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Summary

This thesis deals with efficient formal verification of fault-tolerant dis-
tributed protocols. The main focus is on protocols that achieve fault-
tolerance using replication in distributed systems [AW04]. In addition, com-
munication in the distributed system is abstracted using message-passing.
However, most of the concepts and solutions discussed in the thesis apply
beyond replication-based message-passing protocols.

The outcome of verification is two-fold: Either the verification proves
that the system (protocol) satisfies its specification or it returns (or claims
the existence) of a counterexample that witnesses that the system (protocol)
violates the specification. Both the development and application of fault-
tolerant message-passing protocols can benefit from verification. Firstly,
these protocols can be complex conceptual designs and hard to implement
due to (i) a rich variety of (even malicious [LSP82]) faults that should be
tolerated by the protocol and (ii) the concurrency in the distributed system
executing the protocol. Therefore, counterexamples returned by verification
in the phase of development can help developers to get the conceptual proto-
col and its implementation right. Secondly, fault-tolerant messages-passing
protocols specify strong guarantees such as atomic broadcast [JRS11] or di-
agnosis of malicious faults [SBS+11]. Therefore, the verification of such pro-
tocols can avoid failures of highly available systems that build upon these
protocols.

The complexity of verification strongly depends on the size and nature
of the system. Therefore, verification should be efficient in terms of space,
time, and human interaction (ranging from full automation to requiring in-
tuitive human guidance). Due to (i) and (ii), the verification of fault-tolerant
message-passing protocols faces with a large problem space. Hence, straight-
forward verification approaches are inefficient. The thesis enables efficient
verification of fault-tolerant message-passing systems in several ways.

New Models of Message-Passing Systems The input of verifica-
tion is a model of the system. The model represents the system and can
be of varying resolution, e.g., source code, binaries, or high-level executable
pseudocode. The efficiency of verification can significantly differ for differ-
ent models of the same system. In the first part of the thesis, models of
fault-tolerant message-passing protocols are proposed to enable efficient ver-
ification.

The proposed models address different aspects of fault-tolerant message-
passing protocols. These aspects include (A1) message traffic – an equiva-
lence is shown between different models of sending, delivering, and consuming
messages, which allows to select the model that is most amenable to efficient
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verification; (A2) fault-model – a surprisingly simple and sound model of the
widely-applied crash fault assumption is proposed allowing efficient verifica-
tion of systems with crash faults; (A3) symmetries – an approach for finding
symmetries in the model is introduced, which can be exploited by symmetry
reduction [MDC06]; and (A4) partial orders – an equivalent translation of
models is proposed to improve on the efficiency of partial-order reduction
[God96, Val98, CGP99]. Symmetry and partial-order reductions are general
tools for efficient verification whose efficiency strongly depends on the model
in use.

New Algorithms for Efficient Verification The second part of the
thesis improves on existing verification techniques to enhance their efficiency.

The first technique is partial-order reduction, whose performance is lim-
ited by the poor flexibility and usability, and high time overhead of existing
implementations. A new implementation of partial-order reduction is pre-
sented, called LPOR, that improves on all these features at the same time.
To demonstrate the features of LPOR, it is applied to general message-
passing systems. Experiments with representative fault-tolerant message-
passing protocols justify LPOR’s improvements. In addition, LPOR is im-
plemented as an open-source Java library. This implementation is applied in
MP-Basset, a model checker for general message-passing systems developed
in the context of this thesis.

The second verification technique is automated induction [MP95,
dMRS03]. The efficiency of induction is limited by its general incompleteness,
i.e., induction might return spurious (wrong) counterexamples for systems
that satisfy the specification. A solution against spurious counterexamples is
using lemmas [MP95]. However, the discovery of lemmas is, in general, hard
to automate. The thesis proposes a classification of lemmas in fault-tolerant
message-passing protocols to enable their automated discovery. An example
protocol is verified using classified lemmas and machine-checked induction
proofs. Finally, a new approach, called strengthened transitions, is proposed
to combat spurious counterexamples. An application of strengthened transi-
tions for general multi-process systems is also presented.
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Kurzfassung

Diese Dissertation behandelt effiziente, formale Verifikation von fehler-
toleranten, nachrichtenbasierten Protokollen. Der Schwerpunkt liegt dabei
auf Protokollen, die Fehlertoleranz mittels Replikation in verteilten Syste-
men [AW04] erreichen. Die Kommunikation in verteilten Systemen wird als
Versenden von Nachrichten abstrahiert. Jedoch gelten die meisten, in dieser
Dissertation vorgestellten Konzepte und Techniken auch über replizierte,
nachrichtenbasierte Systeme hinaus.

Verifikation gibt zwei Arten von Ergebnissen aus: Verifikation beweist
entweder, dass das System (Protokoll) seine Spezifikation erfüllt oder zeigt
ein Gegenbeispiel (bzw. behauptet dessen Existenz) als Nachweis, dass die
Spezifikation verletzt wird. Verifikation findet sowohl in der Entwicklung als
auch in der Anwendung fehlertoleranter, nachrichtenbasierter Protokolle Ver-
wendung. Erstens sind diese Protokolle aufgrund (i) der großen Bandbreite
von (möglicherweise bösartigen [LSP82]) Fehlern, die vom Protokoll toleriert
werden müssen, und (ii) der Nebenläufigkeit im verteilten System, das zur
Ausführung des Protokolls verwendet wird, häufig komplex. Daher können
die von der Verifikation gelieferten Gegenbeispiele dabei helfen, Protokolle
korrekt zu entwerfen und zu implementieren. Zweitens, werden in fehlertol-
eranten, nachrichtenbasierten Protokollen starke Eigenschaften wie Atomic-
Broadcast [JRS11] oder die Diagnose von bösartigen Fehlern [SBS+11] spezi-
fiziert. Somit kann Verifikation Ausfälle von hochverfügbaren Systemen ver-
meiden, die auf solchen Protokollen basieren.

Die Komplexität von Verifikation hängt stark von der Größe und Art
des Systems ab. Deshalb ist die Effizienz von Verifikation hinsichtlich Spe-
icherbedarf, Zeit und menschlicher Interaktion (von Vollautomatisierung bis
hin zu intuitivem Eingreifen eines Menschen) besonders wichtig. Die oben
genannten Gründe (i) und (ii) implizieren einen sehr großen Problemraum
für die Verifikation fehlertoleranter, nachrichtenbasierte Protokolle. Einfache,
naheliegende Verifikations-Ansätze sind somit häufig ineffizient. Diese Disser-
tation ermöglicht effiziente Verifikation fehlertoleranter, nachrichtenbasierter
Protokolle auf verschiedenen Wegen.

Neue Modelle von nachrichtenbasierten Systemen Verifikation
benötigt als Eingabe ein Modell des Systems. Das Modell repräsentiert
das System mit unterschiedlichem Detaillierungsgrad, wie zum Beispiel
Quellcode, Maschinencode oder ausführbarer Pseudocode. Die Effizienz
der Verifikation kann signifikant vom verwendeten Modell des Systems
abhängen. Im ersten Teil der Dissertation werden Modelle von fehlertol-
eranten, nachrichtenbasierten Protokollen vorgeschlagen, die eine effiziente
Verifikation ermöglichen.
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Die vorgestellten Modelle behandeln verschiedene Aspekte von fehlertol-
eranten, nachrichtenbasierten Protokollen. Diese Aspekte umfassen: (A1)
Nachrichtenverkehr - Es wird die Equivalenz von verschiedenen Modellen
von Senden, Empfang und Verarbeitung von Nachrichten gezeigt, sodass
jeweils das Modell, das für eine effiziente Verifikation am besten geignet ist,
verwendet werden kann; (A2) Fehler-Modell - Es wird ein überraschend ein-
faches und korrektes Modell der häufig verwendeten Crash-Fehler-Annahme
eingeführt, das eine effiziente Verifikation von Systemen mit solchen Fehlern
erlaubt; (A3) Symmetrien - Es wird ein Verfahren vorgestellt um Sym-
metrien im Modell zu finden, die von der Symmetry-Reduction-Technik
[MDC06] genutzt werden; (A4) Partielle Ordnung - Es wird eine equivalente
Transformation von Modellen gezeigt, die die Effizienz von Partial-Order-
Reduktion [God96, Val98, CGP99] verbessert. Symmetrie- und Partial-
Order-Reduktion sind allgemeine Verfahren für effizientere Verifikation, deren
Effizienz stark vom gewählten Modell abhängt.

Neue Algorithmen für effiziente Verifikation Der zweite Teil der
Dissertation verbessert bestehende Verifikationstechniken hinsichtlich ihrer
Effizienz.

Die erste Technik ist Partial-Order-Reduktion, deren Effizienz durch man-
gelnde Flexibilität, Bedienbarkeit und die hohe Zeitkomplexität der beste-
henden Implementierungen beschränkt wird. Eine neue Implementierung
von Partial-Order-Reduktion, genannt LPOR, wird präsentiert, die alle diese
Eigenschaften gleichzeitig verbessert. Um die Eignung dieses Ansatzes zu
demonstrieren, wird LPOR auf nachrichtenbasierte Systeme angewendet.
Experimente mit repräsentativen, fehlertoleranten, nachrichtenbasierten Pro-
tokollen validieren die durch LPOR erzielten Verbesserungen. LPOR ist in
Java implementiert und mit Quelltext frei verfügbar. Diese Implementierung
ist in MP-Basset integriert, ein Model-Checker für nachrichtenbasierte Sys-
teme, der im Rahmen dieser Dissertation entwickelt wurde.

Die zweite Technik ist automatisierte Induktion [MP95, dMRS03]. Die
Effizienz von Induktion ist dadurch beschränkt, dass sie unvollständig ist,
das heißt, Induktion kann für Systeme, die ihre Spezifikation erfüllen, falsche
Gegenbeispiele ausgeben. Eine Lösung gegen falsche Gegenbeispiele sind
Lemmata [MP95]. Das Auffinden von Lemmata ist allerdings nur schwer au-
tomatisierbar. Diese Dissertation schlägt eine Klassifizierung von Lemmata
in fehlertoleranten, nachrichtenbasierten Protokollen vor, um automatisches
Finden von Lemmata zu ermöglichen. Ein Beispielprotokoll wird durch klas-
sifizierte Lemmata und automatisierte Induktion verifiziert. Zuletzt wird
ein neuer Ansatz, genannt gestärkte Transitionen, vorgestellt, um falsche
Gegenbeispiele zu vermeiden. Eine Anwendung von gestärkten Transitionen
auf allgemeine Multi-Prozess-Systeme wird ebenfalls erläutert.
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Chapter 1

Introduction

Verification is the process of proving that a system meets its specification
(Figure 1.1). In this case, the system is said to be correct (incorrect oth-
erwise). The specification is a set of requirements against (properties of)
the system. Examples of specifications are fault-tolerance or performance.
Optionally, verification can return a counterexample, which is a witness that
the system is incorrect. In practice, the verification process requires as input
an abstract representation of the system, which is called model. The model
determines a state space of the system, which consists of states and transi-
tions between states. Intuitively, a state is an instant snapshot of the system,
where the details captured in the snapshot are determined by the model in
use. For example, a state underlying assembly-level models contains the val-
ues of registers of the CPU. A system can change its state via executing
transitions. For example, every tick of the CPU clock can correspond to a
transition. A sequence of states is called a path if there is a transition from
every state to the next in the sequence.

We expect from the verification to be sound, i.e., it never claims an in-
correct system to be correct. To guarantee soundness, it is necessary for the
verification to consider the entire state space. Even if the model is less de-
tailed than assembly code, e.g., high-level pseudocode can be used as model
instead, the state space can be huge [YCW+09, BCG11]. In practice, the
large size of the state space can prevent the verification process from suc-
ceeding. For example, the verifier can run out of memory or time. This
phenomenon is referred to as state space explosion.

The thesis proposes solutions to mitigate state space explosion of fault-
tolerant message-passing protocols. The main focus is on protocols that
achieve fault-tolerance using replication in distributed systems [AW04]. In
addition, message-passing is assumed as an intuitive abstraction of commu-
nication in distributed systems. However, most of the concepts and solutions
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2 CHAPTER 1. INTRODUCTION

Verification

System
(model)

Specification

Correct/Incorrect 
(counterexample)

Figure 1.1: The inputs and outputs of verification.

discussed in the thesis apply beyond replication-based message-passing pro-
tocols.

Fault-tolerant message-passing protocols are especially susceptible to
state space explosion due to at least two reasons. Firstly, they are con-
current programs with transitions (corresponding to local computations and
sending of messages within a process) that are executed simultaneously while
the processes interact with each other via messages. If there is no coordi-
nation between these transitions, a large number of paths will correspond
to their indeterminate executions. Secondly, a system that is vulnerable to
faults contains more indeterminacy than a fault-free system, which further
increases the state space size.

Both the development and application of fault-tolerant message-passing
protocols can benefit from verification. These protocols can be complex con-
ceptual designs and hard to implement due to the concurrency in the dis-
tributed system executing the protocol and also to a rich variety of (possibly
malicious [LSP82]) faults that should be tolerated by the protocol. There-
fore, counterexamples returned by verification in the phase of development
can help developers to get the conceptual protocol or its implementation
right. Also, fault-tolerant messages-passing protocols specifies strong guar-
antees such as atomic broadcast [JRS11] or diagnosis of malicious faults
[SBS+11]. Therefore, the verification of such protocols can avoid failures
of highly available systems that build upon these protocols. For example,
unexpected service outages of Google’s App Engine [Goo09] and Amazon’s
EC2 [Ama11] cause significant profit and prestige loss of these system.

Contributions Summary The thesis addresses state space explosion via
efficient verification. Verification efficiency is considered in terms of verifica-
tion space (memory) and time, and the required human interaction (ranging
from full automation to intuitive human guidance).

The first group of contributions relate to models of fault-tolerant message-
passing protocols to enable their efficient verification. Firstly, new models of
such protocols are proposed to reduce the state space size entailed by existing
models. In addition, techniques are presented to create models that are
amenable to symmetry [ID96] and partial-order reductions [CGP99]. These
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approaches are able to reduce the space and time resources of verification.
Section 1.1 highlights these contributions in more details.

The second group of contributions relate to verification algorithms to
implement efficient verification. Firstly, an improvement of partial-order re-
duction [God96] is proposed. Secondly, different techniques are presented
to avoid spurious (wrong) counterexamples in induction-based verification
[MP95]. Since the automated elimination of spurious counterexamples is a
generally hard problem, they negatively effect the efficiency of verification.
Section 1.2 gives an overview of the proposed verification algorithms.

1.1 Modeling Message-Passing Systems

The Basic Model with Crash Faults The thesis starts by considering
an existing and intuitive model of message-passing systems [AW04]. It turns
out that the modeling of message traffic can greatly affect the size of the
state space depending on how the events of creation, sending, transmission,
delivery, and consumption of a message are “mapped” to states and tran-
sitions. It is sound to model each of these events by a separate transition.
However, such a model entails modeling lots of states that are irrelevant for
the verification process. On the other hand, it is unsound to model all of
these events by a single transition because a transition represents an indivis-
ible event. Therefore, the thesis explores different models of message traffic
between these two extremes. The models are shown to be equivalent with
each other, in particular, with the reference model taken from [AW04]. The
equivalence of these models implies that the model yielding the smallest state
space can be used for verification.

The above model of message traffic can be used to model fault-tolerant
systems too. A widely-used model is the crash fault-model, which assumes
that a process might stop working (it crashes) but it runs as intended before
crashing. It turns out that the model of concurrent fault-free systems is also
a sound model of processes that are vulnerable to crash faults. In fact, the
thesis shows that a path where a process crashes is indistinguishable from
(thus, equivalent with) a path where the process is correct but its messages
are ignored. An implication of this equivalence is that the model needs not
contain transitions that (explicitly) represent the event of crashing, which
results in smaller state spaces.

The proposed equivalence results hold under the assumption that the
specification is from a general but restricted class of specifications. The
thesis lists a variety of message-passing protocols whose specification falls
into this class showing that the restrictions are not impractically strong.
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Quorum Transitions A general class of systems achieves fault-tolerance
under the assumption that the number of faulty processes lies below a given
threshold and each correct process executes an instance of the same replicated
protocol [AW04, Bir05]. The threshold assumption implies that a set of
messages from a large enough subset (or quorum) of processes contains at
least one message from a correct process. Therefore, a common technique
in such systems is that an event, called quorum event, is triggered when a
set of messages from a quorum (e.g., a majority) of processes is delivered. A
quorum event can be modeled by a set of transitions such that each of them
is responsible for consuming a single message from a process in the quorum.
The verification of such a model can be inefficient because the execution of
each of these transitions results in a new state.

We observe that a quorum event can be abstracted by a single transition,
called quorum transition. A quorum transition models the consumption of
all messages from all processes in the quorum in a single, indivisible step.
Therefore, the use of quorum transitions results in smaller state space sizes.

Annotating Symmetries A tool for efficient verification is symmetry re-
duction [MDC06], which achieves efficiency by exploiting symmetries of the
system. The idea of symmetry reduction is that it is sufficient for the verifi-
cation to consider only one, representative state from an equivalence class of
symmetric (thus, redundant) states.

A practical challenge of symmetry reduction is finding the symmetries
of the system. Although the maintenance of representative states and
symmetry classes during verification is another hard problem in general
[ID96, CJEF96], implementations exist that have proven to be efficient in
practice [Mur, BDH02]. The best-known solution for finding symmetries is
arguably [MDC06] the “language approach” [ID96]. The idea is to restrict the
syntax of the specification language such that models written in the language
are symmetric by construction. The language approach is implemented by
annotating certain data types as symmetric and the variables of symmetric
types must not be involved in symmetry-breaking transitions.

The problem with the language approach is that the modeler is required
to annotate a data type as symmetric. This might require a clear under-
standing of the formal notion of symmetry as well as expertise in the sys-
tem’s structure and functioning. Therefore, the thesis proposes a heuristic
that enables an intuitive and efficient annotation of symmetries in models
of fault-tolerant message-passing protocols. The observation behind the new
heuristic is that fault-tolerant protocols are often defined in terms of inde-
pendent sub-protocols. Every process can execute multiple sub-protocols si-
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multaneously. The heuristic suggests that replicas executing the same single
sub-protocol should be annotated as symmetric. These fine-grained sym-
metries result in more symmetric states (thus, more reduction) compared
to the naive intuition where symmetric replicas might execute multiple sub-
protocols. Following the naive intuition, several symmetries across replicas
remain unrevealed because the decomposition of the system (thus, the notion
of symmetry) is too coarse.

Transition Refinement Another technique for efficient verification is
based on commutative transitions. Two transitions are said to be com-
mutative if their subsequent execution leads to the same state irrespec-
tive which of the two transition is executed first. The concept of com-
mutative transitions enables efficient verification, which has been gener-
alized into different notions of so called partial-order reduction (POR)
[God96, Val98, CGP99, FG05, KWG09a].

Independent of the notion of POR being used, the efficiency of POR can
vary for different models of the same system [God96]. Models containing
more transitions can result in more efficient POR. The technique of trans-
lating a model into another model that contains more transitions than the
original model is called transition refinement [God96]. However, as shown by
the thesis, overly refined transitions can worsen the efficiency of POR. There-
fore, an appropriate tuning of transition refinement is required. The thesis
proposes a heuristic for the transition refinement of fault-tolerant message-
passing protocols. Experiments with representative protocol examples justify
the ability of the proposed heuristic to enable efficient POR.

1.2 Efficient Verification Algorithms

The second part of the thesis deals with efficient algorithms for the verifica-
tion of models, in particular, models introduced in Section 1.1.

The space dimension of verification efficiency corresponds to the memory
required by the verification process. The time dimension specifies the execu-
tion time it takes for the verification process to terminate. Verification time
can be an important factor, for instance, in debugging where the verification
process is repeatedly executed.

Another dimension of verification efficiency considers the automation of
verification. Automated versus space and time-efficient verification can be
contradictory goals. Full automation can be traded for space and time ef-
ficiency if the resulting (semi-automated) verification procedure is intuitive-
to-use for a human verifier. The proposed verification algorithms consider
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such trade-offs.

Partial-Order Reduction Partial-order reduction (POR) can be used
to reduce the time and space efficiency of verification. Existing POR ap-
proaches have in common that they assume certain complex conditions
to hold guaranteeing the soundness of POR1. Given this complexity, ex-
isting implementations of POR restrict to certain classes of systems, e.g.,
[HP94, TLSD11, AM11], which provably satisfy these conditions. These im-
plementations are inefficient if a system does not satisfy the restrictions that
characterize the corresponding class. Therefore, one limitation of POR is
that its application to new systems is tedious and requires expertise in POR.

POR exploits commutative transitions to detect redundant paths during
verification. This inevitably involves some time overhead to decide if two
paths are redundant. Intuitively, the more elaborate the process of detecting
redundant paths, the larger its time overhead. Therefore, existing POR
implementations trade space efficiency for time efficiency [God96].

On this background, the thesis proposes a new POR implementation
called LPOR (Local POR), which addresses the above limitations. LPOR
leverages an existing notion of POR called statically computed stubborn sets
[Val98]. Firstly, LPOR defines an intuitive and flexible interface so that POR
can be easily and efficiently applied to new systems. Through this interface
LPOR hides the complexity of the conditions defined by stubborn sets. Sec-
ondly, LPOR enables time efficient discovery of redundant paths by using
a novel pre-computation scheme. Pre-computation allows to discover redun-
dancy in the preface of the verification (one-time overhead) and to re-use this
redundancy as verification proceeds.

A prototype Java-implementation of LPOR is available. In addition, a
new model checker has been developed that utilizes this prototype. The
model checker enables efficient verification, as shown by an evaluation with
various fault-tolerant message-passing protocols.

Verification with Induction The last part of the thesis deals with
induction-based verification [MP95, dMRS03]. As induction can be auto-
mated using Boolean Satisfiability (SAT) and Satisfiable Modulo Theories
(SMT) [dMRS03], the recent advances of SAT/SMT and and also their tool
support motivate the use of induction.

The main efficiency burden of induction results from its incompleteness:
It is possible that induction cannot verify correct systems. The possible out-

1These conditions have been formalized by various notions of POR, most notably,
stubborn sets [Val98], persistent sets [God96], and ample sets [CGP99].
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come of induction is three-fold: (1 – Proof) the correctness of the system can
be proven; (2 – Counterexample) the system is incorrect and a counterexam-
ple is given; (3 – Inductive counterexample) induction terminates and returns
a path of the system that is either (3a – Spurious counterexample) not a path
of the system or (3b – Real counterexample) a real counterexample. In case
of (3), it is indecisive whether the system is correct or incorrect. In general,
deciding whether an inductive counterexample is spurious or real is as hard
as the verification itself. Therefore, induction-based verification is hard to
fully automate.

Given the complexity of automating verification using induction, the the-
sis aims at semi-automated verification satisfying the following features: (F1)
If the induction returns an inductive counterexample, then it is easy for a
human verifier to decide if the counterexample is spurious or real; (F2) in
favorable cases and correct systems, induction proves the system correct.

Using lemmas is an approach to rule out spurious counterexamples and,
as a result, to achieve (F1-2) [MP95]. The main drawback of lemmas is
that it is hard to automate their discovery. Based on the induction proof
of an example protocol, the thesis proposes a classification of lemmas. As
the classification applies to a general class of fault-tolerant message-passing
protocols, it can be used to automate (or partly automate) the discovery of
lemmas in induction proofs of other protocols. The thesis also proposes a
new approach, called strengthened transitions, that features (F1-2). Finally,
an application of strengthened transitions for general multi-process systems
(including message-passing systems) is shown.

1.3 Thesis Structure and Resulting Publica-

tions

In the following, the structure of the thesis is highlighted together with the
publications resulting from it.

Preliminaries (Chapter 2):

• Existing foundations are reviewed, which are used throughout the the-
sis.

Models of message-passing systems (Chapter 3):

• Section 3.1: A model of message traffic is proposed.
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Resulting publication: Péter Bokor, Marco Serafini, Neeraj Suri,
“On Efficient Models for Model Checking Message-Passing Distributed
Protocols”, Proc. of IFIP Conf. on Formal Techniques for Distributed
Systems (FMOODS & FORTE), pages 216-223, 2010.

• Section 3.2: A model of processes that are vulnerable to crashing is
proposed.

Resulting publication: Habib Saissi, Péter Bokor, Marco Serafini
and Neeraj Suri, “To Crash or Not To Crash: Efficient Modeling of
Fail-Stop Faults”, Invited paper, Proc. of Workshop on Logical Aspects
of Fault-Tolerance (LAFT, in assoc. with LICS), 2011, To appear.

• Section 3.3: A heuristic for finding symmetries of fault-tolerant
message-passing protocols is proposed.

Resulting publications:

– Péter Bokor, Marco Serafini, Neeraj Suri, and Helmut Veith,
“Brief Announcement: Efficient Model Checking of Fault-tolerant
Distributed Protocols Using Symmetry Reduction”, Proc. of the
23rd Symposium on Distributed Computing (DISC) 2009, pages
289-290.

– Péter Bokor, Marco Serafini, Neeraj Suri, Helmut Veith, “Role-
Based Symmetry Reduction of Fault-tolerant Distributed Proto-
cols with Language Support”, Proc. of the 11th Conf. on Formal
Engineering Methods (ICFEM) pages 147-166, 2009.

• Section 3.4: The concept of quorum transitions introduced.

• Section 3.5: A heuristic for transition refinement in models of fault-
tolerant message-passing protocols is proposed.

Resulting publication (Sections 3.4-3.5): Péter Bokor, Johannes
Kinder, Marco Serafini and Neeraj Suri, “Efficient Model Checking of
Fault-Tolerant Distributed Protocols”, Proc. of the 41st IEEE Conf. on
Dependable Systems and Networks (DSN-DCCS), pages 73-84, 2011.

Practical partial-order reduction (Chapter 4):

• A new partial-order reduction framework called LPOR is proposed.

Resulting publication: Péter Bokor, Johannes Kinder, Marco Ser-
afini and Neeraj Suri, “Supporting Domain-Specific State Space Re-
ductions through Local Partial-Order Reduction”, Proc. of the 26th
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IEEE/ACM Conf. on Automated Software Engineering (ASE), 2011,
To appear.

Induction proofs of distributed protocols (Chapter 5):

• Section 5.1: A classification of lemmas is presented, which can be used
to discover new lemmas in fault-tolerant message-passing protocols.

• Section 5.2: The concept of strengthened transitions is proposed and
applied to the verification of distributed protocols.

Resulting publication: Péter Bokor, Sandeep Shukla, András Patar-
icza and Neeraj Suri, “Strengthened State Transitions for Complete
Invariant Verification in Practical Depth-Induction”, Proc. of the 3rd

Workshop on Automated Formal Methods Workshop (AFM, in assoc.
with CAV 2008), pages 31-41.

Model checking support for message-passing systems (Chapter 6):

• A new model checker for general message-passing systems is presented.
The main features of the model checker is that it implements LPOR
and quorum transitions.

Resulting publications: The above DSN-DCCS and ASE conference
papers.

Miscellaneous publications not covered by the thesis:

• Péter Bokor, Marco Serafini, Áron Sisak, András Pataricza , Neeraj
Suri, “Sustaining Property Verification of Synchronous Dependable
Protocols Over Implementation”, Proc. of the 10th High Assurance
Systems Engineering Symposium (HASE) 2007, pages 169-178.

• Kohei Sakurai, Péter Bokor, Neeraj Suri, “Aiding Modular Design and
Verification of Safety-Critical Time-Triggered Systems by use of Exe-
cutable Formal Specifications”, Proc. of the 11th High Assurance Sys-
tems Engineering Symposium (HASE) 2008, pages 261-270.

• Marco Serafini, Péter Bokor, Dan Dobre, Matthias Majuntke, Neeraj
Suri, “Scrooge: Reducing the Costs of Fast Byzantine Replication in
Presence of Unresponsive Replicas”, Proc. of the 40th IEEE Conf. on
Dependable Systems and Networks (DSN-DCCS) pages 353-362, 2010.
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• Marco Serafini, Péter Bokor, Neeraj Suri, Jonny Vinter, Astrit Ademaj,
Wolfgang Brandstaetter, Fulvio Tagliabo, Jens Koch, “Application-
Level Diagnostic and Membership Protocols for Generic Time-
Triggered Systems”, IEEE Transactions on Dependable and Secure
Computing (TDSC), 8(2), pp. 177-193, March 2011.

• Marco Serafini, Dan Dobre, Matthias Majuntke, Péter Bokor, Neeraj
Suri, “Eventually Linearizable Shared Objects”, Proc. of the 29th Sym-
posium on Principles of Distributed Computing (PODC) pages 95-104,
2010.



Chapter 2

Preliminaries

In this chapter, we refresh existing work that the thesis builds upon. This also
includes the definition of auxiliary formalisms used throughout the thesis.

The following list highlights the content of each section of this chapter.
In case the reader is familiar with these foundations, reading the rest of the
chapter can be skipped.

• State transition systems (Section 2.1): State transition systems are de-
fined as (low-level) models of the system under verification. In addition,
invariants are defined as a widely-applicable class of specifications.

In this thesis, we use state transition systems to define the semantics
of (high-level) models of message-passing systems. Invariants are used
to specify the properties of example message-passing protocols.

• Stuttering equivalence (Section 2.2): The concept of stuttering equiva-
lence is recalled, which is a well-established equivalence base in formal
specification and verification [Lam83, CGP99].

We use this concept to state and prove property preservation between
different models of message-passing systems.

• The Paxos protocol (Section 2.3): We give a brief overview of the
widely-used Paxos consensus protocol, which is also representative for
a general class of message-passing protocols.

Paxos is used as a running example throughout the thesis for its relative
simplicity and highly concurrent nature.

• Symmetry reduction with scalarsets (Section 2.4): We repeat the formal
definition of symmetry. In addition, we review scalarsets, a pragmatic
approach to detect symmetries of the system.

11
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Specifically, we use the scalarset approach to detect symmetries in fault-
tolerant message-passing systems.

• Partial-order reduction with stubborn sets (Section 2.5): The definition
of stubborn sets is given. A stubborn set is a general characterization
of the concepts of partial-order reduction.

