
Scalable Content-centric Routing for Hybrid ICN
Sergi Rene, George Pavlou

University College London, UK
{s.rene, g.pavlou}@ucl.ac.uk

Onur Ascigil
Lancaster University, United Kingdom

o.ascigil@lancaster.ac.uk

Abstract—Hybrid Information-Centric Networking (hICN) is
an incrementally-deployable information-centric networking ar-
chitecture that is built on top of IPv6. In hICN, application-level
identifiers are directly used to route interest packets (i.e., request
for content) to fetch a copy of the desired content/data from any
location. However, following the Internet Protocol conventions
that require storing pre-computed routing/forwarding state for
all prefixes in the routers raises scalability concerns, especially
at the inter-domain level. Here we consider instead the other
extreme; i.e. on-demand routing computation for content name
prefixes when interest packets arrive at the router. Following
this approach, we propose a centralized routing service within a
domain that keeps a mapping between hICN name prefixes and
locators (i.e., routable addresses) to hICN routers. Once a locator
is received, an hICN router forwards an interest packet towards
the intended destination using segment routing. We evaluated
the proposed solution through a real testbed implementation in
order to demonstrate that the performance is equivalent to typical
hICN forwarding, while offering a scalability solution.

Index Terms—hICN, Routing, Scalability

I. INTRODUCTION

Information-Centric Networking (ICN) is an architectural
approach to evolve the “point-to-point connectivity” service
of the current Internet to “retrieve data with a given name”
service [1], focusing on retrieving data by name, versus
connecting to a specific point of the network, without caring
from where the data is retrieved. In ICN, consumers retrieve
a copy of the data/content by sending interest packets that
carry the name of the desired data. The service semantics
is such that data packets can be discovered and retrieved
from any node in the network independent of its location.
Most ICN architectures, such as Named Data Networking
(NDN) [2], use a hop-by-hop name-based routing mechanism
to forward interest packets towards data in the network.
Using stateful forwarding mechanisms, name-based routing
can support sophisticated strategies to discover content in
the network [3], [4]. However, ICN large-scale testing and
deployment in operational networks are yet to happen, mostly
due to the lack of a clear incremental deployment strategy.

The main goal of the hybrid ICN (hICN) architecture [5] is
to bring ICN capabilities into existing IP networks while sup-
porting partial deployment, i.e., working even when only a few
strategic nodes are hICN enabled. More specifically, hICN in-
tegrates Information-Centric Networking (ICN) in IP and, un-
like other proposals, it does not use encapsulation or tunnelling
techniques, and also does not run as an overlay network. hICN
by design intends to share the same infrastructure with regular
IP traffic and reuses most of the parts of an IPv6 router, such
as its FIB table, and with minor modifications, it provides

information-centric capabilities, such as interest-based routing
and forwarding and in-network caching. Moreover, hICN is
100% compatible with IPv6 traffic, and hICN packets can be
forwarded by on-path IPv6 routers without any modifications.
hICN encodes location-independent, application-level names
in globally routable name prefixes in the form of /128 IPv6
addresses, called name prefixes. The name prefix is split into a
routable prefix and a 64-bit data identifier. The name prefix is
used to identify an application object, a service or in general
an application-level source of data in the network. This is
incarnated by a listening socket that binds to the name prefix.
Along with the name prefix, a name suffix is used in hICN
to index segmented data within the scope of the name prefix
used by the application.

However, hICN inherits forwarding state scalability issues
from ICN that must be addressed to be a viable networking
solution. ICN routers need to maintain state information for
all the content they have seen, which allows them to forward
content efficiently. However, as the number of content items
increases, the amount of forwarding state required by routers
grows, and this impacts the scalability of the network. hICN
achieves similar scalability properties with IP at the inter-
domain level. However, routing (interest) packets within an
Autonomous System (AS) requires awareness of which /128
hICN network addresses are leased to which hosts in order
to route hICN interest packets to the correct hosts within the
domain. This is a potential scalability issue because ASes can
lease a large number of hICN name prefixes at distributed
locations. With a limited Forwarding Information Base (FIB)
in the forwarders, it is challenging to perform intra-domain
routing of interests to a host that has a replica of the requested
named content within an AS.

