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Privacy-preserving Decentralized Federated Learning over Time-varying
Communication Graph
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Establishing how a set of learners can provide privacy-preserving federated learning in a fully decentralized (peer-to-peer, no
coordinator) manner is an open problem. We propose the first privacy-preserving consensus-based algorithm for the distributed
learners to achieve decentralized global model aggregation in an environment of high mobility, where participating learners and the
communication graph between them may vary during the learning process. In particular, whenever the communication graph changes,
the Metropolis-Hastings method [69] is applied to update the weighted adjacency matrix based on the current communication topology.
In addition, the Shamir’s secret sharing scheme [61] is integrated to facilitate privacy in reaching consensus of the global model. The
paper establishes the correctness and privacy properties of the proposed algorithm. The computational efficiency is evaluated by a
simulation built on a federated learning framework with a real-world dataset.

CCS Concepts: • Security and privacy→ Privacy-preserving protocols; Information-theoretic techniques; Usability in security and
privacy; • Computer systems organization→ Peer-to-peer architectures.
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1 INTRODUCTION

1.1 Background and motivation

Federated learning is a collaborative machine learning technique providing privacy preservation of the individual
learners’ local training data [33, 45]. Each learner downloads the current global model from a centralized server, updates
it by incorporating its local training data, and then sends the updated model back to the server. The server then
aggregates the local models of all the individual learners to update the global model. Thus, only local training models
can be observed during the training process, while raw training data do not leave their owners’ devices. Given this
significant feature of privacy preservation, federated learning has been applied to a wide range of applications, including
wireless communications [51], autonomous driving [15], multi-access edge computing [74], smart manufacturing [10],
and healthcare [70].
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2 Yang Lu, Zhengxin Yu, and Neeraj Suri

The traditional federated learning paradigm has two major issues. First, it requires a centralized server such that it is
connected to all the local learners. In some scenarios, the learners are geographically dispersed over a large area and
may lack such a connect-to-all server. In addition, the paradigm is not robust, since if the single centralized server fails,
then the whole learning task cannot proceed. Second, the local training models are directly uploaded to the centralized
server. As has been recently pointed out [16, 50], it is possible that private local training data can be reconstructed from
local training models via model inference or inversion attacks. The above two issues necessitate new mechanisms that
can achieve federated learning in a decentralized and privacy-preserving manner.

1.2 Related works

Multiple recent works have addressed the issue with fixed centralized server. Based on the technologies in achieving
model aggregation, these works can be mainly categorized into two classes. The first class of works dynamically selects
a learner to take the role of the centralized server [7, 56, 73]. Informally, for each round of model updates, a learner is
first selected, either randomly or by following specific rules. All the other learners send their local models, possibly
relayed via in-between learners, to the selected learner, who then performs model aggregation to update the global
model. This approach requires all the learners to coordinate to select the learner for performing model aggregation in
each round of model update. Another class of works adopts consensus-based algorithms, where the learners iteratively
update their local models to reach consensus on the desired global model [37, 41, 59]. At each iteration, the learners
exchange their local models only with their one-hop neighbors. In contrast to the first approach, the consensus-based
approach does not require global coordination1 between the learners and hence is easier for practical implementation.
However, all these works only consider a fixed communication topology and not applicable to an environment of high
mobility where the communication topology may change between successive rounds of model aggregation. In addition,
all the aforementioned works directly exchange local models between the learners and thus still suffer from model
inference and inversion attacks.

In this work, we develop the first privacy-preserving consensus-based decentralized federated learning algorithm
that considers mobility. This is closely related to the problem of privacy-preserving consensus, where the target is to
protect the privacy of the participants’ initial states in the process of reaching consensus.

Existing works on privacy-preserving multi-agent consensus and machine learning can be categorized into four
classes.

The first class of works uses perturbation-based approaches. An important branch of works in this class uses the
technique of differential privacy [28, 29, 52, 75]. Noticeably, instead of considering the consensus-based framework for
the case of a single global model, the work [4] considered the case where learners have different learning objectives and
developed a decentralized differentially private machine learning scheme. Differentially private schemes add random
perturbations into individuals’ private data such that the participation of an individual cannot be inferred via perturbed
data by an adversary with access to arbitrary auxiliary information [14]. Due to the usage of persistent random noises,
there is a fundamental trade-off between privacy and utility [21, 43]. The very recent work [30] proposed a different
perturbation-based approach, which, inspired by the combinatorial block design theory, partitioned learners into
disjoint groups so as to minimize communications between different groups during an Alternating Direction Method of
Multiplier (ADMM)-based iterative algorithm for decentralized aggregation. This approach has two limitations. First,
as revealed by Theorem III.2 (and explicitly mentioned by the second bullet of the contribution statement in page 1)

1By global coordination, we mean that all the learners need to participate to make certain network-wide decision.

