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Abstract. As the development of deep learning techniques in autonomous
landing systems continues to grow, one of the major challenges is trust
and security in the face of possible adversarial attacks. In this paper,
we propose a federated adversarial learning-based framework to detect
landing runways using paired data comprising of clean local data and
its adversarial version. Firstly, the local model is pre-trained on a large-
scale lane detection dataset. Then, instead of exploiting large instance-
adaptive models, we resort to a parameter-efficient fine-tuning method
known as scale and shift deep features (SSF), upon the pre-trained model.
Secondly, in each SSF layer, distributions of clean local data and its ad-
versarial version are disentangled for accurate statistics estimation. To
the best of our knowledge, this marks the first instance of federated
learning work that address the adversarial sample problem in landing
runway detection. Our experimental evaluations over both synthesis and
real images of Landing Approach Runway Detection (LARD) dataset
consistently demonstrate good performance of the proposed federated
adversarial learning and robust to adversarial attacks.

1 Introduction

An unmanned aerial vehicle (UAV), commonly known as a drone, refers to an
aircraft operated without a human pilot on board [1]. Drones find applications
in various fields, such as photography, research, surveillance, defense, and space
exploration. Enhancing the autonomy of aircraft is crucial as it reduces the
cognitive load on pilots, ensuring safety in civil aviation [2]. Despite these ad-
vancements, unmanned aerial vehicles face challenges during the approach and
landing phases. Recent progress in computer vision and embedded hardware
platforms has positioned vision-based algorithms as an efficient direction for
guiding and navigating during the landing stage. A vision-based landing sys-
tem must be capable of detecting runways, from a distance to close proximity,
in high-resolution images. The goal of Autonomous Landing Runway Detection
(ALRD) is to identify and determine a suitable runway for an aircraft to land
at an airport [3].

While there is considerable practical and commercial interest in autonomous
landing systems within the aerospace field, there is currently a shortage of open-
source datasets containing aerial images. To tackle this gap, a recent introduction
of the Landing Approach Runway Detection (LARD) dataset [4] aims to pro-
vide a collection of high-quality aerial images specifically designed for the task
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of runway detection during approach and landing phases. The dataset primar-
ily comprises images generated using conventional landing trajectories, where
the possible positions and orientation of the aircraft during landing are defined
within a generic landing approach cone.

In recent times, significant advancements in deep learning techniques have
greatly enhanced their application in vision-based ALRD, resulting in commend-
able performance gains [5][3][6]. Typically, a neural network is trained using an
extensive dataset of vision-based landing data to predict runways at varying
distances in images captured by UAV cameras. However, the vulnerability to
adversarial attacks in deep learning techniques poses a considerable risk in real-
world ALRD applications. Adversarial attacks in federated learning, especially
at the local image level, can manifest as data poisoning, data tampering, and
privacy attacks. External attackers, for instance, may inject poisoned data into
the local training dataset [7]. This may involve introducing adversarial exam-
ples crafted to deceive the local model during training. Conversely, in traditional
large-scale neural network-based federated learning [8][9], a computational cost
issue arises where each local client is required to train an individual model. How-
ever, as clients share the same task and dataset, they can potentially leverage
shared features and the majority of weights.

The contributions of this paper are summarized as follows:
• We propose an approach based on federated learning for ALRD against

adversarial attacks. Firstly, we pre-train a neural network on a large-scale lane
detection dataset [10]. Next, the network is fine-tuned with paired images, i.e.,
clean and adversarial images in M clients.
•Differing from conventional large-scale model-based federated learning [8][9],

the weights of the proposed pre-trained model are frozen. In each client, we scale
and shift the deep features (SSF) to leverage the representation abilities of large-
scale pre-training models to achieve good performance on downstream tasks by
fine-tuning a few trainable parameters.
• Distributions of clean local data and its adversarial version are disentan-

gled for accurate statistics estimation. Consequently, deep features of paired
images are jointly learned at each layer of the local model for the model to learn
downstream information from adversarial images.