In this work, we propose an on-demand routing architecture,
called hICN On-Demand Routing, that uses Segment Routing
IPv6 (SRv6) as forwarding hints to route packets towards
the locator learned from the central routing controller, named
Routing Service (RS).

Segment Routing leverages IPv6 addresses as routing lo-
cators and allows for programmable forwarding through the
insertion of SRv6 encapsulation in the packet header. SRv6
has the potential to provide a unified and scalable routing
solution for hybrid ICN architectures by enabling content-
centric routing in the ICN domain and IP-based routing in
the IP domain through a single routing protocol.

Our solution leverages the content name as an identifier for
routing in the ICN domain and the SRv6 segment as a locator

for routing in the IP domain. We present the design of our
solution, including the mapping of content names to SRv6
segments and the implementation of our solution in a hybrid
ICN testbed. We also evaluate the performance of our solution
in terms of routing scalability, latency, and packet delivery
ratio, comparing with hICN forwarding where no routing is
required.

The rest of the paper is organized as follows. In Section II
we discuss related work and then in Section III we present
the on-demand routing mechanisms used in our solution.
In Section IV, we detail the performance evaluation of our
approach, and finally, we summarize and discuss future work
in Section V.

II. RELATED WORK

To deal with the ICN forwarding state scalability problem in
the Named Data Networking (NDN) architecture, Afanasyev
et al [6] proposes a namespace mapping mechanism whereby
content name prefixes are translated to network location names
using a DNS-like mapping service. End-users include location
names (in addition to content names) as a forwarding hint for
the routers in their interest packets to be used in case the
content name prefix is not found in the routers’ FIB. On the
other hand, in this work we propose an in-network mapping
service without reliance on external mapping services.

We extend our earlier scaling proposal [7] based on a recent
research project with Cisco which allowed us to implement it
in a real testbed and apply it to the hICN architecture. Our
approach is similar in spirit to both [8] and [9], where the
authors discuss a mapping service that provides forwarding
hints, within a network domain, mapping global content names
to routable identifiers or locators. But we apply the mapping
concept to an actual hICN architecture using real system tools
and mechanisms in order to evaluate if our scalable forwarding
maintains the high performance of standard hICN forwarding.

III. ON-DEMAND ROUTING FOR HYBRID ICN
Current routing technology can support routing entries in

the order of millions of routes (see [10]), which is orders
of magnitude smaller than the expected number of routes
in information-centric routing, i.e., ≈ 109 name prefixes [9],
[11]. Therefore, storage of routing and forwarding information
for a large content namespace at a single forwarding node
is not realistic. Instead, in this paper, we propose an hICN
On-Demand Routing (hODR) scheme following a centralised
software-defined approach, where routing information of each
domain1 is collected and maintained by a local domain service,
namely the Routing Service (RS). In hODR, routers retrieve
AS-specific routing information in the form of SRv6 Segment
Identifiers (SID) from the RS and perform on-demand routing
as interests arrive. Routing information retrieved from RS can
be cached in a local data structure called Routing Information
Store (RIS) in each hODR router.

In traditional network architectures, the data plane, which
is responsible for forwarding packets, and the control plane,

1We use Autonomous System (AS) and domain interchangeably in the rest
of the paper.

Content Advertisement
Name prefix: b001::

AS1 Local Routing Information
Prefix Locator(s)
b001:: 2::2
b002:: 3::3
b003:: 4::4

Content Advertisement
Name prefix: b002::

Content Advertisement
Name prefix: b003::

AS1

AS2

AS3

AS4

3::3
4::4

1::1

2::2

FIB Table
Prefix Next-hop
2::2 Iface 1
…

Routing Information Store
Prefix Locator(s)
b001:: 2::2

hICN router

Routing service

Fig. 1: On demand routing architecture

which is responsible for preparing the forwarding state, coexist
within network devices deployed as a single integrated system.
In centralised software-defined routing, the different planes are
split into logical entities allowing programmatic management,
control, and optimization of network resources from third
devices.

