 Wait-free Weak-Fork-Linearizable Storage from Registers

The forth contribution (cf. (C4), page 11, and Section 4.5 in Chapter 4) of this
thesis comprises the Wfl protocol implementing a shared memory only using
registers. In contrast to the Afl protocol, the operations of the Wfl protocol
achieve wait-freedom as long as the underlying server providing the shared registers
behaves correctly. Induced by Cachin’s impossibility result [CSS07], the Wfl
protocol implements weak fork-linearizability.

The proposed Wfl protocol makes use of an atomic single-writer snapshot ob-
ject S with n components [AGR08, Fic05]. Snapshot object S provides two atomic
operations: update(d, S, i), that writes d to component i of S, and scan(S) that
returns the most recent content of all n components. It has been shown, that
snapshot object S can be implemented only from registers in a wait-free man-
ner [AGR08, Fic05]. Moreover, the Wfl protocol maintains one dedicated register
Wi for each client Ci, i = 1, . . . , n.

The basic principle behind the Wfl protocol is that each client maintains a
local timestamp and that during each operation, first, this timestamp is written
to the shared memory, and secondly, the timestamps left by other operations are
read. Thereby, during read operations, client Ci first writes its timestamp tsr by
calling update(tsr, S, i) and then reads all timestamps from registers W1, . . . ,Wn.
During a write operation, client Ci first writes its timestamp to register Wi before
it reads the timestamps of other clients using operation scan(S). This guarantees
a helpful property on the implemented read and write operations: Whenever
read- and write-phase of two operations are concurrent, the corresponding update
and scan phases are not concurrent (Figure 1.4).
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write high-level write(i, v) ow

high-level read(j) or

update read

write scan write scan

Figure 1.4: Basic principle implemented by the Wfl protocol

In the example of Figure 1.4, the call of scan during write operation ow will
return the timestamp written during read operation or using update — hence,
operation ow “has seen” operation or. Weak fork-linearizability is guaranteed in
the Wfl protocol by having the clients write such information during each write
operation. During read operations a consistency check is performed probing
whether a write operation “has seen” the expected set of read operations.

The Wfl protocol constitutes the first weak fork-linearizable construction of a
shared memory using only registers. In this sense it achieves the same properties
as the FAUST service of Cachin et al. [CKS11] (which is based on a server with
universal functionality), but makes significantly less assumptions.

1.2.5 A Lightweight Robust Atomic Register

Contribution (C5) (page 13, and Section 5.4 in Chapter 5) of this thesis comprises
a lightweight and robust Byzantine fault-tolerant implementation of a SWMR
atomic register. Robustness denotes that the proposed implementation provides
wait-free operations and is optimally resilient with respect to Byzantine failures,
i.e., it tolerates t malicious out of n = 3t + 1 replicas [MAD02]. The provided
read and write operations feature a worst-case latency of two communication
rounds which has shown to be optimal for read operations even in settings with
self-verifying data [DGLV10].

The implemented atomic register has been designed to be lightweight under
several practical aspects: it does not make use of self-verifying data to avoid the
costs incurred by a public-key cryptosystem (non-authenticated data model). It
is scalable in the number of clients as the a communication complexity is in O(n).
It tolerates any number of malicious readers.

The basic principle underlying the implemented atomic register is that it makes
use of a cryptographic commitment scheme [BCC88]. During the pre-write phase
of a write(v) operation, the writer generates a token and sends, along with value
v, a commitment to the replicated servers. By the hiding property of the com-
mitment scheme, the chosen token cannot be known by the replicas. In the write-

21



1 Introduction

phase, the writer sends an opening to the servers, revealing the token. The binding
property of the commitment ensures that the servers can validate the revealed to-
ken.

Accessing t+ 1 replicas reporting a validation of the token indicates to a client
during a read() operation that the corresponding pre-write phase is complete.
Thus, value v has been stored to t + 1 correct servers which is a sufficient con-
dition to perform the write-back of v, to ensure atomic semantics, in a single
communication round.

The introduced atomic register constitutes the first robust and latency-optimal
implementation in the non-authenticated data model where an unbounded number
of malicious readers is supported. The used model is based on the assumption
that malicious servers may not predict the output of a (pseudo) random number
generator [DMSS09].

1.2.6 A Lightweight Robust Key-Value Store

The final contribution of the thesis at hand (contribution (C6), page 15, and Sec-
tion 5.5 in Chapter 5) extends the SWMR atomic register implementation from
contribution (C5) to a Byzantine fault-tolerant key-value store (KVS) [BCE+12].
As well, the proposed KVS is optimally-resilient with respect to Byzantine faulty
objects, supports an unbounded number of clients, and tolerates an unbounded
number of malicious readers. Operations get(key) complete in two communi-
cation rounds. As the KVS supports multiple writers an extra round of com-
munication is required. Thus, put(key, v) and delete(key) operations complete
after three rounds of communication. Operations, get(key), put(key, v), and
delete(key) are atomic, while list() operations feature regular semantics.

Contribution (C6) provides the most efficient Byzantine fault-tolerant imple-
mentation of a KVS which has become one of the most popular interfaces for
“cloud storage” solutions.
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This chapter introduces the system model underlying all protocols that are pro-
posed throughout this thesis (Section 2.1). All protocols are executed in an asyn-
chronous distributed system consisting of clients and servers. The protocols imple-
ment different shared functionalities that provide operations at the client interfaces
to be called by higher-level applications. In the later Chapters 3, 4, and 5 the ba-
sic model is extended as required by the corresponding contributions. Section 2.2
builds up a background on different types of servers and on fork-consistency, re-
quired for a deeper understanding of the contributions of the thesis at hand. It is
differentiated between servers that are able to implement a universal functionality
and those that provide only a simple read/write interface. Fork-consistency refers
to a class of safety properties that can be achieved in a system with a malicious
server. The corresponding liveness properties are only guaranteed as long as the
server behaves correctly.

2.1 System Model

2.1.1 Basic Concepts

The system underlying the protocols introduced in the thesis at hand is a dis-
tributed system consisting of two sets C and S of processes denoted as clients and
servers, respectively. Each process is modeled as a deterministic I/O automaton
[Lyn98, Sec. 8.1]. Every client may communicate with every server by message
passing over communication channels. Servers are unable to communicate with
each other. The state of a communication channel between client p and server q
is modeled as a set of messages mbufp,q = mbufq,p.

A distributed protocol P consists of a collection of algorithms AP , where each
process p is assigned algorithm Ap from collection AP . A process p executes
algorithm Ap if it proceeds in steps of Ap. A step is defined as a pair of process
id and a set of messages (p,M), where set M might also be the empty set ∅. A
process p takes a step (p,M) if it performs the following actions:

1. It removes the messages M from set mbufp,∗;

2. it applies M and its current state stp to its local automaton defined by Ap,
which outputs a new state st′p and a set of messages Mout to be sent, and it
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adopts st′p as its new state;

3. it puts messages Mout in set mbufp,∗.

The servers are assumed to be passive1 [ACKM06], i.e., a server sends messages
to clients only in reply to a client message. Formally, server p may add messages
to set mbufp,q in step s = (p,M) only if in step s it received a message m ∈ M
from client q.

A process p that takes steps according to its algorithm Ap is called non-mali-
cious. Process p is denoted as malicious if it performs arbitrary actions: It may
remove and add an arbitrary set of messages to set mbufp,∗ and change its state
in an arbitrary way. Malicious processes are also called Byzantine-faulty [PSL80]
as they exhibit non-responsive-arbitrary faults [JCT98]. In any run of distributed
protocol P, if a non-malicious process executes an infinite number of steps, it is
referred to as being correct, if it stops taking steps after a finite number of steps
it is called crash-faulty.

Messages sent between a correct client and a correct server are eventually re-
ceived, i.e., communication channels are reliable. Formally, for two correct pro-
cesses p and q, if p adds message m to set mbufp,q, then there is a step (q,M)
taken by q such that m ∈M .

In the thesis at hand, we allow the system to be asynchronous, i.e., there are no
time bounds on message communication nor on processing speeds of the processes.

2.1.2 Implementation of Shared Objects

Clients and servers executing distributed protocol P are used to implement a
shared object of functionality F . Such a shared object of functionality F provides
operations at the interface of the clients. An operation is defined by two events
occurring at the client, denoted as invocation and response. At invocation of an
operation at some client p, client p starts taking steps according to algorithm
Ap. At the response of an operation, client p stops taking steps until the next
invocation and returns the corresponding result at its interface.

An execution of distributed protocol P is defined as the (interleaved) sequence
of invocation and response events of the implemented functionality F . Every
execution induces a history which is the sequence of invocations and responses
occurring at the clients. We say that a response matches an invocation, if both
are events of the same operation. An operation is called complete in some history,
if there exists a matching response to its invocation, else incomplete. We assume
that at each client a new operation is only invoked after the previous operation
has completed. A history consisting only of matching invocation/response pairs is

1This model is sometimes referred to as data centric [MR00].
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called well-formed. Operation o precedes operation o′ in a history σ (o <σ o
′) iff o

is complete and the response of o happens before the invocation of o′. If o precedes
o′ we denote o and o′ as sequential, if neither one precedes the other, then o and o′

are said to be concurrent. A sequence of invocation and response events is called
sequential, if it starts with an invocation and contains only sequential operations.

The implemented functionality F is defined by a sequential specification, which
defines the allowed behavior if all operations are sequential. However, the history
of an execution of distributed protocol P is usually not sequential. We introduce
the following consistency condition, linearizability [HW90], in Definition 2.2 to
define what we mean by saying that P implements functionality F .

Definition 2.1 (Real-time Order). Let σ be a sequence of invocation and response
events. A permutation π of σ preserves the real-time order of σ if for every operation
o that precedes operation o′ in σ, operation o also precedes o′ in π.

Definition 2.2 (Linearizability). A history σ of an execution of a distributed pro-
tocol P is linearizable with respect to a shared functionality F if σ can be extended
to a sequence σ′ by adding zero or more response events such that σ′ consists only of
complete operations, and if there exists a sequential permutation π of σ′ such that:

1. π preserves the real-time order of σ′,

2. the operations in π satisfy the sequential specification of functionality F

Thus, a distributed protocol P implements a shared object with functionality
F , if the history of any execution of P is linearizable with respect to function-
ality F . A distributed protocol P satisfies wait-freedom [Her91], which is the
strongest possible liveness property, if each operation that is invoked by a correct
client eventually completes. Intuitively, a wait-free operation terminates indepen-
dently of other operations. A distributed protocol P satisfies obstruction-freedom
[HLM03] if all provided operations are obstruction-free. An obstruction-free oper-
ation, invoked by a correct client, evenutally completes if it executes in isolation,
i.e., it is not concurrent to any other operation.

2.1.3 Sequential Specification of Shared Objects

The distributed protocols introduced in the thesis at hand, implement shared
objects with four different functionalities.

Atomic Register An atomic resister is a shared storage object that provides two
operations: read and write. Operation write takes a value v from set V as
input parameter, also denoted as write(v). Operation read() has no input pa-
rameter and returns a value from set V ∪⊥. In a sequential sequence of operations
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that contains no operation write(v) before operation read(), operation read()
returns value ⊥. Else, in a sequential sequence of operations where operation
write(v) is the last write operation before operation read(), operation read()
returns value v.

The clients providing the operations of an atomic register are partinioned into
two subsets, a singleton W and a set R such that R∩W = ∅. The client in W is
called the writer while clients in R are denoted as readers. Readers only provide
read operations while the writer provides both operations write and read. The
distributed protocol introduced in Section 5.4 implements a shared object with
the functionality of an atomic register.

Shared Memory The operations provided by a shared memory are read and
write and based on the corresponding operations of an atomic register. Both
read and write operations of a shared memory take the client id as an ad-
ditional input parameter: For all clients Ci ∈ C: In a sequential sequence of
operations that contains no write(i, v) operation before operation read(i), oper-
ation read(i) returns value ⊥. Else, in a sequential sequence of operations where
operation write(i, v) is the last write(i, ∗) operation before operation read(i),
then read(i) returns value v.

For each client Ci ∈ C holds that only client Ci provides both operations
write(i, ∗) and read(i) while all other clients only provide operation read(i).
A shared memory may also be presented as a collection of atomic registers Ri,
such that write(i, v) corresponds to operation write(v) applied to register Ri
(analogously for read operations). If it is clear from the context, we use both
presentations interchangeably. The distributed protocols in Sections 3.5, 3.6, and
4.5 implement a shared memory.

Key-Value Store A key-value store (KVS) is a shared storage object that pro-
vides the four operations put, get, delete and list. Operation put takes value
v from set V and a key k from set K as input parameters, operations get and
delete take only keys as input parameter. Operation get returns a value from
set V ∪ fail. Operation list takes no input parameter and returns a set from
power set of K, i.e., 2K.

For all keys k ∈ K: In a sequential sequence of operations that contains no
put(k, v) operation before get(k) or if put(k, v) is the last put(k, ∗) operation
before operation get(k) and there is a delete(k) between put(k, v) and get(k),
then operation get(k) returns fail. In a sequential sequence of operations where
operation put(k, v) is the last put(k, ∗) operation before operation get(k) and
there is no delete(k) between put(k, v) and get(k), then operation get(k)
returns value v.
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In a sequential sequence of operations without any put operation before ope-
ration list(), or if between any put(k, v) operation before list() and operation
list() there is a delete(k) operation, then list() returns ∅. Let K ∈ 2K be a set
of keys. In a sequential sequence of operations, where for all k ∈ K there exists
a put(k, v) operation before list() such that there is no delete(k) operation
between put(k, v) and list(), then list() returns set of keys K.

The distributed protocol introduced in Section 5.5 implements a shared object
with the functionality of a key-value store.

Universal Object A universal object may implement any functionality, hence we
say that a universal object is of type T [Her91, AFH+07]. Type T of a universal
object that can be accessed by clients in C is defined by a tuple (I,R, S, s0, δ)
where I is a set of instructions, R is a set of responses, S is a set of states, s0 ∈ S
is the initial state, and δ is a relation δ ⊆ S × I × C × S ×R. Intuitively, a tuple
(s, ins, i, s′, res) is in δ if client Ci ∈ C calls instruction ins to the universal object
that is in state s, the object moves to state s′ and returns response res. To ease
the presentation, the type T of a universal object is encoded in the procedure
applyT : S × I × C → S × R. For client Ci ∈ C, state s and instruction ins,
applyT (s, ins, i) returns (s′, res), where s′ is the new state of the universal object
and res the response, if (s, ins, i, s′, res) is in δ.

A universal object provides only one operation execute to the clients. Opera-
tion execute(ins) takes instruction ins from set I as input parameter and returns
a response from set R. In a sequential sequence of operations that contains only
one operation execute(ins) (of client Ci), operation execute(ins) returns re-
sponse res0 such that applyT (s0, ins, i) returns (s, res0). In a sequential sequence
of operations where operation execute(ins′) (of client Cj) directly follows opera-
tion execute(ins) (of client Ci), operation execute(ins′) returns response res′

such that (s, res) has been returned by applyT during execute(ins), and ap-
plyT (s, ins′, j) returns (s′, res′).

The distributed protocol introduced in Section 4.4 implements a universal object
of type T .

2.1.4 Communication Models

In Section 2.1.1 introducing the basic assumptions underlying the system model of
this thesis, it has been specified that clients and servers communicate by sending
messages and that each server executes an algorithm within a distributed protocol.
For the distributed protocols developed in Chapter 4, we slightly deviate from the
basic model to ease the presentation of the distributed protocols.

In Chapter 4, the algorithms executed by the servers are omitted. Instead, we
say that a server implements a collection of shared objects. These objects (analo-
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gously to the shared objects defined in Section 2.1.2), provide operations that can
be accessed by the clients. Thus, instead of sending messages to the servers, the
clients directly call the operations provided by the servers to communicate with the
servers. In Chapter 4, the servers implement shared objects with the functionality
of atomic registers, or short, the servers implement atomic registers. Hence, the
clients can directly accesses the provided read and write operations. As shared
registers allow to store and retrieve data, the communication model underlying the
distributed protocols of Chapter 4 is also referred to as the shared memory model
[ABND95]. Hiding the algorithms executed by the servers under the abstraction
of shared registers is in line with work of Attiya et al. [ABND95]: They proof
that it is possible to view the shared memory model as a high-level language for
designing distributed protocols in asynchronous message-passing systems.

2.2 Background

2.2.1 Comparing Servers

So far, in this thesis two kind of servers have been introduced: The first type that
executes a local algorithm from a distributed protocol, and the second type where
the execution of the local algorithm is “abstracted away” and that implements
shared atomic registers. In this section, we will see that these two types are
fundamentally different. Let us refer to the first kind of servers as the universal
type while the second is denoted as the register type. Work of Herlihy [Her91] has
shown that the universal type is strictly stronger in its computational power than
the register type.

Registers The notion of registers as storage objects has been defined by Lam-
port [Lam86]. Lamport defines three register types that can be ordered by the
strength of the properties they satisfy: safe, regular, and atomic registers, while a
safe register is the weakest and an atomic one is the strongest type. All register
types provide read and write operations. Lamport defines registers as single-
writer multiple-reader (SWMR) registers, where a dedicated client, called writer,
may access the register using write and read operations, while all other clients,
referred to as readers, may only call the register’s read operation. SWMR regis-
ters can be used as a building block to construct registers that also allow multiple
writers [IS92]. All registers satisfy the same sequential specification (cf. Section
2.1.3).

Safe, regular, and atomic registers differ in their behavior under concurrency. A
read operation of a safe register that is concurrent with a write operation is al-
lowed to return any value from V. A regular register provides stronger consistency,
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as a read operation returns either a value written by a concurrent write ope-
ration, or the value written by the latest preceding write operation. An atomic
register is the strongest type satisfying linearizability. Intuitively, this means that
additionally to the properties of a regular register, a read operation never returns
an older value than the one returned by the latest preceding read operation.

Universal Type The used servers of the universal type are able to atomically
execute read-modify-write operations [KRS88]. Such operations allow a server in
one atomic step to (1) read a local variable, and (2) to change it dependent on the
variable’s current state. Well-knows examples of such read-modify-write operations
are fetch-and-cons, sticky bits, compare-and-swap, memory-to-memory swap, and
memory-to-memory copy [Her91]. In the context of this thesis the servers of
universal type maintain a timestamp variable, that is only updated with larger
values, requiring a conditional write, that falls in the same class of read-modify-
write operations [CJS12].

Wait-free Hierarchy Herlihy [Her91] compares in a seminal work different types
of shared objects by their ability to solve the consensus problem in a wait-free
manner. The consensus problem requires a set of clients to agree on a common
value among the values that have been proposed by the clients. To achieve a wait-
free solution of the consensus problem the following properties have to be satisfied
[CT96]:

• If a client decides value v, then v has been proposed by some client (Validity).

• No two clients decide different values (Agreement).

• Eventually, every correct client decides on some value (Termination).

Herlihy identifies a shared object that solves the consensus problem in a wait-
free manner for n clients as universal in a sense that there is a construction using
such an object that provides any functionality to n clients. Hence, the idea is to
classify shared objects according to their consensus number. A consensus number
of n means that the shared object is able to solve the consensus problem with n
clients in a wait-free manner. Herlihy shows that an atomic register has consensus
number 1, hence it may solve consensus only for the trivial instance of one client.
On the other hand, servers that provide read-modify-write operations have an
infinite consensus number.

In this sense, the universal servers underlying the distributed protocols in Chap-
ters 3 and 5 are strictly stronger than the servers implementing atomic registers,
used in Chapter 4.
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2.2.2 Fork-Consistency

Intuitively, fork-consistency formalizes the properties that can be achieved in a
distributed system with only malicious servers. Fork-consistency is a collective
term for a number of such properties. As malicious servers may simply refuse to
respond to client requests, fork-consistent properties comprise only safety but no
liveness properties.

The strongest fork-consistent property is called fork-linearizability. It was intro-
duced by Mazières and Shasha [MS02] and has later been formalized by Cachin et
al. [CSS07]. Fork-consistent properties which are weaker than fork-linearizability
are fork-sequential consistency [OR06] , fork-* consistency [LM07], and weak fork-
linearizability [CKS11].

The fork-consistent protocols introduced in this thesis are either fork-linearizable
or weak fork-linearizable. The following definition formalizes the notion of fork-
linearizability:

Definition 2.3 (Fork-Linearizability). A history σ of an execution of a distributed
protocol P is fork-linearizable with respect to a shared functionality F if and only if
for each client Ci ∈ C, there exists a subsequence σi of σ consisting only of completed
operations and a sequential permutation πi of σi such that:

1. All completed operations in σ occurring at client Ci are contained in σi; and

2. πi preserves the real-time order of σi; and

3. the operations of πi satisfy the sequential specification of functionality F ; and

4. for every operation o ∈ πi ∩ πj , the sequence of events that precede o in πi is
the same as the sequence of events that precede o in πj .

The definition of weak fork-linearizability is omitted here. Instead, the reader is
referred to Chapter 4. As mentioned earlier, fork-consistent properties are safety
properties. The following notion of a Byzantine emulation [CSS07] allows us to
formally define the safety and liveness properties of fork-consistent protocols.

Definition 2.4. A distributed protocol P emulates a shared object with functionality
F on a Byzantine server S with {fork|weak fork}-linearizability whenever the following
conditions hold:

1. If server S is correct, the history of any fair2 execution of P is linearizable with
respect to functionality F , and

2. the history of any fair execution of P is {fork|weak fork}-linearizable with respect
to functionality F .

2For a formal definition we refer to standard literature [Lyn98].
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Such an emulation is wait-free (obstruction-free resp.), iff any operation of a correct
client is wait-free [Her91] (obstruction-free [HLM03] resp.) if server S is correct.

The distributed protocols in Sections 3.5 and 3.6 constitute obstruction-free,
Byzantine emulations of shared memory with fork-linearizability. The protocol
introduced in Section 4.5 emulates a weak fork-linearizable shared memory on a
Byzantine server in a wait-free manner. Section 4.4 presents a distributed protocol
that is an obstruction-free, Byzantine emulation of a universal object with fork-
linearizability

31



2 Preliminaries

32



3 Abortable Fork-Linerizable Storage

This chapter introduces the first two contributions (C1) and (C2) of the thesis
at hand. The problem which is addressed in this chapter is how to implement a
shared memory in an asynchronous message passing system using a server prone
to Byzantine failures.

In such an untrusted environment, although cryptographic techniques can be
used to ensure confidentiality and integrity of the data, there is no means to prevent
a malicious server from returning obsolete data. Fork-linearizability [MS02] guar-
antees that if a malicious server hides an update of some client from another client,
then these two clients will never see each others’ updates again. Fork-linearizability
is arguably the strongest consistency property attainable in the presence of a ma-
licious server. Recent work [CSS07] has shown that there is no fork-linearizable
shared memory emulation that supports wait-free operations. On the positive side,
it has been shown that lock-based emulations exist [MS02, CSS07]. Lock-based pro-
tocols are fragile because they are blocking if clients may crash. The two protocols
Linear (C1) and Concur (C2) introduced in this chapter are the first lock-free
emulations of fork-linearizable shared memory. With a correct server, both pro-
tocols guarantee linearizability and that every operation successfully completes in
the absence of concurrency, while concurrent operations terminate by aborting.
The Concur protocol additionally ensures that concurrent operations invoked on
different data of the shared memory complete successfully.

The two proposed protocols Linear and Concur are a major step to ease the
usability and the development of systems that ensure fork-consistent semantics.
Abortable, and therefore obstruction-free operations, achieve a degree of indepen-
dence between clients that is fundamentally different from lock-based solutions
where client operations are strongly dependent on each other. Such independence
is desirable as it supersedes complicated mechanism to synchronize the access to
critical sections of shared resources. In practical settings [AT08], obstruction-free
solutions can be easily extended to wait-freedom which ensures maximal indepen-
dence between client operations.

Section 3.1 gives an introduction and motivates the proposed approaches. Sec-
tion 3.2 overviews existing works in the related area of research. Section 3.3 refines
the system model introduced in Chapter 2 and Section 3.4 details the properties
provided by the proposed protocols. Sections 3.5 and 3.6 introduce the protocols
Linear and Concur that constitute contributions (C1) and (C2) of this thesis
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and formally prove the protocols correct. A complexity analysis of the Linear
and Concur protocol is given in Section 3.7 that also concludes Chapter 3.

3.1 Introduction

As already discussed in Chapter 1 the upcoming trend of using online or “cloud”
services to store personal data provides many benefits to the users. These services
offer full data administration such that a user does not need to care for backups
or server maintenance and the data is available on demand. Moreover, most of
these services allow shared access which makes online collaboration (multiple users
working on the same logical data) based on online services very attractive.

Online collaboration usually assumes that the participating clients trust each
other — otherwise there exists no basis for reasonable communication. However,
when the shared memory is provided by a third party, clients may not fully trust
the service as it may corrupt or leak sensitive data. Cryptographic techniques can
prevent unauthorized access to data (confidentiality) and undetectable corruption
of the data (integrity). On the other hand, progress and consistency cannot al-
ways be guaranteed when the storage service is untrusted. A malicious server
may simply refuse to reply to client requests and it can violate linearizability by
omitting a recent update of one client and presenting an outdated value to an-
other client. This split brain attack is called forking and cannot be prevented.
However, once a forking attack is mounted, it can be easily detected using a fork-
linearizable storage protocol. Fork-linearizability [MS02] ensures that once two
clients are forked, they never see each others’ updates after that without revealing
the server as faulty. Once such a partitioning occurs, the clients stop hearing from
each other. A client that has not seen updates from another client for a while can
use out-of-band communication (as e.g., phone or e-mail) to find out if the server
is misbehaving.

Recent work [CSS07] has shown that even if the server behaves correctly, clients
cannot complete their operations independently from each other because this in-
troduces a vulnerability that can be exploited by a Byzantine server to violate
fork-linearizability. This means that in an asynchronous system there is no wait-
free [Her91] emulation of fork-linearizable storage on a Byzantine server. On the
positive side, the SUNDR [MS02] protocol and the concurrent protocol by Cachin
et al. [CSS07] show the existence of fork-linearizable Byzantine emulations using
locks. However, lock-based protocols are problematic as they can block in the
presence of faulty clients that crash while holding the lock.

Contributions of Chapter 3 This chapter introduces two lock-free emulations
of fork-linearizable shared memory on an untrusted server. In runs in which the
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server behaves correctly, the proposed protocols Linear and Concur — consti-
tuting contributions (C1) and (C2) of this thesis — ensure linearizability [HW90],
and that each operation executed in the absence of concurrency successfully com-
pletes. Under concurrency, operations may complete by aborting. Both protocols
emulate a shared memory consisting of n single-writer multiple-reader (SWMR)
registers, one for each of the n clients, where register i is updated only by client
Ci and may be read by all clients. While both protocols address lock-free fork-
linearizability, they solve two distinct issues. The Linear protocol, which is the
first lock-free fork-linearizable implementation at all, offers a communication com-
plexity of O(n). The Concur protocol improves on the handling of concurrent
operations such that overlapping operations accessing different registers are not
perceived as concurrent, and therefore they are not aborted. However, it has a
communication complexity of O(n2). Both protocols allow concurrent operations
to abort in order to circumvent the impossibility result by Cachin et al. [CSS07].
The necessary condition for aborting is step contention [AGHK09], and thus, pend-
ing operations of crashed clients never cause other operations to abort.

The very basic idea We now give a rough intuition of why aborting helps to
circumvent the given impossibility of wait-free fork-linearizability. With both our
protocols, if multiple operations compete for the same register, then there is only
one winner and all other operations are aborted. On a correct server, this strat-
egy ensures that all successful operations applied to the same register access the
register sequentially. Operations have timestamps attached to them and the se-
quential execution establishes a total order on operations and the corresponding
timestamps. The algorithm ensures that a forking attack breaks the total order
on timestamps. If a malicious server does not present the most recent update to a
read operation, then the timestamp of the omitted write operation and the one
of the read operation become incomparable — the two clients are forked. The
algorithm guarantees that also future operations of those two clients cannot be
ordered and thus they remain forked forever.

3.2 Related Work

Mazières and Shasha [MS02] have introduced the notion of fork-linearizability and
they have implemented the first fork-linearizable multi-user network file system
SUNDR. The SUNDR protocol may block in case a client crashes even when
the storage server is correct. Cachin et al. [CSS07] implements a more efficient
fork-linearizable storage protocol based on SUNDR which reduces communication
complexity from O(n2) to O(n). The presented protocols are blocking and thus
they have the same fundamental drawback as SUNDR. The authors [CSS07] also
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prove that there is no wait-free emulation of fork-linearizable storage. They do
so by exhibiting a run with concurrent operations where some client has to wait
for another client to complete. Oprea and Reiter [OR06] define the weaker notion
of fork-sequential consistency. Intuitively the difference to fork-linearizability is
that fork-sequential consistency does not necessarily preserve the real-time order
of operations from different clients. In a recent work, Cachin et al. [CKS09a]
show that there is no wait-free emulation of fork-sequential consistent storage on
a Byzantine server. It is important to note that these impossibility results do
not rule out the existence of emulations of fork-linearizable storage with abortable
operations [AFH+07] or weaker liveness guarantees such as obstruction-freedom
[HLM03]. Cachin et al. [CKS11] presents the storage service FAUST which wait-
free emulates a shared memory with a new consistency semantics called weak
fork-linearizability (cf. also contribution (C4) in Section 4.5 of Chapter 4). The
notion of weak fork-linearizability weakens fork-linearizability in two fundamental
ways. After being forked, two clients may see each others’ updates once (at-most-
on-join property) and secondly, the real-time order among the operations which
are the last of each client is not ensured.

Li and Mazières [LM07] study systems where storage is implemented from 3t+1
replicated servers and more than t replicas are Byzantine faulty. They present a
storage protocol which ensures fork* consistency. Similar to weak fork-lineariza-
bility, fork* consistency allows that two forked clients may be joined at most once
(at-most-one-join property).

The notion of abortable objects has been introduced by recent work of Aguil-
era et al. [AFH+07]. The paper shows the existence of a universal abortable
object construction from abortable registers. It is the first construction of an
obstruction-free universal type from base objects weaker than registers. In a
follow-up paper [AT08] it has been shown that in a partially synchronous sys-
tem, abortable objects can be boosted to wait-free objects. This makes abortable
objects, including our abortable fork-linearizable shared memory emulation very
attractive.

Summing up, there is no lock-free emulation of fork-linearizable storage even
though lock-free (i.e., obstruction-free) solutions can be made practically wait-
free using boosting techniques as described by Aguilera et al. [AT08].

3.3 System Model and Definitions

The system model used in this chapter is based on the system model given in
Chapter 2. Here the set of servers S is a singleton containing only server S. There
are n clients in set C denoted as C1, . . . , Cn. The clients communicate with the
server by sending messages over reliable channels directly to the server, forming an
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asynchronous distributed system. Any number of the clients may be crash-faulty
while server S is Byzantine-faulty [PSL80], i.e., it may deviate arbitrarily from its
algorithm [JCT98].

The two distributed protocols introduced in this chapter implement a shared
object with functionality of a shared memory (cf. Section 2.1.3) providing opera-
tions at the clients’ interface. To represent abortable operations, here, in addition
to the given invocation events, there are two types of response events: abort and
ok. In history σ of the execution of a distributed protocol, we call operation op
complete, if there exists a matching response event to the invocation event of op,
else op is denoted as incomplete. An operation is successful, iff it is complete and
the response event is an ok event. An operation is aborted, if it is complete and
the response event is an abort event. Operation op precedes operation op′ iff op
is complete before the invocation event of op′. If op precedes op′ we denote op and
op′ as sequential operations. Else, if neither operation precedes the other, then op
and op′ are said to be concurrent.

A shared memory provides read and write operations, such that ∀i = 1, . . . , n,
client Ci provides both operations write(i, v) and read(i) while all other clients
only provide operation read(i) (cf. Section 2.1.3). A shared memory can also
be regarded as a collection of atomic registers, where each client may write to a
dedicated register but may only read from all other registers. We assume that
each client interacts sequentially with the shared memory, i.e., a client invokes a
new operation only after the previous operation has completed.

Further we assume that clients have access to a digital signature scheme used
by each client to sign its messages such that any other client can determine the
authenticity of a message by verifying the corresponding signature. Further, the
Byzantine server S is not able to forge the signatures.

The consistency condition for the shared memory is defined in terms of the
history σ of an execution of the distributed protocol. To ease the definition of
consistency conditions and the reasoning about correctness, we define two trans-
formations to derive simpler histories from more complicated ones, while maintain-
ing plausibility of execution. Intuitively, the transformations remove all operations
from a history that do not take effect.

Definition 3.1. An operation op of client takes effect if and only if

1. op is successful OR

2. op is a write operation and there exists a read operation that returns the
value written by op.

We now define the two transformations CrashComplete and AbortCom-
plete.
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Definition 3.2. The transformations CrashComplete and AbortComplete
take a history σ as input and return a sequence of events σ′ as output.

• CrashComplete: We define σ′ returned by CrashComplete by construc-
tion: At first we add all events from σ to σ′. Then, we remove the invocation
events of incomplete operations that did not take effect from σ′. Next, we add
a matching ok event to each remaining incomplete operation in σ′.

• AbortComplete: We define σ′ returned by AbortComplete by construc-
tion: At first we add all events from σ to σ′. Then, we remove all events of
aborted operations in σ′ that did not take effect. Next, we replace all remaining
abort events in σ with matching ok events.

Transformation CrashComplete removes incomplete operations that did not
take effect from σ. This is reasonable as such events do not influence the execution.
Instead of removing them, such events could also be moved to the end of sequence
σ. The same argument applies to aborted operations that do not take effect which
are removed by transformation AbortComplete. By first applying transforma-
tion CrashComplete and then transformation AbortComplete to sequence σ,
we have transformed σ into a sequence of events containing only successful oper-
ations. On the transformed sequence we give the definitions of fork-linearizability
taken from recent work of Cachin et al. [CSS07].

Definition 3.3 (Global Fork-Linearizability). A history σ of an execution of a
distributed protocol is called fork linearizable with respect to a functionality F if and
only if there exists a sequential permutation π of σ such that:

1. π preserves the real-time order of σ; and

2. for each client Ci there exists a subsequence πi of π such that:

a) events in π occurring at client Ci are contained in πi; and

b) the operations of πi satisfy the sequential specification of F ; and

c) for every op ∈ πi ∩ πj , the sequence of events that precede op in πi is the
same as the sequence of events that precede op in πj .

