
RESEARCH PAPER

Error Propagation Analysis for Multithreaded Programs: An
Empirical Approach

Stefan Winter*1 | Abraham Chan2 | Habib Saissi3 | Karthik Pattabiraman2 | Neeraj Suri4

1SoSy-Lab, LMU Munich, Germany
2Department of Electrical and Computer
Engineering, University of British
Columbia, British Columbia, Canada

3AUSY Technologies, Frankfurt, Germany
4School of Computing and
Communications, Lancaster University, UK

Correspondence
*Stefan Winter. Email: sw@stefan-winter.net

Fault injection is a technique to measure the robustness of a program to errors by
introducing faults into the program under test. Following a fault injection experiment,
Error Propagation Analysis (EPA) is deployed to understand how errors affect a pro-
gram’s execution. EPA typically compares the traces of a fault-free (golden) run with
those from a faulty run of the program. While this suffices for deterministic programs,
EPA approaches are unsound for multithreaded programs with non-deterministic
golden runs. In this paper, we propose Invariant Propagation Analysis (IPA) as the
use of automatically inferred likely invariants (“invariants” in the following) in lieu
of golden traces for conducting EPA in multithreaded programs. We evaluate the
stability and fault coverage of invariants derived by IPA through fault injection exper-
iments across six different fault types and six representative programs that can be
executed with varying numbers of threads. We find that stable invariants can be
inferred in all cases, but their fault coverage depends on the application and the fault
type. We also find that fault coverage for multithreaded executions with IPA can
be even higher than for traditional singlethreaded EPA, which emphasizes that IPA
results cannot be trivially extrapolated from traditional EPA results.
KEYWORDS:
Error Propagation Analysis, Fault Injection, Concurrency, Multithreading

1 INTRODUCTION

Software fault injection (SFI)1–3 is a widely-used technique for testing the robustness of software to faults in its operational envi-
ronment. For this purpose, SFI introduces faults into the software under test (SUT) and its environment, executes the SUT, and
observes its behavior under the faults. While the nature of SFI closely resembles that of mutation analysis, the faults considered
in SFI are not limited to simple syntactical mutation operators, but also include more complex emulations of real world faults
(e.g., software bugs)1. Similar to other types of robustness tests, such as fuzzing approaches, SFI relies on negative oracles to
determine if a test passes. Unlike traditional tests that pass if the SUT’s output matches an expected output, SFI tests pass if
certain undesired behaviour does not occur (e.g., program crashes).

An important type of negative oracles is error propagation, i.e., the corruption of a module’s internal state by an injected
fault. In general, error propagation is undesirable because it can lead to failures that are hard to diagnose and recover from. The
identification of how such state corruptions evolve from a fault activation in execution is referred to as error propagation analysis
(EPA). EPA typically requires capturing a detailed execution trace of the program when running a test. After the termination
of a test, its execution trace is compared to an execution trace from a fault-free execution, also known as the golden run7–9).

1Contrary to mutation testing, there is no established coupling hypothesis 4–6 in SFI.

ar
X

iv
:2

31
2.

16
79

1v
1

 [
cs

.S
E

]
 2

8
D

ec
 2

02
3

2 STEFAN WINTER ET AL

Any deviation from the golden run is considered to be an instance of error propagation. While other forms of EPA exist, in this
paper, we refer to golden-run based EPA when we say EPA as it’s the dominant form.

While the golden run comparison technique works well for EPA of deterministic programs and execution environments, it
can lead to spurious outcomes in the presence of non-determinism, which can cause trace deviations that do not indicate error
propagation. One of the primary sources of non-determinism is multithreading in programs, which is becoming more prevalent
as processors attain increasing core counts. In general, there are two cases of non-determinism that occur in multithreaded pro-
grams: scheduling and data non-determinism. Since threads can execute in different orders due to non-deterministic scheduling,
the traced values in the program may differ across program executions. However, the value of a variable within a thread does
not change – this is called scheduling non-determinism. On the other hand, data non-determinism (i.e., a race condition) occurs
when multiple threads write to a shared variable in different orders, and hence the variable’s value differs from one execution
of the program to another. Scheduling non-determinism may be addressed by tracking the thread identifiers and separating the
traced values based on the identifiers. However, data non-determinism cannot be mitigated by tracking thread identifiers as the
variable’s value is a function of the specific interleavings among threads. In practice, these are a large number of possible thread
interleavings and it is not practical to track the values in each interleaving. Thus, an alternative EPA framework is required for
handling data non-determinism in shared memory multithreaded programs, which is the focus of this paper.

To mitigate the effects of spurious EPA results due to multithreaded executions, we propose the use of dynamically generated
“likely” invariants10 to perform EPA for multithreaded programs. An invariant is a property on a program’s data values that holds
across all of its executions. Likely invariants are those that hold across some executions of the program but do not necessarily
hold across others. Ernst et. al.10 proposed the idea of likely invariants that are automatically derived from execution traces of a
program, and used it for program comprehension. Since the publication of this seminal work, likely invariants have been used
for many dependability-related tasks, such as error detection11, fault localization12, program repair13 and test case generation14.
However, to the best of our knowledge, there has been no systematic study on the use of dynamically generated likely invariants
for EPA.

There are three reasons why likely invariants are a good fit for the EPA problem. First, likely invariants can be automatically
generated by analyzing the traces from different executions of a program, without any programmer intervention. This is critical
for the technique to scale to large, real-world applications. Second, likely invariants are often compact, and can be checked with
low overhead at run-time, e.g., as predicates for executable assertions. This makes them easily applicable as oracles. Thirdly,
and most importantly, likely invariants can be conditioned such that they hold across the entire set of executions on which
the program is trained, automatically abstracting out the non-deterministic parts of the program. This makes them especially
well-suited for handling data non-determinism in performing EPA of multithreaded programs.

However, likely invariants characterize correct executions with less precision than true invariants10, which may reduce their
efficacy for EPA. Consequently, the question we ask in this paper is: “How effective are the invariants2 generated by automated
techniques in tracking error propagation in multithreaded programs?”. It is important to answer this question to determine if
existing invariant generation techniques are sufficient for EPA, or if new techniques need to be developed. We experimentally
measure the effectiveness of an invariant in terms of two attributes, (1) the stability of the generated invariant set across different
(non-deterministic) executions of the program, and (2) the fault coverage of the generated invariants for different fault types,
corresponding to common software faults.

We make the following contributions in this paper:
• We propose the use of invariants for performing EPA in multithreaded programs.
• We build a framework called IPA (Invariant-based Propagation Analysis) to derive dynamic invariants for multithreaded

programs through an automated, end-to-end process (Section 3.3).
• We empirically assess the efficacy of the invariants derived using IPA for six representative multithreaded programs

through fault-injection experiments (Section 4).
In the conference version of this paper15, we presented IPA and an experimental evaluation of the effectiveness of likely

invariants for detecting faults in multithreaded programs with fault injection experiments. In this paper, we present an expanded
evaluation (Sections 4.9 & 4.10), with two previously unexplored parameters in our IPA framework - the confidence and granu-
larity of the dynamicly inferred invariants, a side-by-side comparison of the fault injection results of the benchmark applications

2From this point on, when we say invariants, we mean likely invariants.

STEFAN WINTER ET AL 3

executed with a single thread versus multiple threads, a formal system model of EPA to demonstrate why golden run based EPA
is unsound in multithreaded programs, and a fuller justification for the fault model used.

Our results are as follows. We find that the traditional form of EPA is unsuitable for multithreaded programs due to their non-
determinism. We also find that the invariants derived by IPA are stable across multiple executions, and provide coverage ranging
from 10% to 97% depending on the fault type and program. Then, we find that the proposed IPA framework is substantially
faster than traditional EPA-based analysis, while incurring a 2-90% one time setup overhead. Finally, we perturb the confidence
and granularity parameters of IPA to determine whether the fault coverage can be improved. We find no significant difference
in the number of inferred invariants when confidence is lowered and that invariants inferred at the basic block granularity do not
stabilize within 20 runs, making them unsound for EPA. Our results thus indicate that invariants offer a promising alternative
to EPA in some programs but not others, and the results are highly dependent on the program.

2 BACKGROUND AND RELATED WORK

In this section, we first describe the notions of fault injection and EPA. Then, we show an example of why golden run EPA is
unsound for multithreaded programs. Finally, we describe likely invariants and survey related work in the field on using likely
invariants.

2.1 Fault Injection
Software fault injection is a technique to emulate bugs by modifying one or more components of a software system. It has been
widely deployed to advance test coverage and software robustness by exploring error handling paths of programs (e.g.,16–20).
There are two categories of fault injection: compile-time injections and run-time injections. Compile-time injections typically
involve modifying source code (e.g., SAFE2) or binary code (e.g., G-SWFIT1 or EDFI21), similar to mutation testing. In contrast,
run-time injections mimic software events that corrupt instructions and memory at run-time. The sensitivity of programs to such
events is difficult to assess through traditional testing techniques22. We focus on run-time injections, and refer to these as fault
injections in this paper.

Traditionally, fault injection tools have targeted hardware faults, such as single event upsets caused by particle strikes on
chips. However, an increasing number of fault injection systems now target software faults. Fault injection systems, such as
FIAT23, LLFI24, or PDSFIS25, explicitly support the emulation of a wide range of software faults at run-time. For instance,
buffer overflow errors can be simulated by under-allocating malloc calls by some number of bytes. Other examples include
simulating invalid pointer errors by randomly corrupting pointer addresses, and race conditions by acquiring non-existent or
incorrect locks. Such simulated software bugs can be injected at either random or specific program points in order to study their
effects on a program.

2.2 Error Propagation Analysis (EPA)
The effects of a software fault depend on both its type and the location in which it occurs. EPA attempts to answer the following
question: “How does an injected fault of known type and known location propagate within a program?”

Existing EPA approaches in tools such as PROPANE8 or LLFI24 make use of either instruction or variable trace comparisons
between golden and faulty runs of programs. Deviations between traces can be interpreted as data violations or control flow
violations. Data violations occur when identical instructions at the same program point are invoked with different values. Control
flow violations occur when the instruction orders differ. Either violation is considered an indication of a software fault. However,
this approach assumes that traces from golden runs are identical as long as the program is operating on the same inputs. Any
non-determinism in the program can violate this assumption, such as that caused by multithreading.

Lemos et. al.26 addressed the non-determinism problem in EPA using approximate comparison techniques used in computa-
tional biology (e.g., DNA sequencing) to compare golden traces and faulty traces. This approach, however, does not compare
the non-deterministic portions of the trace with the golden run, effectively limiting its coverage. Unfortunately, the traces of
multithreaded programs tend to be non-deterministic for the largest part.

Leeke et al.9 attempt to solve the non-determinism problem in EPA using a reference model, which is a statistical characteriza-
tion of the system’s outputs. At a high-level, reference models are similar to likely invariants. However, unlike likely invariants,

4 STEFAN WINTER ET AL

which can be automatically derived, the reference model requires significant manual effort and also detailed domain knowl-
edge. Further, for many systems, it may not be possible to derive a reference model if the outputs do not conform to well-known
statistical distributions.

