Enabling Multi-Layer Threat Analysis in Dynamic
Cloud Environments

Salman Manzoor§, Antonios Gouglidis, Matthew Bradbury and Neeraj Suri
Lancaster University, UK
Email: {s.manzoor1, a.gouglidis, m.s.bradbury, neeraj.suri}@lancaster.ac.uk

Abstract—Most Threat Analysis (TA) techniques analyze threats to
targeted assets (e.g., components, services) by considering static in-
terconnections among them. However, in dynamic environments, e.g.,
the Cloud, resources can instantiate, migrate across physical hosts, or
decommission to provide rapid resource elasticity to its users. Exist-
ing TA techniques are not capable of addressing such requirements.
Moreover, complex multi-layer/multi-asset attacks on Cloud systems are
increasing, e.g., the Equifax data breach; thus, TA approaches must be
able to analyze them. This paper proposes ThreatPro, which supports
dynamic interconnections and analysis of multi-layer attacks in the
Cloud. ThreatPro facilitates threat analysis by developing a technology-
agnostic information flow model, representing the Cloud’s functionality
through conditional transitions. The model establishes the basis to
capture the multi-layer and dynamic interconnections during the life
cycle of a Virtual Machine. ThreatPro contributes to (1) enabling the
exploration of a threat’s behavior and its propagation across the Cloud,
and (2) assessing the security of the Cloud by analyzing the impact of
multiple threats across various operational layers/assets. Using public
information on threats from the National Vulnerability Database, we
validate ThreatPro’s capabilities, i.e., identify and trace actual Cloud
attacks and speculatively postulate alternate potential attack paths.

Keywords—Cloud security; Cloud functional model; Threat analysis

1 INTRODUCTION

Cloud computing supports a variety of service models
that offer elastic access to shared pools of resources
(e.g., computational, storage, infrastructure) that are pro-
visioned on-demand to meet user requirements. Cloud
systems also entail the co-existence of both physical and
virtual components that consequently result in a com-
plex threat landscape. The overall effect is evident by the
emergence of a diverse and increasing number of attacks
and security breaches involving Cloud systems. A few
recent examples include attacks that led to the leakage
of users’ confidential information [1] while other attacks
have targeted the availability of the Cloud services [2].

To address security concerns in complex Cloud en-
vironments, multiple threat analysis approaches have
been proposed that investigate threats at either a systems
level [3], in the context of specific assets and technolo-
gies [4], or by exploring potential attack surfaces in the

§. The research was conducted when the author was affiliated with
Lancaster University.

Cloud that could be used by attackers to violate security
requirements [5]. Examples of asset-based schemes in-
clude, among others, threat analysis for evaluating cache
side-channel attacks [6], analyzing network attacks [7],
web attacks [8] or analyzing the impact of different
threats on Cloud storage systems [9]. The alternate
graphical model-based techniques, e.g., attack trees and
graphs, have been applied to identify attack patterns that
could potentially undermine the security of the Cloud.
For instance, the authors in [10] developed a model of
the Cloud data center and applied attack trees to identify
potential paths leading to a security violation. Similarly,
in [11], the authors proposed a security assessment
methodology targeted specifically at the Cloud users.

1.1 Problem Space and Contributions

While the above-mentioned methodologies offer valu-
able insights into threat analysis, it is essential to recog-
nize their focus areas and assumptions, i.e., they target
identifying threats within individual assets or make as-
sumptions regarding the static nature of interconnections
among the assets. While this observation highlights the
practical context in which these methodologies operate,
it also provides a pointer to their scope and constraints.
Specifically, the assumption of static interconnections
hinders their effective applicability to Cloud environ-
ments, which are inherently dynamic in nature given
their support for on-demand adaptive resource provi-
sioning. Furthermore, the limited capabilities of contem-
porary analysis techniques in incorporating user- and
service-specific security requirements within the Cloud
threat model leads to incomplete security analyses. Ex-
amples of user-specific requirements may stem from
service level agreements, authentication and enforcing
access control restrictions (e.g., time, location). Similarly,
service-specific requirements (e.g., content delivery ser-
vice) can be set by the application domain (e.g., finance,
medical) and result in prioritizing availability over confi-
dentiality. Hence, a threat analysis process is desired that
considers the incorporation and prioritization of user-
level and service-level security requirements.

To address these challenges, we propose ThreatPro, a
novel threat analysis methodology capable of modeling
both the dynamic environment of the Cloud and the
security requirements of a user. ThreatPro facilitates
Cloud service providers to evaluate the consequence of
actual or speculative threats and their progression across
the system under a dynamic configuration irrespective of
the underlying technologies; and to analyze the impact
of multiple threats across different operational layers and
services in the Cloud for specific security requirements.
As with similar solutions [12], [10], [13], ThreatPro also
enables the users to define the scope of their system and
the threats to the system. It means that the users will
need to decide at what level of abstraction to describe
their Cloud system and the types of threats to analyze.