Using a definition of fork-linearizability that is different from the one given
in Definition 2.3 in Section 2.2.2 simplifies the correctness proofs of the proto-
cols Linear and Concur. The notions of fork-linearizability and global fork-
linearizability have shown to be equivalent [CSS07].
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3.4 Preliminaries on the Protocols

In the next sections we present two lock-free protocols Linear and Concur that
emulate a fork-linearizable shared memory on a Byzantine server — constituting
contributions (C1) and (C2), respectively, of this thesis. The Linear protocol
is based on vectors of timestamps (described later in section 3.5) resulting in a
communication complexity of O(n). The Linear protocol serializes all operations,
and therefore it aborts concurrent operations even if they are applied to distinct
registers of the shared memory. The Concur protocol (introduced later in section
3.6) allows for concurrent operations if they are applied to distinct registers and
only operations on the same register are serialized. To achieve this, timestamp
matrices are used leading to a communication complexity of O(n2).

Protocol Properties

As mentioned above, the Linear and Concur protocol emulate the functionality
of a shared memory with fork-linearizability among a collection of clients and a
(possibly) Byzantine server S (cf. Definition 2.4 in Section 2.2.2). The Linear
(Concur) protocol consists of two algorithms, run by the clients and the server
respectively. If the server is faulty, it may refuse to respond to client requests or
return (detectably) corrupted data. A malicious server may also mount a forking
attack and partition clients. However, if the server behaves correctly, we require
that the emulation does not block and clients are not forked.

To formalize the liveness properties of the Linear and Concur protocol, we
redefine the notion of sequential and concurrent operations under step contention
[AGK05] when the server is correct. We say that two operations op and op′ are
sequential under step contention if op′ does not perform steps at the server S
after op performed its first step and before op performed its last step at server S.
Otherwise, op and op′ are concurrent under step contention.

The Byzantine emulation of a shared memory with fork-linearizability imple-
mented by the Linear and Concur protocol satisfies the following two liveness
properties Nontriviality and Termination:

Nontriviality: When the server is correct, in an execution of the Linear (resp.
Concur) protocol every operation that returns abort is concurrent under
step contention with another operation (resp. with another operation on the
same register).

Termination: When the server is correct and σ is the history of an execu-
tion of the Linear or Concur protocol, then after applying transformation
CrashComplete to σ, every operation in σ is complete.
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3.5 (C1): The Linear Protocol

The Linear protocol is based on two main ideas. The first idea is that when two
or more operations access the registers of the shared memory concurrently, all but
one are aborted. In the protocol, operations need two rounds of communication
with the server, and an operation op is aborted if a first round message of another
operation arrives at the server between the points in time when the first round
message and the second round message of op is received by the server. Hence,
among the concurrent operations, the Linear protocol never aborts the “newest”
operation. This scheme ensures that an incomplete operation of a crashed client
does not interfere with other operations. Note that by employing this strategy of
aborting, successful operations execute in isolation and therefore accesses to the
shared memory are serialized.

As a second idea, the Linear protocol assigns vector timestamps to operations
such that a partial order ≤ on operations can be defined based on these timestamp
vectors. The basic principle is that a client reads the most recent timestamp
vector from the server during the first round, increments its own entry and writes
the updated timestamp vector back to the server. Since successful operations
run in isolation, the corresponding timestamp vectors are totally ordered, as no
two successful operations read the same timestamp vector during the first round.
Clearly, a Byzantine server may fork two clients, but then there are operations
op and op′ of these two clients with incomparable timestamp vectors. By the
requirement of fork-linearizability, these two clients must not see any later updates
of each other. For this purpose, the protocol ensures that the two clients remain
forked by preventing any client from committing an operation op′′ which is both
greater (with respect to partial order leq) than op and op′.

3.5.1 Description of the Linear Protocol

The shared memory implemented by the Linear protocol provides n SWMR
registers X[1], . . . , X[n] such that client Ci may write a value only to register
X[i] and may read from any register. The detailed pseudo-code of the Linear
protocol appears in Algorithms 3.1 and 3.3 giving the algorithm of a client Ci,
and in Algorithm 3.2 describing the algorithm executed by server S.

A client performs two rounds of communication with the server S for both
read and write operations (see Algorithm 3.1). This is implemented by calling
procedure rw operation (Algorithm 3.3) with type read or write respectively.
When executing a request to operation rw operation, the client sends a submit
message to the server S announcing a read or write operation and waits for a
matching response. The server S responds with a submit r message containing
information on the current state of the server and the value to be read. In the
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Algorithm 3.1: Read/Write Operation of Client i

read(j) do3.1.1

rw operation(read,⊥, j)3.1.2

if abort then return abort3.1.3

return retval3.1.4

write(i, v) do3.1.5

rw operation(write, v, i)3.1.6

if abort then return abort3.1.7

return ok3.1.8

Algorithm 3.2: Linear Protocol, Algorithm of Server S

Variables:
Pnd set of operation ids /* pend. ops */3.2.1

Abrt set of operation ids /* pending ops to be aborted */3.2.2

upon receiving message 〈submit, id〉 from client i do3.2.3

Abrt← Pnd3.2.4

Pnd← Pnd ∪ {id}3.2.5

send 〈submit r, X[id.reg], lso〉 to client i3.2.6

upon receiving message 〈commit, op〉 from client i do3.2.7

Pnd← Pnd \ {op.id}3.2.8

if op.id ∈ Abrt then3.2.9

send 〈commit r,abort〉 to client i3.2.10

else3.2.11

X[i]← op3.2.12

lso← op3.2.13

send 〈commit r,ok〉 to client i3.2.14

second communication round, the client sends a commit message to the server
and waits for a commit r message to complete the operation. The commit r
message is either of type ok or abort indicating to the client the outcome of the
operation.

Variables and Data Structures Each operation op has a timestamp vector of size
n assigned to it during the protocol. The timestamp vector is part of the operation
data structure and is denoted as op.tsv. The timestamp vector is used to define a
partial order ≤ on operations. For two operations op and op′ we say that op ≤ op′
iff op.tsv[i] ≤ op′.tsv[i] for all i = 1 . . . n. Operations of the Linear protocol have
the data structure of a 4-tuple with entries id, value, tsv and sig, where sig is
a signature on the operation by the client, tsv is the timestamp vector, value is
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the value to be written by the operation. Note that for simplicity of presentation,
a read operation rewrites the value of the client’s last successful write. The
entry id is a 4-tuple 〈client id, op cnt, type, reg〉 itself, where client id equals i for
Ci, op cnt is a local timestamp of the client which is incremented during every
operation, type indicates whether the operation is a read or a write, and reg
determines the index of the register the client intends to read from. For write
operations of client Ci, reg is always i.

The server S maintains the n registers in a vector X[1..n], where each X[i]
stores the last successful operation of Ci. Further, the server maintains a copy of
the latest successful operation in variable lso.

Initially, variables op cnt, tssuc, and all entries of vector tsvcomp[1..n] at any
client are assumed to be 0. At initialization of the server, variable lso and all reg-
isters X[i] store the initial operation op0 defined as 〈〈i, 0,write, i〉,⊥, [0..0], sig0〉
where sig0 is a valid signature on operation op0. Sets Pnd and Abrt are empty.

Processing Operations When client Ci invokes a new operation op on register
X[r], it increments its local timestamp op cnt, sets the entries of op.id to the
operation type and register r, and sends op.id in a submit message to the server
(lines 3.3.2–3.3.5). The server labels the received operation op as pending. If
the server receives the submit message of another operation before the commit
message of op, then op is aborted. In reply to the received submit message, the
server responds with a submit r message containing the last successful operation
lso, and the last successful operation x op applied to register X[r] (lines 3.2.4–
3.2.6).

After receiving operations lso and x op from the server, client Ci performs a
number of consistency checks (lines 3.3.7–3.3.10). If any of the checks fails, which
implies that the server is misbehaving, the client halts. In the first check, Ci
verifies the signatures of lso and x op. The next check is needed to determine a
consistent timestamp vector for operation op. The goal is to obtain a timestamp
vector for op which is greater than both lso’s timestamp vector and that of Ci’s
last completed operation. The timestamp vector of the latter is stored in tsvcomp

at Ci. The client checks that all but the ith entry in lso.tsv are greater or equal
than the corresponding entries in tsvcomp. Ci’s entry lso.tsv[i] must equal the
timestamp of the last successful operation stored in tssuc. Checks three and four
are needed only by read: Ci checks that x op is indeed the content of register
X[r]. The last check verifies that lso is at least as large as x op and that lso.tsv[r]
equals x op.tsv[r].

If all checks are passed, Ci increments its own entry lso.tsv[i] and lso.tsv be-
comes the timestamp vector of op. Then, Ci signs op.id, the write value and the
timestamp vector op.tsv, and sends op in a commit message to the server (lines
3.3.11–3.3.15). The server, removes op.id from the set of pending operations and
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checks if it has to be aborted. As mentioned earlier, in this case, a submit message
of another operation was received before the commit of op and the server replies
with abort (lines 3.2.8–3.2.10). Else, op is stored in X[i] and also in lso as the
last successful operation and the server replies with ok (lines 3.2.12–3.2.14).

When client Ci receives the commit r message for operation op, op is completed
and thus tsvcomp is updated with op.tsv. If op is successful, then additionally tssuc
becomes the ith entry of op.tsv. If op is a read, then the value of x op is returned
(lines 3.3.17–3.3.24).

Algorithm 3.3: Linear Protocol, Algorithm of Client i

Variables:
sig signature /* signature /*

abort boolean /* flags if operation is aborted /*

valuesuc, retval value /* last successful write + return value /*

op cnt, tssuc integer /* op counter + ts last successful op /*

op, x op, lso operation with fields
id = 〈client id, op cnt, type, reg〉, value, tsv, sig /* operation /*

tsvcomp[1..n] vector of integers /* ts vector of last comp. op /*

rw operation(type, value, r)3.3.1

abort← false3.3.2

op cnt← op cnt+ 13.3.3

op.id← (i, op cnt,type, r)3.3.4

send 〈submit, op.id〉 to server3.3.5

wait for message 〈submit r, x op, lso〉3.3.6

if not verify(lso.sig) ∧ verify(x op.sig) then halt3.3.7

if not ∀k 6= i : tsvcomp[k] ≤ lso.tsv[k] ∧ tssuc = lso.tsv[i] then halt3.3.8

if not x op.id.client id = r then halt3.3.9

if not x op ≤ lso ∧ lso.tsv[r] = x op.tsv[r] then halt3.3.10

op.tsv ← lso.tsv3.3.11

op.tsv[i]← op cnt3.3.12

if type = write then op.value← value3.3.13

op.sig ← sign(op.id||op.value||op.tsv)3.3.14

send 〈commit, op〉 to server3.3.15

wait for message 〈commit r, ret type〉3.3.16

tsvcomp ← op.tsv3.3.17

if ret type = abort then3.3.18

op.value← valuesuc3.3.19

abort← true3.3.20

else3.3.21

tssuc ← op cnt3.3.22

valuesuc ← op.value3.3.23

if type = read then retval← x op.value3.3.24
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3.5.2 Correctness Arguments

Instead of returning the most recent value that has been written to register X[j]
by a write operation opw, a Byzantine server may return an old value written by
operation op′w. Let Ci be the client whose read operation opr reads the stale value
written by op′w. Note that the Byzantine server also returns a stale version of lso to
Ci. Let us assume that all checks in Algorithm 3.3 are passed, thus Ci is unaware
of the malicious behavior of the server. Note, that the jth entry in the timestamp
vector of op′w is smaller than the corresponding entry in opw, as both are operations
of client Cj that increases the jth entry with every operation. As the check in line
3.3.10 is passed, the jth entry in opr’s timestamp vector is also smaller than the
one of opw. As Ci increments the ith entry in the timestamp vector during opr
but not the jth entry, opr and opw are incomparable (i.e., neither opr ≤ opw nor
opw ≤ opr). We argue that in this situation, no client commits an operation which
is greater than both opw and opr. As no client other than Ci increments the ith
entry in a timestamp vector, all operation of other clients that “see” opw have a
timestamp vector whose ith entry is smaller than opr.tsv[i] and whose jth entry is
larger than opr.tsv[j]. Thus, such operations are also incomparable with opr and
do not join opw and opr. When client Ci “sees” such an operation incomparable
to opr as the latest successful operation lso, the check in line 3.3.8 is not passed
because the ith entry of lso is smaller than the timestamp of Ci’s last successful
operation. Hence, Ci stops the execution. Analogously, the same arguments can
be applied for client Cj and operation opw.

As all checks are passed when the server behaves correctly, it is not difficult to
see that with a correct server, all operations invoked by correct clients complete.
Also with a correct server, operations are only aborted in the specified situations.
A detailed correctness proof is given in the next section closing the presentation
of the Linear protocol in this thesis.

3.5.3 Linear Protocol Proof

This section gives the proof of correctness that the Linear protocol constitutes
an abortable, Byzantine emulation of a shared memory with fork-linearizability.
Before beginning the proof, the notion of an operation, as used in the Linear
protocol in Algorithm 3.3 and 3.2, is formally defined.

Definition 3.4 (Linear Operation). An operation identifier (operation id) is a
4-tuple 〈client id, op cnt, type, reg〉, where client id, op cnt, and reg are integers
and where type is element of the set {read,write}.

An operation is a 4-tuple 〈id, value, tsv, sig〉, where id is an operation identifier,
value is a value from set V, tsv is a vector of size n of integers, and sig is a signature.
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We define a partial order ≤ on timestamp vectors and on operations. Note, that
we regard only such operations op after the corresponding timestamp vector entry
op.tsv has been assigned in line 3.3.12.

Definition 3.5 (Order Relation). For two timestamp vectors tsv and tsv′ holds
tsv ≤ tsv′ if and only if

∀i : tsv[i] ≤ tsv′[i].

It holds tsv = tsv′ if and only if tsv and tsv′ are the same timestamp vectors.
For two operations op and op′ holds op ≤ op′ if and only if

op.tsv ≤ op′.tsv.

It holds op = op′ if and only if op and op′ are the same operations.

It is easy to see that ≤ relation on operations (timestamp vectors) is transitive.
As relation ≤ is a partial order on operations (timestamp vectors), we define a
notion of when two operation (timestamp vectors) cannot be ordered by ≤.

Definition 3.6 (Comparable). For two timestamp vectors tsv and tsv′ holds tsv
and tsv′ are comparable if and only if

tsv ≤ tsv′ ∨ tsv′ ≤ tsv.

Otherwise, they are incomparable.
For two operations op and op′ holds op and op′ are comparable if and only if

op.tsv and op′.tsv are comparable.

Otherwise, they are incomparable. We also call two incomparable operations forked.

The next Lemma shows that ≤ relation on Linear operations does not violate
the real-time order of operations.

Lemma 3.7. If op ≤ op′ then op′ does not precede op.

Proof. Let op and op′ be two operations of client Ci and Cj and let us assume
by contradiction that op′ precedes op and op ≤ op′. During op, client Ci updates
the ith entry in the timestamp vector (line 3.3.12). As op′ precedes op and as
the server cannot forge signatures (line 3.3.14), at the point in time when Cj
received the submit r message during op′, there exists no operation op′′ such that
op′′.tsv[i] ≥ op.tsv[i]. Thus, we have that op.tsv[i] > op′.tsv[i]. However, this
contradicts the assumption that op ≤ op′.
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The following two Lemmas show that operations which causally influence each
other are ordered by ≤ such that the causal order is respected. The operations of
one client causally influence each other (Lemma 3.8) as well as a write operation
and an operation which reads the written value (Lemma 3.9).

Lemma 3.8. All operations of the same client are totally ordered by ≤ relation on
operations.

Proof. We show that operation op of client Ci is greater than its previous com-
pleted operation opcomp. Note, that by line 3.3.17 opcomp.tsv = tsvcomp. Let l
be operation lso as received in the submit r message by Ci during operation op
(line 3.3.6). To pass the check in line 3.3.8, l must be greater or equal in all
entries 6= i of the timestamp vector than opcomp. By line 3.3.11 we have that
op.tsv[k] ≥ opcomp.tsv[k] for all k 6= i. In line 3.3.12 the ith entry of the times-
tamp vector is updated by a larger entry, as op cnt is incremented with every
invoked operation of Ci (line 3.3.3), and we get that op.tsv > opcomp.tsv, implying
that op > opcomp. By induction on Ci’s operations, it follows that op is greater
than any operation of Ci that precedes op.

Lemma 3.9. If opr is a read(j) operation of client Ci that returns opw.value from
the shared memory, then opw < opr.

Proof. To pass the check in line 3.3.10, it must be that opw ≤ lso and by lines
3.3.11 and 3.3.12 it holds that lso < opr. Thus, if opr returns opw.value it must
be that opw < opr.

The next Lemma proves the main result that the Linear protocol satisfies
fork-linearizability according to Definition 3.3 on page 38.

Lemma 3.10. The Linear protocol described in Algorithm 3.1, 3.2, and 3.3 and
emulates a shared memory on a Byzantine server with fork-linearizability satisfying
properties nontriviality and termination (cf. Section 3.4).

Proof. Let σ be the history of any execution of the Linear protocol. At first,
we apply transformation CrashComplete to σ (Definition 3.2). We construct
a sequential execution π by totally ordering all events in σ. To achieve this, we
order the events in σ by the following rules:

1. Sort the operations in σ by ≤ relation on operations.

2. Sort any yet unsorted operations by the real-time order of their completion
event in σ.
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We construct the subsequences πi (for i = 1, . . . , n) as required by the definition
of fork-linearizability. We include in πi all operations of client Ci. Then, for all
op ∈ πi we include into πi all operations op′ in σ such that op′ ≤ op.

By Lemma 3.7, the following claim follows directly:

Claim 10.1 Let op and op′ be two operations and op precedes op′ in σ. Then, op
precedes op′ in π.

Claim 10.2 Let opr be a completed read(j) operation of client Ci in some se-
quence πk that returns opw.value 6= ⊥ from the shared memory. Then:

1. Operation opw
1 is in πk, and

2. there is no write(j, ∗) operation by client Cj subsequent to opw in πk
that takes effect and completes before opr is invoked.

By Lemma 3.9 holds that opr > opw. Hence, opw is included in πk by construc-
tion and the first statement follows directly.

To prove the second statement, let us assume for contradiction that such a
write operation op′w of client Cj exists in πk which is invoked after opw completes
and which completes before opr is invoked. Hence, opw, op

′
w, opr appear in that

order as three sequential operations in σ.

We first show that op′w and opr are incomparable: Let l be operation lso as
seen by opr (line 3.3.6). Since i 6= j the jth entry of l is not changed during
opr and thus opr.tsv[j] = l.tsv[j]. To pass the check in line 3.3.10, we also have
opw.tsv[j] = l.tsv[j]. Moreover, since opw and op′w are both operations of the same
client and opw precedes op′w we have by line 3.3.3 op′w.tsv[j] > opw.tsv[j] and thus

opr.tsv[j] = opw.tsv[j] < op′w.tsv[j]. (3.1)

By line 3.3.12 we know that client Ci is the only client that increments the ith
entry in any valid timestamp vector. Thus, the ith entry of any timestamp vector
before the invocation of opr is less than opr.tsv[i]. This applies also to op′w and
we have

opr.tsv[i] > op′w.tsv[i]. (3.2)

According to Definition 3.6, equations (3.1) and (3.2) imply that operations op′w
and opr are incomparable. In the following we distinguish two cases:

Case 1 Operation op′w is successful. Both operations opr and op′w are contained
in πk. Thus, by construction of πk there must exist operations op, op′ of
client Ck such that opr ≤ op and op′w ≤ op′. As all operations of client Ck

1Note that opw is a write(opw.value, j) operation of client Cj .
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are totally ordered, either op ≤ op′ or op > op′. Let us assume w.l.o.g. that
op ≤ op′ and thus, op′ ≥ opr and op′ ≥ op′w.

Since opr is in πk there must exist a sequence of operations Sop : opr, ops1,
. . . , ops(z−1), op

′ such that opr = ops0, op
′ = opsz, and ∀i = 0, . . . , z holds opsi

is lso as seen by ops(i+1). Thus, it holds opr < ops1 < . . . < ops(z−1) < op′

and each timestamp vectors opsi.tsv and ops(i+1).tsv differ only in one entry.

By equation (3.1) we know that opr.tsv[j] < op′w.tsv[j]. As no other client
than Cj increments the jth entry of a timestamp vector, no operation of Cj
may be in sequence Sop. Otherwise, as op′w is successful, lso.tsv[j] < tssuc
and the check in line 3.3.8 is not passed.

Case 2 Operation op′w is not successful. To ensure that op′w is in πk there must
be a successful read(j) operation op′r of client Cl that is in πk and reads
op′w.value. Since operations opr and op′r are both contained in πk by as-
sumption, there exist operations op, op′ of client Ck such that opr ≤ op and
op′r ≤ op′. As all operations of client Ck are totally ordered, either op ≤ op′
or op > op′. Let us assume w.l.o.g. that op ≤ op′ and thus, op′ ≥ opr and
op′ ≥ op′r. We may now deduce the following statements:

(i) As opr reads opw.value and l 6= i, we have that opr.tsv[l] = opw.tsv[l].
As opw precedes op′w and op′r reads op′w.value, we conclude that
op′r.tsv[l] > op′w.tsv[l] ≥ opw.tsv[l] = opr.tsv[l].

(ii) By equation (3.2) we know that op′w.tsv[i] < opr.tsv[i]. As op′r reads
op′w.value and client Cl does not increment the ith entry (i 6= l), we get
op′r.tsv[i] < opr.tsv[i].

Since opr is in πk there must exist a sequence of operations Sop : opr, ops1,
. . . , ops(z−1), op

′ such that opr = ops0, op
′ = opsz, and ∀i = 0, . . . , z holds opsi

is lso as seen by ops(i+1). Thus, it holds opr < ops1 < . . . < ops(z−1) < op′

and each timestamp vectors opsi.tsv and ops(i+1).tsv differ only in one entry.

By construction of πk we know that op′ ≥ op′r and by (i) we have op′r.tsv[l] >
opr.tsv[l]. Hence, for tsvcomp[l] at the beginning of op′ holds tsvcomp[l] >
opr.tsv[l]. This means that if sequence Sop did not contain any operation of
Cl, op

′ would not accept ops(z−1) as lso because ops(z−1).tsv[l] < tsvcomp[l].
Hence there must exist some operation opl of client Cl in sequence Sop. Let
opl be the first such operation. We distinguish the following two cases:

(a) opl precedes op′r at client Cl. As opl is contained in sequence Sop we
know by construction that that opl.tsv[i] ≥ opr.tsv[i]. This implies that
at client Cl after completeting operation opl it holds that tsvcomp[i] ≥
op.tsv[i]. During op′r only the lth entry is changed, i.e., lso.tsv[i] =
op′r.tsv[i]. Hence, as opl precedes op′r, during op′r it holds tsvcomp[i] >
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lso.tsv[i] (by statement (ii)) and check in line 3.3.8 is not passed, a
contradiction.

(b) op′r precedes opl at client Cl. Since op′r is a successful operation, during
opl holds that tssuc ≥ op′r.tsv[l]. By statement (i) it follows that tssuc >
opr.tsv[l]. As opl is the first operation of Cl in sequence Sop, lso as seen
by opl does not pass the check in line 3.3.8, a contradiction.

Hence, there exists no write operation op′w of client Cj in πk which is invoked
after opw completes and which completes before opr is invoked and the second
statement of Claim 10.2 is also true and we are done.

Lemma 3.10 closes the part of the correctness proof of the Linear protocol
regarding the safety properties. We now continue by proving that the Linear
protocol also satisfies the specified liveness properties. The next lemma proves
that as long as server S behaves correctly, all operations eventually complete (by
either returning abort or ok).

Lemma 3.11. If the server is correct then no operation in Algorithm 3.3 blocks.

Proof. We have to show that no operation blocks in lines 3.3.7 – 3.3.10.

• verify(lso.sig)∧verify(x op.sig) is true: As clients are non-malicious, all
signatures are correct. Thus, the protocol does not block in line 3.3.7.

• Assume by contradiction that ∃k : tsvcomp[k] > lso.tsv[k]: Let opcomp be the
last completed operation that updated tsvcomp in line 3.3.17. As the server
is correct it returns only successful operations, so particularly operation lso
is successful. By line 3.2.12 and 3.2.13 whenever some operation successfully
completes, lso is also updated. Thus, as lso is monotonically increasing
(Lemma 3.7 and Lemma 3.10), ∀k : opcomp.tsv[k] 6> lso.tsv[k], which is a
contradiction.

Assume by contradiction that tssuc 6= lso.tsv[i]: Let opsuc be the last suc-
cessful operation that updated tssuc. By the reasoning above, whenever
some register at the server is updated, lso is also updated. This implies that
lso.tsv[i] 6< opsuc.tsv[i]. Therefore, it must be that lso.tsv[i] > opsuc.tsv[i].
Entry lso.tsv[i] is only updated when an operation of Ci later than opsuc
successfully completes. However, in this case tssuc is also updated to the
same value and we have lso.tsv[i] = tssuc, a contradiction.

Thus, the protocol does not block in line 3.3.8.

• x op.id.client = r is true: As the server is correct it returns x op from the
correct register. Thus the protocol does not block in line 3.3.9.
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• Assume by contradiction that x op 6≤ lso: As the server is correct it returns
only successful operations. Thus, both x op and lso are successful. This
implies that x op and lso can be ordered by ≤. By line 3.2.12 and 3.2.13
whenever some register at the server is updated, lso is also updated. Thus,
as lso is monotonically increasing, x op 6> lso. Therefore, x op ≤ lso which
is a contradiction.

Assume by contradiction that lso.tsv[r] 6= x op.tsv[r]: By the item above,
whenever some register at the server is updated, lso is also updated. This
implies that lso.tsv[r] 6< x op.tsv[r]. Therefore, it must be that lso.tsv[r] >
x op.tsv[r]. Entry lso.tsv[r] is only updated when an operation of client
Cr later than x op successfully completes. However, in this case x op.tsv[r]
is also updated to the same value and we have lso.tsv[r] = x op.tsv[r], a
contradiction.

Thus, the protocol does not block in line 3.3.10

Hence, no operation blocks in lines 3.3.7 – 3.3.10 and we are done.

The next lemma shows that the Linear protocol satisfies the nontriviality prop-
erty when server S is correct. This property rules out trivial implementations
where every operation is aborted.

Lemma 3.12. With a correct server, an operation op of a client aborts only if the
server receives a submit message from another client after the submit and before
the commit message corresponding to op.

Proof. If op aborts then the server has received the commit message corresponding
to op. As the server is correct and no submit message of another operation is
received after the submit and before the commit message of op, op.id 6∈ Abrt. By
line 3.2.12 and 3.2.13, op is not aborted.

Finally, the following theorem proofs the correctness of the Linear protocol
and closes Section 3.5.

Theorem 3.13. The Linear protocol is a non-trivial, abortable, Byzantine emula-
tion of a shared memory with fork-linearizability (cf. Section 3.4).

Proof. By Lemma 3.10, the safety properties of fork-linearizability are satisfied,
by Lemma 3.11, the protocol does not block, and by Lemma 3.12, no operation
running in isolation is aborted when the server is correct.
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3.6 (C2): The Concur Protocol

The Concur protocol differs from the Linear protocol in the way how concurrent
access to the server is handled. In contrast to the Linear protocol, in the Concur
protocol concurrent operations that access different registers of the shared memory
are not aborted. Intuitively, the same aborting scheme as in the Linear protocol
is used in the Concur protocol on a per register basis in order to serialize all
accesses to the same register of the shared memory. This means, that a correct
server aborts operation op accessing register i if and only if a submit message of
another operation accessing register i is received while op is pending.

To deal with concurrent operations, in the Concur protocol, instead of one
timestamp vector, each operation is assigned n timestamp vectors, each corre-
sponding to one register of the shared memory. Such n timestamp vectors form
the timestamp matrix of an operation. The basic idea is that when a client ac-
cesses register j then the client updates its own entry in the jth timestamp vector
of the timestamp matrix. It is important to note that even with a correct server,
the Concur protocol allows that two clients with concurrent operations may read
the same timestamp matrix from the server and update different timestamp vec-
tors such that the corresponding operations become incomparable. However, the
Concur protocol ensures that (1) operations of the same client are totally ordered
by ≤ and (2) operations accessing the same register at the server are totally or-
dered by ≤. This is sufficient to show that for any operation op, all operations op
causally depends on, are ordered before op by ≤. Further, the Concur protocol
ensures that two forked operations — i.e., for some i, the ith timestamp vectors
in the timestamp matrices of the two operations are incomparable — will never
be rejoined by another operation.

3.6.1 Description of the Concur Protocol

The Concur protocol has the same message pattern as the Linear protocol and
provides the same interface to the clients (Algorithm 3.1). The Concur proto-
col uses a different implementation of procedure rw operation as described in
Algorithm 3.4 (code of the server), and Algorithm 3.5 (code of the clients). As
the Concur protocol follows the structure of the implementation of the Linear
protocol, in the following we highlight only the differences between the two pro-
tocols. The operation data structure differs from the Linear protocol only to the
fact that the timestamp vector tsv is replaced by a timestamp matrix tsm.

When client Ci invokes a new operation op on register r of the shared memory,
it generates a new operation id which it sends to the server in a submit message
(lines 3.5.2–3.5.5). One difference is that Ci maintains a separate operation counter
for each register op cnt[1..n]. The server replies with operations lso and x op

51



3 Abortable Fork-Linerizable Storage

Algorithm 3.4: Concur Protocol, Algorithm of Server S

Variables:
Pnd[1..n] array of set of operation ids /* pending ops */3.4.1

Abrt[1..n] array of set of operation ids /* pending ops for abort */3.4.2

upon receiving message 〈submit, id〉 from client i do3.4.3

Abrt[id.reg]← Pnd[id.reg]3.4.4

Pnd[id.reg]← Pnd[id.reg] ∪ {id}3.4.5

send 〈submit r, X[id.reg], lso[id.reg]〉 to client i3.4.6

upon receiving message 〈commit, op〉 from client i do3.4.7

Pnd[op.id.reg]← Pnd[op.id.reg] \ {op.id}3.4.8

if op.id ∈ Abrt[op.id.reg] then3.4.9

send 〈commit r,abort〉 to client i3.4.10

else3.4.11

X[i]← op3.4.12

lso[op.id.reg]← op3.4.13

send 〈commit r,ok〉 to client i3.4.14

contained in a submit r message. Here, x op is the last successful operation
stored in register r, and lso is the last successful operation that accessed register
r. Note, that lso may not be stored in register r — e.g., x op might be a write(i, ∗)
operation while lso might be a read(i) operation of client Cj which is not stored
in register r. The server maintains information on pending operations for each
register separately (lines 3.4.4–3.4.6).

The first and the third consistency check are identical to the Linear protocol.
The second check on operations lso and x op performed by the client corresponds to
the second check in the Linear protocol. As Concur operations hold a timestamp
matrix, the check is performed on the rth timestamp vectors of the timestamp
matrices of lso and x op. The goal is to obtain a timestamp matrix for op which is
greater than the last completed operation of Ci and the last successful operation
accessing register r, stored in lso. Like in the Linear protocol, the last check
ensures that lso is greater than x op and, unlike Linear, that the rth entries in
the rth timestamp vector of the timestamp matrices of lso and x op are equal.
This particular entry is the one which has been updated during x op (lines 3.5.7–
3.5.10).

To determine the timestamp matrix for op, client Ci selects the rth timestamp
vector from lso as rth timestamp vector of op and for all other indices it takes the
maximum timestamp vector from lso and Ci’s last completed operation. Finally,
client Ci increments its own entry in the rth timestamp vector using op cnt[r]
(lines 3.5.12–3.5.15). The remainder of the protocol is analogous to the Linear
protocol.
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Algorithm 3.5: Concur Protocol, Algorithm of Client i

Variables:
sig signature /* signature /*

abort boolean /* flags if operation is aborted /*

valuesuc, retval value /* last successful write + return value /*

op cnt[1..n], tssuc[1..n] vector of integers /* vectors /*

op, x op, lso operation with fields
id = 〈client id, op cnt, type, reg〉, value, tsm, sig /* operation /*

tsm1..n
comp[1..n] matrix of integers /* ts matrix /*

rw operation(type, value, r)3.5.1

abort← false3.5.2

op cnt[r]← op cnt[r] + 13.5.3

op.id← (i, op cnt[r],type, r)3.5.4

send 〈submit, op.id〉 to server3.5.5

wait for message 〈submit r, x op, lso〉3.5.6

if not verify(lso.sig) ∧ verify(x op.sig) then halt3.5.7

if not ∀k 6= i : tsmr
comp[k] ≤ lso.tsmr[k] ∧ tssuc[r] = lso.tsmr[i]3.5.8

then halt
if not x op.id.client id = r then halt3.5.9

if not x op ≤ lso ∧ lso.tsmr[r] = x op.tsmr[r] then halt3.5.10

forall k = 1..n, k 6= r do3.5.11

if not tsmk
comp, lso.tsmk are comparable then halt3.5.12

op.tsmk ← max{tsmk
comp, lso.tsmk}3.5.13

op.tsmr ← lso.tsmr3.5.14

op.tsmr[i]← op cnt[r]3.5.15

if type = write then op.value← value3.5.16

op.sig ← sign(op.id||op.value||op.tsm)3.5.17

send 〈commit, op〉 to server3.5.18

wait for message 〈commit r, ret type〉3.5.19

tsmcomp ← op.tsm3.5.20

if ret type = abort then3.5.21

op.value← valuesuc3.5.22

abort← true3.5.23

else3.5.24

tssuc[r]← op cnt[r]3.5.25

valuesuc ← op.value3.5.26

if type = read then retval← x op.value3.5.27

3.6.2 Correctness Arguments

First, we show that all completed operations of client Ci are totally ordered by ≤.
This is a reasonable requirement as Ci cannot know if an aborted operation was
actually aborted by the malicious server. To achieve this, as the timestamp matrix
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of a new operation op of Ci depends on operation lso received in the submit r
message, the check in line 3.5.8 is needed: It guarantees together with lines 3.5.14–
3.5.15 that the rth timestamp vector of lso is greater than the one of Ci’s last
completed operation stored in tsmcomp. For the remaining timestamp vectors it
holds by line 3.5.12–3.5.13, as in each case the maximal timestamp vector among
lso and tsmcomp is picked, that they are greater than the respective one of Ci’s
last completed operation. Hence, operation op is greater than the last completed
operation of Ci.