In an hICN environment, routing state is provided by IPv6
routing protocols, such as Open Shortest Path First (OSPFv6)
protocol. Control plane separation allows the implementation
of an on-demand routing protocol that reduces the amount of
routing state that routers should store, providing a scalable
routing solution in the face of the expected explosion of
network routes with the deployment of information-centric
solutions. Moreover, such an approach enables network ad-
ministrators to dynamically adjust routing policies in response
to changing network conditions, ensuring optimal routing
performance.

In Figure 1 we can observe an overview of the proposed
architecture. We assume that globally propagated content ad-
vertisements originate from content owners and also possibly
from persistent storage systems (e.g., CDNs) that can act as
producers. We assume the existence of a name-based, BGP-
like inter-domain protocol and a location-based intra-domain
protocol (e.g., OSPF [12]). Routable addresses (i.e., locator)
advertisements are disseminated (e.g. 1::1, 2::2) within the
domain, but also local content name prefixes from local AS
producers. Content prefix advertisements arriving or originat-
ing within a domain are sent directly to the RS by the border
router of the domain. The RS acts as a storage of global routing
information where it maps hICN names to intra-domain locator
addresses. These locators are border router addresses, in case
of external AS content, or the router closer to the producer
in case of content produced in the same AS domain. Once a
router receives an interest containing an hICN name prefix,
in case there is no previously cached information in the RIS
for the name prefix, the router queries the RS. The RS replies
with the locator of the border router towards the destination AS
for the name prefix. The routing information is cached in the
RIS to be used for other arriving interests towards the same
prefix. The router uses Segment Routing to route the hICN

interest towards the border router connecting to the AS that
is the source of the content, or the closest router in case local
content is produced in the same AS. The following subsection
details all the hICN interest forwarding processes at the router
level.

A. hICN routing and forwarding
The forwarding path in hICN is composed of the interest and

data path. Interests are generated by clients to request specific
data, and data packets are generated by producers containing
the content requested. In the following, we describe how
interests and data packets are processed in vanilla hICN and
we compare it with our proposed hICN On-Demand Routing.

Interests and data are processed at the hICN node in a
different way. hICN routers can cache both interests and
data packets. Interests require to be cached to transmit the
corresponding data packet back to the consumer (i.e., source)
as the source address field in the interest contains the interface
identifier of the hICN node having transmitted the interest.
Data packets are optionally cached if needed. By caching data
packets, hICN routers can replace data origin (producers) by
providing the data from the cache, therefore saving bandwidth
and improving network performance.

hICN interest forwarding path is based on lookups in the
IP FIB just like any other IP packet, with the additional
processing due to a cache lookup to check if the actual reply
is already present in the local cache.

When an interest packet is received in a router, the forward-
ing steps are the following:

1) The incoming interest packet is parsed to obtain the name
prefix and the name suffix. An exact match look-up is
made in the packet cache using the full packet name as
the key. If there is a match the data packet is transmitted
with the destination address of the data packet equal to
the source address of the interest packet.

2) In case no data packet is matched, there is a lookup for
an interest previously cached. In case there is an interest
with the same source address, the interest is classified as
a duplicate and dropped. In case it has a different source
address, the interest is cached but filtered.

3) In case there is no match with a cached interest, it is
forwarded to the next hop. To determine the next hop, the
router passes the interest to the egress and a traditional
lookup in the IPv6 FIB table is done. The source address
of the interest packet is replaced with the address of the
egress router interface.

4) The procedure is repeated by each hop until the interest
reaches the producer. Once the interest reaches the pro-
ducer, a data packet is sent towards the source node of
the interest. The destination address of the data packet is
the source address of the interest received.

5) At each hICN router crossed, the data packet is optionally
cached and there is a lookup for all the interests matched
with the data packet. A data packet is sent for all the
interests cached with the destination address set to each
of the interest source addresses, till it reaches the interest
sender.