Additionally, to develop a threat analysis methodol-
ogy that is technology-agnostic, ThreatPro proposes a
new information flow [14]' based model to abstractly
capture the functional behavior of the Cloud. This is
accomplished by defining a set of transitions and a
rule-set specifying the conditions for executing the tran-
sitions. In contrast to existing models [10], [5], [16],
we emphasize on the interconnection of services and
the flow of information rather than performance and
computing measurements. Furthermore, we specify rules
prescribing the behavior of a threat as additional con-
straints to the transitions to determine the implication
of the threat. By tracing the sequence of transitions, we
can not only model the propagation of threats but can
also simulate speculative scenarios. Overall, the main
contributions of ThreatPro are:

e A Cloud model capable of representing the fun-
damental operations of a Cloud. This is achieved
by abstracting the essential services from real-world
Cloud deployments [Section 5].

o A technology-agnostic information flow model
based on the Cloud model. The model converts
service interactions to a set of rule-based transitions
to represent the functional behavior of the Cloud
[Section 6]. The rule-based transitions are capable
of facilitating the specification and analysis of the
information flow models.

o A path-illustrative approach to profile the flow of
threats and analyze their impact on targeted services
and the propagation of threats across the multiple
layers of the Cloud. This assists in identifying paths
that lead to the violation of the security require-
ments, i.e., an attack on the system [Section 7].

1.2 Paper Organization

The remainder of the paper is organized as follows: Sec-
tion 2 reviews contemporary threat analysis approaches
for the Cloud. A progressive overview of ThreatPro’s

1. By information flow we encapsulate system execution and the
flow of information between components within a system. This differs
from data flow [15], which specifically focuses on which data is
transferred between different system components.

three building blocks is presented in Section 3. In Sec-
tion 4, the first block of ThreatPro is presented, i.e.,
services abstraction to represent the functional behavior
of the Cloud. In Section 5, the second block of ThreatPro
is presented that translates the abstract Cloud model into
an information flow model to represent the functional
behavior of the Cloud operations. Section 6 concate-
nates these building blocks to develop the overall threat
analysis process including the approach to perform
speculative analysis. Section 7 validates the capability
of ThreatPro to trace and analyze real-world attacks.
Section 8 discusses ThreatPro’s capabilities for predictive
analysis, its potential for the plug-and-play services,
remarks on the automation of the modelling process, and
the limitations of this approach, and concluding remarks
are presented in Section 9.

2 RELATED WORK

We now provide an overview of contemporary threat
analysis approaches. For simplicity, the approaches are
broadly categorized into (1) asset-based techniques — used
to explore potential threats in specific assets, and (2)
graphical security models — used to identify potential
attack paths leading to a security requirement violation.

2.1 Asset-based Threat Analysis

Asset-based TA aims to uncover threats and their impact
on discrete assets (e.g., components, services, interfaces,
data) typically without factoring in operational consider-
ations. Some recent works have demonstrated the value
of TA in evaluating cache side-channel attacks [6] to
explore the possibility of using the cache to compromise
the confidentiality of tenants hosted on the same physi-
cal machine. A number of TA approaches exist that target
specific technologies. For example, the authors analyze
the impact of different threats in Cloud brokerage sys-
tems in [9]. On the other hand, the application of model
checking to verify the violation of security property has
been demonstrated in [7]. The primary objective was to
analyze network attacks violating the defined security
property. Similarly, modeling the behavior of an applica-
tion and applying probabilistic model checking to inves-
tigate the impact of elasticity on security requirements
was investigated in [16]. Furthermore, the outcome of
the analysis can be used as feedback to fine-tune the
behavior of the Cloud for governing its elasticity. A
risk assessment approach is proposed in [17] for access
control mechanisms in the Cloud. The objective was to
show the effectiveness of role-based access control on the
risk assessment of the asset.

These schemes either investigate specific hardware
vulnerabilities in their evaluation [6] or consider spe-
cific systems (e.g., CloudRAID) in their assessment [9].
Similarly, characteristics of the Cloud operations are
studied in to analyze the interplay between elasticity and
security, such as data loss or data leakage [16]. However,
this analysis is limited to only the elasticity aspect of the
Cloud.

2.2 Graphical Security Models

Multiple graphical security models have been developed
to visually trace and identify attack paths and patterns
that could potentially undermine the security of the
Cloud. Primarily, these have been in the form of attack
trees and attack graphs. Modelling a Cloud data center
and applying attack trees to identify potential paths have
been investigated in [10]. Similarly, the quantification of
the user’s security requirements is proposed in [18]. A
risk assessment framework for a sensor environment de-
ployed in the Cloud was presented in [19]. The objective
was to illustrate the cause-effect relationship and apply
security measures that minimize the attack’s impact. On
the other hand, concepts from requirement engineering
have been utilized in [20] to propose a methodological
approach to elicit a user’s security and privacy require-
ments and select the appropriate Cloud provider. The
approach performs a cost-benefit analysis for the users
thereby enabling them to make an informed decision
about migrating to the Cloud.

The application of attack and defense trees has been
detailed in [21]. The approach investigated the interplay
between attacks and the respective countermeasures and
proposed a framework to assess the associated risks of
the applied countermeasures. The work in [22] proposed
a graphical security model using Bayesian attack graphs
to quantify the likelihood of the network compromise
which feeds into an attack mitigation plan. This enables
system administrators to make an informed decision by
considering the trade-off between the attack and the
mitigation strategy. A reference model of the Cloud
incorporating the security controls and best practices
was developed in [23] to assess the security posture of
the Cloud offerings for confidentiality and integrity. This
was achieved by estimating probabilities of advanced
persistent threat infiltration in the Cloud. The underly-
ing technique utilized a Bayesian network model that
examines attack paths and assesses their impact on both
confidentiality and integrity requirements.

