
Ontologies for Vulnerability Terrain Mapping and Attack Reasoning

Anonymous Author(s)

ABSTRACT
The characteristics of cyber-attacks, e.g., nefarious IP addresses and
malware hashes, are relatively easy to detect and blacklist. How-
ever, to perform a comprehensive analysis, establishing a context
is required to facilitate system defenders in understanding the man-
ifestation of the vulnerability across the system. Furthermore, the
context assists in exploring common attack characteristics among the
vulnerabilities. For instance, revealing attack mechanisms prevents
attackers from exploiting the same attack mechanism across vulnera-
bilities. We argue that an ontology-based approach may be followed
to help in building context to explore vulnerability terrain based
on the contextual similarity among the vulnerabilities. To build the
context, we extract data from the National Vulnerability Database
(NVD) to map the data to the respective ontology class(es), which
can be partially automated for usability. We perform reasoning on
the ontology to identify different characteristics of the vulnerabil-
ity terrain. Our results show that recurring actions operated by an
attacker in a Cloud environment are associated with manipulating
the combination of legitimate Virtual Machine (VM) actions that
adversely impact the Cloud functionality.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Redun-
dancy; Robotics; • Networks → Network reliability.

KEYWORDS
threat modelling and analysis, security assessment

ACM Reference Format:
Anonymous Author(s). 2018. Ontologies for Vulnerability Terrain Mapping
and Attack Reasoning. In Woodstock ’18: ACM Symposium on Neural Gaze
Detection, June 03–05, 2018, Woodstock, NY. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Cyber-attacks have two basic actors: an attacker and a defender.
An attacker’s goal is achieved by targeting system vulnerabilities,
design/operational deficiencies, mis-configurations and so on. The
defender’s objective is to protect the system against attacks. This
involves comprehensively understanding when to apply appropriate
security countermeasures to successfully mitigate the attacks.

A defender needs to monitor the disclosed vulnerabilities as a
proactive measure to formulate and validate threat hypotheses in
order to maintain system defenses. However, the increasing number

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

of vulnerabilities, their high rate of discovery coupled with the com-
plexity of vulnerability information requires significant manpower
for a detailed analysis. Further, the volume, rate of production, and
information complexity of vulnerabilities present difficulties in man-
aging and analyzing the relevant information to protect the system
under consideration [8]. This results in a window of opportunity for
an attacker to exploit newly disclosed vulnerabilities during the time
a defender takes to analyze new vulnerability information [31].

Among the commonly used repositories of vulnerability data
is the National Vulnerability Database (NVD) [21]. Other vendor-
specific databases such as Microsoft’s Security Bulleting [19] or
TrendMicro [28] are also available, though their value is limited as
they primarily report vulnerabilities pertinent only to their specific
products. Such repositories complement vulnerability assessment
tools such as Nessus [3], OpenVAS [24] by exposing an external
view of the potential attack surface of a system.

These databases are typically organized based on the consequence
of the vulnerability being exploited and the effected platform (soft-
ware or hardware and version). Given this structure, it is difficult
to identify potential linkages with other disclosed vulnerabilities so
a defender may build up a holistic view of the system’s potential
attack surface. We define the potential attack surface as the Vul-
nerability Terrain. We hold that understanding the vulnerability
terrain is of particular importance in complex systems, such as Cloud
platforms when evaluating multiple attack hypotheses or scenarios
to best allocate defensive resources.

Problem Statement: The challenge for defenders is to holisti-
cally understand the Vulnerability terrain of complex systems in
such a way as to allow the defender to develop multiple, plausible
attack hypotheses to better plan the system defense. The necessary
condition is to have a rich interlinking of vulnerability contexts that
reveal potential attack options and alternatives open to a malicious
agent in the system under consideration. Fulfilling such a condition
would support the defenders to identify common attack mechanisms
aiding in the diagnosis of attacks. We hypothesize that it is possible
to automatically construct a rich, interlinked, vulnerability context
space enabling holistic vulnerability terrain analysis and defend
decision making.

Approach and Contributions: Our work herein describes the
creation of a rich, structured, interlinked vulnerability terrain using
a vulnerability context extracted by a semi-automated process based
on natural language processing techniques. An ontology is presented
based on a systematic review of the vulnerability information held
in CVE format used by the NVD. Importantly, the context analysis
work identifies two key characteristic classes; Structural describing
attack surface features and Behavioural describing attacker actions.

The collection of the extracted vulnerability context ontologies
provides the basis to use a reasoning process to map the collected
vulnerability terrain. A key innovation in this reasoning is the in-
troduction of an inference process to find "similar" vulnerabilities
based on their context. The approach measures the strength of the
linkage using a tuple of grouped characteristics and natural language

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

processing, in this case, a cosine similarity technique [18]. The com-
bination of ontological reasoning, with similarity interlinking, maps
the vulnerability terrain based on defender defined attack hypothesis
and scenarios.

Our contributions can be summarized as follows.

(1) Development of an ontology-based approach that defines a
rich vulnerability context and contextual relationships.

(2) Development of a structured reasoning approach to map the
vulnerability "terrain" for a system and attack hypothesis
under consideration

(3) A novel natural language processing based approach to pro-
vide vulnerability context interlink to support attack hypothe-
sis analysis

(4) Demonstration of the presented techniques in a practical eval-
uation using an open-source Cloud computing platform.

The remainder of the paper is organized as follows. Section 2
reviews contemporary usage of ontology’s in the cyber-security
domain and Section 3 details the construction of an ontology-based
vulnerability context analysis. Section 4 demonstrate the validation
of the approach on Cloud-specific vulnerabilities.

2 RELATED WORK
Vulnerability information can be obtained from a variety of struc-
tured and unstructured sources, collectively forming a knowledge
base. The research challenge is to make sense of this knowledge base
to derive meaningful intelligence that a defender can act upon. A
fundamental approach to making sense of the available information
is to construct ontology’s to define information abstractions and
information relationships as a foundation for analysis.

