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Abstract. Supervised learning-based adversarial attack detection meth-
ods rely on a large number of labeled data and suffer significant perfor-
mance degradation when applying the trained model to new domains. In
this paper, we propose a self-supervised representation learning frame-
work for the adversarial attack detection task to address this drawback.
Firstly, we map the pixels of augmented input images into an embed-
ding space. Then, we employ the prototype-wise contrastive estimation
loss to cluster prototypes as latent variables. Additionally, drawing in-
spiration from the concept of memory banks, we introduce a discrimi-
nation bank to distinguish and learn representations for each individual
instance that shares the same or a similar prototype, establishing a con-
nection between instances and their associated prototypes. We propose
a parallel axial-attention (PAA)-based encoder to facilitate the train-
ing process by parallel training over height- and width-axis of attention
maps. Experimental results show that, compared to various benchmark
self-supervised vision learning models and supervised adversarial attack
detection methods, the proposed model achieves state-of-the-art perfor-
mance on the adversarial attack detection task across a wide range of
images.

Keywords: Self-supervised learning, adversarial attack detection, pro-
totype, contrastive learning, discrimination bank

1 Introduction

Given an image potentially perturbed by an attack algorithm, the goal of adver-
sarial attack detection is to distinguish between adversarial and normal samples
using the differences between them. Adversarial attack detection is an important
security topic applicable in real-world applications such as autonomous driving
systems, object detection, medical image processing, and robotics [28] [39] [46]
[48] among many others. With recent advancements in deep learning, several
neural-network-based approaches have been proposed for adversarial attack de-
tection [19] [24]. These networks and approaches are predominantly trained in
a supervised manner, where a large number of labeled adversarial and normal
samples are provided as input to neural networks. The model is then trained
to reconstruct the corresponding clean sample and compare it with the input
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sample to provide the detection result. Consequently, supervised learning-based
adversarial attack detection approaches suffer from three main drawbacks.

Firstly, human-imperceptible adversarial attacks on images are challenging
to label manually. This process can be time-consuming and may introduce er-
rors, particularly when the annotator lacks familiarity with the task. Secondly,
the trained adversarial attack detection models may need to be deployed in
previously unseen conditions, including novel attack algorithms and datasets.
Consequently, there is a strong likelihood of a mismatch between the training
and testing conditions. In such cases, we lack the ability to leverage recorded
test data to improve the model’s performance in the unseen test setting. Thirdly,
prototype-based adversarial attack detection methods [36] [37] estimate an ob-
ject’s category (e.g., cats or dogs) as the prototype. These methods calculate
the degree of similarity between new data samples and autonomously chosen
prototypes to classify images as adversarial or normal samples. However, each
prototype may potentially consists of multiple instance samples, which often
leads to a neglect of the rich intrinsic semantic relationships between prototypes
of individual objects in images. For example, while the model may be trained on
some tank images, it may struggle to classify new tanks or entirely new classes
of objects when faced with previously unseen types of tanks.

To overcome these drawbacks, our contributions are summarized as follows:
• We propose a self-supervised representation learning framework aimed at

extracting feature representations for the downstream task, i.e., adversarial at-
tack detection. Building upon pixel mapping 3.2 and contrastive estimation in
3.3, in 3.4, we propose a discrimination bank to distinguish individual instances
for each prototype from the embedding space. We demonstrate that the instance-
wise feature maps capture richer information compared to the prototype-based
approach, resulting in performance improvements.

• In 3.5, we propose a parallel axial-attention (PAA)-based encoder to split
the 2-D attention map into two 1-D sub-attention maps, one for height and
one for width. Unlike the original axial-attention approach [44], PAA can be
simultaneously trained on two GPU devices, enabling parallel calculations of
the attention maps and facilitating the training process.

• We demonstrate the effectiveness of our proposed methods by compar-
ing them to state-of-the-art pre-trained models and existing adversarial attack
detection methods across a diverse range of images.