In [24], the authors address the limitation of attack
graphs that are restricted to a snapshot at the current
time by developing a time-independent model. There-
fore, the model can be utilized irrespective of the state of
the network. The fundamental premise behind the model
is the analysis of the security of multiple network states
considering the time duration of each network state and
the visibility of the network components to create an at-
tack graph that is representative of the network without
limiting it to a specific time window. Similarly, in [25],
the authors leverage the software-defined network tech-
nology to develop an attack graph-based that exhibits
dynamic behaviour by incorporating a moving target
defence technique. The model relies on shuffling a host’s
network configurations (e.g., MAC/IP/port addresses)
when an alert has been generated that identifies the
presence of an attacker in the system. The shuffling is
performed to reduce the likelihood of lateral movement

from the compromised network node.

Overall, these schemes leverage attack graphs/trees to
explore potential paths that identify a security violation.
Furthermore, quantifying the risks associated with each
path is fundamental to many of these schemes, enabling
system administrators to prioritize the paths and the
mitigation strategy accordingly. On the other hand, these
schemes assume that the attack paths are static and
the functional behavior does not create new intercon-
nections at run-time. This assumption does not hold
in the inherently dynamic Cloud environment, where
new interconnections might be introduced at run-time
through VM migration or by instantiating a new VM.

2.3 Synopsis

As identified in Sections 2.1 and 2.2, both asset-based
TA and graphical security models are effective TA tech-
niques. However, their effectiveness is limited in analyz-
ing threats considering the holistic view of the Cloud’s
dynamic operations. For instance, asset-based schemes
consider assets in isolation without operational factors
and reveal threats pertinent to the specific asset. On the
other hand, graphical models assume that the intercon-
nection among assets is static and lacks the capability to
analyze threats in a dynamic environment. In this paper,
we propose ThreatPro that can incorporate (1) the asset’s
operational environment, (2) dynamic interconnections
across resources/services, and (3) specification of the
user’s security requirements, to provide a comprehen-
sive threat analysis process applicable to the Cloud.

3 BUILDING BLOCKS OF THREATPRO

The ThreatPro methodology is developed as a progres-
sion of three building blocks (i.e., functional Cloud
model, information flow model and threat analysis) as
depicted in Figure 1. In the following, we overview
each of these blocks prior to detailing their operations
in Sections 4, 5 and 6 respectively.

Section 4 Section 5 Dynamic interconnections

: Block II:
B|°‘é'|‘ I'dF;"‘i:“l’"al Information Flow
oud Mode Model

Cloud services
abstraction

User' s security requirement

Threat behavior

Section 6
Block III: Threat
Analysis

Fig. 1: Blocks of ThreatPro

Cloud functional behavior

Speculative attack paths

Real-world attacks post-
mortem analysis

3.1 Block I: Functional Cloud Model

A number of delivery models exist for the Cloud, such
as Infrastructure as a Service (laaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS), primarily
emphasizing the functionality and performance in these
models. Furthermore, a considerable body of research
exists for modeling and analyzing the behavior of an ap-
plication in the Cloud [26], [27], [28]. However, ascertain-
ing threat propagation requires modeling the functional

behavior of the Cloud to capture the interaction across
services, and investigating the interplay between the
services’ interactions and the threat progression. Despite
that, work related to modeling the Cloud functionality
is very limited. Among the primary functions of the
Cloud IaaS, is offering and managing virtual resources
as VMs [29], [30]. These VMs are created through virtu-
alization technology, an enabling technology to share a
physical host with the VMs. [31]. Thus, we define an ab-
stract model for the Cloud emphasizing the interactions
of services during the life-cycle of a VM [32]. Generally,
the main stages of a VM’s life-cycle are VM creation,
storage assignment, server selection for deployment, VM
execution, and VM deletion. Furthermore, VM migra-
tion and VM snapshot may occur during its life-cycle.
The service interactions during the life-cycle of a VM
are conceptualized after surveying multiple open-source
Cloud computing environments [33], [34] and Cloud de-
ployments adopted by market leaders such as Amazon,
Google, and Microsoft. The model, depicted in Figure 2,
exhibits a 3-layer architecture of the Cloud consisting
of the control layer, infrastructure layer and storage
layer, where each layer performs distinct functions. The
model is flexible and can be extended to include vendor-
specific services at each layer. In this paper, we focus the
modelling on the functionality of launching a VM as it
is a fundamental offering of the Cloud.