TraceSanitizer27 is another recent technique3 to solve the problem of spurious deviations in EPA execution traces resulting
from multithreading and dynamic memory allocations. Unlike IPA, the comparison of traces processed by TraceSanitizer can be
proven to provide sound EPA for certain types of programs. While IPA cannot provide such guarantees, it does not suffer from
TraceSanitizer’s applicability constraints, and can hence be used for any type of program. Moreover, since IPA does not rely
on SMT solving like TraceSanitizer does, it better scales for programs with highly complex inputs, for which TraceSanitizer’s
SMT formula construction time can become large. Further, it does not suffer from the unpredictable and potentially large SMT
solving times observed in Trace Sanitizer27.

A number of fault injection tools for large and complex systems face similar problems of non-determinism as the ones that
motivated our work. FATE28 injects combinations of errors at the interface between service providing software and its interface
to system resources, such as I/O devices, to assess recovery mechanisms. However, it may falsely conclude recovery failures when
the timing between injections and recovery checks is insufficient. To address this issue, FATE relies on manual specifications
using a dedicated specification language, which requires programmer effort. In contrast, our approach is completely automated.
Further, FATE does not investigate how errors propagate like we do in this paper.

Deligiannis et al.29 report on non-determinism as a challenge for distributed system testing and propose a systematic approach
to explore the various behaviors that can result from such non-determinism during test. Cotroneo et al.30 account for non-
deterministic event traces in fault injection campaigns for distributed systems by building anomaly detectors based on fault-free
executions based on Markov chains that model event orders. They solve a similar problem as us, but the conceptual difference
between the execution traces renders a direct adoption of their approach for our domain (and vice versa) infeasible. This is
because in distributed systems, the (binary) occurrence and order of events is of high relevance, but modeling all possible
events of highly parameterized operations as in program statements would lead to a prohibitively large alphabet and modeling
each program statement as an event to prohibitively complex models. Similarly, data invariants as in our work are oblivious of
protocol-level errors in the communication between nodes in a distributed system, and hence cannot aid in their detection.

2.3 EPA in Multithreaded Programs
In this section, we provide an example of why EPA using golden run comparisons does not suffice for multithreaded programs
as a result of data non-determinism.

Consider the function in Figure 1, created for the purpose of this example. The function takes a single input 𝑥 and adds it to a
work queue workChunks. The elements in the work queue are processed by separate threads and there is no order dependency
across any two elements, i.e., the order in which elements are added to or taken from the queue is not functionally relevant for
the program. If 4 work chunks 0,1,2,3 were to be added to workChunks, a golden run trace of a single threaded run would
invoke addChunk with these four values in sequence. As long as the work chunks do not change, such a golden run trace is
consistent for every execution of the program.

Consider the case where the program is executed on four threads for the same set of chunks. Because the thread schedule
can change, the order in which chunks are added to the queue can change as well, resulting in different execution traces for the
program and different heap memory states for workChunks. For example, the 4 work chunks could be added in reverse order,
leading to workChunks containing [3,2,1,0] instead of [0,1,2,3] in the single-threaded execution discussed before. These
deviations would erroneously trigger an alarm by classical golden-run based EPA and cannot be resolved by simply tracking
thread IDs, because the thread scheduling deviations lead to deviating memory states.

The approach presented in this paper circumvents this problem in two ways. First, it does not rely on a comparison of execution
orders. Therefore, different instruction orders resulting from different thread schedules cannot affect a comparison between fault-
free and faulty runs. Second, it does not rely on unconditional data comparisons. Therefore, even if variable values, such as
that of workChunks, differ across executions, the invariants that our approach learns for the comparisons across executions are
conditional, and reflect the changes in the data structures. For instance, when addChunk(0) is invoked, the approach is capable
of learning that after the execution of that function, the element 0 is in workChunks, irrespective of what other elements it may
contain and in which order. We will detail this invariant-based approach in the following section.

3Most of the authors of this paper overlap with the TraceSanitizer paper.

STEFAN WINTER ET AL 5

1 sem_t freeSlots; // initialized with SIZE
2 int nextIndex = 0;
3 int workChunks[SIZE];
4 pthread_mutex_t mutex;
5
6 int addChunk (int x) {
7 sem_wait(&freeSlots);
8 pthread_mutex_lock(&mutex);
9 workChunks[nextIndex] = x; // chunk order irrelevant

10 nextIndex += 1;
11 pthread_mutex_unlock(&mutex);
12 }

FIGURE 1 Example thread-safe function working on shared global data.

2.4 Likely Invariants
True invariants are predicates that are valid across the set of all executions of a program. Therefore, the violation of a true
invariant necessarily indicates the presence of a fault, provided the invariant was inferred from a correct program. Thus, true
invariants are sound, but not necessarily complete indicators for error propagation. Unfortunately, the existence of such true
invariants is undecidable in the general case31, which makes their automated inference difficult, if not impossible.

Likely invariants, in contrast, only hold for observed executions but not necessarily for all executions. Thus, they may contain
spurious invariants in addition to true invariants. Further, likely invariants may not comprise all true invariants as some true
invariants may not be exercised in the set of observed executions. Consequently, likely invariants are both incomplete and
unsound in the general case, and hence incur both false negatives and false positives.

Although likely invariants, unlike true invariants, bear a risk of false positives, we assert that this risk is substantially lower
than for golden run comparisons in non-deterministic programs. This is because EPA is typically done over a set of known
inputs, and we only require that the likely invariants are stable over this set. Further, likely invariants can be generated through
automated techniques10, 32, 33, which make them a viable option even for highly complex programs.

In this paper, we focus on the likely invariants generated by Daikon10, which is the most widely used likely invariant inference
engine. Daikon infers and reports likely invariants based on a set of execution traces. DySy33 and DIDUCE32 are other examples
of dynamic invariant generation tools. DySy first applies symbolic execution and then observes dynamic execution traces to
generate invariants. DIDUCE detects invariants and subsequently checks their violations to help programmers locate bugs.
However, all three systems suffer from the effects of thread non-determinism34, rendering them unsuitable for multithreaded
programs. In recent work, Kusano et al.34 addressed this problem by developing a custom interleaving explorer for multithreaded
programs called “Udon”. However, Udon is not used for the purpose of EPA, which is our focus. Our framework builds on top
of Udon for invariant inference.

Prior work has used likely invariants for mutation testing and error detection. For example, Schuler et al.11 assess the viabil-
ity of invariant checking in mutation testing. They find that an invariant approach yields a 97% detection rate in their mutation
experiments. However, they evaluate the efficacy of invariants through the proportion of equivalent mutants detected (i.e., muta-
tions that yield syntactically different but semantically identical results), which is different from our goal of using them for
distinguishing between effects from multithreading vs. error propagation. Sahoo et al.35 use likely invariants to detect hardware
faults through software-level symptoms. Their experiments show that their approach is able to identify over 95% of hardware
faults. However, they focus only on range-based invariants (i.e., checking if values lie in a closed interval), significantly limiting
the scope of the approach. Further, they focus on hardware faults (i.e., single bit flips). Lu et al.36 develop a custom invariant
extractor and utilize invariants to expose atomicity violations between thread interleavings. In contrast to these papers, our paper
explores the use of a broad set of likely invariants to trace the propagation of software run-time faults in multithreaded programs.

3 METHODOLOGY

We first formalize the EPA problem in Section 3.1. Then, we provide an overview of our proposed solution in Section 3.2,
followed by the development of IPA, the framework that implements our solution, in Section 3.3. We then present an example
to show the applicability of IPA, followed by the evaluation metrics.

6 STEFAN WINTER ET AL

3.1 System Model
To systematically study the utility of likely invariants for EPA, we first introduce abstract models for sequential programs and
parallel programs. Using these models, we demonstrate that the most widely used approach to EPA for sequential programs is
not applicable for multithreaded programs. For brevity, we limit our models to terminating programs. We do not consider this a
restriction to our argument’s generality, as most EPA techniques (like other experimental software assessment) evaluate correct-
ness properties on a finite execution sequence of program statements. For instance, a software test result is commonly evaluated
against a “test oracle”, after the test execution has terminated. If programs are strictly deterministic, i.e., their execution traces
are always identical across repeated executions if no error occurs, then golden-run based EPA is sound irrespective of termina-
tion. However, if the execution traces of programs can deviate even for correct executions, e.g., because of multithreading, then
golden-run based EPA becomes unsound for two reasons. First, the execution traces can capture different parts of the execution.
Because termination is unknown, the length of an execution trace is an arbitrary choice and instructions that are executed outside
of that arbitrarily chosen execution window could interleave with instructions from within that window in repeated executions.
Second, the instructions within an arbitrarily chosen execution window could be permuted non-deterministically and mislead a
direct comparison of executed instructions. Solving the first problem would require knowing all possible execution sequences,
which contradicts non-termination in the general case. Therefore, our work focuses on the second problem.

This restriction excludes certain types of programs from the application range for IPA. For example, server processes are
usually designed to provide services continuously without termination, or even interruption. For these cases, neither EPA nor
IPA can provide sound results and any improvement of IPA over EPA would be by coincidence.
EPA in Sequential Programs We define sequential programs by their control flow graphs (CFGs). A CFG of a program 𝑃 is
a directed graph (𝑉 ,𝐸). The set of vertices 𝑉 represents the program statements and the set of directed edges 𝐸 ⊆ {(𝑣𝑖, 𝑣𝑗) ∈
𝑉 × 𝑉 } is defined such that (𝑣, 𝑣′) ∈ 𝐸 iff 𝑣′ is a possible direct successor statement to 𝑣. The relation 𝐸 follows directly from
the sequence of statements in the program text and the programming language’s semantics. For every statement 𝑣 ∈ 𝑉 , we
define sets of predecessors 𝑃𝑟𝑒𝑑(𝑣) = {𝑣′ ∈ 𝑉 ∶ (𝑣′, 𝑣) ∈ 𝐸} and successors 𝑆𝑢𝑐𝑐(𝑣) = {𝑣′ ∈ 𝑉 ∶ (𝑣, 𝑣′) ∈ 𝐸}. A program
has exactly one entry point 𝑒, and a single exit point 𝑥 such that 𝑃𝑟𝑒𝑑(𝑒) = ∅ and 𝑆𝑢𝑐𝑐(𝑥) = ∅. A program with multiple exit
points can easily be modified to produce an equivalent program with one exit point.

We model an execution of a sequential program as a path in the CFG of the program. Considering an execution 𝜎 = 𝑒, 𝑣1,… , 𝑥,
we define a set of reachable states 𝑠𝜎 such that each 𝑠𝑖 ∈ 𝑠𝜎 maps values to the program variables at each statement 𝑣𝑖 executed
in 𝜎. For the sake simplicity, we write 𝑠𝜎(𝑣𝑖) to refer to 𝑠𝑖. The output of a program is solely determined by the provided input for
a sequential program. The functional specification of a program relates all possible inputs to corresponding outputs. A program
execution whose output satisfies the functional specification is said to be correct. Any deviation of an execution from a correct
execution with the same input is called an error. In a program execution, we refer to the sequence between an error and the last
output-defining statement as error propagation.