2 Related Works

2.1 Self-Supervised Learning

Self-supervised learning aims to develop effective feature representations without
the need for large annotated datasets, thereby addressing the annotation bottle-
neck, which is one of the primary challenges in the practical deployment of deep
learning today. Recent studies have shown a growing interest in self-supervised
learning, particularly after Yann LeCun’s keynote address at the AAAI 2020
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conference [22]. Generally, self-supervised learning can be categorized into three
main approaches: predictive [42], generative [25], and contrastive learning [4].
For instance, He et al. proposed masked autoencoders (MAE) to mask random
patches of input images and reconstruct the missing pixels [13].

2.2 Contrastive Learning

Contrastive learning aims to develop low-dimensional representations of data
by contrasting similar and dissimilar samples [4]. It encourages the learning of
feature representations with both inter-class separability and intra-class com-
pactness, which can be highly beneficial for network learning.

One type of contrastive loss function used for self-supervised learning, noise-
contrastive estimation (InfoNCE), employs logistic regression to distinguish the
target data from noise [33]. Ding et al. use prototypes derived from contextual
information to better explore the intrinsic semantics of relations [10]. However,
the application of contrastive learning in pixel-level change detection remains a
challenging and relatively unexplored area.

2.3 Axial-attention

Wang et al. introduce axial-attention in their work [44], which splits 2D self-
attention into two 1D self-attentions. This approach reduces computational com-
plexity and enables attention operations within larger or even global regions. As
another variety, Li et al. generate time and frequency sub-attention maps by cal-
culating attention maps along the time and frequency axes of speech spectra [26].
To more efficiently highlight local foreground information, Li et al. propose group
parallel axial-attention (GPA) to solve medical image segmentation task [23]. It’s
worth noting that these studies are primarily conducted in supervised settings,
which necessitate labeled data during model training.

3 Self-Supervised Representation Learning

Our proposed solution is built on a progression of novel contributions that com-
bine to build the detection framework. As depicted in Fig 1, the innovations
consist of a proposal for pixel mapping (3.2) that facilitates mapping input im-
ages into the embedding space through a pair of data transformations. Section
3.3 develops a contrastive estimation approach for adversarial attack detection.
As the core idea of our contributions, Section 3.4 provides the discrimination
bank, which preserves each instance corresponding to its associated prototype.
Finally, we provide an overview of each network component, with a particular
focus on our proposed PAA in 3.5.



4 Y. Li et al.

Fig. 1: Self-supervised representation learning framework

3.1 Preliminaries

Given a training set X = {x1, x2, ..., xn} of n image samples, we aim to learn
the instance-wise feature representation Z = {z1, z2, ..., zn} of unlabelled nor-
mal images for the downstream task, i.e., adversarial attack detection. As a
contrastive learning method, InfoNCE [14] achieves this objective by optimizing
a contrastive loss function, defined as:

LInfoNCE =

n∑
i=1

− log
exp (vi · v′i/τ)∑r

j=0 exp
(
vi · v′j/τ

) (1)

where V = {v1, v2, ..., vn} is the embedding vectors for n instances, and v′i is
the i-th positive embedding. Moreover, v′j includes one positive embedding and
r negative embeddings for other instances, and τ is a dynamic hyper-parameter.
In this work, we estimate the prototypes by replacing v′i in equation (1) with pro-
totype p+i , enabling the proposed discrimination bank establish the connection
between the prototype space and each instance.