3.2 Block II: Information Flow Model

The second building block of ThreatPro is a technology-
agnostic information flow model [14] of the Cloud op-
erations. This entails abstracting the technology and
vendor-specific characteristics to create a transition sys-
tem governed by rules that trigger transitions following
the fulfillment of the respective preconditions. For ex-
ample, the authentication credentials provided by the
user are a precondition to trigger different transitions
depending on the validity of the credentials irrespective
of the underlying authentication technology used to
check these credentials. In the case of valid credentials, a
user is directed to a dashboard/interface to access their
VMs. On the other hand, invalid credentials lead to an
error message, and the user is requested to reenter cre-
dentials. Thus, defining the pre-conditions and rules that
govern the triggering of transitions and passing of the
information among the services represent the functional
behavior of the Cloud. Furthermore, we incorporate the
security requirements of the users in the information
flow model to support the prioritization of threats that
violate specific requirements. We argue that the security
requirement of an application varies depending on the
functionality of the application. For example, a content
delivery application might set the availability of the
data as a high priority while an application dealing
with financial records might consider confidentiality as
its primary requirement. Therefore, considering such
security requirements is critical since it helps to identify
threats that may lead to their violation.

3.3 Block lll: Threat Analysis

The third block of ThreatPro assesses the impact of
threats to Cloud services. We assess the impact of
multiple threats at different levels of abstraction, e.g.
considering threats at multiple services/layers and the
possibility of a threat’s combination to violate a security
requirement of the user. Furthermore, we investigate
the progression of a threat in the Cloud’s dynamic
environment where resources migrate from one physical
host to another or new resources can be instantiated.
ThreatPro is also able to perform a speculative analysis
to examine the potential of a threat to compromise a
security requirement. Following this overview, the sub-
sequent Sections 4, 5 and 6 detail each constituent block
of ThreatPro to result in a holistic threat propagation
analysis process for the Cloud.

3.4 Threat Model

Given these models, it is also necessary to consider the
threats that are intended to be analysed by ThreatPro. In
this paper we focus on modelling attacks on confidential-
ity and availability in cloud systems. Adversaries may
have a variety of different goals [35], however, due to
ThreatPro facilitating exploring a broad range of threats
we do not define specific adversary goals. Instead in Sec-
tion 7 we will look at case studies of exfiltrating sensitive
data and resource exhaustion to deny availability. The
key is that the attacks of interest can be modelled in
conjunction with ThreatPro’s functional and information
flow models.

4 THREATPRO’S BLOCK |: DEFINING THE
FUNCTIONAL MODEL OF THE CLOUD

Following the overview in Section 3.1, this section details
the first block of ThreatPro, i.e., how to represent the
Cloud’s functional behavior as a model. The reasons
for developing such a model are twofold. Specifically,
there is a lack of both (1) a generalized Cloud model
applicable to the spectrum of Cloud offerings, and (2)
approaches that can analyze the interplay between the
functional behavior of the Cloud and the attack paths.
In order to develop such a model, we first extracted
common services from multiple open-source Cloud com-
puting environments [34], [33] and major stakeholders
in the Cloud market, such as Amazon, Microsoft and
Google. There are obvious differences in terms of the
Cloud architecture and network configurations adopted
by each vendor. For instance, the controller node could
be distributed across the data center. However, these
differences are technology and optimization-driven and
consequently beyond the scope of this paper.

The Cloud model presented in Figure 2 depicts a gen-
eralized 3-layered (Control, Infrastructure and Storage)
architecture focusing specifically on the Cloud’s func-
tionality to be agnostic to the technologies implement-
ing the functionality. Each demarcated layer performs a

Contol Layer Storage Layer

Authentication
Server

Cloud User

Infrastructure Layer

s
S

Mt | vm2 VM3 | VM4

h Host 1
Hypervisor | L Hypervisor
HW
Host2 Host2
‘.
.
’ :I]:
\
S

M7 ‘ VMg

[j Controller Node
Cloud Admin

VM1| VM2|Web Servers

Host 3

Hypervisor Hypervisor

HW HW

Host 3. Host 4.

Host4.

s connection
v

[VM3] Authentication Server
'VMS| Database Server

Fig. 2: Multi-layer architecture of the Cloud

specific task in the life cycle of a VM. The role of the
control layer is to authenticate users and enable them to
request new VMs. The infrastructure layer receives the
request, creates the respective VM, and links it with the
existing resources of the user. The storage layer provides
storage capabilities for the data. We provide details of
each layer’s functionality in the following sections.

Control Layer: it consists of an authentication server,
database server and a controller node, orchestrates the
managing and scheduling of the Cloud resources —
physical and services — for the Cloud administrator and
the users.

Infrastructure Layer: As the name suggests, this layer
represents the actual physical hardware of the Cloud for
binding the VMs to physical hosts. The core function-
ality of the layer is provided by a hypervisor [36] that
runs on top of the hardware/OS along with other VM
management tools.

Storage Layer: This layer provides storage capacity and
delivers data when requested. This layer is also respon-
sible for providing consistency among different data
backups. As the placement of the VMs across different
hosts is permitted, the data could also be distributed
across different hosts.

These 3 layers collectively outline the operations of
any generalized Cloud system. As VM management
(creation, migrations and deletion cf. Section 3.1) is
the basic Cloud functionality, ThreatPro utilizes a VM-
centric approach for threat propagation and analysis. In
the following, we focus on the operations involved in
creating a VM to illustrate the information flows across
the operational layers of the Cloud prior to building
ThreatPro’s information flow model in Section 5.