Second, we show that when Ci reads value opw.value from register j during op
then op is greater than the corresponding operation opw with respect to relation
≤. Analogously, by the check in line 3.5.12 and lines 3.5.13–3.5.15, it also holds
that op is greater than operation lso. As the check in line 3.5.10 ensures that opw
is smaller or equal than lso, by transitivity, op is greater than opw. As in the
Linear protocol, when the server returns stale data during a read(j) operation
opi of client Ci, then the read operation and the most recent successful operation
of client Cj opj are forked. In this case the jth timestamp vectors in the matrices
of the two operations opi and opj are incomparable, especially entry j in the jth
timestamp vector of opi is smaller compared to the corresponding entry in opj ,
while the ith entry was updated. The protocol prevents, that any later operation
accessing register j of the shared memory is greater than both opi and opj . When
client Ci accesses register j in a later operation, an operation lso greater than
opj would not pass the check in line 3.5.8. This is because Ci is the only one
updating entry i in timestamp vector j, and thus the corresponding entry in lso
is smaller than what Ci expects. A similar argument holds for client Cj : If the
server presents an operation lso greater than opi to it, the jth entry of the jth
timestamp vector is smaller than what Cj expects and the check in line 3.5.8 is
not passed here, too. Operations of other clients accessing register j or operations
accessing a different register, as long as all checks are passed are either comparable
with opi or opj .

These two proof sketches give an intuition how the Concur protocol ensures
that all operations, op causally depends on, are ordered by ≤ before op. A de-
tailed correctness proof is given in the next section closing the presentation of the
Concur protocol.

3.6.3 Concur Protocol Proof

This section formally proves that the Concur protocol is an abortable, Byzantine
emulation of a shared memory with fork-linearizability. We first define the term
operation, as used in the Concur protocol in Algorithm 3.4 and 3.5.

Definition 3.14 (Concur Operation). An operation is a 4-tuple 〈id, value, tsv,
sig〉, where id is an operation id according to Definition 3.4, value is a value from
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set V, tsm is a matrix consisting of n timestamp vectors tsm1, . . . , tsmn where each
timestamp vector is a vector of size n of integers, and sig is a signature.

As in Section 3.5.3 we define a partial order ≤ on operations. Note, that we
regard only such operations op after the corresponding timestamp matrix entry
op.tsm has been assigned in line 3.5.15 of Algorithm 3.5.

Definition 3.15 (Order Relation). For two operations op and op′ holds op ≤ op′ if
and only if

∀i : op.tsmi ≤ op′.tsmi.

Relation ≤ on timestamp vectors is given in Definition 3.5. It holds op = op′ if and
only if op and op′ are the same operations.

It is easy to see that ≤ relation on operations is transitive. As relation ≤ is a
partial order on operations, we define a notion of when two operations cannot be
ordered by ≤.

Definition 3.16 (Comparable). For two operations op and op′ holds op and op′ are
comparable if and only if

op ≤ op′ ∨ op′ ≤ op.

Otherwise, they are incomparable.

In contrast to the definitions for the Linear protocol in section 3.5.3, in the
Concur protocol clients with incomparable operations are not necessarily forked.
Thus, the notion of forking is given in the next definition.

Definition 3.17 (Forked). For two operations op and op′ holds op and op′ are forked
if and only if

∃i : op.tsmi and op′.tsmi are incomparable.

The next Lemma shows that the ≤ relation on Concur operations does not
violate the real-time order of operations.

Lemma 3.18. If op ≤ op′ then op′ does not precede op.

Proof. Let op and op′ be two operations of client Ci and Cj and let us assume
by contradiction that op′ precedes op and op ≤ op′. During op, client Ci updates
the ith entry in the kth2 timestamp vector of the timestamp matrix (line 3.5.15).
As op′ precedes op and as the server cannot forge signatures (line 3.5.17), at the
point in time when Cj received the submit r message during op′ (line 3.5.6),
there exists no operation op′′ such that op′′.tsmk[i] ≥ op.tsmk[i]. Thus, we have
that op.tsmk[i] > op′.tsmk[i]. As op and op′ are comparable, this implies that
op.tsmk > op′.tsmk. However, this contradicts the assumption that op ≤ op′.
2W.l.o.g. operation op is an operation that accesses register k of the shared memory.
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Analogously to the proof in section 3.5.3, the following two Lemmas show that
operations which causally influence each other are ordered by ≤ such that the
causal order is respected. The operations of one client causally influence each
other (Lemma 3.19) as well as a write operation and an operation which reads
the written value (Lemma 3.20).

Lemma 3.19. All operations of the same client are totally ordered by ≤ relation on
operations.

Proof. We show that operation op of client Ci is greater than its previous com-
pleted operation opcomp. Note, that by line 3.5.20 opcomp.tsm = tsmcomp. By line
3.5.13, as check in line 3.5.12 is passed, we have that op.tsmk ≥ opcomp.tsmk for
all k 6= r. To pass the check in line 3.5.8, lso.tsmr is greater or equal than tsmr

comp

in all entries but the ith entry. However, in lines 3.5.14 and 3.5.15 the ith entry
of the rth vector of the timestamp matrix is updated by a larger entry and we get
that op.tsmr > opcomp.tsmr. Thus, we have that op > opcomp. By induction on
Ci’s operations, it follows that op is greater than any operation of Ci that precedes
op.

Lemma 3.20. If opr is a read(j) operation of client Ci that returns opw.value from
the shared memory, then opw < opr.

Proof. To pass the check in line 3.5.10, it must be that opw ≤ lso and by lines
3.5.13 and 3.5.15 it holds that lso < opr. Thus, if opr returns opw.value it must
be that opw < opr.

The next definition constructs a sequential permutation of the history of an
execution of the Concur protocol . The construction helps to simplify the proof
of the main correctness proof of the Concur protocol.

Definition 3.21 (Sequential Permutation). Let σ be a history of an execution of the
Concur protocol. We define a sequential permutation π of σ by construction: At first
we add all events from σ to π. Then, we apply transformations CrashComplete
and AbortComplete (Definition 3.2) in this order to π. Finally, we totally order π
by the following rules:

1. The operations are sorted by relation ≤ on operations.

2. Yet unsorted operations are sorted according to the real-time order of their
completion events in σ.

A subsequence πi of π contains all operations op of client Ci, and all operations op′

that satisfy op′ ≤ op.
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In contrast to the Linear protocol, during the Concur protocol even non-
forked clients may produce incomparable operations. The next lemma shows how
the Concur protocol ensures the sequential specification of a shared memory and
that forked operations will never be rejoined.

Lemma 3.22. Let opr be a read(j) operation of client Ci that returns opw.value
and opr is contained in some πk as defined in Definition 3.21. Then

1. opw is in πk, and

2. there is no write(j, v′) operation op′w of Cj between opw and opr in πk that
writes v′ 6= opw.value to the shared memory.

Proof. The first statement follows directly from Lemma 3.20, which states that
opw < opr, and the construction of πk in Definition 3.21.

For the second statement, note that op′w and opw are both operations of client
Cj and they write different values. Thus, let us assume for contradiction that such
operation op′w exists and we have that opw precedes op′w and op′w precedes opr.
We first show that (A) opr and op′w are forked. Then we show (B) that op′w is not
in πk.
Proof of A:
We first rule out the trivial case when i = j: If i = j then client Ci reads from
its own register i. As opw precedes op′w we have that at client Ci, tssuc[i] =
op′w.tsmi[i] > opw.tsmi[i]. During opr the check in line 3.5.8 is not passed as
tssuc[i] 6= opw.tsmi[i] or the check in line 3.5.10 is not passed as op′w.tsmi[i] 6=
opw.tsmi[i]. Hence, opr blocks which contradicts the precondition that opr is in
πk. Therefore, i 6= j.

Let l be operation lso as seen by opr. To pass the check in line 3.5.10, we have
opw.tsmj [j] = l.tsmj [j]. As i 6= j, client Ci updates only its own entry (line 3.5.15),
the jth entry of l.tsmj is not changed during opr and thus opr.tsmj [j] = l.tsmj [j]
(line 3.5.14). Moreover, since opw and op′w are both operations of the same client
and opw precedes op′w we have op′w.tsmj [j] > opw.tsmj [j] (lines 3.5.3 and 3.5.15)
and thus

opr.tsmj [j] = opw.tsmj [j] < op′w.tsmj [j].

Further, during opr the ith entry of the jth timestamp vector is updated to
opr.tsmj [i]. As op′w precedes opr and as the server cannot forge signatures, at
the point in time when Cj received the submit r message during op′w, there ex-
ists no operation op′′ such that op′′.tsmj [i] ≥ opr.tsmj [i]. Thus,

op′w.tsmj [i] < opr.tsmj [i]

implying that opr.tsmj and op′w.tsmj are incomparable. Hence, operations opr and
op′w are forked that proves claim (A) correct.
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Proof of B:
To show that op′w is not included in πk, we assume by contradiction that op′w is
element of πk. By construction of πk there exist minimal operations op, op′ of
client Ck such that opr ≤ op and op′w ≤ op′. As any two operations of Ck are
ordered we assume w.l.o.g. that op′ ≥ op and thus op′ ≥ opr and op′ ≥ op′w.
Note that by definition of ≤ relation, it must hold for the timestamp vectors that
op′.tsmj ≥ opr.tsmj and op′.tsmj ≥ op′w.tsmj . By line 3.5.15, the ith entry of each
timestamp vector in a timestamp matrix is only incremented by client Ci. Thus, to
satisfy op′.tsmj [i] ≥ opr.tsmj [i], there must be a sequence of operations accessing
register j, starting with opr and ending with op′ such that the jth timestamp
vectors are monotonically increasing.

As the jth entry of each timestamp vector in a timestamp matrix is only in-
cremented by client Cj and opr.tsmj [j] < op′w.tsmj [j], no operation of client Cj is
in this sequence. Otherwise, for client Cj the check (tssuc[j] = lso.tsmj [j]) in line
3.5.8 would not be passed, as the jth entry of the jth timestamp vector is smaller
than the corresponding entry of tssuc[j] after op′w was completed. Thus, as no op-
eration of Cj is in this sequence, all operations in this sequence have opr.tsmj [j] as
their jth entry in the jth timestamp vector. Therefore, op′.tsmj [j] = opr.tsmj [j] <
op′w.tsmj [j] and as we have shown that op′.tsmj [i] ≥ opr.tsmj [i] > op′w.tsmj [i], we
conclude that timestamp vectors op′.tsmj and op′w.tsmj are incomparable. This
contradicts the fact that op′ ≥ op′w and thus, op′w is not contained in πk. Hence,
also the second statement is satisfied and we are done.

The next Lemma proves the main result that the Concur protocol satisfies
fork-linearizability according to Definition 3.3 on page 38.

Lemma 3.23. The history of any execution of the Concur protocol described in
Algorithm 3.1, 3.5 and 3.4 is fork-linearizable with respect to the functionality of a
shared memory.

Proof. We show that the sequential permutation π of σ and all πi defined by
Definition 3.21 satisfy the properties of fork-linearizability as given in Definition
3.3.

We first show that π maintains real-time order of σ, i.e., if op precedes op′ in
σ, then op precedes op′ in π. By Lemma 3.18, operations sorted by ≤ respect
real-time order of σ. By the definition of π, all other operations are also ordered
in real-time order.

Requirement 2.(a) of fork-linearizability is satisfied by Lemma 3.19, which shows
that all operations of one client are totally ordered by ≤, by Lemma 3.20, and by
the transitivity of ≤ on operations. Requirement 2.(b) follows from Lemma 3.22.
Requirement 2.(c) follows directly from the construction of πi.
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Lemma 3.10 has shown that the Concur protocol satisfies the safety properties
of fork-linearizability. We now continue by proving that the Concur protocol also
satisfies the specified liveness properties. The next lemma proves that as long as
server S behaves correctly, all operations eventually complete (by either returning
abort or ok).

Lemma 3.24. If the server is correct, then no operation in Algorithm 3.5 blocks.

Proof. We have to show that no operation blocks in lines 3.5.7 – 3.5.10.

• verify(lso.sig)∧verify(x op.sig) is true: As clients are non-malicious, all
signatures are correct. Thus the protocol does not block in line 3.5.7.

• Assume by contradiction that ∃k : tsmr
comp[k] > lso.tsmr[k]: Let opcomp be

the last completed operation that updated tsmcomp in line 3.5.20. As the
server is correct it returns only successfully completed operations, so, par-
ticularly operations opcomp and lso are successful. By line 3.4.12 and 3.4.13
whenever some operation accessing register r of the shared memory takes
effect, lso[r] is also updated. Thus, as lso[r] is monotonically increasing,
opcomp.tsmr 6> lso.tsmr. Therefore, tsmr

comp 6> lso.tsmr which is a contradic-
tion.

Assume by contradiction that tssuc[r] 6= lso.tsmr[i]: Let opsuc be the suc-
cessful operation accessing register r that updated tssuc[r]. By the reasoning
above, whenever register r at the server is updated, lso[r] is also updated.
This implies that lso.tsmr[i] 6< opsuc.tsmr[i]. Therefore, it must be that
lso.tsmr[i] > opsuc.tsmr[i]. Entry lso.tsmr[i] is only updated when an oper-
ation of Ci later than opsuc successfully completes. However, in this case
tssuc[r] is also updated to the same value and we have lso.tsmr[i] = tssuc[r],
a contradiction.

Thus, the protocol does not block in line 3.5.8

• x op.id.client = r is true: As the server is correct it returns x op from the
correct register. Thus the protocol does not block in line 3.5.9.

• Assume by contradiction that x op 6≤ lso: As the server is correct it returns
only operations that successfully completed. Thus, both x op and lso are
successful. As x op and lso both access register r, this implies that x op
and lso can be ordered by ≤. By line 3.4.12 and 3.4.13 whenever some
register r at the server is updated, lso[r] is also updated. Thus, as lso[r]
is monotonically increasing, x op 6> lso. Therefore, x op ≤ lso which is a
contradiction.

Assume by contradiction that lso.tsmr[r] 6= x op.tsmr[r]: Whenever some
register at the server is updated, lso[r] is also updated. This implies that
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lso.tsmr[r] 6< x op.tsmr[r]. Thus, it must be that lso.tsmr[r] > x op.tsmr[r].
Entry lso.tsmr[r] is only updated when an operation of Cr accessing reg-
ister r later than x op is successful. However, in this case x op.tsmr[r] is
also updated to the same value and we have lso.tsmr[r] = x op.tsmr[r], a
contradiction.

Thus, the protocol does not block in line 3.5.10

Hence, no operation blocks in lines 3.5.7 – 3.5.10 and we are done.

The next lemma shows that also the Concur protocol satisfies the nontriviality
property when server S is correct. This property rules out trivial implementations
where every operation is aborted.

Lemma 3.25. With a correct server, an operation op of a client accessing register
r aborts only if the server receives a submit message from another client accessing
register r after the submit and before the commit message corresponding to op.

Proof. If op aborts then the server has received the commit message corresponding
to op. As the server is correct and no submit message of another operation
accessing r is received after the submit and before the commit message of op,
op.id 6∈ Abrt[r]. By line 3.4.12 and 3.4.13, op is not aborted.

Finally, the following theorem proofs the correctness of the Concur protocol.

Theorem 3.26. The Concur protocol emulates a shared memory on a Byzantine
server with fork-linearizability satisfying the properties nontriviality and termination
(cf. Section 3.4).

Proof. By Lemma 3.23, the safety properties of fork-linearizability are satisfied,
by Lemma 3.24, the protocol does not block, and by Lemma 3.25, no operation
accessing a register in isolation is aborted when the server is correct.

3.7 Analysis & Conclusion

In the Linear and Concur protocol all operations need two communication
rounds to complete. We argue why two rounds are necessary for write operations:
The reasoning is based on the fact that the information possibly written by some
one-round write operation is independent from some operations of other clients.
Consider the following sequential execution with a correct server and clients C1

and C2: write1(1, x), read2(1)→ x3, write1(1, y), read2(1)→ y (Figure 3.1).
Note, that by the one-round assumption, the information written by write1(1, y)

3The notation means that read2(1) operation of client C2 returns value x.
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S

C1

C2
read2(1)→ y

. . . . . .

write1(1, x) write1(1, y)

read1(1)→ x

write1(1, y)

. . .

read1(1)→ x

S

C1

C2
read2(1)→ y

. . .

write1(1, x)

Figure 3.1: Two executions, indistinguishable for client C2

does not depend on the preceding operation read2(1) → x. Thus, a Byzantine
server may “swap” the order of these two operations unnoticeably. Hence, we
can construct an execution with a Byzantine server, which is indistinguishable
for client C2: write1(1, x), write1(1, y), read2(1) → x, read2(1) → y (see
Figure 3.1 for an illustration of the two executions). As C2’s second read op-
eration returns y, the run violates the sequential specification and thereby also
fork-linearizability. Thus, two rounds are needed for write operations and the
write operations implemented by the Linear and Concur protocol are optimal
in this sense. The thesis at hand leaves for future work the conjecture that read
operations can be optimized in the Linear and Concur protocol to complete
after a single round. This would also imply that read operations can be made
wait-free.

The messages exchanged during the Linear protocol have size O(2(n+ ι+ |v|+
ς)), where ι is the length of an operation id, |v| denotes the maximal length of a
value from set V and ς is the length of a signature. The message complexity of
the Concur protocol is in O(2(n2 + ι+ |v|+ ς)).

This chapter has introduced two lock-free emulations of fork-linearizable shared
memory on a Byzantine server, Linear and Concur. The Linear protocol is
based on timestamp vectors and it has a communication complexity of O(n). It
is the first lock-free protocol that emulates fork-linearizable shared memory at
all. The impossibility result of Cachin et al. [CSS07] is circumvented by aborting
concurrent operations. The Concur protocol improves on the Linear protocol
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in the way how concurrent operations are handled. In the Concur protocol only
concurrent operations accessing the same register of the shared memory need to
be aborted. To achieve this, the Concur protocol relies on timestamp matrices
and has a communication complexity of O(n2).

Both protocols demonstrate that in the context of fork-linearizable implemen-
tations obstruction-free instead of blocking operations can be achieved. This is a
major improvement over all existing, lock-based solutions. The main issue when
using locks is that client operations are strongly dependent on each other: If a
client that currently holds the lock crashes no operations of any other client is able
to make progress. Abortable, and thereby obstruction-free operations, as provided
by the Linear and the Concur protocol fundamentally prevent such a strong de-
pendence. Moreover, it has been shown that abortable operations can be easily
made wait-free in practical settings [AT08] which ensure maximal independence
between the clients.
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Registers

The two protocols introduced in this chapter as contributions (C3) and (C4) of this
thesis improve on the Linear and Concur protocol from Chapter 3 (contributions
(C1) and (C2)) with respect to the required assumptions on the computational
capabilities of the server. The main difference is that in the Linear and Concur
protocol the server is required to execute non-trivial computation steps. From a
theoretical viewpoint, such a server constitutes a universal object, representing
the strongest object in Herlihy’s wait-free hierarchy [Her91]. A universal object is
much more powerful than shared storage objects known as registers, which lie in
the weakest class of all shared objects in this hierarchy. In practical terms, it is
important to reduce the complexity and cost of a remote service implementation
as computation resources are typically more expensive than storage resources.

This chapter addresses the fundamental structure of fork-consistent implemen-
tations and raises the question: Can one provide a fork-consistent emulation in
which the server does not execute computation steps, but provides only the func-
tionality of shared registers? Surprisingly, the answer is yes. Specifically, this
chapter presents two distributed protocols that are built on top of a server that
implements only registers: The Afl protocol (C3) a fork-linearizable emulation of
a universal type, in which operations are allowed to abort under concurrency, and
the Wfl protocol (C4) a weakly fork-linearizable emulation of a shared memory
that ensures wait-freedom of the implemented operations as long as the server
behaves correctly.

The introduced protocols Afl and Wfl constitute the first fork-consistent im-
plementations that are based on a server that implements only registers. Imple-
menting a universal object, as done by the Afl protocol, only from registers has
shown to be impossible in a wait-free manner even without fork-consistent seman-
tics [Her91]. The best known construction of a universal type based on registers
provides abortable operations [AFH+07]. As the Afl protocol does not require ad-
ditional assumptions compared to this approach, the Afl protocol demonstrates
that fork-consistent semantics can be added in this context without any trade-
offs. The Wfl protocol implements a register-based shared memory with fork-
consistent semantics where operations are wait-free when the server is correct. All
existing solutions require for this task a server that provides universal functional-
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ity. These approaches appear counterintuitive as the strongest possible server type
is required to implement a simple read/write interface of a shared memory. The
Wfl protocol demonstrates that a shared memory with fork-consistent semantics
can be implemented only from memory objects. For instance, the Wfl protocol
allows to eliminate the server code from the Venus system [SCC+10] thereby fun-
damentally reducing the assumptions made on the computationally capabilities of
the server.

Section 4.1 introduces the motivation for the taken approach and embeds the
contributions in the context of this thesis. Section 4.2 discusses related work and
Section 4.3 gives a refinement of the underlying system model. The two main
contributions (C3) and (C4) are given as protocols Afl and Wfl in Sections 4.4
and 4.5. The chapter concludes with a complexity analysis in Section 4.6.

4.1 Introduction

The increasing trend of executing services online “in the cloud” [MG11] offers
many economic advantages, but also raises the challenge of guaranteeing security
and strong consistency to its users. As the service is provided by a remote entity
that wants to retain its customers, the service usually acts as specified. But
online services may fail for various reasons, ranging from simply closing down
(corresponding to a crash fault) to deliberate and sometimes malicious behavior
(corresponding to a Byzantine fault).

As already discussed in Chapters 1 and 3, cryptographic techniques can prevent
a malicious server from forging responses or snooping on customer data. But other
violations are still possible, for instance, when multiple isolated clients interact
only through a remote server, the latter may send diverging and inconsistent replies
to the clients. In this context, “forking” consistency conditions [MS02, CSS07]
offer a gracefully degrading solution because they make it much easier for the
clients to detect such violations. More precisely, they ensure that if a Byzantine
server only once sent a wrong response to some client, then this client becomes
forever isolated or forked from those other clients to which the provider responded
differently. With this notion, clients may easily detect service misbehavior from a
single inconsistent operation, e.g., by out-of-band communication.

Fork-linearizability [MS02, CSS07] ensures that clients always observe lineariz-
able [HW90] service behavior and that two clients, once forked, will never again see
each other’s updates to the system (i.e., they share the same history prefix up to
the forking point). However, it has been found that fork-linearizable Byzantine em-
ulations of a shared memory cannot always provide wait-free operations [CSS07],
i.e., some clients may be blocked because of other clients that execute operations
concurrently. An escape is offered by the weaker liveness property of abortable
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emulations as provided by the Linear and Concur protocol in Chapter 3, which
allow client operations to abort under contention [MDSS09]. As another alter-
native, the notion of weak fork-linearizability relaxes fork-linearizability in order
to allow wait-free client operations in Byzantine emulations [CKS11]. Weak fork-
linearizability [CKS11] allows two clients, after being forked, to observe a single
operation of the other one (at-most-one-join), and that the real-time order in-
duced by linearizability may be violated by the last operation of each client (weak
real-time order).

This chapter explores the fundamental assumptions required for building a
Byzantine service emulation. Up to now, all fork-consistent protocols have re-
quired the server to execute non-trivial computation steps, i.e., the server con-
stitutes an object of universal type [Her91], capable of read-modify-write opera-
tions [KRS88]. Contributions (C3) and (C4) demonstrate the surprising result that
this requirement can be dropped, and implement fork-consistent emulations only
from memory objects, so-called registers, representing one of the weakest forms of
computational objects. A long tradition of research has already addressed how to
realize powerful abstractions from weaker base objects (e.g., [Her91, AKMS11]).

Specifically, this chapter introduces the first fork-linearizable Byzantine emu-
lation of a universal object only from registers. The Afl protocol (contribution
(C3)) necessarily offers abortable operations because a wait-free emulation of a uni-
versal object is not possible in an asynchronous system using only registers [Her91].
Moreover, the Wfl protocol (contribution (C4)) is a distributed protocol imple-
menting a weakly fork-linearizable Byzantine emulation of a shared memory only
from registers. It allows wait-free client operations when the server implementing
the underlying registers is correct.

The two protocols Afl and Wfl may directly replace the existing respective
emulations of shared memory on Byzantine servers [MDSS09, CKS11, SCC+10],
where the server has read-modify-write capabilities. For instance, the Wfl proto-
col, which yields a weakly fork-linearizable Byzantine emulation, allows to elim-
inate the server code from Venus [SCC+10]. Currently, Venus runs server code
implemented by a cloud computing service, but protocol Wfl may realize it from
a cloud storage service. For practical systems this can make a big difference
in cost because full-fledged servers or virtual machines (e.g., Amazon EC2) are
typically more expensive than simple disks or cloud-based key-value stores (e.g.,
Amazon S3).

Contributions of Chapter 4 This chapter proposes, for the first time, Byzantine
emulations with fork-consistent semantics only from registers, instead of more
powerful computation objects. As the registers are implemented by a Byzantine
server, any number of registers may be affected by malicious behavior of the server.
The introduced protocols are linearizable provided that the server implementing
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the base registers are correct. The protocols comprise:

• (C3) The Afl protocol, a register-based abortable Byzantine emulation of
a fork-linearizable universal type.

• (C4) The Wfl protocol, a register-based wait-free Byzantine emulation of
weak fork-linearizable shared memory.

4.2 Related Work

The notion of fork-linearizability was introduced by Mazières and Shasha [MS02].
They implemented a fork-linearizable multi-user storage system called SUNDR. An
improved fork-linearizable storage protocol is described by Cachin et al. [CSS07];
it reduces the communication complexity compared to SUNDR from O(n2) to
O(n). More recently, fork-linearizable Byzantine emulations have been extended
to universal services [Cac11]. All fork-linearizable emulations are blocking and
sometimes require one client to wait for another client to complete [CSS07].

In order to circumvent blocking the clients, Majuntke et al. [MDSS09] propose
the first abortable fork-linearizable storage implementations (contributions (C1)
and (C2) in Chapter 3). These contributions take up the notion of an abortable
object introduced by Aguilera et al. [AFH+07]. They demonstrated, for the first
time, how an abortable (and, hence, obstruction-free [HLM03]) universal object
can be constructed from abortable registers, which are shared objects weaker than
registers. In more recent work, it has been shown that abortable objects can
be boosted to wait-free objects in a partially synchronous system [AT08]. This
makes Byzantine emulations of abortable objects, as proposed by contributions
(C1), (C2), and (C3) of the thesis at hand, very attractive in practical systems.

Actually implemented systems offering data storage integrity through fork-
consistent semantics include SUNDR (LKMS) [LKMS04], which realizes the pro-
tocol of Mazières and Shasha [MS02]. Furthermore, Cachin et al. [CG09] add
fork-linearizable semantics to the Subversion revision control system, such that
integrity and consistency of the server can be verified. The “blind stone tablet”
of Williams et al. [WSS09] provides fork-linearizable semantics for an untrusted
database server; it may abort conflicting operations. Using a relaxation of fork-
linearizability, called fork-* consistency, Feldman et al. [FZFF10] introduce a lock-
free implementation for online collaboration that protects consistency and integrity
of the service against a malicious provider.

Cachin et al. [CKS11] present the storage service FAUST, which emulates a
shared memory in a wait-free manner by exploiting the notion of weak fork-
linearizability. It relaxes fork-linearizability in two fundamental ways: (1) after
being forked, two clients may observe each others’ operations once more and (2)
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the real-time order of the last operation of each client is not preserved. FAUST
incorporates client-to-client communication in a higher layer, which ensures that
all operations become eventually consistent over time (or the server is detected
to misbehave). The Venus system [SCC+10] implements the mechanisms behind
FAUST and describes a practical solution for ensuring integrity and consistency
to the users of cloud storage.

Li and Mazières [LM07] study storage systems, built from 3t+ 1 server replicas,
where more than t replicas are Byzantine faulty. Their storage protocol ensures
fork-* consistency. Similar to weak fork-linearizability, fork-* consistency allows
that two forked clients observe again at most one common operation. Standard
methods implementing fault-tolerant shared registers from fault-prone base reg-
isters show how to tolerate up to a fraction of Byzantine base registers [MR98].
This extension, which is orthogonal to the apporaches proposed in this chapter and
discussed by Chapter 5 of this thesis, would further refine the notion of graceful
service degradation with faulty base objects.

4.3 System Model

We consider a distributed system as defined in Section 2.1.1 where the set of clients
C contains n > 1 clients C1, . . . , Cn, and the set of servers contains a single server
S.

An execution of a distributed protocol P induces a history which is a sequence of
invocation and response events. For the proposed abortable construction (Sec. 4.4),
we introduce the special response abort. A complete operation o is called un-
successful (“o is aborted”), if it returns abort, else it is called successful (“o
successfully completes”). The formal definition of an abortable object comprises a
non-triviality property which allows aborts only under concurrency [AFH+07] (cf.
also Section 3.4).

Clients may fail by crashing, i.e., they stop taking steps and hence, the last
operation of each client might be incomplete. Server S may deviate arbitrarily
from its specification exhibiting non-responsive-arbitrary faults [JCT98] (called
Byzantine). Clients have access to a digital signature scheme used by each client to
sign its data such that any other client can determine the authenticity of a datum
by verifying the corresponding signature. We assume that signatures cannot be
forged.

We omit the algorithm of server S and assume that server S implements a
collection of atomic registers that can be directly accessed by the clients (see
Section 2.1.4 for a formal definition). An atomic register provides two operations,
read and write1. Operation write(v) stores value v into the register. A call of

1We type operation calls to base registers provided by server S in italic font and calls to the
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read() returns the latest written value from the register or the special value ⊥ if no
value has been written. As the register is atomic, its history satisfies linearizability
[Her91], i.e., operations seem to appear as sequential, atomic events2. Further, the
atomic registers used allow single-writer-multiple-reader access (SWMR), i.e., to
each register we assign a dedicated client that may call write and read, while all
other clients may only call read to that register.

A sequence of operations π satisfies weak real-time order of history σ if π,
excluding the last operation of each client in π, satisfies real-time order of σ.
Causality between two operations depends on the type of the implemented object3.
For two operations of a shared memory o and o′ in σ, o causally precedes o′

(o →σ o
′), if o and o′ are called by the same client and o happens before o′, or if

o′ is a read operation that returns the value written by write operation o:

Definition 4.1. For two operations o, o′ in history σ of an execution of a distributed
protocol implementing a shared memory, we say that o causally precedes o′ in σ (o′

causally depends on o), denoted o →σ o
′ whenever one of the following conditions

hold:

1. Operations o and o′ are both invoked by the same client and o finishes before
o′ is invoked.

2. operation o′ is a read operation, o is a write operation, and o′ reads the value
written by o.

3. There exists an operation o′′ such that o→σ o
′′ and o′′ →σ o

′.

Before defining (weak) fork-linearizability, we first formalize the notion of a
possible view [CKS11] and the weak real-time order [CKS11].

Definition 4.2. A sequence of events π is called a possible view of a history σ at a
client Ci with respect to a functionality F if σ can be extended (by appending zero
or more responses) to a history σ′ such that:

1. π is a sequential permutation of some subsequence of complete(σ′),

2. π|Ci = complete(σ′)|Ci , and

3. π satisfies the sequential specification of F .

Where for a sequence of events σ, complete(σ) is the maximal subsequence of σ
consisting only of complete operations.

implemented shared objects in capitals.
2Hence, the “latest written value” is well-defined.
3As causality is needed to define weak fork-linearizability, here, we give causality for a shared
memory, which is the type we implement with weak fork-linearizability.

68



4.3 System Model

Definition 4.3. Let π be a sequence of events and let lastops(π) be a function of
π returning the set containing the last operation from every client in π (if it exists),
that is,

lastops(π) :=
⋃

i=1,...,n

{o ∈ π|Ci
∣∣6 ∃o′ ∈ π|Ci s.t. o precedes o′ in π}

We say that π preserves the weak real-time order of a sequence of operations σ
whenever π excluding all events belonging to operations in lastops(π) preserves the
real-time order of π.

The next definition formalizes the notion of fork-linearizability [CSS07] and weak
fork-linearizability [CKS11]. The definition of fork-linearizability is equivalent to
the corresponding definitions given in Chapters 2 and 3.

Definition 4.4. Let σ be a history of an execution of distributed protocol P imple-
menting functionality F and for each client Ci there exists a sequence of events πi
such that πi is a possible view of σ at Ci with respect to F .

History σ is fork-linearizable with respect to functionality F if for each client Ci:

1. πi preserves the real-time order of σ, and

2. for every client Cj and for every o ∈ πi ∩ πj , it holds πi|o = πj |o.

History σ is weak fork-linearizable with respect to functionality F if for each client Ci:

1. πi preserves the weak real-time order of σ, and

2. for every operation o ∈ πi and every operation o′ ∈ σ such that o′ →σ o, it
holds that o′ ∈ πi and that o′ <πi o, and

3. (At-most-one-join) for every client Cj and every two operations o, o′ ∈ πi ∩ πj
by the same client such that o <σ o

′, it holds πi|o = πj |o.

The notion of a Byzantine emulation [CSS07] as given in Definition 2.4 in Chap-
ter 2 comprises the safety and liveness properties of the proposed distributed pro-
tocols. Note that the liveness condition of abortable operations is weaker than
wait-freedom but still not weaker than obstruction-freedom [AFH+07]. Such a
Byzantine emulation is wait-free (abortable resp.), iff every fair and well-formed
execution of the protocol with a correct server is wait-free [Her91] (abortable
[AFH+07] resp.).
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4.4 (C3): The Afl Protocol

This section presents as contribution (C3) of this thesis the Afl protocol which
is an abortable fork-linearizable Byzantine emulation of a universal type imple-
mented on top of a server providing only atomic registers. The shared functionality
ensures fork-linearizability in the presence of any number of faulty base registers.
High-level operations are abortable [AFH+07], i.e., under concurrency, the spe-
cial response abort may be returned. The functionality of a universal type T
is encoded in the procedure applyT . For client Ci, state s and instruction ins,
applyT (s, ins, i) returns (s′, res), where s′ is the new state of the universal object,
res the computation result, and where the sequence of invoking applyT (s, ins, i)
and returning (s′, res) is defined by the sequential specification of type T (see
Section 2.1.3 for a formal definition).