3.2 Pixel Mapping

As the first major component of the encoder, a PAA-based network with param-
eter θ is exploited to transform X to feature vectors V = {v1, v2, ..., vI}, such
that V best describes X. Different from previous work (e.g., InfoNCE loss), we
propose a novel pixel mapping loss with data augmentation, LPM, to learn an
invariant representation of xi by minimizing the risk

∑
i L (xi, vi; θ). To achieve

that, we use a pair of transformations, denoted as t and s, in some set of transfor-
mations T (e.g. geometric transformations, color transformations, etc.) to xi, to
produce the augmentation as xti

i and xsi
i . We define this process as V = fPM (X)

with the loss as:

LPM = − log
exp

(
fPM

(
xti
i

)T · fPM (xsi
i ) /τ

)
∑B

b=1 exp
(
fPM

(
xtb
b

)T · fPM (xsi
i ) /τ

) (2)

where T and B are the transpose symbol and batch size, respectively. It is high-
lighted that all the embeddings in the loss function are L2-normalized [47]. While
previous data augmentation studies [6] have shown that the choice of trans-
formation techniques plays an important part in self-supervised representation
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learning, most previous works do not give much consideration to the individual
choice of ti and si on pairs of images, which are simply uniformly sampled over
T . Therefore, in the proposed pixel mapping technique, we aim to overcome
this limitation and select the optimal transformation algorithm for each sample
xi. To achieve this, we select transformation algorithms that maximize the risk
defined by the loss LPM:

{ti, si} = argmax
{ti,si}∈T

n∑
i=1

LPM
(
xti
i , x

si
i ; θ, T

)
(3)

In the proposed pixel mapping technique, we prioritize the difference between ti
and si for each image over their absolute values.

3.3 Prototype-wise Contrastive Estimation

We assume that the observed data xi are related to latent variable P = {pi}
which denotes the prototypes of the data. We aim to find a network parame-
ter that maximizes the log-likelihood function of the observed n samples by a
prototype-wise contrastive estimation (PCE). To achieve that, we use the local
peaks of the density [2] as the prototype, in other words, the most representative
data samples of X. The loss, namely LPCE , is defined as:

LPCE =
1

|M|
∑

p+
i ∈M

− log
exp

(
vi · p+i /γ

)∑
p−
i ∈N exp

(
vi · p−i /γ

) (4)

where Mi and Ni are prototype collections of the positive and negative sam-
ples, respectively. As aforementioned, inspired from previous supervised learning
work [11] [41], we find different levels of concentration distributes around each
prototype embeddings. Therefore, we exploit γ as the concentration level around
the prototype pm within the m-th cluster as:

γ =

∑n
i=1 ∥pm − vmi ∥2
n log(n+ β)

(5)

where the momentum features are denoted as {vmi }ni=1 within the same cluster
as a prototype p. We set a smooth parameter β to ensure that small clusters
do not have an overly-large γ. In the proposed prototype clustering, γ acts as
a scaling factor on the similarity between an embedding v and its prototype p.
With the proposed γ,the similarity in a loose cluster (larger γ) are down-scaled,
pulling embeddings closer to the prototype. On the contrary, embeddings in a
tight cluster (smaller γ) have an up-scaled similarity, thus less encouraged to
approach the prototype. Therefore, learning with PCE yields more balanced
clusters with similar concentration.

3.4 Instance-Wise Contrastive Learning

The core of our method lies in establishing a connection between prototype and
instance features to facilitate instance clustering. This approach enables accurate



6 Y. Li et al.

classification of unseen and attacked samples based on the learned representa-
tion. To accomplish this, drawing inspiration from the recent success of memory
banks [49], we introduce a discrimination bank for clustering instances that share
a common prototype. Initially, we create K independent discrimination banks
to enhance instance discrimination across clusters. Similar to a memory bank,
the discrimination bank aids in contrastive learning, leveraging extensive data
to acquire robust representations. We assume a contrastive set Ji for the t-th
bank At as:

Ji = {z′i | z′i ∈ At∀t ∈ [1, C]} (6)

where z′i is the estimated representation of xi. Specifically, for each training
batch with B samples and M prototypes, our discrimination memory is built
with size M ×B ×D, where D is the dimension of pixel embeddings. The (pm,
b)-th element in the discrimination memory is a D-dimensional feature vector
obtained by average pooling all the embeddings of pixels labeled as pm prototype
in the b-th batch. To update the discrimination bank, we enqueue each instance
to the nearest prototype and add the new one in each back propogation cycle:

LICL =
exp(cos(vi, zi) · cos (vi, pmi /ϕ))∑

z′∈At

∑r
j=0 exp(cos(vi, z

′
j) · cos

(
vi, pmj /ϕ

)
) · Ji

(7)

where cos(·, ·) is the cosine similarity between a pair of representations. The
concentration level of LICL is presented as ϕ and estimated similar as γ in (4)
but we replace v′c to z′c. With the loss, we discriminate representations belongs
to the same bank. To discover the underlying concepts with unique visual char-
acteristics, we infer their decision boundaries by reducing the visual redundancy
among clusters, namely maximising the visual similarity of samples within the
same clusters and minimising that between clusters. Concretely, as the repre-
sentation of samples with different pseudo labels are stored independently in
the discrimination bank, they can be taken as anchors to describe their corre-
sponding clusters. The overall cost-function used to train the MAE is now a
combination of the above loss terms with hyper-parameters λ1 and λ2:

L = LPM + λ1 · LPCE + λ2 · LICL (8)

3.5 Parallel Axial-attention-Based Encoder

Our encoder has four major components for each learning objective:
1. For LPM in Eq. (2), we set the temperature τ as 0.1. To transform X

into embeddings V , we use a ResNet-50 [15] as the backbone. However, different
from conventional ResNet families, we transform it to a parallel axial-attention
(PAA)-ResNet by replacing the convolutional layer in the residual bottleneck
block by two parallel multi-head axial-attention layers (one for height-axis and
the other for width-axis). Additionally, two Conv1D layers are included to shuffle
the features, as illustrated in Fig. 2.
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Fig. 2: Parallel axial-attention (PAA) block.

2. Prototype-wise contrastive estimation (PCE) is achieved by two Conv1D
layers with ReLU. PCE is only applied during training and is removed at infer-
ence time. Thus it does not introduce any changes to the segmentation network
or extra computational cost in deployment.

3. Discrimination bank consists of two parts that store prototype and instance
embeddings, respectively. For each prototype, we set the maximum size of the
instance queue as 10. The discrimination bank is discarded after training.

4. Instance-wise contrastive learning is achieved by two Conv1D layers with
ReLU and faiss [18] for efficient instance clustering. Similar as PCE, ICE is
removed in the test stage.

4 Experiments

4.1 Datasets and Attacks

We randomly select 50,000 images from ImageNet [9] and 10,000 images from Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC) [40] for the training
and validation, respectively. As aforementioned, we evaluate the competitor and
proposed models with unseen datasets. In the test stage, we extensively perform
experiments on several public datasets, including ImageNet-R [16], Canadian
Institute For Advanced Research-10 (CIFAR-10) [20], and Microsoft Common
Objects in Context (COCO) [27]. In each above-mentioned dataset, we randomly
select 10,000 images to evaluate the detection performance of models.

We select seven attack algorithms [30] [12] [32] [21] [3] [35] [29] in the test
stage because they are robust to novel adversarial attack detection and defense
techniques. Parameters of all the seven attacks are shown in Table 1.

4.2 Backbones

As aforementioned we use ResNet-50 as the encoder’s backbone without pre-
training. Moreover, various backbones (i.e., HRNet [45] and Xception [7]) in
supplementary experiments to validate the proposed algorithm and compare to
ResNet-50.
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Table 1: Parameters of seven adversarial attacks

Attack Parameters
FGSM ϵ=0.008
PGD ϵ=0.01, α=0.02, Steps=40
SSAH α=0.01

DeepFool Steps=20
BIM ϵ=0.03, α=0.01, Steps=10
CW C, Kappa=2, Steps=500, learning rate=0.01

JSMA γ=0.02

4.3 Implementation Details

In the experiment, we build the PAA-ResNet-S from ResNet-50 [15] whose last
fully-connected layer outputs a 128-D and L2-normalized feature. As aforemen-
tioned, to achieve that, we replace the convolutional layer in the residual bottle-
neck block by two parallel multi-head axial-attention layers (one for height-axis
and the other for width-axis). We multiply all the channels by 1.5 and 2, re-
sulting in PAA-ResNet-M, L, respectively. We always use 8 heads in multi-head
attention blocks [43]. In order to avoid careful initialization of weights (WQ,
WK , WV ) and location vectors (rq, rk, rv), we use batch normalizations [17] in
all attention layers. To evaluate and compare the adversarial attack detection
accuracy, we use the detection rate (DR).