41

As mentioned, the authentication service is the user’s
interface to the Cloud. A user can only launch or request
a VM after being successfully authenticated. The details
of subsequent transitions at each layer are as follows:
Control layer transitions: Once authenticated, a user is
transferred to a dashboard presenting the allocated VMs

Information Flow in Launching a VM

and the possibility of requesting additional VMs. If the
user decides to launch a new VM, the requested VM
configurations (e.g., CPU, RAM) are compared with the
assigned quota. A valid request leads to the invocation
of the scheduler service that determines a potential host
for the requested VM. The VM configuration and the
selected host are then passed to the infrastructure layer.

Infrastructure layer transitions: The infrastructure layer
receives the VM request and invokes image repository
service for the operating system and the network service
for the networking capabilities (e.g., Virtual Network
Interface Card (VNIC), IP addresses). Furthermore, the
infrastructure layer interfaces with the storage service
for allocating storage for the VM.

Storage layer transitions: The primary responsibilities
of the storage service are assigning storage to the VM
and keeping the data among the backups consistent.
This step is optional in case the user does not select the
storage capacity for the VM.

VM: After the configuration is finalized, the hypervi-
sor instantiates the VM and it is added to the database
against the corresponding user.

The aforementioned is an overview of the services
interaction to create a new VM. It should be noted
that the Cloud provider can initiate the VM instanti-
ation or migration to optimize the workload without
the user’s input but in compliance with the Service
Level Agreement (SLA) signed between the user and the
Cloud Service Provider (CSP). The next section translates
this model into an information flow model that focuses
on the service interaction and the flow of information
among the services.

5 THREATPRO’S BLOCK Il: DEFINING THE IN-
FORMATION FLOW MODEL

Following on the overview from Section 3.2, this sec-
tion details the second building block of the ThreatPro
methodology, i.e., the development of an information
flow model of the Cloud. Requirements for the informa-
tion flow model are the following: (1) the model should
support expressing the functional behavior of the Cloud
as well as the threats in a technology-agnostic style, and
(2) there should be the ability to identify violations from
the sequence of events by determining the modifications
in the operations of the Cloud caused by spurious input
to the system.

These specifications are achieved by defining rules and
constraints that determine the triggering of transitions
after their respective preconditions have been fulfilled.
Consequently, we begin with a basic transition system
representing functional behavior and rules determining
the states’ transition. Subsequently, we leverage the rule-
based transition system to represent a login system for
user authentication and eventually represent the Cloud
functional behavior. Furthermore, we express a threat’s
behavior as an instantiation of the rule-based transition
system to use as spurious input to the system.

Additional a

Input

Fig. 3: An abstract example of a transition system

5.1 A Basic Transition System

Figure 3 presents an example transition system to
demonstrate how a system’s functionality can be rep-
resented. The received input at each state, depicted
on the arcs, enables transitioning between the states.
The transition system forms the basis for analyzing the
proper functioning of the system and provides the capa-
bility to identify modifications in system actions caused
by spurious inputs. The creation of such transitions is
imperative for Cloud systems. Although it is possible
to generate and reuse a library of profiles of transition
systems, it remains a limitation that an arbitrary number
of system profiles may be required in practice. In the
following, we do not delve into the process of automat-
ing the creation, storage and utilization of these profiles.
Such a mechanism warrants a dedicated consideration
beyond the scope of this work. Instead, we elaborate
on how such a transition system can be used. We now
describe the rules for transitioning between states which
eventually lead to a terminal state (Final or Invalid).

5.2 Normal Behavior

There are multiple paths that represent the normal op-
eration of the system. Any modification in these paths
might be considered a threat to the system.

« Path 1: start a5 Final

« Path 2: start 5 a5 B3 Final

o Path 3: start 5A 5B —C 3 Final

o Path 4: start 5A 5B C - Invalid

Paths 1, 2, 3 and 4 demonstrate the correct functional be-
havior of the transition system, i.e., the paths start from
the state Start and terminate to either the Invalid or
the Final state. The inputs start, invalid, and correct are
respectively denoted by {s,i,c} and are used to trigger
different paths depending on the input provided to the
system. For instance, in path 1, an input triggers the state
Start which passes on s as information to state A. The
received input initiates multiple paths from state 2, for
instance, the input corresponding to a correct value ¢
leads to the Final state. Conversely, an invalid input
i at state A moves the system to state B and the same
process is followed at state B. However, at state C, an
invalid input i terminates the system at the invalid state.

5.3

The rules determine the functional behavior despite
the different underlying technologies. The rules can be
added (or removed) to introduce new (or speculative)
specifications or constraints from users/systems. In Fig-
ure 3, additional inputs are introduced to both states B
and C to analyze their corresponding impacts on the
behavior of the system. For example, at state B, an
input t can modify the state and result in transitioning
subsequently to an invalid state instead of the state C or
Final. Thus, a rule-based transition system highlights
manipulation caused by malicious inputs and enables
the speculative (what-if) analysis. The complete paths
for both the malicious input are given below.

Incorporating Malicious Inputs to the System

o Path M1: Start > A — B L) Intvalid
e Path M2: Start 3 A 5B -5 C - Final

5.4 Representing a Transition System

We have demonstrated the benefits of using a rule-based
transition system to enumerate the behavior of a system
and to speculate on the behavior by adding spurious
constraints. We leverage this rule-based transition sys-
tem concept to develop an information flow model of
the Cloud depicting its functionality. There exist multiple
methods to model the functionality of a system. In
the following, we detail two prominent alternatives of
labelled transition systems and Petri nets.