A number of prior works have attempted to interpret multiple
knowledge sources to provide a structure for subsequent analysis. In
[15], the usefulness of multiple diverse sources, such as the Face-
book threat exchange [9], is evaluated as to the efficacy of generating
actionable intelligence. Importantly this work defines a series of
metrics for characterizing intelligence sources as a mechanism for
comparison. The concept of threat intelligence computing is demon-
strated in [26] which uses graph computation for mapping threat
information and illustrating malicious behavior. Natural language
processing techniques have been used to automate the extraction
of machine-readable Indicators of Compromise (IoC) from unstruc-
tured data sources in [16] to directly support defensive systems
(intrusion detection systems for example).

The use of an ontology to structure complex data is a well-
understood approach in computer science and has been used for
security analysis for a range of purposes. In [27], an ontology is
used to elicit and analyze security requirements to predict potential
threats arising from the requirements themselves. The ontology de-
fines three dimensions: organization, risk and security, and identifies
relationships among these dimensions during the requirement engi-
neering process. In [10], a generic information security ontology is
presented supporting a wide range of risk management approaches.
Based on an analysis of a NIST publication [11] and German IT
security manual [5] high-level entities and relationships in the on-
tology were developed. Oltramari et al. [1] proposed a multi-layer
cyber-security ontology named ”CRATELO”. CRATELO provides

a semantic representation of the cyber-security domain and targets
improvements in the situational awareness of security analysts.

Obrst et al. [23] proposed a methodology for creating an ontology
using existing ontologies by using them as sub-ontologies. Their
approach relies on the usefulness of off-the-shelf schemas, vocab-
ularies, and reports for the acquisition of the domain knowledge
and enables them to identify and analyze concepts, hierarchies, and
classes’ attribute that is used in defining the ontology. In [6], instead
of an ontology, the authors use a diamond model to express the
relationship between attacker, their capabilities, target infrastructure
and the target organization. Undercoffer et al. [29] laid the founda-
tion for transitioning from taxonomies to ontologies for intrusion
detection. They presented an ontology capable of intrusion detec-
tion via a distributed set of sensors contributing to the ontology in
knowledge acquisition enabling the efficient identification of attacks.
Using this approach, More et al. [20] proposed to build a knowledge
base to reason about different aspects of the captured data to identify
threats and vulnerabilities. However, incorporating heterogeneous
data into the knowledge base is complex and reasoning on such data
is challenging. Work exists that focuses on the use of vulnerability
data directly, such as ontologoies developed by Wang and Guo [30],
the National Institute of Science and Technology (NIST) [4], and
Kanakogi et al. by [14]. They propose an ontology (OVM) to analyze
vulnerabilities’ cause and impact using NVD’s existing vulnerability
data. Their ontology also captures the relationships between defined
elements from the CVE format such as vulnerability, affected prod-
uct, and consequence. Similarly, an ontology was developed in [17]
to infer attacks and create cyber threat intelligence. They used the
same concepts for ontology as introduced in [2].

Although, the existing approaches provide useful insights into the
cyber-attacks. However, a key aspect of understanding the correlation
among the attacks is still obscure. Therefore, an attacker can utilize a
variation of the attack to compromise the system or utilize the same
mechanism on a different service/component of the system. Thus, we
focus on exploring the linkages among the different vulnerabilities to
understand the potential attack landscape by creating a context based
on the CVE data. This allows defenders to take informed decisions
not only on the primary vulnerabilities but also on the peripheral
vulnerabilities.

3 CONSTRUCTING AN ONTOLOGY-BASED
VULNERABILITY CONTEXT ANALYSIS

This section outlines the approach taken to form the vulnerability
context ontology and details the resultant ontology structure. It con-
cludes with a description of the reasoning process that is used to
map the vulnerability terrain for defender analysis.

To develop the analytical and reasoning approaches presented
herein, a multi-stage process was undertaken. Initially, CVE data
was analyzed to identify features that would give rise to common
classes of information to use in the ontology. This forms the basis of
the ontology’s classes and the relationships defined between them.
The ontology forms the basis of the vulnerability context which is
then used to analyze and reason about the inter-relationships among
the vulnerabilities, thus revealing the complex attack terrain.

To aid the discussions, a typical vulnerability disclosure report is
depicted in Table 1. Vulnerabilities are reported to the public through

Ontologies for Vulnerability Terrain Mapping and Attack Reasoning Woodstock ’18, June 03–05, 2018, Woodstock, NY

databases such as NIST’s National Vulnerability Database [21] or
vendor-specific databases e.g., Microsoft security bulletin [19]. For
our analysis, we focus on and utilize the NVD given its being the
single largest public data source.

Table 1: An excerpt of a vulnerability disclosure report.

Vulnerability ID CVE-2016-5363

Date Published 06/17/2016

Type Denial Of Service/ Bypass a restriction

Summary The IPTables firewall in OpenStack Neutron
before 7.0.4 and 8.0.0 through 8.1.0 allows re-
mote attackers to bypass an intended MAC-
spoofing protection mechanism and conse-
quently cause a denial of service or intercept
network traffic via (1) a crafted DHCP discov-
ery message or (2) crafted non-IP traffic.

Characteristics Attack Vector (AV): Network, Attack Com-
plexity (AC): Low Privileges Required (PR):
None, User Interaction (UI): None, Scope (S):
Unchanged, Confidentiality (C): Low, Integrity
(I): None, Availability (A): High

Impact CVSS Score: 8.2, Impact Score: 4.2, Ex-
ploitability Score: 3.9,

Products Af-
fected

Product Type: Application, Vendor, Open-
Stack, Product Type: Neutron, Version 7.0.0

References https://security.openstack.org/ossa/OSSA-
2016-009.html

Exploit Available No

Metasploit Mod-
ule Available

No

The disclosure report is structured as follows:
• Vulnerability ID: This field uniquely identifies each vulnera-

bility.
• Date Published: The date on which the vulnerability is dis-

closed to the public.
• Type: This represents potential consequence(s) of a vulner-

ability exploit. For example, a vulnerability belongs to the
DoS category if it causes a denial of service.

• Summary: The summary describes, in natural language, vul-
nerability characteristics, exploit mechanism, root cause and
preconditions of the exploit. Therefore, the summary is signif-
icant to comprehend the vulnerability and identify high-level
indicators of compromise.

• Characteristics: This field constitutes further vulnerability
characteristics such as attack vector, attack complexity, etc.
The attack vector identifies a potential attack surface while
attack complexity reflects the difficulty level of the exploit.