2 Related Works

2.1 Deep Learning for ALRD

The development of methods for detecting landing runways is pivotal for ensur-
ing the security of autonomous aerial systems. These methods can be broadly
categorized into two main approaches based on the data type: conventional image
processing and deep learning-based image processing, video processing, multi-
sensor fusion, and end-to-end learning. Firstly, conventional image processing
involves techniques that manipulate and analyze images using traditional, rule-
based algorithms such as edge detection [11], contour analysis [12], and color-
based segmentation [13]. Secondly, deep learning-based techniques [5][6] have
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been developed and applied in image processing to improve the accuracy of
aerial image detection. For instance, Akbar et al. proposed a two-stage modular
approach where the first stage classifies aerial images to detect runways [5]. In the
second stage, the identified runways are localized using both conventional line
detection algorithms and more recent deep learning models. Finally, in contrast
to conventional feature learning methods, some recent deep learning techniques
[14] learn a mapping from raw sensor inputs to runway detection without explicit
feature engineering. While these methods achieve high runway detection accu-
racy over image- or video-based datasets, they face three significant challenges
[3]: 1) variable groundtruth sizes over parameters, e.g., along track distance and
vertical path angle, 2) robustness to adversarial attacks, 3) low execution time
and computational costs.

2.2 Adversarial Attacks

Recent studies have highlighted the susceptibility of trained neural networks to
compromise through adversarial samples, even with imperceptible perturbations
that evade human detection [15]. This raises significant safety concerns regarding
the deployment of such networks in real-world applications, including critical
domains like autonomous driving and clinical settings [16].

The threat model categorizes existing adversarial attacks into three types:
white-box, gray-box, and black-box attacks, differing in the level of knowledge
possessed by adversaries [17]. Within these threat models, various attack al-
gorithms for generating adversarial samples have been proposed, including the
Fast Gradient Sign Method (FGSM) [18], Projected Gradient Descent (PGD)
[19], Semantic Similarity Attack on High-Frequency Components (SSAH) [20],
Carlini & Wagner (CW) [21], DeepFool [22][23], Basic Iterative Method (BIM)
[24], and Jacobian-based Saliency Map Attack [25].

2.3 Federated Learning

Federated learning is a distributed machine learning approach that enables mul-
tiple clients to train a model collaboratively by using their local data without
sharing [26]. A key characteristic of federated learning is that the training pro-
cess takes place locally on each device. Instead of sharing raw data, only model
updates are exchanged among the devices throughout the training process [27].
This mechanism effectively reduce the risk of data exposure, making it a privacy-
preserving approach for collaborative model training over devices [28].

Most existing federated learning methods achieve promising performance over
a wide range of tasks. However, these methods have two limitations. Firstly,
[29][30][31] have shown that local data can be vulnerable to adversarial attacks.
If an adversary can inject malicious data during the training phase, they may
subtly alter the model’s behavior. This could lead to vulnerabilities that can be
exploited during inference. Secondly, the number of parameters of pre-trained
models is usually very large [32][33], and simply fine-tuning the full model un-
doubtedly yields a huge amount of communication cost in federated learning
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algorithms. These limitations are addressed by the proposed federated learning
pipeline in this work.

3 Proposed Approach

3.1 Preliminaries

Fig. 1. Proposed pipeline of the federated learning-based landing runway detection
method. The local models are initially pre-trained using lane detection datasets and
subsequently fine-tuned with local landing runway detection datasets. The trained Scale
and Shift Features (SSF) pools are then aggregated into the final model on the server.

In this section, we discuss the training of the proposed federated learning
framework in subsections. The overall framework is presented in Fig. 1. In the
federated learning framework, we assume there are M local clients, where each
of them has their local dataset Dm containing clean samples Cm and adversarial
samples Am. The distributed paradigm FL aims to learn a central model with
the parameter θc over the whole training data D = {D1,D2, . . . ,DM} using a
central model without exchanging local private data. Formally, such a process
can be expressed as:

argmin
θc
L(θc) =

M∑
m=1

|Dm|
|D|
Lm(θc) (1)

where the number of samples in D is presented as |D|. Lm(θc) is the empirical
loss of the client m which can be expressed as:

Lm(θc) = E(x,y)∈DmLm(x; θc) (2)

where x denotes an image sample with the ground truth y of dataset Dm. Lm

denotes the local loss term, e.g., cross-entropy loss.
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3.2 Pre-training

Recent landing runway detection techniques leverage deep learning, but the mod-
els in the existing literature are comparatively smaller than state-of-the-art mod-
els such as Vision Transformer (ViT) [34] and YOLO [35]. To address this, we
propose fine-tuning a large-scale model pre-trained on a similar feature type-
based dataset, such as lane detection datasets. This choice is motivated by the
similarity between driving lanes and landing runways at the feature level. Specif-
ically, we use a ViT-L/16 model [34] pre-trained on a road image dataset [10]
to better extract features from our landing runway dataset. In the diagnostic
experiment, detailed analysis of the chosen backbone, ViT-L/16, is provided.