In EPA, faults are injected in the considered program to analyze their possible effects. A fault injection procedure adds,
modifies, or removes a statement or its data, the injection point, in the CFG. Given a concrete input, the program is executed to
obtain a correct execution, referred to as the golden run. Next, a fault is injected and the program is executed again with the same
input. The obtained execution may deviate from the golden run as the code has been modified. If so, the fault has been activated
and resulted in an error, whose effects can be analyzed using the faulty execution trace. Error propagation can be identified
based on whether (1) the faulty execution 𝜎𝑓 follows a different path in the CFG compared to the golden run 𝜎𝑔 starting from
the injection point 𝑣𝑟, OR (2) there exists a statement 𝑣 in 𝜎𝑓 occurring after 𝑣𝑟, such that 𝑠𝜎𝑓 (𝑣) ≠ 𝑠𝜎𝑔 (𝑣).
EPA in Multithreaded Programs. Multithreaded programs consist of multiple threads executing concurrently. Each thread 𝑇𝑖
is modeled as a separate CFG (𝑉𝑖, 𝐸𝑖). For a statement 𝑣 in 𝑉𝑖, we write 𝑡ℎ(𝑣) to refer to the thread 𝑇𝑖 executing it. An execution
of a concurrent program is a sequence of statements 𝜎 = 𝑒𝑖, 𝑣1, 𝑣2,… , 𝑥𝑗 such that for any two statements 𝑣 and 𝑣′ with 𝑣
occurring before 𝑣′ in 𝜎 and 𝑡ℎ(𝑣) = 𝑡ℎ(𝑣′), 𝑣 ∈ 𝑃𝑟𝑒𝑑(𝑣′). In other words, an execution is a linearization of partial orders of
statements induced by the respective CFGs.

Due to the non-determinism of scheduling, different “equivalent” linearizations are possible. Given the same input, two
executions 𝜎 = 𝑒𝑖,… , 𝑥𝑖 and 𝜎′ = 𝑒𝑗 ,… , 𝑥𝑗 are said to be equivalent iff they deliver the same output, that is, 𝑠𝜎(𝑥𝑖) = 𝑠𝜎′(𝑥𝑗).
Given a golden run 𝜎𝑟 = … , 𝑣𝑖, 𝑣𝑗 ,…, one can obtain an equivalent linearization 𝜎′

𝑟 = … , 𝑣𝑗 , 𝑣𝑖,… by swapping adjacent
statements 𝑣𝑖 and 𝑣𝑗 , as long as the CFG order and synchronization mechanisms allow it and 𝑠𝜎𝑟(𝑣𝑗) = 𝑠𝜎′

𝑟
(𝑣𝑖). Successive

swapping of such statements generates more possible linearizations that can characterize a correct execution37. This is the reason
why straightforward pairwise comparison of statements in the executions introduces unsoundness to golden run based EPA for

STEFAN WINTER ET AL 7

FIGURE 2 IPA: Invariant-based EPA Model

multithreaded systems. Thus, golden run based EPA may erroneously flag a deviation of observed equivalent linearizations due
to to scheduler non-determinism.

3.2 Solution Overview
In our approach, we start with a set of golden runs Σ and generate a set of likely invariants 𝐹 from them, before we inject a
fault and run the program again. The potentially faulty execution is then validated against the likely invariants. Suppose 𝜎 ∈ Σ
denotes a golden run and 𝜎𝑓 denotes a faulty execution of the program. A likely invariant 𝑓 ∈ 𝐹 is defined as a predicate over
the set of reachable states 𝑠𝜎 such that 𝑓 (𝑠) is true for all 𝑠 ∈ 𝑠𝜎 . An execution 𝜎𝑓 is said to deviate from the correct runs iff
there is an invariant 𝑓 ∈ 𝐹 such that 𝑓 (𝑠) is false for some 𝑠 ∈ 𝑠𝜎𝑓 .

3.3 IPA: EPA Using Likely Invariants
We now introduce IPA, a new EPA framework for multithreaded programs using dynamically inferred likely invariants. IPA
consists of three main modules, (1) program profiling, (2) invariant inference, and (3) fault detection. Figure 2 overviews the
EPA process using the IPA framework.

The profiling module (label ➀) is invoked at program compilation time, and instruments the tracing functions at the entry
and exit points of every function in the program. Tracing program values at function entry and exit points allows us to capture
preconditions and postconditions of procedures, which broadly encapsulate its functionality. A unique invocation nonce is also
assigned to each pair of function entry and exit values, on a per thread basis. The invocation nonce enables inferred invariants
to associate exit values with entry values. All of the traced values are accumulated in a trace file, which is then passed to the
invariant inference module.

The invariant inference module (label ➁) examines the values in the trace file and generates likely invariants with a 100%
certainty, meaning that the invariants will never be falsified within the given trace file. As discussed in Section 3.2, this stability
across different runs is desired to keep the false positive rate low. Therefore, programs must be checked to ensure that the set of
likely invariants are stable for a given set of inputs. Typically, for terminating programs, this problem can be remedied by using
multiple profiling runs to generate the trace file. Traces from multiple program runs can produce fewer invariants than single runs
due to the heightened probability for falsification, but can also generate more invariants as larger traces offer higher statistical
significance for previously neglected invariants. Once the invariant inference module produces a stable set of invariants, the
invariants can be deployed for validation against faulty traces (i.e., traces generated from faulty program runs).

Finally, the fault detection module (label ➂) parses and groups the invariants by their invoked functions. These invariant
groupings are stored in a hash map structure. The faulty trace, which mirrors the format of the golden trace, is scanned line by
line. The fault detection module retrieves the corresponding invariant(s) from the hash map and validates the invariant(s) based
on the faulty trace values. The invariant violations are reported in a new file, which records the line number in the faulty trace,
the function name, a flag indicating function entry or exit, and the violated invariant.

8 STEFAN WINTER ET AL

3.4 Example
We outline an example of using IPA on the function shown in Figure 1. As shown in Section 2.3, there is a potential for variance
between golden traces of the same function, when executed with multiple threads. Therefore, we demonstrate the application of
IPA for EPA to circumvent the effects of non-determinism.

First, the profiling module instruments the entry and exit points of this function while executing the function multiple times
with a fixed input. In this example, we pass a single fixed input, 4, to the function. 𝑥, is the only function argument variable traced
at the function entry. At the function exit, both the values of 𝑥 and the return values are traced. Next, the invariant inference
module generates two sets of invariants at the entry and exit points respectively, using the trace files: {𝑥 = 4}, {𝑥 = 1}. The
entry invariant (𝑓) specifies that all observed values of 𝑥 are equal to 4. The exit invariant (𝑓 ′) specifies that the final value of
𝑥 must be equal to 1.

Suppose a patch of the program incorrectly alters the boolean expression in line 3 to 𝑎 < 0 (an easy mistake even by expe-
rienced programmers38, 39). In fault injection, this bug can be simulated through a data corruption. By inspecting the code, we
observe that the bug leads to an erroneous change of 𝑥 at line 6. The fault detection module can detect this bug by validating the
data trace of 𝑥 against the set of invariants, reporting the violation of 𝑓 ′. We applied this mutation and found that IPA reports
the violation of 𝑓 ′ in all of the faulty runs involving the same inputs on varying numbers of threads.

Violated invariants not only reveal the presence of faults, but also localize the source of faults. Since 𝑓 is retained, and 𝑓 ′ is
violated, the fault must have occurred between the entry point and the exit point. Note that these statements are not necessarily
from the same function as other threads might have been interleaved with the function and might have modified the value of
some of the variables. Thus, an invariant based approach can avert the pernicious effects of thread variance.

3.5 Evaluation Metrics
We define the metrics which we use in later sections to evaluate the effectiveness of IPA.

Stability: The invariant must hold across multiple fault-free executions of the programs targeted for injection with different
numbers of threads for a given set of inputs. This ensures a low false positive rate.

Coverage: The invariants must provide high coverage for different types of faults, thereby ensuring a low false negative rate.
We define coverage of an invariant under a certain fault type as the rate of violations for the considered invariant under all
injections for the considered fault type.

Suppose 𝑇 is the set of all faulty program traces, and 𝑝 is the number of violated invariants in a single trace. Let 𝑇𝑝≥1 be a
subset of 𝑇 , denoting the set of program traces that violate at least one invariant. Then,

Fault Coverage =
|𝑇𝑝≥1|
|𝑇 |

Runtime Overhead: The runtime overhead is a direct comparison between the time taken by IPA to complete the same task
by golden run EPA. We divide the overhead comparisons into two categories: setup overhead ratio (𝑆), and fault detection
overhead ratio (𝐷). The values of 𝑆 and 𝐷 are computed using Equations (1) and (2), where the variable subscripts refer to the
steps in EPA / IPA.

𝑆 =
𝐸1

𝐼1 + 𝐼2
(1) 𝐷 =

𝐸1 + 𝐸3

𝐼1∕5 + 𝐼3
(2)

In IPA, the one-time setup overhead for the fault injection experiments consists of golden run profiling (𝐼1) over 5 runs,
and invariant generation (𝐼2). In EPA, only golden run profiling is performed (𝐸1), and there is no invariant generation step.
Unlike the setup overhead which is a one-time cost, the fault detection overhead is incurred after every fault injection. In IPA,
this process consists of generating a single trace file (𝐼1∕5) and executing the fault detection module (𝐼3). In EPA, this process
involves a line by line trace validation between golden and faulty runs (𝐸3). We define the overhead ratios as time taken by EPA
for setup/detection divided by that of IPA.

STEFAN WINTER ET AL 9

4 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate the effectiveness of the likely invariants derived by IPA in performing EPA. As
mentioned in Section 3.2, to be effective, a likely invariant should have two properties: (1) stability, and (2) coverage.

To evaluate the stability, we execute the program multiple times, and measure the number of executions after which the
invariant set stabilizes (Section 4.5). We then measure the coverage provided by the invariants for different fault types by injecting
faults into the program and checking whether any of the invariants are violated due to a fault (Section 4.6). We also group
the invariants into different classes based on their structure, and measure the coverage provided by each class of invariants
(Section 4.7). Finally, we measure the performance overhead of the IPA and EPA approaches (Section 4.8).

4.1 Research Questions
We ask the following research questions (RQ’s) in our experimental evaluation.

• RQ1: Is golden run based EPA a sound method to identify error propagation in multithreaded programs?
• RQ2: Do the invariants stabilize across multiple executions of the program?
• RQ3: What coverage of injected faults do the invariants provide for multithreaded programs and how does that coverage

compare to singlethreaded EPA?
• RQ4: What is the coverage provided by invariants of a specific type/class, for different kinds of errors in the program?
• RQ5: What is the performance overhead of IPA compared to EPA?
• RQ6: Can stable invariants be generated at a lower confidence level?
• RQ7: Can stable invariants be generated at a finer program granularity?
• RQ8: Are program characteristics correlated with fault detection coverage of IPA?