Our partial-order reduction results build upon stubborn sets.

• Induction proofs (Section 2.6): We briefly discuss induction proofs as
general verification procedures.

Our contributions using induction proofs improve on the efficiency of
these proofs.

2.1 State Transition Systems and Invariants

A state transition system (STS) [CGP99] is a triple (S, T, S0) where S is the
set of states, T is the set of transitions, and S0 ⊆ S is the set of initial states.
Optionally, an STS can specify a labeling function L : S → 2AP that, given a
set of atomic propositions AP , assigns to each state a subset of AP . In this
case, the STS is denoted by a five tuple (S, T, S0, L, AP ). Every transition
t ∈ T is a relation t ⊆ S × S. A transition t is enabled in s ∈ S iff there is
an s′ ∈ S such that (s, s′) ∈ t. Otherwise, t is disabled in s. The set of all
enabled transitions in s is denoted by enabled(s). A state s ∈ S is called a

deadlock if enabled(s) = ∅. We write s0
t1t2...tn−−−−→ sn and say that there is a

path from s0 to sn iff for every 0 ≤ i < n we have that (si, si+1) ∈ ti+1. If
the transitions t1, t2, ..., tn are irrelevant or clear from the context, we might
use the notation s0, s1, ..., sn or s0, s1, ... if n is unbounded, i.e, the path is
infinite. In this case, we say that sn is reachable from s0. If s0 ∈ S0, then we

say that sn is reachable. A transition t is said to be in a path s0
t1t2...tn−−−−→ sn

if t is among t1, t2, . . . , tn.

Invariants Given a state transition system and a Boolean formula P de-
fined over AP , P is called invariant if P holds in every reachable states with
respect to the labeling function. Formally, let s |= P iff formula P holds in
a state s. The relation |= is defined inductively as follows [CGP99]:

• s |= p iff p ∈ L(s).

• s |= P1 ∨ P2 iff s |= P1 or s |= P2.

• s |= P1 ∧ P2 iff s |= P1 and s |= P2.
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i0=0, i1=2, i2=3,...

j0=0, j1=1, j 2=3,...

{ p ,q } { p ,q }

{ p ,q } {r } {r }

{r }

Figure 2.1: Example stuttering equivalent paths.

• s |= ¬P iff s 6|= P .

Invariants are the simplest temporal formulas that can be defined in
a state transition system. For details of temporal formulas, we refer to
[CGP99].

2.2 Stuttering Equivalence

Two infinite paths σ = s0
t0−→ s1... and σ′ = s′0

t′0−→ s′1... are stuttering equiv-
alent [CGP99], σ ≈st σ′ in short, if there are two infinite sequences of in-
tegers 0 = i0 < i1 < ... and 0 = j0 < j1 < ... such that for every k ≥ 0,
L(sik) = L(sik+1) = ... = L(sik+1−1) = L(s′jk) = L(s′jk+1) = ... = L(s′jk+1−1).
An example of two stuttering equivalent paths are shown in Figure 2.1.

Two state transition systems STS1 and STS2 are said to be stuttering
equivalent if (a) for every path σ in STS1 there is a path σ′ in STS2 such
that σ ≈st σ′, and vice versa, (b) for every path σ′ in STS2 there is a path
σ in STS1 such that σ′ ≈st σ. Paths in this definition are assumed to start
from initial states.

2.3 Consensus with Paxos

The consensus problem Assume a collection of processes that can pro-
pose values. The (safety) requirements of consensus are that (1 – validity)
only a value that has been proposed may be chosen, (2 – agreement) only
a single value is chosen, and (3 – learning) a process never learns that a
value has been chosen unless it actually has been. Additional (liveness) re-
quirements can specify that eventually a value must be learnt. Examples of
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possible applications of consensus are diagnosis or general service replication
[Bir05].

Paxos consensus Paxos [Lam98, Lam01] is an algorithm that guaran-
tees (1)-(3) to hold under the assumption that faulty processes can only fail
by crashing. Processes communicate via messages assuming that messages
cannot be corrupted. Paxos is a conceptual and widely applied consensus
protocol for its practical assumptions (crash fault model) and system model
(unreliable, possibly lossy channels, etc.) [Bir05].

The core Paxos algorithm specifies the following program run by two types
of processes, called proposers and acceptors. It is assumed that proposer
processes maintain disjoint sets of natural numbers, called proposal numbers.

Phase 1.

(a) A proposer selects a proposal number n and sends a prepare re-
quest with number n to a majority of acceptors.

(b) If an acceptor receives a prepare request with number n greater
than that of any prepare request to which it has already responded,
then it responds to the request with a promise not to accept
any more proposals numbered less than n and with the highest-
numbered proposal (if any) that it has accepted.

Phase 2.

(a) If the proposer receives a response to its prepare request (num-
bered n) from a majority of acceptors, then it sends an accept
request to each of those acceptors for a proposal numbered n with
a value v, where v is the value of the highest-numbered proposal
among the responses, or is any value if the responses reported no
proposals.

(b) If an acceptor receives an accept request for a proposal numbered
n, it accepts the proposal unless it has already responded to a
prepare request having a number greater than n.

A proposal is chosen if a majority of acceptors have accepted it. Special
processes, called learners, can learn about chosen proposals via messages
from the acceptors.
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2.4 Symmetry Reduction with Scalarsets

Notion of symmetry Given a state transition system (S, T, S0), a sym-
metry [MDC06] is a permutation π acting on the states in S such that for
all s, s′ ∈ S where (s, s′) ∈ t for some t ∈ T it holds that (π(s), π(s′)) ∈ t′ for
some t′ ∈ T .

Symmetry by construction Given a set of symmetries, symmetry re-
duction enables efficient verification [MDC06]. However, finding symmetries
is hard in general because symmetry is a condition of the entire state space
(see previous definition). One approach for finding symmetries efficiently
is with scalarsets [ID96]. Given a general purpose specification language,
a scalarset is a subrange 0, 1, ..., n − 1 of integers such that scalarsets can-
not be involved in symmetry-breaking operations. This is formalized by the
following restrictions:

C1 An array with a scalarset index type can only be indexed by a variable
of exactly the same type.

C2 A term of scalarset type may not appear as an operand to + or any
other operator in a term.

C3 Variables of scalarset type may only be compared using =.

C4 For all assignments d := t, if d is a scalarset variable, t must be a term
of exactly the same scalarset type.

C5 Variables, elements of arrays and fields of records written by any iter-
ation of a “for” statement indexed by a scalarset type must be disjoint
from the set of variables, elements of arrays and fields of records refer-
enced (read or written) by other iterations.

A permutation π acting on a scalarset 0, 1, ..., n− 1 determines a permu-
tation σ acting on S where, given s ∈ S, σ(s) is obtained by replacing in s
every occurrence of a scalarset variable v with π(v). If C1-5 holds, then π is
provably a symmetry.

2.5 Partial-Order Reduction with Stubborn

Sets

Given a state transition system (S, T, S0) and a state s0 ∈ S, a set stub(s0) of
transitions from T is (weakly) stubborn if the two properties D1 and D2 are
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satisfied [Val98]. D1 verifies the commutativity of transitions in the stubborn
set with transitions outside the stubborn set. D2 ensures that there is at least
one transition that cannot be disabled by transitions outside the stubborn
set.

D1 ∀t ∈ stub(s0),∀t1, t2, . . . , tn ∈ T \ stub(s0),∀sn ∈ S : if s0
t1t2...tnt−−−−−→ sn

then s0
tt1t2...tn−−−−−→ sn.

D2 If enabled(s0) 6= ∅ then ∃t ∈ stub(s0),∀t1, t2, . . . , tn ∈ T \ stub(s0) : if

s0
t1t2...tn−−−−→ sn then t ∈ enabled(sn). Such a transition t is called key

transition.

A stubborn set is called strong if every t ∈ stub(s0)∩ enabled(s0) is a key
transition. Note that a key transition is always enabled in s0.

Partial-order reduction is obtained by executing only the enabled transi-
tions from stub(s).1 The stubborn set stub(s) is called trivial if it contains
all transitions from enabled(s). Otherwise, the stubborn set is called non-
trivial. If t ∈ stub(s) and t is non-deterministic, then every s′ with (s, s′) ∈ t
is visited.

D1 and D2 guarantee that all deadlocks of the unreduced state transition
system are contained in the reduced one. Therefore, partial-order reduction
preserves deadlock-freedom, i.e., the unreduced state transition system con-
tains no deadlock iff so does the reduced state transition system. In order
to preserve properties other than deadlock-freedom, stub(s0) needs to satisfy
additional constraints [Val98, KSV06]. Note that transitions in stub(s) are
not necessarily enabled in s.

Although disabled transitions cannot be executed, they can ease the de-
sign of stubborn set algorithms [God96] and even result in smaller stubborn
sets when used to preserve certain temporal properties [Val98].

2.6 k-Induction Proofs

Induction can be used to verify invariants of state transition systems [MP95].
A generalized form of induction is called k-induction [dMRS03], which is
defined as follows.

1Other notions of partial-order reduction characterized by ample sets [CGP99] or per-
sistent sets [God96] can be seen as special cases of stubborn sets.
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Basic induction Given a state transition system, a Boolean formula P
defined over AP , and k > 0 called (induction) depth, P is an invariant if
k-induction, i.e., the following two conditions, hold for all paths s0, s1, ..., sk:

• Base case: If s0 ∈ S0, then P (si) holds for all 0 ≥ i > k.

• Inductive case: If P (si) for all 0 ≥ i > k, then P (sk) holds.

k-induction assumes that the system contains no deadlock. This assump-
tion can be implemented by added a “dummy transition” t such that (s, s) ∈ t
for all states s.

A Boolean formula over AP is called assertion. An assertion P is called
inductive (invariant) if k-induction, for some k > 0, holds, i.e., both the
base and inductive steps are satisfied. Specifically, P is called k-inductive
(invariant) if k-induction holds.

Strengthened induction It is possible that an assertion is an invariant
but not an inductive invariant. To prove the invariance of such assertions,
the following strengthened k-induction can be used. Given a state transition
system, an assertion P , k > 0, and invariants a1, a2, ..., al, P is an invariant
if the following two conditions hold for all paths s0, s1, ..., sk:

• Base case: If s0 ∈ S0, then P (si) holds for all 0 ≥ i > k.

• Strengthened inductive case: Let Ps = (
∧l
j=1 aj) ∧ P . If Ps(si) for all

0 ≥ i > k, then P (sk) holds.

The invariants a1, a2, ..., al and Ps are called lemmas and strengthened
assertion, respectively. We say that P is inductive relative to a1, a2, ..., al if
strengthened k-induction, for some k > 0, holds. Specifically, P is k-inductive
relative to a1, a2, ..., al if strengthened k-induction holds.
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Chapter 3

Models of Message-Passing
Systems

In this chapter, we propose new models of message-passing systems and pro-
tocols executed within these systems. The proposed models enable efficient
verification of general classes of message-passing protocols.

We now briefly summarize the proposed models along with the structure
of the chapter:

• Models of message traffic (Section 3.1): Models of message traffic deal
with modeling the sending, delivery, and receipt of messages. We first
consider an existing model of message traffic and use it as a reference
model [AW04], called RM. We then propose two new models: A gen-
eralization of the reference model, called GRM, and a simplification
of GRM, called M.

It turns out that the RM and GRM models can be inefficient for
verification because they yield a significant number of states that are
irrelevant for the specification of most message-passing protocols. We
tackle this problem by showing an (stuttering) equivalence between
the three models such that the equivalence preserves the protocol’s
specification. Since M models do not yield the irrelevant states, the
equivalence result implies that M should be used for verification rather
the models RM and GRM.

• Models of crash-faulty processes (Section 3.2): The crash fault model is
a widely-used assumption in fault-tolerant computing [Bir05]. In this
section, we deal with modeling crash faults so that the resulting model
can be efficiently verified despite the additional modeling complexity
of crash faults.

19
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We start by defining an intuitive and arguably sound model of crash
faults, which we call the explicit model. Then, we observe that a fault-
free model is able to mimic most effects caused by these faults. Based on
this observation, we formally define an equivalence between the explicit
and fault-free models. Since the fault-free model yields significantly
fewer states, its verification can be more efficient.

• Finding symmetries with decomposition (Section 3.3): Symmetry re-
duction [MDC06] is a powerful optimization of verification. However,
symmetry reduction assumes that the symmetries of the system are
known prior to verification.

A general strategy is to declare and verify replica processes to be sym-
metric. We observe that replicas of common message-protocols can
be decomposed into replicated sub-processes. This allows the gen-
eral strategy to find more symmetries. In this section, we formalize
decomposition-based symmetry reduction and develop it into a sound
and efficient verification procedure.

• Quorum transitions (Section 3.4): We observe that message-passing
fault-tolerant protocols often specify certain events that, conceptually,
process multiple messages in an atomic step. We call such events quo-
rum transitions.

Although it is possible to model quorum transitions as a non-atomic
sequence of events each of them processing a single message, we pro-
pose models using quorum transitions if the message-passing protocol
explicitly mentions them. Such models are not only faithful, they also
yield smaller models, as shown by our analysis.

• Transition Refinement for Efficient POR (Section 3.5): Partial-order
reduction [CGP99] is another optimization of verification. We observe
that the efficiency of partial-order reduction greatly depends on the
set of transitions in the underlying state transition system. In partic-
ular, more transitions tend to improve the efficiency of partial-order
reduction [God96], an informal technique called transition refinement.

In this section, we formalize and generalize transition refinement. We
also define a general strategy of refining transitions of fault-tolerant
message-passing protocols. Although overly refined transition can
worsen the efficiency of partial-order reduction, we show that the pro-
posed strategy does not do so (see experiments in Section 3.6).
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• Experiments (Section 3.6): We evaluate our symmetry detection and
transition refinement strategies. Our experiments show that both
strategies can significantly improve on the efficiency of verifying repre-
sentative fault-tolerant message-passing protocols.

3.1 Models of Message Traffic

Three models of message traffic are presented (Sections 3.1.1-3.1.3). The first
model is a reference model taken from a standard text book on distributed
computing [AW04]. An equivalence of the three models is shown with respect
to a general class of temporal logic specifications written in the widely-used
LTL-X language (Section 3.1.4). The consequence of this equivalence result
is that any of the three models can be used for verification. Since the third
model yields considerably small state spaces than the first and second model,
verification using the third model can be more efficient.

3.1.1 Reference Model

Message-passing system (adapted from [AW04]) A message-passing
system consists of n processes. Each process i is associated with a set Si of
local states. A subset of Si specifies the possible initial states of a process.

Processes communicate with each other by sending messages via directed
channels. The set of all messages and channels are denoted by M and C,
respectively. A channel is a point-to-point connection from one process to
another. The topology of the system specifies for each pair (i, j) of processes
if there is a channel ci,j from process i to j. The channel ci,j consists of an
output (and input) channel to (from) j (i). Formally, both output and input
channels are a set of messages, respectively. A (global) state of the system
is a tuple containing all channels and local states. S denotes the set of all
states. The content of channel ci,j and process i’s local state in s is referred
to as s(ci,j) and s(i), respectively.

Processes send and receive messages and also perform local computations
by executing (local) transitions. Formally, each process i is associated with a
set Ti ⊆ T of transitions where T denotes the set of all transitions. Further-
more, every transition t is associated with a true/false condition gt (called
guard), which is a function of a set of messages and a local state of the pro-
cess. A transition t ∈ Ti is enabled in a state s if, for some subset X of the
union of all input channels of i, the condition gt(X, s(i)) is true. In this case,
the set X is called accessible for t in s. If t is enabled in s, it can be executed
with accessible set X for t in s, and the resulting state s′ is identical with s
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except for the following: (1) the messages in X are removed from the input
channels of i, (2) depending on t, s(i) and X, local state s′(i) is a state from
Si, and (3) zero or more messages are added to every output channel of i. If
m ∈ s(cj,i) ∩X for some message m ∈ M and channel cj,i ∈ C, then we say
that t consumes m from process j. If m ∈ s′(ci,j) \ s(ci,j) for some message
m ∈ M and channel ci,j ∈ C, then we say that t sends m to process j. We

use the notation s
t(X)−−→ s′ or simply s

t−→ s′ if X is clear from the context or
irrelevant. By assumption, a process sends no message to itself and, given
X and s(i), transitions are deterministic. If t ∈ Ti, id(t) = i denotes the
process executing t.

Message traffic We call the subsequent model of message traffic reference
model (RM). Let process i and j be two processes such that there is a
channel from process i to j. The output (input) channel to (from) process
j (i) is modeled by an output (input) buffer denoted by outbuf i (inbuf j).
Message delivery is modeled by delivery events, which move messages from
output to input buffers. Given a message m, a delivery event is denoted by
a tuple del(i, j,m). Given a state s, del(i, j,m) is said to be enabled in s if
m ∈ outbuf i, disabled otherwise. If del(i, j,m) is enabled, its execution in s
results in a new state that is identical with s except that m 6∈ outbuf i and
m ∈ inbuf j.

This model requires clean-channels, i.e., every transition must remove
all messages that are in the input channels of the process executing the
transition.

Definition 1. A model of a message-passing system is with clean channels
iff, for every state s, and transition t ∈ Ti, and set X of messages such that
X is accessible for t in s, X equals the union of all input channels of process
i in s. Otherwise, the model is with unclean channels.

Semantics & specification The semantics of RM is given by a state tran-
sition system (see Section 2.1) (SRM , TRM , SRM0 , LRM , APRM) where SRM is
the set of all global states, TRM equals ∪∀i∈{1,...,n}(Ti \ {(s, s′)|∃t ∈ Ti :

s
t−→ s′ ∧ ∃cj,i ∈ C : s′(cj,i) 6= ∅}) ∪∀ci,j∈C∀m∈M {del(i, j,m)} ∪ {(s, s)|s ∈

SRM ∧ enabled(s) = ∅}, and SRM0 contains global states where every process
i assumes an initial local state from Si and all buffers (output and input)
are empty. Intuitively, each transition in TRM corresponds to either a local
transition of a process or to a delivery event. Note that state transitions
(s, s′) are excluded from t ∈ T that do not respect that the model is with
clean channels. Also, the existence of “idle” transitions containing (s, s) is



3.1. MODELS OF MESSAGE TRAFFIC 23

Model Channel model Clean Channels
RM Input/output buffers Yes

GRM Input/output buffers No
M Single buffer No

Table 3.1: Overview of different message traffic models.

assumed for every deadlock state s. This is a practical assumption used in
widely-used formal specification languages [CGP99].

The specification of the model can be written using the set of atomic
propositions APRM , the labeling function LRM , and standard temporal logics
[CGP99]. The specification language is the same for the models introduced
in Sections 3.1.2 and 3.1.3.

3.1.2 Generalized Reference Model

We generalize RM and introduce the generalized reference model (GRM).
This model is equivalent to RM except that GRM is with unclean channels.
Intuitively, the GRM model introduces a new source of non-determinism via
unclean channels: Given a state s, and a transition t ∈ Ti, and the union U
of all input channels of process i, t can be executed with various accessible
sets X ⊆ U , which are (strict or not) subsets of U .

Example 1. Consider a state s and a channel ci,j such that s(ci,j) = {m1,m2}.
Let t ∈ Ti be a transition whose guard is always true. Then, the sets {m1},
{m2}, and {m1,m2} are all accessible sets for t in s. In other words, it is
non-deterministic which of m1 and m2 is first consumed processed by t or
whether the two messages are processed “in parallel”. (End of Example 1)

Semantics & specification The GRM model determines a state tran-
sition system (SGRM , TGRM , SGRM0 , LGRM , APGRM) where SGRM = SRM ,
TGRM = T ∪∀ci,j∈C∀m∈M {del(i, j,m)} ∪ {(s, s)|s ∈ SGRM ∧ enabled(s) = ∅},
and SGRM0 = SRM0 . Note that no state transitions from t ∈ T are excluded
because the model with unclean channels does not restrict t.

3.1.3 The Proposed Model

Message traffic We introduce a new model of message traffic, denoted by
M. In M, a channel ci,j is modeled by a single set (buffer) of messages. This
means that the set ci,j of messages models the output channel to process j
as well as the input channel from process i (unlike in the models RM and
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GRM, where a channel is modeled by a pair of output and input buffers).
Therefore, we define no delivery events in M.

In addition, the model is with unclean channels. Table 3.1 compares
the models RM, GRM, and M. As we show in Section 3.1.4, despite the
simplicity of M, a strong equivalence holds between these three models.

Semantics & specification The M model determines a state transition
system (SM , TM , SM0 , LM , APM) where SM (and SM0 ) is the set of global
(initial) states, and TM = T ∪ {(s, s)|s ∈ SM ∧ enabled(s) = ∅}.

3.1.4 Equivalence of Models

The equivalence across the models RM, GRM, and M is based on the ob-
servation that the specification of message-passing protocols is often specified
in terms of local process states. Therefore, the specification is independent
of messages that have been sent but not yet processed. We call such systems
process-labeled, which we formally define below. In Section 3.6, we show
representative examples of such systems.

Definition 2. A message-passing system is process-labeled if for all sRM ∈
SRM , sGRM ∈ SGRM , sM ∈ SM , sRM(i) = sGRM(i) = sM(i) for all 1 ≤ i ≤ n
implies LRM(sRM) = LGRM(sGRM) = LM(sM).

The idea behind the equivalence is that for every path in one model there
is a “similar” path in the other model such that these paths are indistin-
guishable by the specification (Theorem 1).

Similarity is formalized in terms of stuttering equivalence (see Section 2.2).
In the following, Lemmas 1, and 2, show stuttering equivalence between M
and RM, and GRM and M, respectively. Then, the equivalence between
RM and GRM follows via the transitivity of stuttering equivalence (Lemma
3). The chain of our arguments can also be followed in Figure 3.1. The full
proof of each lemma can be found in Appendix A.1.

Lemma 1. Given a process-labeled message-passing system and a path σ of
the model M, there is a path σ′ of RM such that σ ≈st σ′.

Proof sketch. We construct σ′ as the sequence of all local transitions in σ and,
in addition, delivery events between these transitions. If a local transition t in
σ consumes messages, then in σ′ a delivery event is executed directly before
the execution of t corresponding to each of these messages. The relative
order of these delivery events in σ′ is arbitrary. Since only the messages are
delivered that are consumed by t, σ′ respects clean channels.
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Because σ and σ′ start from the same initial states and every local tran-
sition t consumes the same set of messages in both paths, the result of these
transitions are states where the local states of the processes are the same in
σ and σ′. In addition, since the system is process-labeled, delivery events
do not change the label of the state. Therefore, the labels of states in σ′

follow those σ with a “stuttering” of the delivery events between two local
transitions.

Lemma 2. Given a process-labeled message-passing system and a path σ of
the model GRM, there is a path σ′ of M such that σ ≈st σ′.

Proof sketch. We construct σ′ as the sequence of all local transitions in σ.
The order of the transitions in σ is preserved in σ′. In addition to the transi-
tions in σ′, path σ can contain delivery events between two local transitions.
The messages that are delivered by these events are, by construction, in the
channels of model M. Since model M is with unclean channels, if a local
transition in σ is enabled (in a state), then it is also enabled in σ′ (in the
corresponding state).

Given the above construction of σ′ and because the system is process-
labeled, σ and σ′ are stuttering equivalent. The argumentation is similar to
the proof of Lemma 1.

Lemma 3. Stuttering equivalence is transitive, i.e., given a state transition
system and three paths σ, σ′, σ′′, σ ≈st σ′ and σ′ ≈st σ′′ imply that σ ≈st σ′′
also holds.

Proof sketch. From σ ≈st σ′, there is partitioning of σ and σ′ such that
states in the corresponding partitions are labeled the same. There might be
multiple such partitioning σ and σ′. We consider a maximal partitioning,
where states in adjacent partitions have different labels. This property and
σ′ ≈st σ′′ imply that the partitioning of σ for stuttering equivalence with σ′

is also partitioning for stuttering equivalence with σ′′.

LTL-X (Linear Temporal Logic without the next operator) [CGP99] is a
rich language, which is suited for specifying the properties of most concurrent
systems [Lam83]. Our equivalence result states that the truth of specifica-
tions of process-labeled systems written in LTL-X is preserved across the
different models of message traffic.

Theorem 1. Given a process-labeled system and an LTL-X formula f , f
holds in the RM model iff it holds in the GRM model, and f holds in the
GRM model iff it holds in the M model.
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M RM
Implied by Lemma 2

GRM
Stuttering equivalence

(Lemma 2)

Implied by Lemma 1

Transitivity of stuttering equivalence (Lemma 3)

Stuttering equivalence
(Lemma 1)

Figure 3.1: Proof sketch of Theorem 1.

Proof. It is known that, given two stuttering equivalent state transition sys-
tems STS1 and STS2, any LTL-X formula holds in STS1 iff it is holds in STS2

[CGP99]. We show that the GRM and M, and that M and RM models of
process-labeled systems are stuttering equivalent. Therefore, and from the
transitivity of stuttering equivalence (Lemma 3), we know that the models
RM, GRM, and M are pairwise stuttering equivalent, which implies the
state property preservation.

First we show that GRM and M are stuttering equivalent. The proof
is illustrated in Figure 3.1. Lemma 2 shows that for every path in GRM
there is a path in M such that the two paths are stuttering equivalent. The
other direction is implied by Lemma 1 (which shows that for every path in
M there is path in RM such that the two paths are stuttering equivalent)
because every path in RM is also a path in GRM.

The stuttering equivalence of M and RM can be shown similarly. One
direction is directly shown by Lemma 1. The other direction is implied by
Lemma 2 because paths in RM are also paths in GRM.

3.2 Models of Crash-Faulty Processes

In this section, we define a model of message-passing systems where processes
are susceptible to crash faults (Section 3.2.1). In the crash fault-model, a
process can stop receiving, processing, and sending messages, and it remains
doing so forever. If the process crashes during the execution of an event, it
executes the event as in the fault-free case except that it sends a subset of
the messages that it is supposed to send [AW04].

We establish a general equivalence basis for preserving a general class
of LTL (Linear Temporal Logic) specifications [CGP99] across state transi-
tion systems (Section 3.2.2). We apply these foundations to prove, maybe
surprisingly, that the proposed model of crash faults is equivalent with the
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fault-free model (Section 3.2.3).

3.2.1 A Model of Crash-Faulty Processes

Given a (fault-free) model of a message-passing system, we define another
model where processes can fail by crashing. We call this model the crash
model. Both the original and the resulting models are in terms of Section
3.1.1.

The fault-free and crash models share the same sets of channels and mes-
sages. In the crash model, every local state of process i is a tuple (si, ai),
where si ∈ Si and ai ∈ {⊥,>}. The variable ai is called the crash flag of
process i. Intuitively, the value ⊥ means that process i is crashed, otherwise
the flag assumes >. The state (si, ai) is an initial state of the process i in
the crash model iff si is an initial state of process i in the original model and
ai = >. Let Sc be the set of all states in the crash model.

The local transitions of the crash model are defined by the following
definition.

Definition 3. The set T ci of local transitions of process i is defined as

{t′|q t′(X)−−−→ q′ if there is q, q′ ∈ Sc, t ∈ Ti, s, s′ ∈ S,X ⊆ M,ai ∈ {>,⊥} such
that

(1) (Fault-free transition) s
t(X)−−→ s′ and

(2) (Process up) q(i) = (s(i),>) and

(3) (Accessible messages) X ⊆ ∪∀cj,i∈Cq(cj,i) and

(4) (Consistent local state update) q′(i) = (s′(i), ai) and

(5) (Consistent outgoing messages) ∀ci,j ∈ C : q′(ci,j) ⊆ s′(ci,j).

}

Intuitively, transitions in the crash model consume the same set of mes-
sages and their execution results in the same local states as in the fault-free
model, cf. (1-4). In addition, for a transition in the crashed model to be en-
abled, the executing process must not be crashed, cf. (2). Furthermore, the
set of messages sent in the crash model is a subset of those in the fault-free
model, cf. (5), because processes can crash during sending.
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3.2.2 Equivalence basis

We define an equivalence relation between paths of state transition systems
(STSs). Intuitively, two paths are equivalent if the ith states in both paths
are labeled the same.

Definition 4. Given two STSs STS 1 = (S, T, S0, AP, L) and STS 2 =
(S ′, T ′, S ′0, AP, L

′), a path σ = s0, s1, ... in STS 1 is said to be label-equivalent
with another path σ′ = s′0, s

′
1, ... in STS 2 iff for every i = 0, 1, ..., L(si) =

L′(s′i). In this case, we write σ ≈AP σ′.

The previous definition can be naturally generalized to label-equivalence
of two STSs.

Definition 5. Given two STSs STS 1 = (S, T, S0, AP, L) and STS 2 =
(S ′, T ′, S ′0, AP, L

′), they are said to be label-equivalent iff the following two
conditions hold:

• For every path σ = s0, s1, ... in STS 1 where s0 ∈ S0, there exists a path
σ′ = s′0, s

′
1, ... in STS 2 where s′0 ∈ S ′0 and σ ≈AP σ′.

• For every path σ′ = s′0, s
′
1, ... in STS 2 where s′0 ∈ S ′0, there exists a path

σ = s0, s1, ... in STS 1 where s0 ∈ S0 and σ ≈AP σ′.

The next corollary follows from the above definitions and the semantics
of LTL [CGP99]. It says that the truth of an arbitrary LTL formula is
indistinguishable in label-equivalent STSs. The notation STS |= φ means
that the LTL formula φ holds for every path of the state transition system
STS .

Corollary 1. [CGP99] Given two label-equivalent STSs STS 1 and STS 2 and
a LTL formula φ, the following holds:

STS 1 |= φ iff STS 2 |= φ .

Proof. The ⇒ direction: Assume that STS 2 6|= φ. Therefore, there must
be a path σ′ = s′0, s

′
1, ... in STS 2 such that σ′ 6|= φ. From the semantics

of LTL it follows that s′0 ∈ S ′0. Since STS 1 and STS 2 are label-equivalent,
there is a path σ = s0, s1, ... in STS 1 where s0 ∈ S0 such that σ and σ′ are
label-equivalent. This implies that σ 6|= φ [CGP99], a contradiction.