The proposed model is trained by using the SGD optimizer with a weight
decay of 0.0001, a momentum of 0.9, and a batch size of 256. We train the
networks for 200 epochs, where we warm-up the network in the first 20 epochs
by only using the pixel-mapping loss. The initial learning rate is 0.03, and is
multiplied by 0.1 at 120 and 160 epochs. In terms of the hyper-parameters, we
set τ = 0.1, β = 10, r = 16000, λ1 = 1 and λ2 = 1. All the experiments are run
on the High End Computing (HEC) Cluster with Tesla V100 GPUs.

5 Results

5.1 ImageNet

The learned representation is evaluated on adversarial attack detection task over
the ImageNet-R dataset. Table 2 shows the results, each of them is the average
of 70,000 experiments (10,000 images×7 attacks).

Table 2 shows the averaged adversarial attack detection performance of the
proposed method as compared to [41] [5] [38] [19] [51] [13] [50] [1] [34] [8] [31]
using the ImageNet-R dataset. From Table 2, it can be observed that: (1) In all
the evaluated models, the proposed PAA-ResNet-L achieves 93.8% and 86.8%
for clean and attacked images detection, respectively, which offers the best ef-
fectiveness. (2) Compared to state-of-the-art models, the proposed PAA-ResNet
family requires the least computational cost and inference latency in the training
stage because the model utilizes a parallel computation, which makes it feasible
in real-world applications.



Self-Supervised Representation Learning for Adversarial Attack Detection 9

Table 2: Comparison on the ImageNet-R dataset.

Configuration Computational Cost DR (%)
Method Supervised Pre-training Para. Latency (ms) Clean Attacked

TiCo [51] ✗ ✓ 178.0 M 160.3 79.5 65.9
MAE [13] ✗ ✓ 307.8 M 104.5 88.4 72.0
Mugs [50] ✗ ✓ 303.5 M 185.4 89.2 72.1
Unicom [1] ✗ ✓ 303.5 M 268.9 91.4 80.5

DINOV2 [34] ✗ ✗ 1.0 B 572.0 92.5 82.8
ESMAF [5] ✓ ✗ 171.0 M 196.2 69.8 53.7

TS [19] ✓ ✗ 36.5 M 45.5 78.0 57.6
sim-DNN [41] ✓ ✓ 663.9 M 227.1 79.2 60.3
DTBA [38] ✓ ✓ 554.2 M 208.4 84.2 62.3

TLC [8] ✗ ✓ 27.5 M 6.9 83.5 71.7
SimCat [31] ✗ ✓ 27.8 M 7.2 85.1 72.9

PAA-ResNet-S ✗ ✗ 26.8 M 6.2 92.0 83.1
PAA-ResNet-M ✗ ✗ 35.4 M 8.7 93.5 85.2
PAA-ResNet-L ✗ ✗ 45.9 M 10.1 93.8 86.8

5.2 COCO & CIFAR-10

We assess the learned representation over CIFAR-10 and COCO. Tables 3 &
4 show the results, each of them is the average of 70,000 experiments (10,000
images×7 attacks).

Table 3: Comparison on CIFAR-10.

Models Clean (%) Attacked (%)
TiCo [51] 81.4 78.0
MAE [13] 89.9 74.2
Mugs [50] 90.5 73.7
Unicom [1] 92.6 84.1

DINOV2 [34] 94.3 86.7
ESMAF [5] 73.8 56.4

TS [19] 89.7 59.5
sim-DNN [41] 82.0 65.7
DTBA [38] 87.0 74.1

TLC [8] 84.9 72.4
SimCat [31] 88.0 77.3

PAA-ResNet-S 92.7 84.4
PAA-ResNet-M 94.1 87.8
PAA-ResNet-L 94.8 89.0

Table 4: Comparison on COCO.