• Impact: The impact score, assigned on a scale from 0 to
10, represents the severity of the vulnerability while the ex-
ploitability score indicates the likelihood of the exploit.

• Products Affected and Product Type: This field lists prod-
ucts and their versions affected by the vulnerability.

• References: Pointers to further information about the vulner-
ability are listed in the references.

• Exploit Available: This field indicates if an exploit is publicly
available.

3.1 Defining the Ontology Classes
In the first instance, the creation of ontology classes for a vulner-
ability seems trivial. However, report attribute heterogeneity and
subjectivity of the information in free form fields, such as the sum-
mary, presents challenges for information extraction. While there
are standards for vulnerability reporting (ISO 29147 [12]) and vul-
nerability handling (ISO 30111 [13]), even these may be interpreted
differently, resulting in a diversity of application. Additionally, the
standard CVE attributes are too restrictive to completely capture
the rich context needed for subsequent analysis. Further, by devel-
oping an abstraction in the ontology classes, away from the CVE
attributes, it provides flexibility to provide alternate mappings to
different vulnerability data sources.

Upon review of the vulnerability report, two types of features
become evident: Structural and Behavioral. Structural features in-
clude the attack surface, vulnerability types, products affected and
so on. Therefore, these features reflect the structural composition of
a vulnerability. The behavioral features are typically embodied in
the vulnerability summary and include mechanisms, issues, tactics.
As such this describes the approaches taken by the attacker to exploit
the vulnerability. The desired objective is to generate classes from
these features to create a coherent representation of a vulnerability
and obtain its context.

It is clear that many of the CVE attributes identify features in the
data set that can be mapped directly as ontology classes. For instance,
the vulnerability attribute ‘type’ represents the consequence of the
vulnerability and hence it is mapped to the ‘consequence’ class of
the ontology. However, diverse information such as attack mecha-
nisms, preconditions, etc., are embodied in the summary attribute
of the vulnerability. As typically these are free form text fields, the
automated extraction of these characteristics is challenging.

A review of the CVE attributes, and subsequent analytical itera-
tions, gave rise to the following ontology classes and CVE attribute
to ontology class mapping. Table 2 gives an overview of the attribute
to class mapping along with example instances of the data held in
each class As our main intent is to illustrate the process, the class
hierarchy is only provided to a secondary level with other levels
modeled similarly.

3.1.1 Structural Attributes to Class Mapping. The Type attribute
is mapped to the Consequence class of the ontology. Furthermore,
the class has further sub-classes to capture the potential impact on
confidentiality, integrity, or availability. These sub-classes contain
members with respect to the potential impact. For instance, DoS is a
member of the availability subclass while the information leakage
belongs to the confidentiality subclass.

This Product attribute is mapped to the Infrastructure class of
the ontology. This class contains an affected list of products and
versions. Furthermore, the attacker can exploit issues in the hardware,

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

Table 2: Extracting classes from the vulnerability report.

Vulnerability
Data

Ontology
Class

Secondary levels Instance

Type Consequence
Confidentiality Bypass

Integrity Bypass

Availability DoS

Summary

Vulnerability – –

Precondition
Software Version v1.2

Configuration Set-
tings

Service
dis-
abled

Issues
Token Mishandling –

Improper Security
Policy

–

Action
Brute Force Number

of re-
quests

Error Action Storage

Products Infrastructure
Hardware

Software –

Network DHCP

Characteristics
Attack Expertise

High –

Medium –

Low –

Attack Surface
Remote –

Physical –

software, etc., therefore, the infrastructure has sub-classes to identify
the effect on the software, service, hardware, network, etc.

The Characteristics attribute reflects further properties of the
vulnerability in terms of its severity, complexity, etc. We extract the
respective information and create different classes to illustrate these
characteristics.

• Attack Surface: This class explains whether physical access
to the system is required or the vulnerability can be exploited
remotely. This can be directly mapped from the characteristics
attribute of the report as shown in Table 2.

• Attacker: The attacker class is required in our ontology to
represent the information associated with the attack. For ex-
ample, the respective actions/issues correspond to this class as
well as attacker expertise to substantiate the attack. Moreover,
this class is further used to elaborate on the attack pattern and
mechanism to exploit a certain system.

3.1.2 Behavioural Attribute to Class Mapping. The information to
populate classes related to the behavioral attributes of the vulnerabil-
ity is held in the free text Summary field, making their automated
extraction non-trivial. We utilized natural language techniques to
extract data from the vulnerability report to populate ontology class
instances. Our approach is as follows. In order to remove superflu-
ous information from the Summary field, we create a vocabulary
by removing stop words and generate n-grams sequence illustrating
exploit criterion, precondition, and attacker’s mechanism. We choose
the n-gram model over the Bag-of-Words (BoG) model because the
former provides the following benefits. First, the order and sequence
are maintained in the n-gram model. Second, the n-gram model can
be used to extract the syntactical semantics of textual description.
These benefits are critical in creating context representing the charac-
teristics of the vulnerability. Class selection and instance assignment
is based on the longest token matching between the class and the
information.

The following classes have been identified as deriving from the
information held in the summary attribute:

• Preconditions: This class captures the necessary prerequisites
for a vulnerability to be exploitable. For example, specific
software versions or system configurations are required for
vulnerability and in the absence of such requirements, vul-
nerability is not exploitable. Therefore, this class captures
preconditions for a vulnerability manifestation.

• Issues: The root cause of the exploit can be either an inher-
ent issue in the service/component or an attacker ascertains
action(s) to circumvent normal behavior of the service/com-
ponent. In lieu of this information, we create two disparate
classes. The issues class in the ontology exhibits inherent
service issues/bugs exploitable by an attacker. For example,
using an incorrect precision method for authentication token
comparisons leads to bypassing the authentication mecha-
nism. We further categorize the information with respect to
the issue specificity, e.g., a subclass ‘token mishandling’ (cf.,
Table 2) captures issues related to the token mismanagement.