4.2 Experimental Setup
IPA4 consists of three modules as shown in Figure 2, namely the program profiling module, the invariant inference module, and
the fault detection module. The program profiling module is implemented as a LLVM40 compiler transformation pass, which
is based on the instrumentation pass in the Udon tool34. The invariant inference module utilizes Daikon10, since it is presently
the most widely used tool for likely invariant generation. Therefore, the primary function of the program profiling module is to
produce a trace file in a Daikon-compatible format. This involves some customized configurations in the LLVM compiler pass.
For simplicity of implementation, IPA only traces the values of function arguments belonging to primitive data types – this is
similar to what Udon34 does. Lastly, the fault detection module consists of a single Python script and compares the values in
the trace file with the derived invariants.

We evaluate the IPA framework using six representative multithreaded benchmarks that perform a wide variety of tasks:
Quicksort, Blackscholes, Swaptions, Streamcluster, Nullhttpd, and Nbds. These benchmarks range from roughly 300 to 3000
lines of code. All benchmarks are implemented in C/C++, and use the POSIX threading library (i.e., pthreads). We run all
benchmarks using default program inputs that come with the benchmark suites. Quicksort, as its name suggests, sorts a sequence
of integers both sequentially and concurrently using the Quicksort algorithm, and returns a response code to denote success or
failure. Blackscholes, Swaptions, Streamcluster are part of the PARSEC benchmark41, a suite of domain-diverse multithreaded
programs of different workloads. Blackscholes is an application that solves the Black-Scholes partial differential equation, which
prices a portfolio of European-style stock options. Swaptions uses the Monte Carlo pricing algorithm to compute the prices of
swaptions, a form of financial derivative. Streamcluster is a web server application performing the online clustering problem
with streaming data. Nullhttpd is a small and efficient multithreaded web server for Linux and Windows42. Nbds43 is an imple-
mentation of non-blocking data structures supporting concurrent key-value store transactions. We choose these benchmarks to
represent a wide variety of domains where multithreading is commonly applied.

4We have made IPA publicly available at http://github.com/DependableSystemsLab/LLFI-IPA.

http://github.com/DependableSystemsLab/LLFI-IPA

10 STEFAN WINTER ET AL

We use LLFI24, a LLVM based tool, to perform fault injections. While LLFI was originally developed for hardware faults, it
currently supports both software and hardware faults5. LLFI injects software faults into the program IR by modifying instruc-
tions or register values of the program at runtime. We assume that faults are uniformly distributed throughout the program
code. Table 1 describes how LLFI injects each software fault. We consider only activated faults, i.e., those in which modified
instructions are executed or modified data is read by the program, when reporting coverage.

4.3 Fault Model
In this paper, we consider the following 6 software faults listed in Table 1: data corruptions, file I/O buffer overflows, buffer over-
flows (involving) malloc, function call corruptions, invalid pointers and race conditions. The chosen fault types are conceptually
closer to errors that occur at run-time than faults in programs (i.e., software bugs), which are typically used in compile-time
injection approaches such as G-SWFIT1 or SAFE2. For instance, buffer overflows can result from either miscalculated offsets
into a data structure or from insufficient memory allocations. The reason for this choice lies in our goal to study error propa-
gation. By focusing on effects (e.g., the overflow), we do not need to simulate all their individual root causes separately, which
would require more experiment time and result in lower propagation probabilities, because these root causes do not necessarily
lead to wrong program executions.

Data corruption is a generic fault type that can capture a wide variety of errors due to logical errors (e.g., the example in
Section 3), and implementation bugs (e.g., integer overflows, uninitialized variables). The buffer overflow fault categories can
occur due to common bugs in C/C++ programs where array and pointer bounds are not checked. We distinguish between file I/O-
related buffer overflows and other buffer overflows as the former can lead to security vulnerabilities. Function call corruptions
can occur when one passes the wrong parameters to a function, and represents incorrect invocation of functions i.e., interface
errors. Invalid pointers can arise due to errors in pointer arithmetic, or due to the use of pointers after freeing them, i.e., use-
after-free bugs. Finally, race conditions occur due to locks not being acquired or acquired incorrectly, and with at least one of
the threads performing a write to shared data. We limit ourselves to six fault modes to keep the number of experiments tractable
– all six faults are supported by LLFI44. Note that the fault types above are broader than those covered by traditional mutation
testing, in that they involve corruption of the program state beyond simple syntactic changes.

The six chosen software faults represent common bugs45 that are difficult to capture through unit or regression tests, and
have been used in prior work to emulate software faults46–48. Memory-related bugs such as data corruptions, buffer overflows,
function call corruptions, and invalid pointers are particularly hard to debug as the observed program failures may not be clearly
associated with these faults48. This is attributed to two main reasons. First, a single memory bug can propagate to other locations,
causing multiple memory bugs. Eventually, program failures may be attributed to memory bugs that are often distant from the
root memory bug. Secondly, different types of memory bugs may lead to one another through propagation. For example, a data
corruption can lead to a buffer overflow, which may cause a function call corruption. Such scenarios entail significant effort to
determine their root causes. Error testing in unit and regression tests aims to validate the program’s exception handling rather
than exhaustively testing for the presence of memory bugs. Like memory-related bugs, race conditions often lead to effects that
cannot be detected by simple failure detectors. Therefore, EPA is particularly useful for analyzing the effects of these bugs,
which makes them an important target in our evaluation.

4.4 RQ1: Golden Run Variance
We conduct golden trace analysis (the traditional EPA model) over the benchmark applications (see Section 4.2), by varying the
number of threads for each program. To conduct EPA following the traditional EPA model shown in Figure 3, the application is
compiled and instrumented to invoke a tracing function at every LLVM IR instruction. Hence, each line in a trace file represents
an instruction identifier and its corresponding data value in the program. A golden trace of the original program instructions
is generated in a process known as profiling. Then, a fault is injected into the program and a trace of the modified program
instructions is produced. Finally, EPA is performed by comparing the golden and faulty traces line by line. Discrepancies between
the two traces will reveal how faults propagate through the program execution paths.

We collect golden runs over all benchmark programs except Nullhttpd 6, running them with a single thread, 4 threads, 8
threads, 16 threads, and 32 threads respectively. We find considerable variance between the golden traces upon running the

5Available at: https://github.com/DependableSystemsLab/LLFI
6This experiment was not conducted on Nullhttpd since the thread number was not externally configurable beyond single- vs. multithreading.

STEFAN WINTER ET AL 11

TABLE 1. Description of faults injected using LLFI

Fault Type LLFI Implementation
Data Corruption Randomly flips a single bit in an arbitrary data value in the program
File I/O Buffer Overflow Randomly increases the size in fread and fwrite operations
Buffer Overflow Malloc Under allocates malloc and calloc to emulate overflowing the allocated buffers
Function Call Corruption Randomly corrupts the source register (i.e., parameter) of a function call
Invalid Pointer Randomly corrupts the returned pointer from malloc and calloc
Race Condition Replaces a lock of a mutex in the program with a fake mutex

FIGURE 3 Golden run based EPA

0%

5%

10%

15%

20%

25%

1 6 11 16 21 26 31

G
o

ld
e

n
 T

r
a

c
e

 V
a

r
ia

n
c
e

Number of Threads

Blackscholes Quicksort Swaptions

Streamcluster Nbds

FIGURE 4 Average variance between golden run traces

applications with different numbers of threads using the same input, which obviously does not indicate error propagation. Vari-
ance is measured by taking the proportion of line conflicts between two trace files relative to the total number of lines in a single
trace file (i.e., proportion of dynamic instructions with different values).

Figure 4 depicts the average variances between 5 golden traces of each application, executed with different numbers of threads.
The variance between the golden runs is 10% on average due to multithreading non-determinism.

12 STEFAN WINTER ET AL

TABLE 2. Invariant counts and classification (refer to Table 3) of IPA’s generated invariants

Benchmark LOC Functions Invariants 𝜌 (%) Invariant Classes
A B C D E F G H Other

Quicksort 330 9 27 8.2 3 - - - 1 1 16 6 -
Blackscholes 526 5 29 5.5 - - - - 3 - 15 11 -
Streamcluster 1580 11 23 1.5 1 - - - - - 14 6 2
Swaptions 1635 14 94 5.7 7 4 3 1 4 4 59 11 1
Nullhttpd 2500 20 8 0.3 - - - 2 - - 4 2 -
Nbds 3158 27 80 2.5 - - - - 4 - 36 39 1

Note that it is possible to use traditional EPA for the deterministic portions of the program (cf.26). However, it is non-trivial to
identify the deterministic portions a priori, as these depend both on the number of threads and the inputs given to the program.
Therefore, traditional methods for EPA cannot be used in a multithreaded context.
Observation 1. If a multithreaded program is repeatedly executed with the same input, the golden runs extracted from these
executions differ from each other, which renders traditional golden run based EPA unsound.

4.5 RQ2: Stability
For likely invariants to improve EPA’s resilience to effects from multithreading non-determinism, the generated invariants must
be reproducible among repeated program executions. In this experiment, we evaluate the stability of the set of dynamically
generated invariants across execution reiterations. Let 𝑛 denote the number of execution recurrences. Each application begins
with 𝑛 = 1 to produce a trace file, which is then delivered to the invariant inference module. The invariant inference module
returns a single set of invariants. This process is repeated with 𝑛 = 2, 3, 4, 5, 10, 15, resulting in a family of sets of invariants. The
number of invariants obtained at each 𝑛 value is reported in Figure 5. In all of our sample applications, we observe a convergence
of likely invariants by 𝑛 = 5. We also verified manually that the invariant sets match when the invariants converge, i.e., the
invariants derived are the same after 5 executions.

Table 2 shows the counts of inferred invariants in our sample applications. These are shown only for the stable invariants.
We find that there is roughly one invariant for every 10–100 lines of source code, with the sole exception of Nullhttpd. Few
invariants were inferred from Nullhttpd as many of its functions were parameterless. This ratio is captured by the invariant
density, 𝜌, which represents the number of invariants per lines of code. The invariant counts show that stable invariants can be
inferred from multithreaded programs, when repeatedly executed with the same inputs.
Observation 2. If a multithreaded program is repeatedly executed with the same input, the likely invariants generated from
these executions stabilize within five executions.

For our coverage assessment in the following section, we consider only the stable invariants, or those invariants that hold across
all observed executions (in our experiments). This allows us to minimize the number of false positives and obtain conservative
lower bounds on the coverage.

4.6 RQ3: Coverage
As we showed in the previous sections, using invariants instead of golden run based comparisons, we were able to improve the
soundness of EPA for multithreaded applications, i.e., minimize false positives. An important question is, whether we also miss
true positives in the process of reducing false positives, i.e., if the likelihood of false negatives is increased for invariant based
EPA. To answer this question, we perform 1000 fault injections of each fault type in Table 1, one per run, on the benchmark
applications. Subsequently, we compare the faulty program traces against the set of inferred invariants. If any of the likely
invariants was violated due to the injected fault, we label the run as a successful detection.