The reverse direction can be proven similarly.
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3.2.3 Equivalence of Explicit and Implicit Models of
Crash-Faulty Processes

We now prove an equivalence between the fault-free model of a message-
passing system and its crash model. We call the fault-free (and crash) model
the implicit (explicit) model because, as we will see, the fault-free model
implicitly models crash faults.

The following definitions formalize the condition of the equivalence be-
tween the implicit and explicit models. Firstly, the equivalence result assumes
that the specification is independent of the crash flag of each process and the
content of the channels.

Definition 6. A message-passing system with labeling functions L : S →
AP and Lc : Sc → AP c is process/crash-labeled if for all s ∈ S, sc ∈ Sc,
sc(i) = (s(i), ai) for all 1 ≤ i ≤ n implies L(s) = Lc(sc).

Secondly, the equivalence result assumes that the system is idling, which
is formalized by the following definition. The idling property requires the
existence of a “dummy” transition, which is always enabled and which does
not change the state of the system.

Definition 7. A message-passing system is idling if for all s ∈ S there is a
t ∈ T such that (s, s) ∈ t.

Note that the implicit and explicit models cannot be equivalent, in gen-
eral, for systems that are not idling. For example, liveness properties that
hold in the implicit (fault-free) model might not hold in the explicit model
because processes can crash. If the system is not idling, it can be made idling
by adding a dummy transition. It has to be established that this transfor-
mation preserves the truth of the target properties, e.g., LTL formulas. For
example, the transformation always preserves invariants.

The following theorem together with Corollary 1 imply that an LTL for-
mula holds for the implicit model of crash faults iff it holds for the explicit
model. The equivalence is proven for the M model of message-passing sys-
tems. Given the equivalence stated by Theorem 1, the following result applies
to the models RM and GRM too. The full proof of Theorem 2 can be found
in Appendix A.2.

Theorem 2. Given a process/crash-labeled and idling message-passing sys-
tem, the state transition systems determined by the implicit and explicit M
models of crash faults are label-equivalent.
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Proof sketch. Let σ and σc be paths in STSM and STSMc

, the state transi-
tion systems determined by the implicit and explicit models of crash faults,
respectively. The proof is by induction on the length of the prefixes of σ and
σc. Given a prefix of σ (and σc), we construct a prefix of a path in STSMc

(in STSM) such that label-equivalence holds for these prefixes. Then, label-
equivalence between σ (and σc) and the constructed path follows by induc-
tion.

Given σ, we construct σc such that the transitions executed in σc cor-
respond to those in σ and all processes are non-crashed. If t is a transi-
tion executed in σ, then there is a transition tc of the explicit model that
mimics t and keeps the crash flags unchanged. This follows from Definition
3. Since the message-passing system is process/crash-labeled, σ and σc are
label-equivalent.

For the reverse direction, given σc, we construct a path σ such that the
transitions executed in σ correspond to those in σc except that processes
do not crash. This construction is always possible because the system is
idling. If tc is a transition executed in σc, then there is a transition t in
the fault-free model that mimics tc with respect to local state updates and
send/recieve operations. This follows from Definition 3. The only difference
is that t might send more messages, see condition (5), because the process
executing t does not crash. However, since M is with clean channels, these
additional messages can be ignored by transitions in the implicit model.
Again, since the message-passing system is process/crash-labeled, σ and σc

are label-equivalent.

Finite channels Our initial model of message-passing systems from Sec-
tion 3.1.1 assumes infinite channels, i.e., the size of the channel (a set of
messages) is unbounded. We call a channel finite if there is an upper bound
(capacity) of the number of messages residing in the channel. Finite channels
can interfere with the above equivalence result, which we briefly discuss in
the following.

We consider two models of finite channels. In the first model, new mes-
sages can be sent via a full channel, i.e., a channel that has reached its
capacity. Sending a new message m via a full channel results in replacing a
message in the channel with m. It turns out that Theorem 2 does not apply
with this model of finite channels. To see this, assume that, in course of
executing a transition t, a set Y of messages are replaced in full channels. In
the explicit model, it is possible that only a subset of Y is replaced because
the process executing t crashes during the send operations. In this case, a re-
ceiver process of the messages sent by t can see inconsistent channel content
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because the explicit model contains messages that are not in the channel of
the implicit model. As a result, the process in the explicit model might enter
a local state that is unreachable in the implicit model.

In the second model no new message can be sent via a full channel: A
transition t is only enabled if none of the channels that t sends a message to
is full. Therefore, if a message is in the channel of the explicit model, then
it is also in the channel of the implicit model and the result of Theorem 2
applies.1

3.3 Finding Symmetries with Decomposition

Symmetry reduction exploits symmetries of the system to enable efficient
verification [MDC06]. Unfortunately, finding symmetries, a prerequisite of
symmetry reduction, is a hard problem in general. An efficient approach for
finding symmetries is using special data types, called scalarsets (see Section
2.4), in the specification of models. The use of scalarsets is restricted such
that symmetry cannot be broken.

Despite the general strength of the scalarset approach, its use is not al-
ways intuitive even if the system contains obvious symmetries (Section 3.3.1).
After establishing the formal foundations (Section 3.3.2), a new heuristic is
proposed for an efficient discovery of symmetries in fault-tolerant message-
passing protocols (Section 3.3.3).

3.3.1 Motivating Example

The main challenge of the scalarset approach is where in the specification to
use scalarsets. In the context of distributed systems, an initial strategy is
to index “identical” processes (replicas) with values from the same scalarset.
This naive strategy turns out to be inefficient leaving intuitive symmetries
undetected, as demonstrated by the following example.

Example 2. Imagine a system running the Paxos consensus algorithm (see
Section 2.3). Assume that every process acts both as a proposer and an
acceptor. Let s and s′ be states where

• s(1) =(“Acceptor: initial state”, “Proposer: Phase 1(a) message
with n = 35 sent to process 4”).

1Theorem 2 is a proof-of-concept result, which is applicable for different models of
message-passing systems with possible adaptations as needed. Formal proofs and the
exploration of the boundaries of applicability are beyond the scope of this thesis.
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• s(2) =(“Acceptor: Phase 1(b) promise with n = 27 sent to process 3”,
“Proposer: initial state”).

• s′(1) =(“Acceptor: Phase 1(b) promise with n = 27 sent to process 3”,
“Proposer: Phase 1(a) message with n = 35 sent to process 4”).

• s′(2) =(“Acceptor: initial state”, “Proposer: initial state”).

A permutation π with π(s) = s′ is a symmetry (see Section 2.4) because
acceptors execute the same algorithm and the only difference between s and
s′ is the ID of the acceptor that has sent a Phase 1(b) message to process 3.

As the processes of this system are replicas (containing an acceptor and
a proposer each), selecting the IDs of different processes from a scalarset
respects the scalarset restrictions. Therefore, according to the scalarset ap-
proach, permuting the local states of the processes yields symmetries. Ap-
plying this to s results in s′′ with

• s′′(1) =(“Acceptor: Phase 1(b) promise with n = 27 sent to process 3”,
“Proposer: initial state”).

• s′′(2) =(“Acceptor: initial state”, “Proposer: Phase 1(a) message
with n = 35 sent to process 4”).

The scalarset restrictions imply that there is a symmetry that maps s
to s′′. However, permuting the local states of processes in s does not yield
s′ because of the local states of the proposers. As a result, s and s′ are
considered “non-symmetric” although π is a symmetry. (End of Example 2)

3.3.2 Formalizing Decomposition and Replicas

The heart of our approach is the concept of decomposition. Intuitively, a
decomposition of a model results in an other model that models the same
system using more processes. The formal definition of decomposition is fol-
lowed by its informal explanation.

Definition 8. Given a message-passing system, let S, Sr, C,Cr, and T, T r

be the set of states, channels, and transitions of two models with n and n +
1 processes, respectively. Then, the second model is a decomposition with
respect to process i of the first model if the following holds:

• (Product state space) Si = Sri × Srn+1, and

• (Consistent topology) Cr = C∪{crk,j|j ∈ {i, n+1}∧ck,i ∈ C}∪{crj,k|j ∈
{i, n+ 1} ∧ ci,k ∈ C}, and
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• (Bi-simulation) ∃s1, s2 ∈ S, t ∈ T : s1
t−→ s2 iff ∃sr1, sr2 ∈ Sr, t ∈ T r :

sr1
t−→ sr2 where ∀p ∈ {1, 2} :

– (Composed state space) ∀j ∈ {1, ..., n} \ {i} :

∗ (Matching local states) sp(j) = srp(j), and

∗ (Matching channel content) ∀ck,l ∈ C ∩ Cr : k 6= i ∧ l 6= i
implies sp(ck,l) = srp(ck,l), and

– (Decomposed process state space) sp(i) = (srp(i), s
r
p(n+ 1)), and

– (Decomposed channel content) ∀cj,i, ci,j ∈ C :

∗ (Disjoint channels) srp(cj,i) ∩ srp(cj,n+1) = ∅ ∧ srp(ci,j) ∩
srp(cn+1,j) = ∅, and

∗ (Content decomposition) sp(cj,i) = srp(cj,i) ∪ srp(cj,n+1) ∧
sp(ci,j) = srp(ci,j) ∪ srp(cn+1,j).

According to Definition 8, the decomposition of process i means that
the local state space of process i is considered as a product of the local
state spaces of a pair of sub-processes (product state space). Without the
loss of generality, we assume the IDs of these processes in the decomposed
model to be i and n + 1. The new processes have an incoming (outgoing)
channel from (to) another process if and only if the original process i has
one (consistent topology). This means duplicating the channels of process
i. The decomposed model bi-simulates the transitions of the original model
(bi-simulation): The processes other than i behave identically with the de-
composed model regarding both local states and channel content (composed
state space). The decomposed processes i and n + 1 also follow the state
transition of the original model (decomposed process state space) and, in
addition, the messages consumed and sent by them are disjoint (decomposed
channel content).

Next, we formalize what it means for two processes to be replicas. Again,
we go through discussing the formal definition afterwards.

Definition 9. Given a model of a message-passing system, two processes
i 6= j are replicas if the following holds:

• (Channel replicas between i and j) ci,j ∈ C iff cj,i ∈ C.

• (Channel replicas) ∀k ∈ {1, ..., n} \ {i, j} :

– (Outgoing channels) ci,k ∈ C iff cj,k ∈ C, and

– (Incoming channels) ck,i ∈ C iff ck,j ∈ C, and
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• (Bi-simulation of local transitions) ∃s1, s2 ∈ S, t ∈ Ti : s1
t−→ s2 iff

∃s′1, s′2 ∈ S, t ∈ Tj : s′1
t−→ s′2 such that for all channels c of process i

and the corresponding channel replica c′ of process j :

– There is a bijection b from s1(c) to s′1(c′) (and s2(c) to s′2(c′)), if
channel c is an incoming (outgoing) channel of process i, and

– A message m ∈ s1(c) (and m ∈ s2(c)) is consumed (sent) by t iff
b(m) ∈ s′1(c′) (b(m) ∈ s′2(c′)) is consumed (sent) by t′.

According to Definition 9, replicas maintain a channel to/from the same
set of processes (channel replicas). Also, there is a one-to-one correspon-
dence (bi-simulation) between local transitions of the replicas such that the
content of incoming and also outgoing channels of the replicas are identical
modulo renaming (bijection). This means that in course of every transi-
tion, the first replica consumes/sends some messages and the second replica
consumes/sends the renamed counterparts of these messages.

3.3.3 Finding Symmetries via Decomposition

A heuristic for finding symmetries Algorithm 1 shows our approach to
find symmetries using decomposition and replica processes. The algorithm
takes an initial model of a message-passing system as input and returns a
model (possibly different from the input model) and verified symmetries of
this model. These symmetries can be exploited by symmetry reduction.

Algorithm 1 proceeds through the following steps:

1 (Decomposition: lines 1.2-1.6) The input model is decomposed with
respect to some process until there is such a process. The intuition
behind this step is that symmetries are better exposed in fine-grained
decompositions of the system. We call Algorithm 1 without lines 1.2-1.6
the naive approach.

2 (Scalarsets to index replicas: lines 1.7-1.8) Replica processes are as-
sumed to be symmetric and, thus, are identified using scalarset types.

3 (Verification of scalarset restrictions: lines 1.9-1.11) If the scalarset
restrictions can be verified (line 1.9), then the model with scalarset
types is returned (line 1.10). Otherwise the algorithm returns the input
model without scalarset symmetries (line 1.11).
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Algorithm 1: Finding symmetries via decomposition and replica pro-
cesses.

Input : Model M of message-passing system
Output: Decomposed and symmetric model

1.1 M0 ←M ;
1.2 while true do
1.3 if decomposition M ′ of M with respect to some process exists then
1.4 M ←M ′;
1.5 continue;

1.6 break;

1.7 forall the replica processes i and j in M do
1.8 Be i and j from the same scalarset;

1.9 if scalarset restrictions can be verified for M then
1.10 return M ;

1.11 return M0;

Example 3. Following up on Example 2, we show that Algorithm 1 is able
to find that there is a symmetry mapping s to s′. The original model can be
decomposed with respect to every process, where the resulting model contains
a new acceptor and proposer process. Therefore, the states corresponding to
s and s′ in the decomposed model look like this:

• s(1) =(“Acceptor: initial state”).

• s(2) =(“Acceptor: Phase 1(b) promise with n = 27 sent to process 3”).

• s(3) =(“Proposer: Phase 1(a) message with n = 35 sent to process 4”).

• s(4) =(“Proposer: initial state”).

• s′(1) =(“Acceptor: Phase 1(b) promise with n = 27 sent to process 3”).

• s′(2) =(“Acceptor: initial state”).

• s′(3) =(“Proposer: Phase 1(a) message with n = 35 sent to process
4”).

• s′(4) =(“Proposer: initial state”).

Since every pair of acceptors (and proposers) are replicas, in the model re-
turned by Algorithm 1, the IDs of acceptors (proposers) are from the same
scalarset. It can be shown that these scalarsets satisfy the scalarset restric-
tions [BSSV09]. The permutation of the scalarset values swapping the IDs
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1 and 2 yields s′. Therefore, there is indeed a symmetry that maps s to s′.
(End of Example 3)

Soundness The soundness of Algorithm 1 is guaranteed by the verification
of the scalarset restrictions (line 1.9). Therefore, symmetries returned by the
algorithm are indeed symmetries even in case the system is wrongly decom-
posed or two processes are falsely identified as replicas. In fact, the formal
definitions of decomposition (Definition 8) and replica processes (Definition
9) specify intuitive guidelines, whose implementation can be done (automat-
ically or manually) with varying precision.

Note that, given that the scalarset restrictions are of syntactic nature,
Step 3 of the algorithm can be automated by simple parsing of the model
specification. As an optimization, if Step 3 fails, the algorithm can re-try
from Step 2 with different scalarsets.

Reduction analysis Algorithm 1 is a heuristic, which in worst-case re-
turns the input model and no symmetries. Also, there is no guarantee that
the model contains no symmetries in addition to the returned ones. How-
ever, we show examples of message-passing protocols in Section 3.6, for which
Algorithm 1 finds more symmetries than the naive approach.

Theoretically, Algorithm 1 can find exponentially more symmetries than
the naive approach. Given a state s, the maximum number of symmetries
π detected by Algorithm 1 such that s and π(s) are different (symmetric)
states is F =

∏
i=1...R ni! where R is the number of scalarsets (i.e., replica

classes) and ni is the size of the ith scalarset (i.e., the number of replicas
in the ith replica class). This is because the local states of replicas can
be permuted arbitrarily independent of the local states of other replicas.
Therefore, if |S| is the number of states in the unreduced model, then the
symmetry reduced state space contains at least |S|/F states. Let |Sr| denote
the actual number of states contained in the symmetry reduced state space.
The fraction |S|/F

|Sr| (or expressed as percentage) is called the efficiency of the

scalarset approach. Note that the efficiency is always ≤ 1 because |S|/F is
the maximum theoretical gain and, thus, |S|/F ≤ |Sr|.

Assuming that every composed process contains one from each replica
class (n = ni for all i), the number of symmetries detected by the naive
approach is at most n! where n is the number of processes. This is (n!)R−1

times less than the number achieved with Algorithm 1.
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3.4 Quorum Transitions

A general pattern in fault-tolerant message-passing protocols is that a tran-
sition consumes multiple messages by a single execution. We call such transi-
tions quorum transitions and advocate their use in the modeling of message-
passing protocols.

We start our discussion by formally defining quorum transitions.

Definition 10. Given a model of a message-passing system, a transition
t ∈ T is called a quorum transition if there is s, s′ ∈ S,X ⊆ M such that

s
X−→ s′ and |X| > 1. Otherwise, t is called a single-message transition.

As a general example of quorum transitions, consider systems that guar-
antee reliability under the assumption that the number of faulty processes
lies below a given threshold and each correct process (replica) executes an
instance of the same replicated service [AW04, Bir05]. The threshold assump-
tion implies that a set of messages from a large enough subset (or quorum)
of processes contains at least one message from a correct process. Therefore,
a common technique in such systems is that the execution of an event is trig-
gered when a set of messages from a quorum (e.g., a majority) of processes
is received.

Sound modeling with quorum transitions Although it is possible to
represent quorum transitions via a sequence of single-message transitions,
quorum transitions enable a natural modeling of certain systems, as shown
in the below example. An important difference between single-message and
quorum transitions is that while a single-message transition results in a new
state after consuming every single message, a quorum transition can consume
multiple messages by one, indivisible state transition. This difference in the
semantics can be relevant for the precise modeling of a system.

Example 4. Phase 2(a) of the Paxos algorithm requires that a proposer re-
ceives a response to a prepare request from a majority of acceptors. This can
be modeled by a transition t such that if a set X of messages is accessible
for t in some state, then |X| ≥ dna/2e, where na is the number of acceptors.

It is possible to model Phase 2(a) of Paxos using single-message transi-
tions. For example, a proposer can maintain a counter, which is incremented
by a single-message transition every time the proposer receives a response
message to its prepare request. If enough (≥ dna/2e) response messages
have been received, Phase 2(a) can be executed. However, a counter is not
part of the specification of Paxos. It is an auxiliary concept to implement the
Paxos algorithm. Using quorum transitions, Paxos can be directly modeled
without auxiliary mechanisms. (End of Example 4)
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If it is more appropriate to model the system (or a sub-system) with quo-
rum transitions than with single-message transitions, then it is possible to
do so even if quorum transitions are implemented via a sequence of single-
message deliveries. In this case, the model of the system can be divided into
high-level and low-level sub-models. The high-level sub-model contains quo-
rum transitions that are modeled via, for instance, single-message transitions
at low-level. Such composite modeling not only result in modular models,
they might also enable efficient verification where the different levels of the
model can be verified independently of each other.

State space implication Using quorum transitions or, instead, a sequence
of single-message transitions can greatly effect the size of the state space. To
see this, consider a model M1 of a message-passing system and transitions
t1, ..., tk that are enabled in some state s. Depending on the order of exe-
cution, the number of different states resulting from executing t1, ..., tk is at
most k!k. Let t be a quorum transition that is enabled in s for a set X and

s
t(X)−−→ s′ for some s′. Assume another model M2 of the same system that

contains only single-message transitions. The shortest path from s to s′ in
M2 contains at least |X| = l transitions, because any transition in M2 can
consume at most a single message. If these transitions are enabled in s, then
the number of states is at most (k+ l)!(k+ l), which is at least (k+ l)2 times
more states than k!k in M1. We know that k ≤ |T | where |T | is the number
of all transitions in M1. If we assume that l ≤ n, i.e., t consumes at most one
message from each process, then M2 can have (|T | + n)2 times more states
than M1.

3.5 Transition Refinement for Efficient POR

Partial-order reduction (POR) [Val98, God96, CGP99] is a powerful opti-
mization of state space exploration. POR is defined over the transitions of
a state transition systems. It is known that the efficiency of POR can be
improved if the state transition system specifies “small transitions” [God96].
Therefore, transitions can be refined into smaller transitions if this transition
refinement preserves the properties of the original system. Unfortunately,
overly refined transitions can achieve the negative effect, namely, worsening
the efficiency of POR.

In this section, we develop transition refinement strategies that are appli-
cable for a general class of message-passing protocols. To prove that the pro-
posed strategies are property preserving, we generalize and formalize transi-
tion refinement (Section 3.5.1) and show our strategies as special cases thereof



3.5. TRANSITION REFINEMENT FOR EFFICIENT POR 39

t

t

t

t

s1

s

s2

s12

t1

t5

t 2

t 4

s1

s

s2

s12

t3

s3

t3

s3

(a) (c)

t1

t1

t 2

t 2

s1

s

s2

s12

t3

s3

(b)

Figure 3.2: (a) Unrefined transition t. (b) Refined transitions t1 and t2. (c)
Overly refined transitions.

(Sections 3.5.2 and 3.5.3). The experiments in Section 3.6 show significant
improvements of POR using these strategies.

Before introducing the proposed approach, we demonstrate transition re-
finement by examples.

Example 5. In state transition system Figure 3.2(a), no POR is possible, i.e.,
all enabled transitions must be executed. To see this, consider for example the
definition of stubborn sets (Section 2.5), a general notion of POR. Refining
transition t into transitions t1 and t2 results in state transition system (b)
where POR allows executing only t2 in s. However, if t1 and t2 are further
refined into t4 and t5, then, again, no POR is possible. (End of Example 5)

3.5.1 Generalized Transition Refinement

Transition refinement is a transformation of a state transition system into
another one such that the state space remains intact. Note that the following
general definition does not require that the original transition set contains
fewer transitions than the refined one, although this case is the usual appli-
cation of transition refinement.

Definition 11. Given state transition systems STS = (S, T, S0) and STS ′ =
(S, T ′, S0), STS is a transition refinement of STS ′ if for all s1, s2 ∈ S the

following holds: ∃t ∈ T : s1
t−→ s2 iff ∃t′ ∈ T ′ : s1

t′−→ s2.

The following theorem proves that POR and transition refinement pre-
serves the specification of the system. The conditions of this property is that
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(a) the specification is preserved by POR, and (b) the specification is inter-
preted over sequences of states (not over transitions). A general class of such
specifications is the subset of CTL∗ that is preserved by POR [Val98, KSV06].

Theorem 3. Let STS 1 and STS 2 be two state transition systems and ϕ
a CTL∗ formula that is preserved by POR. Then, if STS 2 is a transition
refinement of STS 1 and STSR

2 is the partial-order reduction of STS 2, then
ϕ holds in STS 1 iff it holds in STSR

2 .

Proof. Assume that ϕ holds in STS 1 but not in STSR
2 . Since STS 2 is a

transition refinement of STS 1, there is a path in STS 1 iff this is a path in
STS 2. Furthermore, because the semantics of CTL∗ is over sequences of
states, ϕ also holds in STS 2. From the property preservation of POR we
know that ϕ holds in STSR

2 , a contradiction. The reverse can be proven
similarly.

3.5.2 Strategy 1: Quorum Split

Our first transition refinement strategy for message-passing systems is called
quorum split. The idea of quorum split is to define a new transition for each
set of processes from which a transition can consume a message.

We start by defining a special class of transitions, called exact quorum
transitions, for which quorum split is eligible. Exact quorum transitions are
quorum transitions where the number of processes from which the transition
consumes a message is fixed. Note that an exact quorum transition can be a
single-message transition.

Given two states s, s′, a transition t ∈ Ti, and a set X of messages such

that s
t(X)−−→ s′, we define an auxiliary notation senders(X) to be the set of

processes that have sent a message in X, i.e., {j |m ∈ X ∩ s(cj,i)}.

Definition 12. Given a message-passing system, a transition t is an exact

quorum transition with threshold qt if s
t(X)−−→ s′ implies |senders(X)| = qt for

all s, s′ ∈ S and set X of messages.

Next, we define the quorum split transition refinement strategy.

Definition 13. Given a message-passing system M1 and an exact quorum
transition t with threshold qt, a quorum split of M1 via t is a message-passing
system M2 derived from M1 by replacing t with transitions t1, t2, . . . , tm, for

m =
(
n
qt

)
, such that s

tk(X)−−−→ s′ iff s
t(X)−−→ s′∧senders(X) = Qk, where s, s′ ∈ S

and Qk is the kth of the m sets of process IDs of size qt.
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Note that in principle every transition t can be split by adding a new
transition tQ for every subset Q of processes, even if t is not an exact quorum
transition. This would mean adding 2n extra transitions for every t (n is
the number of all processes). However, an exponentially number of new
transitions can prohibitively increase the overhead of POR.

The following theorem states that quorum split yields a transition refine-
ment.

Theorem 4. Given a message-passing system M1, let STS 1 be the state
transition system determined by M1, t an exact quorum transition in M1, M2

a quorum split of M1 via t, and STS 2 the state transition system determined
by M2. Then, STS 2 is a transition refinement of STS 1.

Proof. Indirectly, assume that STS 2 is not a transition refinement of STS 1.
Let T1 and T2 be the sets of transitions of STS 1 and STS 2, respectively.
By construction, STS 1 and STS 2 share the same set of states (and initial
states). Therefore, the indirect assumption is only possible if there are states
s and s′ such that (a) there is transition t1 ∈ T1 with (s, s′) ∈ t1 but for
no t2 ∈ T2 holds that (s, s′) ∈ t2 or (b) there is transition t2 ∈ T2 with
(s, s′) ∈ t2 but for no t1 ∈ T1 holds that (s, s′) ∈ t1. We consider (a) first. In

model M1, let X be a set of messages such that s
t1(X)−−−→ s′. If t1 6= t, then

t1 ∈ T2, a contradiction. Since t is an exact quorum transition, it must be
that |senders(X)| = qt. M2 is a quorum split of M1 via t, so there is tk ∈ T2

such that s
tk(X)−−−→ s′ where Qk = senders(X), a contradiction. The reverse,

case (b), can be shown similarly.

An optimization The number of new transitions can be reduced by iden-
tifying a process i that never sends messages consumed by the refined tran-
sition t. In this case, if t is executed in a state with a set X of messages,
then i cannot be in senders(X), thus, tk with i ∈ Qk can be excluded from
the quorum split. The automatic detection of all possible senders(X) sets
can be done using static analysis, otherwise we conservatively assume that i
can be in such a set.

Finally, we show an example quorum split of a model of the Paxos pro-
tocol.

Example 6. Consider the quorum transition t from Example 4. t is an exact
quorum transition with threshold dna/2e assuming that Phase 2(a) is exe-
cuted after the proposer has received a response message from a minimum
majority of the acceptors. Assume a system with three acceptor processes
(na = 3). Let 1, 2, and 3 be the IDs of these acceptor processes. The model
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resulting from the quorum split of the original model via t contains new
transitions t1, t2 and t3 where Q1 = {1, 2}, Q2 = {1, 3} and Q3 = {2, 3}. For
example, t2 models Phase 2(a) where the proposer receives response messages
from acceptors 1 and 3 (but not 2). Note that no transitions tk need to be
added where Qk contains IDs of non-acceptor processes. This is because a
proposer only receives messages from acceptors. (End of Example 6)

3.5.3 Strategy 2: Reply Split

The second proposed transition refinement strategy is an application of quo-
rum split to a special class of transitions, called reply transitions. A reply
transition is when a process receives one or more messages and sends mes-
sages only to the senders of these messages (e.g., acknowledgement). We call
a quorum split via a reply transition reply split. The formal definition of
reply transitions is as follows.

Definition 14. Given a message-passing system, t ∈ Ti is a reply transition

if for all s, s′ ∈ S and for all sets X of messages, s
t(X)−−→ s′ implies that

{j | s(ci,j) ⊂ s′(ci,j)} = senders(X).

The reason that we discuss reply split as a new strategy is because a
quorum split via reply transitions is differently advantageous for POR than
a quorum split via general (non-reply) transitions. This has to do with
“interfering” transitions, a concept that affects the efficiency of POR. There
are different notions of interfering transitions [God96, CGP99]. For example,
two transitions of different processes are interfering if the first transition
sends a message that is consumed by the second transition. Intuitively, the
fewer interfering transitions the more efficient POR.

Quorum split is able to decrease the number of interfering transitions in
two ways:

• General quorum split. Quorum split via any transition t decreases the
number of transitions that interfere with t: While every transition t′

that sends a message to t interferes with t, after quorum split, t′ only
interferes with tk (a new transition resulting from the quorum split via
t) if the process executing t′ is in Qk.

• Reply split. If quorum split is done via a reply transition t, then tran-
sition tk that results from the reply split of t can only send messages
to processes in Qk. Therefore, although t might interfere with with all
transitions, tk only interferes with transitions executed by processes in
Qk.
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We close our discussion with an example of the reply split strategy.

Example 7. Consider Phase 1(b) of the Paxos consensus algorithm (see Sec-
tion 2.3). Phase 1(b) is executed by acceptor processes and it can be modeled
by a single-message reply transition t that responds to a request of a proposer
process. Before reply split, t interferes with the transitions of any proposer.
Consider a reply split via t in a model with 2 proposers with IDs 1 and 2.
In this case, t is replaced by new transitions t1 and t2 with Q1 = {1} and
Q2 = {2}. As a result of reply split, t1 (and t2) only interferes with the
transitions of proposer 1 (proposer 2). (End of Example 7)

3.6 Experiments

We demonstrate the efficiency of our heuristic for finding symmetries (Section
3.6.1) and the quorum and reply split transition refinement strategies (Sec-
tion 3.6.2). We start from natural language specifications of representative
message-passing protocols and create (manually) a model of each protocol.
As our experiments use explicit state model checkers that explore states one-
by-one, we apply M models for their smaller state spaces compared to RM
and GRM, as implied by the results of Section 3.1. This is sound because
the example message-passing systems are process-labeled. Also, we utilize
quorum transitions whenever possible, similarly to Example 4.