The Afl protocol uses timestamp vectors called versions whose order reflects
the real-time order in which operations are applied to the implemented shared
functionality. Each operation carries a version, and the linearization of operations
is achieved through the use of an inc&read counter object C with two atomic
operations inc&read and read. An invocation to inc&read(C) advances the
counter object C and returns a value which is higher than any value returned
before, and read(C) returns the current value of the counter object. An imple-
mentation of the inc&read counter is given in Algorithm 4.2 in Section 4.4.4
together with its formal properties. This algorithm uses wait-free atomic registers
(implemeted by server S) as base objects which makes it a wait-free variant of the
abortable inc&read counter described by Aguilera et al. [AFH+07].

4.4.1 Protocol Ideas

Universal Type To implement universal type T , the Afl protocol uses n SWMR
registers R1, . . . , Rn provided by server S such that client Ci can read from all
registers but may write only to Ri. The registers store states of the implemented
universal object. To implement high-level operations, client Ci reads from the
register which holds the most current state, applies the relevant state transfor-
mation, and writes the new state to Ri. Note, that all information are digitally
signed by the clients as base objects are untrusted. Thereby, operations “affect”
each other which leads to the following relation on operations: Operation o of Ci
affects operation o′ of Cj , if during o′, Cj is able to verify the signature of Ci on
state s that has been written during o and if Cj executes applyT on s during o′;
further, an operation of Ci affects each later operation of Ci.

Concurrency detection Operations of the Afl protocol are allowed to abort
under concurrency for two reasons: there is no wait-free construction of a universal
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type from registers, as shown by Herlihy [Her91], and no fork-linearizable protocol
can be wait-free in all executions, as shown in a more recent work of Cachin et
al. [CSS07]. Cachin’s impossibility is based on two runs, indistinguishable for
the reader: In the first run a read operation does not return value v as it is
concurrently written, while in the second run v has been previously written and
is hidden by malicious registers (see Figure 1.1 on page 4 in Chapter 1 for an
illustration).

To avoid such a situation, the Afl protocol implements a concurrency detection
mechanism [AFH+07] using inc&read counter object C. If concurrency is de-
tected, a pending operation is aborted. At the invocation of a high-level operation
o, the Afl protocol calls inc&read(C) and stores the timestamp returned. At
the end of o, read(C) is executed to check whether counter C still returns the
same timestamp. If not, another operation o′ was invoked during o — thus, o is
aborted. Else, if at the end of o C has not been changed, all successful operations
either terminated before o or will be invoked after o has terminated. This is be-
cause the timestamps, returned from inc&read, are used to linearize operations:
The current state is written together with the timestamp, and the timestamp is
used to determine the most recent state. Hence, all other operations invoked so
far write a state with a lower timestamp than o. Consequently, such operations
are linearized before operation o and only the state written by o can be read by
later operations.

Fork-Linearizability In addition to the timestamp from inc&read counter C,
each operation is assigned a vector of timestamps of length n, called version. The
order relation ≤ defined on versions respects real-time order and the ”affected
by” relation on operations. The idea is that each operation reads the most recent
version from the registers, increments its own entry and writes the new version
back to the registers. Thereby, each operation checks, if the version it reads, has
been affected by the version of its own last successful operation, i.e., one which
was not aborted. If the last successful operation of client Ci is hidden from Cj ,
then Ci does not accept operations of Cj as they have not been affected by the
last successful operation of Ci. This ensures that the views of the clients after a
forking attack are not rejoined. This principle is based on ideas of Mazières and
Shasha [MS02], and Cachin et al. [CSS07] and has also been used in a similar way
by the Linear and Concur protocol in Chapter 3.

To apply this idea to the Afl protocol, we have to add a specific handling for
aborted operations: If operation o of client Ci is aborted, Ci cannot expect that o
will affect later operations. However, it is still possible that some operation of Cj
is affected by aborted o. In this case we call o relevant for Cj (Definition 4.6 on
page 75).
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4.4.2 Description of the Afl Protocol

In the following, the steps performed by client Ci when executing high-level in-
struction ins of protocol Afl are described. The Afl protocol is given as Algo-
rithm 4.1.

The algorithm executed by client Ci is framed by inc&read(C) and read(C)
calls to the counter object C implementing the concurrency detection mechanism
(lines 4.1.2 and 4.1.14). If the returned timestamps are not equal, the operation is
aborted in line 4.1.16. In lines 4.1.3–4.1.5, the client reads from all atomic registers
R1, . . . , Rn and determines by means of the assigned timestamps the index l of the
register holding the latest written data 〈tsl, Vl, sl, sigl〉, where tsl is a timestamp,
Vl is the version, sl is the state and sigl is a signature. If some data have been
written to Rl, the signature of the content of Rl is verified (line 4.1.6). Then,
client Ci checks whether the read version Vl is not smaller than Vsuc the version
of its own last successful operation (line 4.1.7). When the check is passed the new
state of the universal object and the computation result is computed by calling
applyT (sl, ins, i) (line 4.1.8). Finally the new version of the operation has to be
computed. This is done by taking the per-entry maximum of version V , which
is the local version of Ci, and Vl, and by incrementing the ith entry (lines 4.1.9–
4.1.11). After signing the current timestamp, the new version V , and new state
s in line 4.1.12, client Ci writes ts, V , s and the signature into register Ri (line
4.1.13). If operation o is successful, version V is stored as last successful version
Vsuc and the computation result is returned (lines 4.1.17–4.1.19).

4.4.3 Correctness Arguments

In this section we argue why the Afl protocol in Algorithm 4.1 satisfies fork-
linearizability. The goal is to construct for each client Ci a view πi of history σ
that satisfies the properties of fork-linearizability. To construct πi, we simplify
our argumentation by ignoring operations that are not relevant for Ci. Recall,
any operation is relevant for client Ci that affects Ci’s last successful operation.
Hence, operations that are not relevant for client Ci do not change the object’s
state from Ci’s point of view. Thus, we can order them arbitrarily among the
operations in πi and the resulting sequences still satisfy fork-linearizability.

The idea behind the construction of the πi in the proof is that operations are
ordered according to their assigned versions. The proof shows that this order
respects the “affected by” relation, the sequential specification of a universal type,
and the real-time order. As during an operation the new version is computed using
the client’s last version and the read version, proving “affected by” and real-time
order is straightforward. The core of the proof is to show that the order of version
also respects the sequential specification. We sketch the intuition behind this with
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Algorithm 4.1: Afl Protocol, Algorithm of Client i

Variables:
C inc&read counter object, initially 0
R1, . . . Rn SWMR atomic register, initially 〈0, (0, ..., 0),⊥,⊥〉

/* ts+version+state+sig */

ts, ts′, tsl, cn integer, initially 0 /* timestamp & counter */

V [1..n], Vl[1..n], Vsuc[1..n] array of integers, intially (0, ..., 0) /* version */

s, sl state, initially ⊥ /* state */

res operation result, initially ⊥ /* return value */

sig, sigl signature, initially ⊥ /* signature */

execute(ins) do4.1.1

ts← inc&read(C) /* increment and read from counter */4.1.2

for j = 1, . . . , n do4.1.3

〈tsj , Vj , sj , sigj〉 ← read(Rj) /* low-level atomic read */4.1.4

let l be such that tsl = max1≤j≤n(tsj) /* register with newest data */4.1.5

if Vl 6= [0 . . . 0] ∧ ¬verifyl(sigl, 〈tsl, Vl, sl〉) then halt /* signature ok? */4.1.6

if ∃k : Vsuc[k] > Vl[k] then halt /* fork-lin check passed? */4.1.7

〈s, res〉 ← applyT (sl, ins, i) /* compute new state + result */4.1.8

for j = 1, . . . , n, j 6= i do4.1.9

V [j]← max(V [j], Vl[j]) /* determine4.1.10

V [i]← V [i] + 1 new version */4.1.11

sig ← signi(ts||V ||s) /* signature on ts, version, state */4.1.12

write(Ri, 〈ts, V, s, sig〉) /* low-level atomic write */4.1.13

ts′ ← read(C) /* read from counter */4.1.14

if ts 6= ts′ then4.1.15

return abort /* concurrency detected */4.1.16

else4.1.17

Vsuc ← V /* reset last successful version */4.1.18

return res /* return result */4.1.19

the following argumentation leading to a contradiction:

Assume that some operation oc is not affected by the most recent state of the
universal object, which has been written by relevant operation ob, but is affected
by an older state written by operation oa. In this case, the clients of ob and oc are
forked, and neither ob nor oc affect each other. We argue, that in such a situation,
there is no relevant operation that has been affected by both ob and oc, as such
an operation would join the two clients violating fork-consistency. We assume for
contradiction, that a relevant operation ojoin of client Cjoin, affected by ob and oc
exists which is also the first among such operations (see Figure 4.1). Operation
ojoin is affected by ojoin suc, the last successful operation of Cjoin previous to ojoin,
and by or that wrote the state which is read during ojoin. Hence, without loss of
generality ojoin suc is affected by ob while or is affected by oc. During operation
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oa ob oc ojoinojoin suc

or

. . .

Figure 4.1: Correctness Idea of the Afl Protocol in Algorithm 4.1. Arrows denote
the “affected by” relation.

ojoin suc, client Cjoin raises its value in the version to V [join]join suc. This implies
that ojoin only accepts versions where the jointh entry is at least V [join]join suc
(line 4.1.7). As ojoin suc is not on the path of “affected by” relations from oc to
or, ojoin would block while reading the state of or which is a contradiction. Thus,
ojoin does not exist.

Finally, it follows directly from the described construction, that sequences πi
satisfy the no-join property. To complete the correctness proof of the Byzantine
emulation, we show that when all base objects are correct, no operation blocks
and that no operation trivially aborts.

4.4.4 Proof of Correctness of the Afl Protocol

This section formally proves that the Afl protocol given as Algorithm 4.1 imple-
ments an abortable, fork-linearizable Byzantine emulation of a universal type.

The implementation uses an inc&read counter object, given as Algorithm 4.2
for client Ci, i = 1, . . . , n. An inc&read counter object C provides two atomic op-
erations inc&read(C) and read(C). An invocation to inc&read(C) advances
the counter object C and returns a value which is higher than any value returned
before the invocation of inc&read(C). An invocation to read(C) returns the
current value of the counter object. The inc&read counter C has two properties:

P1 If a client process runs in isolation and it first calls inc&read(C) and then
later read(C), then the same value is returned by both invocations, and

P2 the values returned by inc&read(C) reflect the real-time order of invocations
to inc&read(C).

The counter object C is a wait-free variant of the abortable inc&read counter
described by Aguilera et al. [AFH+07]. For the implementation of the inc&read
counter, instead of abortable base registers [AFH+07], wait-free atomic registers
provided by server S are used here, hence the counter does not need to abort.

We further define the “affected by” relation of two (high-level) operations im-
plemented by the Afl protocol (Definition 4.5), the notion of relevant operations
(Definitions 4.6 and 4.7), and the ≤ order relation on versions (Definition 4.8).
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Algorithm 4.2: Inc&Read Counter for n Clients, Algorithm of Client Ci

Variables:
R1, . . . , Rn, SWMR atomic registers, initially 0
cnt1, . . . , cntn, k, c, id, integers, initially 0

Inc&Read() do4.2.1

for k = 1, . . . , n do cntk ← read(Rk)4.2.2

c← max1≤k≤n{cntk}+ 14.2.3

write(Ri, c)4.2.4

return n · c+ (i− 1)4.2.5

Read() do4.2.6

for k = 1, . . . , n do cntk ← read(Rk)4.2.7

c← max1≤k≤n{cntk}4.2.8

id← max1≤k≤n{k|cntk = c}4.2.9

return n · c+ (id− 1)4.2.10

Definition 4.5. For two operations o, o′ in a history σ of an execution of the Afl
protocol we say that o affects o′ in σ (o′ is affected by o) whenever one of the following
conditions holds:

1. Operations o and o′ are both invoked by the same client, o is successful and o
finishes before o′ is invoked.

2. Operation o′ reads the state sl (version Vl) written by o, successfully verifies
the signature and executes applyT to sl (during o′ in lines (4.1.5—4.1.10 of
Algorithm 4.1), Vl is the version, sl the state, tsl the timestamp and sigl the
signature written during o).

3. There exists an operation o′′ such that o affects o′′ and o′′ affects o′.

The notion of a relevant operation is defined recursively by the next definition.

Definition 4.6. An operation o is relevant if and only if

1. o is successful OR

2. there exists a relevant operation o′ that has been affected by o.

Definition 4.7. An operation o is relevant for client Ci if and only if some successful
operation of Ci has been affected by o.

Definition 4.8 (Order Relation). A version V is a vector of integers of length n,
initially (0, . . . , 0). For two versions V and V ′ holds V ≤ V ′ if and only if

∀i : V [i] ≤ V ′[i].
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It holds V = V ′ if and only if V and V ′ are the same versions.
For two operations o and o′ with versions V and V ′ holds o ≤ o′ if and only if

V ≤ V ′

It holds o = o′ if and only if o and o′ are the same operations.

It is easy to see that ≤ relation on operations (versions) is transitive. The next
definition introduces the notion of operations taking effect. Note, that the last
operation of each client, when the client crashes, may be incomplete but may
appear as a complete operation to others — i.e., it took effect.

Definition 4.9. An operation of client Ci takes effect if and only if the low-level
write operation in line 4.1.13 successfully returns.

The next Corollary shows that ≤ relation on operations respects the real-time
order of sequential operations.

Corollary 4.10. If o and o′ are two operations and o ≤ o′ then operation o′ does
not precede operation o.

Proof. Let o and o′ have associated versions V and V ′ respectively. Assume by
contradiction that o′ precedes o and that o ≤ o′. During o, the entry V [i] is
incremented. As o′ precedes o and as versions are digitally signed (line 4.1.12), it
holds that V ′[i] < V [i]. Hence, V ′ 6≥ V and therefore o 6≤ o′.

The following two Corollaries show that operations which affect each other are
ordered by ≤ such that the “affected by” relation is respected. According to
Definition 4.5, the successful operations of one client affect each other (Corollary
4.11) as well as an operation that is applied to the state updated by another
operation (Corollary 4.12).

Corollary 4.11. All operations of the same client are totally ordered by ≤ relation
on operations.

Proof. We show that operation o′ of client Ci is greater than its previous completed
operation o. Let V and V ′ be the versions of operation o and o′ respectively. Let
Vl be the version read by operation o′. The entries V ′[k], k 6= i is assigned the
maximum of Vl[k] and V [k] (line 4.1.10), and V ′[i] is updated with a value larger
than V [i], as V [i] is incremented with every invoked operation of Ci (line 4.1.11).
Clearly, V ′ > V . By induction on Ci’s operations, it follows that o′ is greater than
any preceding operation of Ci.

Corollary 4.12. If o′ is reading state s from some register Ri updated by operation
o, then o > o′.
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Proof. Let V and V ′ be the versions of operations o and o′ respectively. When
operation o′ is applied to state s, then V is version Vl during operation o′. By lines
4.1.10–4.1.11 and analogously to the proof of Corollary 4.11 it follows directly that
V ′ > V .

The following Lemma shows the main result of this section: The universal type,
implemented by the Afl protocol satisfies fork-linearizability (Definition 4.4 on
page 69). The proof shows how for each client the subsequences πi are constructed.
Then, by proving two claims, we show that sequences π satisfy the properties of
fork-linearizability. To ease the argumentation, operations which are not relevant
at all or not relevant for client Ci are ignored.

Lemma 4.13. The history σ induced by any execution of the Afl protocol (Al-
gorithm 4.1) satisfies fork-linearizability with respect to a shared functionality of a
universal object with type T .

Proof. Let σ be the history of an execution of the Afl protocol. We first remove
all invocations of incomplete operations that do not take effect (Definition 4.9). We
add the corresponding completion event of incomplete operations that take effect
directly at the end of σ. Then we remove all operations that are not relevant.
Note, that σ now contains only complete and relevant operations.

We construct a sequential permutation π by totally ordering all events in σ. To
achieve this, we order the events in σ by the following rules:

1. Sort the operations in σ by ≤ relation on operations.

2. Sort any yet unsorted operations by the real-time order of their completion
event.

We construct the subsequences πi (for i = 1, . . . , n) as required by the definition
of fork-linearizability (Definition 4.4). We include in πi all operations of client Ci
in π. Then, for all o ∈ πi we include into πi all operations o′ in π such that o′ ≤ o.
Finally, we remove all operations that are not relevant for Ci.

By Corollary 4.10, as ≤ relation on operations respects real-time order, the
following claim follows directly:

Claim 13.1 Let o and o′ be two operations and o precedes o′ in σ. Then, o precedes
o′ in π.

Claim 13.2 Let oc be an operation of client Ci in sequence πm of client Cm,
m ∈ 1, . . . , n, that updates state s in register Rj ; state s was written by
operation oa of client Cj , j ∈ 1, . . . , n, into register Rj . Then:

1. Operation oa is in πm, and
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2. in πm there is no operation by client Ck, k ∈ 1, . . . , n, that is relevant
for Cm, that is subsequent to oa in πm, and that completes before oc is
invoked.

By Corollary 4.12 holds that oc > oa. Hence, oa is included in πm by construc-
tion and the first statement of Claim 13.2 follows directly.

To prove the second statement of Claim 13.2, let us assume for contradiction
that such an operation ob of client Ck exists in πm which is invoked after oa
completes and which completes before oc is invoked. Hence, oa, ob, oc are three
sequential operations in that order in σ.

We first show that ob and oc do not affect each other, i.e., ob is not affected by
oc and oc is not affected by ob:

• “oc is not affected by ob”: Operation oc is affected by oa and by osuc, the
last successful operation by client Ci previous to oc, if it exists. If osuc is
affected by ob then oa precedes osuc. Hence, the ith entry in the version of
osuc is greater then the one of oa and therefore oa could not affect oc (as the
check in line 4.1.7 is not passed) — a contradiction. If osuc is not affected by
ob, then oc is also not affected by ob (as “affected by” relation is transitive;
Definition 4.5).

• “ob is not affected by oc”: Follows directly as ob precedes oc.

Next, we derive a contradiction to the assumption that operation ob exists. As
operations ob and oc are both relevant for client Cm and oc and ob do not affect
each other, there are successful operations o′b and o′c of client Cm such that o′b is
affected by ob and o′c is affected by oc. Let o′b and o′c be the operations of Cm
that are affected by ob or oc respectively with the smallest versions (they exists by
Corollary 4.11). Note that, as o′b and o′c are both successful operations of the same
client Cm, they affect each other. Let us assume w.l.o.g. that o′c is affected by o′b.
This means, there exists some operation ojoin of client Cjoin, join ∈ 1, ..., n, which
is the operation with the smallest timestamp that is affected by both ob and oc.
For operation ojoin either holds

• (A) ojoin ≤ o′b and o′b(= o′c) is affected by ojoin, or

• (B) ojoin is affected by o′b and o′c(6= o′b) is affected by ojoin.

To have ojoin to be affected by two operations that do not affect each other,
by Definition 4.5, (1) there must be some operation ojoin suc which is the last
successful operation of client Cjoin previous to ojoin that is affected either by ob
or oc. W.l.o.g. we assume that ojoin suc is affected by ob. Note, that ojoin suc ≥ ob.
Further, ojoin suc is not affected by oc, as otherwise ojoin would not be the first
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operation affected by both ob and oc (ojoin suc < ojoin by Corollary 4.11). Further,
(2) ojoin reads the state written by some operation or that is affected by oc and
or ≥ oc. Analogously, or is not affected by ob (or < ojoin by Corollary 4.12).
Hence, as ob and oc do not affect each other, there are disjunct “affected by”
paths4 from ob to ojoin suc and from oc to or (Figure 4.2).

During operation ojoin suc the jointh entry of its version is incremented to
Vjoin suc[join] (line 4.1.11) and as ojoin suc is successful, it also holds Vsuc[join] ≥
Vjoin suc[join] (line 4.1.18) from this point on at client Cjoin. Consequently, dur-
ing ojoin, as ojoin suc precedes ojoin, client Cjoin does not accept version Vl such
that Vl[join] < Vjoin suc[join] (check in line 4.1.7 would not be passed). Hence,
there must be an operation o′join on the path from oc to or that raises the jointh
entry in the versions to Vjoin suc[join] or higher. Note, as the jointh entry is only
raised by an operation of Cjoin (line 4.1.11), o′join has to be an operation of Cjoin
as well. Operation o′join cannot precede ojoin suc, as ojoin suc is the first operation
to raise the jointh entry to Vjoin suc[join] (line 4.1.11). If o′join follows ojoin suc,
then o′join does not accept versions Vl with Vl[join] < Vjoin suc[join] (check in line
4.1.7), as Vsuc[join] ≥ Vjoin suc[join] at Cjoin after ojoin suc has finished. Hence,
o′join does not exists on the path from oc to or and ojoin would block when reading
the version of or. Thus, we have a contradiction and ojoin does not exists.

This means that either o′b does not exist (case A) which implies that ob is not
relevant for Cm or o′c does not exists (case B) which implies that oc is not relevant
for Cm. Consequently, the assumption that there is an operation ob between oa
and oc in πm is wrong and thus, all operations in πm are totally ordered by ≤.

We now show that πm for all m = 1, ..., n satisfies fork-linearizability as given
in Definition 4.4. To show that πm is a possible view of client Cm, properties
1. and 2. of Definition 4.2 follow directly from the construction of πm given at the
beginning of the Lemma. Claim 13.2 proves property 3. of Definition 4.2. Hence,
πm is a possible view of client Cm. Each sequence πm satisfies real-time ordering
as shown in claim 13.1. The no-join property (condition 3. in Definition 4.4) is also
an easy consequence of the construction of πm. The non-relevant operations that
have been removed at the beginning of this proof, can be added to all πm in real-
time order of their completion events. As they are not relevant, they do not effect
the sequential specification and thus, they do not violate fork-linearizability.

The next two Lemmas show that the Afl protocol implements an abortable
Byzantine emulation with fork-linearizability of a universal type (see Definition
2.4 on page 30). Lemma 4.14 shows that no operation blocks, and Lemma 4.15
proves that no operation is trivially aborted.

4An “affected by” path from operation o1 to ox is a sequence of operations o1, o2, ..., ox such
that for i = 1, ..., x− 1, oi affects oi+1.
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ojoinojoin suc

or

o′b

oa ob oc ojoinojoin suc

or

Case A

o′b = o′c

oa ob oc o′c

Case B

Figure 4.2: Proof of Lemma 4.13. The arrows denote the “affected by” relation
between operations.

Lemma 4.14. If registers Ri, . . . Rn and inc&read object C are implemented by a
correct server S, and σ is the history induced by any execution of the Afl protocol,
then no operation in σ halts in line 4.1.6 nor in line 4.1.7 of Algorithm 4.1.

Proof. We show that no operation in Algorithm 4.1 blocks: If the base objects are
correct, and as clients are trusted, no signature is forged and thus no operation
blocks in line 4.1.6.

It remains to show that no operation of client Ci blocks in line 4.1.7. Assume
by contradiction that during operation o of client Ci ∃k : Vsuc[k] > Vl[k]. Let
osuc be the successful operation of Ci that wrote some state with version Vsuc to
register Ri. As osuc is not aborted, client Ci has read the same timestamp from
the inc&read object C in line 4.1.2 and 4.1.14 during osuc. This means, as the
inc&read object C is correct, that no other operation executed inc&read(C)
between inc&read(C) and read(C) of osuc and that osuc has written the highest
timestamp so far (line 4.1.13). Hence, inc&read(C) of operation ol, that wrote
version Vl, happened either (1) before inc&read(C) of osuc or (2) after read(C)
of osuc. In case (1) o would not find l as the highest index in line 4.1.5 and thus it
would not read ol, as osuc holds a higher timestamp than ol (inc&read object is
correct) — a contradiction. For case (2), ol would read a version ≥ Vsuc and thus
Vl ≥ Vsuc (line 4.1.10)— a contradiction. Concluding, during operation o of client
Ci no such k : Vsuc[k] > Vl[k] exists and thus, the protocol does not block in line
4.1.7.

Lemma 4.15. If registers Ri, . . . Rn and inc&read object C are implemented by
a correct server S then, if operation o in an execution of the Afl protocol returns
abort, then o is concurrent with some other operation.
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Proof. The correctness follows directly from the properties of inc&read object C:
Operation o is only aborted if the condition in line 4.1.15 is satisfied. This is the
case when object C returns a different value to call in line 4.1.14 than in line 4.1.2.
The properties of C imply, that this happens only if some other operations calls
inc&read(C) in the meanwhile. This means, some other operation is concurrent
with o (according to the definition in Section 4.3 on page 67) and thus, we are
done.

Note, that Lemma 4.15 is sufficient to show that the Afl protocol implements
an abortable object. It is easy to see that in every situation where an opera-
tion of Algorithm 4.1 aborts, Aguilera’s universal type construction ([AFH+07],
Algorithm 2) would abort as well.

Finally, the correctness of the Afl protocol has been shown in Lemma 4.13
(Fork-Linearizability), Lemma 4.14 (No Blocking), and Lemma 4.15 (Nontrivial-
ity).

4.5 (C4): The Wfl Protocol

This section introduces the Wfl protocol (contribution (C4) of the thesis) which
is a wait-free, weak fork-linearizable Byzantine emulation of a shared memory
implemented from a server that provides only atomic registers. The Wfl protocol
satisfies weak fork-linearizability in the presence of any number of faulty base
registers. The implemented shared memory provides n atomic registers, such that
each client can write to one dedicated register exclusively and may read from
all registers. Operation write(i, v), called by client Ci, writes value v to Ci’s
register. Operation read(i) returns the last written value from Ci’s register, and
may be called by any client. The Wfl protocol makes use of an atomic single-
writer snapshot object SO with n components [AGR08, Fic05]. Snapshot object
SO provides two atomic operations: update(d, SO, i), that changes the state of
component i of SO to d, and scan(SO) that returns vector (d1, . . . , dn) such
that di is the state of component i of SO, i = 1 . . . , n. Formally, di is the state
written by the last update to component i prior to scan. It has been shown, that
such a shared snapshot object can be wait-free implemented only from registers
[AGR08, Fic05], and thus we assume that SO is also provided by server S.

4.5.1 Protocol Ideas

Each client locally maintains a timestamp that respects causality and real-time
order of its own operations. As the basic principle, during each operation this
timestamp is written to the shared memory and timestamps left by other oper-
ations are read. For each client Ci the Wfl protocol uses two registers only Ci
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write high-level write(i, v) ow

high-level read(j) or

update read

write scan write scan

Figure 4.3: Basic principle implemented by the Wfl protocol

may write to, but which can be read by all clients. The first one is needed to
store value and timestamp written by Ci’s write operations and is implemented
by a SWMR atomic register Wi (i.e., registers W1, ...,Wn in total), provided by
server S. The second “register” is required to store the latest timestamp of Ci’s
read operations. It is implemented as the ith component within the single-writer
snapshot object with n components, SO, which is also implemented by server S.

During read(j) operation of Ci, Ci’s current timestamp is written to snapshot
object SO using update, thereafter, Ci reads a timestamp-value pair from register
Wj (using low-level read). High-level write(i, v) of Ci proceeds analogously: Ci
writes its current timestamp plus value v to register Wi using low-level write,
thereafter, it reads all components from snapshot object SO using scan. By this,
operations are able to observe each other, as expressed in the relation “seen”:
We say that a write operation ow of Cj sees a read operation or of Ci with
timestamp ts if Ci digitally signed ts and updated the ith component of SO by
signed ts during or and, if during ow, Cj scanned SO and was able to verify the
signature of Ci on ts; read operation or sees write operation ow if or returns
the value written by ow.

This construction guarantees the following property on concurrent high-level
operations: Whenever high-level read(j) or of Ci and write(j, v) ow of Cj ap-
pear in an execution of the Wfl protocol such that or does not return v but a
value written before v, then, by regularity of the atomic base registers, ow.write5

does not precede or.read, i.e., or.read has been invoked before ow.write finishes.
Consequently, or.update precedes ow.scan (see Figure 4.3). Thus, if or does not
“see” ow, then ow “sees” or. A similar property on interleaving operations has also
been leveraged in previous work of Dobre et al. [DMS08] as well as by Aguilera et
al. [AKMS11].

One can expect that client Cj writes information during its next write ope-
ration such that future operations of Ci may verify whether operation ow actually
has seen operation or. More concrete, if read or has seen write ow then the

5The notation x.y denotes the call of low-level operation y during high-level operation x.
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client checks during or whether the next write operation after ow (of the same
client as ow), has seen read operation or or a newer one. Else, the base registers
are malicious (and therefore server S), as shown in the following example: Let ow
and o′w be two sequential write operations of Ci, o

′
w precedes read operation or

of Cj but it is hidden by the malicious base registers such that or sees only ow. As
o′w precedes or, o

′
w cannot see or. However, as or sees ow, it expects that o′w will

see or. The next write operation o′′w of Ci will write this information. If client Cj
sees o′′w, which would violate weak fork-linearizablility, the check, explained above,
is not passed.

4.5.2 Description of the Wfl Protocol

This section explains the algorithm of client Ci to implement the high-level read
and write operations of the Wfl protocol. The Wfl protocol is given as Algo-
rithm 4.4, the used variables in Algorithm 4.3.

Algorithm 4.3: Variables used in Algorithm 4.4 by Client Ci
Variables:

S, atomic snapshot object with n components, initially ((0,⊥), ..., (0,⊥))
/* timestamp+sig */

W1, . . . ,Wn, SWMR atomic registers, initially (⊥, 0, ∅, ∅,⊥)
/* val+ts+rs+ws+sig */

v, wv value, initially ⊥ /* value written to storage */

wts, ots, i, k, r, r′, w, w′, tmp1, . . . , tmpn integer, initially 0
/* timestamps + temp. variables */

read seen[1..n][1..n], write seen[1..n][1..n],
r write seen[1..n][1..n], matrix of sets of pairs (integer, integer), initially ∅

/* matrices of seen operations */

sig, sig1, . . . , sign signature, initially ⊥ /* signatures */

At invocation of high-level read(j), client Ci increments its local timestamp
and generates a digital signature of it. The signed timestamp is stored to snap-
shot object SO using operation update((ots, sig), SO, i) (lines 4.4.2–4.4.4). Then,
client Ci reads register Wj and verifies the signature (lines 4.4.5–4.4.6). The con-
tent of register Wj contains the written value wv, the corresponding timestamp
wts, as well as two matrices r read seen and r write seen. Both matrices are of
size n × n where each entry holds a set of integer pairs (r, w). Client Ci main-
tains a variable read seen of the same type, where a pair (r, w) ∈ read seen[i][j]
denotes that read of client Ci with timestamp r has seen write of client Cj
with timestamp w. Analogously, client Ci maintains a second matrix write seen,
where (r, w) ∈ write seen[i][j] denotes that write of client Ci with timestamp w
has seen read of client Cj with timestamp r. In the next step (line 4.4.7), client
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Algorithm 4.4: Wfl Protocol, Algorithm of Client Ci
read(j) do4.4.1

ots← ots+ 1 /* increment timestamp */4.4.2

sig ← signi(ots) /* signature on timestamp */4.4.3

update((ots, sig), S, i) /* update call to snapshot object */4.4.4

(wv,wts, r read seen, r write seen, sig)← read(Wj) /* low-level read */4.4.5

if not verifyj(sig) then halt /* signature verified? */4.4.6

read seen← merge(read seen, r read seen) /* update read seen */4.4.7

read seen[i][j]← read seen[i][j].add((ots, wts)) /* add seen write */4.4.8

check() /* check passed? */4.4.9

write seen← merge(write seen, r write seen) /* update write seen */4.4.10

return wv /* return read value */4.4.11

write(i, v) do4.4.12

ots← ots+ 1 /* increment timestamp */4.4.13

sig ← signi(v, ots, read seen,write seen) /* signature on timestamp */4.4.14

write((v, ots, read seen,write seen, sig),Wi) /* low-level write */4.4.15

((tmp1, sig1), . . . , (tmpn, sign))← scan(S) /* scan call to SO */4.4.16

for k = 1, ..., n do4.4.17

if not verifyk(sigk) then halt /* signature verified? */4.4.18

write seen[i][k]← write seen[i][k].add((tmpk, ots)) /* add all seen4.4.19

reads */
return ok /* successfully return */4.4.20

check() do4.4.21

for k = 1, ..., n do4.4.22

forall (r, w) ∈ read seen[k][i] do4.4.23

/* check if own writes have seen read operations reading

my values */

if ∃(r′, w′) ∈ write seen[i][k] s.t. w′ > w and w′ minimal then4.4.24

if r′ < r then halt4.4.25

forall (r, w) ∈ read seen[i][k] do4.4.26

/* check if own reads have been seen by other’s write

operations */

if ∃(r′, w′) ∈ r write seen[k][i] s.t. w′ > w and w′ minimal then4.4.27

if r′ < r then halt4.4.28

Ci “merges” variables r read seen and read seen. The merge procedure returns
for each entry of two n × n set matrices A, B set A[i][j] ∪ B[i][j], i, j = 1, . . . , n.
Then, Ci adds a pair consisting of its current timestamp and timestamp wts from
Wj to read seen[i][j]. To ensure weak fork-linearizability, client Ci calls proce-
dure “check” (line 4.4.9). If all checks are passed, Ci merges r write seen and
write seen and returns value wv (lines 4.4.10–4.4.11).

At invocation of write(i, v), client Ci increments its timestamp (line 4.4.13). It
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digitally signs value v, its timestamp, and variables read seen and write seen to
write to register Wi (lines 4.4.14–4.4.15). Next, it reads all timestamps of reads
by calling scan to snapshot object SO (line 4.4.16). All entries in SO are digitally
signed and thus client Ci verifies the signatures (line 4.4.18). Then, it adds to all
sets write seen[i][k] (k = 1, . . . , n) a pair consisting of the timestamp of the kth
component of SO and Ci’s current timestamp (line 4.4.19). Finally, client Ci
successfully returns (line 4.4.20).