The fault coverages for each application are shown in Figures 6a to 6f. The error bounds denote the 95% confidence intervals
of the reported fault coverages. The figures show the fault coverage for different fault types divided into three failure modes, as

STEFAN WINTER ET AL 13

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u

m
b

e
r

o
f

Li
k

e
ly

 I
n

v
a

ri
a

n
ts

Number of Profiling Runs

Swaptions

Nbds

Blackscholes

Quicksort

Streamcluster

Nullhttpd

FIGURE 5 Number of invariants generated from varying numbers of profiling runs for six benchmark applications

seen in similar fault injection experiments24: Benign, Crash/Hang and Silent Data Corruption (SDC). Benign indicates faulty
program runs with no observable deviations in the final program output. Faults may still propagate through internal functions
without manifesting into an observable output deviation. Crash/Hang signifies faulty runs that either terminate with exceptions
or time out. SDC specifies faulty runs that terminate normally but produce program outputs that deviate from the golden run
(i.e., incorrect outputs). SDCs are often the most important failure modes, as they are much harder to detect than crashes.

We find that the fault coverage provided by the invariants varies widely across applications, from 90%–97% for Swaptions,
to 10%–15% for Blackscholes. This variation occurs due to fluctuations in two factors: Invariant densities (𝜌), and invariant
relevance (i.e., ability of the invariant to detect faults). Quicksort and Swaptions have higher invariant densities at 8.2% and
5.7% respectively. However, invariant density does not express the relevance of the invariants to fault detection. The sets of
invariants for Quicksort and Swaptions both contain a number of invariants involving computation data, while Blackscholes is
dominated by invariants on local environment variables. Computation data is more likely to be passed inter-procedurally, which
increases the likelihood of fault detection. In contrast, local environment variables rarely carry beyond the scope of functions.
Consider the case where a variable is corrupted at the function exit. If no invariants exist on that variable at the function exit,
the fault would not be captured. However, the prospect of fault detection increases if the value is passed to subsequent functions,
which may have invariants checking it.

Further, there is considerable variation across different fault types and their consequences on the benchmark applications.
For example, in Streamcluster, the coverage for race conditions is only about 15%, while it is 70% for data corruption errors.
In other benchmarks (e.g., Quicksort), the situation is reversed, with race conditions having the highest coverage (97%), while
data corruption errors have the lowest coverage (80%). Data corruption errors directly affect the data as data operand bits
are randomly flipped. On the contrary, the effects of race conditions can be difficult to predict as they are dependent on the
implementation of locking patterns in the threading library. In this case, race conditions cause Quicksort and Swaptions to violate
(some) invariants, yet minimal effects are observed in other benchmarks.

Across all applications, the benign errors constitute a majority of fault outcomes (73% on average), followed by Crash/Hang
(22%) and SDCs (5%). We do not measure SDCs in Nullhttpd and Nbds since the applications return either a successful
response code or a failure message. We find that benign errors exhibit the highest fault coverage overall. Although benign errors
are typically neglected in EPA, benign fault coverage shows that invariants can track benign faults before they are masked.
This may be important to find latent bugs in the program. On the contrary, Crash/Hang are the most blatant failures. Nullhttpd
has the highest rate of Crash/Hang fault coverage among the benchmarks. We find that a set of initialization invariants are
violated whenever the web server fails to load. Finally, SDCs are typically the least commonly observed failure outcomes across

14 STEFAN WINTER ET AL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F
a

u
lt

 C
o

v
e

ra
g

e

Fault Type

Quicksort

SDC Crash/Hang Benign

(a)

0%

2%

4%

6%

8%

10%

12%

14%

16%

F
a

u
lt

 C
o

v
e

ra
g

e

Fault Type

Blackscholes

SDC Crash/Hang Benign

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F
a

u
lt

 C
o

v
e

ra
g

e

Fault Type

Swaptions

SDC Crash/Hang Benign

(c)

0%

10%

20%

30%

40%

50%

60%

70%

80%

F
a

u
lt

 C
o

v
e

ra
g

e

Fault Type

Streamcluster

SDC Crash/Hang Benign

(d)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

F
a

u
lt

 C
o

v
e

ra
g

e

Fault Type

Nullhttpd

Crash/Hang Benign

(e)

0%

5%

10%

15%

20%

25%

30%

35%

F
a

u
lt

 C
o

v
e

ra
g

e

Fault Type

Nbds

Crash/Hang Benign

(f)

FIGURE 6 Proportion of 1000 faulty runs that violate at least one invariant

STEFAN WINTER ET AL 15

applications, and consequently have the least coverage. Quicksort has the highest rates of SDC error detection among all the
applications. This is because it contains many inequalities, and a single negated inequality can impact the final ordering of
values. Correspondingly, many of the invariants in Quicksort consist of inequality conditions and ordering constraints that are
sensitive to such value deviations, and hence yield high coverage. In RQ8, we study the correlation of the coverage of IPA with
different program metrics.

While the high false positive rates render golden run based EPA infeasible for multithreaded programs, it does constitute a
gold standard for singlethreaded programs. Therefore, we investigate how the coverage of invariant based EPA for multithreaded
programs compares to golden run based EPA for singlethreaded programs. For this purpose we reconfigure and recompile our
target programs to execute with a single thread and repeat the injection campaigns for those. For Nbds we were not able to achieve
a strictly singlethreaded configuration without massively altering the code, such that a valid comparison would be questionable.
Therefore, we exclude Nbds from our comparison between singlethreaded and multithreaded EPA.

Figure 7 shows the obtained coverage per target program and fault model in comparison to the coverage for multithreaded
EPA. We first observe that the overall coverage is higher for singlethreaded EPA in the case of Blackscholes, Nullhttpd, and
Streamcluster, while it is lower for Quicksort and Swaptions. A naive interpretation of this observation would be that IPA’s
false negatives dominate for Blackscholes, Nullhttpd, and Streamcluster, whereas its false positives dominate for Quicksort
and Swaptions. However, a more thorough investigation of the failure mode distribution refutes this conclusion. For Blacksc-
holes, Quicksort, and Streamcluster the failure mode distributions obviously differ significantly between singlethreaded and
multithreaded fault injection experiments. SDC failures are much more prevalent in the multithreaded experiments compared
to singlethreaded experiments with Blackscholes and Quicksort, whereas there is a strong difference in the number of crashes
for Streamcluster. However, for these failure modes (SDC and Crashes), the differences in coverage cannot be attributed to false
positives or negatives by IPA’s propagation analysis, because these failure modes prove that propagation has taken place: its
effect has caused the program to output wrong data or to terminate abnormally.

A manual inspection of the experiment logs confirmed the observed differences for SDCs and crashes. This means that errors
propagate very differently depending on whether programs are executed with many or with a single thread. In consequence,
a direct coverage comparison between singlethreaded and multithreaded EPA techniques cannot yield meaningful results. To
the best of our knowledge this is the first empirical evidence that fault injection results are affected by whether a program uses
one or many threads. This implies that the resilience and error propagation characteristics of multithreaded programs cannot be
inferred from fault injection experiments on singlethreaded configurations of those programs.

This highlights an interesting dichotomy. On the one hand, the multithreaded and singlethreaded variants of the programs
implement the same function, i.e., their externally observable behavior is identical modulo execution time. On the other hand, the
structure and the execution characteristics of these variants differ significantly. Our results show that these significant differences,
although they do not affect functionality, do have an influence on the programs’ failure characteristics.

These findings stress the need for dedicated propagation analyses for multithreaded programs such as IPA.
Observation 3. Errors propagate differently in multithreaded and singlethreaded configurations of the same program. Hence,
dedicated propagation analysis techniques are required for both cases. If faults are injected in a multithreaded application, their
effects are indicated by violations of likely invariants generated from fault-free multithreaded executions of that application. The
coverage provided depends both on the application and the type of faults injected.

4.7 RQ4: Invariant Classification
During the automated inference of likely invariants, we observed that many invariants have a similar structure. For example,
some invariants involve inequalities, while others involve set membership and ordering. This observation leads us to ask whether
differences in structure of the invariants correlate with differences in the respective invariants’ effectiveness for EPA. The result
can help discover what constitutes a good invariant for EPA.

To study this effect, we first classify the invariants into eight different classes based on their structure and then consider
the coverage of the invariant classes. The classes are: Array-equality, elementwise-initialization, elementwise, initialization,
inequality conditions, multi-value, order, return-value invariants. Table 3 provides a brief description of each invariant class 7.
The invariants are classified exclusively, without overlap between classes. A small number of invariants did not fall into any of
these eight classes – we ignore them for this study.

7The rightmost column of Table 2 shows the number of invariants per class in each benchmark.

16 STEFAN WINTER ET AL

Buffer
Overflow
Malloc

Data
Corruption

File I/O
Buffer

Overflow

Function
Call

Corruption

Invalid
Pointer

Race
Condition

B
la

cksch
o

le
s

N
u

llh
ttp

d
Q

u
ickso

rt
S

tre
a

m
clu

ste
r

S
w

a
p

tio
n

s

Sin
gl
et

hr
ea

de
d

M
ul
tit
hr

ea
de

d

Sin
gl
et

hr
ea

de
d

M
ul
tit
hr

ea
de

d

Sin
gl
et

hr
ea

de
d

M
ul
tit
hr

ea
de

d

Sin
gl
et

hr
ea

de
d

M
ul
tit
hr

ea
de

d

Sin
gl
et

hr
ea

de
d

M
ul
tit
hr

ea
de

d

Sin
gl
et

hr
ea

de
d

M
ul
tit
hr

ea
de

d

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

F
ra

ct
io

n
s

of
 F

ai
lu

re
 M

od
es

 O
bs

er
ve

d

Failure Mode Benign Crash SDC

FIGURE 7 EPA result differences between invariant based EPA for multithreaded programs and golden run based EPA for
singlethreaded programs

We calculate the coverage of an invariant class as the fraction of fault injection runs that violate at least one of the invariants in
that class. For example, if an invariant class 𝐼 has two invariants 𝐼1 and 𝐼2, and 𝑆1 and 𝑆2 are the sets of fault injection runs that

STEFAN WINTER ET AL 17

TABLE 3. Description of Invariant Classes

Invariant Class Description
A Array-

equality
Equality condition on every element
of an array

B Elementwise-
initialization

Initial values of array elements

C Elementwise Condition on the elements of an array
D Initialization Invariants that associate post-

conditions to pre-conditions
E Multi-

value
Variable value must match exactly one
element of a set

F Order Array is sorted in ascending or
descending

G Relational
conditions

Invariants involving both equalities
and inequalities

H Return-
value

Invariants involving the return value
of a function

TABLE 4. Classification of violated invariants from 1000 faulty Swaptions runs and their coverage

Fault Type Failure Invariant Classes (%)
A B C D H

DataCorruption
SDC 3 3 6 1 1
Crash - - 38 - -
Benign 26 26 51 - -

FileI/OBufferOverflow
SDC 3 3 6 1 1
Crash 1 1 18 - -
Benign 42 41 72 - -

BufferOverflowMalloc
SDC 4 4 8 1 1
Crash - - 18 - -
Benign 42 42 71 - -

FunctionCallCorruption
SDC 2 2 6 1 1
Crash - - 40 - -
Benign 26 26 49 - -

InvalidPointer
SDC 2 2 5 - -
Crash - - 40 - -
Benign 28 28 48 - -

RaceCondition
SDC - - - - -
Crash - - - - -
Benign 58 58 70 - -

result in violation of the invariants 𝐼1 and 𝐼2 respectively, then the coverage of the invariant class 𝐼 is given by (|𝑆1 ∪ 𝑆2|)∕𝑁 ,
where 𝑁 is the total number of fault injection runs that had activated faults.