5.4.1 Labelled Transition System (LTS)

LTS has been extensively applied to model the Cloud
operations, including the modeling of client-Cloud in-
teractions [37], [38], [39]. The benefit of using such
models is to elaborate the behavior of a system and
identify a potential violation of the specified property
using a model checker. To this end, the complete model
and the property specification are provided to a model
checker that generates a counterexample identifying the
property violation. The specified property is often a safe-
ty/liveness property, but the process can be replicated
for specific security properties. On the other hand, LTS
becomes cumbersome for concurrent systems due to the
state explosion problem [40]. Further, the states and the
associated actions in LTS are global, i.e., the complete
state information is required to recognize the firing of a
transition. A state cannot be distributed into multiple
local states with different preconditions to trigger a
transition locally if a certain precondition is satisfied.
Moreover, these models are deterministic, while model-
ing the Cloud requires triggering of transitions at certain
time intervals to replicate e.g., VM migration.

5.4.2 Petri nets

An alternative to an LTS are Petri nets, which can
describe the functional behavior of distributed systems.
Petri nets have been used to model the workflow
of concurrent systems [41], resource management in

the Cloud [42], and fault detection in distributed sys-
tems [43]. A difference between Petri nets and LTSs are
that the states can be distributed locally as places in
the former enabling them to hold different information
required for a transition. Moreover, the transitions are
fired locally and non-deterministically without requiring
a global view of the system. Furthermore, the Petri nets
support time-driven firing of the transitions, i.e., firing
the transition at a specific time instance. Similar to LTS,
Petri nets also encounter the issue of state explosion [40].

5.5 ThreatPro’s Requirements

We have described the possible options for modeling the
behavior of a system, and now we proceed to elicit the
specific requirements for modeling the Cloud. The Cloud
is a distributed and concurrent system, and modeling its
functional behavior entails assigning information to each
place? and passing on either a complete or a subset of
information according to the triggering event. Further-
more, certain events might create an impact both locally
and globally. For example, a threat targeting a service
affects that service, but can also progressively target
the interlinked services. On the other hand, perform-
ing a speculative analysis requires assigning constraints
(threats preconditions) to different services to analyze
their consequence on the benign operation of the Cloud.
An additional requirement is the capability to model
time-driven events. For example, a VM can instantiate,
decommission or migrate at run-time according to the
workload. These requirements favor the use of Petri
nets to model the information flow. A brief overview
of Petri nets is presented before demonstrating its use in
developing the information flow model of the Cloud.
A typical Petri net has two elements, places and
transitions®, depicted as circles and bars, respectively, as
shown in Figure 4. A transition signifies the occurrence
of an event and the place holds the tokens (information)
that enables the transition. The conditions that govern
the flow of tokens are represented on the arcs between
input and output places. The pre-conditions are rep-
resented on the arcs that connect places to transitions
and the output flow (post-condition) from a transition
governs the flow of token (information). A transition is
fired only if both pre- and post-conditions are satisfied.
A token from an input place is transferred onto the
respective output place after the transition is triggered.
In this paper, we use a variant of Petri nets called
High-Level Petri nets (HLPN) [44], which provide fur-
ther flexibility in assigning multiple tokens of different
data types to a place. Moreover, in HLPN, a subset of the
token (information) can be passed onto the next place
depending on the triggering condition. For example,

2. A place holds the token in Petri nets, in other words, places are
comparable to states in transition system.

3. We use three different fonts to make it clear what type of item
within a Petri net is being referred to. These are: a Place in the Petri
net, an Input provided, and a TRANSITION that can be taken.

STR X’

Log_R U
*¥ /X Auth_S

STRXSTR

STRXSTR

g
Data Type

cond— Flow condition

V.
)

Transition

Fig. 4: Login system using HLPN

TABLE 1: Description of Places in Figure 4

Place

¢(Log_Regqs)
¢(Usr_Accens)
¢(On_Usrs)

Description Mapping

Login credentials
Sever credentials
Online Users

P(Usernames x Passwords)
P(Usernames x Passwords)
P(Usernames)

the authentication service holds both usernames and
passwords and passes on only the username to the
next place that provides a list of the user’s existing
VMs. Furthermore, the constraint can be time-driven.
For instance, after a certain time interval, a VM mi-
gration process can start requiring a new VM instance
creation and the model needs to capture such dynamic
interconnections. These dynamic interconnections are
captured in the model through time-driven firing of
the transition. Moreover, the transitions are fired locally
without contemplating the global state of the system.
This enables the model to capture new VM instances
requested during the VM run place or concurrent VM
requests from the same user.

5.6 Instantiation of the Cloud Login System

In the previous section, we have explained a basic tran-
sition system and rules that determine the functional
behavior of the system through the flow of information
among the states. We also described the advantages
of using HLPN for the development of the informa-
tion flow model. This section leverages the rule-based
transition system to create an authentication system for
the Cloud before translating the complete Cloud model
(cf., Figure 2). This authentication system is shown
in Figure 4, where there are three places (Log_Regs,
Usr_Accns and On_Usrs) described in Table 1 and two
transitions (AUTH_F, AUTH_S). The transition AUTH_F
represents failed authentication due to invalid creden-
tials, while AUTH_S depicts a successful authentication.
The firing of these transitions follows the rules in Equa-
tions (1) and (2). The action taken when the predicate
in Equation (1) holds is shown in Equation (3). This is
represented in Guarded Command Language [45] in the
form Name ::= Predicate — Statements, where the list of
statements are executed when the guard predicate holds.