Models Clean (%) Attacked (%)
TiCo [51] 78.9 67.3
MAE [13] 88.9 73.5
Mugs [50] 89.0 73.3
Unicom [1] 90.2 82.8

DINOV2 [34] 91.7 83.9
ESMAF [5] 75.4 55.6

TS [19] 76.7 56.8
sim-DNN [41] 80.6 62.2
DTBA [38] 85.3 68.8

TLC [8] 80.8 71.5
SimCat [31] 82.6 70.1

PAA-ResNet-S 90.9 83.7
PAA-ResNet-M 91.5 84.9
PAA-ResNet-L 91.7 85.6

On both datasets, our models show strong detection performance: accuracy
improves considerably with the proposed algorithm. Additionally, our results
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outperforms both the self-supervised and supervised results by large margins on
clean images detection.

5.3 Diagnostic Experiment

In this section, we conduct the ablation study to evaluate the effectiveness of
each contribution.

Contrastive Learning In this section, we compare the effectiveness of each
proposed contrastive learning loss to previous contrastive learning techniques
and conduct the ablation study on the ImageNet-R dataset. Moreover, we com-
pare our contrastive losses to similar losses in [33] [10]. Each result is the average
of 70,000 experiments (10,000 images×7 attacks).

Table 5: Ablation study of the three contributions in the proposed method.

Ablation Settings Clean (%) Attacked (%)
PAA-ResNet-L 60.1 52.3
+LNCE [33] 72.0 63.5
+Data Augmentation [6] 65.6 50.1
+LPM 76.7 68.9
+LS2Z [10] 79.7 68.6
+LPCE 82.5 72.4
+LPM + LPCE 90.4 82.8
+LPCE + LICL 89.5 82.0
+LPM + LPCE + LICL 93.8 86.8

We first perform experiments to validate the design of our pixel mapping
with a PAA-ResNet-L as the baseline. As shown in Table 3, additionally consid-
ering data augmentation leads to a substantial performance gain (i.e., 5.4 %),
compared with LNCE.

We next investigate the effectiveness of LPCE. On the one hand, LPCE boosts
the performance based on LPM (i.e., 68.9% →82.8%). On the other hand, when
we replace LPCE to a prototype-based loss LS2Z [10], the proposed LPM +LPCE
achieves a higher score (i.e., 82.8%) is achieved, which confirms the efficiency of
the proposed loss terms.

We then presents a comprehensive examination of LICL. Compared with
LPM + LPCE, LICL brings a substantial performance gain (i.e., 4.4 %). More-
over, the performance slightly drops (i.e., 82.8% →82.0%) when LICL replace
LPM within combining LPCE.

Parallel Axial-attention We conducted experiments to demonstrate the trade-
off between performance improvement and network depth, specifically, varying
the number of proposed PAA blocks. It’s important to note that each PAA block
consists of two parallel sub-blocks, i.e., height and width attentions. Further-
more, we compared the performance of different backbones, such as ResNet-50,
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HRNetV2-W48 [45], and Xception-71 [7]. Additionally, we assessed the perfor-
mance improvements resulting from the inclusion of axial-attention [43] and
PAA. Fig. 3 (a) and (b) present these results, with each data point being an
average of 70,000 experiments (10,000 images of ImageNet-R × 7 attacks).

Fig. 3: Ablation study for (a) number of parallel axial-attention (PAA) blocks and
(b) attention blocks to different backbones (c) hyperparameter τ . The red and purple
rectangles represent accuracy improvements when axial attention and PAA are added
to the backbones, respectively.