3.3 Local Model Fine-tuning

The pre-trained model is then fine-tuned with airport aerial images from [4] to
learn task-specific knowledge. However, there are two challenges in this stage.
Firstly, pre-trained model usually has a large number of model parameters. Di-
rect fine-tuning the full model consequently gives rise to significant communica-
tion costs between the server and the client. Secondly, recent studies show that
adversarial attacks potentially poison the local data. This causes wrong predic-
tions in autonomous landing systems. Therefore, we aim to mitigate these two
challenges by using SSF and adversarial feature learning, respectively.

Scale and Shift Deep Features To efficiently fine-tune each local model,
we scale and shift the deep features (SSF) the pre-trained model in the local
training phase and merge them into the original pre-trained model weights by
reparameterization in the inference phase. Given a pre-trained model with pa-
rameter θ, we send the model to each local client and the define the parameter
as θm in the m-th client. In the fine-tuning stage, the model parameters of SSF
can be represented as θm = {γm, βm, hm, θm}, where γm ∈ RD and βm ∈ RD

are scale and shift factors, respectively [36]. hm is the parameter of the classi-
fication head. We break the weights of local models based on operations [36],
e.g., multi-head self-attention (MSA), MLP and BN, etc. Then, we remodulate
features by inserting SSF with γm and βm factors after these operations. It is
highlighted that the pre-trained weights are kept frozen, and only the SSF and
classification head are kept updated. Therefore, we define parameter ϕm and ϕc

as the combination of trainable {γ, β, h} in the m-th local model and central
model, respectively. ϕc can be updated with Eq. (1) as:

ϕc = argmin
ϕs
L(ϕm) =

M∑
m=1

|Dm|
|D|
Lm(ϕm) (3)

where ϕs are the set of SSF, i.e., ϕ1, ϕ2, ...ϕm.
In each client, we updates ϕm in the r-th communication rounds between the

server and local clients as:

ϕr,e+1
m ← ϕr,e

m − ηm∇Lm (xm,am, ;ϕr,e
m ) (4)
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where e is the index of local updates and ηm is the learning rate. Once the local
model training is accomplished, ϕs can then be merged into θm to obtain the
updated model parameter θ′m. Besides, the server performs aggregation every
communication round by receiving the updated parameters of local clients after
the local updates within each round. Formally, we have

ϕe+1
c ←

M∑
m=1

|Dm|
|D|

ϕe
m (5)

Similarly, once all the communication rounds are accomplished, ϕcs can then be
merged into θc to obtain a robust central model parameter without disclosing
any local data.

Adversarial Feature Learning In recent studies [37][38][39], clean and ad-
versarial images have different underlying distributions because the adversarial
images essentially involve a two-component mixture distribution. Therefore, in
the proposed adversarial feature learning, we aim to disentangle features from
the clean and adversarial images to enhance the global feature representation
and suppress the adversarial attacks. To achieve that, we generate adversarial
images from the clean images by using the attack algorithms, e.g., FGSM. Then,
these paired clean and adversarial image samples are fed into the proposed ad-
versarial feature learning (AFL) block. Due to different underlying distributions
of clean and adversarial images, different from conventional adversarial image
learning techniques [40], we exploit different normalization techniques for clean
and adversarial images to guarantee its normalization statistics are exclusively
preformed on the adversarial images. Particularly, the batch normalization (BN)
[41] and random normalization aggregation (RNA) [42] are empirically used for
clean and adversarial images, respectively. The support experiments for the cho-
sen experiment configuration will be provided in Section 4.5.