In Figure 2 we present the interest packet processing work-
flow in an hICN router. In orange, we depict the actions made
by a vanilla hICN router and in green the new actions added
by a hODR router:

1) When there is no match for an hICN interest, there is no
Segment Routing (SRv6) header in the interest packet,
and there is no information in the RIS for the specific
prefix, a lookup to the RS is done.

2) In case there is a match with the name prefix in the RS,
the RS replies with a locator that identifies a border router
of the AS.

3) In case there is no match in the RS, a message is sent to
either drop the interest packet or sent it towards a default
route, depending on the policy configured in the RS.

4) Once the hODR router receives the locator address, it
stores the information in the RIS table and it creates a
new policy that encapsulates any interest that matches the
prefix into an SRv6 packet with the destination address
of the locator address.

5) When hICN routers receive SRv6 packets with an hICN
interest, the original interest is stored with the hICN
prefix disregarding the SRv6 destination and replacing
the hICN source address with the router egress interface
address. In the case of traversing non-hICN IPv6 routers,
interests are forwarded towards the destination address
in the SRv6 header, without caring about any hICN
instruction.

6) Intermediate hICN routers cache the hICN to SRv6
destination address mapping in the RIS, so when new
interests arrive for the name prefix, no need to query the
RS.

7) Border routers decapsulate SRv6 packets (using SRv6
END.DX6 network function [13]) towards next AS des-
tination.

8) Data packets follow the interest path following the usual
interest matching of all the interests cached along the
path, following the usual hICN functionality with no
encapsulation.

B. Prototype implementation

All the elements of the hODR architecture have been
implemented in a prototype and all the software is available
in this repository2, including the extension to the hICN router,
the routing service and the configuration files required for the
testbed setup presented in IV.

Our solution is incrementally deployable and is compatible
with any hICN router that supports the protocols detailed
below, which are supported by default in the available hICN
implementation 3.

For the hICN router we extended the available plugin4 for
the Vector Packet Processing (VPP) router. The VPP platform
is an extensible framework that provides a software-based

2https://github.com/srene/hicn-scalable-roting
3https://hicn.readthedocs.io/en/latest/vpp-plugin.html
4

hICN
Interest

Data
hit?

Send data
downstream

Contains
Srv6

header?
Forward
Interest

hICN
Interest

Lookup FIB
table

Filter
interest

Interest
hit?

Query Routing
Service

Add SRv6 Policy

Is END.DX6
SID?

Decapsulate

Caching and Interest state Routing Forwarding

Add incoming
Iface

Cache in
RIS

hICN
functionality

hODR
functionality

Fig. 2: Interest packet processing in an hODR router

VPP

SysrepohICN-
plugin

Netopeer server

Routing
service

Yang
model

NETCONF

VPP

DPDK

hICN packets

Data plane Control plane

Fig. 3: Node architecture

router that can run on any commodity server, based on the
open source version of Cisco’s Vector Packet Processing (VPP)
technology, a high-performance, packet-processing stack. VPP
is part of the Fast Data Project5. VPP uses the Data Plane
Development Kit (DPDK6) device drivers and libraries for
many of its layer-1 functions.

For this project, we extended the available VPP hICN
plugin, that enables hICN forwarding for a VPP router, with
the support for on-demand routing. The changes made in
the code were focused on adapting the VPP hICN plugin to
make it compatible with SRv6 traffic, detecting encapsulated
packets and routing interests accordingly. We also adapted
virtual interfaces creation – to route back data packets towards
the source, following interests’ state, and automatically enable
hICN prefix routes for the data path to enable caching.

For the RS, we implemented a controller in Python that
interacts with the VPP router using Network Configuration
Protocol (NETCONF) [14]. NETCONF is a network manage-
ment protocol that was created to overcome the limitations
of SNMP. NETCONF operates a manager and a device.
The managed device is represented using Yet Another Next
Generation language (YANG) and configuration changes are
applied by the NETCONF manager transmitting messages
using XML. NETCONF protocol is used in the southbound
interface, to connect the data plane and the control plane.