• Action: The class "action" elaborates on the common actions
performed by an attacker to exploit a vulnerability and en-
ables the system defenders to postulate the potential threats
and consequently, render mitigation mechanism against the
common actions. This class complements the issues class.
Thus, in this class, the action of the attackers with a primary
objective to circumvent the security is focused. For exam-
ple, a trivial action from an attacker is a brute force attack.
Alternatively, an attacker sends crafted messages to check
the system’s behavior. This class captures the action by the
attacker. Furthermore, this class has further sub-classes to
identify the action specificity. For instance a subclass (cf.,
Table 2) ‘error action’ captures attacker tactics that deal with
testing the error handling of a system.

• Vulnerability: The reason for creating vulnerability as an inde-
pendent class is due to its relationship with other (sub)classes
e.g., issues, attack surfaces. This is necessary to create a com-
plete context of a vulnerability (cf., 3.2). This is necessary
as our objective is to infer further vulnerabilities satisfying a
similar context.

Ontologies for Vulnerability Terrain Mapping and Attack Reasoning Woodstock ’18, June 03–05, 2018, Woodstock, NY

3.2 Defining the Ontology Relationships
The previous section detailed the classes inferred from the CVE
data. However, building a complete ontology requires establishing
relationships among the classes. We define two primary relationships
that govern the development of the ontology. These are:

• is_a: This relationship defines the relationship between a
class and its sub-classes. For instance, the consequence has
three sub-classes to indicate whether the consequence of the
vulnerability is on confidentiality, integrity, or availability.

• has: The "has" relationship defines the association among
the classes for making available their respective data to the
participating classes. For instance, vulnerability "has" a pre-
condition or an infrastructure "has" an issue.

Figure 1 depicts the classes involved in the ontology and their
relationships. For instance, the attacker class relates to the action
class and expertise to identify the attack action and the respective
expertise required for the attack mechanism. Similarly, vulnerability
class connects with different classes to exhibit the respective charac-
teristic of the vulnerability. For instance, the interaction between the
vulnerability class and the precondition indicates the corresponding
requirements of the vulnerability. The vulnerability class also relates
to the action and issues class (through the infrastructure class) to
illustrate the vulnerability exploit mechanism concerning the issues
in the software and the corresponding action of the attacker. Thus,
the ontology serves the objective to create a complete context of a
vulnerability reflecting its characteristics.

VulnerabilityAttacker Infrastructurehas

Expertise IssuesPrecondition

Actionhas

Consequence

has

Attack Surface

has

has has

Core Class

Secondary Class

Availability Confidentiality Integrity

is_a

CraftedAction VMAction

Remote

Local Software Version

Configuration Setup

Software Hardware

Low

Medium Token Mishandling

Improper
Authentication

Figure 1: Representing the vulnerability information

Given the completed ontology (classes and relationships) it is pos-
sible to derive a structured context for any vulnerability report. An
example of the vulnerability context using the ontology classes/sub-
classes is shown in Figure 2. For instance, attacker_1 is a member
of the attacker class that can potentially utilize action_1 from the
action class. Furthermore, vul_1 is a member of the vulnerability
class and relates with precond_1 from the precondition and has a
potential attack_surface_1 from the attack surface class. Moreover,

the software_1 is a member of the software class that has the issue
exploited by the respective vulnerability.

Attacker is_a

Vulnerability

Precondtiotion

is_a

Attacker_1

Vul_1

is_a

Precond_1

Action

Action_1

Softwareis_a

Software_1

Issueis_a

Issue_1

has

Attack Surface

Consequence

Consq_1

Attack Surface_1

Figure 2: Context of a vulnerability using the Ontology

3.3 Creating a Vulnerability Terrain
Given a data set of vulnerability reports mapped into ontology in-
stances, it is possible to map the given vulnerability terrain. It is
assumed here and demonstrated in the next section, an ontology
reasoning tool is used to help build the terrain and understand it. To
perform the reason a series of properties are defined which help map
the vulnerability terrain for a given system under consideration.

Property 1 - Attack mechanism: This property identifies mech-
anisms that an attacker can utilize to achieve his/her respective goal.
In other words, a defender can ascertain the plausible attack mech-
anisms against the services that an attacker can utilize to exploit a
system.
Property 2 - Prevalent issues and actions: This facet of the cyber-
attacks entails elaborating on the legacy issues in the service/com-
ponent exploitable by an attacker. Additionally, recurrent attacker’s
actions that stipulate the vulnerability manifestation are also iden-
tified. The advantage of such an analysis is to support defenders to
focus on mitigating attacker’s action which consequently patches a
set of vulnerabilities employing the same action.
Property 3 - Attack inference: A key objective of this work is to
identify potential linkages between different vulnerabilities. This
enables the defender to infer further vulnerabilities that may satisfy
a similar context. This property forms the basis to evaluate the extent
to which vulnerabilities are related to each other. We describe in
detail how we extend the reasoning process to provide these linkages
in 3.3.1
Property 4 - Multi-stage attack: In this property, we leverage the
ontology to identify service(s) with the highest number of associ-
ated vulnerabilities and the degree of service’s connectivity. This
enables to identify possible threat propagation paths by identifying
the vulnerable service’s interaction with other services.

3.3.1 Linking Vulnerability Contexts. Given a context for a vulnera-
bility defined by an ontological representation, a method needs to
be found to build interlinks between the vulnerability contexts. This

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

method then enables the construction of the vulnerability terrain for
subsequent analysis. To perform this comparison construct a tuple
consisting of three distinct elements: structure, behavior and the
consequence.

• structure represents the attributes of the feature set that char-
acterize the structural semantics of the vulnerability.

• behavior embodies the exploit mechanism from the summary
that represents how the vulnerability can be exploited

• consequence defines the impact of the vulnerability such as a
denial of service, information leakage, etc.

This provides the basic unit of analysis for comparing the strength
of the connections between vulnerabilities. In order to achieve this,
we apply the cosine similarity [18] technique to create a similarity
matrix showing the distance among the vulnerabilities’ analysis tuple.
The cosine similarity is widely used to estimate text similarity and
since the contexts contain text/strings comparison, therefore cosine
similarity is an appropriate choice. It works by evaluating the angular
differences between the texts rather than their magnitudes. Thus,
texts with the maximum similarity will have a cosine similarity
of 1, and the texts that have no commonality will have a cosine
similarity value of 0. Since the context is largely textual and thus,
cosine similarity is an optimal choice in this scenario. For alternate
similarity algorithms, we refer the reader to [7] for more details.