Procedure “check” implements the principle sketched in section 4.5.1 for n
clients. It ensures that weak fork-linearizability is never violated. The proce-
dure, called by Ci during read(j) (line 4.4.21), moves through a loop performing
two checks: The first check (line 4.4.24–4.4.25) considers the information left by
clients during read(i) operations (this information is stored in the ith column
of read seen). If read(i) with timestamp r of client Ck has seen write of Ci
with timestamp w, then it is tested whether the next write of Ci has read (using
scan) timestamp r or higher of client Ck. The check uses the local write seen
variable of Ci. The second check (line 4.4.27–4.4.28) reviews the information left
by client Ci during any read(k) (which is kept in the ith row of read seen). If
read(k) with timestamp r of client Ci has seen write of Ck with timestamp w,
then we check whether the next write of Ck has read (using scan) timestamp r
or higher of client Ci. This check requires matrix r write seen, which has been
fetched from Wj in line 4.4.5 before procedure “check” is called.

4.5.3 Correctness Arguments

In this section we give the intuition why the Wfl protocol in Algorithm 4.4
satisfies the properties of a wait-free Byzantine emulation of a shared memory
with weak fork-linearizability. Intuitively, the definition of weak fork-linearizability
requires for each client Ci to construct a sequence πi such that causality among
operations, the sequential specification of a shared memory, and weak real-time
order is satisfied, and that two sequences πi and πj share the same prefix up to the
second last common operation (at-most-one-join). The proof proceeds in steps,
where in the first step all operations that have to be included in sequence πi are
causally ordered. Next, this order is extended such that it additionally respects
the sequential specification. Intuitively, as all written values are digitally signed,
the sequential specification never interferes with causality. The hardest step is to
prove, that this order can be further refined such that it does not violate the weak
real-time order. The intuition for this is given below as a proof by contradiction:

We assume that read(j) operation or of client Ci does not return the latest
value v′, written by write(j, v′) operation o′w, but an older value written by
operation ow (see Figure 4.4). Further, let or be not the last operation of Ci
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Client Ci: or o′′w

ow o′′ro′wClient Cj :

Figure 4.4: Correctness Idea of the Wfl Protocol in Algorithm 4.4. Arrows denote
the “seen” relation.

during the execution of the Wfl protocol. During operation or, the pair (r, w)6 is
added to set read seen[i][j]. The data written by the next write(i, v′′) operation
o′′w of Ci contains this information. Now, the algorithm prevents client Cj from
reading the value v′′ written by o′′w which would violate weak real-time order (as
or is ordered before o′w according to the sequential specification). When during o′′r
Cj sees operation o′′w, it finds the pair (r, w) in r read seen. As o′w precedes or,
it could not have seen or, thus write seen[j][i] contains a pair (r′, w′) such that
r′ < r and the check in line 4.4.25 is not passed. Hence, operation o′′r of client
Cj would block — a contradiction. This implies that such a situation does not
appear and the constructed order of operations also satisfies weak real-time order.

As the last step, showing that the sequences πi satisfy the at-most-one-join
property follows directly from a simple construction argument. To prove liveness,
as required in the definition of a Byzantine emulation (Definition 2.4 on page 30),
we show that no operation blocks when all base objects are correct, which follows
from the principle sketched in section 4.5.1 as in this case all checks are passed.

4.5.4 Proof of Correctness of the Wfl Protocol

Finally, this section proves that the Wfl protocol (given as Algorithm 4.4) im-
plements a wait-free, weakly fork-linearizable Byzantine emulation of a shared
memory. The properties of weak fork-linearizability have been given in Definition
4.4 on page 69.

To show the existence of sequential permutations πi for every client Ci that
satisfy weak fork-linearizability, let oi1, . . . , opili be the operations of Ci ordered
by their timestamps, i ∈ 1, . . . , n, li ∈ N. The timestamp of an operation is
represented by variable ots that is assigned to a read operation in line 4.4.4 and
to a write operation in line 4.4.15, respectively. For every client Ci we define a
directed graph Gπi , where the set of operations oi1, . . . , opili are the vertices. For
all k ∈ 1, . . . , li − 1, we draw an edge from oik to oi(k+1).

Next, we construct a directed graph Gπ as Gπ1∪Gπ2∪. . .∪Gπn . We add an edge
from oiwi to ojrj to graph Gπ if oiwi is a write(i, v) operation of Ci, i ∈ 1, . . . , n,
and ojrj is a read(j) operation of Cj , j ∈ 1, . . . , n, that reads value v written by

6We assume that operation ox is assigned timestamp x.
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oiwi .
The purpose of the next Corollary is to show that a partial order of the opera-

tions can be defined according to the ordering of the vertices of graph Gπ

Corollary 4.16. Graph Gπ does not contain directed cycles.

Proof. Let us assume that there exists the following directed cycle which is also
the shortest possible one: (oir, oiw, ojr, ojw), where oir is a read and oiw is a
write operation of client Ci, and ojr is a read and ojw is a write operation of
client Cj . Further, let oir have a lower timestamp than oiw, let ojr read the value
written by oiw, let ojr have a lower timestamp than ojw, and let oir read the value
written by ojw. We now can deduce the following statements:

1. oir precedes oiw, as both are operations of Ci and oir has a lower timestamp
than oiw (line 4.4.13).

2. ojr completes after oiw has been invoked, as otherwise ojr cannot read the
value written by oiw (written values are digitally signed).

3. ojr precedes ojw, as both are operations of Cj and ojr has a lower timestamp
than ojw (line 4.4.13).

4. ojw is invoked after oiw has been invoked, by 2. and 3.

5. oir completes after ojw has been invoked, as otherwise oir cannot read the
value written by ojw (written values are digitally signed).

Statements 1.–5. lead to a contradiction as operation oir may not at the same
time complete before and after oiw is invoked. Analogous arguments hold, if the
circle is extended between ojw and oir to a circle (oir, oiw, ojr, ojw, . . .) of arbitrary
length. Hence, graph Gπ does not contain directed cycles.

For each client Ci we recursively define the subgraph T (oili) that contains oili
as a vertex, and if o is a vertex of T (oili), and (o′, o) is an edge of Gπ, then vertex
o′ and edge (o′, o) is added to T (oili) until no more edges can be added.

Corollary 4.17. The set of operations represented by the vertices of T (oili) contains
all operations of client Ci.

Proof. By construction of graph Gπi , there is a path from any operation of client
Ci to oili . Thus, all operation of Ci are contained in T (oili).

Now, we start constructing for each client Ci a subsequence πi of the history σ
of any execution of the Wfl protocol that satisfies the properties of weak fork-
linearizability (Definition 4.4). The next corollary constructs an order relation
among operations in πi.
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Corollary 4.18. There is a sequential permutation πi of the set of operations repre-
sented by the vertices of T (oili) and an order relation <πi that satisfies the following
condition: For every operation o ∈ πi and every write operation o′ ∈ V (Gπ) s.t. o′

causally precedes o, it holds that o′ ∈ πi and that o′ <πi o.

Proof. By Corollary 4.17, we know that every operation of Ci is contained in
πi. Further, by the construction of graphs G(π) and T (oili) every operation that
causally precedes an operation in πi (Definition 4.1) is contained in πi. As T (oili)
contains no cycles (Corollary 4.16), for o, o′ ∈ πi we order o before o′ (o <πi o

′) if
there is an edge from o to o′ in T (oili).

The order relation constructed in the proof of Corollary 4.18 does not necessarily
respect the sequential specification of a shared memory. The next corollary shows
how this can be achieved.

Corollary 4.19. The order relation <πi , constructed in Corollary 4.18 can be ex-
tended such that πi satisfies the sequential specification of a shared memory: If okr is
a read operation of some client Ck, k ∈ 1, . . . , n, in πi that reads the value written
by write operation olw of client Cl, l ∈ 1, . . . , n, then we additionally order okr
before ol(w+1) where ol(w+1) is the next write operation of Cl in πi (if it exists in
πi).

Proof. By causality olw is ordered before okr. There is no write operation of Cl
between olw and okr in πi, as ol(w+1) is the next write operation of Cl in πi after
olw, and okr can be ordered before it.

Now we define how the remaining operations have to be ordered such that πi
satisfies weak real-time ordering. The proof of the following lemma distinguishes
two cases to show that when a read reads a value written by some write, then
the write is the last one that precedes the read. The two cases correspond to
the fact that a read operation of client Ci may appear in its own sequence πi
(case B) as well as in sequence πj of Cj .

Corollary 4.20. The order relation <πi , constructed in Corollaries 4.18 and 4.19
does not violate weak real-time order.

Proof. We distinguish the following cases:

Case A: Let w and w′ be two write operations of client Ci and let r be a read
operation of client Cj that reads the value written by w. Let w precede w′

in πi. Let r be not the last operation of Cj in πi. Then w′ does not precede
r, i.e., r.update precedes w′.scan7.

7In the following x.update (x.scan) denotes a call of procedure update (scan) during read
(write) operation x in line 4.4.4 (line 4.4.16). The analogous notation holds for x.write
(x.read) in line 4.4.5 (line 4.4.15) during Lemma 4.25.
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Proof. We assume by contradiction that write operation w′ precedes read
operation r, i.e., w′.scan precedes r.update (Ass. A). By assumption, op-
eration r reads the value written by operation w and thus by line 4.4.8 set
read seenj [j][i] at client Cj contains the pair (r, w)8. Let wmin ≤ w′ be the
write operations of client Ci directly following w. Then, during operation
wmin, by line 4.4.17, the pair (xmin, wmin) is added to set write seeni[i][j] at
client Ci. By Ass. A and as all written timestamps are digitally signed, it
holds that xmin < r. As r is not the last operation of Cj in πi, there exists a
read operation r′′ of Ci that succeeds w′, a write operation w′′ of Cj that suc-
ceeds r, and there exists a path in graph T (opili) from r to r′′ that contains
w′′ (see Figure 4.5). During operation w′′ of client Cj , variable read seenj
is written by line 4.4.15. As there is the causal path from w′′ to r′′, by
lines 4.4.7 and 4.4.15, during operation r′′ of client Ci, r read seen[j][i] con-
tains pair (r, w). By line 4.4.7 it is also contained in read seeni[j][i] during
operation r′′. We further know that write seeni[i][j] at client Ci contains
(xmin, wmin). As operation wmin is the minimal operation larger then w, the
check in line 4.4.25 is not passed as xmin < r and operation r′′ blocks. This
means that r is not in πi — a contradiction.

Case B: Let w and w′ be two write operations of client Cj and let r be a read
operation of client Ci that reads the value written by w. Let w precede w′

in πi. Let w′ be not the last operation of Cj in πi. Then w′ does not precede
r, i.e., r.update precedes w′.scan.

Proof. We assume by contradiction that write operation w′ precedes read
operation r, i.e., w′.scan precedes r.update (Ass. B). By assumption, op-
eration r reads the value written by operation w and thus by line 4.4.8 set
read seen[i][j]i at client Ci contains the pair (r, w). Let wmin ≤ w′ be the
write operations of client Cj directly following w. Then, during operation
wmin, by line 4.4.17, the pair (xmin, wmin) is added to set write seenj [j][i]
at client Cj . By Ass. B and as all written timestamps are digitally signed,
it holds that xmin < r. As w′ is not the last operation of Cj in πi, there
exists a read operation r′′ of Ci that succeeds r, a write operation w′′ of
Cj that succeeds w′, and there exists a path in graph T (opili) from w
to r′′ that contains w′ and w′′ (see Figure 4.5). During operation w′′ of
client Cj , variable write seenj is written by line 4.4.15. As there is the
causal path from w′′ to r′′, by lines 4.4.10 and 4.4.15, during operation r′′

of client Ci, r write seen[j][i] contains pair (xmin, wmin). We further know

8To simplify the presentation, let r denote the timestamp assigned to operation r and w the
timestamp assigned to w.
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that read seeni[i][j] at client Ci contains (r, w). As operation wmin is the
minimal operation larger then w, the check in line 4.4.28 is not passed as
xmin < r and operation r′′ blocks. This means that w′ is not in πi — a
contradiction.

It remains to show that in πi read operations of client Cj that read values written
by operations of client Ck can be ordered to satisfy weak real-time order. The proof
is obvious as weak real-time order holds for πj when case B from above is applied.

Hence, the order induced in Corollary 4.19 does not violate weak real-time order
— i.e., the not yet ordered operations can be ordered in real-time order or in any
deterministic order if they are concurrent.

Client Ci:

Client Cj :

Client Ci:

Client Cj :

Case B

Case A
w r′′w′

r w′′

w w′ w′′

r r′′

Figure 4.5: Proof of Corollary 4.20. Arrows denote the causality relation.

Corollary 4.21. If all operations in πi which have not yet been ordered in Corollary
4.18 or 4.19 are ordered according to their real-time order if they are sequential and
by the real-time order of their completion event else, then order relation <πi of πi
satisfies weak real-time ordering.

Proof. The proof follows directly from construction and Corollary 4.20.

To complete the correctness proof, we have to add operations to each πi such
that the join-at-most-once property is satisfied. This is because πi may contain
operations of πj but none of πk, but πj might have common operations with πk.
To ensure that πi and πj share a common prefix such operations have to be added
to πi. Thus, we define a merge operation on totally ordered command sequences
πi.

Definition 4.22. Let πi and πj be two totally ordered command sequences such that
there are at least two operation o, o′ for which holds o ∈ πi ∩ πj and o′ ∈ πi ∩ πj9.

9By construction, for all such operations hold o <πi o
′ and o <πj o′ or o >πi o

′ and o >πj o′.

90



4.5 (C4): The Wfl Protocol

Let π|x denote the prefix of an operation sequence π that ends with operation x.
To merge πi and πj we perform the following steps: Let o2ndlast be the second last
operation in πi ∩ πj . In πi and πj we replace the prefix πi|op2ndlast and πj |op2ndlast by
πmergeij :

• πmergeij contains all operations from πi|op2ndlast ∪ πj |op2ndlast

• If for two operations o, o′ in πmergeij holds o <πi o
′ or o <πj o

′, then we order
o before o′ in πmergeij , i.e., o <πmergeij o

′.

• If for two operations o, o′ in πmergeij neither o <πmergeij o
′ nor o >πmergeij o

′ holds,

then we order o and o′ in πmergeij according to their real-time ordering or by the
real-time order of their completion event if they are concurrent.

Corollary 4.23. For all pairs, i, j ∈ 1, ..., n, if we merge πi and πj whenever they
have two or more operations in common until no more changes appear. Then sequences
πi, ...πn satisfy the at-most-one-join property (Definition 4.4).

Proof. Correctness follows directly from the construction given in Definition 4.22.

Lemma 4.24. The history σ of an execution of the Wfl protocol satisfies weak
fork-linearizability with respect to a shared memory for n clients.

Proof. The correctness follows from Corollaries 4.17 and 4.19 which ensures that πi
is a view of σ with respect to the functionality of a shared memory, from Corollary
4.18 that guarantees that causality is respected, from Corollary 4.21 that ensures
weak real-time ordering, and Corollary 4.23 that guarantees the at-most-one-join
property.

Lemma 4.25. If server S implementing the base registers and the snapshot object
SO is correct, and σ is the history of an execution of the Wfl protocol, then no read
operation blocks in line 4.4.6, 4.4.25, nor 4.4.28 and no write operation blocks in
line 4.4.18.

Proof. We show that no operation of the Wfl protocol blocks when the base
registers behave correctly. As the clients behave correctly and registers do not
forge signatures, it is easy to see that write operations do not block. The same
argument holds for the check in line 4.4.6 during read operations. Thus, it
remains to show that read operations do not block in line 4.4.25 and 4.4.28.

Let us assume for contradiction that there is a read operation of client Ci that
blocks in line 4.4.25 or 4.4.28:
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Line 4.4.25 There exists a read operation r of client Ck that has read from write
operation w of client Ci (line 4.4.8). By assumption, the minimal write
operation of Ci after w, called w′ has seen read operation r′ of client Ck
(line 4.4.17). As r′ < r, and as all registers are correct, r.update does not
precede w′.scan. Thus, w′.write precedes r.read. However, as w precedes
w′, we conclude that r reads the value written by w′ — a contradiction.

Line 4.4.28 There exists a read operation r of client Ci that has read from write
operation w of client Ck (line 4.4.8). By assumption, the minimal write
operation of Ck after w, called w′ has seen read operation r′ of client Ci
(line 4.4.17). As r′ < r, and as all registers are correct, r.update does not
precede w′.scan. Thus, w′.write precedes r.read. However, as w precedes
w′, we conclude that r reads the value written by w′ — a contradiction.

Hence, no operation in σ blocks.

Finally, it has been shown in Lemma 4.24 (Weak Fork-Linearizability), and
Lemma 4.25 (No Blocking), that the Wfl protocol in Algorithm 4.4 correctly
implements a wait-free, weak fork-linearizable Byzantine emulation of a shared
memory.

4.6 Analysis & Conclusion

The Afl protocol given as Algorithm 4.1 requires server S to provide n atomic reg-
isters plus n additional ones to implement the inc&read counter. The operations
of the Afl protocol have an overall communication complexity of O(n2), as the
size of the version vectors used in Algorithm 4.1 is linear in the number of clients
n and as a linear number of such version vectors are exchanged per operation. In
contrast, the lock-step protocol of Cachin et al. [CSS07], also based on linear size
version vectors, has an overall communication complexity of O(n). This difference
results from the fact that the server used by Cachin et al. is computationally strong
enough to select the latest written version vector while in Algorithm 4.1 the client
is required to read from all registers on server S to find the latest one by itself. For
the Wfl protocol given as Algorithm 4.4, n atomic registers plus 2n additional
ones for the atomic snapshot object have to be implemented by server S. The
Wfl protocol, uses matrices of size n × n where the size of each entry depends
on the total number of operations N , resulting in a communication complexity of
O(N ·n2). The thesis at hand leaves as an open problem whether this complexity
can be reduced by implementing a “garbage collection”. However, both the Afl
and the Wfl protocol require only a linear number of base registers on server S.

The Afl and the Wfl protocol demonstrate as a first known result that fork-
consistent semantics can be implemented on a server only providing registers.
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The Afl protocol satisfies fork-linearizability and implements a shared function-
ality of universal type. Similar to non-fork-consistent universal constructions from
registers, the Afl protocol may abort operations under concurrency. Hence, fork-
linearizability may be “added” to such protocols without making additional as-
sumptions. The Wfl protocol implements a shared memory that ensures weak
fork-linearizability and where operations are wait-free as long as server S im-
plementing the base registers behaves correctly. Weak fork-linearizability is the
strongest known fork-consistency property that may be implemented in a wait-free
manner. Although it weakens fork-linearizability, it has shown to be of practical
relevance [CKS11]. Moreover, the Wfl protocol shows for the first time that
registers are sufficient to implement a fork-consistent shared memory. So far, all
existing implementations are based on computationally stronger objects (featur-
ing read-modify-write operations [KRS88]). This thesis leaves as an open question
whether there is a weak fork-linearizable emulation of a universal type providing
a stronger liveness condition than abortable in the fault-free case.

The Afl and Wfl protocols demonstrate that for a broad range of fork-
consistent implementations simple memory objects are sufficient. Besides the rele-
vance for the theoretical research community, this result matters also for practical
systems. Recent cloud service providers offer different interfaces from virtual ma-
chines (e.g., Amazon EC2) to read/write APIs in the form of e.g., key-value-stores
(Amazon S3). Typically the latter is much less expensive which makes the Afl
and Wfl protocols preferred approaches also with respect to monetary aspects.
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This chapter introduces two Byzantine fault-tolerant distributed protocols consti-
tuting contributions (C5) and (C6) of the thesis at hand. The chapter tackles the
problem how to implement fault tolerant shared storage with atomic operations
using 3t + 1 servers out of which t may be Byzantine faulty. The focus is on
lightweight protocols that do not rely on data authentication, require the minimal
number of replicated servers, and exhibit optimal worst-case latency for read and
write operations. The LwR protocol (contribution (C5)) is a Byzantine fault-
tolerant implementation of an atomic register. Protocol LwKVS (contribution
(C6)) extends the atomic register implemented by the LwR protocol and provides
the functionality of a key-value store. At the core of both protocols a commit-
ment scheme is employed to improve on existing protocols by speeding up reading
and supporting an unbounded number of (possibly) malicious readers. Since the
LwR and LwKVS protocols do not rely on expensive inter-server communication,
replicas can be spread across multiple providers for failure independence at no
overhead.

In the past decades the research area of fault-tolerant storage implementations
has been extensively explored. The published results indicate a fundamental differ-
ence between implementations that use self-verifying data (e.g., digital signatures)
and those that do not rely on such data authentication. This difference manifests
in the latency of the implemented operations measured in the number of communi-
cation rounds. In the authenticated data model, write operations of a Byzantine
fault-tolerant atomic register can be implemented that achieve a latency of a sin-
gle round, while in the non-authenticated data model two communication rounds
are required. An even larger gap exists for atomic read operations: a two-round
latency for authenticated data versus four communication rounds for atomic reads
with non-authenticated data. Hence, system developers facing a trade-off between
two unfavorable options: Taking the performance and administrative overhead
induced by data authentication or accepting the suboptimal (read) latency in the
non-authenticated data model. With respect to this issue the LwR protocol con-
stitutes an attractive and lightweight solution: It does not require self-verifying
data but is able to implement atomic read and write operations that achieve
latencies close to the fastest implementations in the authenticated data model: a
two-round latency for both read and write operations. Moreover, by employing
a commitment scheme it constitutes the first atomic register implementation that
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does not require authenticated data and allows an unbounded number of possibly
malicious readers. The introduced LwKVS protocol maintains all the desirable
properties of the LwR protocol in the context of a key-value-store, that has become
the most applied storage abstraction for recent services in the cloud.

Section 5.1 gives background information about the two main abstractions
atomic register and key-value-store explored in this chapter. Related works are
studied in Section 5.2. Section 5.3 gives a refinement of the system model of Chap-
ter 2. The LwR and LwKVS protocols are given as contribution (C5) in Section
5.4 and as contribution (C6) in Section 5.5. Section 5.6 discusses the introduced
protocols and further optimizations for future research.

5.1 Introduction

5.1.1 Atomic Registers

In Chapter 4, the fork-consistent emulations of a universal object and a shared
memory are based on atomic registers. In the previous chapter, these atomic
registers have been regarded as being untrusted, i.e., they may deviate in an
arbitrary way from their specified behavior. However, to achieve a maximal benefit
for the user, the atomic registers are expected to behave as specified for most of the
time. The malicious behavior should be the exception. Hence, an obvious challenge
is to implement the atomic registers themself in a fault-tolerant manner to mitigate
the negative influence of maliciously behaving system components. The key goal
of this chapter is to introduce a Byzantine fault-tolerant implementation of an
atomic register from a set of replicated servers. Thereby, a fraction of the replicated
servers is allowed to exhibit Byzantine faulty behavior. Replication allows to mask
[AS85] malicious behavior such that the implemented atomic register is safe and
live even in the presence of Byzantine faults.

For practical settings it is of vital importance to keep the costs incurred by
replication minimal — i.e., for a given number t of malicious replicas to find the
required total number n of replicated servers, which is also denoted as optimal
resilience. Such a replicated implementation is denoted as robust [ABND95] if it
is optimally resilient and provides wait-free operations. It has been shown, that
n = 3t + 1 replicas are required to tolerate t Byzantine faulty ones [MAD02].
Besides low replication costs, for practical settings further aspects are desirable
to achieve a lightweight implementation: to attain low latency, the number of
communication rounds between the clients and the servers has to be minimal.
To avoid the costs related with public-key cryptography, an implementation not
relying on self-verifying data is desirable. For reasons of scalability, an unbounded
number of readers should be supported out of which any number may be malicious.

Although fault-tolerant registers have been intensively explored by the research
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community in the past decades, none of the existing solutions is able to sat-
isfy all above mentioned requirements. Recent work [ACKM06] proves that any
Byzantine-tolerant storage employing at most 4t replicated servers has at least
some write operation completing in two communications rounds. Work of Guer-
raoui and Vukolic [GV06] rules out reading in a single-round even from robust
safe registers. By allowing the existence of secret tokens, Dobre et al. [DMSS09]
circumvent this impossibility result only for robust regular storage. Finally, any
robust atomic register implementation where read operations complete in two
communication rounds has shown to be optimal, even for the stronger model of
authenticated data [DGLV10]. Write operations that complete after two com-
munication rounds are optimal for the unauthenticated data model [ACKM06].

This chapter introduces a lightweight, Byzantine fault-tolerant, robust imple-
mentation of a single-writer multiple-reader (SWMR) atomic register (LwR proto-
col). The LwR protocol is denoted as lightweight, as it satisfies optimal resilience,
features an optimal latency of two communication rounds for read and write op-
erations, does not rely on self-verifying data, is scalable in the number of clients as
the communication complexity is in O(n), and tolerates any number of malicious
readers.

The basic principle underlying the implemented atomic register is that it makes
use of a cryptographic commitment scheme [BCC88]. During the pre-write phase1

of a write(v) operation, the writer generates a secret token and sends, along with
value v, a commitment to the servers. By the hiding property of the commitment
scheme, the chosen token cannot be known by the servers. In the write-phase2, the
writer sends an opening to the servers, revealing the token. The binding property
of the commitment ensures that the servers can validate the revealed token. The
employed commitment scheme is given in two implementation variants (H) and
(S). Variant (H) is based on a collision-resistant hash function, while variant (S)
is based on Shamir’s secret sharing scheme [Sha79].

Accessing t+1 servers that report a validation of the token of a candidate value
v indicates to a client during a read() operation that the corresponding pre-write
phase is complete. Thus, value v has been stored to t+ 1 correct servers. This is
a sufficient condition to perform the write-back of v, to ensure atomic semantics,
in a single communication round.

The introduced LwR protocol implementing a SWMR atomic register consti-
tutes the first robust and latency-optimal implementation in the unauthenticated
data model that tolerates an unbounded number of possibly malicious readers.
It is assumed that malicious servers may not predict the output of a (pseudo)
random number generator [DMSS09] at the writer.

1The first communication round during a write operation.
2The second communication round during a write operation.
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5.1.2 Key-Value Store

In the last decade, we have observed an increasing trend of storage solutions
provided by “cloud services”. A key advantage of storing data in the cloud is
for the user that data is always accessible. To address the user needs for high
reliability and availability, cloud service providers rely on replication techniques.
Surprisingly, simple read/write interfaces for cloud storage solutions have become
popular. A key-value store (KVS) is the most adopted storage abstraction for
cloud services providing such a simple interface [DHJ+07, MTJ+08, ALM+10,
LM10, CWO+11]. A KVS allows concurrent access of several clients to store and
retrieve data in the cloud. It usually provides four different operations to the
clients [BCE+12] (also see Section 2.1.3 in Chapter 2): a Put(key, v) operation
stores value v under a unique key key at the KVS. Operation Get(key) retrieves
the correct value associated with key from the KVS. The delete(key) operation
removes the value associated with key, while operation list() returns a list of all
keys with associated values.

Obviously, the interface of an atomic register and a KVS are very similar:
Put operations of a KVS correspond to write operations of an atomic regis-
ter, while Get corresponds to read operations. As for the same practical reasons
lightweight solutions are desired for KVSs, the LwKVS protocol as contribu-
tion (C6) of this thesis extends the SWMR atomic register implemented by the
LwR protocol to a Byzantine fault-tolerant key-value store. As well, the proposed
KVS is optimally-resilient with respect to Byzantine faulty servers, supports an
unbounded number of clients, and tolerates an unbounded number of malicious
readers. Operations get(key) complete in two communication rounds. As the
KVS implemented by the LwKVS protocol supports multiple writers an extra
round of communication is required. Thus, put(key, v) and delete(key) op-
erations complete after three rounds of communication. Operations, get(key),
put(key, v), and delete(key) are atomic, while list() operations feature regular
semantics.

Contributions of Chapter 5 Specifically, this chapter makes the following con-
tributions:

• The LwR protocol, a robust, Byzantine fault-tolerant implementation of
a single-writer multiple-reader atomic register as contribution (C5) of this
thesis. The atomic register implemented by the LwR protocol is called
lightweight, as it is optimal in the number of replicated servers n = 3t + 1
to tolerate t Byzantine faulty servers, and in the number of communication
rounds which is two rounds for each read and write operation. Further,
the LwR protocol does not rely on self-verifying data, is scalable in the
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number of clients as the communication complexity is in O(n), and tolerates
any number of malicious readers.

• The LwKVS protocol, a robust, lightweight Byzantine fault-tolerant im-
plementation of a key-value store as contribution (C6) of this thesis. The
LwKVS protocol is optimally resilient and provides wait-free operations.
Operations put and delete require three and operations get and list re-
quire two communication rounds. As the LwR protocol, it does not rely
on self-verifying data, is scalable in the number of clients and tolerates any
number of malicious readers.

Note that both protocols LwR and LwKVS make use of a commitment scheme.
This chapter introduces two variants (H) and (S) to implement the commitment
scheme. Variant (H) employs a collision-resistant hash function and variant (S)
makes use of a secret sharing scheme as introduced by Shamir [Sha79].

5.2 Related Work

Fault-tolerant Storage The question how to implement fault-tolerant storage has
been extensively studied over the past decades. Lamport introduced the notions of
safe, regular, and atomic registers [Lam86] as well-known and widely accepted ab-
stractions for shared storage. Robust [ABND95] implementations are of particular
interest, as they are optimally resilient and provide wait-free [Her91] operations.
In a model where faulty servers are only allowed to crash, Attiya et al. [ABND95]
introduced in a seminal work an implementation of a robust, atomic register where
write operations finish after one and read operations after two communication
rounds with the clients. Note, that for the crash-fault model, an implementation
tolerating t out of 2t + 1 faulty servers is denoted as optimally resilient. Reduc-
ing the communication complexity to a single rounds for read operations comes
at the cost of more servers implying a non-optimal resilience [DGLC04]. This
shows also fundamental differences between fault-tolerant implementations of reg-
ular and atomic registers: For a robust regular register, single-round read and
write operations are possible [ABND95], while this is not true for robust atomic
register implementations, where readers even have to modify [DGLC04] the state
of t+ 1 servers [FL03].

In the Byzantine failure model, it has been shown, that n = 3t + 1 servers are
required to tolerate t Byzantine faulty ones [MAD02], defining optimal resilience
in such a setting. Work of Abraham et al. [ACKM06] ruled out the the exis-
tence of robust Byzantine fault-tolerant register implementation where all write
operations finish after a single communication round. The exact conditions that
enable single-round atomic read operations are given in an extended work of
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Dutta et al. [DGLV05]. If readers are not allowed to write, t + 1 communication
rounds constitute a tight lower bound for read operation, even for weaker safe
registers [ACKM06]. If readers may modify the state of the servers, two commu-
nication rounds are required for reading from regular registers [GV06]. Dobre et
al. [DMSS09] circumvented this lower bound by allowing the use of secret tokens.
They give an implementation of a regular register where read operations finish
after a single communication round, if readers may write. However, scalability in
the number of readers requires the read operations to perform two communication
rounds.

In the context of robust atomic register implementations, recent work of Do-
bre et al. [DGM+11] showed the impossibility of reading in two communication
rounds. If write operations perform a constant number of rounds, i.e., indepen-
dent from the number of Byzantine faulty servers t, even reading in three rounds
is impossible. That is why the number of communication rounds required for
read operations in existing atomic register implementations is either unbounded
[AAB07, GLV06, GV07] or dependent on the number of faulty servers t [MAD02].

Several existing protocols aim for an optimal number of communication rounds
in the best-case, i.e., assuming some degree of synchrony, a fewer number of
faulty servers, or no concurrency among read and write operations. Under
this assumptions, single-round Byzantine fault-tolerant atomic read and write
are possible in the best-case [GLV06]. Work of Guerraoui and Vukolic [GV07]
introduced for synchronous and uncontended runs single-round Byzantine fault-
tolerant atomic read and write operations that gracefully degrade to two or
three rounds depending on the number of available, correct servers. In the con-
text of crash-fault tolerance, Georgiou et al. [GNS09] presented a semifast atomic
read implementation.

Besides the large number of works in the area of Byzantine fault-tolerant stor-
age that are based on the unauthenticated data model [MAD02, BD04, GWGR04,
AAB07, ACKM06, ACKM07, GV06, GLV06, GV07, HGR07, CGK07, DMS08],
some works assume self-verifying data, also called authenticated [MR98, DGLV05,
CT06, LR06]. However, from a perspective of designing lightweight implementa-
tions, the use of self-verifying data [RSA78] is considered a significant source of
overhead [Rei94, MR97] and is therefore not desirable.

As in work of Dobre et al. [DMSS09], the system model underlying this chapter
of the thesis at hand, assumes the existence of a pseudo random number gen-
erator whose output may not be predicted by the malicious servers and clients.
Using standard transformations from regular to atomic registers to combine the
single-round regular read operation of Dobre et al. [DMSS09] with the two-round
write operation of Abraham et al. [ACKM06], would result in a robust Byzantine
fault-tolerant atomic register implementation where write operations finish after
two and read operations finish after three rounds. Note, that this is the optimal
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solution that can be achieved in the unauthenticated data model. To support an
unbounded number of readers, the read implementation of Dobre et al. requires
two communication rounds, i.e., four rounds for the corresponding atomic read
operation. In this context, the robust atomic register implementation proposed
in this chapter as the LwR protocol (C5), where both read and write opera-
tions require only two communication rounds, constitutes a significant reduction
of the number of communication rounds compared to existing works. The LwR
reduces the fundamental gap in the number of communication rounds between
the authenticated data model (1-round write, 2-round read) [MR98] and the non-
authenticated data model (2-round write, 4-round read) [DGM+11]. Furthermore,
it constitutes the first atomic register implementation not relying on self-verifying
data that tolerates an unbounded number of malicious readers [LR06].