The loss between clean and adversarial images at the m-th client is defined
as:

Lm =
1

N

N∑
i=1

∥(γcl ⊙ xm
n + βcl)− (γadv ⊙ amn + βadv∥22 (6)

where N is the number of samples in a local client. The clean and adversarial
samples are denoted as xm

n and amn , respectively. Except BN and RNA, clean
and adversarial sample parameters γcl, βcl, γadv, and βadv for convolutional and
other layers are jointly optimized for both adversarial examples and clean images.
Specifically, the AFL with an RNA helps to learn the features by keeping separate
BNs to features that belong to different domains.

3.4 Central Model Update

When the training is accomplished, we can re-parameterize the SSF by merging
it into the original parameter space (i.e., model weight θ). As a result, federated
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SSF is not only efficient in terms of communication costs, but also does not
introduce any extra parameters during the inference phase. The algorithm of the
proposed federated adversarial learning framework is presented in Algorithm 1.

Algorithm 1 Federated adversarial learning

1: Input: Local datasets of M clients: D = {D1,D2, . . . ,DM}, clean samples xm, ad-
versarial samples am, maximum local update E, communication rounds R, learning
rate ηm, learnable parameters ϕr,e

m

2: Output: The final central model θc
3: Initialize SSF
4: for e = 1, ..., E do
5: for m = 1, ..., M in parallel do
6: Download from the central model to local models: ϕr,e

m ← ϕe
c

7: Local model updates in clients: ϕr,e+1
m ← ϕr,e

m − ηm∇Lm (xm,am;ϕr,e
m )

8: end for
9: Update local models to the central model: ϕe+1

c ←
∑M

m=1
|Dm|
|D| ϕe

m

10: θe+1
c = ϕe+1

c

11: end for
12: SSF Aggregation: θc =Agg(θ1c , θ

2
c , ..., θ

E
c )

4 Experimental Results

4.1 Dataset and Attacks

The tvtLANE dataset [10] contains 19,383 image sequences for lane detection,
and 39,460 frames of them are labeled. In this work, the model is pre-trained with
randomly selected 35,000 images from the dataset. We further fine-tune the local
models on synthetic and real runways from the LARD dataset [4]. The LARD
dataset contains 14,433 training images of resolution 2448×2648, taken from 32
runways in 16 different airports in total. In the training stage, we set number
of clients to 5, and randomly select 2,800 for each client. Then, we construct
the validation set with the rest 433 images. In the test stage, we evaluate the
central server with 2,221 synthetic images taken from 79 runways in 40 different
airports and 103 hand-labeled pictures from real landing footage on 38 runways
in 36 different airports.

We select aforementioned attacks in Section II because they are robust to
novel adversarial attack recovery techniques [17][43]. The adversarial images in
the training and test stages are generated with the same attack algorithm.

4.2 Competitors and Performance Measure

In this paper, the proposed method is evaluated and compared to state-of-the-art
competitor models. Firstly, we select four landing runway detection techniques,
including long short-term memory (LSTM) [44], Line Segment Detector (LSD)



8 Yi Li, Plamen Angelov, Zhengxin Yu, Alvaro Lopez Pellicer, Neeraj Suri

[5], Runway Detection Systems (RDS) [6], Complex Cross-Residual Network
(CS-ResNet) [45] as the original implementations in the literature but with same
data as the proposed method. Secondly, we use four federated learning frame-
works, including Siloed Batch Normalization (SiloBN) + Adaptive Sharpness-
Aware Minimization (ASAM) [46], federated optimization (FedProx) [47], feder-
ated averaging (FedAvg) [26], and federated local drift decoupling and correction
(FedDC) [48] which are state-of-the-art in image processing tasks to confirm the
proposed model is robust to adversarial attacks. For a fair comparison, we repro-
duce these models with same data as the proposed method. In the experiment,
we calculate the average error between 6 predictions and ground truths (e.g.,
along track distance, vertical path angle, lateral path angle, yaw, pitch, and
roll).

4.3 Model Configuration

We pre-train a Vit-L/16 model [34] as the backbone by using PaddleSeg toolkit
[49]. The backbone study is presented later in diagnostic experiments. The model
is trained by using the SGD optimizer with a weight decay of 0.0001, a momen-
tum of 0.9, and a batch size of 256. We train the model for 300 epochs. The
initial learning rate is 0.03, and is multiplied by 0.1 at 500 and 1000 epochs.

After the pre-training, we only fine-tune the SSF layers and freeze the other
weights of the Vit-L/16 model. In particular, we fine-tune the model for 100
epochs. All experiments are run on the High End Computing (HEC) Cluster
with Tesla V100 GPUs.