The result of applying cosine similarity is a matrix with values
ranging between 0 and 1. A Similarity Matrix (SM) between the
vulnerabilities is shown in the matrix. 1.

SM =

Vul1 Vul2 . . . Vuln

Vul1 V1,1 V1,2 . . . V1,n
Vul2 V2,1 V2,2 . . . V2,n

...
...

. . .
...

Vuln Vn,1 Vn,2 . . . Vn,n

 (1)

The cosine similarity ranks the potential variants of a vulnerability
based on the similarity among their contexts. However, the analysis
can also be utilized to assess the similarity among the vulnerabilities
for an individual tuple of the context. For instance, the analysis can
aid in providing the similarity among the attack mechanism across a
set of vulnerabilities to identify common attack mechanisms or to
align the vulnerabilities by their common consequence.

In the next section, we select apply our approach to generate
a vulnerability terrain of OpenStack [25], an open-source Cloud
computing platform.

4 PRACTICAL VALIDATION USING
OPENSTACK

The complete process for the analysis of a vulnerability report data
set through to reason is depicted in Figure 3. This process was
applied to the OpenStack [25] platform. OpenStack was chosen
due to its wide deployment as a cloud environment coupled with
the complexity, diversity and volume of services required in an
OpenStack installation.

All vulnerabilities relating to OpenStack were extracted from
the NVD and initially passed through a semi-automated process
as described in Section 3. This produced a series of vulnerability
context ontology instances. These instances then formed the basis

Information Extraction

Classes

Relations

Modeling the Ontology

National Vulnerability

Database (NVD)

Reasoning

In
crem

e
n

ta
l ite

ratio
n

Data Source

Figure 3: Stages in the approach

for the creation of the vulnerability terrain for further reasoning. We
perform reasoning on the ontology data using protégé [22] which is
an open-source tool. This is supplemented with our analytical engine
for attack inference.

As Figure 3 illustrates, there is an incremental iteration between
the ontology and the information extraction process. This is due to
the fact that the summary is highly subjective and the same report
may be written in a different style depending on the author. There-
fore, to ratify the influence of subjectivity, an incremental iteration
is performed between the classes and the information to make the
ontology classes consistent with the extracted information.

An example of mapping the vulnerability terrain to answer and
support the development of attack hypothesis and scenarios is given
next.

4.1 Exploring the vulnerability terrain
The objective of the paper is to allow system defenders to hypothe-
size attack scenarios with respect to the system under investigation.
In the following sections, the application of the approach in analyz-
ing different aspects of vulnerability is explored.

Ontologies for Vulnerability Terrain Mapping and Attack Reasoning Woodstock ’18, June 03–05, 2018, Woodstock, NY

4.1.1 Property 1: Attack mechanism. The security defense of a
system relies on information that is actionable and leads to reveal-
ing patterns, and mechanisms used by the attacker. Therefore, this
property explores the methods and techniques that an attacker can
utilize to achieve his/her objective considering his/her respective
capability. We ran a query for OpenStack’s existing vulnerabilities
with different constraints, i.e., considering the attacker’s objectives
what are the possible actions by the attacker. Table 3 shows different
objectives and how an attacker can achieve such an objective.

Table 3: Examples of different attack objectives.

Objective Primary Ac-
tion

Secondary Ac-
tion

Accessing Confidential Data Error Action
Storage Error

Process Execu-
tion Error

API Error

Preventing Security Policy
Error Action

Overlapping
Port ranges

Unsupported
Protocol

Denial of Service Brute force action
VM Instance

API requests

DHCP discov-
ery message

An example from Table 3 is shown graphically in Figure 4 il-
lustrating possible scenarios that lead to accessing the confidential
information.

Confidential
Information/Logs

StorageErrorAction

ReadAction

ProcessExecutionError

Configuratioon

ErrorAction

Figure 4: Attack mechanism to access logs

As Figure 4 depicts, a trivial approach would be to directly access
the logs and if the service stores passwords unmasked then the pass-
word are accessible through the logs. Interestingly, the result shows
that causing errors in multiple storage-related processes allows the
attacker to access the confidential information provided the error
statements are not correctly processed.

The property aims to explore possible methods to access confiden-
tial information and therefore, we do not mention the precondition(s)
of the methods. The advantage of using such reasoning is twofold.
First, these methods can be used as additional security test cases

for their respective services. Second, the security analyst learns
from these mechanisms and establishes proper mitigation techniques
against them. This results in altering the behavior of the attacker
and challenges the attacker to find new and innovative methods to
achieve his/her goals. For example, fixing the configuration option
or inspecting the information entailed in error messages eliminates
the possibility of accessing logs and limits the attacker’s capacity to
steal passwords.

4.1.2 Property 2: Prevalent Issues and Actions. As mentioned in
Section 3.1, we classify the root cause into either an inherent service/-
component issue or malignant action(s) by the attacker. Therefore,
this property answers the root cause of the OpenStack vulnerabili-
ties. A few examples of the root causes and the recurring attacker’s
actions for the Cloud vulnerabilities are shown in Table 4.

Table 4: Examples of prevalent issues and actions.

Parent Issue Consequence

Improper handling
authentication token Bypass

token expiration Bypass/DoS

VM Action
VM migration + VM sus-
pend

DoS

VM resize + VM delete DoS

As presumed, the frequent target of attackers is authentication
service which is responsible for authenticating and authorizing a
user. Our investigation reveals that the legacy issues exploited in
the service stem from the mismanagement and improper handling
of the authentication tokens and token expiration method. Thus,
these issues allow attackers to exploit the service and consequently
compromise the system’s security. For instance, a wrong precision
method in the token expiration comparator allows an attacker to use
an expired token for successfully authenticating him/herself. These
results are not specific to Cloud and hence, can be utilized to assess
an authentication service in other systems such as e-commerce,
banking, etc.

On the other hand, the prevalent malignant actions from the at-
tacker emphasize on manipulating the VMs. The VMs manipulations
exhibited in the OpenStack vulnerabilities combine different “nor-
mal" actions to yield an abnormal action that leads to the system/ser-
vice crash. For example, a VM resize action followed by a VM delete
action crashes the service. Alternatively, suspending a VM while it
is migrating to another host also leads to the malfunctioning of the
service.