Key-value store Besides the importance of fault-tolerant storage for the scientific
community, registers are also a vital building block for practical distributed storage
and file systems [SH02, SFV+04]. A similar trend can be observed for storage
services in the “cloud” [CKS09b, MG11], that provide a simple read/write interface
comparable to that of registers. Such a simple interface is provided by a key-value
store (KVS), that has been formally defined for the first time by Basescu et al. in
recent works [BCE+11, BCE+12]. Their work shows the close relation of the
two abstractions register and KVS, as they introduce a fault-tolerant multi-writer
multi-reader atomic register implemented on top of a collection of KVSs.

The KVS interface is implemented in the products of several today’s cloud
service providers: Amazon’s key-value store Dynamo [DHJ+07] or the storage
service S3 [AWS]; the storage systems Niobe [MTJ+08], Pahoehoe [ALM+10], and
Cassandra [LM10]; Microsoft’s cloud storage service Windows Azure [CWO+11].

5.3 System Model

In this chapter we consider a distributed system as defined in Section 2.1.1.
Here, the set of servers S contains n = 3t + 1 servers. There are m clients
C = {C1, . . . , Cm} in set C. We define two subsets R and W of set C denoted
as readers and writers, such that R ∩W = ∅. Let the cardinality of the set of
writers W be |W | = nw. The writers may fail by crashing but never deviate from
their specified behavior. Up to t servers and an arbitrary number of readers may
be Byzantine faulty [PSL80], exhibiting non-responsive-arbitrary faults [JCT98].

Clients communicate with the servers by sending messages over reliable chan-
nels, forming an asynchronous network. Servers are unable to communicate with
each other. Servers do not send messages to clients besides in response to client
messages [ACKM06]. We assume that the channels between the writers and the
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servers are authenticated, i.e., whenever some server receives a message from any
writer w, it can be sure that the message has actually been sent by w. For the im-
plementation variant (S) of the commitment scheme based on secret sharing, the
channels between writers and servers are additionally assumed to be secret, i.e., if
writer w sends a message to a correct server, then no malicious server or reader
is able to read the message content. In a practical setting the two assumptions
may be implemented using symmetric encryption or message authentication codes
(MAC).

This chapter introduces the two distributed protocols LwR and LwKVS that
implement the shared functionality of an atomic register and a key-value store
(KVS) [BCE+12], respectively, in a wait-free manner (see Chapter 2 for the for-
mal definitions). The time-complexity of the protocols is measured in terms of
communication round-trips [LS02, DGLC04, EGM+09, GNS09, DGM+11]. Dur-
ing a round-trip (or round) the following steps are taken: (1) Some client sends
messages to a subset of the servers; (2) the servers upon reception of a message
reply back to the client before receiving any other messages; (3) the round termi-
nates as soon as the invoking client receives enough replies.

We assume that the writers have access to a pseudo random number generator
providing function GetRandom() which does not take any arguments and outputs
a value in N. The GetRandom() function satisfies the following secrecy property
for any writer w ∈ W : No malicious server or reader is able to generate the
kth output of GetRandom() before writer w invokes GetRandom() for the kth
time.

For the commitment scheme variant (H) based on cryptographic hashing, we ad-
ditionally assume that there exists a collision-resistant hash function H. Collision-
resistance denotes that it satisfies the following property: Given any input x for
the hash function H the malicious servers and readers are unable to generate
some input x′ such that H(x) = H(x′). The second implementation variant for
the commitment scheme (S) proposed in this chapter makes use of a variation of
Shamir’s secret sharing scheme [Sha79]: Let a0, a1, . . . , at be the t+ 1 coefficients
of a polynomial of degree t. Then the commitment scheme satisfies the following
property: t malicious servers are unable to generate all coefficients of the polyno-
mial from only t points on the polynomial (i.e., for i = 1, . . . , t, (xi, yi) is a point
on the polynomial iff yi = a0 + xia1 + x2i a2 + · · ·+ xtiat).

5.4 (C5): The LwR Protocol

5.4.1 Idea of the LwR Protocol

Before introducing the ideas of the new lightweight atomic register implementa-
tion, let us recall the principles underlying existing robust register implementations
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[ACKM06], which will then lead the discussion to the ideas and solutions behind
the LwR protocol.

The predicate “safe” To ensure regular semantics, each value v that is written
is assigned a timestamp by the writer; the timestamp is incremented with every
new write operation. Let us consider a run of the protocol where some operation
write(v), where the writer assigns timestamp ts to value v, precedes some opera-
tion read(). Regularity requires the read() operation to return v or a value with
higher timestamp. In order not to block, the writer might access in the worst case
only n − t = 2t + 1 servers, i.e., t + 1 correct ones3. Even if the reader, during
operation read(), accesses all t Byzantine servers and the remaining t correct
ones that have not been accessed by the writer, the quorums of the reader and the
writer intersect in at least one correct server holding (ts, v). Hence, it would be
sufficient for the reader to return the value with the highest timestamp. However,
the reader has to make sure not to return a value that has been fabricated by a
Byzantine server and that was never written. The principle is therefore only to
return a value if it has been reported by t+ 1 servers, i.e., by at least one correct
server. In the LwR (and also LwKVS) protocol, this idea is captured by the
predicate safe.

Necessity of two rounds How does a distributed protocol guarantee that the
reader always receives t + 1 consistent replies? In the afore-described run, as
(ts, v) is stored on t + 1 correct servers, the reader could simply wait for enough
replies. However, there could be a run which is indistinguishable for the reader
where the write operation is still in progress: The reader has received replies from
all correct servers, thus, cannot wait for more replies, and (ts, v) has not yet been
written to t+ 1 servers by the write(v) operation. Hence, in order not to block,
the reader has to invoke another round of the read() operation. However, this
might not help in a run where the writer crashes during operation write(v), as
the reader would not receive any new information in the second round of read()
(see Figure 5.1, execution in the middle). Therefore, to tolerate the crash of the
writer, write operations are performed in two rounds. The complete reasoning
is illustrated by Figure 5.14 showing three executions with four servers out of
which one is Byzantine faulty: In the execution on the left, read() has to return
value v as write(v) precedes read(). However, the malicious server S2 does

3Note, that robust implementations require optimal resilience which means that only n = 3t+ 1
replicas can be used to tolerate t Byzantine-faulty ones.

4A communication round of a read or write operation is depicted as blocks arranged in a
single column. In the column corresponding to some round of an operation, a block is drawn
in a given row, if the corresponding server has received the message from the client in that
round and has sent a reply message. A malicious server is marked by “A”.
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not show value v to the reader. The execution in the middle is indistinguishable
for the reader, but here, the reader cannot wait for another reply as server S1 is
malicious and might be unresponsive. In the execution on the right, read() must
not return value v as it has not been written but was fabricated by the malicious
server S3. However, the reader cannot distinguish any of the three executions
which contradicts the existence of single-round write operations.

S4

S3

S2

S1

· · ·
σ0

σ0

write(v) read()

S4

S3

S2

S1

· · ·
σ0

A

σ0

write(v) read()

S4

S3

S2

S1

· · ·
σ0

σ0

read()

A

A

Figure 5.1: Impossibility of writing in one round. Symbol “A” denotes a Byzan-
tine faulty server and σ0 the initial state of a server.

The two rounds of a write(v) operation are denoted as pre-write and write
phase, the information sent in the pre-write (write) phase as pw (w). The reader
collects in the first round of operation read() the w information from the servers
as candidates to be returned. If it has read w from a correct server, then the
corresponding pre-write phase is already complete. This implies, that in the second
read round the reader can wait for the corresponding pw from t+1 correct servers.
Hence, the value corresponding to pw and w is safe and can be returned if there
is no safe value with a higher timestamp.

From “regular” to “atomic” Obviously, such a read implementation does not
satisfy atomicity : Consider a run where read() returns a safe value v. In the
most extreme case the corresponding candidate w and t replies containing pw in
the second read round have been fabricated by Byzantine servers; i.e., value v
is stored on only one correct server. Hence, another operation read′ succeed-
ing read might miss this correct server and not return v, violating atomicity.
Therefore, the solution is for a robust atomic register implementation to let the
reader, before returning value v, write value v back to the servers (using operation
write(v)). Hence, whenever read() returns v, v has been completely written
such that succeeding read operations may return v or a value with a higher
timestamp. Intuitively, this explains why in existing Byzantine fault-tolerant ro-
bust atomic register implementations read operations require four communication
rounds (two for the actual read and two for the write-back).
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Commitment scheme The idea behind the LwR protocol that implements an
atomic register is to employ a commitment scheme [BCC88] to reduce the number
of read rounds from four to two. The simplest form of a cryptographic commit-
ment scheme is a protocol between a sender an a receiver consisting of two phases.
In the first, the commit phase, the sender creates a commitment from a secret
value, called token, and sends it to the receiver. By the hiding property of the
commitment, the chosen token cannot be known by the receiver. In the second,
the reveal phase, the sender sends an opening to the receiver revealing the token.
The binding property of the commitment ensures that the receiver can validate
only the chosen token from the opening and the commitment.

During the pre-write phase of a write(v) operation, the writer chooses a ran-
dom token and generates a commitment from it. The commitment is written
together with the usual pw information to the servers. At the end of the pre-
write, only the writer knows the token. In the write-phase, the writer sends w
together with the chosen token as an opening to the servers.

New insights for the reader The use of a commitment scheme fundamentally
changes the situation during read operations. In the first round, the reader
collects w information including tokens as candidates. If such a candidate c has
actually been written, then in the second read round, t+1 correct servers will reply
with pw including a commitment matching the token of candidate c and c is safe.
This implies that for each safe candidate, the reader knows that the corresponding
pre-write phase has been completed and that the corresponding pw is stored on
t+1 correct servers. The reason is as follows: If the corresponding pre-write phase
was not complete, by the hiding property of the commitment, no server would
know the token corresponding to the commitment of the pre-write. However, if
commitment and token match, than the token must have been actually written
during the write phase (binding property), implying that the pre-write phase is
already complete.

This property “if some candidate is safe then the corresponding pw is stored
on t + 1 correct servers” helps to simplify the write-back that ensures atomicity.
The reader can be sure that these t+ 1 correct servers will reply to future read′

operations. Hence, the read operation requires only one round to write back the
candidate it is going to return. Therefore, the number of communication rounds
for the read has been reduced to three rounds.

Removing “incomplete” candidates Before explaining how to further reduce the
number of read rounds in the LwR protocol, we first consider the question how
the reader deals with candidates that have been fabricated by Byzantine servers.
Let c be such a candidate (including some token) that is reported in the first

105



5 Lightweight Atomic Storage

read round only by Byzantine servers. Note, that the probability that the writer
will choose the same token and construct a matching commitment is negligibly
small. This implies that no correct server holds pw information containing a
commitment that matches the token of the fabricated candidate c. Thus, if the
reader receives in the second read round pw information from 2t+ 1 servers that
does not correspond to c (which is covered by predicate incomplete), then the
reader may ignore candidate c (i.e., remove it from the list of candidates). However,
for candidates that actually have been written, this condition is never true: Then,
t + 1 correct servers will reply with matching pw information in the second read
round, i.e., at most 2t reply with non-matching pw.

Two read rounds The principle that the reader removes incomplete candidates
during the second read round illustrates that each read operation is able to dis-
tinguish written from fabricated candidates. Hence, to further reduce the number
of read rounds, the reader does not need to wait until it determines the candidate
to be returned before it writes-back: The idea is that after collecting candidates
in the first read round (possibly including fabricated ones), the reader writes-back
its whole list of candidates in the second read round. If it returns a value associ-
ated with some candidate c, then c is contained in the list of candidates and it is
therefore written-back. An operation read′ succeeding read will find candidate
c on at least one server in the first round, i.e., it becomes also candidate for read′.
As c was safe during read, the corresponding pw is stored on t+1 correct servers,
that will eventually reply in the second round of read′ such that c becomes safe
also during read′. By this, atomicity is guaranteed although the read operations
require only two communication rounds.

The handling of fabricated candidates also explains why the proposed atomic
register implementations can tolerate an unbounded number of malicious readers.
The only harm a malicious reader can do is to write-back a forged list of candidates.
If it introduces new, fabricated candidates, then they are sorted out by other
read operations. As atomicity does not require anything from operation read′

succeeding operation read of a malicious reader, it does not matter if a malicious
reader writes-back an incomplete list of candidates.

Implementation of the Commitment Scheme The proposed LwR protocol is
given in two variants, each implementing the commitment scheme differently. The
first variant (H) is based on a collision-free hash function H. In this variant, the
token is a random number chosen by the writer. The commitment is determined
as H(token). By the properties of the hash function H, token cannot be gen-
erated from commitment, and there exists no other token ′ that corresponds to
commitment.
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Variant (S) is based on ideas of Shamir’s secret sharing scheme [Sha79]. Here,
the token is a polynomial of degree t. Each server is assigned a different commit-
ment, where each commitment is a point on the polynomial. As t + 1 points are
required to determine a polynomial of degree t, the t points held by the Byzantine
servers are not sufficient to determine the token. On the other hand, more than
t commitments uniquely identify the secret polynomial, i.e., the token. Hence,
for variant (S) it is important to note that communication between writer and
servers has to be done via secret channels, as otherwise, Byzantine servers would
be able to eavesdrop a number of commitments sufficient to determine the secret
polynomial before it is revealed. However, in contrast to variant (H), variant (S)
is information theoretically secure [LCAA07, AACL07].

5.4.2 Description of the LwR Protocol

The LwR protocol is described in two different variants. Variant (H) is based
on a cryptographic hash function, while variant (S) makes use of a variation of
Shamir’s secret sharing scheme [Sha79]. The protocol is given as Algorithms 5.1,
5.2, and 5.3 for the write operation, Algorithm 5.4 gives the implementation of
the read operation, and Algorithms 5.5, 5.6, and 5.7 specify the algorithm of the
servers.

Algorithm 5.1: LwR Protocol, Algorithm of the Writer

Variables and Initialization:
ts integer, initially 0
pw structure 〈commitment, value〉
w structure 〈ts, token〉

write(v)
/* Pre-write Phase */

constructToken()5.1.1

ts← ts+ 15.1.2

forall servers i = 1, . . . , n do5.1.3

pw.value← v5.1.4

pw.commitment← getCommitment()5.1.5

send pw〈ts, pw〉 to server i5.1.6

wait for reception of pwr ack〈ts〉 from n− t servers5.1.7

/* Write Phase */

w.ts← ts5.1.8

w.token← getOpening()5.1.9

send wr〈ts, w〉 to all servers5.1.10

wait for reception of wr ack〈ts〉 from n− t servers5.1.11

return ok5.1.12
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Write operation The write operation executes two rounds of communication, the
pre-write phase and the write phase. After call write(v), initiating the pre-write
phase, the writer generates a token by calling the constructToken() function.
For variant (H), this function generates one random number, while for variant (S)
t + 1 random numbers are generated. In both cases, the numbers generated by
constructToken() are called the token. Next, the writer increases its times-
tamp, which is sent together with variable pw in a pre-write message to all servers.
Variable pw is a structure consisting of value v and a commitment, generated by
function getCommitment(). In case (H), the commitment is the hash value of
the constructed token. In case (S), function getCommitment() takes the t + 1
random numbers, generated before, as the t+ 1 coefficients of a polynomial of de-
gree t, and determines for each server a different, random point on the polynomial
as the server’s commitment. To complete the pre-write phase, the writer waits for
acknowledgements from n− t servers.

At the begining of the write phase, the writer assigns its timestamp ts to entry
w.ts of variable w. Function getOpening is called to assign the token, generated
in the pre-write phase to w.token, completing the update of variable w. Finally,
the writer sends timestamp ts and variable w in a write-message to all servers and
waits for n− t acknowledgements before write(v) operation finishes.

Algorithm 5.2: Writer Procedures with Secret Sharing (S)

Variables and Initialization
x, a1, a2, . . . , at integers, initially 0

constructToken()
forall j = 0, . . . , t do5.2.1

aj ←GetRandom()5.2.2

getCommitment()
x←GetRandom()5.2.3

return (x, a0 + xa1 + x2a2 + . . .+ xtat)5.2.4

getOpening()
return (a0, a1, . . . , at)5.2.5

Read operation Each read() operation returns after two communication rounds.
At beginning of the first round, the reader increments its reader timestamp tsr
and sends it in a read1 message to all servers. It waits for n− t replies. Each such
reply message from server i contains a set of candidates Ci which is added to set
C before the reader finalizes the first round.

In the second round, the reader sends timestamp tsr and set C in a read2
message to all servers. It waits for at least n− t read2 ack messages as replies and
until there is a candidate in set C satisfying both predicates safe and highCand.
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Algorithm 5.3: Writer Procedures with Cryptograhic Hash Function (H)

Variables and Initialization
token integer, initially 0

constructToken()
token← GetRandom()5.3.1

getCommitment()
return H(token)5.3.2

getOpening()
return token5.3.3

Whenever, a read2 ack messages is received from server i, the contained set of
timestamp-value pairs TV is stored into TV [i], while the server identifier i is
added to set Q to keep track of the servers that have already replied. Upon each
reception of a read2 ack message the reader checks for candidates c ∈ C that
satisfy predicate incomplete(c) and removes such c from set C.

A candidate c satisfies predicate highCand(c) if there is no other candidate in
set C that has a higher timestamp than c. A candidate c is defined to be safe if
t+ 1 servers reply in the second round with the same timestamp-value pair 〈ts, v〉
such that ts matches c.ts, the timestamp of candidate c. Value v is denoted as
the value corresponding to candidate c. A candidate c is called incomplete if n− t
servers return only timestamp-value pairs with timestamps different from c.ts.

Finally, the value corresponding to candidate c, for which safe(c) and high-
Cand(c) holds, is returned.

Algorithm of the servers The basic operation of server i is to wait for the re-
ception of a message from some client, to perform local computations and to send
the corresponding reply back to the client. In total, there are messages of four
different types: write and pre-write messages from the writer, and read1 and read2
messages from the readers. As the main local variables, server i maintains a vari-
able w to store the content of write messages and a vector history with an entry
for each possible timestamp for the handling of pre-write messages.

As soon as server i receives a pre-write message pw〈ts′, pw〉 from the writer, it
assigns history[ts′].pw field with pw and replies back to the writer by sending the
acknowledgement pwr ack〈ts′〉.

If server i receives a write message wr〈ts′, w′〉 from the writer, it first checks
whether ts′ is greater than its own timestamp w.ts. If this is true, w′ is assigned
to variable w. Finally, server i replies with message wr ack〈ts′〉 to the writer.

Whenever server i receives a read1 message rd1〈tsr〉 from some reader k, it
first sets set C to {w}. Next, it adds the content of all non-empty history[ts′].wb
fields to set C where ts′ > w.ts. Then, server i sends C in a read1 ack message
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Algorithm 5.4: LwR Protocol, Algorithm of the Readers

Variables and Initialization:
tsr integer, initially 0
Q set of integers, initially ∅
TV [1..n] vector of sets of structure 〈ts, value〉, initially ∅
C set of structure 〈ts, token〉, initially ∅
cret, c structure 〈ts, token〉
v, vret values

Predicates:

highCand(c) , c ∈ C : (∀c′ ∈ C : c.ts ≥ c′.ts)
safe(c) , |{i ∈ Q : 〈c.ts, v〉 ∈ TV [i]}| ≥ t+ 1
incomplete(c) , |{i ∈ Q : 〈c.ts, v〉 6∈ TV [i]}| ≥ n− t

read()
C ← Q← ∅5.4.1

TV [i]← ∅, 1 ≤ i ≤ n5.4.2

/* Round 1 */

tsr ← tsr + 15.4.3

send rd1〈tsr〉 to all servers5.4.4

repeat5.4.5

if received rd1 ack〈tsr, Ci〉 from server i then5.4.6

C ← C ∪ Ci5.4.7

until received rd1 ack〈tsr, ∗〉 from n− t servers5.4.8

/* Round 2 */

send rd2〈tsr, C〉 to all servers5.4.9

repeat5.4.10

if received rd2 ack〈tsr, TV 〉 from server i then5.4.11

Q← Q ∪ {i}; TV [i]← TV5.4.12

C ← C \ {c ∈ C : incomplete(c)}5.4.13

until (received rd2 ack〈tsr, ∗〉 from n− t servers) ∧5.4.14

(∃c ∈ C : safe(c) ∧ highCand(c))
return valueOf(c)5.4.15

valueOf(c)
cret ← c : c ∈ C ∧ safe(c) ∧ highCand(c)5.4.16

vret ← v : |{i ∈ Q : 〈cret.ts, v〉 ∈ TV [i]}| ≥ t+ 15.4.17

return vret5.4.18
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rd1 ack〈tsr, C〉 back to reader k.
Upon reception of a read2 message rd2〈tsr, CC〉 from reader k, server i resets

the set of timestamp-value pairs TV . Next, server i moves through all candidates
c from received set CC and performs the following actions: It first adds c to
set history[ts].wb such that timestamp ts = c.ts. Then, if procedure Verify(c)
returns boolean value true, server i determines a timestamp-value pair from time-
stamp c.ts and value history[c.ts].pw.value and adds this timestamp-value pair to
set TV . In case (H), procedure Verify(c) returns boolean value true, if the hash
value of token H(c.token) equals the commitment history[c.ts].pw.commitment.
In case (S), during procedure Verify(c), the t + 1 coefficients (a0, . . . , at) of the
polynomial of degree t are extracted from token c.token. Further, the coordinates
of point (x, y) are assigned the content of history[c.ts].pw.commitment. Ver-
ify(c) returns true, if point (x, y) lies on the polynomial defined by coefficients
(a0, . . . , at).

Finally, set TV is sent in a rd2 ack〈tsr, TV 〉 message back to reader k.

5.4.3 Proof of Correctness of the LwR Protocol

We show in this section that the LwR protocol given as Algorithms 5.1, 5.2, 5.3,
5.4, 5.5, 5.6, and 5.7 implements a single-writer multiple-reader atomic register.

The next corollary shows that regularity between write and read operations
is satisfied. This means that a read operation does not return a value which is
older than the one written by the last preceding write operation.

Corollary 5.1. Let write(v) be a write operation that writes value v with times-
tamp tsv. Let read() be a read operation of reader k such that write(v) precedes
read(). Then, operation read() does not return a value with timestamp < tsv.

Proof. In the first round of operation read(), reader k receives candidates from
variable w of 2t+ 1 servers (lines 5.5.9 and 5.5.12). Reader k collect these candi-
dates in set C (line 5.4.7). After the first round of read(), let w′ be the candidate
with the highest timestamp in set C at reader k, which has been sent by a correct
server. We first show that w′.ts ≥ tsv:

As the operation write(v) is complete, it has sent wv where wv.ts = ts to
2t + 1 servers during the write-phase (line 5.1.10). Hence, at least t + 1 correct
servers have received this wr〈tsv, wv〉 message from reader k. For these servers
holds upon the reception of the write message: Either tsv ≤ w.ts, in which case
some other candidate w′ with timestamp ts′ has already been received such that
ts′ = w.ts ≥ wv.ts. Or, wv.ts > w.ts, in which case candidate wv is stored to
the local variable w (line 5.5.6). Thus, at least one correct server adds wv or a
candidate with higher timestamp to its local set C (line 5.5.9) and sends it as a
reply to the read1 message in a read1 ack message to reader k (line 5.5.12). This
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Algorithm 5.5: LwR Protocol, Algorithm of Server i

Variables and Initialization:
w structure 〈ts, token〉, initially 〈0, token0〉
history[..] vector of structure 〈pw,wb〉
pw structure 〈commitment, value〉; wb set of structure 〈ts, token〉
history[j].wb initially ∅, j ≥ 0
history[0].pw initially 〈commitment0,⊥〉

C set of structure 〈ts, token〉, initially ∅
TV set of structure 〈ts, value〉, initially ∅

upon reception of pw〈ts′, pw〉 from writer5.5.1

history[ts′].pw ← pw5.5.2

send pwr ack〈ts′〉 to writer5.5.3

upon reception of wr〈ts′, w′〉 from writer5.5.4

if ts′ > w.ts then5.5.5

w ← w′5.5.6

send wr ack〈ts′〉 to writer5.5.7

upon reception of rd1 〈tsr〉 from reader k5.5.8

C ← {w}5.5.9

forall ts′ > w.ts s.t. history[ts′].wb 6= ∅ do5.5.10

C ← C ∪ history[ts′].wb5.5.11

send rd1 ack〈tsr, C〉 to reader k5.5.12

upon reception of rd2 〈tsr, CC〉 from reader k5.5.13

TV ← ∅5.5.14

forall c ∈ CC do5.5.15

history[c.ts].wb← history[c.ts].wb ∪ {c}5.5.16

if Verify(c) then5.5.17

TV ← TV ∪ {〈c.ts, history[c.ts].pw.value〉}5.5.18

send rd2 ack〈tsr, TV 〉 to reader k5.5.19

Algorithm 5.6: Verify Procedure with with Hash Function (H)

Verify(c)
return (H(c.token) = history[c.ts].pw.commitment)5.6.1

Algorithm 5.7: Verify Procedure with Secret Sharing (S)

Verify(c)
(x, y)← history[c.ts].pw.commitment5.7.1

(a0, . . . , at)← c.token5.7.2

return (y = a0 + xa1 + x2a2 + . . .+ xtat)5.7.3
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means that reader k adds wv (or a candidate with higher timestamp) to set C
(line 5.4.7). Thus, the claim w′.ts ≥ tsv is true.

Next, we show that during operation read() reader k never removes candidate
w′ from set C. Let write(v′) be the operation writing candidate w′ to a correct
server, i.e., let v′ be the value written by operation write(v′) with timestamp
w′.ts ≥ tsv. We continue the proof separately for the two variants (H) and (S):
Hash Function, Case (H). In the pre-write-phase of operation write(v′),
the writer has sent 〈w′.ts, (H(w′.token), v′)〉 to 2t + 1 servers (line 5.1.6), where
w′.token is the output of GetRandom() when called by the writer during opera-
tion write(v′) (line 5.3.1). As w′ is stored in the local variable w of some correct
server, the pre-write phase of write(v′) is complete. Hence, at least t+ 1 correct
servers hold 〈H(w′.token), v′〉 in their history[w′.ts].pw field (line 5.5.2). Thus,
call of Verify(w′) (line 5.5.17) at any of these t+ 1 correct servers would return
true (line 5.6.1), and timestamp-value pair 〈w′.ts, v′〉 is contained in these servers’
read2 ack messages (lines 5.5.18 and 5.5.19). This implies that there are at most
2t servers that reply with timestamp-value pairs different from 〈w′.ts, v′〉 to read2
messages of reader k.
Secret Sharing, Case (S). In the pre-write-phase of operation write(v′), the
writer has sent 〈w′.ts, (xi, a′0 + xia

′
1 + x2i a

′
2 + · · · + xtia

′
t), v

′〉 to server i of a
set of 2t + 1 servers (line 5.1.6), where a′0, a

′
1, . . . , a

′
t and xi is the output of

GetRandom() when called during write(v′) (lines 5.2.2 and 5.2.3). Note that
w′.token = (a′0, a

′
1, . . . , a

′
t). As w′ is stored in the local variable w of some correct

server, the pre-write phase of write(v′) is complete. Hence, at least t+ 1 correct
servers i hold 〈w′.ts, (xi, a′0 +xia

′
1 +x2i a

′
2 + · · ·+xtia

′
t), v

′〉 in their history[w′.ts].pw
field (line 5.5.2). Thus, call of Verify(w′) (line 5.5.17) at any of these t+1 correct
servers would true (line 5.7.3), and timestamp-value pair 〈w′.ts, v′〉 is contained
in these servers’ read2 ack messages (lines 5.5.18 and 5.5.19). This implies that
there are at most 2t servers that reply with timestamp-value pairs different from
〈w′.ts, v′〉 to read2 messages of reader k.

This implies that in both algorithm variants w′ is never removed from the set
of candidates C by reader k (line 5.4.13). Hence, predicate highCand makes sure
that read() does not return a value with timestamp < tsv.

An atomic register satisfies stronger consistency properties than a regular regis-
ter. Thus, the next corollary proves that the LwR protocol additionally guarantees
that a read operation does not return a value which is older than the one returned
by the last preceding read, as required by the definition an atomic register.

Corollary 5.2. Let read′() be a read operation of correct reader k′ that has returned
value v (with timestamp tsv). Let read() be a read operation of reader k such that
read′() precedes read(). Then, operation read() does not return a value with
timestamp < tsv.
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Proof. As read′() has returned v there has been a candidate wv during the second
round of read′() that satisfied safe(wv) and highCand(wv) and where wv.ts = tsv.
We first show that wv has been written in the write-phase of some write operation
write(v) and that the corresponding pre-write phase is complete. We proceed
the proof separately for the two variants (H) and (S):

Hash Function, Case (H). By the definition of safe(wv) (in Algorithm 5.4),
there exist t + 1 servers that have replied with read2 ack messages (line 5.5.19)
containing 〈tsv, v〉 to reader k′ during operation read′(). Hence, there is as least
one correct server where call Verify(wv) returned true and timestamp-value pair
〈tsv, v〉 was contained in this server’s read2 ack message. Hence, one correct server
holds pw in its history[wv.ts].pw such that H(wv.token) = pw.commitment. By
the hiding property of hash function H, any server can know wv.token only af-
ter it has been sent (line 5.1.10) during the write-phase of some write operation
write(v) which further implies that the corresponding pre-write-phase is com-
plete.

Secret Sharing, Case (S). By the definition of safe(wv) (in Algorithm 5.4), there
exist t+1 servers that have replied with read2 ack messages (line 5.5.19) containing
〈tsv, v〉 to reader k′ during operation read′(). Hence, there is as least one correct
server where call Verify(wv) returned true and timestamp-value pair 〈tsv, v〉 was
contained in this server’s read2 ack message. Hence, one correct server i holds
pw in its history[wv.ts].pw such that (xi, yi) = pw.commitment, (a0, . . . , at) =
wv.token, and a0 + xia1 + x2i a2 + · · · + xtiat = yi. By the hiding property of
the secret sharing scheme, any server can know wv.token only after it has been
sent (line 5.1.10) during the write-phase of some write operation write(v) which
further implies that the corresponding pre-write-phase is complete.

Note, that in both cases, at the point in time when reader k′ returns value v
at the end of operation read′(), the pre-write phase of write(v) is complete.
Next, we show that during first round of read() reader k adds a candidate with
timestamp ≥ tsv to the set of candidates C which is never removed:

As v has been returned by read′(), it must have been a candidate for reader k′,
i.e., wv ∈ C during the first round of read′() at reader k′. As operation read′()
is complete, set C containing wv has been sent to 2t+ 1 servers in read2 messages.
At least t+ 1 correct servers receive wv in such a read2 message. Each such server
adds wv its history[wv.ts].wb (line 5.5.16).

As read′() precedes read(), reader k will receive set of candidates Ci con-
taining wv or a candidate with higher timestamp w′ from at least one correct
server i during first read-round. This is because server i either adds wv from its
history[wv.ts].wb to set Ci (line 5.5.11) or a candidate w′ with higher timestamp
than wv.ts (line 5.5.9). As the corresponding pre-write phases of wv and w′ (if
it exists) are complete, by the same arguments as in the proof of Corollary 5.1,
wv or w′ (if it exists) is never removed from set of candidates by reader k dur-

114



5.4 (C5): The LwR Protocol

ing read(). Thus by predicate highCand, read() does not return a value with
timestamp < tsv.

The next two corollaries show that the LwR protocol never returns a value that
has been fabricated by a malicious server.

Corollary 5.3. No read() operation of a correct reader k returns a value with
timestamp < 0.

Proof. Initially, all correct servers store 〈0, token0〉, called candidate c0 in their
variable w and 〈commitment0,⊥〉 in history[0].pw. As the writer is correct and
increases its timestamp at the beginning of a write operation (line 5.1.2), w is
only updated with candidates with higher timestamps. Hence, for any read()
holds, that any correct server only proposes candidates with timestamp ≥ 0. By
the same arguments as in the proof of Corollary 5.1, such a candidate of a correct
server is never removed from set of candidates by reader k during read(). Thus
by predicate highCand, read() does not return a value with timestamp < 0.

Corollary 5.4. Let read() be a read operation of correct reader k that returns
value v 6= ⊥ (with timestamp tsv). Then, there exists an operation write(v) such
that read() does not precede write(v). If read() returns ⊥ (with timestamp 0),
then there exists no write(v) operation that precedes read().

Proof. If read() returns value v, there exists a candidate c ∈ C for reader k such
that safe(c) holds (line 5.4.14). This implies that there are t+ 1 servers at which
Verify(c) returns true and that send timestap-value pair 〈tsv, v〉, c.ts = tsv, in
read2 ack messages to reader k. As there are at most t malicious servers, among
these servers at least one server is correct. By line 5.5.18, the correct server has
determined v as history[c.ts].pw.value. As history[c.ts].pw.value 6= ⊥, the correct
server has received a pre-write message of some write(v) operation containing
pw such that pw.value = v. This pre-write message was received by the correct
server before it received the read2 message during read(). Thus, read() does not
precede write(v).

If read() returns value ⊥, there exists a candidate c0 ∈ C, c0.ts = 0 for reader
k such that safe(c0) and highCand(c0) holds (line 5.4.14) and valueOf(c0) returns
⊥. This implies that for all candidates c ∈ C such that c.ts > 0 = c0.ts holds
incomplete(c) and they have been removes from C (line 5.4.13). Let write(v) be
the operation that has written such a candidate c during write-phase.

Predicate incomplete(c) implies that 2t + 1 servers have replied with read2 ack
messages not containing any timestamp-value pairs 〈c.ts, v〉. Hence, at t+1 correct
servers, history[c.ts].pw does not contain 〈commitmentv, v〉. This further implies
that t + 1 correct servers did not receive a pwr〈tsv, 〈commitmentv, v〉〉 message
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before they reply with read2 ack messages. Thus, the pre-write phase of write(v)
is not complete when second round of read() is initiated, and therefore, write(v)
does not precede read().

The next lemma completes the safety part of the correctness proof of the LwR
protocol. Lemma 5.6 continues the proof by showing the liveness properties of the
LwR protocol.

Lemma 5.5. The read and write operations implemented by the LwR protocol
in Algorithm 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 satisfies the safety properties of an
atomic register.

Proof. Correctness follows directly from Corollaries 5.1, 5.2, 5.3, and 5.4.