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156
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therein, this approach also has a fundamental trade-off between privacy and accuracy. In particular, this approach can
only support a limited number of iterations, while privacy will be compromized if going beyond the limit. Second, this
approach only heuristically reduces privacy leakage between different groups by reducing their communications, but
does not address the privacy issue between learners in a same group, or the case where adversarial learners in different
groups can collaborate with each other.

The second class of works obfuscates exchanged data by adding decaying or correlated noises, which can guarantee
consensus accuracy [19, 20, 27, 44, 47]. This approach ensures that the private data cannot be uniquely determined.
However, it still causes privacy leakage in the sense of information entropy of the private data, and the level of privacy
leakage is determined by the magnitude of the noises [27].

The third class of works adopts the technique of homomorphic encryption [32, 36, 42, 63]. Informally speaking,
homomorphic encryption allows certain algebraic operations to be carried out on ciphertexts, thus generating an
encrypted result which, when decrypted, matches the result of operations performed on plaintexts [72]. Existing
homomorphic encryption-based works require the existence of a centralized third party to carry out aggregation over
ciphertexts. Hence, they are not applicable to the decentralized setting. Additionally, homomorphic encryption schemes
usually incur heavy computational overheads. It is worth noting that several papers, e.g., [3, 8, 49], developed multiparty
homomorphic encryption (MHE) schemes, which allow multiple parties to cooperatively generate a common public
key whose private key is distributed among the parties. This enables the parties to cooperatively decrypt a ciphertext
without learning anything beyond the plaintext. Please refer to Section III-A of [49] for a detailed discussion of MHE.
MHE schemes have been applied to distributed learning settings where the homomorphic evaluation is carried out
cooperatively by all the parties [18, 58]. While these works do not employ a peer-to-peer setting, it is promising that
they can be extended to such a setting by incorporting, e.g., threshold secret sharing techniques [48].

The fourth class of works leverages state decomposition to achieve privacy-preserving consensus in a decentralized
setting [57, 65]. In this approach, a scalar step size shared between two neighboring agents is constructed as a product
of two scalar numbers, each randomly generated by one of the two agents and kept unknown to the other one. During
the consensus algorithm, the agents exchange the product of their states and the randomly generated step size splits.
Without knowing their step size splits, one agent cannot determine the values of the states of its neighbors. However,
to guarantee convergence of the underlying consensus algorithm, the step size splits have to be restricted in a small
interval. This will cause privacy degradation, as one can have a good estimate of the value of an agent’s state by
knowing the admissible interval and observing the product of the state and the step size split.

Positioning our research

To overcome the above limitations of existing works, we propose a new algorithm which integrates Shamir’s secret
sharing (SSS) to achieve privacy-preserving consensus-based decentralized federated learning. Informally speaking, SSS
distributes a secret among a group of participants, each of whom is allocated a share of the secret. As established by
Shamir [61], the secret can be reconstructed only when a sufficient number of shares are combined together, while
a smaller number of shares contain no information of the secret. This technique has been widely applied to secure
multiparty computation (SMC) on complete graphs [11], where each participant can communicate with each other
participant. Roughly speaking, each participant sends one share of its secret to each other participant. Each participant
then computes an aggregation of the shares it receives from all the other participants. When a sufficient number of
aggregated results are combined, the desired aggregation of the secrets of all the participants can be reconstructed.
While these approaches work well in fully connected graphs, most real-world applications entail sparse graphs, e.g.,
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optimal resource allocation in power systems [9], multi-robot formation control [1], and distributed environmental
monitoring [2]. In addition, in an environment of high mobility, the communication topology may change over time. For
SMC over time-varying sparse graphs, where, at each round of computation, each participant can only communicate
with its current neighbors, the above mechanisms cannot be applied. Few research has been conducted to SMC over
sparse graphs. An exception is the recent work [39], which applied SSS to achieve privacy-preserving average consensus
over sparse graphs. The work [39] has three major limitations. First, the approach of [39] needs to randomly activate
one learner at each iteration, which requires global coordination between the learners. Second, the approach of [39]
can only deal with the case where each learner has at least two neighbors and the three learners form a fully connected
graph. Third, rigorous correctness and privacy analysis are absent in [39]. The paucity of SMC research on time-varying
sparse graphs motivates our work to establish fundamental results therein.

1.3 Overview of approach and contributions

This paper considers the problem of privacy-preserving decentralized federated learning over a time-varying communi-
cation graph. Specifically, we consider the case where the global training model is updated as a weighted average of the
learners’ local training models, and an average consensus algorithm is adopted to achieve decentralized aggregation.
First, a simplified problem setting is considered, where the participating learners are fixed and the communication
topology between can only change between successive training rounds. In each round of model aggregation, the
Metropolis-Hastings method [69] is applied to update the weighted adjacency matrix based on the current communi-
cation topology to ensure convergence of average consensus. To protect the privacy of local training models against
semi-honest learners, the learners use the Shamir’s secret sharing scheme [61] to distribute their local models to
their one-hop neighbors. Upon receiving the shares from its neighbors, each learner updates its model by inputting
the sum of the shares it holds to the consensus algorithm. The algorithm is then extended to deal with the issues of
change of participating learners and time-varying communication topology within a training round. Whenever the
communication graph changes, the Metropolis-Hastings method is applied to update the weighted adjacency matrix.
When a learner leaves the network, its current state is sent to one of its neighbors. The usage of the Shamir’s secret
sharing scheme guarantees that there is no additional privacy leakage in these operations. A proper scaling operation is
exerted at the end of the consensus process to ensure correctness. The contributions of our work are fourfold.