For the communication between the RS and the hODR
router using NETCONF, we also extended the original VPP

5https://fd.io/
6https://www.dpdk.org/

hICN VPP router

Routing Service

AS 2

Consumer

Producer

RS

VPP 1

VPP 3

Eth interface 2

Computer 1

Computer 2

VPP 2

Fig. 4: Testbed

API and we implemented a new Sysrepo 7 plugin. Sysrepo is
a YANG-based datastore for Unix/Linux systems. Therefore,
we used Sysrepo to load the YANG-based model in the
system and we interact with the VPP router using that model
and NETCONF protocol. We built a sysrepo plugin that
receives NETCONF actions defined in the YANG model and
interacts with the VPP router using the extended API. Along
with Sysrepo, we used a Netopeer2 server8, that is used to
enable NETCONF communications with another endpoint. In
Figure 3 we show how the different elements interact between
them.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
hODR scheme on a range of parameters. The objective is
to evaluate the performance of hODR in terms of additional
latency in information retrieval and throughput achieved under
different configurations in a real testbed using the prototype
we built using the software described in the previous section.
Next, we describe the setup of our evaluations, before present-
ing the experiments in the remaining sections.

For the evaluation of the hODR, we used a testbed deployed
in two different computers. The testbed uses two Linux
workstations connected through a 10Gbps network Ethernet
link. Each computer has an AMD Threadripper 3960x 3.8 GHz
processor with 24 cores, 128MB (L3), 12MB (L2) cache, and
256GB DDR4 memory. Each workstation has a 10Gbps ASUS
XG-C100C Ethernet interface.

7https://www.sysrepo.org/
8https://github.com/CESNET/netopeer2

Testbed set-up: We use the network topology depicted in
Figure 4. In the topology, we basically represent two different
AS domains. Each computer represents one domain. In the first
computer, we deploy two different router instances, VPP1 and
VPP2. VPP1 acts as a consumer agent and generates interest
packets to request data with different name prefixes, using a
VPP packet generator client. VPP1 is connected to VPP2 using
virtual shared memory packet (memif) interfaces9 and acting
as a border router of the domain. VPP2 has an egress interface
configured using the Ethernet interface directly connected to
the second computer. This interface connects to AS2, being
the 10Gbps interface with the maximum bandwidth of the
network. In the second domain AS2, there is a single VPP
instance deployed, VPP3. VPP3 is directly connected to VPP2
through its Ethernet interface. VPP3 acts as hICN producer
and generates data packets to reply to requested data with
the different name prefixes configured, using a VPP packet
generator server. There is a Routing Service (RS) deployed in
Computer 1. The RS is deployed using a Docker10 container
image and is connected to VPP1 using NETCONF and the
sysrepo plugin detailed in III-B. The link latency between RS
and VPP1 is set using Linux tool for traffic management (tc)11,
and is configured according to the parameters detailed in the
next paragraph.

TABLE I: Default evaluation parameters.
Parameter Value

Number of name prefixes (|P |) 1M
|RIS|/|P | 0.0075

Name prefix popularity (Zipf exponent) 1.0
RS latency 20ms

Router link latency 1ms

Parameters: We focus mainly on the parameters related to
the scalability of routing and forwarding performance. These
are the access distribution (i.e., popularity) of name prefixes,
the size of the RIS on each forwarder and the latency between
routers and the RS. Based on the assumption that the global
prefix size is 109, we extrapolate a realistic ratio of the
size of a forwarder’s RIS cache to the global prefix size
(i.e., |RIS|/|P |) using technical specifications of reasonably
powerful routers. In particular, a BGP router can store 7.5M
routes in its FIB table with the current technology [10]. This
results in |RIS|/|P | ratio of 0.0075, and we use this as the
default ratio in the simulations. We do not limit RS storage
space, since we assume that the RS can provide scalable
storage for global routing information within the domain
through horizontal scaling. Also, we set the default size of
data packets cache (i.e., used only for caching content) of
each forwarder to zero in order to focus on the performance
of routing information discovery.