Lemma 5.6. The read and write operation implemented by the LwR protocol in
Algorithm 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 are wait-free.

Proof. By assumption, there are at most t malicious servers. As the writer never
waits for more than n − t replies during pre-write and write phase of a write
operation and as the reader never waits for more than n− t replies during the first
round of a read operation, it remains to show that no read() operation blocks
during the second read round.

We assume for contradiction that some operation read() of correct reader k
blocks during the second round, i.e., we consider the point in time where all
correct servers have replied with read2 ack messages (line 5.4.14). We first show,
that the set of candidates C at reader k is not empty. Therefore, we assume that
w is the last candidate that has been written in line 5.5.6 (during write phase
of some write(v) operation) to some correct server i (or the initial candidate c0
if no candidates have been written yet) before server i replies to read1 message
during read() (line 5.5.12). Hence, w is contained in Ci received from server i
during first round of read() and w is added to C by reader k (line 5.4.7). As the
corresponding pre-write phase precedes read(), w is never removed from set C
(cf. proof of Corollary 5.1).

We proceed by showing that all candidates c ∈ C are safe. For contradiction,
we assume that there exists a candidate c contained in set C which is not safe.
Candidate c has been sent by some servers in a read1 ack message to reader k
during read() (line 5.5.12). At the end of the first round of read(), there exists
(Case 1) either some write(v) operation that has stored c during write-phase to
some server, (Case 2) or there is no such operation as c has been fabricated by
some malicious server.

Case 1 There exists a write(v) operation that has stored candidate c during
write-phase onto some server. Hence, the corresponding pre-write phase has been
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completed before the second round of read() is started. It directly follows that
c is safe, as on t+ 1 correct servers verify(c) returns true and these servers send
read2 ack messages containing timestamp-value pair 〈c.ts, v〉, which is a contra-
diction.
Case 2 As candidate c has not been written at all, by the hiding property of the
hash function and the secret sharing scheme, on 2t+ 1 correct servers verify(c)
returns false and these servers send read2 ack messages not containing timestamp-
value pair 〈c.ts, ∗〉. Thus, c is removed from set C (line 5.4.13).

Therefore, candidates in C are either safe or eventually removed from C. Thus,
no read() operation blocks in the second round (line 5.4.14) and all implemented
operations are wait-free.

The following theorem completes the correctness proof of the LwR protocol.

Theorem 5.7. Protocol LwR in Algorithms 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7
implements a single-writer multiple-reader atomic register in a wait-free manner.

Proof. The correctness follows directly from Lemmas 5.5 and 5.6

5.5 (C6): The LwKVS Protocol

This section introduces the LwKVS protocol being a lightweight and robust
Byzantine fault-tolerant implementation of a key-value store. The main princi-
ple of storing and retrieving data from the KVS is based on the ideas of the
atomic register implementation given as the LwR protocol in section 5.4.

5.5.1 From Atomic Registers to Key-Value Stores

As already mentioned in the introduction in section 5.1, the interfaces of a KVS
and an atomic register are very similar. Operations put(key, v) and get(key) of
a KVS are used to store and retrieve data from the KVS under a given key key.
Hence, each key key could be modeled as a separate atomic register Rkey, and
put(key, v) and get(key) could be emulated by atomic operations write(v) and
read() accessing register Rkey. Thus, the idea for this section is to reuse as much
as possible of the implementation of the lightweight and robust atomic register
from the LwR protocol for the implementation of the lightweight and robust KVS
in the LwKVS protocol.

However, there are also important differences between the interface of an atomic
register and a KVS. The atomic register implementation of protocol LwR in sec-
tion 5.4 is based on the assumption, that such an atomic register is accessed by
only one writer (single-writer multiple-reader setting). For the interface of a KVS
it is required that each key can be accessed by multiple writers via operations
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put(key, ∗). Hence, the implementation of a KVS has to enable multiple writers:
Intuitively, the timestamps are partitioned such that each writer is preassigned
a disjunct subset of the timestamps. At invocation of a put(key, v) operation,
the writer performs an extra round of communication with the servers, requesting
the highest timestamp tskey used for key key so far. It then chooses a times-
tamp > tskey from its own set of timestamps as the new timestamp for operation
put(key, v). This extra round of communication is important to ensure atomicity
among put and get operations.

Secondly, a KVS provides a list() operation returning a list of keys that are
currently “in use”, which does not exist for atomic registers. Obviously, an imple-
mentation of such a list() operation has to access all possible keys of a KVS to
determine the set of keys that store a non-⊥ value, i.e., the keys “in use”. Hence,
the idea for the implementation of the list() operation is to reuse the principles of
the implementation of the get(∗) operation. In order to keep the implementation
lightweight it is important that the list() operation, as operation get, requires
only two rounds of operation with the clients. To get along with only two com-
munication rounds, the access to all possible keys during the list operation has
to be done in parallel.

However, such an implementation of a list operation may violate the consis-
tency property of linearizability as dictated by atomic operations. Intuitively,
linearizability requires that in any execution of the protocol all put, delete and
get operations are either scheduled before or after each operation list(). The
following counterexample illustrates that is is not possible with a two-round list()
operation that is implemented from a collection of get(key) operations accessing
each possible key key. Let us now consider the following execution of the protocol
illustrated in Figure 5.2: The implemented KVS provides only two possible keys
k and k′ and is accessed by three clients C1, C2 and C3. Client C1 executes a
list() operation that is implemented by two concurrent operations get1(k) and
get2(k

′). Client C2 stores value v 6= ⊥ under key k, such that operation get(k)
of client C3 returns value v. Finally, client C3 stores value v′ 6= ⊥ into the KVS
under key k′. As during operation list() of client C1, operation get1(k) returns
⊥ and get2(k

′) returns v′ 6= ⊥, the list of keys returned by client C1 contains only
key k′.

However, for the execution illustrated in Figure 5.2 there exists no linearizable
order of the operations: As key k′ is contained in the list of keys returned by
operation list(), list() must not be ordered before operation put(k′, v′). On
the other hand, as key k is not returned by operation list(), list() must not be
ordered after put(k, v). As operation put(k, v) precedes operation put(k′, v′) it is
easy to see that no such total order exists. This means that the implemented list()
operation, although implemented from atomic get operations, violates atomicity.

The above argumentation shows that the main challenge for the implementation

118



5.5 (C6): The LwKVS Protocol

C3

C1

C2

get(k) put(k′, v′)

get2(k′)

get1(k)

list()→ {k′}

put(k, v)

Figure 5.2: Output of operation list() violating atomicity

of the list() operation is to find a good compromise between the provided degree
of consistency and the complexity of the implementation itself. To achieve a fully
consistent output of the list() operations, in the execution of Figure 5.2, client
C1 would have to read from all keys again (in order not to miss key k written in
the meantime by operation put(k, v)). However, even the next “wave” of get
operations during list() might be interleaved with other put and get operations
such that the inconsistencies remain. Thus, to keep the implementation of the
list() operation lightweight and the number of communication rounds as low as
possible, the idea for the implementation of the list() operation of the LwKVS
protocol is to surrender atomicity and to provide regular semantics instead.

From a practical point of view such regular list() operations are attractive as
they can be efficiently implemented and as the provided semantics are “consis-
tent enough”: The purpose of the list() operation is to provide to the client an
overview of all keys under which non-⊥ values are currently stored in the KVS.
This means that if some client first uses operation list() to determine set K of
currently used keys, and then initiates operation get(k) for some key k ∈ K, the
client expects to retrieve a non-⊥ value from operation get(k). Informally, this be-
havior is ensured by regular list operations: If put(k, v) precedes list() and there
is no operation deleting key k after put(k, v), then key k is contained in the list of
keys returned by operation list(). Hence, for a lightweight implementation of a
fault-tolerant KVS, list() operations that provide regular semantics, constitute a
reasonable compromise between consistency and implementation complexity. As
we will later see, the list() operation requires only two rounds of communication
between client and servers and several principles of the implementation of the
atomic get operation can be reused.
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5.5.2 Description of the LwKVS Protocol

The protocol is described in two different variants. As in section 5.4, variant (H)
is based on a cryptographic hash function, while variant (S) makes use of a varia-
tion of Shamir’s secret sharing scheme [Sha79]. The LwKVS protocol is given as
Algorithm 5.8 for the put and delete operations of the writers. Procedures con-
structToken, getCommitment, and getOpening are given as Algorithms 5.2
and 5.3 in Section 5.4 and are used here without any changes. Algorithms 5.11,
5.12, 5.13, and 5.14 give the algorithms executed by the servers, while Algorithms
5.9 and 5.10 give the implementation of get and list operations of the readers.

Operations put, get, and delete are atomic operations, while operation list
achieves regular semantics. Operation put requires three rounds of communica-
tion with the servers. The delete(key) operations are implemented as operations
put(⊥, key). Operations get and list finish after only two rounds of commu-
nication. All operations are wait-free. In the following only the differences with
respect to the robust atomic register implementation of protocol LwR in Section
5.4 are described.

Local KVS The algorithm executed by the servers makes use of local key-value
stores providing low-level operations Put and Get. The idea is that keys of the
local KVS are a composition of the key of the implemented, high-level operation
and protocol specific information, e.g., instead of storing a candidate 〈ts, token〉
to local variable w as done by the servers in the LwR protocol in section 5.4, here
during high-level operation put(key, v), the corresponding candidate is stored in
the local KVS by call Put(“w”◦ key, 〈ts, token〉). Similar, pre-writes for key key
and timestamp ts are stored under local-key “pw”◦ key ◦ ts.

Note that if local Get(key) is called and the local KVS has not stored a value
for key key, then Get(key) returns fail. However, to ease the presentation of the
pseudo-code we make the following assumptions that operation call Get(key) as
used in the pseudo-code never returns fail:

• If local KVS has no entry for key “w”◦ key ◦ ts, then Get(“w”◦ key ◦ ts)
returns value 〈0, key0, token0〉.

• If local KVS has no entry for key “pw”◦ key ◦ ts, then Get(“pw”◦ key ◦ ts)
returns value 〈commitment0,⊥〉.

• If local KVS has no entry for key “wb”◦ key ◦ ts, then Get(“wb”◦ key ◦ ts)
returns value ∅.

Put and Delete operation. The put operation implemented by the LwKVS
protocol is based on the atomic write operation given in section 5.4 and also
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performs a pre-write and a write phase. To handle multiple writers, it addition-
ally executes a read timestamp phase prior to the pre-write phase. Therefore, at
the beginning of a put(key, v) operation, the writer sends key and its previous
timestamp in a timestamp request message to the servers. Each server responds
with the highest timestamp of a candidate that has been stored for key key in a
write phase or a second round of a get operation. The writer determines the
highest timestamp ts′ among the received timestamps and chooses a timestamp
higher than ts′ from its own set of timestamps: If there are nw many writers in
the system, then writer i, i = 1, . . . , nw is preassigned all timestamps ts such that
(ts mod nw) = i− 1 holds. Hence, the next higher timestamp than ts′ satisfying
this condition is computed as ts′ − (ts′ mod nw) + nw + i− 1 by writer i.

The pre-write and write phase are performed analogously to Algorithm 5.1 in
section 5.4. Additionally all messages exchanged maintain key as an additional
parameter. Operation delete(key) is implemented by call put(key,⊥).

Get and List operation The implemented get(key) operation executes in two
rounds. Its implementation analogously follows the implementation of operation
read() in Algorithm 5.4 from Section 5.4. The difference is that each message
read1, read1 ack, read2, and read2 ack contains now key key as an additional
parameter. A slight change has been made to the Verify procedure, that also
takes key as an additional input parameter and returns a timestamp-value pair
(or ∅) instead of true (false).

Just like get operations, each list() operation finishes after two rounds. In the
first round, the reader increments timestamp tsl which is sent in a list1 message
to all servers. The reader waits for n− t replies list1 ack each containing a set of
list candidates. A list candidate is a structure consisting of a timestamp, a key
and a token (note that the normal candidates used during get operations are
a pair 〈ts, token〉). All list candidates are collected in set LC at the end of the
first round. Different to the set C used during get operation, set LC contains
candidates for different keys.

The purpose of the second round is for the reader to eliminate list candidates
that satisfy predicate incomplete ls from set LC and wait for the remaining list can-
didates in LC to eventually become safe ls. Hence, at the beginning of the second
round, the reader sends set LC to all servers in list2 messages. The servers reply
with a set of triples 〈ts, key, flag〉. If some server i replies with triple 〈ts, key, flag〉
as response to list candidate lc, this means that procedure Verify at server i has
returned timestamp-value pair (ts, val) for candidate 〈lc.ts, lc.token〉 and key key.
The corresponding flag is true if val = ⊥ and false otherwise.

The reader waits for at least n − t list2 ack messages in the second round of
list() and until all candidates in set LC satisfy predicate safe ls. A list candidate
lc is defined to be safe ls if t+ 1 servers reply in the second round with the same
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Algorithm 5.8: LwKVS Protocol, put and delete Operations
(Algorithm of Client k)

Variables and Initialization:
nw integer, constant, number of writers
ts, tsold integer, initially 0
pw structure 〈commitment, value〉
w structure 〈ts, token〉

put(v, key)
/* Read-timestamp Phase */

tsold ← ts5.8.1

send ts req〈key, tsold〉 to all servers5.8.2

repeat5.8.3

if received ts req ack〈key, ts′, tsold〉 from server i5.8.4

then
if ts′ > ts then ts← ts′5.8.5

until received ts req ack〈key, ∗, tsold〉 from n− t servers
/* Pre-write Phase */

ts← ts− (ts mod nw) + nw + k − 1 /* inc. timestamp */5.8.6

constructToken()5.8.7

forall servers i = 1, . . . , n do5.8.8

pw.value← v5.8.9

pw.commitment← getCommitment()5.8.10

send pwr〈key, ts, pw〉 to server i5.8.11

wait for reception of pwr ack〈key, ts〉 from n− t servers5.8.12

/* Write Phase */

w.ts← ts5.8.13

w.token← getOpening()5.8.14

send wr〈key, w〉 to all servers5.8.15

wait for reception of wr ack〈key, ts〉 from n− t servers5.8.16

return ok5.8.17

delete(key)
put(⊥, key)5.8.18

return ok5.8.19
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timestamp-key-flag triple 〈ts, key, flag〉 such that ts matches lc.ts. If flag is true,
lc satisfies safe ls remove.

Finally, the reader keeps for each possible key key only the list candidate with
the highest timestamp in set LC (by using predicate highCand ls) and removes all
other list candidates. Then, all list candidates that satisfy predicate safe ls remove
are deleted from set LC. At the end of operation list(), the reader returns the
keys corresponding to list candidates that are still in set LC.

Algorithm of the servers As in Section 5.4, the basic operation of each server
i in the LwKVS protocol is to wait for the reception of a message from some
client, to perform local computations and to send the corresponding reply back to
the client. Messages of type pre-write, write, read1 and read2 correspond to their
counterparts from the atomic register implementation. Each of this messages
additionally contains the key key used by the high-level operation.

Hence, in the following only the handling of the three new message types
timestamp request, list1 and list2 are described. When server i receives a mes-
sage ts req〈key, tsk〉 sent by client k during a put operation, server i retrieves the
candidates stored under keys “w”◦ key and “wb”◦ key ◦ ∗ from its local KVS and
determines the highest timestamp ts corresponding to these candidates. Server i
sends timestamp ts in a timestamp request ack message back to writer k.

Messages of type list1 and list2 are sent by the readers during list() operations
to server i. Whenever server i receives a list1 message ls1〈tsl〉 from some reader
k, it collects keys from its local KVS in set AllKeys. For all keys in AllKeys it
determines candidate w from Get(“w”◦ key) and adds triples 〈w.ts, key, w.token〉
to local set LC. For each such candidate w, server i retrieves candidates with
higher timestamps than w from Get(“wb”◦ key ◦ ∗) and adds the corresponding
timestamp-key-token triples to set LC. Finally, for all keys “wb”◦ key ◦ ts in
AllKeys, server i adds timestamp-key-token triples from Get(“wb”◦ key ◦ ts) to
set LC that have not yet been considered (e.g., if for some key key and times-
tamp ts, server i has received some candidate in a read2 message during some
get(key) operation without having received this candidate in a write message
during put(key, ∗) operation). Set LC is sent in a list1 ack message back to
reader k.

Upon reception of a list2 message ls2〈tsl, CLC〉 from reader k, server i resets
the set of timestamp-key-flag triples TKF. Next, server i moves through all list
candidates lc from received set CLC and calls procedure Verify(lc, lc.key). If
the verification is successful (i.e., Verify(lc, lc.key) does not return 〈⊥,⊥〉), then
timestamp-key-flag triple 〈lc.ts, lc, key, flag〉 is added to set TKF. The boolean
flag is true, if Verify(lc, lc.key) returned a pair 〈lc.ts,⊥〉. Finally, set TKF is
sent in a ls2 ack〈tsl, TV 〉 message back to reader k.
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Algorithm 5.9: LwKVS Protocol, get Operation
(Algorithm of Client k)

Variables and Initialization:
tsr integer, initially 0
Q set of integers, initially ∅
TV [1..n] vector of sets of structure 〈ts, value〉, initially ∅
C set of structure 〈ts, token〉, initially ∅
cret, c structure 〈ts, token〉
v, vret values

Predicates:

highCand(c) , c ∈ C : (∀c′ ∈ C : c.ts ≥ c′.ts)
safe(c) , |{i ∈ Q : 〈c.ts, v〉 ∈ TV [i]}| ≥ t+ 1
incomplete(c) , |{i ∈ Q : 〈c.ts, v〉 6∈ TV [i]}| ≥ n− t

get(key)
C ← Q← ∅5.9.1

TV [i]← ∅, 1 ≤ i ≤ n5.9.2

/* Round 1 */

tsr ← tsr + 15.9.3

send rd1〈tsr, key〉 to all servers5.9.4

repeat5.9.5

if received rd1 ack〈tsr, key, Ci〉 from server i then5.9.6

C ← C ∪ Ci5.9.7

until received rd1 ack〈tsr, key, ∗〉 from n− t servers5.9.8

/* Round 2 */

send rd2〈tsr, key, C〉 to all servers5.9.9

repeat5.9.10

if received rd2 ack〈tsr, key,TV〉 from server i then5.9.11

Q← Q ∪ {i}; TV [i]← TV5.9.12

C ← C \ {c ∈ C : incomplete(c)}5.9.13

until (received rd2 ack〈tsr, key, ∗〉 from n− t servers) ∧5.9.14 (
∃c ∈ C : safe(c) ∧ highCand(c)

)
if valueOf(c) 6= ⊥ then return valueOf(c)5.9.15

else return fail5.9.16

valueOf(c)
cret ← c : c ∈ C ∧ safe(c) ∧ highCand(c)5.9.17

vret ← v : |{i ∈ Q : 〈cret.ts, v〉 ∈ TV [i]}| ≥ t+ 15.9.18

return vret5.9.19
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Algorithm 5.10: LwKVS Protocol, list Operation
(Algorithm of Client k)

Variables and Initialization:
tsl integer, initially 0
LQ set of integers, initially ∅
flag boolean
TKF [1..n] vector of sets of structure 〈ts, key, flag〉, initially ∅
LC set of structure 〈ts, key, token〉, initially ∅
lc structure 〈ts, key, token〉

Predicates:

highCand ls(lc) ,
lc ∈ LC : (∀lc′ ∈ LC : lc.ts ≥ lc′.ts ∨ lc.key 6= lc′.key)

safe ls(lc) , |{i ∈ LQ : 〈lc.ts, lc.key,flag〉 ∈ TKF [i]}| ≥ t+ 1
safe ls remove(lc) , |{i ∈ LQ : 〈lc.ts, lc.key, true〉 ∈ TKF [i]}| ≥ t+ 1
incomplete ls(lc) , |{i ∈ LQ : 〈lc.ts, lc.key, ∗〉 6∈ TKF [i]}| ≥ n− t

list()
LC ← LQ← ∅5.10.1

TV [i]← ∅, 1 ≤ i ≤ n5.10.2

/* Round 1 */

tsl← tsl + 15.10.3

send ls1〈tsl〉 to all servers5.10.4

repeat5.10.5

if received ls1 ack〈tsl, LCi〉 from server i then5.10.6

LC ← LC ∪ LCi5.10.7

until received ls1 ack〈tsl, ∗〉 from n− t servers5.10.8

/* Round 2 */

send ls2〈tsl, LC〉 to all servers5.10.9

repeat5.10.10

if received ls2 ack〈tsl,TKF〉 from server i then5.10.11

LQ← LQ ∪ {i}; TKF [i]← TKF5.10.12

LC ← LC \ {lc ∈ LC : incomplete ls(lc)}5.10.13

until (received ls2 ack〈tsl, ∗〉 from n− t servers) ∧5.10.14

∀lc ∈ LC : safe ls(lc)
forall lc ∈ LC do5.10.15

if highCand ls(lc) then5.10.16

LC ← LC \ {lc′|lc′.key = lc.key} ∪ {lc}5.10.17

forall lc ∈ LC do5.10.18

if safe ls remove(lc) then5.10.19

LC ← LC \ lc5.10.20

return {lc.key|lc ∈ LC}5.10.21
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Algorithm 5.11: LwKVS Protocol, Algorithm of Server i

Variables and Initialization:
local key value store accessible via operations Put, Get, Delete, and List ts
integer, initially 0
C, tmp set of structure 〈ts, token〉, initially ∅
TV set of structure 〈ts, value〉, initially ∅

upon reception of ts req〈key, tsk〉 from client k5.11.1

ts← max{(Get(“w”◦ key)).ts,max{ts|Get(“wb”◦ key ◦ ts) 6= ∅}}5.11.2

send ts req ack〈key, ts, tsk〉 to client k5.11.3

upon reception of pwr〈key, ts, pw〉 from client k5.11.4

Put(“pw”◦ key ◦ ts, pw)5.11.5

send pwr ack〈key, ts〉 to client k5.11.6

upon reception of wr〈key, w〉 from client k5.11.7

if w.ts > (Get(“w”◦ key)).ts then5.11.8

Put(“w”◦ key, w)5.11.9

send wr ack〈key, w.ts〉 to client k5.11.10

upon reception of rd1 〈tsr, key〉 from client k5.11.11

C ← ∅5.11.12

C ← C ∪ Get(“w”◦ key)5.11.13

forall ts′ > (Get(“w”◦ key)).ts s.t. Get(“wb”◦ key ◦ ts′) 6= ∅ do5.11.14

C ← C ∪ Get(“wb”◦ key ◦ ts′)5.11.15

send rd1 ack〈tsr, key, C〉 to client k5.11.16

upon reception of rd2 〈tsr, key, CC〉 from client k5.11.17

for c ∈ CC do5.11.18

tmp← Get(“wb”◦ key ◦ c.ts)5.11.19

Put(“wb”◦ key ◦ c.ts, tmp ∪ {c})5.11.20

TV← TV ∪Verify(c, key)5.11.21

send rd2 ack〈tsr, key,TV〉 to client k5.11.22
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Algorithm 5.12: LwKVS Protocol, Algorithm of Server i, cont.

Additional Variables:
AllKeys set of keys, initially ∅
LC set of structure 〈ts, key, token〉, initially ∅
w structure 〈ts, token〉, initially 〈0, token0〉
wb set of structure 〈ts, token〉
TKF set of structure 〈ts, key, flag〉, initially ∅
tsval structure 〈ts, value〉

upon reception of ls1 〈tsl〉 from client k5.12.1

LC ← ∅5.12.2

AllKeys← List()5.12.3

forall key s.t. “w”◦ key ∈ AllKeys do5.12.4

w ← Get(“w”◦ key)5.12.5

LC ← LC ∪ {〈w.ts, key, w.token〉}5.12.6

forall ts′ > (Get(“w”◦ key)).ts s.t. Get(“wb”◦ key ◦ ts′) 6= ∅ do5.12.7

wb← Get(“wb”◦ key ◦ ts′)5.12.8

LC ← LC ∪ {〈ts′, key, lc.token〉|lc ∈ wb}5.12.9

forall ts, key s.t. “wb”◦ key ◦ ts ∈ AllKeys do5.12.10

if ts > (Get(“w”◦ key)).ts ∧ Get(“wb”◦ key ◦ ts) 6= ∅ then5.12.11

wb← Get(“wb”◦ key ◦ ts)5.12.12

LC ← LC ∪ {〈ts, key, lc.token〉|lc ∈ wb}5.12.13

send ls1 ack〈tsl, LC〉 to client k5.12.14

upon reception of ls2 〈tsl, CLC〉 from client k5.12.15

TKF← ∅5.12.16

forall lc ∈ CLC do5.12.17

tsval← Verify(lc, lc.key)5.12.18

if tsval 6= (⊥,⊥) then5.12.19

if tsval.val 6= ⊥ then TKF← TKF ∪ {〈lc.ts, lc.key, false〉}5.12.20

else TKF← TKF ∪ {〈lc.ts, lc.key, true〉}5.12.21

send ls2 ack〈tsl,TKF〉 to client k5.12.22

Algorithm 5.13: Verify Procedure with Hash Function (H)

Verify(c, key)
pw ← Get(“pw”◦ key ◦ c.ts)5.13.1

if pw.commitment = H(c.token) then5.13.2

return 〈c.ts, pw.value〉5.13.3

else5.13.4

return 〈⊥,⊥〉5.13.5
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Algorithm 5.14: Verify Procedure with Secret Sharing (S)

Verify(c, key)
pw ← Get(“pw”◦ key ◦ c.ts)5.14.1

if (x, y) = pw.commitment ∧5.14.2

(a0, . . . , at) = c.token ∧
y = a0 + xa1 + x2a2 + . . .+ xtat then
return 〈c.ts, pw.value〉5.14.3

else5.14.4

return 〈⊥,⊥〉5.14.5

5.5.3 Definition of Regular List Operations

As discussed in Section 5.5.1, the introduced LwKVS protocol constitutes a
Byzantine fault-tolerant implementation of a lightweight and robust KVS pro-
viding atomic put, get, and delete operations and regular list operations.
Operations are defined to be atomic it their invocation and response events can
be arranged in a linearizable order for any execution of the LwKVS protocol.
However, there exists no standard definition for protocols that provides atomic as
well as regular operations. Hence, in the following a definition of a regular list
operation is given in the context of atomic put, get, and delete operations.

Let σ be a history of an execution of the LwKVS protocol implementing a
key-value store. Then, let put get delete(σ) denote the subsequence of history σ
containing only invocation and response events of put, get, and delete opera-
tions in σ. Operations put, get, and delete are called atomic, if for any history
σ, sequence put get delete(σ) is linearizable with respect to the implemented func-
tionality of a KVS.

To define regular semantics of list operations, the notion of active and passive
keys is introduced. Intuitively, a key key is active if the implemented KVS stores
a non-⊥ value under key. The next definition also defines operations that activate
and deactivate keys.

Definition 5.8. Let σ be a history such that put get delete(σ) is linearizable. Let
πpgd be the sequential permutation of the completion of put get delete(σ) as given
in Definition 2.2 on page 25.

Initially all keys are defined to be deactivated. The first put operation in πpgd
accessing key k is said to activate k. We define recursively: The first delete operation
in πpgd accessing key k after an operation that activates k is said to deactivate k. The
first put operation in πpgd accessing k after an operation that deactivates k is said to
activate k. Any operation that activates or deactivates key k is called a k-changing
operation.

The following definition introduces the notion of list regularity for list opera-
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tions. Finally, a list operation provided by a KVS is called regular, if any history
σ is list-regular.

Definition 5.9 (List-Regularity). A history σ is list-regular if for each list opera-
tion l in σ and each key k the following conditions are satisfied:

1. put get delete(σ) is linearizable.

2. prefix→l(πpgd) is the largest prefix of πpgd (see Definition 5.8) such that the last
operation in πpgd precedes l in σ, and

3. if the last k-changing operation in prefix→l(πpgd) activates (deactivates) k, and
l is not concurrent with any other operation deactivating (activating) k, then k
is contained (is not contained) in the set of keys returned by l, and

4. if the last k-changing operation in prefix→l(πpgd) activates (deactivates) k, and
l is concurrent with any other operation deactivating (activating) k, then k may
or may not be contained in the set of keys returned by l.

5. if there is no k-changing operation in prefix→l(πpgd), and l is not concurrent
with any other operation activating k, then k is not contained in the set of keys
returned by l, and

6. if there is no k-changing operation in prefix→l(πpgd), and l is concurrent with
any other operation activating k, then k may or may not be contained in the
set of keys returned by l.

5.5.4 Proof of Correctness of the LwKVS Protocol

We show in this section that the LwKVS protocol given as Algorithms 5.8, 5.2,
5.3, 5.9, 5.10, 5.11, 5.12, 5.13, and 5.14 implements a key-value store with atomic
put,get, and delete operations and regular list operation.

We first show that the operations implemented by the LwKVS protocol satisfy
the safety properties.

Corollary 5.10. Let put(key, v) be a put operation of client k that stores value v
with timestamp tsv and key key to the key-value storage. Let put(key, v′) be a put
operation of client k′ such that put(key, v) precedes put(key, v′). Then, client k
does not assign a timestamp ≤ tsv to value v′ (in line 5.8.6).

Proof. By the assumption that put(key, v) precedes put(key, v′), client k sends
during the write phase of operation put(key, v) a wr〈key, w〉message to all servers
(line 5.8.15) where w.ts = tsv and w.value = v (line 5.8.13). As correct servers
update entry with key “w”◦ key in their local KVS only on receiving a value
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with a higher timestamp (line 5.11.8), at the end of operation put(key, v), a call
of Get(“w”◦ key) on t + 1 correct servers returns a value w with correspond-
ing timestamp w.ts ≥ tsv. Hence, at least one of these correct servers will re-
ply to the ts req〈key, ∗〉 message during operation put(key, v′) of client k′ with
a timestamp ≥ tsv (in such a timestamp request ack message the maximum of
(Get(“w”◦ key)).ts and timestamps ts′ such that Get(“wb”◦ key ◦ ts′) 6= ∅ is sent;
lines 5.11.1–5.11.3). Thus, by lines 5.8.4–5.8.5, when client k′ has received times-
tamp request ack messages from n − t servers, its variable ts is not smaller than
tsv. By line 5.8.6, the timestamp assigned to v′ is greater than tsv: The times-
tamps that are assigned during put operation is constructed as nw · i + k where
nw is the number of writers, i is a counter value that is incremented and k is the
client id. Let ts′ = nw · i + j be a timestamp that is going to be incremented by
client k′. Then the new timestamp of client k′ is computed as nw · (i+ 1) + k′.

Corollary 5.11. Let get(key) be a get operation of correct client k that retrieves
value v with timestamp tsv and key key from the key-value storage. Let put(key, v′)
be an operation of client k′ such that get(key) precedes put(key, v′). Then, client
k does not assign a timestamp ≤ tsv to value v′.

Proof. By assumption, client k has returned value v (with timestamp tsv). Hence,
for client k there has been a candidate c in the set of candidates C where c.ts = tsv
(line 5.9.14). Set C containing candidate c is sent during second round of operation
get(key) in a read2 message to n − t servers (line 5.9.9), and therefore received
by t + 1 correct servers. After having received such a read2 message, on these
t + 1 correct servers holds (Get(“w”◦ key)).ts ≥ tsv or Get(“wb”◦ key ◦ ts′) 6= ∅
for some ts′ ≥ tsv: If tsv = c.ts ≤ Get(“w”◦ key).ts, the claim is true. Else,
Put(“wb”◦ key, ts′) is called where ts′ ≥ c.ts = tsv (line 5.11.20), and the claim is
also true.

Hence, at least one of these correct servers will reply to the ts req〈key, ∗〉 mes-
sage during operation put(key, v′) of client k′ with a timestamp ≥ tsv (in such
a timestamp request ack message the maximum of (Get(“w”◦ key)).ts and times-
tamps ts′ such that Get(“wb”◦ key ◦ ts′) 6= ∅ is sent; lines 5.11.1–5.11.3). Hence,
when client k′ has received timestamp request ack messages from n− t servers, its
variable ts is not smaller than tsv. Analogously, to the proof of Corollary 5.10, it
directly follows that client k′ does not assign a timestamp ≤ tsv to value v′.

The next Corollary proves that put and get operations satisfy regularity.

Corollary 5.12. Let put(key, v) be a put operation of client k that stores value
v with timestamp tsv and key key to the key-value storage. Let get(key) be a get
operation of client k′ such that put(key, v) precedes get(key). Then, operation
get(key) does not return a value with timestamp < tsv.
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Proof. In the first round of operation get(key) client k′ receives candidates from
“w”◦ key entries (lines 5.11.13 and 5.11.16) of the local KVS of 2t + 1 servers.
Client k′ collect these candidates in set C (line 5.9.7). After the first round of
get(key), let w′ be the candidate with the highest timestamp in set C at client
k′, which has been sent by a correct server (from its “w”◦ key entry of the local
KVS; line 5.11.13). We first show that w′.ts ≥ tsv:

As operation put(key, v) is complete, client k has sent wv (together with key)
where wv.ts = tsv to 2t + 1 servers during the write-phase (line 5.8.15). Hence,
at least t+ 1 correct servers have received this wr〈key, wv〉 message from client k.
For these servers holds upon the reception of the write message: Either wv.ts ≤
Get(“w”◦ key).ts. In this case some other candidate w′ has been received where
w′.ts = (Get(“w”◦ key)).ts ≥ wv.ts. Or, wv.ts > Get(“ts”◦ key).ts. Then, candi-
date wv is stored to the local KVS by call Get(“w”◦ key, wv) (line 5.11.9). Thus,
at least one correct server adds wv or a candidate with higher timestamp to set
C (line 5.11.13) and sends it as a reply to read1 message of get(key) to client
k′ (line 5.11.16). This means that client k′ adds wv (or a candidate with higher
timestamp) to set C (line 5.9.7). Thus, the claim w′.ts ≥ tsv is true.