Fig. 3(a) compares the number of PAA blocks against detection accuracy on
ImageNet-R. The results indicate that N=3 offers the best trade-off, validating
the chosen implementation setting. Fig. 3(b) presents the experiment results of
networks with the axial-attention and PAA. It can be observed that: (1) Among
the three backbones without added attention blocks, ResNet-50 outperforms
HRNetV2-W48 and Xception-71. (2) Both axial-attention and PAA enhance
detection performance based on three backbones. Particularly, the proposed PAA
provides a greater performance boost compared to the axial-attention block, with
an improvement from 2.1% to 2.9% on average across the three backbones.

Hyper-parameter An ablation study of hyper-parameters is conducted us-
ing the PAA-ResNet-L on the ImageNet-R dataset. Fig. 3(c) shows downstream
attack detection accuracy when τ varies from 0 to 2. Besides, β impact is evalu-
ated in Fig. 4(a). More ablation studies are performed to evaluate the loss term
hyper-parameters λ1 and λ2 in Fig. 4(b). Each data point being an average of
70,000 experiments (10,000 images × 7 attacks).

Fig. 4: Ablation study for (a) hyper-parameter β and (b) λ1&λ2.
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As Fig. 3(c) shows, detection accuracy starts to increase with τ = 0.01 and
reaches its peak around τ = 0.1, but performance is fairly stable for 0.03 ≤
τ ≤ 0.2. Additionally, Fig. 4(a) suggests the hyper-parameter β = 10. Fig. 4(b)
presents detection accuracy against λ1 and λ2. There is no significant accuracy
drop even when the importance of loss terms is significantly weighted, such as by
as much as tenfold that of LPM (λ1, λ2 = 10). This demonstrates that the features
derived from each loss terms contribute positively to the learning process.

5.4 Robustness Evaluation

We perform experiments to evaluate the robustness of the supervised and self-
supervised models on adversarial attack detection. For fair comparison, we fine-
tune pre-trained self-supervised models [1] [13] [34] [50] using the same training
data as the supervised models on the corresponding dataset. Table 6 shows
the detection accuracy results (in %), each of them is the average of 70,000
experiments (10,000 images × 7 attacks). Apart from aforementioned datasets,
we introduce one more dataset, i.e., Canadian Institute For Advanced Research-
100 (CIFAR-100) [20].

Table 6: Adversarial attack detection performance (clean / attacked images) on seen
and unseen datasets.

Training ImageNet-R ILSVRC CIFAR-100
Test ImageNet-R CIFAR-10 ILSVRC CIFAR-100 CIFAR-100 ImageNet-R

MAE [50] 89.4 / 74.1 89.0 / 73.4 91.0 / 79.2 89.1 / 73.0 90.4 / 74.3 85.4 / 70.5
Mugs [50] 89.8 / 74.0 89.1 / 73.6 91.8 / 78.1 89.4 / 74.5 90.9 / 75.0 86.2 / 71.1
Unicom [1] 91.9 / 82.7 91.0 / 80.4 94.7 / 88.5 92.0 / 81.1 93.3 / 82.7 89.3 / 77.9

DINOV2 [34] 93.4 / 84.5 92.4 / 81.7 96.2 / 90.0 93.4 / 82.6 95.1 / 84.0 90.5 / 79.4
ESMAF [5] 88.1 / 72.3 75.5 / 59.7 90.1 / 78.7 77.8 / 62.6 89.5 / 72.6 74.2 / 59.8

TS [19] 90.2 / 75.8 79.6 / 66.2 92.6 / 79.8 82.3 / 68.1 91.2 / 79.8 83.7 / 66.6
sim-DNN [41] 90.1 / 77.4 81.5 / 70.6 93.4 / 82.5 81.9 / 71.2 92.8 / 82.4 83.6 / 65.9
DTBA [38] 92.2 / 85.2 85.3 / 76.9 96.0 / 90.3 86.8 / 78.2 94.7 / 83.1 88.2 / 69.9

PAA-ResNet-L 93.5 / 87.9 92.9 / 85.7 97.1 / 90.5 94.2 / 87.0 96.0 / 87.6 92.1 / 83.4

It can be observed that the adversarial attack detection accuracy on unseen
datasets is lower compared to the seen dataset utilized in both the training
and test stages, primarily due to differences in distributions of datasets. How-
ever, when compared to supervised learning-based methods [5] [19] [38] [41], the
proposed SSL representation learning method experiences relatively less perfor-
mance degradation.