Table I provides the default simulation parameters for the
experiments. The first parameter is the number of different
content items (i.e., name prefixes) used in the evaluation.
We limit the size of name prefix at |P | = 1M for all the

9https://doc.dpdk.org/guides/nics/memif.html
10https://www.docker.com/
11https://man7.org/linux/man-pages/man8/tc.8.html

experiments. The content name popularity is modelled using
a Zipf distribution of exponential 1.0 by default, following the
distribution of content name popularity that has been measured
in different contexts (e.g., web caching) [15], [16]. For sim-
plicity, each content item fits in a single 1500 bytes packet
in the evaluation. The links between routers are configured to
1 ms latency and the default latency between VPP1 and RS
is set to 20 ms.

Our evaluation is based on the following metrics in order
to prove the feasibility of an on-demand routing service for
hICN, and how close we can be to the ideal case where all
routes are previously known and there is no added latency:

• Throughput (in packets per second): We measure the packet
rate received at VPP1 for all the content requested. We aim
to check whether performance in the router can be close to
the line rate, equivalent to 10Gbps, but measured in packets
per second.

• Packet latency (in milliseconds): This metric measures the
average round-trip time (RTT) delay in retrieving content per
issued interest. The RTT delay includes the amount of time it
takes for the forwarders to retrieve routing information when
there is a RIS miss at the first hop forwarder from the end
user. The object is to observe whether there is a significant
deviation of the average measured RTT to the minimum
latency (RTT measured when the RS is not involved in the
forwarding), equivalent to 4 ms.

In Figure 5(a) we can observe the throughput measured and
the total packet retrieval latency (RTT) when using different
exponential in the Zipf distribution that models the content
requested. We observe that for low exponentials (which means
less content with high popularity), and therefore more requests
to the RS, there is an impact on the performance compared
with the optimal values, shown as a horizontal dashed line,
equivalent to 0.833 Mpps for the throughput, and 4 ms for the
RTT. However, for Zipf exponentials of 0.8 or higher, there is
no impact observed in the network performance. In Figure 5(b)
we can observe the throughput measured and the total packet
retrieval latency (RTT) when using different latencies in the
link between VPP1 and the RS. The latency is set between
10 ms and 100 ms. We can observe the performance is close to
the optimal, shown as a dashed horizontal line, only observing
a deviation for high latencies to the RS, close to 100 ms,
which is equivalent to latency between different continents,
unrealistic for latency within the same AS domain. In Fig-
ure 5(c) we can observe the throughput measured and the total
packet retrieval latency (RTT) with different configurations of
the size of the RIS. The RIS size is set to |RIS|/|P | ratio
between 0.001 and 0.01. Taking into account we evaluated
the performance for a 1M content size, this is equivalent of
a RIS size between 1000 and 10000 entries. We observe the
RIS size is barely affecting the performance and in any of
the configurations evaluated the throughput and the latency is
very close to the optimal value, which is shown as a horizontal
dashed line. This means that even with a small RIS size, a
hODR router is able to perform without a problem regarding
the amount of memory used to store RIS entries, for the

0.6 0.8 1.0 1.2 1.4
Zipf exponential

3

4

5

6

7

8

9

10
La

te
nc

y
(m

s)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

pp
s)

(a) Load distribution

20 40 60 80 100
Controller latency (ms)

3

4

5

6

7

8

9

10

La
te

nc
y

(m
s)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

pp
s)

(b) Routing service latency

0.002 0.004 0.006 0.008 0.010
|RIS|/|P|

3

4

5

6

7

8

9

10

La
te

nc
y

(m
s)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (M

pp
s)

(c) Router RIS size

Fig. 5: hODR routing service measurements

evaluation parameters used.