The property reveals legacy issues to provide support in safe-
guarding the service from these malignant actions by disallowing
certain combinations of actions to preserve the proper functioning
of the system.

4.1.3 Property 3: Attack Inference. The lack of cross-reference
among the vulnerabilities hampers a holistic security assessment of
the system under investigation. Therefore, in this property, we infer
further vulnerabilities that are semantically equivalent to limit an
attacker’s ability to exploit a variation of the vulnerability. To explore

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

Attacker is_a

VMAction

Vulnerability

Precondtiotion

is_a

Expert

Resize

Exploit

is_a

Software
Version

Remote

Action

Delete

Softwareis_a

Nova

Improper Process
Handling

is_a

VM migration

Attack Surface

hasRequirement

Consequence
DoS

Figure 5: context of a CVE-2015-3241 using the Ontology

vulnerability variants, we create a context of a vulnerability using the
ontology and classify vulnerabilities that follows a similar context.
The context is a coherent view of the vulnerability’s preconditions,
attack surface, etc. An example of a vulnerability context is shown
in Figure 5.

Figure 5 describes a vulnerability instance using the ontology
classes/sub-classes. This particular vulnerability instance requires
an attacker to perform multiple actions to cause a denial of service.
Therefore, the attacker initially resizes a VM and simultaneously
deletes a VM. These actions are represented using the respective
classes. The reason for the exploit is due to an issue on the Nova
component of the OpenStack for mishandling conflicting instructions
by the user. Furthermore. the vulnerability can be exploited remotely.

We evaluated OpenStack to explore vulnerabilities that are con-
textually equivalent and a potential result is shown in matrix 2.

SM =

CV...8914 CV...5362 CV...5363

CV...8914 1 0.73 0.66
CV...5362 0.73 1 0.77
CV...5363 0.66 0.77 1

 (2)

The matrix 2 shows that the vulnerabilities are closely related and
in the presence of a vulnerability the existence of remaining vulnera-
bilities should be checked. Thus, this property enables reasoning on
a class of vulnerabilities that could also be exploited by the attacker.
In this property, we target the vulnerabilities belonging to a single
service. However, an attacker can trigger vulnerabilities belonging
to different services leading to a multi-stage attack. We tackle this in
the next property.

The advantage of such a classification results in revealing further
vulnerabilities that have the potential to undermine the security of
the system. This leads to patching a class of vulnerabilities instead
of individual vulnerability patches.

We evaluate the similarity among OpenStack vulnerabilities in
Figure 6. As mentioned before, we use OpenStack as a use case but
the methodology is a technology and product independent. The X
and Y-axis are data points representing vulnerabilities and the colors
represent the extent to which the vulnerabilities are related to each

other. As the cosine similarity of 1 represents the maximum similar-
ity, therefore, the diagonal of the heatmap shows this evidence since
it represents self-comparison. From Figure 6, it is evident that the
vulnerabilities between 42 to 52 1 have higher similarities. We can
further fine-tune the analysis to investigate the similarity among the
vulnerabilities in terms of attack attack mechanisms, preconditions,
etc. For instance, Figure 7 illustrates the similarity among the vulner-
abilities, in terms of the attack mechanism used in the vulnerabilities.
This essentially enables the security analysts to better understand
the attack mechanism used in multiple vulnerabilities. Consequently,
an effective countermeasure against the attack mechanism patches
a class of vulnerabilities and thus, limits the reuse of the attack
mechanism.

4.1.4 Property 4: Multi-stage attacks. This property targets the ca-
pability of an attacker to compromise multiple services with the
same vulnerability. In the previous property, we reason on the vul-
nerabilities that exhibit similar contexts. This property extends the
scope by assessing an impact of a vulnerability on multiple services.
On the other hand, we can tweak the property to answer the actions
that could trigger the transition effect in the system. An example of
the transition pattern is shown in Figure 8.

As can be seen from Figure 8, the vulnerability exploit affects
two different components (Nova and compute) although the exploit
has almost similar actions. Therefore, it is critical to understand
the impact of the actions and exploits beyond a single service to
understand a multi-stage attack and the propagation of the threat in
a system.

In this property, we try to answer possible ways of launching a
multi-stage attack. This is critical in understanding how the vulner-
ability propagates from one service to another. In other words, an
attacker can exploit multiple services to causes severe damage to the
system. In contrast to exploiting a single service with higher risk,
an attacker can exploit multiple services with low risks to cause a
higher cumulative impact on the system.

In the next section, we summarise our key findings and discuss
the advantages of performing a multi-faceted analysis of the vulner-
ability.

4.2 Results and Discussion
The application of our approach on the OpenStack vulnerabilities
reveal interesting results which can be summarised as follows:

• The initial observation our analysis shows is that there exists
a similarity among the vulnerabilities that go beyond the
common consequence of the vulnerabilities. We investigated
OpenStack vulnerabilities and observe that around 10 percent
(cf., Figure 6) of the reported vulnerabilities have a varying
degree of correlation between them. Moreover, the degree
of correlation is higher among the vulnerabilities exploiting
the same service. This is partially due to the deployment of
a "similar" attack to exploit the functionality of the service.
On the other hand, the similarity between the vulnerabilities
exploiting different services shows a lower correlation.