5.5 Visualization

As qualitative analysis, Fig. 5 presents the t-distributed stochastic neighbour
embedding (t-SNE) visualisation of PAA-ResNet-L trained with different losses.
Compared to the representation learned by LPM, the representation learned by
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LICL forms more separated clusters, which also suggests representation of lower
entropy. In Fig. 5(b), it can be observed that the feature embeddings within a
single prototype are not separable. However, when the discrimination bank is
added in Fig. 5(c), individual instances become separated. This demonstrates
that the proposed methods can learn discriminative feature representations that
generalize well for adversarial attack detection across various attack algorithms.

(a) Pixel mapping (b) PCE (c) ICL

Fig. 5: t-SNE feature visualization of the model with (a) LPM; (b) LPM + LPCE; (c)
LPM + LPCE + LICL.

6 Discussion and Conclusion

We enumerate these advantages of this work below:
1. In the training stage, we only require access to unlabelled normal image

samples. Therefore, unlike supervised adversarial attack detection methods, we
do not need paired training data, i.e., adversarial and normal images. Moreover,
unlike supervised learning models, the proposed model extracts the underlying
sub-class structure from the augmented data distribution and encodes it into the
embeddings. This guarantees the robustness of the downstream task.

2. The proposed loss LPM considers the difference between two transforma-
tion techniques for each image xi more than their absolute values. These trans-
formed images create more challenging positive pairs and LPM produces harder
negative pairs by accounting for all images in a batch during the optimization,
enabling the learning of richer features.

Adversarial attacks result in a deviation of the constructed graphs of ad-
versarial examples from the prototypes of their correct classes, creating chal-
lenges for accurate classification based on representations. Despite this, the dis-
tributions between the reconstructed image and the prototypes of target classes
remain significantly different. The proposed LPCL correctly encourages repre-
sentations to be closer to their assigned prototypes because the encoder would
learn the shared information among prototypes, and ignore the individual noise
that exists in each prototype. The shared information is more likely to capture
higher-level feature knowledge.

By using the proposed discrimination bank, the encoder preserves the con-
nection between the instance and the associated prototype. This enables the
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learning of richer features from samples of a single class. Therefore, the pro-
posed method outperforms other contrastive learning methods in the literature.

3. PAA blocks capture richer feature information, enabling models to seam-
lessly integrate local and global feature representations, thereby enhancing their
ability to provide local-global feature information for downstream tasks. Addi-
tionally, PAA blocks simplify computational complexity by allowing height and
width attentions to be simultaneously trained on parallel GPU devices to fa-
cilitate the training. Furthermore, PAA blocks can be easily implemented on
various backbones and consistently demonstrate promising results.

While the concept of parallel axial-attention structure has been introduced in
previous work [23], it’s important to note that the algorithm in our work is fun-
damentally different from the literature. In [23], the feature maps are reshaped
to (H×C)×W and (W ×C)×H in two parallel attentions blocks, respectively.
However, in this work, we only focus on one dimension, either width or height,
in each sub-PAA block. Therefore, the computational cost is further reduced.

In this paper, we have proposed a self-supervised representation learning
approach for adversarial attack detection, offering an effective alternative to tra-
ditional supervised pipelines. We establish a connection between prototype and
instance features through the use of a discrimination bank, thereby enriching the
information available to enhance the proposed model’s ability to detect adversar-
ial attacks. Our evaluation with different datasets and attacks has demonstrated
the robust performance of the proposed method on unseen datasets. Addition-
ally, PAA-ResNet models offer faster inference speeds compared to competitive
pre-trained models, making them feasible for potential real-world applications.
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