Table 2 shows the number of invariants that occur in different classes for the five applications. Due to space constraints, we
only show the results for Swaptions, which provides the highest diversity of invariant classes. Table 4 shows the results of the
fault injection experiment for Swaptions, grouped by invariant classes.

18 STEFAN WINTER ET AL

The elementwise invariants have the highest fault coverage overall in Swaptions (Table 4). Elementwise invariants correspond
to predicates on individual elements of an array. Swaptions stores its dataset in an array, which is passed back and forth between
its functions. As a result, a number of array element constraints arise. Elementwise invariants offer a marginally higher fault
detection rate for SDCs compared to the other invariant classes.

The fact that elementwise invariants have proven particularly effective is rooted in the central role of one particular data
structure in Swaption’s implementation. We demonstrate an example from Swaptions in Figure 8. funcA() takes multiple
inputs, including two 2D arrays of equal dimensions, ppdFactors and ppdFacBreak. funcA() calculates ppdFactors using
ppdFacBreak and another variable via funcB(). Due to the calculation in funcB() and the value ranges for its parameters,
which derive from stock option properties, it is close to impossible that this calculation yields a value equal or smaller than
ppdFacBreak. Daikon generates a post-conditional invariant that captures this relation. It infers an elementwise (Class C)
invariant, where every element of ppdFactors is always greater than the element located at the same indices in ppdFacBreak.
After performing our fault injection experiments, we found that this was one of the invariants that yielded high fault coverage.
If even a single element of the array(s) violates the invariant after a fault injection run, a potential fault is reported.

Conversely, we have found this invariant class to be of far less importance for other target programs, for which we found other
classes to be more effective based on the programs’ application logic and implementation. For Quicksort, for instance, the order
in which numbers are returned in each recursive step are of central importance. Unsurprisingly, we found order and return-value
invariants to collectively yield high SDC fault detection for that program.

1 int funcA(ppdFactors[][], ppdFacBreak[][], ...) {
2 for(i=0; i<=M; ++i){
3 for(j=0; j<=N; ++j) {
4 ppdFactors[i][j] = funcB(...);
5 ...
6 //Class C invariant: ppdFactors[][] > ppdFacBreak[][]
7 }

FIGURE 8 Example function in Swaptions with a Class C "Elementwise" post-condition invariant.

Observation 4. The coverage of invariants for an application differs across different classes of likely invariants generated from
fault-free multithreaded executions of the application.

4.8 RQ5: Performance Evaluation
We evaluate the performance of IPA by comparing each step shown in Figure 2, described in Section 3.3, to its equivalent
in EPA. Table 5 exhibits the average durations for each step, measured in seconds, each averaged over 5 runs. No faults were
injected in this experiment as we wanted to obtain the worst case performance overheads (i.e., when the application executes to
completion).

We find that IPA induces a 2%–90% setup overhead over EPA, while IPA is 2.7× to as much as 151× faster than EPA for
fault detection, depending on the benchmark. This is because EPA traces the program execution after each point, while IPA only
checks for consistency of invariants at function entries and exits.

Thus, IPA incurs a slightly higher setup overhead compared to EPA for the programs in our study, but has substantially lower
fault detection overheads. Examining the setup overheads in relation to the complexity of the programs (Table 2), we notice
that the programs with high setup overheads tend to have few lines of code, which hints at an effect from the cost of EPA. EPA
requires every single instruction in the program to be logged during a profiling run. Therefore, programs with many lines of code
have a higher setup overhead with EPA. Therefore, the setup overhead for IPA becomes smaller compared to the overhead that
EPA entails for these programs. Since the fault detection overhead is incurred on each run (numbering thousands in a typical
fault injection experiment), it is more important than the setup overhead, which is a one-time cost.

STEFAN WINTER ET AL 19

TABLE 5. IPA vs EPA performance measured in seconds for step numbers 1, 2 and 3 (refer to Figure 2).

Benchmark IPA EPA S× D×1 2 3 1 3
Quicksort 5.5 5.4 0.4 1.1 1.4 0.1 2.7
Blackscholes 5.5 8 0.5 4.1 72 0.29 72
Streamcluster 5.5 7.3 0.7 4.1 52.2 0.31 44
Swaptions 9.5 8.9 1.1 18.1 >300 0.96 151
Nullhttpd 5.6 4.9 0.3 3.6 22.1 0.32 27
Nbds 32 18.3 7.4 49.2 28.3 0.98 7.3

TABLE 6. Number of invariants inferred per confidence level.

Conf. Quicksort Blackscholes Streamcluster Nbds
99% 25 24 29 73
80% 26 24 29 76
60% 28 25 32 79

Observation 5. IPA incurs a higher setup overhead compared to EPA, but has significantly lower fault detection overhead.

4.9 RQ6: Inferring Invariants at a Lower Confidence
In Section 4.2, we only consider invariants inferred from the data traces at the 99% Daikon confidence level. In this section, we
conduct an analysis of whether it is possible to infer more stable invariants at lower confidence levels. The confidence represents
the probability that an invariant is not inferred randomly (i.e., with one sample out of thousands of traces)10. The availability of
more stable invariants at lower confidence levels may offer higher fault coverage.

We refer to the Daikon confidence of invariants as confidence rather than their statistical confidence. Each class of invariant
has a different measure of confidence with respect to the samples provided10. For instance, a relational condition invariant such
as 𝑎 < 𝑏 has a confidence of 1 − 1

2

𝑛 where 𝑛 is the number of samples in the data trace. However, an invariant that is falsified
within the data trace file always has a confidence equal to 0.

We conduct an experiment where we infer invariants at various confidence levels by adjusting the “conf_limit” option in
Daikon. Table 6 shows the number of invariants inferred at the 99%, 80% and 60% levels. We take the number of invariants at
the 99% confidence as the baseline. Of the four benchmarks shown, there is a modest increase of invariants, ranging from a 0%
to 4% increase at the 80% confidence and 0% to 10% increase at the 60% level. The number of invariants for Swaptions and
Nullhttpd did not change with the confidence levels.
Observation 6. The number of invariants do not significantly increase when the invariants are inferred at a lower confidence.

4.10 RQ7: Inferring Invariants at a Finer Granularity
In Sections 4.2 through 4.9, IPA infers invariants at the function level. We explore the feasibility of inferring invariants at a
finer program granularity, i.e., at the basic block level. The purpose of this experiment is to determine whether we can increase
fault coverage through finer program granularity between invariants. For instance, consider the function in Figure 9 from the
Blackscholes benchmark. This function can be divided into 6 basic blocks as shown in Figure 10 – we infer invariants at the
beginning of each block. The invariants at the beginning of the first basic block (lines 1-7) and the second basic block (lines
8-9) respectively are: {InputX > 0} and {InputX < 0}. If the condition in line 7 is erroneously changed to InputX > 0.0 (same
type of fault previously described in Section 3.4), the fault detection module can invalidate the faulty program trace through

20 STEFAN WINTER ET AL

the {InputX < 0} invariant. Using basic block invariants, the fault is detected in the second basic block rather than the end of
the function. IPA may not always detect faults by relying solely on invariants at the function entry and exit points. A fault may
lead to an observable error in the body of a function, where a function variable is corrupted. In this example, InputX may be
overwritten in the computeNPrimeX() function on line 13 and the function exit invariants may not detect the fault.

To enable IPA to infer invariants at basic blocks, we modify the instrumentation step of IPA in Figure 2 by adding a LLVM
pass to instrument programs at the entry point of each basic block. Like the function instrumentation pass in IPA, the modified
pass traces the values of function argument variables rather than intermediate variables. We also change the fault detection script
to validate the program trace values against basic block invariants instead of function invariants. All other modules in the IPA
workflow remain the same in this experiment.

We repeat the experiment in Section 4.5 to determine whether the generated invariants stabilize within a fixed number of runs.
In Figure 11, we observe that the invariants from four benchmark programs do not stabilize within 20 runs. Additionally, Nbds
exhibits large fluctuations in inferred invariants as seen in Figure 12. We display Nbds separately as the number of its invariants
significantly exceeds the range of other benchmark programs. However, Swaptions and Nullhttpd have no fluctuations in their
inferred invariants. We observe that the invariant fluctuations are greater in benchmarks whose functions were divided into a
large number of basic blocks. For example, functions in Swaptions were divided into 4 basic blocks on average while many
functions in Nbds were divided into 8 or more basic blocks. The finer division of functions into basic blocks also signify the
increased presence of branching. The values of function variables likely fluctuate around the branch conditions. Based on these
observations, invariants inferred at the basic block granularity are not suitable for fault detection. The numbers of invariants
differ significantly between profiling runs and the set of invariants used as a test oracle does not stabilize within the range of 20
runs.

1 fptype CNDF (fptype InputX) {
2 int sign; // BB 1
3

4 fptype OutputX;
5

6 // Check for negative value of InputX
7 if (InputX < 0.0) {
8 InputX = -InputX; // BB 2
9 sign = 1;

10 } else // BB 3
11 sign = 0;
12

13 OutputX = computeNPrimeX(InputX); // BB 4
14

15 if (sign) {
16 OutputX = 1.0 - OutputX; // BB 5
17 }
18

19 return OutputX; // BB 6
20 }

FIGURE 9 Example function in the Blackscholes application

Observation 7. Likely invariants inferred at the basic block granularity under repeated program executions with the same input
do not stabilize within twenty executions. Therefore, these invariants are not suitable for fault detection.

STEFAN WINTER ET AL 21

FIGURE 10 Control flow graph with labelled basic blocks of the function shown in Figure 9

4.11 RQ8: Are program characteristics correlated with fault detection coverage of IPA?
To better understand why IPA performed so differently for the programs in our study, we conducted a multiple correlation
test between the observed coverages for different fault types and various program metrics. We used cqmetrics49, a tool that
calculates program metrics for C programs by statically analyzing the program’s source code. We collected a total of 111 metrics
across our targeted programs using cqmetrics. However, many of these metrics do not affect the LLVM IR of the programs
that LLFI injections work on and, thus, cannot affect the results of our experiments, e.g., metrics related to spaces/indentation
or comments. So we excluded these metrics. After this initial filtering, we were left with 25 variables, four of which were
constantly 0 for our programs (the number of goto, union, noalias, and signed keywords). The remaining 21 metrics used
in our analysis are listed in Table 7.

We conducted a pairwise Spearman correlation test for each of the 21 metrics with IPA’s fault coverage for the different fault
models in our study. We also studied the correlations among the metrics themselves to control for confounding. Table 8 shows
the metrics that have statistically significant correlations with IPA’s fault coverage across the benchmarks.