• Similarly, we explore the degree of attacker’s reliance on uti-
lizing the same mechanism in different vulnerabilities. Out

1The list of vulnerabilities can be accessed from the link

https://docs.google.com/spreadsheets/d/1kkr4HsVR1i9zOXzrrl2561xKCxMnIkXg/edit?usp=sharing&ouid=104737631177723182452&rtpof=true&sd=true

Ontologies for Vulnerability Terrain Mapping and Attack Reasoning Woodstock ’18, June 03–05, 2018, Woodstock, NY

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
57 0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Context-Based Similarity among Cloud vulnerabilities

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57

0
3

6
9

12
15

18
21

24
27

30
33

36
39

42
45

48
51

54
57 0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Attack mechanism Similarity among Cloud vulnerabilities

of the vulnerabilities we investigated, around 15 percent of
the vulnerabilities have strong similarity (cf., Figure 7), i.e.,

the cosine similarity is above 0.5. Furthermore, we investi-
gated the applicability of an attack mechanism across differ-
ent services. The insight into this investigation is similar to
the results of contextual similarity. We see a high degree of

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

VMAction

Vulnerability

Precondtiotion

is_a

is_a

Overwrite

Exploit

is_a

UsingLibvirt

CraftedAction

VMImage

Softwareis_a

Nova

hasRequirement

Precondition

ConfSetup

Softwareis_a

Compute

Figure 8: Multi-stage attack

reusability of the attacks for the same service. For instance,
there is a high chance of using cross-site scripting attacks
with different payloads for authentication service. However,
the same attack is less effective on other services in the Cloud
platform.

• We also investigate the possible attack surface for both the
authenticated and non-authenticated attackers. In the former
case, we observe that most of the vulnerabilities or the at-
tacker’s actions were related to the manipulations of the VM
that could lead to either a denial of service or cause the VM
to behave incorrectly. In the latter case, since the attacker is
not authenticated therefore, the primary target of the vulnera-
bilities is the authentication service.

In the following sections, we discuss the broader aspects of our
analysis and its limitations.

Fine-grained Vulnerability Classification: We assert that by re-
vealing more elaborate patterns among the vulnerabilities, we allow
system defenders to patch subsequent vulnerabilities in the presence
of a primary vulnerability. This ensures that the same vulnerability
cannot be exploited on a different system or a variant of the vulner-
ability cannot be used to compromise the system. Furthermore, a
system defender can proactively hypothesize different threats that
could potentially damage the critical services of the system.

Changing the attacker’s behavior: Reusing old exploits is sig-
nificantly important for an attacker. It speeds up the process of
exploiting the system since the attacker does not invest time to create
new exploits. Therefore, it is essential to understand common actions
in the exploits and provide a safe-guards against the actions to limit
their reuse. This is achieved in our approach by identifying common
actions from the existing vulnerabilities and enable system defenders
to take an informed decision about such actions. This will ensure
that an attacker has to find new methods to compromise the system
and therefore, enforces the attacker to change his/her behavior for
future exploits.

Learning from the vulnerability terrain: Among the roles of
the system defenders is to patch each vulnerability and consequently,
mitigate the fault in the service/component. This process has an
inherent limitation, i.e., this process is reactive and the patch is lim-
ited to fixing the reported service/component. On the other hand,
learning from a wide spectrum of existing vulnerabilities can lead to

proactively assess the security of the system holistically by includ-
ing the peripheral vulnerabilities in the process. Moreover, learning
gives a tactical advantage to the system defenders by allowing them
to assess threats across different services. This allows them to learn
the progression of vulnerability and also a consequence of an at-
tack mechanism on a different service. For example, a vulnerability
(CVE-2015-8914) was reported in 2015 and a year later two new vul-
nerabilities were reported (CVE-2016-5362 and CVE-2016-5363)
with the same attack mechanism applied to a different protocol. Thus,
it is critical to understand the attack mechanism and its application to
different services to prevent future vulnerabilities. Thus, mitigating
attack mechanisms lead to patching multiple vulnerabilities and it
also compels the attacker to find new and innovative mechanisms
instead of using recurring attack mechanism.

The fundamental objective of this paper is to reveal the correlation
among the vulnerabilities. This entailed revealing common attack
mechanisms across the vulnerability terrain exhibiting a similar con-
text and establishing a context from the CVE is the basic premise
behind the approach. Additionally, property 1 and property 4 demon-
strate that the analysis could be extended to hypothesizing different
attack mechanisms or explore multi-stage attacks. On the one hand,
these properties are limited to the results shown in the paper but on
the other hand, these could be extended to cover a wide range of
attack hypotheses with respect to the system under investigation.

5 CONCLUSION
We have explored the utility of an ontology-based vulnerability ter-
rain to analyze different facets of the vulnerability. The obtained
model constitutes the basis to create the context of the vulnerabil-
ity by coherently representing it using its CVE data. The context
provides a basis to enumerate further vulnerabilities across the mul-
tiple operational layers of the system, and consequently, enables the
system defenders to make an informed decision on the peripheral
vulnerabilities.

Our investigation reveals that there exists a similarity among
the vulnerabilities that go beyond the common consequence. For
instance, our analysis showed that the correlation among the attack
mechanisms exploiting the same service is higher than the attack
mechanism exploiting different services. Moreover, an attacker’s
rely on reusing the "similar" attack mechanism to exploit the same
service. Therefore, if the attack mechanism is mitigated then it will
compel the attacker to find new and innovative ways to compromise
the system which is a challenging task.

Ontologies for Vulnerability Terrain Mapping and Attack Reasoning Woodstock ’18, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Oltramari Alessandro, Cranor Lorrie, Walls Robert, and McDaniel Patrick. 2014.

Building an Ontology of Cyber Security. In Proceedings of the International
Conference on Semantic Technologies for Intelligence, Defense, and Security.
54–61.

[2] Sean Barnum. 2012. Standardizing cyber threat intelligence information with
the structured threat information expression (stix). Mitre Corporation 11 (2012),
1–22.

[3] Jay Beale, Haroon Meer, Charl van der Walt, and Renaud Deraison. 2011. Nessus
Network Auditing: Jay Beale Open Source Security Series. Elsevier.

[4] Harold Booth and Christopher Turner. 2016. Vulnerability description ontology
(vdo): a framework for characterizing vulnerabilities. Technical Report. National
Institute of Standards and Technology.

[5] BSI. Accessed on: March 01 2020. IT Grundschutz Manual. https://www.bsi.
bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html. [online].

[6] Sergio Caltagirone, Andrew Pendergast, and Christopher Betz. 2013. The Diamond
Model of Intrusion Analysis. Technical Report. Center For Cyber Intelligence
Analysis and Threat Research Hanover Md.

[7] Silvana Castano, Alfio Ferrara, Stefano Montanelli, and Gaia Varese. 2011. Ontol-
ogy and Instance Matching. In Proceedings of the International Conference on
Knowledge-driven Multimedia Information Extraction and Ontology Evolution.
167–195.