Verification efficiency is measured by the number of explored states and
the time of state space exploration. The result of each experiment is ”Veri-
fied” if the system is correct (no counterexample is found), ”Out of mem.”
if the the model checker runs out of memory, and ”CE” if the model checker
returns a counterexample. We also evaluate the efficiency of the proposed
techniques for debugging: Faulty versions of the example message-passing
protocols as well as wrong specifications are used to trigger the model checker
to find a counterexample. In our experiments, the search terminates after
finding the first counterexample. In this case, the state space is not explored
exhaustively, i.e, there might be other counterexamples of the specification.

3.6.1 Symmetry Reduction with Murϕ

Murϕ We use the Murϕ model checker [Mur] to evaluate the efficiency
of Algorithm 1. Murϕ implements the scalarset approach and symmetry
reduction. Algorithm 1 is not automated in our experiments. We manually
decompose models, identify replicas, and verify the scalarset restrictions.
Since Murϕ supports the verification of invariants (see Section 2.1) only, we
restrict the specification such that it is expressible via invariants.
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Example message-passing protocols We consider the following two
message-passing protocols:

• The Paxos consensus protocol, explained in Section 2.3. Paxos pro-
cesses can be decomposed into proposer and acceptor processes. For
fault-tolerance, both proposers and acceptors are replicated. We con-
sider the safety requirements of consensus for Paxos because liveness
cannot be expressed as an invariant. We assume a system with three
acceptors and at most two proposers, each proposer proposing at most
one proposal. Learners are not modeled.

Applying the results from Section 3.2, we use an implicit model of crash
faults because this yields a smaller state space than the explicit model.
Since Paxos is process/crash-labeled, the equivalence result (Theorem
2) applies.

• The Oral Messages OM(1) consensus protocol [LSP82], which is able
tolerate one Byzantine process in a synchronous environment (reliable
channels). OM(1) conceptually differs from Paxos as (a) it does not
assume crash faults and (b) it assumes synchrony. OM(1) processes
can be decomposed into a commander process and multiple lieutenant
processes.2

In the context of OM(1), the (safety and liveness) requirements of con-
sensus are often called Interactive Consistency (IC). IC assumes for
OM(1) that the system contains at least three lieutenants. Thanks
to synchrony, OM(1) solves consensus (unlike Paxos) after a bounded
number of steps. Therefore, the liveness requirement of consensus can
be expressed by invariants using “monitors”, which remember fractions
of a state and use these state fractions as a reference in other states.

In our model of OM(1), the possible faulty (Byzantine) behavior is
exhaustively modeled. The only restriction we make is that Byzantine-
faulty processes send well-formatted messages. Otherwise, the message
(and its sender) can be detected to be erroneous and the message is dis-
carded. Our experiments show that this exhaustive model of Byzantine
faults is feasible for verification. This can be attributed to the num-
ber of faulty processes being restricted to be at most one and that the
proposed value in OM(1) is binary (“attack” or “retreat”).

2The roles, commander and lieutenants are analogous with proposer and acceptors in
Paxos.
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Experiment setup The experiments run on DETERlab machines [DET],
equipped with a Xeon processor and 4 GB memory, and running a Linux in-
stallation with Fedora 6 core. We utilize for symmetry reduction the (default)
fast canonicalization heuristic of Murϕ.

We consider the following heuristics for finding symmetries:

• None: No scalarsets are used; therefore, no symmetries are de-
tected and symmetry reduction is switched off. The Murϕ models
of all example protocols (also the decomposed ones augmented with
scalarsets) are available on-line under http://www.deeds.informatik.tu-
darmstadt.de/peter/thesis/SR/.

• Naive approach: The previous “none” heuristic augmented with
scalarsets to index processes.

• Algorithm 1: Following Algorithm 1 with inputs from the “none”
heuristic models.

Debugging We consider the following faulty protocols and wrong specifi-
cations:

• Faulty Paxos : An acceptor always accepts a proposal in Phase 2(b)
even if an earlier promise forbids to do so.

• Wrong safety : A proposal in Paxos is considered to be chosen if it
is accepted by an acceptor. This is a wrong specification because a
proposal is chosen only if a majority of acceptors has accepted it.

• Faulty OM(1): There are two faulty processes, which is a violation of
OM(1)’s assumption that at most one process is faulty.

Results & discussion The results of our experiments are shown in Table
3.2. In addition to the number of visited states and exploration time, we
derive two metrics from the number of visited states: (1) gain is the fraction
of the number of visited states without and with symmetry reduction and
(2) the efficiency of scalarsets (see Section 3.3.3).

The results of our experiments can be summarized as follows:

• Significant symmetry reduction: Symmetry reduction is able to signifi-
cantly reduce the time and memory resources of both verification and
debugging visiting at least one magnitude fewer states with Algorithm
1 than the unreduced search. In particular, OM(1) with 5 lieutenants
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Protocol Property Result Heur. States Gain Effic. Time
(# proc.)
None (3) 1,591,897 - - 268 s

Safety Verified Naive (3) 795,945 2x 33% 226 s
Alg. 1 (5) 136,915 12x 96% 32s

Paxos None (3) 649,301 - - 61 s
Wrong CE Naive (3) 325,074 2x - 226 s
safety Alg. 1 (5) 57,677 11x - 12 s

None (3) 1114,891 - - 126 s
Faulty Paxos Safety CE Naive (3) 562,298 2x - 122 s

Alg. 1 (5) 101,239 11x - 20s
None (3) 1,797 - - 0.1 s

IC Verified Naive (3) 941 2x 31% 3 s
Alg. 1 (4) 345 5x 85% 0.1s
None (4) 150,417 - - 9.6 s

OM(1) IC Verified Naive (4) 26,401 6x 24% 17 s
Alg. 1 (5) 6,999 22x 90 % 7.4s
None (5) Out of mem. - - -

IC Verified Naive (5) 2,402,167 - - 4 h
Alg. 1 (6) 490,839 - - 2h
None (3) 934 - - 0.1 s

Faulty OM(1) IC CE Naive (3) 843 1.1x - 2.9 s
(safety) Alg. 1 (4) 200 5x - 0.1s

Table 3.2: Algorithm 1 in comparison with the naive approach using the
Murϕ model checker.

could not be verified without symmetry reduction because the queue
of unexplored states in Murϕ runs out of memory. The reason why
model checking time can show different trends than memory is the
time overhead of symmetry reduction.

• Algorithm 1 outperforms naive approach: Algorithm 1 outperforms the
naive approach in all experiments with respect to the number of vis-
ited states and model checking time (these experiments are depicted in
bold). The gain of symmetry reduction with Algorithm 1 is up to six
times more the with the naive approach. In addition, the time of model
checking can be up to 30 times faster with Algorithm 1 than with the
naive approach (OM(1) with 3 and 4 processes).

Symmetry reduction with the naive approach can take longer than the
unreduced search due to the overhead of symmetry reduction. This is
not the case with Algorithm 1 because the increased state reduction
adds up to an overall reduction of model checking time.

• Algorithm 1 finds efficient symmetries: Both protocols are almost
optimally symmetric with respect to their decomposed replicas (ap-
proaching 100% efficiency). We observe that the difference between
the achieved and maximum gain is within 3% of the size of the unre-
duced state space. Note that the efficiency cannot be computed for the
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experiments with counterexamples or for verification of OM(1) with six
processes because the size of the unreduced state space is unknown.

The efficiency of the naive approach is considerably lower. Even in the
case of OM(1), where the theoretical maximum benefit is the same for
Algorithm 1 and the naive approach, the efficiency of Algorithm 1 is
significantly higher. This is because the local states of lieutenants in
the composed models cannot be freely permuted because there is one
process that contains both the commander and a lieutenant.

3.6.2 Partial-Order Reduction with MP-Basset

MP-Basset The quorum and reply split experiments are conducted with
the MP-Basset model checker. MP-Basset is a model checker specifically for
message-passing systems, which supports different partial-order reduction
(POR) implementations. A detailed description of MP-Basset is given in
Chapter 6. Similarly to Murϕ, the current version of MP-Basset supports
invariants only, which restricts our experiments to specifications that are
expressible via invariants. The split (transition refined) models are created
manually in these experiments.

Example message-passing protocols We consider the following proto-
cols:

• The first protocol is the Paxos consensus protocol. The model and
analyzed specification are as in Section 3.6.1 except that the model
contains a learner. In this model, the agreement property of consensus
can be specified as a process local property: The learner must not learn
proposals with different values. In the context of POR, this model is
more convenient to work with as some of the existing POR property
preservation results [God96, FG05, SA06] relate to process local prop-
erties.

• The second example is a consistent multicast protocol called Echo Mul-
ticast [Rei94]. We consider the agreement property of consistent multi-
cast that specifies that no two processes (called receiver) receive differ-
ent messages sent (via multicast) by a process (called initiator). Echo
Multicast implements agreement in a Byzantine environment [LSP82]
where up to one third of the processes can fail arbitrarily and the re-
maining processes are correct (also called honest).

• Our third example is a regular storage protocol in the style of
[ABND95]. The objective of (distributed) storage is to reliably store
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data despite failures of (undistributed) base (storing) objects. A reg-
ular storage guarantees that a read operation (executed by processes
called readers) returns a value not older than the one written by the
latest preceding write operation (executed by processes called writers).
The protocol assumes a crash-tolerant setting where a minority of all
base objects might crash. Similar to Paxos, crash faults are modeled
implicitly. Furthermore, this protocol is single-writer, i.e., there is ex-
actly one writer process.

Byzantine fault-model The multicast protocol allows arbitrary faulty
behavior. It turns out that an exhaustive model of faulty behavior (as in
case of OM(1) from Section 3.6.1) is infeasible for the verification of this pro-
tocol. Therefore, we restrict the behavior of a Byzantine-faulty process. We
consider “meaningful” faults to challenge the protocol’s ability to guarantee
agreement. We define the following attack strategies:

• A Byzantine initiator attempts to violate the agreement property by
sending different messages to each of two groups of honest receivers.

• A Byzantine receiver sends invalid confirmations to an honest initiator
and co-operates with a Byzantine initiator by confirming (signing) both
of its messages.

Debugging We consider the following experiments where we expect the
model checker to return a counterexample:

• Faulty Paxos : The learner does not compare the values in accepted
proposals received from acceptor processes. This is contra the specifi-
cation of Paxos where a learner learns a proposal if the same proposal
(including proposal number and value) is accepted by a majority of
acceptors.

• Wrong agreement : In Echo Multicast we exceed the threshold of the
number of maximum Byzantine processes. In particular, we consider a
setting with two honest receivers, one honest initiator, two Byzantine
receiver, and one Byzantine initiator.

• Wrong regularity : We require that a read operation that completes
after a write has to return the value written by the write even if the
two operations are concurrent.
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Protocol Property Result Heur. States Time
(# proc.) (POR) (POR)

None 2,822,764 9h37m
Quorum 1,826,560 11h28m

Paxos (6) Safety Verified Reply 1,087,486 3h47m
Combined 548,061 3h30m

None 279 10s
Quorum 279 10s

Faulty Paxos (6) Safety CE Reply 105 8s
Combined 105 8s

None 652 12s
Quorum 232 12s

Echo Multicast (3,0,1,1) Agreement Verified Reply 652 12s
Combined 232 12s

None 2787 31s
Quorum 2787 31s

Echo Multicast (2,1,0,1) Agreement Verified Reply 1165 18s
Combined 1165 18s

None 12,023,663 >48h
Quorum 7,600,843 >48h

Echo Multicast (3,1,1,1) Agreement Verified Reply >10,472,557 >48h
Combined 7,087,193 42h21m

None 48 6s
Quorum 48 9s

Echo Multicast (2,1,2,1) Wrong agreement CE Reply 48 7s
Combined 48 9s

None 20,039 3m4s
Quorum 18,451 4m31s

Regular storage (3,1) Regularity Verified Reply 18,451 3m13s
Combined 18,451 4m32s

None 41,331 6m46s
Quorum 29,877 9m51s

Regular storage (3,2) Wrong regularity CE Reply 6,969 1m32s
Combined 6,987 2m34s

Table 3.3: Quorum and reply split in comparison with unsplit transitions
using the MP-Basset model checker.
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Experiment setup All experiments run on DETERlab machines [DET]
with Xeon processors and 4 GB of memory. In case of the Paxos protocol,
we assume a system with three acceptors, at most two proposers, and a
single leader. We use different configurations for Echo Multicast and regular
storage. For the former, a setting (HR,HI,BR,BI) specifies the number of
honest receivers, initiators, Byzantine receivers and initiators, respectively.
Every initiator sends at most one message via multicast. For regular storage,
(B,R) gives the number of base objects and readers, respectively. The writer
(and each reader) initiates a single write (at most one read) operation.

We consider the following transition refinement strategies:

• None: Transitions are unrefined as in the “natural” specification of the
protocol. All models (unsplit and split) used in our experiments are
available on-line [MP-].

• Quorum split : Quorum split via non-reply quorum transitions only.

• Reply split : Quorum split via reply transitions only.

• Combined split : Quorum split of all transitions.

The POR algorithm used in our experiments is the LPOR algorithm,
which is discussed in details in Chapter 4. LPOR is a “static” implementation
of POR, which resembles other static implementations. Therefore, we argue
that the observed trends apply to other POR implementations too.

Results & discussion The results of our experiments are shown in Table
3.3. For each protocol and setting, we highlight in bold the search strategy
(if any) if this outperforms the other strategies both in terms of the number
of visited states and model checking time. We observe the following trends:

• Significant reductions with splits: Our split strategies achieve signifi-
cant reductions in terms of both memory and time (up to 81% and 64%
for Paxos) compared to the unsplit case. A reduction of model check-
ing time can be achieved although the throughput of model checking
(number of visited states per time unit) falls with transition refine-
ment because of the additional time overhead of computing POR (due
to the increased number of transitions). Despite this additional time
overhead, the significant space reduction adds up to an overall time
reduction. For example, in case of Paxos the throughput without splits
is 90 states/second versus 43 states/second with combined split and,
still, the experiment with combined split finishes earlier.
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Note that the throughput is lower with quorum split than with reply
split. For example, in the case of verified regular storage the exper-
iments with quorum and reply splits visit the same number of states
but the experiment with quorum split takes more than a minute longer.
This is because quorum split via quorum transitions triggers a high
time-overhead optimization of the LPOR algorithm (called necessary
enabling transitions – details in Chapter 4).

• Efficient debugging: Quorum and reply splits can also be used to find
bugs fast and using little memory. If the bug is “deep” in the search
space (unlike in case of faulty Paxos or multicast with wrong agree-
ment), we observe similar trends as for verification (see regular storage
with wrong regularity).

• Caveat: The quorum and/or reply split strategies can be ineffective.
In this case, the search strategy with the least overhead achieves the
best result, for instance, in the experiment Echo Multicast (2,1,2,1).
An example where reply split is ineffective is Echo Multicast (3,0,1,1),
where there is a single initiator to which the receivers can reply. Also,
quorum split makes no difference for Echo Multicast (2,1,0,1) because
the quorum contains all receivers.

A side effect of transition refinement can be that the order in which
transitions are explored is changed.3 As a result, the number of visited
states and exploration time can also change even if transition refine-
ment is ineffective. One possible reason for that is the imperfection
of the state comparison mechanism in practical model checking.4 For
example, it can be shown that both splits are ineffective for regular
storage (3,1). Still, the number of visited states is (slightly) different
for the unsplit and split cases.

3.7 Related Work

Models of message traffic and crash faults Our results of comparing
different models of a system and showing equivalences between these models
relate to general reduction techniques such as symmetry and partial-order re-
ductions [CGP99] and the corresponding property preservation results. For
example, partial-order reduction preserves a class of temporal formulas that

3In MP-Basset, transitions with lexicographically smaller IDs are preferred.
4MP-Basset adopts the heuristics for state comparison from Java Pathfinder [JPF], the

model checker underlying MP-Basset.
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are indistinguishable in stuttering equivalent state transition systems. The-
orems 1 and 2 can also be seen as reduction techniques preserving certain
properties across different models of message-passing systems. The advantage
of the proposed reductions compared to symmetry or partial-order reductions
is that they apply to any message-passing system. Therefore, our reductions
yield no time overhead during verification.

Similar to our result of stuttering equivalent models of message traffic,
[CSCBM09] shows that a fine-grained model of message-passing algorithms
can be reduced to a stuttering equivalent coarse-grained model. This result
applies to a special class of message-passing algorithms characterized by (1)
communication-closed rounds and (2) crash faults based on the Heard-Of
model [CBS09]. The reduction shows that it suffices to model a path of the
system as a sequence of synchronized rounds where in each round every cor-
rect process sends and receives messages and updates its local state. Our
system model is a general one and it does not assume that a path is divided
into communication-closed rounds (a message sent in a round must be deliv-
ered before the end of this round otherwise the message is considered to be
lost), nor does it restrict to crash faults.

Symmetry detection There are various approaches targeting the detec-
tion of symmetries with the least user intervention possible [MDC06]. These
approaches seem to share the scalarset idea: The syntax of a language used
to specify the system is restricted such that the state space contains symme-
tries by construction. Applications of symmetry reduction to multi-process
systems (beginning from [ID96, CJEF96]) assume basic symmetries across
processes and do not consider systematic process decomposition to find more
symmetries.

Promising applications of the proposed symmetry detection approach in-
clude parametric verification, e.g., [PXZ02], where the number of processes
is unbounded. In fact, classical symmetry reduction [ID96, CJEF96], which
is applied to finite systems, and parametric verification of multi-process sys-
tems have in common that they have to establish a notion of symmetry across
processes before exploiting these symmetries in verification.

Another possible application is to integrate our symmetry detection
heuristic into existing model checkers. For example, the TLC model checker
[Lam02] already supports symmetry reduction but it requires the user to
(manually) verify symmetries. In particular, TLC supports a language called
+CAL [Lam06], which is especially suited for the high-level specification of
distributed multi-process algorithms.

Model checking of self-stabilizing algorithms was proposed by using sym-
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bolic techniques that are (under favorable conditions) insensitive to the large
number of initial states [TNPK01]. It is also possible to apply symmetry
reduction to such algorithms (powered by our symmetry detection heuristic)
in which case different but symmetric initial states need not be explored.
Combined with explicit state model checking, such an approach does not
suffer from the drawbacks of symbolic model checking.

Quorum transitions Our formal models of message-passing systems
starting with a reference model adapted from [AW04] can be seen as ac-
tor programs [AMST97]. A concept similar to quorum transitions appears
as joint transitions of actors [FA95]. The actor model implements rich se-
mantics, e.g., synchronization between actors or dynamic creation of actors,
to make the formalism expressive. In contrast, the main motivation of intro-
ducing quorum transitions in this thesis is to enable efficient verification.

Transition refinement Partial-order reductions [God96, CGP99, FG05,
KWG09b] specify sufficient conditions of preserving certain classes of prop-
erties given the transitions of the system. Therefore, transition refinement is
orthogonal to these approaches. A concept similar to transition refinement is
operation refinement from [God96]. There, operation refinement is discussed
informally in the context of a proof-of-concept modeling language and its
effect on the performance of partial-order reduction implementations is not
studied. In addition, no generally applicable operation refinement strategy
is proposed nor it is evaluated in practical verification.

3.8 Conclusions

We have proposed reductions of formal models of message traffic (Section
3.1), crash-faulty processes (Section 3.2), and quorum transitions (Section
3.4) into models that are more amenable to verification. We see the main
strength of these contributions on the practical side. Our reduction results
formally verify natural intuitions such as the soundness of using unclean
channels or that crash events need not be modeled explicitly. As a result,
the verification with the reduced models serves as a formal argument rather
than just a “reasonable simplification”. As natural extensions, systems with
different message-passing characteristics (e.g., finite channels) or fault models
(e.g., malicious processes [LSP82]) can be considered.

We have also proposed models of message-passing protocols to improve on
the efficiency of symmetry (Section 3.3) and partial-order reduction (Section
3.5). Again, these contributions are more of practical relevance. Symmetry
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and partial-order reductions have been researched extensively, however, un-
der the assumption that a model of the system is given. However, none of
these techniques achieves efficient verification if the model of the system is
inappropriately specified. The proposed models result from systematic anal-
ysis of the characteristics of fault-tolerant message-passing protocols. Other
efficient applications of symmetry and partial-order reductions are possible
after similar analysis of the particular domain.



Chapter 4

Local Partial-Order Reduction

This chapter presents a new partial-order reduction (POR) implementation
called LPOR. LPOR is a general POR implementation applicable for any
system whose semantics can be given as a state transition system.

In Section 4.1, we motivate LPOR and structure it in the broad spectrum
of the POR landscape. Section 4.2 presents LPOR’s intuitive interface and
Section 4.3 the LPOR algorithm that implements POR. Then, Section 4.4
shows an application example of LPOR for general message-passing proto-
cols. A prototype implementation of LPOR is presented in Section 4.5, which
is used in Section 4.6 to evaluate the efficiency of LPOR using the previous
message-passing application and model checking representative fault-tolerant
message-passing protocols. We close the chapter with discussing work related
to LPOR in Section 4.7.

4.1 Positioning LPOR

Several notions implement the concept of POR [CGP99, Val98, God96], dif-
fering from each other in flexibility and efficiency. The commonality of these
approaches is that the developer of a model checker is expected to verify
complex conditions to guarantee soundness. This hurdle can prevent devel-
opers from implementing POR or even lead to erroneous implementations.
Therefore, our main motivation is to propose an approach that simplifies the
conditions to be verified, but gives up neither the flexibility nor the efficiency
of POR. Next, we explain why previous notions of POR are difficult to use
and how our approach improves on them.

The general concept of POR lies in the commutativity of non-interfering
transitions. Conceptually, a transition is a mechanism to change the state of
the system, e.g., a Java method, or the delivery of a message. POR is based

55
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Figure 4.1: Non-interfering transitions t1 and t2. States s12 and s3 are dead-
locks.

on the simple observation that the execution of a pair of non-interfering
transitions leads to the same state irrespective of which of the transitions
is executed first. In Figure 4.1, t1 and t2 are non-interfering because both

paths s
t1−→ s1

t2−→ s12 and s
t2−→ s2

t1−→ s12 lead to s12. Therefore, it is sufficient
to explore the execution of these transitions in a single representative order,
reducing memory and time required for model checking.

POR is sound if no state is missed that is relevant for verifying the target
property. For example, although t1 and t2 are non-interfering, it is an un-

sound reduction to explore only the path s
t1−→ s1

t2−→ s12 if the property states
the reachability of s3. Existing notions of POR define necessary conditions
of soundness that are hard to check in general because they require global
knowledge about the state graph, which limits the applicability of POR. This
problem is usually addressed by fixing the application of POR to a partic-
ular specification language and computational model, such that soundness
is guaranteed by construction. As a result, existing specification languages
with POR support are few and restrictive in different ways: they consider
restricted computational models, for example FIFO-based message-passing
[HP94, Hol03], Petri nets or process algebras [Val98], they only allow mod-
els with deterministic transitions [God96, CGP99] or acyclic state graphs
[FG05, SA06], they preserve only invariants [GFYS07, FG05], or they only
support bug finding [KWG09a].

We present a novel take on POR, to ease its application to rich specifica-
tion languages. We call our approach local POR (LPOR) because locality is
key to simplify the verification of POR conditions for designing new model
checkers; in fact, the simplicity of LPOR allows an easy development of new
PO reductions. LPOR consists of an input interface (accessible by the user
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of LPOR) and a POR algorithm (hidden from the user).1 At the interface
of LPOR, the user defines locally “interfering” transitions, whose soundness
can be verified more easily than the global (path-based) soundness condi-
tions in other POR approaches. This local information is sufficient for our
LPOR algorithm to efficiently compute sound partial-order reductions. In
the example of Figure 4.1, the user can define and verify the following local
interferences: t2 can enable t3 (when executed in s), and t1 is dependent on
(is disabled by) t3 (when executed in s2). Based on this information, the
LPOR algorithm knows that t1 and t2 are non-interfering and can establish

that exploring only the paths s
t2−→ s2

t1−→ s12 and s
t2−→ s2

t3−→ s3 preserves
all deadlock states, a fundamental preservation property used by LPOR to
preserve more complex properties.

Our contributions around LPOR are the following:

• LPOR stubborn set algorithm LPOR’s interface (Section 4.2) con-
tains two intuitive relations between transitions, namely can-enable and
dependency. Each of these relations is local, i.e., they are defined given
paths of at most length two. Transitions that are not included in these
relations are considered to be non-interfering and are used by LPOR
to achieve reduction. The user has to prove the non-interferences cor-
rect, but it is sound to declare transitions as interfering even when
they are not. An important feature of LPOR is that non-interfering
transitions are completely configurable, while other approaches conser-
vatively assume certain transitions to be interfering, e.g., transitions
executed by the same process [CGP99]. LPOR also supports necessary
enabling transitions, which we generalize from [God96]. Although the
definition of such transitions does involve paths, they naturally appear
in high-level languages.

The LPOR algorithm (Section 4.3) computes stubborn sets statically
[Val98] (see Section 2.5) and supports general transition systems with-
out assumptions about the state graph or transitions. Intuitively, a
stubborn set is a large enough subset of the transitions enabled in the
current state, e.g., {t2} in s in Figure 4.1, such that no deadlock state
remains unvisited if only transitions in stubborn sets are executed.
LPOR leverages stubborn sets to preserve properties in the temporal
logic CTL∗−X . LPOR is fast thanks to a novel pre-computation scheme,
which allows to compute information needed by LPOR once, before
model checking, and then to repeatedly use it in every new state.

1In the remainder of this chapter, by user we mean the user of LPOR and not neces-
sarily the end-user of the model checker.
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• Applying LPOR to message-passing We instantiate the relations
at LPOR’s interface for general message-passing systems (Section 4.4).
This example also shows that the use of LPOR is straightforward for
domain experts.

We briefly discuss two additional LPOR application examples. First,
we use a Petri net example in explaining the LPOR algorithm (Section
4.3.1). Second, we show how the POR approach used in the SPIN
model checker can be expressed in LPOR terms (Section 4.7).

• Experiments and comparison with DPOR We implement LPOR
as an openly available Java library called Java-LPOR (Section 4.5)
that easily integrates with existing model checkers. As an example use
case of Java-LPOR, we implement our message-passing instantiation of
LPOR in the Java Pathfinder-based model checker MP-Basset (Chapter
6).

We evaluate the efficiency of LPOR using message-passing examples.
Our experiments show that LPOR achieves significant (up to 94%)
time and space reductions for model checking real-world fault-tolerant
message-passing protocols (Section 4.6). Furthermore, countering cur-
rent notions of dynamic POR being superior to static POR [FG05],
we also show that LPOR (implementing static POR) competitively
improves upon dynamic POR without entailing the constraints of dy-
namic POR.

4.2 The LPOR Interface: Interfering Transi-

tions

The typical application scenario of LPOR is adding POR to the analysis
of systems written in some specification language. Assume that a model
checker implementing the LPOR algorithm (Section 4.3) is available for this
language. We will show in Chapter 6 how we support the integration of
LPOR into existing model checkers. Now, the user, an expert in the domain
of the language, must provide two inputs at LPOR’s interface. First, unless
it is not already available, she must define the semantics of the language
in terms of a state transition system. Second, based on her domain-specific
knowledge, she defines and proves two intuitive relations containing pairs of
interfering transitions. These relations are local considering paths of length
at most two. LPOR leverages a third optional relation, which is not strictly
local, but naturally appears in high-level languages.
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Can-enable relation A transition t can enable another transition t′, if in
at least one state where t′ is disabled, executing t results in a state where
t′ is enabled. We say that a relation is can-enabling if it is a superset of all
pairs (t, t′) of transitions such that t can enable t′.

Definition 15. A relation ce ⊆ T × T is can-enabling iff ce ⊇
{(t, t′) | ∃s, s′ ∈ S : s

t−→ s′ ∧ t′ 6∈ enabled(s) ∧ t′ ∈ enabled(s′)}.

Dependency relation We define that t′ is dependent on t if both t and t′

are enabled in some state (t and t′ are co-enabled) and either (a) t can disable
t′ or (b) their subsequent execution in different orders results in different
states (t and t′ do not commute). By convention, t is not dependent on
itself. We say that two transitions are dependent (independent) if one (none)
of them is dependent on the other. Note that the following relation is not
necessarily symmetric.

Definition 16. A relation dep ⊆ T ×T is a dependency relation, iff dep ⊇
{(t, t′) | t 6= t′ ∧ ∃s, s′ ∈ S : t, t′ ∈ enabled(s) ∧ s t−→ s′ and either (a)

t′ 6∈ enabled(s′) or (b) ∃s′′ ∈ S : s
tt′−→ s′′ and not s

t′t−→ s′′}.

NET relation Next, we define a relation that contains a pair of transitions
t and t′ if t′ is a necessary enabling transition (NET) for t, i.e., t′ must be
executed at least once for t to be enabled (adapted from necessary enabling
sets [God96]). Note that this relation is based on paths. It is purely optional
though as it is sound to not include pairs of transitions in a NET relation or,
in particular, to define an empty one. Similarly, it is always sound to include
a pair of (even non-interfering) transitions in can-enabling and dependency
relations.

Definition 17. A relation net ⊆ T × T is a necessary enabling transition
(NET) relation, iff net ⊆ {(t, t′) | ∀s0 ∈ S0,∀s ∈ S,∀t1, . . . , tn ∈ T : if

s0
t1t2...tn−−−−→ s ∧ t ∈ enabled(s), then t′ = ti for some 1 ≤ i ≤ n}.

Note that the transitive closure of every NET relation is also a NET
relation. Every user-provided NET relation can thus be extended to its
closure.

4.3 The LPOR Stubborn Set Algorithm

Now we present LPOR, our local partial-order reduction algorithm. For-
mally, LPOR computes stubborn sets [Val98], which are subsets of enabled(s)
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in a state s such that it is sufficient to explore transitions in such a sub-
set. Stubborn sets are formalized via two constraints called D1 and D2 (see
Section 2.5). LPOR can be configured to preserve properties from simple
deadlock-freedom to arbitrary LTL−X and CTL∗−X specifications. LPOR
can be adapted to similar POR semantics such as ample [CGP99] or per-
sistent sets [God96]. We chose stubborn sets because they allow the most
relaxed system model. For example, both persistent and ample sets assume
deterministic transitions.