We find that almost none of the metrics exhibit a statistically significant correlation with IPA’s coverage, with the exception
of one metric, namely the number of structs. The number of structs in a program has a strong negative correlation across all fault
models, except for race conditions, which has generally low coverage across all programs. This is because invariant inference
engines, such as Daikon, do not support invariants on complex data types, such as structs or objects. Therefore, if errors propagate
via these data types, they cannot be detected, because no invariants are generated.

We also observed statistically significant negative correlations between other source code metrics and the coverage for buffer
overflow faults, as shown in Table 8. However, these metrics also exhibit a strong positive correlation with the number of structs
for the programs in our study and, hence, we assume their correlation with coverage to be an effect of their correlation with
struct counts. Therefore, we can conclude that the single metric that has a significant impact on IPA’s coverage in our study is
the number of structs in the program.
Observation 8. For programs that make fewer use of complex data types, like structs or objects, IPA achieves a higher coverage.
However, the coverage is not correlated with any other program metric.

22 STEFAN WINTER ET AL

0

50

100

150

200

250

300

1 5 9 13 17 21

N
u

m
b

e
r

o
f

Li
k

e
ly

 I
n

v
a

ri
a

n
ts

Number of Profiling Runs

Blackscholes

Quicksort

Streamcluster

Nullhttpd

FIGURE 11 Number of invariants generated from varying numbers of profiling runs at the basic block level.

5 DISCUSSION

We first present the implications of our results, and then the threats to the validity of our study.

5.1 Implications
In this paper, we address the question of whether likely invariants derived by automated techniques can be used for EPA in
multithreaded programs. EPA requires stable invariants, which provide high coverage for different types of faults. We find that
the invariants stabilize within a few executions of the program. However, their coverage is highly dependent on the application.
For some applications, the achieved coverage is high (80% to 90%), while for other applications, it is quite low (10% or less).
The type of inferred invariants is another factor for consideration. In Table 2, relational invariants (Type G) are predominant in
all benchmarks. Conversely, as seen in both Table 4, their fault coverages are low. This suggests that existing invariants derived
by automated tools such as Daikon10 may not be sufficient to ensure high fault coverage across applications.

Furthermore, the coverage provided by the invariants depends on the specific fault that is injected, e.g., race conditions.
Finally, most of the invariants provide coverage for benign failures and crashes, both of which are much more numerous than
SDCs. However, SDCs are an important concern in practice, as they can result in catastrophic failures, and likely invariants do
not currently provide high coverage for SDCs. Improving the coverage of likely invariants for SDCs is a direction for future work.

We further study the effect of invariant structure on fault coverage by grouping the invariants into different categories. Similar
to the prior experiments in Section 4.6, we observe a significant correlation between the invariant structure and fault coverage
though this is more dependent on the application rather than the fault type. However, we find that there is no single class
of invariants that provides high coverage across all applications. This implies that it may be better to derive invariants on an
application-specific basis, say based on its algorithm, than to use generic approaches such as Daikon for deriving the invariants.
This is also a direction for future work.

Lastly, we examine the confidence and granularity parameters for the invariant inference module in IPA. In Section 4.9, we
observe that lowering the Daikon confidence in IPA does not produce significantly more invariants in the benchmark applica-
tions. This implies that invariants inferred at the default 99% confidence offers roughly approximate fault coverage to that of
invariants at a lower confidence. In Section 4.10, we find that invariants inferred at the basic block granularity do not stabilize

STEFAN WINTER ET AL 23

1240

1260

1280

1300

1320

1340

1360

1380

1400

1420

1 5 9 13 17 21

N
u

m
b

e
r

o
f

Li
k

e
ly

 I
n

v
a

ri
a

n
ts

Number of Profiling Runs

Nbds

FIGURE 12 Number of invariants generated from varying numbers of profiling runs at the basic block level.

within 20 runs, and are, hence, unpreferable for fault detection. In contrast, the default granularity for IPA is at the function level,
which produces stable invariants within only 5 runs. While changing the granularity to basic blocks may allow more invariants
to be inferred overall, the lack of invariant stability within a reasonable number of profiling runs inhibits this option.

5.2 Improving Fault Coverage
We suggest two directions to improve IPA’s fault coverage.

Application Specific Invariants: Unlike the generic classes of invariants inferred by Daikon, used in our inference mod-
ule, application-specific invariants would be tailored to the program algorithm. For instance, Daikon currently does not output
invariants around the summation of variables. Such classes of invariants may be important in certain algorithms. Static analysis
techniques could be incorporated to determine the appropriate type of invariants for different algorithms.

Changing the Invariant Format: While we currently utilize the default invariant format reported by Daikon, an alternative
invariant format may better facilitate fault detection. For example, invariants are presently reported as mathematical relations
between variables. However, the Order invariant, which has the highest overall fault coverage, reports whether an array is sorted.
Compared to a relational condition between variables, the Order invariant is a stronger condition to satisfy.

5.3 Threats to Validity
There are three threats to the validity of our results. First, IPA uses Daikon for generating likely invariants. Some results may not
apply if an alternate approach to likely invariant generation is used, which is an external threat to validity. However, as Daikon
is the most common likely invariant generator used today, we consider our results valid for most scenarios.

Second, since IPA is limited to tracing local values of primitive data types, the set of generated invariants excludes invariants
involving objects and global values. As a result, the invariants deployed for validation are not necessarily the most relevant

24 STEFAN WINTER ET AL

TABLE 7. Code metrics used in correlation analysis with IPA fault coverage.

Metric blackscholes nbds nullhttpd quicksort streamcluster swaptions
Number of statements 654.00 2068.00 998.00 109.00 869.00 462.00
Statement nesting mean 2.00 16.89 5.37 0.34 1.67 5.23
Statement nesting median 1.00 13.50 3.00 0.00 1.00 1.00
Statement nesting std. dev 3.32 18.35 6.09 0.61 1.99 7.34
Number declarations with internal
(static) visibility

0.00 106.00 2.00 2.00 7.00 3.00

Number of const keywords 7.00 114.00 17.00 8.00 16.00 14.00
Number of enum keywords 0.00 3.00 0.00 0.00 0.00 0.00
Number of inline keywords 0.00 14.00 0.00 0.00 1.00 0.00
Number of register keywords 0.00 0.00 0.00 0.00 0.00 1.00
Number of restrict keywords 0.00 5.00 0.00 0.00 0.00 0.00
Number of struct keywords 7.00 74.00 50.00 6.00 6.00 3.00
Number of unsigned keywords 6.00 36.00 30.00 1.00 6.00 0.00
Number of void keywords 16.00 311.00 67.00 24.00 24.00 20.00
Number of volatile keywords 0.00 22.00 0.00 0.00 5.00 0.00
Number of typedef keywords 4.00 71.00 12.00 0.00 4.00 1.00
Halstead complexity mean 3148.00 12683.39 16623.61 386.35 1173.81 10340.98
Halstead complexity median 2921.65 10060.84 15724.94 114.71 705.33 8531.95
Halstead complexity std. dev. 1391.37 9708.58 7424.94 545.76 1532.78 4460.43
Cyclomatic complexity mean 15.90 130.23 87.18 2.91 11.36 50.85
Cyclomatic complexity median 15.00 111.50 77.50 2.00 6.50 42.00
Cyclomatic complexity std. dev. 2.36 95.84 34.53 2.31 12.95 21.69

TABLE 8. Spearman correlation coefficients between program metrics and IPA’s fault coverage. Statistically significant corre-
lations (𝛼 = 0.05) are highlighted with grey background color. Rows without any statistically significant correlations are omitted
from the table.

Metric
Buffer Data File I/O Function Invalid RaceOverflow Corruption Buffer Call Pointer ConditionMalloc Overflow Corruption

nstatement -0.83 -0.60 -0.60 -0.60 -0.60 -0.58
nstruct -0.93 -0.81 -0.81 -0.81 -0.81 -0.72
nunsigned -0.93 -0.75 -0.75 -0.75 -0.75 -0.68
ntypedef -0.87 -0.70 -0.70 -0.70 -0.70 -0.68

invariants for the program. This is an internal threat to validity. However, most benchmarks in this study use only primitive data
types in their function parameters, and hence this was not an issue in our programs.

Finally, we consider only a limited number of fault types (6) and a limited number of benchmark programs to evaluate IPA.
However, we chose the fault types to cover common software bugs, and hence we believe the results are representative. Further,
we chose the benchmarks to represent a wide variety of scenarios where multithreading is commonly used.

STEFAN WINTER ET AL 25

6 CONCLUSION

With processors expanding core counts, multithreaded programs are rising in prevalence. Error Propagation Analysis (EPA) is
the process of identifying state corruptions and their evolution due to faults. Unfortunately, existing methods for EPA that make
use of golden traces, are unequipped to handle multithreaded programs due to their inherent non-determinism.

To address this problem, we present an EPA framework that uses likely invariants in lieu of golden traces, to detect faults
and track error propagation. Likely invariants are based on observations of the data values of the program over multiple execu-
tions. Our approach, IPA, instruments programs to automatically derive likely invariants, and then checks for violations of the
invariants at runtime, to perform EPA.

We evaluate IPA using 5 benchmark applications. Our results indicate that invariants can be dynamically derived in all of our
benchmark applications, with reasonable stability, and that there is roughly 1 invariant for every 10-100 lines of source code
for most applications. Further, IPA incurs much lower runtime overhead than golden-run based EPA for fault detection, but it
incurs a slightly higher setup overhead that decreases with increasing size of the program.

We inject an assortment of software faults on six different benchmarks to assess the fault coverage offered by the likely
invariants. We find that invariants can capture the effects of faults, but the specific rates of fault coverage differ between different
applications and fault types. In particular, IPA provides high coverage for crashes/hangs across applications, but not so for Silent
Data Corruptions (SDCs), which are highly application dependent. We also find that error propagation varies considerably
between single-threaded and multi-threaded versions of the same program, and hence a meaningful comparison between them
is not possible.

Building on these observations, we further dissect the analysis of fault coverage by grouping similar classes of invariants
together, and find that certain invariant classes offer higher fault coverage than others across different fault classes. However,
these differences are also highly application specific, and there is not a single class of invariant that provides high coverage across
all applications. Further, we explore the choice of IPA’s default confidence and granularity parameters in the invariant inference
module and find them to be well-justified among alternatives. Finally, we find that inferring invariants at lower granularities
(e.g., basic block) is not able to yield stable invariants, and is hence not viable for fault detection.

In conclusion, likely invariants offer a viable replacement for golden-run based EPA. The approach performs less well for
applications that make substantial use of complex data types, which is due to a limitation in the invariant inference engine and
could be worked around by program transformations that take care of marshalling/unmarshalling of the corresponding data
structures when functions operate on them.

ACKNOWLEDGEMENTS

We sincerely thank the anonymous reviewers for their valuable comments and suggestions. This work has been partially sup-
ported by H2020 CONCORDIA GA #830927, the Lancaster Security Institute, and by the Discovery Grants Programme of the
Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Duraes JA, and Madeira HS. Emulation of Software Faults: A Field Data Study and a Practical Approach. IEEE Trans
Softw Eng. 2006;32(11):849–867.

2. Natella R, Cotroneo D, Duraes JA, and Madeira HS. On Fault Representativeness of Software Fault Injection. IEEE Trans
Softw Eng. 2013;39(1):80–96.