4.4 Comparison to State-of-the-Arts

We conduct two experiments in this section. In the first experiment, we assume
the federated learning perfectly protect the data privacy. Therefore, the central
model is evaluated with clean samples of LARD [4]. Table 1 shows the results,
each of them is the average of 2,221 synthesis images or 103 real images. In
the second experiment, we evaluate the performance over adversarial data and
present the results in Fig. 2(2).

Table 1 shows that our federated adversarial learning improves results over
landing runway detection models and federated algorithms. Our model is 3.3
points lower than CS-ResNet (19.5% vs. 22.8%). We conduct more experiments
to confirm this point in Fig. 2. Adversarial images are generated from clean
samples of LARD [4] for the model training and evaluation. Fig.2 (a) shows the
results, each of them is the average of 15,547 (2,221 synthesis samples) synthesis
images or 721 (103 real samples × 7 attack algorithms) real images.

From Fig.2(a), it can be observed that in all the evaluated models, the pro-
posed model achieves 21.4% and 29.0% for synthesis and real images detection,
respectively, which offers the best effectiveness. These observations are consistent
with clean images. Moreover, comparing the results to Table 1, competitor mod-
els suffer a significant accuracy degradation with adversarial attacks, while the
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Table 1. Detection error comparison with ALRD and FL (federated learning) algo-
rithms on the clean samples of LARD dataset. Para. denotes the trainable parame-
ters.

Method FL Para. (M) Synthesis (%) Real (%)

LSD [5] ✗ 25.6 28.6 37.5
LSTM [44] ✗ 0.5 28.0 35.8

RDS [6] ✗ 38.9 25.2 34.1
CS-ResNet [45] ✗ 58.2 22.8 31.9

FedAvg [26] ✓ 1.7 29.5 37.6
FedProx [47] ✓ 53.2 26.1 35.2
FedDC [48] ✓ 11.2 25.0 35.0

SiloBN + ASAM [46] ✓ 4.5 24.8 32.6

Ours ✓ 7.4 19.5 26.3

Fig. 2. Detection error comparison (a) to competitor models (b) against number of
clients over LARD.

proposed models perform more robust because the global feature representation
is enhanced to suppress the adversarial attacks.

4.5 Diagnostic Experiment

In this section, we first conduct experiments to validate several intriguing prop-
erties, e.g., backbone. Then, we study the efficacy of our core ideas and essential
pipeline design.

Number of Clients We conducted experiments to demonstrate the trade-off
between performance improvement and network depth, specifically, varying the
number of proposed PAA blocks. Fig. 2(b) presents these results, with each data
point being an average of 15,547 (2,221 synthesis samples × 7 attack algorithms)
synthesis images or 721 (103 real samples × 7 attack algorithms) real images.

Fig. 2(b) compares detection error against the number of clients on LARD.
As Fig. 4 shows, detection errors start to decrease from M = 2, but performance
is fairly stable for 5 ≤M ≤ 7. Therefore, the results indicate that M = 5 offers
the best trade-off, validating the chosen implementation setting.
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Backbone We implement the proposed federated learning framework with dif-
ferent backbones. The backbones are pre-trained on the tvtLANE dataset [10]
and fine-tuned in clients. The experimental results are provided in Table 2. Each
result of them is the average of 15,547 (2,221 synthesis samples × 7 attack al-
gorithms) synthesis images or 721 (103 real samples × 7 attack algorithms) real
images.

Table 2. Backbones.

Para. (M) Error (%)

Backbone SSF Synthesis Real

ResNet50 [50] 25.6 - 28.5 36.8
ResNet101 [50] 42.8 - 28.1 35.6
ENet-B3 [51] 12.0 - 25.8 39.1
ENet-B5 [51] 30.6 - 24.7 38.0
ENet-B7 [51] 66.0 - 24.0 36.3

WRN-50-2 [52] 68.9 - 29.7 38.2
WRN-101-2 [52] 126.8 - 28.0 35.6

VGG16 [53] 138.3 - 31.4 42.9
ViT-S-16 22.0 3.96 26.6 35.8
ViT-B-16 86.5 4.62 23.0 33.1
ViT-L-16 307.1 7.39 21.4 29.0

Table 3. Normalization techniques.