LPOR is a static POR algorithm, i.e., given a state s of the system,
LPOR outputs a stubborn set in s without further exploration (as opposed
to dynamic POR [FG05]). Therefore, LPOR can be implemented in stateful
(even parallel [SD01]) explicit-state model checking. We present a simplified
variant of the LPOR algorithm that assumes that the search path, i.e., a
path from an initial state to s, is available. The search path can be ob-
tained by depth-first search. However, a generalized form of LPOR makes
no assumption about the search path and is compatible with both depth and
breadth-first search. Therefore, it is amenable to symbolic (Binary Decision
Diagram-based) implementations [ABH+01] as well. The generalized LPOR
algorithm is presented Appendix B.1.

We first present the core LPOR algorithm and sketch its correctness,
i.e., LPOR indeed computes stubborn sets (Section 4.3.1). Then, we discuss
some optimizations of LPOR (Section 4.3.2) and the preservation of general
temporal properties (Section 4.3.3).

4.3.1 The Stubborn Set Algorithm

As stated before, the use of NET in LPOR is optional. We therefore start
out by explaining the LPOR algorithm (Algorithm 3) without the NET op-
timization where net = ∅ (the third of LPOR’s three input relations – see
Section 4.2).

Forward enable sets LPOR uses two helper functions
FwdEnableSetIdx (t, t′) and FwdEnableSet(t) (Algorithm 2), whose re-
turn values can be pre-computed (before model checking), because they are
independent of the state. The first function returns true if t can be the first
in a sequence of enabling transitions that enables another transition t′′ on
which t′ is dependent (lines 2.2-2.4). FwdEnableSetIdx is defined based on
the forward enable set FwdEnableSet(t) of t, which contains those transitions
that can be enabled through a sequence of enabling transition starting with
t (lines 2.5-2.15). More precisely, the set contains all transitions t′ such
that (t, t′) is in the transitive closure of a can-enabling relation ce. The set
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Algorithm 2: FwdEnableSet(t) and FwdEnableSetIdx (t, t′) are pre-
computed for every t, t′ ∈ T .

2.1 function FwdEnableSetIdx (t, t′)
2.2 forall the (t′′, en) ∈ FwdEnableSet(t) do
2.3 if (t′′, t′) ∈ dep then return true;
2.4 return false;

2.5 function FwdEnableSet(tr)
2.6 Tr ′ ← {(tr , ∅)};
2.7 do
2.8 Tr ← Tr ′ ;
2.9 forall the t1 ∈ T do

2.10 forall the (t, en) ∈ Tr do
2.11 if (t, t1) ∈ ce then
2.12 en1 ← en ∪ {t2 | (t1, t2) ∈ net};
2.13 Tr ′ ← Tr ′ ∪ {(t1, en1)};
2.14 while Tr 6= Tr ′;
2.15 return Tr ;

contains tuples of the form (t, en) where t is a transition and en is a set of
transitions, which is used in the NET-optimized version of LPOR. If the
NET relation is empty, en is also empty (line 2.12). We now explain how
LPOR uses these two functions to compute stubborn sets.

Stubborn set computation In addition to the relations ce, dep, and
net, LPOR has three parameters: (1) a transition tI ∈ enabled(s), called
initial transition, which is in the stubborn set, (2) the current state s, and
(3) the search path τ ∈ T ∗ (for Algorithm 3, it suffices that τ is a set
containing t1, . . . , tn). From D2, no stubborn set in s can be empty unless
enabled(s) = ∅. Conceptually, LPOR proceeds, similarly to other static POR
algorithms, by applying different rules of the form “if t is in the stubborn set,
then transitions t1, t2, . . . must also be in the set”. In this case, we say that
t1, t2, . . . are added on behalf of t. LPOR maintains two sets of transitions:
Stub, which represents the stubborn set (line 3.1) and Trans, which contains
a transition t in Stub such that new transitions might be added to Stub on
behalf of t (line 3.2). Therefore, LPOR adds transitions to Stub until Trans
is empty (lines 3.3-3.14) and Stub is returned (line 3.15). We now explain
how transitions are added on behalf of a transition t in Trans.

First, we add those enabled transitions t1 that t is dependent on (lines
3.7-3.9). We add t1 if either t1 and t do not commute (disallowed by D1)
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Algorithm 3: The LPOR(tI , s, τ) stubborn set algorithm for a state
s ∈ S, an initial transition tI ∈ enabled(s), and a current search path
τ ∈ T ∗.

3.1 Stub ← {tI};
3.2 Trans ← {tI};
3.3 while Trans 6= ∅ do
3.4 choose t ∈ Trans ;
3.5 Trans ← Trans \ {t};
3.6 forall the t1 ∈ enabled(s) \ Stub do
3.7 if (t1, t) ∈ dep then
3.8 Stub ← Stub ∪ {t1};
3.9 if dep is non-transitive then Trans ← Trans ∪ {t1};

3.10 else if FwdEnableSetIdx (t1, t) then
3.11 if ∃(tdep, en) ∈ FwdEnableSet(t1) : (tdep, t) ∈ dep
3.12 ∧(en = ∅ ∨ ∀t2 ∈ en : (t2 6∈ Stub ∨ t2 ∈ τ)) then
3.13 Stub ← Stub ∪ {t1};
3.14 Trans ← Trans ∪ {t1};
3.15 return Stub;

or it can disable t (which can violate D2). Note that dep does not have to
be symmetric as D1 allows that t and t1 do not commute. We will show an
example of this case in a message-passing instance of LPOR (Section 4.4).

There is another way to violate the stubborn set condi-
tions: an enabled transition t1 outside the stubborn set can start
a sequence of enabling transitions that enables another transi-
tion on which t is dependent (D1). This can only happen if
FwdEnableSetIdx (t1, t) is true (line 3.10). In this case, we add t1 to
the stubborn set (line 3.13). Note that the condition in lines 3.11-3.12 is
trivially true if LPOR is run without NET optimization because the en-sets
are empty.

In both previous cases, t1 is added to Trans (line 3.9 and 3.14) so that
LPOR can verify whether new transitions must be added on behalf of t1.
We discuss the optimization for transitive dependency relations (line 3.9) in
Section 4.3.2.

NET optimization Stubborn set computation can benefit from the NET
relation if more than one transition t2 is necessary for some transition t1 to
be enabled. In this case, a stubborn set does not need to contain all such
t2 but only one that has not been executed yet. The NET optimization
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Figure 4.2: A Petri net example.

cannot be fully pre-computed as the check whether “a transition has not
been executed yet” can only be carried out during the search. However, we
can store these t2 transitions in the en-field associated with t1. It is key to
our NET optimization that the content of en-fields is propagated along the
can-enabling relation, i.e., if t can enable t1 and (t, en) and (t1, en1) are in a
forward enable set, then en ⊆ en1 (line 2.12). This is because the transitions
necessary to be executed for t to be enabled are, transitively, also necessary
to be executed for t1 to be enabled.

Then, using the notation of Algorithm 3, if some t2 is in the en-field
associated with a transition tdep, we can verify, given the current state s,
that “t2 has not been executed yet”. Assume that (tdep, en) is in the forward
enable set of t1 and the conditions in lines 3.10-3.11 are true. Then, we
only add t1 to the stubborn set if either t2 is not in the stubborn set or t2
has already been executed, i.e., is contained in the model checker’s current
search path τ (line 3.12). Note that, for some transition t, (t, en) can be in a
forward enable set multiple times with different en. This is possible if t can
be enabled by different sequences of transitions.

Example We illustrate the LPOR algorithm on a sim-
ple Petri net example (Figure 4.2). For this net,
ce = {(t3, t2), (t4, t3), (t5, t3)}, dep = {(t1, t2), (t2, t1)}, net =
{(t4, t3), (t5, t3)} are valid enabling, dependency, and NET relations,
respectively. Note that we omit the possible (t3, t2), (t4, t2), and (t5, t2)
from net for this example. Figure 4.2 depicts the initial token marking s;
the set of enabled transitions in s is {t1, t4, t5}. Consider a run of LPOR
in s with initial transition t1, i.e., LPOR(t1, s, ()). As t2 is disabled in
s, no transition is added to the stubborn set in lines 3.7-3.9. Supposed



64 CHAPTER 4. LOCAL PARTIAL-ORDER REDUCTION

that transitions are processed by ascending index, t4 is added to the
stubborn set because FwdEnableSet(t4) = {(t4, ∅), (t3, {t4, t5}), (t2, {t4, t5})},
(t2, t1) ∈ dep, and t4 and t5 are both not in the stubborn set.
However, thanks to the NET optimization t5 is not added because
FwdEnableSet(t5) = {(t5, ∅), (t3, {t4, t5}), (t2, {t4, t5})}, t4 already is the stub-
born set, and τ is empty. As a result, LPOR(t1, s, ()) = {t1, t4} ⊂ enabled(s).

Correctness The next theorem states that LPOR indeed generates stub-
born sets. The proof of the theorem can be found in Appendix B.2. A sketch
of the proof is given below.

Theorem 5. Let (S, T, S0) be an STS and ce,dep, and net a can-enabling,
dependency, and NET relation, respectively. Then, for all s ∈ S, tI ∈
enabled(s), and τ ∈ T ∗ with ∃s0 ∈ S0 : s0

τ−→ s, LPOR(tI , s, τ) is a stubborn
set.

Proof sketch. A key property of LPOR is that, when executed in a state
s = s0, every transition t in LPOR(tI , s, τ) is independent of all transi-
tions t1, t2, . . . , tn that are in a path starting from s and that are outside
LPOR(tI , s, τ). To show that D1 and D2 hold, consider the paths starting
from s0, as illustrated in Figure 4.3.

We first show that t is a key transition (D2). Indirectly, assume that ti
for some 1 ≤ i ≤ n can disable t, i.e., t 6∈ enabled(si). Therefore, t must be
dependent on ti, a contradiction by the previous property.

As t is a key transition, t ∈ enabled(si) for every 1 ≤ i ≤ n. Let s′n be a

state such that sn−1
tn−→ sn

t−→ s′n. From the above property, t is independent

of tn, so there exists s′n−1 such that sn−1
t−→ s′n−1

tn−→ s′n. Repeating this rule

n times, we obtain a path s
t−→ s′

t1−→ s′1
t2−→ ...

tn−1−−→ s′n−1
tn−→ s′n, which proves

D1.

Worst-case complexity Algorithm 3 is guaranteed to terminate (proof
in Appendix B.2) and has worst-case time complexity O(|T |32|T |) with and
O(|T |2) without NET optimization. Despite the worst-case exponential over-
head of the NET optimization, our experiments show that LPOR with NET
can achieve significant reductions of model checking time (Section 4.6).

We now sketch the idea behind the above complexity results. Assume
that checks for set inclusion and adding/removing elements to/from sets
take constant time. The basic quadratic time complexity in |T | is due to
(1) Trans containing at most |T | transitions (line 3.3), and (2) adding at
most |T | transitions to the stubborn set on behalf of every transition in
Trans (line 3.6). Note that every transition in Trans is also in Stub and
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Figure 4.3: Illustration of the proof of Theorem 5.

no transition is ever removed from Stub. Therefore, the condition in line
3.6 and that enabled(s) is fixed throughout an execution of Algorithm 3
guarantee that every transition is added at most once to Trans. Without
NET optimization, the condition in lines 3.11-3.12 is always true. Therefore,
no computation overhead is added in this case. With NET optimization,
the condition requires to range through possibly each element in a forward
enable set and check if this element is in the stubborn set. As elements of
the forward enable set are tuples of a transition and a subset of transitions,
the maximum size of such a set is |T |2|T |.

4.3.2 Optimizations and Possible Extensions

First, if the dependency relation is transitive, then the enabled transition t1
does not have to be added to Trans (line 3.9). This is sound because all
transitions that would be added to the stubborn set on behalf of t1 are also
added on behalf of t.

LPOR is a non-deterministic algorithm with three main sources of non-
determinism, each of them possibly affecting the size of the stubborn set: (1)
the selection of the initial transition, (2) the selection of t in line 3.4, and
(3) the order in which forall iterates through the transitions in line 3.6. The
tuning of these parameters in such a way that they result in small stubborn
sets depends on the analyzed system.

We improve the NET-optimization by making it state-conditional, i.e., t′

is a NET for t in a state s if t is not enabled in s and t′ must be in any path
starting from s before t can be enabled. The details of this optimization
can be found in Appendix B.1. While state-conditionality can increase the
achieved state-reduction, it also increases the time-overhead by limiting the
possibilities for pre-computation.

The NET optimization can be generalized to necessary enabling sets, i.e.,
for each transition t a set T ′ of transitions such that at least one transition in
T ′ must be executed for t to be enabled. This gives more flexibility compared
to LPOR where T ′ contains at most one transition.



66 CHAPTER 4. LOCAL PARTIAL-ORDER REDUCTION

LPOR computes strong stubborn sets (see Section 2.5), which implies
that all transitions that can disable a transition t in the stubborn set are
also included in the set. In general, it is possible that a transition is removed
from a strong stubborn set such that the resulting set is stubborn in the
weak but not in the strong sense. However, an algorithm computing weak
stubborn sets can incur a higher time overhead; in LPOR, this would require
to refine dependency in terms of “can disable” and “might not commute”
relations.

4.3.3 Preserving Temporal Logics with LPOR

Constraints D1 and D2 suffice to preserve deadlocks but they are too weak
for preserving invariants, a simple but useful property in program analy-
sis. For the preservation of invariants, stubborn sets must satisfy proviso
and visibility, which can be implemented independently of the semantics of
the transitions [God96, NG97, Val98, CGP99]. Proviso solves the ignorance
problem and visibility guarantees that states missed in the reduced state
graph do not interfere with the property.

Preserving LTL−X with LPOR If transitions are deterministic and the
stubborn sets satisfy proviso and visibility, then the reduced graph preserves
any property expressible in LTL−X (Linear Temporal Logic without the next
time operator). If transitions can be non-deterministic, then an additional
constraint called D3 must be satisfied [Val98]. Intuitively, D3 guarantees
that infinite paths are preserved by POR. If transitions are deterministic,
then D1 and D2 imply D3. However, D3 has to be separately established if

transitions can be non-deterministic: let σ = s
t1t2...−−−→ be an infinite path in

the unreduced graph and t a key transition in s in a stubborn set stub(s).
Assume that t1, t2, ... are outside stub(s). Since t is a key transition, there is

a path s
t1t2...tnt−−−−−→ sn for every n > 0. It is possible that although for every

n > 0 there is path σn = s
tt1t2...tn−−−−−→ sn (from D1), every such σn proceeds

through different states depending on n. Therefore, a cycle in σ might not

correspond to a cycle in σn and, thus, there exists no infinite path s
tt1t2...−−−→.

If the dependency relation is symmetric, LPOR returns stubborn sets
which satisfy D3 (the proof of this property can be found in Appendix B.2).
The key to this result is the following property of LPOR (which is also used to
prove D1 and D2) – we call this property commutativity : For all transitions in
σn it holds that (ti, t) 6∈ dep, i.e., t is independent of ti. If dep is symmetric,
then ti is also independent of t, which implies that t cannot disable ti. As

a result, tn+1 is enabled in sn and there is σn+1 = s
tt1t2...tn−−−−−→ sn

tn+1−−→ sn+1.
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Now, σn and σn+1 proceed through the same prefix of states resulting in the
preservation of infinite paths.

Preserving CTL∗−X with LPOR For the preservation of CTL∗−X (Com-
putational Tree Logic without the next operator) a restrictive condition called
NB is needed [Val98]. If all transitions are deterministic, NB requires that
non-trivial stubborn sets contain exactly one “invisible” transition. In case
of non-deterministic transitions, NB additionally requires that transitions in
such stubborn sets are super-deterministic. Informally, a super-deterministic
transition is deterministic, cannot be disabled by other transitions, and com-
mutes with the execution of other transitions. The commutativity property
of LPOR directly implies that stubborn sets computed by LPOR that con-
tain a single deterministic and invisible transition satisfy NB. As a result, if
not all transitions are non-deterministic, then LPOR can achieve reduction
whilst preserving properties written in CTL∗−X .

4.4 A Message-Passing Instantiation of

LPOR

Assume that message-passing systems are modeled in terms of M models
(Section 3.1.3). As the semantics of these models is given as a state transition
system, they are amenable for LPOR. First, we extend the syntax of the
models to simplify the discussion (Section 4.4.1 – a detailed formalization of
this extension can be found in Appendix B.4) and define the LPOR relations
from Section 4.2 for message-passing systems (Section 4.4.2). The simplicity
of these definitions shows that the use of LPOR is indeed straightforward for
domain experts.

4.4.1 Extended Syntax of Message-Passing System
Models

Every transition t can be associated with t.MI (and t.MO), the set of messages
possibly received (sent) by t, and t.I (and t.O), the set of processes that t can
receive (and send) messages from (to). We assume the local state of a process
to be an assignment of values to local variables. Given a variable x, t is a
write transition with respect to x and we write x ∈ W (t) if t can change the
value of x in some state. Similarly, t is called a read transition (x ∈ R(t)) if
the guard of t depends on the value of x. As a special case, a write transition
t is an increment transition (x ∈ Inc(t)) if t always increases the value of x.
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Increment transitions are relevant in the context of timestamp-compare read
transitions t (x ∈ CompTS (t)), a class of transitions common in concurrent
systems, e.g., Paxos. Such a transition t uses x to store a “timestamp” and
compare it with the timestamps of incoming messages. The guard of t can
be true only if the timestamp of the message is greater or equal than the
current value of x.

The sets R(t), W (t), Inc(t), and CompTS (t) can be conservatively deter-
mined by lightweight static analysis. Note that it is always sound to exclude
variables from these sets.

4.4.2 LPOR Relations for Message-Passing Systems

Can-enable relation We say that a transition t can locally enable another
transition t′ of the same process if t is a write and t′ is a read transition with
respect to some common variable x. An exception to this rule is if t is
an increment and t′ is a timestamp-compare transition with respect to x.
In this case t cannot enable t′ because a process sends no new message to
itself and the timestamp x is increased by t. Formally, can-local-enable =
{(t, t′) | id(t) = id(t′)∧∃x ∈ W (t)∩R(t′) : x 6∈ Inc(t)∩CompTS (t′)}, where
id(t) denotes the process executing transition t.

A transition t can remotely enable a transition t′ if it may send messages
that can be received by t′. A necessary condition for this to happen is that t
and t′ are executed by different processes (id(t) 6= id(t′)), that transition t can
send a message to the process executing t′ (id(t′) ∈ t.O), that transition t′ can
receive a message from the process executing t (id(t) ∈ t′.I), and that t can
send a message that can be received by t′ (t.MO ∩ t′.MI 6= ∅). Therefore, we
define that can-remote-enable = {(t, t′) | id(t) 6= id(t′)∧ id(t′) ∈ t.O∧ id(t) ∈
t′.I ∧ t.MO ∩ t′.MI 6= ∅}.

Definition 18. Given a message-passing system, MP-can-enable =
can-remote-enable ∪ can-local-enable.

Dependency relation A transition t′ is dependent on t if both are exe-
cuted by the same process or if t can remotely enable t′. The intuition is
that local transitions may change the state of the same process and, if t can
remotely enable t′, then t can send a message that is processed by t′. Our
dependency relation can be refined by excluding pairs of transitions that are
executed by the same process and access a disjunct set of variables. This is a
refinement that we do not consider in this thesis. Note that the following re-
lation can be asymmetric, which enables LPOR to compute smaller stubborn
sets.
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Definition 19. Given a message-passing system, MP-dependency =
{(t, t′) | t 6= t′ ∧ id(t) = id(t′)} ∪ can-remote-enable.

NET relation The following NET relation is based on the observation that
a transition t with t.I 6= ∅ cannot be enabled unless a process sends a message
to process id(t). For example, imagine that t represents a function that
requires input from a majority of processes. This implies that |t.I| = dn

2
e,

i.e., a majority of the number of all processes n. Then, t can be enabled only
after each of these processes has sent a message to process id(t).

Note that we have to check two additional conditions to make sure that
a transition is indeed a NET for t. Firstly, t is required to be input-
deterministic, i.e., t always consumes a message from every process in t.I.
Otherwise, t can possibly be enabled even if a process in t.I sends no
message to process id(t). Secondly, it is possible that i ∈ t.I and pro-
cess i has multiple transitions, say t′ and t′′, that can enable t (formally,
id(t′′) = id(t′) ∧ t′′ 6= t′ ∧ {(t′, t), (t′′, t)} ⊆ can-remote-enable). In this case,
neither t′ nor t′′ is necessarily a NET for t.

The NET relation is defined below. In Appendix B.1, an example is
shown of how the content of the channels can be used to make this relation
state-conditional.

Definition 20. Given a message-passing system, MP-NET =
{(t, t′) | t is input-deterministic ∧ id(t′) ∈ t.I ∧ ∀(t′′, t) ∈ can-remote-
enable: t′′ = t′ ∨ id(t′′) 6= id(t′)}.

The next theorem states that the above relations are indeed LPOR re-
lations as of Section 4.2, a task that must be carried out by the user. The
proof of this theorem can be found in Appendix B.3.

Theorem 6. Given a message-passing system, MP-can-enable, MP-
dependency and MP-NET are can-enabling, dependency, and NET relations,
respectively.

4.5 Java-LPOR: An LPOR Implementation

We implement LPOR in a Java library, called Java-LPOR. Java-LPOR can
be integrated into any explicit state model checker. The source code of Java-
LPOR is available for download2.

2http://www.deeds.informatik.tu-darmstadt.de/peter/Java-LPOR.jar
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The LPOR algorithm currently implemented by Java-LPOR computes
stubborn sets satisfying D1, D2, and the additional constraint regarding vis-
ible transitions [Val98] (cf. Section 4.3.3). Visible transitions are transitions
that might interfere with the target property; the visibility constraint pre-
vents non-trivial stubborn sets from including visible transitions.

The main steps of integrating Java-LPOR are as follows. As a running
example, we show how we used Java-LPOR to implement message-passing
LPOR from Section 4.4.

1) Specifying the transitions: Before the search can start, all transitions
of the system must be provided as Java classes.

2) Implementing the LPOR relations: Java-LPOR exports LPOR’s rela-
tions via the following interface. This generic interface is parametric in the
class T of transitions.

public interface LPORRelations<T> {

public boolean dep(T t1,T t2);

public boolean canEnable(T t1,T t2);

public boolean net(T t1,T t2);

}

For example, the following snippet shows the implementation of our de-
pendency relation for message-passing systems (compare with Definition 19).
The method t1.isLocal(t2) returns true iff id(t1) = id(t2).

public boolean dep(TransitionMP t1,TransitionMP t2){

return !t1.equals(t2) &&

t1.isLocal(t2) || canRemoteEnable(t1, t2);

}

3) Setting up LPOR: For the preservation of invariants, Java-LPOR re-
quires to identify visible transitions. In our current implementation, the user
is required to annotate visible transitions using the following interface.

public interface VisibilityChecker<T> {

public boolean isVisible(T t);

}

Given the list of all transitions trans, the LPOR relations rel, and a
class vis for checking visible transitions, an LPOR utility instance can be
created. Its constructor is responsible for pre-computing the forward enable
sets. The instance of LPORUtil can then be used to compute stubborn sets for
a particular state by invoking the LPOR method. As arguments, the method
requires an initial transition and the list of enabled transitions. Transitions
are identified by their index in trans.
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public class LPORUtil<T>{

public LPORUtil(List<T> trans,

LPORRelations<T> rel,

VisibilityChecker<T> vis){

this.trans=trans;

this.rel=rel;

this.vis=vis;

precompute();

}

public int[] LPOR(int t_I, int[] enabledTrans){

...

}

...

}

4) Computing stubborn sets: Finally, the following snippet shows how the
set of transitions that must be executed in a state is pruned by a call to the
LPOR method of an LPORUtil instance.

enabledTrans=lporUtil.LPOR(initTrans, enabledTrans);

4.6 Evaluating LPOR

We evaluate LPOR by model checking the fault-tolerant message-passing
protocols from Section 3.6.2. The transitions of the models of these protocols
are refined using the combined split strategy. We use the LPOR relations for
message-passing systems (Section 4.4) and the Java-LPOR implementation
of LPOR (Section 4.5), all integrated within the MP-Basset model checker
(see Chapter 6).

Comparison with Dynamic POR We compare LPOR with dynamic
POR (DPOR) [FG05]. We explain how DPOR differs from static POR
(SPOR) in Section 4.7. The benefit of DPOR is that it can be less conser-
vative about the selection of paths that are explored in the reduced search.
However, our experiments show the efficiency of LPOR over DPOR, improv-
ing on the reductions of a message-passing DPOR implementation.

Like any SPOR algorithm, LPOR can be soundly combined with DPOR
for further reduction [FG05]. This must respect the restrictions imposed by
DPOR, however. For example, DPOR assumes the absence of cycles in the
state space. We only consider protocol examples with acyclic state spaces
for a fair comparison.
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We compare LPOR with the original DPOR algorithm by Flanagan and
Godefroid [FG05] because this preserves the specifications (properties) of our
example protocols. For example, the DPOR variant in [SA06] only guarantees
that every transition executed in the unreduced search is also executed in the
reduced one, which is too weak of a preservation given the example properties.

We express the specifications of the example protocols using invariants.
To preserve invariants, we use LPOR computed stubborn sets with the addi-
tional constraint regarding visible transitions (discussed in Section 4.5). This
constraint can also be implemented in DPOR such that if a visible transi-
tion is executed in a state during the search, then all enabled transitions in
this state will be executed. For comparing LPOR with DPOR, we utilize
the Basset model checker [LDMA09], which implements an adaptation of
Flanagan and Godefroid’s DPOR algorithm for actor programs. The actor
semantics used in Basset is similar to our model of message-passing except
that quorum transitions are not supported. Therefore, we extended Basset’s
DPOR implementation with quorum transitions: When a process executes a
quorum transition, the vector clock of the process will be updated to be the
maximum of (1) its current value and (2) the values of the vector clocks of
the senders of the messages, where the values correspond to the time of send-
ing the message. In original Basset, this computation involves one sender as
every transition consumes a single message.

Experiment setup We run our experiments in a DETERlab testbed
[DET] on 2GHz Xeon machines. We compare LPOR with the unreduced
models and DPOR, our extension of Basset’s DPOR implementation as ex-
plained above. We integrated both this DPOR algorithm and LPOR within
MP-Basset.

For fair comparison, both of our POR implementations use the same
heuristic for initial transitions.3 In this heuristic, transitions are preferred
that either start a new instance of the protocol or, if there is no such tran-
sition, complete no ongoing instance.4 Intuitively, the execution of such a
transition “delays” the completion of an instance, because a completed in-
stance usually interferes with the specification, thus, disabling partial-order
reductions. This heuristic shows good performance in our LPOR experi-
ments. Surprisingly, our heuristic suggests the opposite of the transaction
strategy proposed in [BGG06]. We speculate that the difference lies in that
our target protocols allow more concurrency than the cache coherence pro-

3This heuristic is used for the experiments in Section 3.6.2 too.
4An instance of Paxos consists of Phases 1(a)-2(b) including learning, the multicast of

a message in Echo Multicast, and a read or write operation in regular storage.
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tocol analyzed in [BGG06], where the processing of further client requests
is blocked until the centralized cache controller (assumed to be fault-free)
completes the ongoing instance of the protocol started by another client.

Each protocol experiment is run with each of the the following POR
algorithms:

• None: Unreduced search (no POR is used).

• DPOR: Flanagan and Godefroid’s DPOR algorithm [FG05] augmented
with quorum transitions and the visible transitions constraint. DPOR
is run as stateless search because DPOR can be unsound if state com-
parison is used [FG05].

• LPOR stateless : The generalized LPOR algorithm run without state
comparison in MP-Basset.

• LPOR-NET : The generalized LPOR algorithm without NET optimiza-
tion (with state comparison).

• LPOR: The generalized LPOR algorithm (with NET optimization and
state comparison).

In addition to these POR settings, we conduct the following experiments:

• On-line/pre-computed forward enable sets : Each LPOR experiment is
run with on-line computed versus pre-computed forward enable sets
(see Section 4.3.1). If pre-computation is used, the measured model
checking time includes the time of pre-computation.

• Model Java Interface (MJI): We tune the efficiency of our LPOR im-
plementation by using (or not using) MJI within MP-Basset. The use
of MJI is discussed in details in Section 6.3.

Main results & trends The results of our experiments are shown in Ta-
ble 4.1. Similarly to previous experiments, we write “Verified” if the model
checker finds no bug, otherwise (in case of faulty protocols or wrong spec-
ifications) a counterexample (“CE”) is returned. The best result and the
corresponding POR algorithm is written in bold for each protocol experi-
ment. In buggy instances the search is stopped after finding the first bug.
Therefore, the number of visited states depends on the order in which tran-
sitions are executed in a state. This schedule can be different in DPOR
and LPOR. The times where forward enable sets are computed on-line (no
pre-computation) are written in parentheses.

We expand our protocol experiment setup compared to Section 3.6.2:
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• A new version of Paxos is added, called Faulty Paxos II, which contains
a subtle bug: An acceptor does not remember the highest-numbered
proposal it has ever accepted but only the last proposal it has accepted.
We remark that this bug manifests itself with at least three proposals,
as it was successfully validated by MP-Basset.

• New configurations of Echo Multicast are added. In addition, we use
a modified attack model in the configuration Multicast (2,1,2,1) to
further challenge the model checker: A Byzantine-faulty process is non-
deterministically changing between correct and faulty versions of the
protocol. As a result, the bug can only be found after longer search
(compare the results in Tables 3.3 and 4.1).

We observe the following trends:

• Fast bug finding with POR: The POR-based search finds bugs faster
than unreduced search and there is no clear winner between DPOR
and LPOR.

• Efficient LPOR: LPOR is highly efficient as shown by the exhaustive
search results (“Verified”) reducing the number of states by up to to
94% and search time by up to 90% – see register example.