V. SUMMARY AND FUTURE WORK

In this paper, we present an on-demand routing solution
for hICN. Instead of pre-computing routes for content name
prefixes, we propose a centralized routing service within a
domain that keeps a mapping between hICN name prefixes and
locators (routable addresses to hICN routers). Once a locator is
received for the requested hICN content prefix, an hICN router
forwards an interest packet towards the intended destination
using SRv6 following an centralised software-based approach.

In this work, we demonstrate that with a modest amount of
storage at each forwarder to cache routing information, we can
perform purely on-demand routing with reasonable bandwidth
and latency overheads. In order to limit the overheads, we
exploit the locality of reference in the destination routable
prefixes contacted by users through caching and discovery of
routing information.

As a future work, we plan to investigate the performance
of hODR routers in more complex scenarios, using large-scale
ISP topologies We also plan to investigate hybrid mechanisms
combining pre-computation and on-demand routing mecha-
nisms. In that case, forwarders can use their slower memory
(e.g., DRAM) to store less popular routing information and
cache pre-computed forwarding information for popular con-
tent in their fast memory.

ACKNOWLEDGMENT

This work has been supported by the Cisco grant number
1923388.

REFERENCES

[1] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Sur-
veys & Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

[3] O. Ascigil, V. Sourlas, I. Psaras, and G. Pavlou, “A native content dis-
covery mechanism for the information-centric networks,” in Proceedings
of the 4th ACM Conference on Information-Centric Networking. ACM,
2017, pp. 145–155.

[4] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “Pro-diluvian: Understanding scoped-flooding for content
discovery in information-centric networking,” in Proceedings of the 2nd
ACM Conference on Information-Centric Networking. ACM, 2015, pp.
9–18.

[5] G. Carofiglio, L. Muscariello, J. Augé, M. Papalini, M. Sardara, and
A. Compagno, “Enabling icn in the internet protocol: Analysis and
evaluation of the hybrid-icn architecture,” in Proceedings of the 6th ACM
Conference on Information-Centric Networking, 2019, pp. 55–66.

[6] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “Snamp: Secure
namespace mapping to scale ndn forwarding,” in Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on.
IEEE, 2015, pp. 281–286.

[7] O. Ascigil, S. Rene, I. Psaras, and G. Pavlou, “On-demand routing
for scalable name-based forwarding,” in Proceedings of the 5th ACM
Conference on Information-Centric Networking, ser. ICN ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
67–76. [Online]. Available: https://doi.org/10.1145/3267955.3267968

[8] Y. Zhang, Z. Xia, A. Afanasyev, and L. Zhang, “A note on routing
scalability in named data networking,” in 2019 IEEE International
Conference on Communications Workshops (ICC Workshops), 2019, pp.
1–6.

[9] A. Detti, M. Pomposini, N. Blefari-Melazzi, and S. Salsano, “Supporting
the web with an information centric network that routes by name,”
Computer Networks, vol. 56, no. 17, pp. 3705–3722, 2012.

[10] Cisco, “Cisco ASR 1000 Series Route Processor Data
Sheet,” https://www.cisco.com/c/en/us/products/collateral/routers/
asr-1000-series-aggregation-services-routers/data sheet c78-441072.
html, 2018, online; accessed 16 March 2023.

[11] T. Song, H. Yuan, P. Crowley, and B. Zhang, “Scalable name-based
packet forwarding: From millions to billions,” in Proceedings of the
2nd ACM conference on information-centric networking. ACM, 2015,
pp. 19–28.

[12] J. Moy, “Ospf version 2,” Internet RFC 2328, April 1998.
[13] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li,

“Segment Routing over IPv6 (SRv6) Network Programming,” RFC
8986, Feb. 2021. [Online]. Available: https://www.rfc-editor.org/info/
rfc8986

[14] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011. [Online].
Available: https://www.rfc-editor.org/info/rfc6241

[15] M. Halvey, M. T. Keane, and B. Smyth, “Mobile web surfing is the
same as web surfing,” Communications of the ACM, vol. 49, no. 3, pp.
76–81, 2006.

[16] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes in web
client access patterns: Characteristics and caching implications,” World
Wide Web, vol. 2, no. 1-2, pp. 15–28, 1999.