Conusr)gy]
e~

Usernames

O ™ #un(U)

[#un(U) <> O andalso #un(U) = #uni(C) andalso #pwiU) = #pw(C)]

Fig. 5: Snippet of CPN tools of the Login system

R(AUTH_S) = Ju € U : u € C A w.username ¢ O 1)
R(AUTH_F) =Vu € U: u € CV u.username € O 2)

SuccessfulLogin := R(AUTH_S) — O’ := OU {u.username} (3)

The transition AUTH_S in Figure 4 is fired if the
necessary preconditions are fulfilled, i.e., the user-
name and password provided by the user match the
username and password stored at the user accounts
and the user is not already online. These precondi-
tions are represented on the arcs using: (i) the set
of users U attempting to log in, where Vu € U
u = (u.username, u.password) represents the username
u.username and password u.password provided by a user,
(ii) the set C of credentials known to the server, where
Ve € C : ¢ = (c.username, c.password) represents the
username c.username and password c.password known
by the server, and (iii) set O represents the usernames
that are already online. A successful authentication of the
user transfers them to the list of online users by adding
the new user to the set O, for which the updated set is
denoted by O'. On the other hand, a violation in any
of the conditions results in the firing of the transition
AUTH_F instead. The predicate R(T) denotes if a specific
transition T is taken. We show the implementation of
these predicates in Listing 1 of our supplemental mate-
rial which was performed using CPN tools [46]*.

Figure 5 shows a snippet of the CPN tools after
defining the places, transitions and the guards to the
respective transitions. For instance, the place ON_Usrs
holds the users that are online and currently it is empty.
The Log_Regs currently has a single token (information)
with the username "sm" and password rti". This is
compared against the stored credentials at Usr_Accns.
Therefore, the data type of both the places is unxpw. A
place can hold multiple tokens and the green circle
shows the exact number of tokens the place currently
holds. To distinguish tokens from each other, a separator
++ is used in the CPN tools. The AUTH_S is highlighted
to indicate that the transition is enabled. In Petri nets the
transitions are enabled after all the input places to the

4. Each of the following Petri net models were implemented using
CPN tools and the implementation can be found at https://github.
com/salman-manzoor/Threatpro.

transition have at least one token but the transition is
only fired after both the transition guard and the output
condition of the transition are satisfied. The firing results
in taking the respective tokens from the input places and
adding them to the output places in compliance with
the output condition. A weightage can be assigned to
the output condition which then determines the number
of tokens moved from the input places. Furthermore,
a timing delay can also be applied to the transition
which would restrict the firing of the transition until the
assigned time period has elapsed. In the case of AUTH_S,
the transition guard is to match credentials and the
output condition is to add the user to the On_Usrs place.
Once these conditions are fulfilled, the user becomes
online and is added to On_Usrs.

It is evident that rules-based information flow is in-
dependent of the underlying technology since any ap-
propriate technology could be used to validate creden-
tials. The subsequent section expands the authentication
system by introducing additional Cloud functionality
and eventually representing the Cloud behavior using
HLPN. Consequently, the resulting information flow
model is agnostic to specific underpinning technologies.

5.7 Instantiation of the Cloud Functional Behavior

We extend the authentication system by adding addi-
tional services from the Cloud model (cf., Figure 2) and
eventually, translating the Cloud model to an HLPN
model which is shown in Figure 6. The description of
places and their data types are mentioned in Table 2. The
function domain(Vv) takes a HLPN place V and returns
the set of all possible values that v could have.

We revisit the instantiation of the VM from the per-
spective of creating rules to govern the flow of informa-
tion among the services and replicating the functional
behavior of the Cloud.

1) Transitions T1.1a/T1.1b/T1.2 determine credential
validity. A successful authentication leads to a dash-
board enabling the user to access their existing VMs.

2) Transitions T1.3a/T1.3b are triggered after a user
initiates the VM creation process and provides prop-
erties for the VM (e.g.,, CPU, RAM, disk space).
These properties are checked for compliance with
the associated quota of the user.

3) Transition T1.4 is fired after the scheduler service
determines a potential data center and a host to run
the requested VM.

4) Transition T1.5 is triggered after multiple services
provide the respective tokens (information). For ex-
ample, a disk image is provided from the repository
and the network service initializes a virtual network
interface card and assigns MAC/IP addresses. These
configurations are pushed onto the hypervisor con-
figuring the VM instance accordingly.