• Efficient NET optimization: Although the additional online checks
in the NET optimization slow down LPOR (as discussed in Section
4.3.1), e.g., 74 states/sec versus 59 states/sec for exhaustive Multicast
(3,1,1,0), the additional state reduction adds up to reducing the total
model checking time. In fact, the NET optimization can be very effi-
cient by achieving additional space and time reductions of up to 87%
– see Multicast (4,1,1,0) exhaustive search result.

• LPOR outperforming DPOR: LPOR outperforms DPOR in all exhaus-
tive search experiments, even in stateless search where the benefit of
LPOR is not biased by the stateful optimization. In addition, LPOR
proves to be more time efficient than DPOR, i.e., the time overhead of
LPOR is smaller. For example, the stateless exhaustive runs of Register
(3,1) visit the same number of states but LPOR is faster.

We observe that a high number of concurrent quorum transitions in-
creases LPOR’s advantage over DPOR. Protocol settings where differ-
ent executions of one or more quorum transitions of the same process
can be co-enabled in a state contain significantly more sources of con-
currency. In these cases, LPOR is more efficient than DPOR because
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Protocol Property Result POR alg. MJI States Time (on-line)
(# proc.)

None - >38mil >192h
DPOR No 3,305,752 22h53m

Yes 6h14m (6h19m)
LPOR stateless No 1,118,341 8h51m (28h32m)

Paxos (2,3,1) Safety Verified Yes 6h59m (7h1m)
LPOR-NET No 1,130,234 8h51m (24h10m)

Yes 3h18m (3h21m)
LPOR No 548,061 4h45m (18h52m)
None - 238,790 1h34m

DPOR No 2,028 50s
Faulty Paxos (2,3,1) Safety CE LPOR stateless Yes 3489 1m16s

LPOR-NET Yes 3,489 1m43s
LPOR Yes 3,415 1m40s
None - >16mil >192h

DPOR No 21,177 12m31s
Faulty Paxos II (3,3,1) Safety CE LPOR stateless Yes 175,725 1h24m

LPOR-NET Yes 173,414 1h25m
LPOR Yes 173,414 1h28m
None - 287,638 47m

DPOR No 27,763 6m50s
Yes 5m57s (5m59s)

LPOR stateless No 27,763 6m17s (9m23s)
Register (3,1) Regularity Verified Yes 4m32s (4m32s)

LPOR-NET No 18,451 5m3s (7m1)
Yes 4m36s (4m36s)

LPOR No 18,451 4m55 (7m52s)
None - 7,619 1m52

DPOR No 2,344 40s
Register (3,1) Wrong CE LPOR stateless Yes 4,654 1m4s

regularity LPOR-NET Yes 3,497 55s
LPOR Yes 3,497 58s
None - 24,939,222 181h

DPOR No 11,235 3m56s
Register (3,2) Wrong CE LPOR stateless Yes 11,235 3m37s

regularity LPOR-NET Yes 6,987 2m32s
LPOR Yes 6,987 2m34s
None - 7,279 1m34s

DPOR No 7,945 1m46s
Yes 38s (38s)

LPOR stateless No 2,674 1m2s (1m47s)
Multicast (3,1,1,0) Agreement Verified Yes 1m29s (1m30s)

LPOR-NET No 6,607 2m7s (2m7s)
Yes 37s (37s)

LPOR No 2178 59s (1m46s)
None - 102,058 28m13s

DPOR No 183,265 44m45s
Yes 6m12s (6m17s)

LPOR stateless No 24,382 7m8s (11m2s)
Multicast (4,1,1,0) Agreement Verified Yes 26m26s (26m37s)

LPOR-NET No 94,186 29m32s (31m15s)
Yes 3m34s (3m39s)

LPOR No 12,494 5m4s (9m32)
None - 7,543 3m32s

DPOR No 4,890 2m8s
Multicast (2,1,2,1) Wrong CE LPOR stateless Yes 4,890 1m57s

agreement LPOR-NET Yes 2,139 1m4s
LPOR Yes 2,139 1m47s

Table 4.1: Performance results of LPOR implemented within MP-Basset.
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concurrently executed quorum transitions within a process leads to the
addition of backtracking points in DPOR [FG05, SA06].

• Varying pre-computation gains: The benefit of pre-computation is sig-
nificant when our LPOR implementation is not using MJI calls. The
pros and cons of using MJI are discussed in Section 6.3. We observe a
higher relative gain of using pre-computation in NET optimized LPOR.
The reason is that forward enable sets containing non-empty en-fields
(in the NET optimized case) tend to be larger, thus, their computation
takes longer.

The reason why the MJI implementation does not greatly benefit
from pre-computation for our particular protocol examples is two-fold:
Firstly, lines 3.10-3.14 in LPOR (Algorithm 3) are executed in a rela-
tively small number of states. Secondly, the body of the do-while loop
in the forward enable set computation (Algorithm 2) is executed only
a few (1-2) times during an average invocation of FwdEnableSet.

4.7 Related Work

The basic structure of the LPOR algorithm is similar to Godefroid’s stubborn
(and persistent) set algorithms [God96], which start with a transition and
keep adding new transitions using the dependency and can-enabling relations
until the current set of transitions is not stubborn. An application of these
algorithms to a new language is only possible after a translation of this
language into a specific language used in [God96], which specifies processes
communicating via shared objects. Transitions in this language are assumed
to be deterministic. Furthermore, the algorithms in [God96] do not support
pre-computation. The ample set algorithms in [CGP99, HP94, Hol03] also
restrict to process-based systems and deterministic transitions. Moreover,
they conservatively assume that a non-trivial ample set consists of all enabled
transitions of a particular process.

Promela is a general language with explicit support for multi-process
systems and message-passing. SPIN is a widely-used model checker for spec-
ifications written in Promela [Hol03]. SPIN supports a specific form of POR,
which is based on the observation that transitions t1 and t2 are indepen-
dent if they are from different processes, and t1 is the only transition writing
to (or reading from) a FIFO channel (exclusive write or read, respectively)
[HP94, Hol03]. Such interferences can be easily expressed in LPOR by ex-
cluding (t1, t2) and (t2, t1) from the dependency relation. We note that in the
description of [HP94], t1 and t2 are considered “independent” only in states
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where the channel is non-empty (non-full). This is because their definition
of dependency includes that a transition can enable another transition. In
the sense of Definition 16, t1 can enable read (send) transitions but t1 and t2
are (always, i.e., state-unconditionally) independent.

It is possible to give a graph theoretic implementation of LPOR as pro-
posed in [Val98]. In this approach, the vertices of the graph are transitions
and t is connected to t1 if t1 needs to be added to the stubborn set on behalf
of t. Then, certain vertices of this graph, e.g., included in properly selected
strongly connected components, correspond to stubborn sets.

Dynamic POR (DPOR) [FG05] is a POR implementation which com-
putes a persistent set in some state s gradually while the successors of s are
explored. In this way the persistent set algorithm can learn about interfering
transitions and needs not to guess them as in static POR. In other words,
DPOR explores future paths instead of guessing them. However, DPOR also
makes static assumptions about co-enabled dependent transitions. Further-
more, DPOR is inherently a depth-first search, it needs to know the sequence
of transitions in the current path (which is not straightforward in parallel
model checking [SD01]) and can be unsound with stateful model checking
[YCGK08].

Operation refinement from [God96] (and, in general, transition refinement
from Section 3.5) translates from one transition system to another in order to
improve on the efficiency of POR. Such a translation is orthogonal to LPOR,
which requires a state transition system at its input.

The input relations of LPOR can be partly or entirely derived automati-
cally using a SAT solver, an approach similar to [BGG06]. Moreover, SAT-
based bounded model checking can be used to compute more accurate en-
abling sequences than our forward enable sets. For example, given transitions
t1, t2, t3, it is possible that t1 can enable t2, and t2 can enable t3, but t2 cannot
enable t3 if t2 was enabled by t1.

4.8 Conclusions

We have proposed LPOR, a framework for easy-to-use, flexible, and efficient
POR implementations. While existing POR implementations trade flexibil-
ity for ease-of-use and efficiency, e.g., SPIN’s POR is limited to exclusive
write/read FIFOs or DPOR prohibits cycles, the strength of LPOR is that
it provides these features at the same time.

It is to be seen whether state-conditional can-enabling and dependency re-
lations can improve on LPOR’s reductions. For example, a state-conditional
can-enabling relation can be used to rule out transitions t1 in line 3.10 of
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Algorithm 3 that cannot enable any transition in the current state. An-
other possible extension is to add symmetry reduction to LPOR. Although
partial-order and symmetry reductions are compatible in theory [EJP97], no
implementation of their combination is available nor the efficiency of such
combination has been tested on real examples.



Chapter 5

Induction in Distributed
Protocols

This chapter deals with the verification of invariants using induction proofs
[MP95, dMRS03] (reviewed in Section 2.6). Invariants cover a general and
practical class of specifications. If it is possible to express the specification
as an invariant, there is no need for expensive verification procedures that
are able to verify general temporal formulas [CGP99].

The application of induction proofs is motivated by at least two argu-
ments. Firstly, an efficient automation of induction proofs is possible by
the recent advances of Boolean satisfiability (SAT) and Satisfiability Modulo
Theories (SMT) solvers. Secondly, induction proofs can verify systems with
infinitely many states.

Despite the efficiency of induction proofs in particular case studies
[SBS+11], an important practical limitation of the induction proof is its gen-
eral incompleteness: It is possible that the induction step of a proof fails for
an assertion P that is an invariant of the system. Such invariants are called
non-inductive invariants.

In an attempt to prove the invariance of an assertion P , the possible
outcome of induction is three-fold: (1 – Inductive invariant) induction holds
and P is proven to be an invariant; (2 – Counterexample) the base case of
the induction fails and it returns a path s0, s1, ..., sk such that s0 is an initial
state and P does not hold in sk; (3 – Inductive counterexample) induction
step fails and returns a path s0, s1, ..., sk such that either (3a – Spurious
counterexample) sk is not reachable and it violates P or (3b – Reachable
state violating P ) sk is reachable and it violates P . In case of (3), it is
indecisive whether P is an invariant or not because the induction does not
determine if sk is reachable. A sufficient condition for sk to be reachable
is that s0 is reachable. Note that, in general, deciding the reachability of a

79
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state is as hard as the verification itself.

Given the dilemma of inductive counterexamples, we propose two tech-
niques with the following features.

(F1) If the outcome of the induction is (3), then the decision between (3a)
and (3b) is easier for a human verifier.

(F2) In favorable cases, invariants can be proven that are non-inductive oth-
erwise.

Feature F1 of the proposed techniques is a side-effect of their ability to
eliminate spurious counterexamples (to achieve F2). As a result, these spuri-
ous counterexample are not among the possible inductive counterexamples,
which makes the reachability analysis easier (cf. discussion in Section 5.2.3).

Our contributions can be summarized as follows.

• Classification of lemmas (Section 5.1): Using lemmas [MP95] is a well-
known approach to achieve (F1-2) – see Section 2.6 for more details.
The main drawback of lemmas is that it is hard to automate their dis-
covery. Firstly, based on the induction proof of a message-passing con-
sensus protocol, we propose a classification of lemmas. The proposed
classification applies for a general class of message-passing protocols.
Secondly, we discuss how the classification can be used to automate the
discovery of lemmas.

• Strengthened transitions (Section 5.2): We propose a novel approach
for achieving (F1-2), called strengthened transitions. We also discuss
how this technique can be used for induction proofs of general multi-
process protocols.

5.1 Classification and Discovery of Lemmas

We define a possible classification of lemmas used in induction proofs of
message-passing algorithms. The different lemma classes are explained based
on an example message-passing consensus protocol. Although the definition
of the lemma classes is informal, it does not interfere with the soundness of
verification because every classified lemma is verified using induction. A use
of the proposed lemma classes is to guide the automated discovery of new
lemmas.
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The example consensus protocol The consensus protocol assumes that
processes fail by crashing and that every process is equipped with a perfect
failure detector [CT96].1 The protocol specifies the following transitions for
each of the replicated processes:

• Sending proposal: Initially, process i broadcasts a “propose” message
with its proposed value pi (a binary value, for simplicity).

• Receiving proposal: Process i receives a propose message with pj from
process j and stores pj as the proposed value of process j.

• Sending suspicion: Process i broadcasts a “suspect” message with pj
(or default value if not available – empty message) upon i’s failure
detector suspecting j.

• Receiving suspicion: Process i receives a non-empty suspect message
with pk from process j and stores the fact of suspicion and pk as the
proposed value of process k.

• Decision: Process i decides value min{pj} if it has received pj or a
suspicion for every process j.

We consider the agreement property of consensus, which specifies that no
two processes decide different values.2

Induction proofs automation with SAL We use the SAL verifi-
cation suite [SAL] for its automation of induction proofs. The exam-
ple consensus protocol is specified in SAL’s input language. This SAL
model of the protocol is available on-line at http://www.deeds.informatik.tu-
darmstadt.de/peter/thesis/kInd/cons.sal.

The model of the system can greatly influence whether an assertion is in-
ductive or not. We emphasize that the SAL model we use is not “optimized”
for verification. It is used as a modeling exercise for teaching purposes and
it follows a clean and intuitive structure.

It turns out that agreement with four processes is not inductive for this
model or, by increasing k, k-induction times out. SAL also contains a sym-
bolic model checker using BDDs (Binary Decision Diagrams). SAL’s sym-
bolic model checker is unable to prove agreement due to prohibitively large
BDDs.

1We use a consensus protocol from the lectures of Prof. Christof Fetzer at Technische
Universität Dresden (Department of Computer Science, Institute for System Architecture).

2We do not consider liveness for this analysis.
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agreement

a1 a2 a3

a4 a5 a7 a9a6 a8

a10 a11 a12 a13

Figure 5.1: Overview of proving agreement with induction.

Name Type Inductive Description
a3 D Yes Decision function
a8 D Yes Local condition of decision
a7 SM Yes # of crashed processes is below the threshold
a10 SM Yes Maximum # of messages not exceeded
a12 SM Yes Failure detector only suspects crashed processes
a5 MF Yes Propose message carries proposed value
a13 MF Yes Suspect messages cannot be forged
a4 MF No Suspect messages carry unforged proposed values
a6 MF No Empty suspect message is dismissed
a9 MF No Suspect messages carry unforged suspicions
a11 MF No Proposed values are disseminated via messages
a1 SV No Proposed values cannot be forged
a2 SV No Decision only if all proposed values are known

Table 5.1: Description of lemmas used in an induction proof of agreement.

Strengthened induction proof of consensus We find that agreement
can be proven using 13 lemmas denoted as a1, ..., a13. Figure 5.1 shows the
structure of a possible proof: An acyclic, directed graph is shown whose
nodes correspond to agreement and the lemmas and edges have the following
meaning: Given a node n, let n1, ...nk be the nodes from which there is an
edge to n. Then, n is inductive relative to n1, ..., nk. For example, agreement
is inductive relative to a1, a2, a3. The proof is minimal in the sense that every
lemma is inductive only relative to all lemmas pointing to it.

The proof can be replayed using the above SAL model, which contains
all lemmas. Spurious counterexamples can be generated by not using all
necessary lemmas, e.g., a9 is not inductive relative to a12. The time of all
proofs in a Cygwin-emulated SAL installation with the Yices SAT/SMT
solver running on a 2.8 GHz AMD processor is less than 25 minutes. We
remark that faster (or slower) proofs are possible using different lemmas.

Proposed classification of lemmas We classify the lemmas into the fol-
lowing types (see Table 5.1):

• (D) Definition lemmas are invariant correlations between state vari-
ables. For instance, a3 follows from the definition of the decision func-
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X
crash

i j k
propose  pi

suspect  pi

l

suspect  pi

Figure 5.2: Example message-flow with processes i, j, k and l in consensus
with failure detectors.

tion, which specifies for each process the correlation between the deci-
sion value, suspicions, and proposed values of other processes.

• (SM) System model lemmas relate to the computation and commu-
nication environment, e.g., a7 disallows that the number of crashed
processes exceeds a threshold.

• (MF) Message-flow lemmas correspond to message-flows [TT08], i.e.,
patterns in the message traffic of the protocol. For example, a4 is based
on a flow describing how the proposed value of a crashing process is
propagated to other processes via a chain of suspect messages (see
Example 8).

• (SV) State validity lemmas constrain the local states across multiple
processes. For example, a1 expresses the integrity of proposed values
across the system.

Message-flow lemmas is an important class of lemmas, as shown by our
example with 6 out of 13 lemmas being message-flow lemmas. The following
example explains a message-flow, which lemma a4 is based on.

Example 8. Figure 5.2 shows an example message-flow in the style of [TT08].
Four processes i, j, k and l and the following scenario are depicted: Process
i crashes after sending its proposed value pi to process j. After receiving
this message, process j’s failure detector suspects process i, which triggers
process j to send a suspect message with pi to process k (and to all other
processes – not depicted). After receiving process j’s message, process k’s
failure detector also suspects process i and sends a suspect message with
pi (which process k knows from process j) to process l (and to all other
processes – not depicted).
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This message-flow suggests the invariant (cf. lemma a4) that if a process
(k or l) learns about the proposed value of another process i via a suspect
message, then this value is indeed the (unforged) proposed value of process
i. (End of Example 8)

Systematic lemma discovery The manual discovery of a1, ..., a13 and
their general classification suggest strategies to systematically discover lem-
mas in a fully (or partly) automated manner. Note that since every lemma
must be proven to be an invariant, discovering wrong lemma candidates
(non-invariants) cannot jeopardize the overall soundness of the verification.

• D type lemmas can be discovered “by construction” if definitions are
annotated in the model of the protocol. For example, the SAL language
implements constructs called DEFINITIONS for specifying invariant cor-
relations between state variables.

• SM type lemmas relate to message-passing systems but they are inde-
pendent of the particular message-passing protocol. Therefore, given a
general model of message-passing systems, a pool of SM lemma candi-
dates can be defined once for all.

• Originally, message-flows (the source of MF lemmas) are provided by a
protocol expert [TT08]. An automated discovery of message-flows from
the specification of the protocol can also be built upon annotated model
specifications. For example, the user of the MP-Basset model checker
for message-passing systems (Chapter 6) specifies message types (such
as “suspect”) that explicitly appear in send operations as well as in
the name of the transition that consumes the message. These syntactic
restrictions enable the discovery of simple message flows by parsing the
code of the model and matching message types in send operations with
transition names.

• The automated discovery of SV lemmas is possibly the most challeng-
ing. One strategy is to design heuristics that are guided by the par-
ticular characteristics of a given class of protocols. For example, every
consensus protocol specifies agreement. If the specification assumes a
non-malicious fault model where messages cannot be corrupted, then
a possible lemma candidate requires that a process i can learn about
the proposed value of another process j only if process i has indeed
proposed this value (cf. lemma a1).
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Automated proofs Besides the automated discovery of lemmas, we also
aim at automating the proofs of non-inductive lemmas. As the simplest case,
a lemma candidate is inductive without lemmas (see D and SM lemmas in
Table 5.1).3 In cases where induction fails, the induction depth can be in-
creased depending on the available resources of verification. Given inductive
lemmas, these can be used to prove the non-inductive ones. The exploration
of the possible combinations depends on the available resources too. To guide
the exploration, the proofs can be assisted by spurious counterexamples re-
turned by the SAT/SMT solver: Lemmas that do not hold for a spurious
counterexample returned for n should be among n1, ..., nk.

Note that there is no harm in using more lemmas: If an assertion n is
inductive relative to the invariants n1, ..., nk and nk+1 is another invariant,
then n is also inductive relative to n1, ..., nk+1. However, using too many
(including unnecessary) lemmas can negatively affect the efficiency of the
proof.

5.2 Strengthened Transitions

Strengthening transitions is a new way of thinking of spurious counterexam-
ples in induction proofs: Instead of considering unreachable states as root
causes of spurious counterexamples, our approach aims at transitions being
executed in these states. The main idea of strengthened transitions is to have
fewer transitions such that (1) invariants are preserved (soundness) and (2)
there are no spurious counterexamples.

We structure the discussion as follows. In Section 5.2.1, we explain and
motivate the idea of strengthened transitions based on a mutual exclusion
protocol. The general approach is presented in Section 5.2.2. Finally, Sec-
tion 5.2.3 shows an application of strengthened transitions for general multi-
process systems.

5.2.1 Motivating Example

Bakery mutual exclusion Figure 5.3 shows a simplified specification of
the Bakery mutual exclusion protocol with two processes, taken from the
SAL distribution [SAL]. The protocol executed by a process is specified by
bprocess between lines S3-21. The process maintains three variables:

• A program counter pc (line S7) taking a value from sleeping, trying,
and critical (line S2). Initially the program counter assumes

3Note that D type lemmas are always 1-inductive.
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S1 bakery: CONTEXT = BEGIN

S2 PC: TYPE = {sleeping, trying, critical};

S3 bprocess: MODULE =

S4 BEGIN

S5 INPUT y2 : NATURAL

S6 OUTPUT y1 : NATURAL

S7 LOCAL pc : PC

S8 INITIALIZATION

S9 pc = sleeping;

S10 y1 = 0

S11 TRANSITION

S12 [ pc = sleeping --> y1’ = y2 + 1;

S13 pc’ = trying

S14 []

S15 pc = trying AND (y2 = 0 OR y1 < y2)

*S16 AND y1 > 0 %STRENGTHENED GUARD

S17 --> pc’ = critical

S18 []

S19 pc = critical --> y1’ = 0;

S20 pc’ = sleeping ]

S21 END;

S22 system: MODULE =

S23 bprocess

S24 []

S25 RENAME y2 TO y1, y1 TO y2 IN bprocess

S26 mutex:THEOREM system

S27 |- G(NOT(pc.1 = critical AND pc.2 = critical));

S28 END

Figure 5.3: SAL specification of the Bakery protocol.

sleeping (line S9).

• A local ticket number y1, which is a natural number. Initially, the local
ticket number assumes 0 (line S10).

• A remote ticket number y2 (line S5), which is a reference to the local
ticket number of the other process.

A SAL transition consists of a guard and list of assignments, separated
by -->. The assignments are used to update the value of the variables.
Transitions in SAL are separated by []. This model defines three transitions:

• Sleeping → trying (lines S12-13): If the program counter is sleeping

(the process is sleeping), then set it to trying and “take the next
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available ticket number”.

• Trying → critical (lines S15-17):4 If the program counter is trying

(the process is trying) and it is this process’s “turn”, then enter the
critical section.

• Critical → sleeping (lines S19-20): If the program counter is critical
(the process is in the critical section), reset the local ticket number and
return to sleeping.

A system containing two processes and executing the Bakery protocol is
specified by instantiating bprocess two times and renaming the correspond-
ing variables (lines S22-25). The mutual exclusion mutex property of the
protocol (lines S26-28) specifies that it is never the case that both processes
reside in the critical section.

Non-inductive mutex It turns out that the mutual exclusion property is
not inductive with (the default) induction depth 10 – recall that line *S16
is ignored. The spurious counterexample returned by SAL’s k-induction im-
plementation is a path starting from a state where the first process assumes
pc=trying and y1=0. This is not a reachable state because y1 is a non-
negative integer and the process increments y1 in course of executing the
transition ’sleeping → trying’.

Note that the mutual exclusion property is not k-inductive for any number
of k. This is because, for instance, the state where both processes are trying
and y1=0 and y2=1 is a recurring one after the second process enters the
critical section and returns to local state trying.

Strengthened transitions & inductive mutex Consider adding line
*S16 in Figure 5.3. This means restricting the guard of transition ’trying
→ critical’. As a result, the transitions of this model of the system contain
fewer pairs of states than the original model. We call such transformations
of the system model strengthening transitions (or strengthened transitions).
It turns out that mutex is inductive in the model augmented with line *S16.5

Strengthened transitions can rule out spurious counterexamples. In the
above case, the unreachable state leading to a spurious counterexample is
where the first process is trying and y1=0. Thanks to strengthening the
transition ’trying→ critical’, this transition cannot be executed in this state

4Ignore line *S16 for the moment.
5Mutex is k-inductive for all k > 2.
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because its guard is false (y16>0). As a result, a k-long path causing the
induction step of k-induction to fail does not exist.

Note that in any reachable state where the first process is trying it holds
that y1>0. This is because transition ’sleeping → trying’ updates y1 to be
y2+1 and y2 is always non-negative. Therefore, the proposed strengthened
transitions in the model of the Bakery protocol preserves the set of reachable
states; thus, it preserves the soundness of induction.

5.2.2 Strengthened Transitions: A General Frame-
work

Strengthening transitions is a transformation from one state transition sys-
tem into another. The intuition is that the original transitions subsume the
strengthened ones so that the set of reachable states is preserved.

Definition 21. Given state transition systems STS = (S, T, S0) and STS ′ =
(S, T ′, S0), STS ′ is strengthening transitions of STS (or simply T ′ in STS ′

are strengthened transitions) if (1) for all s, s′ ∈ S, t′ ∈ T ′ with (s, s′) ∈ t′
implies that there is t ∈ T with (s, s′) ∈ t and (2) the sets of reachable states
in STS and STS ′ are the same.

A corollary of condition (2) in Definition 21 is that strengthening transi-
tions preserves the soundness of verifying the invariance of assertions: If the
set of reachable states is the same in two systems, then an invariant in the
first system is also an invariant in the second.

Corollary 2. Given state transition systems STS and STS ′, and an asser-
tion P , if STS ′ is strengthening transitions of STS, then P is an invariant
in STS iff it is an invariant in STS ′.

The next theorem states that strengthening transitions results in a state
transition system that preserves the set of invariants that are inductive in
the original system. Under favorable circumstances, there are additional
invariants that are inductive in the system with strengthened transitions –
for instance, in case of the Bakery protocol in the previous section.

Theorem 7. Given state transition systems STS and STS ′, an invariant P
(in both STS and STS ′), and k > 0, if STS ′ is strengthening transitions of
STS and P is k-inductive in STS, then P is also k-inductive in STS ′.

Proof. The proof is indirect: Assume that P is not k-inductive in STS ′. The
contradiction directly follows from the fact that a k-long path in STS ′ is also
a path in STS . Formally, let s0, s1, ..., sk be a a path in STS ′. By definition,
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we know that, for all 0 ≤ i < k, (si, si+1) ∈ t′ for some transition t′ in STS ′

implies that there is a transition t in STS such that (si, si+1) ∈ t. Therefore,
s0, s1, ..., sk is also a path in STS . This implies that if induction fails in
STS ′ due to a path (in either the base or the inductive case), then this path
is also considered in the induction in STS and this induction fails too, a
contradiction.

Caveat Note that it is possible that the shortest path between two reach-
able states decreases after strengthening transitions. This is because some
state transitions might be missing in the state transition system with
strengthened transitions. As a result, the base case of the induction might
find counterexamples with larger depths. Therefore, if the base case of the
induction is used for debugging, strengthening transitions can be avoided.

In Section 5.2.3, we show an example of strengthening transitions where,
given two reachable states s and s′, (s, s′) ∈ t for some transition in the
original model iff (s, s′) ∈ t′ for some strengthened transition. In this case,
the base case of the induction returns counterexamples of the same length.

5.2.3 Transition Validated Strengthened Guards

We informally discuss a general application of strengthening transitions. The
proposed strategy is applicable to models with guarded transitions and where
the execution order of transitions is constrained by the specification. As we
argue onwards, these models contain the models of a general class of message-
passing protocols.

We observe that the idea of strengthened transitions in the Bakery pro-
tocol from Section 5.2.1 can be generalized based on two simple concepts:

• Transition validated assertions [MP95]: The simple observation of
transition validated assertions is that any state that is a result of exe-
cuting a transition reflects the state updates specified by the transition.
In the example of the Bakery protocol, an assertion validated by the
transition ’sleeping → trying’ is y1=y2+1.

• Sequential execution plans: We focus on protocols specifying “sequen-
tial” processes. Formally, a sequential process i has a sequential exe-
cution plan. A sequential execution plan is a sequence of transitions
t1, t2, ... such that this sequence equals the sequence of transitions in any
path σ of the system where all transitions of processes other than i are
removed from σ. Intuitively, a sequential execution plan is determined
by a process that executes transitions in a deterministic, pre-defined
order.
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In the Bakery protocol example, the sequence ’sleeping→ trying’, ’try-
ing→ critical’, ’critical→ trying’, ’trying→ sleeping’, ... is a sequential
execution plan.

The proposed strengthening scheme Given a multi-process system
specified with guarded transitions, a process i with a sequential execution
plan, a transition t of this process can be strengthened using the following
scheme:

(1) Obtain candidate TVA: Assume that t′ is the only transition that (im-
mediately) precedes t in process i’s sequential execution plan. Let a be
a transition validated assertion (TVA) validated by t′.

In the example of the Bakery protocols, ’trying → critical’ plays the
role of t, ’sleeping → trying’ the role of t′, and y1=y2+1 the role of a.

(2) Restrict TVA: If a “interferes” with transitions of processes other than
i, restrict a such that it interferes only with transitions of process i.
Denote a′ the resulting assertion.

The semantics of interference depends on the particular system (or class
of systems). In the example of the Bakery protocols, the restriction of
y1=y2+1 results in y1>0.

(3) Strengthen guard via TVA: If gt is the guard of t, then change the guard
to gt ∧ a′ (cf. line *S16 in Figure 5.3). Intuitively, this corresponds to
strengthening transitions because pairs (s, s′) are excluded from t where
a′ does not hold for s.

Detecting spurious counterexamples It is possible that an invariant is
non-inductive even in a model with strengthened transitions. In this case,
strengthening transitions with transition validated assertions makes it easier
to decide whether or not the returned inductive counterexample is spurious
or not (cf. feature F1). This is because the inductive counterexample never
contains state transitions that contradicts with the transition validate asser-
tions. As a result, inductive counterexamples resemble more a real path of
the system. Note that lemmas have a similar effect on inductive counterex-
amples.

Execution plans in message-passing Again, the existence of a sequen-
tial execution plan means that the corresponding process executes transi-
tions in a deterministic, pre-defined order. In this case, the source of non-
determinism is due to the concurrent execution of different processes.
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Note that all example message-passing protocols considered in this the-
sis specify sequential execution plans: Paxos consensus (Section 2.3), Echo
Multicast [Rei94], regular register [ABND95], and OM Byzantine consensus
[LSP82]. In addition, other protocols such as diagnosis [WLS97, SBS+11] or
atomic broadcast [JRS11] and many other protocols also specify sequential
execution plans.