Adversarial

BN LN IN GN RNA

Clean

BN 27.5 31.9 38.2 36.8 23.4
LN 32.6 34.7 40.6 31.2 33.3
IN 35.9 41.2 40.5 30.7 29.8
GN 30.4 29.8 35.7 29.1 31.8

RNA 25.8 29.5 34.2 33.9 25.9

Table 2 compares the detection error against backbone networks on LARD.
The results indicate that: 1) Although the ViT family requires massive network
parameters, the SSF significantly reduces the parameters, which facilitates the
training; 2) ViT-L-16 with SSF offers the best trade-off between the detection
performance and computational cost, supporting the chosen experiment config-
uration.

Normalization Techniques A diagnostic experiment of normalization tech-
niques including BN [41], layer normalization (LN) [54], instance normalization
(IN) [55], group normalization [56], and RNA [42] for clean and adversarial im-
ages is conducted on the LARD dataset. Each result in Table 3 is an average of
16,268 experiments (2,221 synthesis samples × 7 attack algorithms + 103 real
samples × 7 attack algorithms).

According to Table 3, BN and RNA are optimal for clean and adversarial
image features, respectively. The detection error achieves 23.4% at the valley,
which supports the experiment configuration.

Ablation Study In this section, we investigate the effectiveness of each contri-
bution based on the LARD dataset. The ablation study is presented in Table 4
and the experimental setting is the same as Section 4.4. Each result is the aver-
age of 15,547 (2,221 synthesis samples × 7 attack algorithms) synthesis images
or 721 (103 real samples × 7 attack algorithms) real images.
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Table 4. Ablation study in the proposed method. afl and fl denote adversarial feature
learning and federated learning, respectively.

Ablation Settings
Para. (M) Synthesis (%) Real (%)

AFL FL SSF

✗ ✗ ✗ 307.1 52.5 59.1
✓ ✗ ✗ 307.1 31.6 38.3
✗ ✓ ✗ 1535.5 44.2 50.7
✗ ✗ ✓ 1.5 52.3 59.0

✗ ✓ ✓ 7.39 43.9 48.5
✓ ✗ ✓ 1.5 34.8 42.6
✓ ✓ ✗ 1535.5 21.5 29.5

✓ ✓ ✓ 7.39 21.4 29.0

Initially, we evaluate the effectiveness of AFL, which plays a pivotal role
in learning desired features from adversarial images. AFL demonstrates its sig-
nificant impact within the federated learning framework and SSF, resulting in
a remarkable performance improvement from an initial error rate of 43.9% to
21.4%. This improvement can be attributed to the enhanced global feature rep-
resentation provided by AFL, effectively suppressing adversarial attacks.

Moreover, the detection error experiences a significant reduction by exploiting
federated learning framework (i.e., 34.8%→ 21.4%, synthesis images). The SSF
aggregation captures diverse features learned from different local clients and
data, empowering the central client to make more accurate predictions through
the assimilation of rich features.

The final experiment in the ablation study involves the addition of SSF. Con-
sequently, federated SSF not only prove to be efficient in terms of communication
costs but also do not introduce any extra parameters during the test stage.

4.6 Visualizations

In this section, we present qualitative results demonstrating the landing runway
detection of attacked image samples on LARD [4] in Fig. 3.

After comparing the reconstructed images with the original and attacked
images, it can be observed that the detection boxes obtained via the proposed
model with adversarial training provide more accurate descriptions of the landing
runway areas. This observation further confirms the efficacy of the proposed
method.

5 Conclusion

In this paper, we have proposed a federated adversarial learning framework as
a simple yet effective alternative to conventional landing runway detection algo-
rithms. To efficiently fine-tune the pre-trained local model on clients, we utilize
a technique of shifting and scaling features with both clean and adversarial
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Fig. 3. Qualitative landing runway detection results on LARD. From left to right: orig-
inal images, images attacked by FGSM, results of the central model without adversarial
training, results of the central model.

samples. Subsequently, the SSF pools are aggregated into the central model.
Our evaluation on LARD has demonstrated the high efficiency and effectiveness
of the proposed model through the use of qualitative results and quantitative
results which includes detection error comparison between ALRD and FL, differ-
ent backbones, different normalisation techniques and lastly a thorough ablation
study amongst others.
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