5) Transition T1.6 is fired after it receives the final
configuration and the VM has started executing
successfully. The VM place in Figure 6 shows the
terminating place of the Cloud model.

https://github.com/salman-manzoor/Threatpro
https://github.com/salman-manzoor/Threatpro

Tl.la: Auth_F

fall(j‘<

Tl3a: VM_F

%
¥

77

config

User interface
Authentication server

Control access

OGO

config

T.1.6: VM_run ' et
config

©0]6]0)

T1.2:Ctrl_S
) @~ ®)
U
v YMIed L 130 vm SQ_q
T1.1b: Auth_S
U_data
\/1\\—/‘ VM_req UQ_q
VM_req_srvr
T.1.4: Srvr_lookup
/FVMreq

Database

VM request interface

User quota

ret di l‘et vnic

get_vnic ?

VM_req

éy

T.1.5: Final_confs

VM_req_srvr.
SIVT-

é

Server lookup Network interface card

Available resources . Disk image
Host server @ Networking functionality

Hypervisor

VM is instantiated

©]0,

OGO
©,

Fig. 6: Transforming Cloud Model to HLPN

TABLE 2: Description of Places in the Cloud Model

Place Description

Domain

Interface to enter

UI .
credentials

P(Usernames x Passwords)

Authentication server

AS storing credentials P(Usernames x Passwords)

CA Access restrictions P(Usernames)

DB Stored list of VMs P(Usernames x VMs)

INT Interface to run VMs]P’(Username x OPU x RAM x

Disk x Arr)

Uo Users quota and P(Username x CPU x RAM x
configurations Disk)

SL. Potential server for the P(Usernames x CPU x RAM x
VM request Disk)

AR Available resources to P(Loc x DC)

launch the requested VM

Receives hosting server

HS and VM config.

P(Loc x DC x Usernames x
CPU x RAM x Disk)

NIC MAC address MAC
NET Assigns dynamic IP P(IP x MAC)
DI Holds VM disk image P(DI)

Receives configuration

HYP and launches the VM

P(CPU x RAM x Disk x IP x
MAC x DI)

VM is started on the
server

VM

P(Loc x DC x Usernames x
CPU x RAM x Disk x DI x IP
x MAC)

We define rules that govern the flow of tokens (in-
formation) from input to output places. A new token
is generated each time a user tries to login triggering
transitions AUTH_F and AUTH_S to determine the va-
lidity of the user’s credentials, Ul_c is the set of provided
credentials and AS_c is the set of credentials stored at
the server. These credentials are used in Equations (4)
and (5) to check the validity of the user’s credentials.

R(AUTH_F) =Vu e Ul_c:u g€ AS_c (4)
R(AUTH_S) =3Ju e Ul_c:u e AS_c (5)

Equation (4) represents that the credentials provided
by the user are invalid, and therefore the user is re-
quested to reenter the valid credentials. On the other
hand, the valid credentials trigger AUTH_S transition,
and correspondingly, access privileges are granted to the
user. The user is transferred to an interface to access
the assigned VMs or request new VM instances. Equa-
tions (6) and (7) determine the success or failure of the
VM request considering several factors, including the
quota associated with the user. The VM_req stores the
configurations of the requested VM such (CPU, RAM
and Disk) which are checked for compliance against the
allocated quota of the user. The users quota are stored
in UQ and UQ_q is the quota of the specified user.

R(VM_F) =Vd € VM_req : (d.username # UQ_g.username V

d.cpu # UQ_g.cpu Vv
d.ram # UQ_g.ram V
d.disk # UQ_g.disk)
R(VM_S) = 3d € VM_req : (d.username = UQ_g.username A
d.cpu = UQ_Qg.cpu A
d.ram = UQ_g.ram A
d.disk = UQ_q.disk)

©)

@)

Equation (6) determines the invalidity of the VM
request due to a lack of access privileges for additional
VM or if the configurations of the requested VM do not
comply with the associated quota. The compliance of the
requested VM invokes the scheduler service that selects
an appropriate server to instantiate the requested VM.
Furthermore, the server selection triggers multiple ser-
vices to configure the VM. For instance, the disk image
service provides a guest operating system for the VM.
The network service provides networking capabilities to
the VM, i.e., initiating a virtual network interface card,
assigning a MAC address, and determining the mapping
between the machine’s virtual and physical interfaces.
NET is responsible for leasing IP addresses and the

1 92.168.0.1",mac="00:14:78:

(=1
Meetoray | i

) 1170014 7BIEE 198" ++
1°"00:7B:141F8:19:10"

STRING

confi

Feon

Fig. 7: Snippet of CPN tools of the Final Configurations

corresponding IP address mapping to the MAC address.
These configurations are pushed onto the hypervisor,
which executes the VM on the physical hardware. These
configurations follow Equation (8) for triggering the
respective transition. In Equation (8), we use ++ to
denote tuple concatenation and := to denote assignment,
resulting in an updated variable.

R(FINAL_CONFS) = Jim € domain(DI) : im = ret_di A
3vn € domain(NIC) : va = ret_vnic A
3dh € domain(NET) : dh =ret_dhcp A (8)
dh.mac = vn.mac A
config :== VM_req_srvr ++ (im) ++ dh

Final_confs := Jim € domain(DI) : im = ret_di A
Jvn € domain(NIC) : vn = ret_vnic A
3dh € domain(NET) : dh = ret_dhcp A ©)
dh.mac = vn.mac —
config := VM_req_srvr ++ (im) + dh

The implementation of Equation (8) in CPN tools is
shown in Listing 2 of our supplemental material and the
respective snippet of the transitions and places in CPN
tools