[8] CVE. Accessed On: 01 March 2020. Vulnerability Distribution over the years.
https://www.cvedetails.com/browse-by-date.php. [Online].

[9] Facebook. Accessed on: March 01 2020. Facebook Threat Exchange. https:
//developers.facebook.com/programs/threatexchange.

[10] Stefan Fenz and Andreas Ekelhart. 2009. Formalizing Information Security Knowl-
edge. In Proceedings of the International Symposium on Information, Computer,
and Communications Security. 183–194.

[11] Barbara Guttman and Edward Roback. 1995. An introduction to Computer Secu-
rity: the NIST handbook. Diane Publishing.

[12] ISO. Accessed on: March 01 2020. ISO Standard 29147. Information Technology
– Security Techniques – Vulnerability Disclosure, Edition 2, Year 2018. [online].

[13] ISO. Accessed on: March 01 2020. ISO Standard 30111. Information Technology
– Security Techniques – Vulnerability Handling Processes, Edition 3, Year 2019.
[online].

[14] Kenta Kanakogi, Hironori Washizaki, Yoshiaki Fukazawa, Shinpei Ogata, Takao
Okubo, Takehisa Kato, Hideyuki Kanuka, Atsuo Hazeyama, and Nobukazu Yosh-
ioka. 2022. Comparative Evaluation of NLP-Based Approaches for Linking
CAPEC Attack Patterns from CVE Vulnerability Information. Applied Sciences
12, 7 (2022), 3400.

[15] Vector Li, Matthew Dunn, Paul Pearce, Damon McCoy, Geoffrey Voelker, and
Stefan Savage. 2019. Reading the Tea Leaves: A Comparative Analysis of Threat
Intelligence. In Proceedings of the Usenix Security Symposium. 851–867.

[16] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing, and Raheem
Beyah. 2016. Acing the IoC Game: Toward Automatic Discovery and Analysis
of Open-source Cyber Threat Intelligence. In Proceedings of the Conference on
Computer and Communications Security. 755–766.

[17] Yazid Merah and Tayeb Kenaza. 2021. Proactive Ontology-based Cyber Threat
Intelligence Analytic. In 2021 International Conference on Recent Advances in
Mathematics and Informatics (ICRAMI). IEEE, 1–7.

[18] Steinbach Michael, Karypis George, and Vipin Kumar. 2000. A Comparison of
Document Clustering Techniques. In Proceedsings of the International Conference
on Knowledge Discovery and Data Mining.

[19] Microsoft. Accessed on: March 01 2020. Microsoft Security Bulleting (MSB).
https://technet.microsoft.com/en-us/security/bulletins.aspx. [online].

[20] Sumit More, Mary Matthews, Anupam Joshi, and Tim Finin. 2012. A knowledge-
based Approach to Intrusion Detection Modeling. In Proceedings of the Sympo-
sium on Security and Privacy workshops. 75–81.

[21] NIST. Accessed on: March 01 2020. National Vulnerability Database (NVD).
https://nvd.nist.gov/. [online].

[22] Natalya Noy, Monica Crubézy, Ray Fergerson, Holger Knublauch, Samson Tu,
Jennifer Vendetti, and Mark Musen. 2003. Protégé-2000: an open-source ontology-
development and knowledge-acquisition environment.. In Proceedings of the
American Medical Informatics Association Symposium. 953–953.

[23] Leo Obrst, Penny Chase, and Richard Markeloff. 2012. Developing an Ontology
of the Cyber Security Domain.. In Proceedings of the Conference on Semantic
Technologies for Intelligence, Defense, and Security. 49–56.

[24] OpenVas. Accessed on: March 01 2020. Open Vulnerability Scanner Assessment
System. http://www.openvas.org/. [online].

[25] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. 2012. OpenStack:
Toward an Open-source Solution for Cloud Computing. Proceedings of the
International Journal of Computer Applications, 38–42.

[26] Xiaokui Shu, Frederico Araujo, Douglas Schales, Marc Stoecklin, Jiyong Jang,
Heqing Huang, and Josyula Rao. 2018. Threat Intelligence Computing. In Proceed-
ings of the Conference on Computer and Communications Security. 1883–1898.

[27] Amina Souag, Camille Salinesi, Raúl Mazo, and Isabelle Comyn-Wattiau. 2015.
A Security Ontology for Security Requirements Elicitation. In Proceedings of the
International Symposium on Engineering Secure Software and Systems. 157–177.

[28] TrendMicro. Accessed on: March 01 2020. TrendMicro threat encyclope-
dia. https://www.trendmicro.com/vinfo/us/threat-encyclopedia/vulnerability/all-
vulnerabilities. [online].

[29] Jeffrey Undercoffer, Anupam Joshi, and John Pinkston. 2003. Modeling Computer
Attacks: An Ontology for Intrusion Detection. In Proceedings of the International
Workshop on Recent Advances in Intrusion Detection. 113–135.

[30] Ju Wang and Minzhe Guo. 2009. OVM: an Ontology for Vulnerability Man-
agement. In Proceedings of the Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information Intelligence Challenges
and Strategies. 34–40.

[31] Su Zhang, Xinwen Zhang, and Xinming Ou. 2014. After we knew it: Empirical
Study and Modeling of Cost-effectiveness of Exploiting Prevalent known Vul-
nerabilities across IaaS Cloud. In Proceedings of the Symposium on Information,
Computer and Communications Security. 317–328.

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
https://www.cvedetails.com/browse-by-date.php
https://developers. facebook.com/programs/threatexchange
https://developers. facebook.com/programs/threatexchange
https://technet.microsoft.com/en-us/security/bulletins.aspx
https://nvd.nist.gov/
http://www.openvas.org/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/vulnerability/all-vulnerabilities
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/vulnerability/all-vulnerabilities

	Abstract
	1 Introduction
	2 Related Work
	3 Constructing an Ontology-Based Vulnerability Context Analysis
	3.1 Defining the Ontology Classes
	3.2 Defining the Ontology Relationships
	3.3 Creating a Vulnerability Terrain

	4 Practical Validation using OpenStack
	4.1 Exploring the vulnerability terrain
	4.2 Results and Discussion

	5 Conclusion
	References