Lemmas or strengthened transitions? Using transition validated as-
sertions to strengthen transitions or to obtain lemmas are similar concepts.
However, their implementation can affect the efficiency of the induction
proofs. The advantage of lemmas is that they structure the proof, whereas
strengthened transitions modify (and, arguably, complicate) the model. On
the other hand, lemmas need to be proven before they can be used in
strengthened induction proofs. This might result in significant time over-
head.

For example, a transition validated lemma for the Bakery protocol is that
if process one is trying, then y1>0. This lemma is an inductive invariant. The
proof of the transition strengthened Bakery protocol takes approximately the
same time (0.5 seconds) as with the above transition validated lemma. In
addition, the proof of the lemma takes approximately the same amount of
time.6

5.3 Related Work

Approaches against spurious counterexamples can be categorized as bottom-
up and top-down [MP95]. Bottom-up approaches consider the state transi-
tion system only, whereas top-down ones are guided by the goal assertion. In
their current form, both the classification of lemmas and strengthened tran-
sitions are bottom-up approaches. Bottom-up and top-down approaches can
be combined. Also, the proposed classification and strengthened transitions
can be made more effective using top-down approaches such as strengthened
[dMRS03] or disjunctive invariants [Rus00].

Another bottom-up approach is message-flows induced lemmas [TT08,
OTT09]. Our classification builds on message-flows using them as one pos-
sible source (class) of lemmas. We remark that the (parametric) properties
considered in [TT08, OTT09] cannot be proven using message-flow induced
lemmas only.

6This is a similar trade-off as between lemmas (incremental proof) and strengthened
assertions [MP95].



92 CHAPTER 5. INDUCTION IN DISTRIBUTED PROTOCOLS

An alternative approach to induction is using interpolants [McM03].
Proving the invariance of an assertion using interpolants is also based on
over-approximating the set of reachable states and it is, in general, an in-
complete verification procedure. Lemmas, derived by any method, e.g., as a
result of our classification, can be used for more precise over-approximations.
Intuitively, an interpolant is a side-product of the proof of (symbolic) insat-
isfiability, which is not always supported. This limits the general usability of
interpolant-based techniques.

Finally, the proposed approaches are as complete as induction proofs. In
general, completeness guarantees require strong assumptions such as finite
state systems and the feasibility of induction with depth of the longest loop-
free paths of the system [dMRS03].

5.4 Conclusions

We have proposed two techniques against spurious counterexamples in in-
duction proofs. While the first technique, a classification of lemmas (Sec-
tion 5.1), relate to fault-tolerant message-passing protocols, the second tech-
nique, strengthened transitions (Section 5.2) is applicable for general systems.
These contributions set the stage for the automation of paper proofs that are
still the current practice in the design of fault-tolerant message-passing pro-
tocols, e.g., [JRS11]. These paper proofs are usually split into “lemmas” to
structure and, thus, ease the proof for the human verifier. These lemmas
directly correspond to lemmas in induction proofs. Given the long history
of proving complex message-passing protocols by hand [AW04], established
proof structures can be used to derive new heuristics to discover lemmas.

After promising preliminary results of applying lemma classification and
strengthened transitions for automated induction proofs, more application
examples are needed to tune their efficiency for a wider range of systems.
In addition, the proposed approaches being bottom-up techniques, an inter-
esting extension would be to combine them with existing and new top-down
approaches. For example, lemmas can be classified depending on the spec-
ification, i.e., target assertion. Even though specific to the specification of
interest, such top-down classification would be still generally applicable given
that certain specifications such as consensus, register properties, broadcast,
etc. are shared by various systems.



Chapter 6

The MP-Basset Model Checker

We have developed a model checker called MP-Basset for the debugging
and verification of general message-passing systems. MP-Basset builds
on Basset [LDMA09], a model checker for actor programs. The source
code, application examples, and documentation of MP-Basset is available
at http://www.deeds.informatik.tu-darmstadt.de/peter/mp-basset/.

We summarize the main goals and corresponding design decision of MP-
Basset:

• Expressive specification (Section 6.1): MP-Basset borrows Basset’s ar-
chitecture [LDMA09] to enable implementation/modeling of message-
passing systems written in Java. This powerful feature is a result of
utilizing Java Pathfinder, a model checker for general Java programs
[JPF], which Basset is built upon.

• Intuitive specification (Section 6.2): We observe that quorum transi-
tions are widely-used in the specifications of faulty-tolerant message-
passing algorithms (see Section 3.4). Therefore, MP-Basset explicitly
supports the specification of such transitions (not supported by Bas-
set).

• Efficient model checking (Section 6.3): Partial-order reduction (POR)
[CGP99] is a powerful technique to enable efficient verification of gen-
eral and especially multi-process systems such as message-passing sys-
tems. As part of MP-Basset, the Basset model checker implements
dynamic POR (DPOR) [FG05]. For a combination with DPOR and
also to circumvent applications where DPOR is ineffective, MP-Basset
implements LPOR from Chapter 4, an implementation of static POR
[Val98].
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JPF-Core

MJI

JPF-VM
MP-Basset

LPOR

Basset

DPOR

Java Virtual Machine

LPOR (MJI)

Figure 6.1: MP-Basset architecture illustration.

6.1 Basic Architecture: The Basset Model

Checker

The architecture of MP-Basset is illustrated in Figure 6.1. The intuition
is that the inclusion of a box denotes that it is “subsumed” by the outer
boxes. As MP-Basset is an extension of Basset, we can also explain Basset’s
architecture based on Figure 6.1.

Basset runs on top of the Java Pathfinder (JPF) model checker [JPF].
JPF is written in Java itself and, as such, is executed by a Java Virtual
Machine (JVM). The execution of a Java program that is model checked by
JPF is “modeled” within JPF’s model layer. We call this layer JPF-VM to
refer to its functional similarity with the host JVM. Basset is an ordinary
Java program that runs within JPF-VM.

JPF defines a gateway called Model Java Interface (MJI) between the
modeled program and the core of JPF (JPF-Core). JPF-Core implements
the search functionalities of JPF such as storing/matching states or the com-
putation of enabled transitions per state. The MJI gateway can be used to
access the services of JPF-Core or even the operating system hosting the
JVM, and also to speed up the execution of Java code outside the model
layer (see discussion in Section 6.3).

By default, JPF assumes a fine-grained interleaving of Java threads. In
order to prevent JPF from exploring unnecessary interleavings, Basset uses
MJI (a) to implement the semantics of message-passing systems, e.g., the
execution of a transition is an atomic event, and (b) to implement different
DPOR algorithms [LDMA09].
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6.2 Feature 1: Quorum Transitions

As Basset does not support quorum transitions, MP-Basset implements quo-
rum transitions by extending Basset’s concept of “enabled message” into “en-
abled set of messages”. More precisely, a set X of messages in the current

state s is enabled if there is a transition t and a state s′ such that s
t(X)−−→ s′.

Basset’s enabled messages can be seen as a special case with |X| = 1.

Note that computing these sets is time-expensive, as demonstrated in the
following example; in worst case, the computation involves going through
the powerset of all messages in the current state, which is an exponential
overhead compared to the single-message case. Therefore, using quorum
transitions can only reduce verification time if the memory reduction can
compensate for the increased per state time overhead.

Example 9. Consider a state s and process i where messages m1,m2 and m3

are in the input channels of process i in s. In order to find the enabled sets of
messages, MP-Basset generates every set X in the powerset of {m1,m2,m3}
to check if X is accessible for some transition t ∈ Ti in s. If there is such t,
then X is an enabled set of messages in s. The number of possible sets X is
23 compared to only three messages that need to be considered in a model
containing only single-message transitions. This is the price we pay for the
memory gain with quorum transitions – cf. discussion in Section 3.4. (End
of Example 9)

Syntax-by-example Next, we explain the syntax of quorum transitions
via an example. The syntax is intuitive and thanks to the expressive-
ness of Java it imposes no practical restrictions on the system being spec-
ified. For a complete reference of MP-Basset, we refer to its website:
http://www.deeds.informatik.tu-darmstadt.de/peter/mp-basset/.

Example 10. The snippet in Figure 6.2 shows how Phase 2(a) of Paxos can
be modeled as a quorum transition. MP-Basset transitions are specified by
a pair of Java methods, the guard annotated by @guard and with Boolean
return value, and the transition itself annotated by @message. The name
of a guard must be that of the associated transition prefixed with . The
arguments of transition and guard are identical containing (1) the class of
the messages this transition can consume and (2) an array messages corre-
sponding to the sets of messages accessible for the transition.1 The order of
messages in messages is irrelevant. In this example, the messages consumed

1By convention, parameters are not read or written. The message class can be used to
cast messages in the messages array.
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@guard

public boolean _Phase2a(Phase2aParam m, Object[] messages){

// guard: replies from a majority of N acceptors

return messages.length==(Math.ceil((double)(N+1)/2));

@LPORAnnotation(

senders=paxos.actor.Acceptor.class,

recipients=paxos.actor.Acceptor.class,

messageOut="Phase2b",

isQuorumTransition=true,

priority=3,

quorumSize=2

)

@message

public void Phase2a(Phase2aParam m, Object[] messages){

... // select highest Phase2a message among ’messages’

Phase2bParam proposal=new Phase2bParam(propNo, readReplHighest.val);

for (ActorName a : acceptors)

send(a, "Phase2b", proposal);

}

Figure 6.2: Example quorum transition specified in MP-Basset: Phase 2(a)
of Paxos consensus.

by transition Phase2a are of class Phase2aParam. This Java class contains
the information sent by an acceptor process in Phase 1(b) (not depicted).

In this example, the guard requires (i.e., returns true) that messages

contains a message from a majority of the N acceptors. In the transition’s code
the proposer sends to all acceptor processes the highest-numbered proposal
among the Phase 2(a) messages in messages. As in Basset, all processes of
an MP-Basset specification are inherited from ActorName. A message can
be sent using the pre-defined send operation, which takes the recipient and
the message as arguments. A message consists of (i) the message’s name
(a String) and (ii) the message class. By convention, a transition can only
consume a message if their names are matching.

MP-Basset implements the LPOR instantiation for message-passing sys-
tems from Section 4.4. The required syntax extensions presented in Sec-
tion 4.4.1 are (partly) implemented in MP-Basset via the Java annotation
called LPORAnnotation. LPORAnnotation is used to annotate the transition’s
method. Currently, LPORAnnotation is filled by the user. The annotation
field senders (and recipients) corresponds to t.I (and t.O). In this exam-
ple, a proposer in Phase 2(a) consumes/sends messages from/to acceptors.
The value of field messageOut corresponds to t.MO and contains the name
of the messages sent by this transition.2 The field isQuorumTransition is
auxiliary for MP-Basset and it indicates that messages is indeed a message

2t.MI is implicitly given by the name of the transition.
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array.

In addition to the extended syntax, LPORAnnotation is used to specify the
initial transition heuristic via the priority field: High priority transitions
are preferred to be used as initial transitions. Also, the annotation is used
to implement our split transition refinement strategies. For example, the
threshold of exact quorum transitions can be specified in quorumSize. In
the example, the number of acceptor processes is three, which means that
two acceptors are a majority. (End of Example 10)

Syntax disclaimer The syntax explained in Example 10 corresponds to
the current version of MP-Basset and is, partly, determined by MP-Basset
(and Basset) internals. For example, the specification of each process (in-
cluding its transitions) is interpreted as native Java code by the compiler.
Therefore, the guard and the transition must be well-formed Java methods.
As such, they are not allowed to share the same name even if the type of the
return value is different (boolean for the guard and void for the transition).
It is a legacy from Basset that messages and transitions are matched via
their names. Also, a current limitation of a quorum transition is that every
message in messages must be of the same class.

6.3 Feature 2: Integrating Java-LPOR

MJI trade-off with LPOR As implied by the architecture of Basset,
MP-Basset can run Java code either in the model layer or in the host JVM
accessible via the Model Java Interface (MJI). Due to the indirection of
the model layer, execution in this layer is slower than in the host JVM.
The modeled Java program can always execute code in the host JVM using
MJI. However, as there is a speed penalty of using MJI, time efficient JPF
applications should use MJI with care. One source of this time overhead is
that MJI converts arguments of MJI method calls between the modeled and
the host JVM’s object model.

We explore this trade-off with Java-LPOR when integrating it into MP-
Basset: We create two architectures, one where the LPOR algorithm runs in
the model layer and another one where it runs in the host JVM (cf. Figure
6.2). We compare the time performance of the two architectures in Table
4.1: MJI “No” and “Yes” experiments show model checking time with the
implementation in the model and the host JVM layer, respectively. We
depict model layer times only for the exhaustive search experiments because
the “CE” results show similar trends.
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Results: MJI wins In our experiments, the MJI-based implementation is
faster. This meets our expectations for (state-unconditional) LPOR without
NET because no state information is passed (and thus converted) to LPOR,
whereas in (state-conditional) full-fledged LPOR, the NET relation is a func-
tion of a small fraction of the current state (see Section 4.4.2). Although,
for our message-passing instantiation of LPOR, the MJI overhead turns out
to be more time efficient than executing the LPOR algorithm in the model
layer, this does not necessarily generalize. In other LPOR applications, par-
ticularly where the entire state has to be converted for MJI, the execution
time penalties may trade off differently.

Optimizing MJI calls The straightforward approach to call LPOR via
MJI would be to serialize, pass, and de-serialize transitions as primitive types.
To avoid this time-expensive and tedious task, we instantiate an exact copy
of each transition within JPF-Core. As a result MJI calls can simply address
transitions and the result of the queries is passed through primitive types.
In particular, a stubborn set returned by Java-LPOR in MP-Basset is an
integer array where a non-zero value in the ith position means that the ith

transition is in the stubborn set.

6.4 Conclusions

We have extended the Basset model checker for message-passing systems
[LDMA09] with LPOR’s message-passing instantiation (Section 4.4) and quo-
rum transitions (Section 3.4). The implementation of these techniques is
efficient, as shown by a number of experiments with fault-tolerant message-
passing protocols (Section 4.6).

A natural extension of MP-Basset is adding symmetry reduction to it.
This is also motivated by the soundness of combining partial-order and sym-
metry reductions [EJP97]. While the current version of MP-Basset uses Java
Pathfinder (JPF) as a “black box”, an extension with symmetry reduction
requires to look into JPF. Intuitively, JPF implements the following stateful
model checking algorithm: “In every state s, expand s unless s has already
been expanded”.3 Symmetry reduction modifies the algorithm like this: “In
every state s, expand s unless s or another state that is symmetric with s
has already been expanded”. To implement this additional check, a thorough
understanding of JPF is required.

3Expansion of a state means executing the transitions that are enabled in this state.



Chapter 7

Conclusions

We have proposed, discussed, and implemented different techniques to enable
efficient verification of fault-tolerant message-passing protocols. We started
the thesis by classifying its contributions into system models and verification
procedures (cf. Figure 1.1 repeated below).

Verification

System
(model)

Specification

Correct/Incorrect 
(counterexample)

We conclude by discussing how the these contributions are applicable be-
yond the boundaries of the thesis (Section 7.1) and how they can be extended
for other interesting application domains (Section 7.2).

7.1 Generalizations

Models The models proposed in Chapter 3 are specific to model-passing
communication. While replicas (Section 3.3) and quorum transitions (Sec-
tions 3.4-3.5) typically appear in fault-tolerant settings, the models of mes-
sage traffic (Section 3.1) and crashing processes (Section 3.2) are applicable
for general message-passing systems. In addition, the concept of decomposing
a system into replicas can be generalized into a multi-process model where
message-passing is used as one possible communication abstraction.

In contrast to the previous models that are restrictive to message-passing,
LPOR (Chapter 4) and strengthened transitions (Section 5.2) assume a very
general model, namely, state transition systems. Therefore, these verification
techniques are applicable way beyond the specialities of message-passing sys-
tems.
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Verification procedures The experiments reported in the thesis have
been conducted using explicit-state model checking with depth-first search
(Section 3.6 and 4.6) and using a Boolean satisfiability (SAT) solver (Chapter
5). Murφ [Mur] and MP-Basset (Chapter 6) are explicit-state model checkers
supporting both depth-first and breadth-first searches. We have used depth-
first search as the default setting.1 In our induction experiments with the
SAL verification suite [SAL], we have used the default Yices SAT solver.

These are example implementations that are not assumed by the pro-
posed verification techniques. Both symmetry and partial-order reductions
can be implemented with breadth-first search or with Binary Decision Di-
agrams [ABH+01, CJEF96]. Also, induction proofs can be efficiently im-
plemented with Satisfiable Modulo Theories (SMT) [SAL] or even manu-
ally [MP95]. Further possible implementations include symbolic execution
[GKS05, CDE08] or assisted theorem proving [WLS97].

7.2 Related Open Questions

Combining reductions We have evaluated symmetry and partial-order
reductions in isolation (Section 3.6 and 4.6, respectively). They can be con-
sidered as orthogonal optimizations, as they are shown to be sound when
used together [EJP97].

In addition, partial-order reduction can also be combined with a new
optimization called dynamic interface reduction [GWZ+11]. Therefore, the
efficiency of the proposed symmetry and partial-order reductions can be fur-
ther improved through combinations with other reductions. However, the
achieved efficiency of such combined reductions is yet to be seen, especially
given the increased time overhead that might result from the complex reduc-
tion logic.

Direct verification Murϕ and SAL specify simple input languages, which
is key to the efficiency of these verifiers. Although MP-Basset is able to model
check Java code, the input syntax of MP-Basset restricts the Java language
(see Chapter 6). There are just few approaches to verify the actual (direct)
implementation of distributed systems, which are limited to unexhaustive
bug finding [YCW+09] or to small systems [GWZ+11]. The combination of
reductions can be a key to enable direct verification.

1The reported gains of symmetry and partial-order reductions are similar using breadth-
first search.
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Verifying infinite systems The systems verified in this thesis are finite-
state systems, i.e., the state space of their models contains a finite number
of states.

This is not an inherent limitation of the proposed techniques. One form of
infinite-state systems is parametric systems, where the model of the system
depends on some parameters, e.g., the number of processes. The verification
of parametric systems can be done by showing that the system is symmetric
with respect to its parameters [TT08, GNRZ08]. Therefore, our symmetry
detection strategy (Section 3.3) can be used in combination with parametric
verification techniques.

Another form of infinite-state systems is where the system specifies infi-
nite domains, e.g., real numbers. SMT solvers, e.g., [SAL], can be leveraged
for the verification of such systems. For example, using SMT solvers together
with classified lemmas or strengthened transitions (Chapter 5) can be used
to verify systems with infinite domains.

Linearizability We have considered temporal logic [CGP99] to specify the
desired properties of the system. These properties are verified or refuted by
the verification process. In the context of distributed computing, a widely-
used correctness condition is linearizability [HW90]. Unfortunately, general
linearizability cannot be directly expressed in temporal logic.2 It is yet to be
explored how symmetry and partial-order reductions and induction proofs
can help the efficient verification of general linearizability.

2There are special cases where this is possible though. For example, the specification
of regular storage is also a form of linearizability that, in the models we consider (Sections
3.6 and 4.6), can be expressed by simple invariants.
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Appendix A

Models of Message-Passing
Systems

A.1 Proof of Equivalent Models of Message

Traffic

We prove Lemmas 1, 2 and 3, which imply Theorem 1.

Proof in Appendix 1. Lemma 1 holds.

Proof. Construction of σ′. Without loss of generality, let σ be the path

s0
t0−→ s1..., where s0 is an initial state of M. The path σ′ = s′0

t′0−→ s′1...
is constructed as follows. Firstly, be s′0 an initial state in RM such that
s′0(i) = s0(i) for all 1 ≤ i ≤ n. This is possible because the processes modeled
by M and RM specify the same set of local states. For each i = 0, 1, ..., let

X be the set of messages such that si
ti(X)−−−→ si+1. For each 1 ≤ j ≤ n and

m ∈ X ∩ cj,id(ti) let a delivery event del(j, id(ti),m) be in σ′. These delivery
events in σ′ are executed directly after each other in an arbitrary order, and
they are followed by ti. In addition, t1, t2, ... are executed in σ′ in the same
order and in σ. Note that ti is enabled in σ iff it is enabled in σ′ because
(a) the messages in X are the only messages in the input channels of process
id(ti), and thus, the model is with clean channels, and (b) the local states of
processes are identical in both paths.

Stuttering equivalence of σ and σ′. The proof is an induction on the
number of local transitions in σ and σ′. Consider the first local transition
t0. Since channels are empty in initial states, t′0 is not a delivery event and
t′0 = t0. This and s′0(i) = s0(i) for all 1 ≤ i ≤ n imply that s′1(i) = s1(i)
for all i. Therefore, LRM(s′0) = LM(s0) and LRM(s′1) = LM(s1) follow from
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the assumption that the system is process-labeled, and the integer sequences
i0 = 0, i1 = 1 and j1 = 0, j1 = 1 show stuttering equivalence of σ and σ′ for
the base case of the induction.

Assume that σ ≈st σ′ for the first k local transitions in σ and σ′. Fur-
thermore, sik(i) = s′jk(i) for all 1 ≤ i ≤ n. Therefore, LM(sik) = LRM(s′jk).
Let ik+1 be k + 1. Furthermore, let jk+1 be jk + l + 1, where l = |X| and

sik
tik (X)
−−−→ sik+1

. By construction, t′jk , t
′
jk+1, ..., t

′
jk+l−1 are delivery events.

Therefore, sik(i) = s′jk+l(i) for all 1 ≤ i ≤ n and, from the assumption that
the system is process-labeled, LRM(s′jk) = LRM(s′jk+1) = ... = LRM(s′jk+l).

Also by construction, t′jk+l = tik and s′jk+l

t′jk+l(X)

−−−−−→ s′jk+l+1 = s′jk+1
. Now,

sik(i) = s′jk+l(i) for all 1 ≤ i ≤ n yields that sik+1
(i) = s′jk+l

(i) for
all i. Therefore, and because the system is process-labeled we have that
LM(sik+1

) = LRM(s′jk+1
).

Proof in Appendix 2. Lemma 2 holds.

Proof. Construction of σ′. Without loss of generality, let σ be the path

s0
t0−→ s1..., where s0 is an initial state of GRM. The path σ′ = s′0

t′0−→ s′1...
is constructed as follows. Firstly, be s′0 an initial state in M such that
s′0(i) = s0(i) for all 1 ≤ i ≤ n. This is possible because the processes
modeled by GRM and M specify the same set of local states. Furthermore,
let t′1, t

′
2, ... be all local transitions in σ′. In addition, t′1, t

′
2, ... are executed

in the same order in σ and σ′. For each local transition ti in σ, let X be the

set of messages such that si
ti(X)−−−→ si+1. Then, ti is executed with accessible

set X in σ′ too. Note that a transition in σ′ is enabled iff it is enabled in σ
because the content of channels and the local states of processes are identical
in both paths.

Stuttering equivalence of σ and σ′. The proof is an induction on the
number of local transitions in σ and σ′. The base case of the same as can be
shown as for Lemma 1.

Assume that σ ≈st σ′ for the first k local transitions in σ and σ′. Further-
more, sik(i) = s′jk(i) for all 1 ≤ i ≤ n. Therefore, LGRM(sik) = LM(s′jk). Let
ik+1 be ik + l+ 1, where l is the number of delivery events that are executed
between the kth and k+ 1th local transition in σ. Therefore, and because the
system is process-labeled, LGRM(sik) = LGRM(sik+1) = ... = LGRM(sik+l).
Furthermore, let jk+1 be k + 1. Because delivery events change no local
state of any process, sik+l(i) = s′jk(i) for all 1 ≤ i ≤ n. By construction,

t′jk = tik+l and s′jk
t′jk

(X)

−−−−→ s′jk+1 = s′jk+1
, where X is a set of messages such

that sik+l

tik+l(X)
−−−−−→ sik+l+1 = sik+1

. Now, sik+l(i) = s′jk(i) for all 1 ≤ i ≤ n
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yields that sik+l
(i) = s′jk+1

(i) for all i. Therefore, and because the system is
process-labeled we have that LGRM(sik+l

) = LM(s′jk+1
).

Proof in Appendix 3. Lemma 3 holds.

Proof. The runs σ, σ′, σ′′ are sequences of configurations in the form σ =
c0c1..., σ

′ = c′0c
′
1..., and σ′′ = c′′0c

′′
1.... From σ ≈st σ′, there must exist

e0 = 0 < e1 < ... and f0 = 0 < f1 < ... such that L(cek) = L(cek+1) = ... =
L(cek+1−1) = L(c′fk) = L(c′fk+1) = ... = L(c′fk+1−1) for all k = 0, 1, .... Also,
from σ′ ≈st σ′′, there must exist g0 = 0 < g1 < ... and h0 = 0 < h1 < ...
such that L(c′gk) = L(c′gk+1) = ... = L(c′gk+1−1) = L(c′′hk) = L(c′′hk+1) = ... =
L(c′′hk+1−1).

We modify the integer sequences ek, fk, gk, hk to be maximal. For the
brevity of the discussion, we define k > 0, i ∈ {e, f, g, h}, and s ∈ {c, c′, c′′}.
For example, if i = e and s = c then we write sik and mean cek . For each k, i
and s, we re-assign ik+1 = ik+l+1, ik+2 = ik+l+2, ... if L(sik+1−1) = L(sik+1

) =
L(sik+2

) = ... = L(sik+l
) and L(sik+1−1) 6= L(sik+l+1

).

First, we prove that the new assignment preserves stuttering equiva-
lence. Without loss of generality, we consider ek and fk and the modified
assignment. Let e′k and f ′k denote the modified assignment. The proof is
an induction on k = 0, 1, .... For k = 0, we know that L(ce0) = ... =
L(ce1−1) = L(ce1) = ... = L(ce2−1) = ... = L(cel) = ... = L(cel+1−1) =
L(c′f0) = ... = L(c′f1−1) = ... = L(c′fl′ ) = ... = L(c′fl′+1−1) for some l, l′ > 0

where e′1 = el+1 and f ′1 = fl′+1. We also know that L(ce0) 6= L(cel+1
)

and L(c′f0) 6= L(c′fl′+1
). Moreover, we know that l = l′. Otherwise, either

l′ < l or l′ > l holds. However, l′ < l means l′ + 1 ≤ l which would imply
L(cel′+1

) = L(c′fl′+1
) = L(ce0) = L(c′f0). In turn, this would contradict with

L(c′f0) 6= L(c′fl′+1
). Similarly, l′ > l leads to a contradiction. Note that l = l′

implies that L(ce′1) = L(c′f ′1
). We have proven that σ ≈st σ′ for k = 0 with

e′k and f ′k. Now, assuming that the same holds for every k, we prove that it
also holds for k + 1 (induction). By the induction hypothesis, we have that
L(ce′k+1

) = L(c′f ′k+1
) and there is l > 0 such that e′k+1 = el and f ′k+1 = fl. We

know from σ ≈st σ′ that L(cel) = L(c′fl). Now, the induction step follows
similar to the base case.

Second, we show that the integer sequences e′k and h′k satisfy the definition
of σ ≈st σ′′. We use another induction on k. From σ ≈st σ′, we have
L(ce′0) = ... = L(ce′1−1) = L(c′f ′0

) = ... = L(c′f ′1−1). From σ′ ≈st σ′′, we

have L(c′g′0
) = ... = L(c′g′1−1) = L(c′′h′0

) = ... = L(c′′h′1−1). Since e′0 = f ′0 =

g′0 = h′0 = 0, we have that L(ce′0) = L(c′′h′0
). This implies L(ce′0) = ... =

L(ce′1−1) = L(c′′h′0
) = ... = L(c′′h′1−1), i.e., σ ≈st σ′′ for k = 0. We know that



106 APPENDIX A. MODELS OF MESSAGE-PASSING SYSTEMS

L(ce′1) = L(c′f ′1
) and L(c′g′1

) = L(c′′h′1
). This implies that L(ce′1) = L(c′′h′1

);

otherwise, it must be that L(c′f ′1
) 6= L(c′g′1

). However, this is impossible

because f ′k and g′k are maximal integer sequences of the same path, and thus,
f ′1 = g′1. In summary, we have shown that σ ≈st σ′′ for k = 0 with e′k and h′k
and that L(ce′1) = L(c′′h′1

). The induction step can be shown similarly to the

base case.

A.2 Proof of Equivalent Models of Crash

Faults

Proof in Appendix 4. Theorem 2 holds.

Proof. Let STSM = (SM , TM , SM0 , LM , APM) and STSMc

=
(SM

c
, TM

c
, SM

c

0 , LM
c
, APMc

) be the STS determined by M and the
corresponding crash model, respectively. Without the loss of generality, the
“dummy” transition is denoted by td (and tcd), i.e., td ∈ TM (and tcd ∈ TM

c
)

such that for every state s ∈ SM (sc ∈ SM
c
) it holds that (s, s) ∈ td

((sc, sc) ∈ tcd).
Let σ = s0, s1, ... and σc = sc0, s

c
1, ... are runs of STSM and STSMc

,
respectively. The proof is by induction on the length of the prefixes of σ
and σc. Given a prefix of σ (and σc), we construct a prefix of a path in
STSMc

(in STSM) such that label-equivalence holds for these prefixes. Then,
label-equivalence between σ (and σc) and the constructed path follows by
induction.

The ⇒ direction. Consider the prefix s0, s1 of σ as the base case. By the
assumption of label-equivalence, s0 ∈ SM0 . In our construction, let sc0 ∈ SM

c

0

be such that for all 1 ≤ i ≤ n we have that sc0(i) = (s0(i),>). Such sc0
exists by the definition of the crash model. Note that all channels in both
s0 and sc0 are empty because these are initial states. Let t ∈ TM be a

transition such that s0
t−→ s1. If t = td, then we construct sc1 such that

sc1 = sc0. Otherwise, there is a tc ∈ TMc
and sc1 such that sc0

tc−→ sc1 and for
all 1 ≤ i ≤ n it holds that sc1(i) = (s1(i),>). This follows from Definition
3 and that tc can only update the local state of process id(tc). Note that

sc0
tc(∅)−−→ sc1 because all channels are empty in initial states. Since the message-

passing system is process/crash-labeled, we have that LM(s0) = LM
c
(sc0) and

LM(s1) = LM
c
(sc1). In addition, we assume that tc is such that for all channels

cl,m ∈ C it holds that s1(cl,m) = sc1(cl,m). This follows from condition (5) in
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Definition 3 and that tc is allowed to send messages only via the outgoing
channels of process id(tc).