3. Aliabadi MR, Pattabiraman K, and Bidokhti N. Soft-LLFI: A Comprehensive Framework for Software Fault Injection. In:
Proc. ISSREW ’14; 2014. p. 1–5.

4. DeMillo RA, Lipton RJ, and Sayward FG. Hints on Test Data Selection: Help for the Practicing Programmer. Computer.
1978;11(4):34–41.

26 STEFAN WINTER ET AL

5. Offutt A. The Coupling Effect: Fact or Fiction. In: Proceedings of the ACM SIGSOFT ’89 Third Symposium on Software
Testing, Analysis, and Verification. TAV3. New York, NY, USA: Association for Computing Machinery; 1989. p. 131–140.
Available from: https://doi.org/10.1145/75308.75324.

6. Offutt AJ. Investigations of the Software Testing Coupling Effect. ACM Trans Softw Eng Methodol. 1992 Jan;1(1):5–20.
Available from: https://doi.org/10.1145/125489.125473.

7. Christmansson J, Hiller M, and Rimen M. An experimental comparison of fault and error injection. In: Proc. ISSRE ’98;
1998. p. 369–378.

8. Hiller M, Jhumka A, and Suri N. PROPANE: An Environment for Examining the Propagation of Errors in Software. In:
Proc. ISSTA ’02; 2002. p. 81–85.

9. Leeke M, and Jhumka A. Evaluating the Use of Reference Run Models in Fault Injection Analysis. In: Proc. PRDC ’09;
2009. p. 121–124.

10. Ernst MD, Czeisler A, Griswold WG, and Notkin D. Quickly Detecting Relevant Program Invariants. In: Proc. ICSE ’00;
2000. p. 449–458.

11. Schuler D, Dallmeier V, and Zeller A. Efficient mutation testing by checking invariant violations. In: Proc. ISSTA ’09;
2009. p. 69–80.

12. Sahoo SK, Criswell J, Geigle C, and Adve V. Using Likely Invariants for Automated Software Fault Localization. SIGPLAN
Not. 2013;48(4):139–152.

13. Perkins JH, Kim S, Larsen S, Amarasinghe S, Bachrach J, Carbin M, et al. Automatically patching errors in deployed
software. In: Proc. SOSP ’09; 2009. p. 87–102.

14. Xie T, and Notkin D. Tool-assisted unit test generation and selection based on operational abstractions. Automated Software
Engineering Journal. 2006;13(3):345–371.

15. Chan A, Winter S, Saissi H, Pattabiraman K, and Suri N. IPA: Error Propagation Analysis of Multi-Threaded Programs
Using Likely Invariants. In: 2017 IEEE International Conference on Software Testing, Verification and Validation (ICST);
2017. p. 184–195.

16. Koopman P, and DeVale J. The exception handling effectiveness of POSIX operating systems. IEEE Trans Softw Eng.
2000;26(9):837–848.

17. Fetzer C, Felber P, and Hogstedt K. Automatic detection and masking of nonatomic exception handling. IEEE Trans Softw
Eng. 2004;30(8):547–560.

18. Fu C, Milanova A, Ryder BG, and Wonnacott DG. Robustness testing of Java server applications. Software Engineering,
IEEE Transactions on. 2005;31(4):292–311.

19. Fu C, and Ryder BG. Exception-Chain Analysis: Revealing Exception Handling Architecture in Java Server Applications.
In: Proc. ICSE ’07; 2007. p. 230–239.

20. Marinescu PD, and Candea G. LFI: A practical and general library-level fault injector. In: Proc. DSN ’09; 2009. p. 379–388.
21. Giuffrida C, Kuijsten A, and Tanenbaum AS. EDFI: A Dependable Fault Injection Tool for Dependability Benchmarking

Experiments. In: Proc. PRDC ’13; 2013. p. 31–40.
22. Sullivan M, and Chillarege R. Software defects and their impact on system availability-a study of field failures in operating

systems. In: Proc. FTCS-21; 1991. p. 2–9.
23. Segall Z, Vrsalovic D, Siewiorek D, Yaskin D, Kownacki J, Barton J, et al. FIAT-fault injection based automated testing

environment. In: Proc. FTCS-18; 1988. p. 102–107.
24. Lu Q, Farahani M, Wei J, Thomas A, and Pattabiraman K. LLFI: An Intermediate Code-Level Fault Injection Tool for

Hardware Faults. In: Proc. QRS ’15; 2015. p. 11–16.

https://doi.org/10.1145/75308.75324
https://doi.org/10.1145/125489.125473

STEFAN WINTER ET AL 27

25. Jin A. A PIN-Based Dynamic Software Fault Injection System. In: Proc. ICYCS ’08. IEEE; 2008. p. 2160–2167.
26. Lemos GS, and Martins E. Specification-guided Golden Run for Analysis of Robustness Testing Results. In: Proc. SERE

’12; 2012. p. 157–166.
27. Saissi H, Winter S, Schwahn O, Pattabiraman K, and Suri N. TraceSanitizer - Eliminating the Effects of Non-Determinism

on Error Propagation Analysis. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN); 2020. p. 52–63.

28. Gunawi HS, Do T, Joshi P, Alvaro P, Hellerstein JM, Arpaci-Dusseau AC, et al. FATE and DESTINI: A Frame-
work for Cloud Recovery Testing. In: Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation. NSDI’11. USA: USENIX Association; 2011. p. 238–252.

29. Deligiannis P, McCutchen M, Thomson P, Chen S, Donaldson AF, Erickson J, et al. Uncovering Bugs in Distributed Storage
Systems during Testing (Not in Production!). In: 14th USENIX Conference on File and Storage Technologies (FAST
16). Santa Clara, CA: USENIX Association; 2016. p. 249–262. Available from: https://www.usenix.org/conference/fast16/
technical-sessions/presentation/deligiannis.

30. Cotroneo D, De Simone L, Liguori P, and Natella R. Fault Injection Analytics: A Novel Approach to Discover Failure
Modes in Cloud-Computing Systems. IEEE Transactions on Dependable and Secure Computing. 2020;p. 1–1.

31. Padon O, Immerman N, Shoham S, Karbyshev A, and Sagiv M. Decidability of Inferring Inductive Invariants. In: Proc.
POPL ’16; 2016. p. 217–231.

32. Hangal S, and Lam MS. Tracking Down Software Bugs Using Automatic Anomaly Detection. In: Proc. ICSE ’02; 2002.
p. 291–301.

33. Csallner C, Tillmann N, and Smaragdakis Y. DySy: Dynamic Symbolic Execution for Invariant Inference. In: Proc. ICSE
’08; 2008. p. 281–290.

34. Kusano M, Chattopadhyay A, and Wang C. Dynamic Generation of Likely Invariants for Multithreaded Programs. In: Proc.
ICSE ’15; 2015. p. 835–846.

35. Sahoo SK, Li ML, Ramachandran P, Adve SV, Adve VS, and Zhou Y. Using likely program invariants to detect hardware
errors. In: Proc. DSN ’08; 2008. p. 70–79.

36. Lu S, Tucek J, Qin F, and Zhou Y. AVIO: Detecting Atomicity Violations via Access Interleaving Invariants. In: Proc.
ASPLOS XII; 2006. p. 37–48.

37. Mazurkiewicz A. Trace theory. In: Petri nets: applications and relationships to other models of concurrency. Springer;
1987. p. 278–324.

38. Youngs EA. Human Errors in Programming. International Journal of Man-Machine Studies. 1974;6(3):361 – 376. Available
from: http://www.sciencedirect.com/science/article/pii/S0020737374800271.

39. Ko AJ, and Myers BA. Development and Evaluation of a Model of Programming Errors. In: Proc. HCC ’03; 2003. p. 7–14.
40. Lattner C, and Adve V. LLVM: a compilation framework for lifelong program analysis transformation. In: Proc. CGO ’04;

2004. p. 75–86.
41. Bienia C. Benchmarking Modern Multiprocessors (Dissertation). Princeton University; 2011.
42. Null httpd. Accessed: 2016-05-17;. https://sourceforge.net/projects/nullhttpd/.
43. Non-blocking data structures. Accessed: 2016-05-17;. https://code.google.com/p/nbds/.
44. Raiyat Aliabadi M, and Pattabiraman K. In: Skavhaug A, Guiochet J, and Bitsch F, editors. FIDL: A Fault Injection

Description Language for Compiler-Based SFI Tools. Cham: Springer International Publishing; 2016. p. 12–23. Available
from: http://dx.doi.org/10.1007/978-3-319-45477-1_2.

https://www.usenix.org/conference/fast16/technical-sessions/presentation/deligiannis
https://www.usenix.org/conference/fast16/technical-sessions/presentation/deligiannis
http://www.sciencedirect.com/science/article/pii/S0020737374800271
https://sourceforge.net/projects/nullhttpd/.
https://code.go ogle.com/p/nbds/.
http://dx.doi.org/10.1007/978-3-319-45477-1_2

28 STEFAN WINTER ET AL

45. Vipindeep V, and Jalote P. List of Common Bugs and Programming Practices to avoid them; 2005.
46. Hsueh MC, Tsai TK, and Iyer RK. Fault Injection Techniques and Tools. IEEE Computer. 1997;30(4):75–82. Available

from: http://dx.doi.org/10.1109/2.585157.
47. Ghosh AK, O’Connor T, and McGraw G. An automated approach for identifying potential vulnerabilities in software. In:

Proc. IEEE S & P; 1998. p. 104–114.
48. Jeffrey D, Gupta N, and Gupta R. Identifying the root causes of memory bugs using corrupted memory location suppression.

In: Proc. ICSM ’08; 2008. p. 356–365.
49. Spinellis D, Louridas P, and Kechagia M. The Evolution of C Programming Practices: A Study of the Unix Operating System

1973–2015. In: Proceedings of the 38th International Conference on Software Engineering. ICSE ’16. New York, NY, USA:
Association for Computing Machinery; 2016. p. 748–759. Available from: https://doi.org/10.1145/2884781.2884799.

http://dx.doi.org/10.1109/2.585157
https://doi.org/10.1145/2884781.2884799

	Error Propagation Analysis for Multithreaded Programs: An Empirical Approach
	Abstract
	Introduction
	Background and Related Work
	Fault Injection
	Error Propagation Analysis (EPA)
	EPA in Multithreaded Programs
	Likely Invariants

	Methodology
	System Model
	Solution Overview
	IPA: EPA Using Likely Invariants
	Example
	Evaluation Metrics

	Experimental Evaluation
	Research Questions
	Experimental Setup
	Fault Model
	RQ1: Golden Run Variance
	RQ2: Stability
	RQ3: Coverage
	RQ4: Invariant Classification
	RQ5: Performance Evaluation
	RQ6: Inferring Invariants at a Lower Confidence
	RQ7: Inferring Invariants at a Finer Granularity
	RQ8: Are program characteristics correlated with fault detection coverage of IPA?

	Discussion
	Implications
	Improving Fault Coverage
	Threats to Validity

	Conclusion
	Acknowledgements
	References