Next, we show that during operation get(key) client k′ never removes candidate
w′ from set C. Let put(key, v′) be the operation storing candidate w′ to the
KVS, i.e., let v′ be the value written by operation put(key, v′) with timestamp
w′.ts ≥ tsv. We continue the proof separately for the two variants (H) and (S):

Hash Function, Case (H). In the pre-write-phase of put(key, v′), the client has
sent 〈key, w′.ts, (H(w′.token), v′)〉 to 2t+1 servers (line 5.8.11), where w′.token is
the output of function GetRandom() when called by the client during operation
put(key, v′) (line 5.3.1). As w′ is stored in the “w”◦ key entry of the local KVS
of some correct server, the pre-write phase of put(key, v′) is complete. Hence, at
least t+ 1 correct servers hold 〈H(w′.token), v′〉 in the “pw”◦ key ◦w′.ts entry of
their local KVS (line 5.11.5). Thus, call of Verify(w′, key) (line 5.11.21) at any
of these t + 1 correct servers would return 〈w′.ts, v′〉 (line 5.14.3). This implies
that there are at most 2t servers that reply with timestamp-value pairs different
from 〈w′.ts, v′〉 to read2 message of client k′.

Secret Sharing, Case (S). In the pre-write-phase of put(key, v′), the client has
sent 〈key, w′.ts, (xi, a′0+xia

′
1+x2i a

′
2+ · · ·+xtia′t), v′〉 to a set of 2t+1 servers i (line

5.8.11), where a′0, a
′
1, . . . , a

′
t and xi is the output of GetRandom() when called

during put(key, v′) (lines 5.2.2 and 5.2.3). Note that w′.token = (a′0, a
′
1, . . . , a

′
t).

As w′ is stored in the “w”◦ key entry of the local KVS of some correct server, the
pre-write phase of put(key, v′) is complete. Hence, at least t+ 1 correct servers i
hold 〈key, w′.ts, (xi, a′0+xia

′
1+x2i a

′
2+ · · ·+xtia

′
t), v

′〉 in the “pw”◦ key◦w′.ts entry
of their local KVS (line 5.11.5). Thus, call of Verify(w′, key) (line 5.11.21) at
any of these t+1 correct servers would return 〈w′.ts, v′〉 (line 5.13.5). This implies
that there are at most 2t servers that reply with timestamp-value pairs different
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from 〈w′.ts, v′〉 to read2 message of client k′.
This implies that in both algorithm variants w′ is never removed from the set

of candidates C by client k′ (line 5.9.13). Hence, predicate highCand makes sure
that get(key) does not return a value with timestamp < tsv.

The next Corollary proves that put and get operations satisfy the additional
properties of atomicity.

Corollary 5.13. Let get′(key) be an operation of correct client k′ that has re-
turned value v (with timestamp tsv) from the key-value storage. Let get(key) be
an operation of client k such that get′(key) precedes get(key). Then, operation
get(key) does not return a value with timestamp < tsv.

Proof. As get′(key) has returned v there has been a candidate wv during the
second round of get′(key) that satisfied safe(wv) and highCand(wv) and where
wv.ts = tsv. We first show that wv has been written in the write-phase of some
put operation put(key, v) and that the corresponding pre-write phase is complete.
We proceed the proof separately for the two variants (H) and (S):
Hash Function, Case (H). By the definition of safe(wv) (in Algorithm 5.9),
there exist t + 1 servers that have replied with read2 ack messages (line 5.11.22)
containing 〈tsv, v〉 to client k′ during get′(key). Hence, there is as least one
correct server where call Verify(wv, key) returned 〈tsv, v〉 which implies that
one correct server holds pw in its “pw”◦ key ◦ wv.ts entry of the local KVS such
that H(wv.token) = pw.commitment. By the hiding property of hash function
H, any server can know wv.token only after it has been sent (line 5.8.15) during
the write-phase of some put operation put(key, v) which further implies that the
corresponding pre-write-phase is complete.
Secret Sharing, Case (S). By the definition of safe(wv), there exist t+1 servers
that have replied with read2 ack messages (line 5.11.22) containing 〈tsv, v〉 to
client k′ during get′(key). Hence, there is as least one correct server where call
Verify(wv, key) returned 〈tsv, v〉 which implies that one correct server i holds pw
in its “pw”◦ key◦wv.ts entry of the local KVS such that (xi, yi) = pw.commitment,
(a0, . . . , at) = wv.token, and a0 + xia1 + x2i a2 + · · · + xtiat = yi. By the hiding
property of the secret sharing scheme, any server can know wv.token only after
it has been sent during the write-phase some put operation put(key, v) which
further implies that the corresponding pre-write-phase is complete.

Note, that in both cases, at the point in time when client k′ returns value v at
the end of operation get′(key), the pre-write phase of put(key, v) is complete.
Next, we show that during first round of get(key) client k adds a candidate with
timestamp ≥ tsv to the set of candidates C which is never removed:

As v has been returned by get′(key), wv must have been a candidate for client
k′, i.e., wv ∈ C during the first round of get′(key) at client k′. As operation
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get′(key) is complete, set C containing wv has been sent to 2t + 1 servers in
read2 messages. At least t+ 1 correct servers receive wv in such a read2 message
and for each such server i holds: If wv.ts ≤ Get(“w”◦ key).ts server i already
holds a candidate with timestamp ts′ ≥ wv.ts in the “w”◦ key entry of its local
KVS (this implies that there exist some put operation that stored candidate w′,
w′.ts = ts′ during write phase to the KVS of server i). Else, wv is added by server
i to “wb”◦ key ◦ wv.ts entry of its local KVS (line 5.11.20).

As get′(key) precedes get(key), client k will receive set of candidates Ci con-
taining candidate wv or w′ (if it exists) from at least one correct server i during
first round in a read1 ack message. This is because server i either adds wv from its
“wb”◦ key ◦wv.ts entry of its local KVS to set Ci (line 5.11.15) or a candidate w′

with higher timestamp than wv.ts (line 5.11.13). As the corresponding pre-write
phases of wv and w′ (if it exists) are complete, by the same arguments as in the
proof of Corollary 5.12, wv or w′ (if it exists) is never removed from set of can-
didates by client k during get(key). Thus by predicate highCand, get(key) does
not return a value with timestamp < tsv.

The next two corollaries prove that only values are returned that actually have
been written by some put operation.

Corollary 5.14. No get(key) operation of a correct client k returns a value with
timestamp < 0.

Proof. Initially, if no value has been written to the KVS, all correct servers return
value 〈0, key0, token0〉 on call Get(“w”◦ key ◦ 0) and value 〈commitment0,⊥〉 on
call Get(“pw”◦ key ◦ 0). As client k is correct and increases its timestamp at the
beginning of a put operation (line 5.8.6), entry “w”◦ key ◦ 0 is only updated with
candidates with higher timestamps. Hence, for any operation get() holds, that
any correct server only proposes candidates with timestamp ≥ 0. By the same
arguments as in the proof of Corollary 5.1, such a candidate of a correct server
is never removed from set of candidates by client k during get(key). Thus by
predicate highCand, get(key) does not return a value with timestamp < 0.

Corollary 5.15. Let get(key) be a get operation of correct client k that returns
value v 6= ⊥ (with timestamp tsv). Then, there exists an operation put(key, v) such
that get(key) does not precede put(key, v). If get(key) returns ⊥ (with timestamp
0), then there exists no put(key, v) operation that precedes get(key).

Proof. If get(key) returns value v, there exists a candidate c ∈ C for client k such
that safe(c) holds (line 5.9.14). This implies that there are t+ 1 servers at which
call Verify(c, key) returns timestamp-value pair 〈tsv, v〉, c.ts = tsv, which is sent
in read2 ack messages to client k. As there are at most t malicious servers, among
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these servers at least one server is correct. By line 5.11.21, the correct server has
determined v from Get(“pw”◦ key ◦ c.ts).value. As Get(“pw”◦ key ◦ c.ts).value 6=
⊥, the correct server has received a pre-write message of some put(key, v) opera-
tion containing pw such that pw.value = v. This pre-write message was received
by the correct server before it received the read2 message during get(key). Thus,
get(key) does not precede put(key, v).

If get(key) returns value ⊥, there exists a candidate c0 ∈ C, c0.ts = 0 for client
k such that safe(c0) and highCand(c0) holds (line 5.9.14) and valueOf(c0) returns
⊥. This implies that for all candidates c ∈ C such that c.ts > 0 = c0.ts holds
incomplete(c) and they have been removed from C (line 5.9.13). Let put(key, v)
be the operation that has written such a candidate c during write-phase.

Predicate incomplete(c) implies that 2t + 1 servers have replied with read2 ack
messages not containing any timestamp-value pairs 〈c.ts, v〉. Hence, at t+1 correct
servers, Get(“pw”◦ key ◦ c.ts) does not return 〈commitmentv, v〉. This further
implies that t+ 1 correct servers did not receive a pwr〈key, tsv, 〈commitmentv, v〉〉
message before they reply with read2 ack messages. Thus, the pre-write phase
of put(key, v) is not complete when second round of get(key) is initiated, and
therefore, put(key, v) does not precede get(key).

The next two corollaries show that list() operation satisfies regularity.

Corollary 5.16. Let put(key, v) be a put operation of client k and let list()
be a list operation of client k′. If there is no delete(key) operation succeeding
put(key, v) (that is initiated before list() finishes), then key is contained in set
Keys returned by list().

Proof. By the correctness of the put operation, let us assume that client k has
sent pwv = 〈commitmentv, v〉 in the pre-write phase and wv = 〈tsv, key, tokenv〉
in the write-phase of operation put(key, v) to the servers. Variables pwv and wv
have been received by at least t+1 correct servers. As put(key, v) precedes list(),
at least one of the t+ 1 correct servers receives a list1 message (line 5.10.4) from
client k′ after having received wv from client k. Upon reception of a list1 message,
the correct server collects all used keys by locally calling List() in set AllKeys
(line 5.12.3). For each local key of type “w”◦ key, the server retrieves for key the
candidate (with highest timestamp) that has been stored in some write phase (line
5.12.5). The corresponding candidate w is collected as triple 〈w.ts, key, w.token〉
in set LC (line 5.12.6). As put(key, v) precedes list(), set LC contains a triple
〈ts′, key, token〉 where ts′ ≥ tsv. Hence, after client k′ has received LC in a
list1 ack message, it adds lcv such that lcv.ts ≥ tsv and lcv.key = key to its local
set LC (lines 5.12.14 and 5.10.7).

As candidate wv has been written to a correct server, t+ 1 correct servers have
stored the corresponding pre-write information pwv. Hence, in the second round
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of list(), t + 1 correct servers reply with sets containing 〈tsv, key, flag〉 triple
such that lcv turns safe ls at client k′ (line 5.10.14). As no delete(key) operation
happens after put(key, v), variable flag is false and safe ls remove does not hold
for lcv or a candidate lc′ where lc′.key = key and lc′.ts ≥ lcv.ts. This implies that
client k′ never removes candidate for key from set LC (lines 5.10.17 and 5.10.20)
and key is contained in the set of returned keys (line 5.10.21).

Corollary 5.17. Let get(key) be a get operation of client k that returns value
v (with timestamp tsv) and let list() be an operation of client k′. If there is no
delete(key) operation succeeding get(key) (that is initiated before list() finishes),
then key is contained in set Keys returned by list().

Proof. The proof is very similar to the proof of Corollary 5.16. Hence, we only
show that client k′ adds candidate lcv, such that lcv.key = key to set LC which
is never removed.

By the implementation of get(key) operation, client k writes back some can-
didate wv during second phase corresponding to value v. Hence, at t + 1 correct
servers entry “wb”◦ key ◦ tsv in the local KVS contains wv or “w”◦ key holds a
candidate with a higher timestamp ts′ ≥ tsv. Hence, upon reception of a list1 mes-
sage from client k′ during list(), a correct server adds a triple 〈ts′, key, w′.token〉
to set LC: Here, ts′ ≥ tsv and w′ is a candidate, that either has been written in
the write-phase of some put operation (line 5.12.6), or during the second round
of some get operation, where no candidate (line 5.12.13) or no candidate with a
higher timestamp (line 5.12.9) has been written for key. When client k′ receives set
LC in a list1 ack message from a correct server, it adds lcv such that lcv.ts ≥ tsv
and lcv.key = key to set LC (lines 5.12.14 and 5.10.7).

The remainder of the proof is analogous to the proof of Corollary 5.16. Hence,
key is contained in the set of returned keys.

Lemma 5.18. The LwKVS protocol given as Algorithms 5.8, 5.2, 5.3, 5.9, 5.10,
5.11, 5.12, 5.13, and 5.14 implements a key-value store where put, get, and delete
operations are atomic and list operations are regular.

Proof. Correctness follows directly from Corollaries 5.10, 5.11, 5.12, 5.13, 5.14,
5.15 5.16, and 5.17.

We proceed by showing that none of the operations implemented by the LwKVS
protocol blocks.

Lemma 5.19. The get and put operations implemented by the LwKVS protocol
are wait-free.
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Proof. By assumption, there are at most t malicious servers. As the client never
waits for more than n−t replies during read-timestamp, pre-write and write phase
of a put operation and during the first round of a get operation, it remains to
show that the algorithm does also not block during the second round of any get
operation.

We assume for contradiction that some operation get(key) of client k blocks
during the second round, i.e., we consider the point in time where all correct servers
have replied with read2 ack messages (line 5.9.14). We first show, that the set of
candidates C is not empty. Therefore, we assume that w is the last candidate that
has been written in line 5.11.9 (during write phase of some put(key, vw) operation)
to some correct server i (or the initial candidate 〈0, key0, token0〉 if no candidates
have been written yet) before server i replies to read1 message during get(key)
(line 5.11.16). Hence, w is contained in Ci received from server i during first round
of get(key) and w is added to C by client k (line 5.9.7). As the corresponding
pre-write phase precedes get(key), w is never removed from set C (cf. proof of
Corollary 5.12).

We proceed by showing that all candidates c ∈ C are safe. For contradiction,
we assume that there exists a candidate c contained in set C which is not safe.
Candidate c has been sent by some servers in a read1 ack message to client k during
get(key) (line 5.11.16). At the end of the first round of get(key), there exists
(Case 1) either some put(key, ∗) operation that has stored c during write-phase
to some server, (Case 2) or there is no such operation as c has been fabricated by
some malicious server.

Case 1 There exists a put(key, ∗) operation that has stored candidate c during
write-phase onto some server. Hence, the corresponding pre-write phase has been
completed before the second round of get(key) is started. It directly follows that
c is safe, as on t + 1 correct servers verify(c, key) returns 〈c.ts, v〉, which is a
contradiction.

Case 2 As candidate c has not been written at all, by the hiding property of hash
function and the secret sharing scheme, on 2t + 1 correct servers verify(c, key)
does not return 〈c.ts, v〉. Thus, c is removed from set C (line 5.9.13).

Therefore, candidates in C are either safe or eventually removed from C. Thus,
no get(key) operation blocks in the second round (line 5.9.14) and implemented
put and get operations are wait-free.

Lemma 5.20. The delete and list operations implemented by the LwKVS pro-
tocol are wait-free.

Proof. By the proof of Lemma 5.19 it directly follows that delete operations do
not block, as during delete operation only a wait-free put operation is called.
The first round of list operation does not block as the client never waits for more
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then n − t replies. Thus, it remains to show that the algorithm does not block
during the second round of any list operation.

We assume for contradiction that some operation list() of client k blocks during
the second round, i.e., we consider the point in time where all correct servers
have replied with list2 ack messages (line 5.10.14). We first show, that the set of
candidates LC is not empty. Therefore, we assume that w is the last candidate that
has been written in line 5.11.9(during write phase of some put(key, vw) operation)
to some correct server i (or the initial candidate 〈0, key0, token0〉 if no candidates
have been written yet) before server i replies to list1 message during list() (line
5.12.14). Hence, the triple 〈w.ts, key, w.token〉 = lcw is contained in LCi received
from server i during first round of list() and lcw is added to LC by client k
(line 5.10.7). As the corresponding pre-write phase precedes list(), lcw is never
removed from set LC (cf. proof of Corollary 5.17).

We proceed by showing that all candidates lc ∈ LC are safe ls. For contra-
diction, we assume that there exists a candidate lc contained in set LC which is
not safe ls. Candidate lc has been sent by some servers in a list1 ack message to
client k during list() (line 5.12.14). At the end of the first round of list(), there
exists (Case 1) either some put(key, ∗) or delete(key) operation that has stored
lc during write-phase to some server, (Case 2) or there is no such operation as lc
has been fabricated by some malicious server.

Case 1 There exists a put(key, ∗) or delete(key) operation that has stored can-
didate lc during write-phase onto some server. Hence, the corresponding pre-write
phase has been completed before the second round of list() is started. It directly
follows that lc is either safe ls (or safe ls remove), as on t+ 1 correct servers ver-
ify(lc, key) returns 〈c.ts, v〉 (or 〈c.ts,⊥〉, respectively), which is a contradiction.

Case 2 As candidate lc has not been written at all, by the hiding property of hash
function and the secret sharing scheme, on 2t + 1 correct servers verify(lc, key)
does not return 〈lc.ts, ∗〉. Thus, lc is removed from set LC (line 5.10.13).

Therefore, candidates in LC are either safe ls or eventually removed from LC.
Thus, no list() operation blocks in the second round(line 5.10.14) and imple-
mented delete and list operations are wait-free.

Theorem 5.21. The LwKVS protocol given as Algorithms 5.8, 5.2, 5.3, 5.9, 5.10,
5.11, 5.12, 5.13, and 5.14 implements a key-value store with atomic put, get, and
delete operations and regular list operations in a wait-free manner.

Proof. The correctness follows directly from Lemmas 5.18, 5.19, and 5.20.
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5.6 Conclusion & Discussion

This chapter has introduced as the two final contributions (C5) and (C6) of this
thesis the protocols LwR and LwKVS implementing an atomic register and a key-
value store, respectively. Both protocols are robust and Byzantine fault-tolerant
implementations, i.e., the implemented operations are wait-free and the optimal
number of server replicas of 3t+1 is required to tolerate t Byzantine faulty servers.
Moreover, the focus of both protocols is on being lightweight: The worst-case la-
tency in the number of communication rounds between clients and servers is mini-
mal, no expensive techniques to ensure self-verifying data are used, the protocols
are scalable in the number of clients and tolerate any number of malicious readers.

Known results from existing works demonstrate a fundamental difference be-
tween robust storage implementations that use self-verifying data (authenticated
data model) and those implementations where data are non-authenticated. In
the authenticated data model it is possible to atomically read in two commu-
nication rounds and to write in a single round, if multiple writers are allowed
in two rounds [DGLV05]. However, with non-authenticated data, a worst-case
latency of four communication rounds for atomic reads has shown to be opti-
mal for scalable implementations, and two (three) rounds for write operations
in the single (multiple) writer case [DGM+11]. The LwR protocol proposed in
this chapter although using non-authenticated data implements an atomic regis-
ter where read and write operations complete after two communication rounds,
and thereby closes this fundamental gap between implementations in the authen-
ticated and non-authenticated data model to a minimum. Especially, the LwR
protocol achieves the same worst-case read latency of two communication rounds
that is also optimal for robust implementations in the authenticated data model
[DGLV05]. Moreover, by employing a commitment scheme, both protocols LwR
and LwKVS also tolerate an unbounded number of malicious readers and thereby
constitute the first implementations in the non-authenticated data model provid-
ing this vital feature.

The LwKVS protocol introduced as contribution (C6) of this thesis implements
a robust and Byzantine fault-tolerant key-value store. The provided operations
are based on the atomic read and write operations of the LwR protocol and are
lightweight in the same sense. A difference is that the put and delete operations
of the LwKVS protocol require three communication rounds as multiple writers
are supported.

The proposed LwKVS leaves room for several possible optimizations. The im-
plemented list operation achieves only regular semantics in order to perform as
few as two communication rounds. Hence, the thesis at hand leaves for future
work the conjecture that atomic, but obstruction-free list operations can be im-
plemented: The idea is, as in protocols taking a snapshot [Fic05], to read in
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“waves” from all keys. If two sequential “waves” read the same data, the list op-
eration can be linearized with respect to all other operations. However, to achieve
two consistent “waves”, the list operation has to execute in isolation.

In a typical system setting, the servers are hosted within the same data center
and clients send their requests from outside. This means that communication
within the data center is orders of magnitude faster than the connection from the
clients to the data center. Hence, it would be an optimization idea for read/get
operations to let the servers communicate with each other and partly take over
the client role such that only one round of communication between a client and
the data center is required.

A further optimization to the LwKVS protocol would be to employ the tech-
nique of deduplication. Deduplication [MCM01] has been used to reduce the
storage and message complexity in several distributed storage implementations
[BCGD00, QD02, DGH+09] and file systems [MCM01, DAB+02, KDLT04, ZLP08,
CAVL09]. The idea is, before a value is written to the KVS, to first send a hash of
the value to the servers requesting if the same value has already been stored. In
this case, such a duplicate value does not have to be sent and stored again and a
reference to the storage location of the identical value is sufficient. Applying this
deduplication technique in the context of the proposed LwKVS protocol would
further strike the path of lightweight solutions.
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The thesis at hand has introduced approaches to cope with systems in untrusted
environments where components may act maliciously. Two main problems have
been explored. The first one deals with the question which properties can be
achieved by a distributed protocol executed among clients and a server, where
the server may exhibit arbitrary, malicious behavior. These properties are com-
prised by fork-consistent semantics. In this context, contributions (C1) and (C2)
demonstrate how a fundamental impossibility result regarding the liveness of the
implemented operations can be circumvented. The proposed protocols Linear
and Concur allow operations to abort, enabling an easier design of systems with
fork-linearizable semantics as complicated lock-based mechanism are no longer
required. Contributions (C3) and (C4) improve on existing fork-consistent imple-
mentations by weakening fundamental assumptions on the computational power
of the underlying server without sacrificing the implemented properties. Instead
of having the server execute arbitrary code, the proposed protocols Afl and Wfl
are based on a server that implements only simple storage objects, also known as
registers.

The second issue addressed by this thesis aims to reduce the influence of mali-
cious system components by replicating the provided service over multiple servers
such that the malicious behavior of a fraction of the replicas can be tolerated.
In this context, contributions (C5) and (C6) improve on existing implementa-
tions of Byzantine fault-tolerant storage in vital aspects. The introduced LwR
and LwKVS protocols require a minimal number of replicas, feature an optimal
number of communication rounds, do not make use of self-verifying data, and sup-
port an unbounded number of possibly malicious readers which makes them very
lightweight approaches.

The following sections briefly summarize the contributions made by this thesis
and discuss open questions for future exploration.

Abortable Fork-Linearizable Storage

Implementations that provide fork-consistent semantics can be seen as gracefully-
degrading systems. Although the server interacting with the clients is untrusted,
it is expected to behave correctly most of the time. In this case, the clients should
observe a linearizable history and wait-free operations. If the server deviates
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from the specified behavior and acts maliciously, the system gracefully degrades
by still providing fork-consistency. Note, that in this case the system cannot be
expected to be responsive as the malicious server may simply cease to process
client requests. Unfortunately, it has been shown that such behavior of graceful
degradation is not possible in the asynchronous system model for implementations
with fork-linearizability which is the strongest known fork-consistent property.
A recent result of Cachin et al. [CSS07] states that there is no fork-linearizable
storage implementation where operations are wait-free if the server behaves cor-
rectly. This impossibility result also explains why existing solutions providing
fork-linearizability are based on locking techniques and ensure best-case liveness
conditions even weaker than obstruction-freedom.

The idea of the proposed contributions (C1) and (C2) is to improve on liveness
in case the server behaves correctly by avoiding the use of locks. Instead, the
introduced Linear and Concur protocols allow the implemented operations to
abort under concurrency. Aborting operations helps to get along with the find-
ings of Cachin et al. [CSS07], as letting concurrent operations that access the
same logical data complete independently can be exploited by a Byzantine server
to violate fork-linearizability. The liveness condition that can be achieved with
abortable operations has been shown to be at least as strong as obstruction-freedom
[AFH+07]. Differently from lock-based implementations where the crash of a sin-
gle client (holding the lock) may cause the whole system to block forever, in the
Linear and Concur protocol a crashed client may only force a single operation
to abort. From a practical point of view, implementations with abortable opera-
tions are also very attractive as it has been shown that in practical systems, that
are occasionally synchronous, abortable operations can be boosted to be wait-free
[AT08].

The two protocols Linear and Concur, introduced as contributions (C1) and
(C2) of the thesis at hand, constitute the first lock-free emulations of fork-line-
arizable shared memory on a Byzantine server. Both protocols never violate fork-
linearizability, the strongest existing fork-consistent property, even if the server
behaves in a malicious way. If the server acts as specified, the implemented read
and write operations satisfy linearizability, the strongest consistency property,
and obstruction-freedom which means that every operation of a correct client that
executes in isolation completes successfully. The Linear protocol is based on
timestamp vectors and it has a communication complexity of O(n). It allows
to abort operations under concurrency. The Concur protocol improves on the
Linear protocol in the way how concurrent operations are handled. In the Con-
cur protocol only concurrent operations accessing the same register of the shared
memory need to be aborted. To achieve this, the Concur protocol relies on
timestamp matrices and has a communication complexity of O(n2).

Both the read and write operations implemented by the Linear and Concur
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protocol need two rounds of communication between the clients and the server
to complete. While the two communication rounds for write operations are
arguably necessary, the thesis at hand leaves for future work the conjecture that
read operations can be optimized in the the Linear and Concur protocol to
complete after a single round. This would also imply that read operations can
be made wait-free.

Fork-Consistent Emulations from Registers

The protocols Linear and Concur of contributions (C1) and (C2) required the
server to execute non-trivial computation steps. These comprise so-called read-
modify-write operations where the server is able in one atomic step to update a
variable with a newer value based on the current state of the variable. Such con-
ditional writes [CJS12] are very helpful to implement a timestamping mechanism
where the variable holding the current timestamp is only updated with higher
timestamp values. In a seminal work of Herlihy [Her91], servers with such com-
putational capabilities have been classified as being the strongest possible shared
objects. They can be used to implement any shared functionality in a wait-free
manner, and are universal in this sense. On the other end of Herlihy’s classifica-
tion lie shared memory objects, called registers. They can be accessed only via
a simple read/write interface and are computationally weaker than the universal
objects. Even for practical systems this can make a big difference in cost be-
cause full-fledged servers or virtual machines (constituting the universal servers)
are typically more expensive than simple disks or cloud-based key-value stores
(corresponding to servers providing only registers).

The protocols Afl and Wfl proposed as contributions (C3) and (C4) of this
thesis show the surprising result that in the context of fork-consistency, the as-
sumptions on the universality of the server can be abandoned in many cases and
weaker read/write registers may be used instead without sacrificing any of the pro-
vided properties. Moreover, the Afl and Wfl protocols constitute the first known
fork-consistent emulations on a Byzantine server that provides only registers.

The Afl protocol never violates fork-linearizability and implements a shared
functionality of universal type. Similar to non-fork-consistent universal imple-
mentations only from registers, the Afl protocol may abort operations under
concurrency [AFH+07]. Hence, fork-linearizability may be “added” to such pro-
tocols without making additional assumptions.

The Wfl protocol implements a shared memory that gracefully degrades to
weak fork-linearizability in case the server providing the registers is malicious.
Else, the operations implemented by the Wfl protocol are wait-free and ap-
pear in linearizable order. Weak fork-linearizability is the strongest known fork-
consistency property that allows wait-free operations in the best-case. Although
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being weaker than fork-linearizability, it has shown to be of practical relevance
[CKS11]. Moreover, the Wfl protocol shows for the first time that registers are
sufficient to implement a fork-consistent shared memory.

The thesis at hand leaves in this context two open problems for future research:
The first raises the question if the Afl protocol implementing a universal type
could provide a stronger liveness condition than obstruction-freedom in case the
server is correct. The first conjecture is, that achieving liveness conditions stronger
than obstruction-freedom with a universal construction only from registers is in-
dependent of whether fork-consistent semantics are provided or not. Secondly, the
conjecture is that as in the case of the Wfl protocol and by using a computa-
tionally stronger server, wait-freedom can be achieved for the implementation of
a universal type only if weak fork-linearizability instead of fork-linearizability is
provided.

The second open challenge would be to reduce the communication complexity
of the Wfl protocol. The Wfl protocol uses matrices of size n × n where the
size of each entry depends on the total number of operations N , and thus, has a
communication complexity of O(N ·n2). A supposed approach to reduce this com-
munication complexity would be to implement a “garbage collection” mechanism
that avoids a dependence of the communication complexity on the total number
of operations N .

Lightweight Atomic Storage

An atomic register is an important building block for distributed systems, as
demonstrated by the Afl and Wfl protocols of contributions (C3) and (C4) that
are built upon this abstraction. The LwR protocol given as contribution (C5) of
this thesis aims at implementing an atomic register in a Byzantine fault-tolerant
manner. The basic idea is to replicate the implementation over a collection of
servers such that the malicious behavior of a fraction of the replicas can be masked.
Such masking fault-tolerance [AS85] means that even in the presence of faulty
replicas all specified safety and liveness properties are satisfied. To limit the costs
incurred by replication, the challenge is to achieve optimal resilience which is 3t+1
replicas to tolerate t faulty ones in the context of Byzantine fault-tolerance. Specif-
ically, fault-tolerant implementations that feature optimal resilience and provide
wait-free operations are called robust.

In the context of robust atomic register implementations it is a challenge to
achieve an optimal latency of the implemented operations. The latency is mea-
sured in the number of communication rounds that has to be performed between
a client and the servers. The latency is an important aspect as it directly influ-
ences the performance of an atomic register implementation. Moreover, as the
use of self-verifying data [RSA78] is considered as a significant source of overhead
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[Rei94, MR97], implementations in the non-authenticated data model are desir-
able. However, with respect to the latency of robust, atomic register implemen-
tations there exists a fundamental difference between the authenticated and the
non-authenticated data model. If the system model allows the use of self-verifying
data, a robust, Byzantine fault-tolerant atomic register can be implemented where
write operations require a single and read operations require two communica-
tion rounds [MR98]. In the non-authenticated data model, the fastest atomic
register implementations perform two communication rounds during write and
four1 during read operations [DGM+11].

The LwR protocol, introduced as contribution (C5) of the thesis at hand, con-
stitutes a robust, Byzantine fault-tolerant atomic register implementation in the
non-authenticated data model where both read and write operations complete
after only two communication rounds, thus, significantly reducing the gap to im-
plementations in the authenticated data model. The latency of read operations,
which are usually expected to occur more frequently, achieve the same latency as
in the authenticated data model. Moreover, it constitutes the first atomic regis-
ter implementation not relying on self-verifying data that tolerates an unbounded
number of possibly malicious readers. The reduction in latency is achieved by em-
ploying a commitment scheme, given here in two variants: One variant is based on
a collision-resistant hash function while the other one is built upon a secret shar-
ing scheme [Sha79], which makes the latter additionally information theoretically
secure [LCAA07, AACL07]. As the LwR protocol features optimal resilience, an
optimal communication latency, does not rely on data authentication, and addi-
tionally allows for an unbounded number of malicious readers, it is regarded as a
lightweight approach.

The LwKVS protocol, being contribution (C6) of this thesis, is based on the
LwR protocol and constitutes a lightweight, Byzantine fault-tolerant implementa-
tion of a key-value store (KVS). A KVS turned out to be one of the most favored
storage abstraction for recent cloud services [DHJ+07, MTJ+08, ALM+10, LM10,
CWO+11]. As several clients are allowed to store data under the same key, an ad-
ditional round of communication with the servers is required for put and delete
operations in comparison to the implementation of the write operations in the
LwR protocol. The get and list operations implemented by the LwKVS proto-
col achieve a two round latency just like read operations in the LwR protocol.

The list operation implemented by the LwKVS protocol achieves unlike the
other operations only regular semantics in order to perform in as few as two
communication rounds. This thesis leaves for future exploration the conjecture
that atomic list operations can be implemented at the cost of sacrificing wait-
freedom for obstruction-freedom (cf. the discussion in Section 5.6). A second

1If an unbounded number of readers is supported; else three communication rounds.
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optimization of the LwKVS protocol that goes beyond the scope of this the-
sis is to optimize the communication pattern of the protocol with respect to
practical settings. In a real-world deployment, the servers are usually located
within the same data center while clients access via the Internet. Hence, com-
munication within the data center is much more powerful than the connection
from the clients to the data center. An idea for optimization would be to let
the servers communicate with each other and partly take over the client role
such that only one round of communication between a client and the data cen-
ter is required. As a final, open optimization to the LwKVS protocol, the
technique of deduplication is proposed here to strike the path of lightweight so-
lutions. A number of storage systems have been introduced during the past
decade that reduce the storage and message complexity by removing duplicate
data [BCGD00, MCM01, DAB+02, QD02, KDLT04, ZLP08, DGH+09, CAVL09].
The basic principle is that operation Put(key, v) sends value v only to the KVS,
if v is and has never been stored under any key at the KVS. Deduplication can be
implemented by storing value v together with its hash value H(v)2. Then, during
the first round of a Put(key, v) operation the client requests at each replica, by
sending only H(v), whether value v has already been stored — in this case v does
not need to be sent again saving a significant amount of bandwidth and storage
capacity.

The Final Word

The thesis at hand described problems and their solutions in the research context of
untrusted system environments. Systems are referred to as untrusted if some sys-
tem components may exhibit arbitrary, malicious behavior. On the highest level of
abstraction the thesis explores the best possible properties that can be achieved by
a distributed protocol implemented among clients and an untrusted server. These
properties are comprised by the notion of fork-consistency. The protocols intro-
duced as contributions (C1) – (C4) throughout this thesis fundamentally improve
over existing fork-consistent implementations. The Linear and Concur protocol
(contribution (C1) and (C2)) are this first fork-linearizable implementations that
are not based on locks. The Afl and Wfl protocols from contribution (C3) and
(C4) constitute the first fork-consistent implementations that require the server
only to implement simple storage objects and thereby fundamentally reduce the
underlying system assumptions without sacrificing the provided properties.

On a lower level of abstraction, this thesis introduces solutions to make sys-
tem components more trustful. Contributions (C5) and (C6) implement shared
storage abstractions in a Byzantine fault-tolerant manner. Both, the LwR and
the LwKVS protocol are lightweight implementations featuring optimal resilience

2Where H is a collision resistant hash function.
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and latency in the non-authenticated data model by employing a commitment
scheme. The atomic register and the key-value-store implemented by the LwR
and the LwKVS protocol, respectively, further support an unbounded number of
malicious clients which is an outstanding feature for the non-authenticated data
model.
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