By induction, assume that for all 1 ≤ j ≤ k it holds that LM(sj) =
LM

c
(scj). Furthermore, we have for all 1 ≤ i ≤ n that scj(i) = (sj(i),>) and

for all channels cl,m ∈ C that sk(cl,m) = sck(cl,m). The construction of sck+1 is

analogous to that of sc1. The only difference is that if sck
tc(X)−−−→ sck+1, then X

is not necessarily the empty set.

The ⇐ direction. By assumption, sc0 ∈ SM
c

0 . In our construction, let
s0 ∈ SM0 be such that for all 1 ≤ i ≤ n we have that sc0(i) = (s0(i),>). Let

tc ∈ TMc
be a transition such that sc0

tc−→ sc1. If tc = td, then we construct s1

such that s1 = s0. Otherwise, there is a t ∈ TM and s1 such that s0
t−→ s1 and

for all 1 ≤ i ≤ n it holds that sc1(i) = (s1(i), a1
i ), for some a1

i ∈ {>,⊥}. Since
the message-passing system is process/crash-labeled, we have that LM(s0) =
LM

c
(sc0) and LM(s1) = LM

c
(sc1). In addition, for all channels cl,m ∈ C it

holds that s1(cl,m) ⊇ sc1(cl,m).
By induction, assume that for all 1 ≤ j ≤ k it holds that LM(sj) =

LM
c
(scj). Furthermore, we have that 1 ≤ i ≤ n scj(i) = (sj(i), a

j
i ), for some

aji ∈ {>,⊥}, and for all channels cl,m ∈ C that sk(cl,m) ⊇ sck(cl,m). If aki = ⊥,

then we know that sck = sck+1 and that sck
tcd−→ sck+1. This is because there can

be no tc 6= tcd such that sck
tc−→ sck+1 because (2) in Definition 3 is unsatisfiable

with aki = ⊥. In this case, we construct that sk+1 = sk. Since sk+1 = sk and
sck+1 = sck, the induction step trivially holds. Otherwise, if aki = >, let tc be

a transition in the crash model such that sck
tc(X)−−−→ sck+1. From Definition 3

we know that there is a t ∈ TM and sk+1 such that sk
t(X)−−→ sk+1 and for all

1 ≤ i ≤ n with sck+1(i) = (sk+1(i), ak+1
i ). Note that from sck(i) = (sk(i), a

k
i )

and sk(cl,m) ⊇ sck(cl,m) for all channels cl,m ∈ C, X is accessible for t in
sk. Therefore, it holds that LM(sk) = LM

c
(sck) and LM(s1) = LM

c
(sc1). In

addition, for all channels cl,m ∈ C it holds that sk(cl,m) ⊇ sck+1(cl,m).
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Appendix B

Local Partial-Order Reduction

B.1 Generalized LPOR

Algorithm 5, called generalized LPOR, is an LPOR-like algorithm that is
optimized for better space-reductions using state-conditional NET relations.

Generalized LPOR uses a modified forward enable set function (Algo-
rithm 4) which is different from Algorithm 2 in that it stores pairs of transi-
tions in the en-fields (line 4.12). The reason why we store (t1, t2) if (t1, t2) is
in a NET relation (and not only t2 as in Algorithm 2) is that we can verify in
the current state whether or not t2 must be executed in future paths before
t1 can be enabled (as opposed to the simple check of Algorithm 2 if t2 was
ever executed in the current path). Assume that (tdep, en) is in the forward
enable set of t1 and the conditions in lines 5.10-5.11 are true. Using the
notations of Algorithm 5, we only add t1 to the stubborn set if either t3 is
not already in the stubborn set or t3 needs not necessarily be executed for
t2, and thus, tdep to be enabled (line 5.12). The later condition is expressed
by a relation called NET-transition-to-fire relation (state-conditional NET).

Definition 22. A relation nttf ⊆ S×T×T is NET-transition-to-fire (Nttf)
if for all t, t′ ∈ T, s ∈ S, if (s, t, t′) ∈ nttf , then t 6∈ enabled(s) and t′ is in σ
for all paths σ from s to some s′ ∈ S such that t ∈ enabled(s′).

The correctness of generalized LPOR (Algorithm 5) does not depend
on the NET relation (state-unconditional NET) used in Algorithm 4. The
purpose of this relation is to “guess” (before model checking) those transitions
that can potentially be subject to NET optimization, and Nttf is used to
“verify” (during model checking) the soundness of NET. For example, a
possible heuristic was shown in Section 4.3, where NET contains those pairs
(t, t′) transitions where t can only be enabled if t′ is executed at least once
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Algorithm 4: Generalized FwdEnableSet(t) and
FwdEnableSetIdx (t, t′) are pre-computed for every t, t′ ∈ T .

4.1 function FwdEnableSetIdx (t, t′)
4.2 forall the (t′′, en) ∈ FwdEnableSet(t) do
4.3 if (t′′, t′) ∈ dep then return true;
4.4 return false;

4.5 function FwdEnableSet(tr)
4.6 Tr ′ ← {(tr , ∅)};
4.7 do
4.8 Tr ← Tr ′;
4.9 forall the t1 ∈ T do

4.10 forall the (t, en) ∈ Tr do
4.11 if (t, t1) ∈ ce then
4.12 en1 ← en ∪ {(t1, t2) | (t1, t2) ∈ net};
4.13 Tr ′ ← Tr ′ ∪ {(t1, en1)};
4.14 while Tr 6= Tr ′;
4.15 return Tr ;

before t. In this case, it is indeed correct that (s, t, t′) ∈ nttf iff t′ is not in
the current search path τ . It is possible in general, however, that t′ is in τ
but it must be executed at least once more for t to be enabled.

We now show a message-passing example that utilizes the Nttf-
optimization of generalized LPOR. Based on MP-NET we can define a NET-
transition-to-fire relation. If t′ is a NET for t, and in some state s t′ has not
yet sent a message needed for t to be enabled, then t′ must be in any path
from s to a state where t is enabled. Note that it is possible that t′ is in
τ . This can happen if there is a message m in the channel from the process
executing t′ to the process executing t such that m 6∈ t.MI . Intuitively, t′ can
enable t because t′.MO ∩ t.MI 6= ∅ but t′ can also enable other transitions
and m is not meant for t.

In Appendix B.3 we prove that the following relation is indeed an Nttf
relation.

Definition 23. MP-NET-transition-to-fire ⊆ S×T×T is a relation such that
(s, t, t′) ∈ MP-NET-transition-to-fire iff (t, t′) ∈ MP-NET ∧(s(cid(t′),id(t)) ∩
t.MI = ∅).

Theorem 5 is a special case of the following theorem.

Theorem 8. Let (S, T, S0) be an STS and net ⊆ T×T an arbitrary relation,
and ce,dep and nttf a can-enabling, dependency, and NET-transition-to-
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Algorithm 5: Generalized LPOR(tI , s) stubborn set algorithm for ev-
ery s ∈ S, tI ∈ T .

5.1 Stub ← {tI};
5.2 Trans ← {tI};
5.3 while Trans 6= ∅ do
5.4 choose t ∈ Trans ;
5.5 Trans ← Trans \ {t};
5.6 forall the t1 ∈ enabled(s) \ Stub do
5.7 if (t1, t) ∈ dep then
5.8 Stub ← Stub ∪ {t1};
5.9 if dep is non-transitive then Trans ← Trans ∪ {t1};

5.10 if FwdEnableSetIdx (t1, t) then
5.11 if ∃(tdep, en) ∈ FwdEnableSet(t1) : (tdep, t) ∈ dep
5.12 ∧(en = ∅ ∨ ∀(t2, t3) ∈ en : (t3 6∈ Stub ∨ (s, t2, t3) 6∈ nttf))

then
5.13 Stub ← Stub ∪ {t1};
5.14 Trans ← Trans ∪ {t1};
5.15 return Stub;

fire relation, respectively. Then, for all s ∈ S, t ∈ enabled(s), LPOR(t, s) is
a stubborn set.

B.2 Proof of Generalized LPOR

First we prove that Algorithm 5 terminates.

Lemma 4. Given the notation of Theorem 8, LPOR(t, s) terminates for all
s ∈ S, t ∈ T . In addition, the worst-case time complexity of LPOR(t, s) is
O(|T |32|T |

2
) (and O(|T |2)) using (not using) the Nttf-optimization.

Proof. LPOR(t, s) terminates if Trans is empty (line 5.3). Assume that
LPOR(t, s) runs forever, i.e., Trans is never empty at line 5.3. In every
iteration of the while-loop (lines 5.3-5.14) exactly one transition is removed
from Trans (line 5.5) and zero or more transitions are added to it (lines
5.9 and 5.14). Since the set of all transition (T ) is finite, there must be a
transition t′ that is added multiple times to Trans. However, since t′ is also
added to Stub (line 5.8 and 5.13), no transitions are ever removed from Stub,
and t′ can only be added to Trans if t′ 6∈ Stub (lines 5.7 and 5.10), t′ cannot
be added to Trans multiple times, a contradiction.
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Consequently, the body of the while-loop (lines 5.3-5.14) can be executed
at most |T | times. Within the body, transition t1 from T might be added
to Trans (lines 5.6-5.14). If the Nttf-optimization is used, every element in
FwdEnableSet(t1) might be queried and compared with Stub (lines 5.11 -
5.12). Since the maximum size of FwdEnableSet(t1) is |T |2|T |2 , the overall
time complexity follows. We assume that the operations of set inclusion and
adding/removing elements to/from a set can be done in constant time.

Next, we prove that given the current state s and a transition t in a set T ′

of transitions returned by LPOR, no other transition on which t depends and
disabled in s can be enabled only through executing transitions outside T ′.
This property is key to prove the soundness of our pre-computation based
stubborn set algorithm.

Lemma 5. Given the notation of Theorem 8, for all s ∈ S, t, t1, t2 ∈ T
if t1 ∈ LPOR(t, s) and t2 6∈ enabled(s) and (t2, t1) ∈ dep, then for any
path σ from s to s′ ∈ S such that t2 ∈ enabled(s′) there is a transition
t4 ∈ LPOR(t, s) which is in σ.

Proof. Let s = s0

t′1−→ s1

t′2−→ . . .
t′n−→ sn = s′ denote the path σ. We first show

that there is an enabling sequence ES of t2 of transitions t′k1 , t
′
k2
, . . . , t′kl ,

1 ≤ k1 < . . . < kl ≤ n, such that tk′1 ∈ enabled(s) and, for all 1 < i ≤ l,
t′ki 6∈ enabled(s) and, for all 1 ≤ i < l, (t′ki , t

′
ki+1

) ∈ ce and (t′kl , t2) ∈
ce. Let 0 < i ≤ n be such that t2 ∈ enabled(si) and, for all 0 ≤ j < i,
t2 6∈ enabled(sj). Since ce is a can-enabling relation, (t′i, t2) ∈ ce. If t′i ∈
enabled(s), then t′i constitutes ES (l = 1). Otherwise, let 0 < j ≤ i be
such that t′i ∈ enabled(sj) and, for all 0 ≤ k < j, t′i 6∈ enabled(sk). Again,
(t′j, t

′
i) ∈ ce. If t′j ∈ enabled(s), then t′j, t

′
i constitute ES (l = 2). Continue

this construction until t′k1 ∈ enabled(s). The construction always terminates
as l ≤ n.

The proof is indirect. Assume that none of t′1, t
′
2, . . . , t

′
n is in

LPOR(t, s). First, either t1 is added to Trans or, if dep is transi-
tive, another transition td1 such that (t1, t

d
1) ∈ dep is added to Trans

(lines 5.7-5.9). In both cases, FwdEnableSet(t′k1) is queried in lines
5.10-5.11 because t′k1 ∈ enabled(s) and t′k1 6∈ Stub. Let (t2, en) ∈
FwdEnableSet(t′k1) for some en. We know that such (t2, en) exists because
t′k1 , t

′
k2
, . . . , t′kl is an enabling sequence of t2. Since there can be multiple

such (t2, en) in FwdEnableSet(t′k1) we select the one which is stored along
the enabling sequence ES, i.e., (tk′1 , ∅) ∈ Tr′ and (t′k1 , t

′
k2

) ∈ ce (lines 4.6
and 4.11) and (t′k2 , enk2) is added to Tr′ (lines 4.12-4.13), (t′k2 , enk2) ∈ Tr
and (t′k2 , t

′
k3

) ∈ ce and (t′k3 , enk3) is added to Tr′, . . . , (t′kl−1
, enkl−1

) ∈ Tr
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Figure B.1: Illustration of the proof of Theorem 10 .

and (t′kl−1
, t′kl) ∈ ce and (t′kl , enkl) is added to Tr′, and (t′kl , enkl) ∈ Tr and

(t′kl , t2) ∈ ce and (t2, en) is added to Tr′.
Next, the conditions in lines 5.10-5.11 hold because either (t2, t1) ∈ dep

(if t1 is added to Trans) or (t2, t
d
1) ∈ dep (if td1 is added to Trans). The

later is true because (t2, t1) ∈ dep and (t1, t
d
1) ∈ dep and dep is transitive.

The set en cannot be empty because t′k1 6∈ Stub (line 5.12, first disjunct).
Therefore, let (t′, t′′) ∈ en such that t′′ ∈ Stub and (s, t′, t′′) ∈ nttf . Again,
if no such (t′, t′′) exists, then t′k1 is added to Stub, a contradiction. We now
show that t′′ is among t′1, t

′
2, . . . , t

′
n, a contradiction. First, t′ is among the

transitions in ES. This is because (t2, en) is stored along ES and every tuple
in FwdEnableSet(t′k1) is written only once when added to the forward enable
set (line 4.12). Say that t′ = t′i for some 1 ≤ i ≤ n. From (s, t′, t′′) ∈ nttf we
know that t′′ must be executed before t′ can be enabled. Since we know that
t′i ∈ enabled(si−1), t′′ must be among t′1, . . . , t

′
i−1, the final contradiction.

A simple consequence of Lemma 5 is the following Corollary:

Corollary 3. Given the notation of Theorem 8, for all s, s′ ∈ S,
t, t′, t1, ..., tn ∈ T such that t ∈ LPOR(t′, s), ti 6∈ LPOR(t′, s) for all

1 ≤ i ≤ n, and s
t1...tn−−−→ s′, it holds that (ti, t) 6∈ dep.

Proof. Indirectly, assume that (ti, t) ∈ dep for some 1 ≤ i ≤ n. If
ti ∈ enabled(s), then ti is added to LPOR(t′, s) in lines 5.7-5.9. Other-
wise, Lemma 5 implies that there is 1 ≤ j < i such that tj ∈ LPOR(t′, s), a
contradiction.

Now we prove that generalized LPOR computes strong stubborn sets,
which implies Theorem 8. In turn, Theorem 8 implies Theorem 5.

Theorem 9. Given the notation of Theorem 8, for all s ∈ S, t′ ∈ T ,
LPOR(t′, s) is a strong stubborn set.
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Proof. Given s1, s2, ..., sn ∈ S, and t1, t2, ..., tn ∈ T , let s = s0
t1−→ s1

t2−→
. . . sn−1

tn−→ sn be a path such that t1, t2, ...tn 6∈ LPOR(t′, s). We first show
that every t ∈ LPOR(t′, s) is a key transition (D2). Indirectly, assume that ti
for some 1 ≤ i ≤ n can disable t, i.e., t 6∈ enabled(si). Therefore, (ti, t) ∈ dep
must hold, a contradiction by Corollary 3.

Next, we show that D1 holds. We know that every t ∈ LPOR(t′, s) is a key
transition. Therefore, t ∈ enabled(si) for every 1 ≤ i ≤ n. Let s′n be a state

such that sn−1
tn−→ sn

t−→ s′n. From Corollary 3, (tn, t) 6∈ dep, so there exists

s′n−1 such that sn−1
t−→ s′n−1

tn−→ s′n. As illustrated in Figure 4.3, repeating

this rule n times, we obtain a path s
t−→ s′

t1−→ s′1
t2−→ ...

tn−1−−→ s′n−1
tn−→ s′n.

Now we prove that stubborn sets generated by LPOR also satisfy D3
[Val98] if the dep relation used in LPOR is symmetric.

Theorem 10. Given the notation of Theorem 8, if dep is symmetric, then
for all s ∈ S, t′ ∈ T , LPOR(t′, s) satisfies D3, i.e., for all t, t1, t2, ... ∈ T such

that t ∈ LPOR(t′, s) is a key transition, t1, t2, ... 6∈ LPOR(t′, s), and s
t1t2...−−−→

is an infinite path, there is an infinite path s
tt1t2...−−−→.

Proof. Indirectly, assume that there is n > 0 such that for all s′n ∈ S where

s
tt1t2...tn−−−−−→ s′n it holds that tn+1 6∈ enabled(s ′n). As t is a key transition (note

that every transition in LPOR(t′, s) is a key transition), t is enabled in sn ∈ S
where s

t1t2...tn−−−−→ sn (illustrated in Figure B.1). Let s′n ∈ S be any state such

that sn
t−→ s′n. From Corollary 3, we know that (tn+1, t) 6∈ dep. In addition,

as dep is symmetric, it also holds that (t, tn+1) 6∈ dep. Therefore, t cannot
disable tn+1 and we have tn+1 ∈ enabled(s′n). Finally, Theorem 9 (D1) implies

that there is a path s
tt1t2...tn−−−−−→ s′n

tn+1−−→, a contradiction.

B.3 Proofs of LPOR Relations for Message-

Passing

Lemma 6. Given any MP protocol, MP-can-enable is a can-enabling rela-
tion.

Proof. The proof is indirect. Assume that there are s, s′ ∈ S, t, t′ ∈ T such

that t′ 6∈ enabled(s) and s
t−→ s′ and t′ ∈ enabled(s′) and (t, t′) 6∈ MP-can-

enable.
First, assume that t and t′ are local. Let i be the process executing

t (and t′). From (t, t′) 6∈ MP-can-enable we have that either C = ∅ or
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∀x ∈ C : x ∈ Inc(t) ∩ CompTS (t′). From t′ 6∈ enabled(s) we know that
gt′(X, s(i)) is false for every X ⊆ (∪∀j∈P s(cj,i)). Since t and t′ are local,
(∪∀j∈P s(cj,i)) ⊇ (∪∀j∈P s′(cj,i)) because process i sends no message to itself
(it can consume messages though). Therefore, there is no X ⊆ ∪∀j∈P s′(cj,i)
such that X 6⊆ ∪∀j∈P s(cj,i). This implies that s(i) 6= s′(i). Let xi1 , ..., xik be
the variables such that s.xi1 6= s′.xi1 , ..., s.xik 6= s′.xik . From this we know
that xi1 , ..., xik ∈ W (t), and, from C = ∅, xi1 , ..., xik 6∈ R(t′). Now, let s1

be a state which equals s except that s1.xi1 = s′.xi1 . From xi1 6∈ R(t′), t′

is disabled in s1. Similarly, let s2 be a state which equals s1 except that
s2.xi2 = s′.xi2 . t

′ cannot be enabled in s2 either. After repeating this rule k
times, we have that s′ equals sk−1 except the value of xik and t′ is disabled
in s′, a contradiction. Therefore, we assume for all xi1 , ..., xik ∈ C that
xij ∈ Inc(t) ∩ CompTS (t′) (1 ≤ j ≤ k). Let s1 be a state which equals s
except that s1.xi1 = s′.xi1 . From xi1 ∈ Inc(t) we know that s1.xi1 > s.xi1 .
This implies that t′ is disabled in s1 because xi1 ∈ CompTS (t′). We can
continue like this to show that t′ is disabled in sk. Note that sk may differ
from s′ in that sk.x 6= s′.x for some x 6∈ C. We can obtain s′ from sk and
show that t′ is disabled in s′ similarly to the above case where C = ∅ was
assumed.

Second, assume that t and t′ are not local. Again, from t′ 6∈ enabled(s)
we know that gt′(X, s(id(t′))) is false for every X ⊆ (∪∀i∈P s(ci,id(t′))). Since t
and t′ are not local, s(id(t′)) = s′(id(t′)) because t can only change the local
state of process id(t). Therefore, there must be X ′ ⊆ (∪∀i∈P s′(ci,id(t′))) such
that gt′(X

′, s′(id(t′))) is true. From (t, t′) 6∈ MP-can-enable, we have three
cases. First, id(t′) 6∈ t.O. From t′ 6∈ enabled(s) and that t and t′ are not
local we know that X ′ 6⊆ (∪∀i∈P s(ci,id(t′))), i.e., X ′ is not accessible for t′ in s.
Therefore, s′(cid(t),id(t′)) \ s(cid(t),id(t′)) 6= ∅ because s(ci,id(t′)) = s′(ci,id(t′)) for
all i 6= id(t). This contradicts with (3) in the definition of well-formedness.
Second, id(t) 6∈ t′.I. We also know that X ′ ∩ s′(cid(t),id(t′)) 6= ∅, which
contradicts with (1). Third, t.MO ∩ t′.MI = ∅. Let m ∈ M be a message
such that m ∈ X ′ and m ∈ (s′(cid(t),id(t′))\s(cid(t),id(t′))). We know that these
two sets are non-empty. Further, there must be such a message m which is
in both sets otherwise X ′ is accessible for t′ in s. From (2) and m ∈ X ′ we
know that m ∈ t′.MI . From (4) and m ∈ (s′(cid(t),id(t′)) \ s(cid(t),id(t′))) we
have that m ∈ t.MO, a contradiction.

Lemma 7. Given any MP protocol, MP-dependency is a dependency rela-
tion.

Proof. The proof is indirect. Assume that there is s, s′, s′′ ∈ S, t, t′ ∈ T
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Figure B.2: Illustration of the proof of Lemma 7.

such that t, t′ ∈ enabled(s) and s
t−→ s′ and either (a) t′ 6∈ enabled(s′) and

(t, t′) 6∈ MP-dependency or (b) s
tt′−→ s′′ and there is no s

t′t−→ s′′ and (t, t′) 6∈
MP-dependency. We first consider (a). t′ can be disabled in s′ either be-
cause s(id(t′)) 6= s′(id(t′)) or because there is X ⊆ (∪∀i∈P s(ci,id(t′))) which
is accessible for t′ in s but is not accessible for t′ in s′. Since (t, t′) 6∈ MP-
dependency, t and t′ are not local. This means that s(id(t′)) = s′(id(t′))
because t can only change s(id(t)) and id(t) 6= id(t′). Also, since t and t′

are not local we have (∪∀i∈P s(ci,id(t′))) ⊆ (∪∀i∈P s′(ci,id(t′))). This means that
X ⊆ (∪∀i∈P s′(ci,id(t′))), i.e., X is accessible for t′ in s′.

Let us now consider (b). The proof is illustrated in Figure B.2. Again, t
and t′ cannot be local. Let id(t) = i and id(t′) = j. Let s1 be the state after
the execution of t in s. Let s′1 be the state after the execution of t′ in s with
the accessible set Xt′ such that t′ is executed in s1 with the same Xt′ . Assume
indirectly that Xt′ is not accessible for t′ in s. This means that t sends a
message m to process j such that m ∈ Xt′ . Since t and t′ are well-formed,
we have that j ∈ t.O, i ∈ t′.I, m ∈ t.MO, and m ∈ t′.MI , which implies
that (t, t′) ∈ can-remote-enable. However, this contradicts with (t, t′) 6∈ MP-
dependency. Now, from i 6= j we have s(j) = s1(j) and since t′ is executed
in s and s1 with the same Xt′ we also have s′1(j) = s′′(j).

One reason that no s
t′t−→ s′′ exists can be that t is disabled in s′1. However,

this is impossible because process j cannot change the local state of process
i and t′ can only add messages to the input buffers of i. Formally, assume

that s
t(Xt)−−−→ s1. We know that s(i) = s′1(i) and Xt ⊆ ∪∀k∈P s′1(ck,i) because

i 6= j. Therefore, gt(Xt, s
′
1(i)) holds, i.e., t is enabled in s′1. Let s′′′ be the

state such that s′1
t(Xt)−−−→ s′′′. We now show that s′′ = s′′′, which leads to the

final contradiction. We showed that s′1(j) = s′′(j). This and i 6= j imply
that s′′(j) = s′′′(j). Similarly, we can show that s′′(i) = s′′′(i).

In addition, the content of all channels in s′′ and s′′′ are identical too.
For simplicity, assume that every message m contains the identifier of the
channel where m resides. Therefore, it suffices to show that the unions C ′′
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and C ′′′ of all channels in s′′ and s′′′ are the same. Let C denote the union
of all channels in s. Let At (At′) denote the messages added by transition
t (and t′), i.e., At = ∪∀k∈P s1(ci,k) \ s(ci,k) = ∪∀k∈P s′′′(ci,k) \ s′1(ci,k) and
At′ = ∪∀k∈P s′1(cj,k) \ s(cj,k) = ∪∀k∈P s′′(cj,k) \ s1(cj,k). We have that C ′′ =
(C \Xt∪At)\Xt′ ∪At′ and C ′′′ = (C \Xt′ ∪At′)\Xt∪At. Since Xt∩At′ = ∅,
C ′′′ = C \Xt′ \Xt∪At′ ∪At. From i 6= j we have Xt∩Xt′ = ∅, which implies
C ′′′ = C \ Xt \ Xt′ ∪ At ∪ At′ . Finally, (t, t′) 6∈ can-remote-enable implies
Xt′ ∩ At = ∅, which implies C ′′ = C ′′′.

Lemma 8. Given any MP protocol, MP-NET-transition-to-fire is a NET-
transition-to-fire relation.

Proof. The proof is indirect. Assume that there is s ∈ S, t, t′ ∈ T such

that (s, t, t′) ∈ MP-NET-transition-to-fire and a path s
t1−→ s1

t2−→ . . .
tn−→ sn

such that t ∈ enabled(sn) and ti 6= t′ for every 1 ≤ i ≤ n. Let id(t) = i
and id(t′) = j. Since t ∈ enabled(sn) there must be an X ⊆ M such that

sn
t(X)−−→ s′ for some s′ ∈ S. From (s, t, t′) ∈ MP-NET-transition-to-fire we

know that (t, t′) ∈ MP-NET, which implies that t ∈ ID . Also, t is well-
formed. Therefore, X ∩ sn(ck,i) 6= ∅ iff k ∈ t.I. Furthermore, from (t, t′) ∈
MP-NET we know that j ∈ t.I. Let m be a message in X ∩ sn(cj,i). Let
t′′ be the transition that sends m to process i. From the well-formedness of
t we have m ∈ t.MI , and s(cj,i) ∩ t.MI = ∅ implies that t′′ must be among
t1, t2, . . . , tn. Now, (t′′, t) ∈ can-remote-enable because t′′ and t well-formed
and by the definition of m. Since id(t′′) = j and (t, t′) ∈ MP-NET it must
be that t′′ = t′, contradiction.

B.4 Enriched Syntax of Message-Passing

System Models

A local state in Si ⊆ Di1 × ...×Dil is an assignment 〈xi1 = vi1 , ..., xil = vil〉
of variables xi1 , ..., xil to values from domains Di1 , ..., Dil . A transition t is
local to itself or to another transition t′ if id(t) = id(t′), otherwise t is remote
to t′.

We associate with every transition t ∈ T a tuple (I,MI , O,MO) where
I, O ⊆ P are sets of process IDs and MI ,MO ⊆M are sets of messages. The
convention is that each field of the tuple is denoted by t.field . The transitions
are well-formed which means that for every X ⊆ M , s, s′ ∈ S and j ∈ P

such that s
t(X)−−→ s′ the following holds: (1) X ∩ s(cj,id(t)) 6= ∅ implies j ∈ t.I
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and (2) X ⊆ t.MI . Furthermore, (3) s′(cid(t),j)\s(cid(t),j) 6= ∅ implies j ∈ t.O
and (4) s′(cid(t),j) \ s(cid(t),j) ⊆ t.MO.

We say that t is input-deterministic if t is in some ID ⊆ T such that

ID ⊆ {t ∈ T | ∀s, s′ ∈ S, i ∈ P,X ⊆ M : s
t(X)−−→ s′ ∧ i ∈ t.I implies X ∩

s(ci,id(t)) 6= ∅}.
We write x ∈ W (t) and say the t is a write with respect to a variable x

if it might change the value of x. A set containing such variables is W (t) ⊇
{x| ∃s, s′ ∈ S : s

t−→ s′ ∧ s.x 6= s′.x}. Supposed the operators <,> and = are
defined for x, the set Inc(t) ⊆ W (t) contains variables whose value can only

be increased: Inc(x) ⊆ {x | ∀s, s′ ∈ S : s
t−→ s′ ∧ s.x < s′.x}. In practice, x

can be a timestamp which is incremented locally or upon receiving a message.
Further, a transition t is called a read transition with respect to a variable

x if gt depends on x. A set containing such variables is R(t) ⊇ {x | ∃s, s′ ∈
S,X ⊆ M : (∀y 6= x : s.y = s′.y) ∧ gt(X, s(i)) 6= gt(X, s

′(i))}. As a special
case, x in CompTS (t) ⊆ R(t) if t cannot be enabled with the same accessible
set by increasing x: CompTS (t) ⊆ {x | ∀s, s′ ∈ S,X ⊆ M : if gt(X, s(i)) =
false∧gt(X, s′(i)) = true∧(∀y 6= x : s.y = s′.y) then s.x > s′.x}. In practice,
x denotes a timestamp so that certain messages (with small timestamp) are
discarded for higher values of x.

Note that it is always sound to remove transitions from ID and, given
a transition t, to add (remove) variables to (from) W (t), R(t) (Inc(t),
CompTS (t)).
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