• First, the proposed algorithm is the first that can achieve federated learning over a time-varying communication
graph in a fully decentralized (without any global coordination between the learners during the iterative training
process) and provably privacy-preserving manner.

• Second, in terms of privacy-preserving consensus, the proposed algorithm, for the first time, simultaneously
achieves the following properties: (i) applicable to an arbitrary undirected connected communication graph
without the need of a third party; (ii) no additional loss on accuracy of consensus (model aggregation) other
than that caused by quantization error; (iii) no additional privacy leakage beyond the learners’ own inputs (the
local training models) and outputs (the updated global models); (iv) no privacy-convergence trade-off; (v) allow
collaborations between adversarial learners.

• Third, the correctness and privacy properties of the proposed algorithm are rigorously analyzed. In particular,
the correctness analysis addresses new challenges brought by signed real-valued models and termination of
consensus iteration, and the privacy analysis addresses new challenges in potential additional privacy leakage
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Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 5

caused by consensus process and time-varying communication topology. Please refer to Section 4.2 for detailed
discussions.

• Fourth, the correctness and computational efficiency of the proposed algorithm are demonstrated by a simulation
on a federated learning framework using a real-world dataset.

1.4 Organization

The rest of this paper is organized as follows. Section 2 introduces the problem statement for a simplified setting, where
participating learners are fixed and the communication graph between them only varies between successive training
rounds, while keeping fixed within a training round. Section 3 provides some necessary technical preliminaries. New
challenges in algorithm design and analysis are identified in Section 4. The proposed algorithm for the problem setting
of Section 2 is detailed in Section 5. Its correctness and privacy properties are analyzed in Section 6. An extended
algorithm is developed in Section 7 to further deal with change of learners and time-varying communication topologies
within a training round. In Section 8, case studies are presented to test the performance of the proposed algorithms.
Conclusions and future works are found in Section 9.

2 PROBLEM STATEMENT

In this section, we first review the framework of centralized federated learning. Next, we formulate the problem of
decentralized federated learning over a time-varying communication graph and identify its privacy issue. Subsequently,
we introduce the adopted attacker model and privacy definition. Finally, we clarify the objectives of the paper.

2.1 Centralized federated learning

Consider a set of 𝑁 learnersV ≜ {1, · · · , 𝑁 }. Each learner 𝑖 holds a set of𝑚𝑖 ∈ N local data samples, denoted by 𝐷𝑖 .
The learners aim to collaboratively train a common global model \ ∈ R𝑛 over all the 𝐷𝑖 ’s, where 𝑛 is the dimension of
the model to be trained. In federated learning, for the purpose of preserving privacy of individual 𝐷𝑖 ’s, in each round 𝑡
of model update, each learner 𝑖 first trains a local model \ (𝑡 )

𝑖
∈ R𝑛 over 𝐷𝑖 . This can be expressed as

\
(𝑡 )
𝑖

= F𝑖 (\ (𝑡,0)𝑖
, 𝐷𝑖 ), (1)

where \ (𝑡,0)
𝑖
∈ R𝑛 is the initial model for learner 𝑖’s local training in round 𝑡 , and F𝑖 is its local training algorithm, e.g.,

a stochastic gradient descent-based algorithm [46].
The global model \ (𝑡 ) ∈ R𝑛 is derived by performing a weighted aggregation over all the \ (𝑡 )

𝑖
’s as

\ (𝑡 ) =
∑︁
𝑖∈V

𝑤𝑖\
(𝑡 )
𝑖
, (2)

where 𝑤𝑖 > 0 is the weight on \ (𝑡 )
𝑖

. A popular choice of 𝑤𝑖 is given by 𝑤𝑖 = 𝑚𝑖
𝑚 with𝑚 =

∑
𝑖∈V𝑚𝑖 , i.e., 𝑤𝑖 is the

proportion of learner 𝑖’s training data in the overall training data. Notice that in an execution of Eq. (2), only the local
training models \ (𝑡 )

𝑖
’s can be observed, while the raw training data never leave their owners’ devices.

In the centralized setting, as shown by Fig. 1, each learner 𝑖 uploads \ (𝑡 )
𝑖

to a centralized server. Upon receiving the
local models from all the learners, the centralized server updates the global model \ (𝑡 ) by Eq. (2) and sends \ (𝑡 ) to all
the learners. Each learner 𝑖 then sets \ (𝑡+1,0)

𝑖
= \ (𝑡 ) and 𝑡 ← 𝑡 + 1, and progresses to Eq. (1) for the next round of local

training.
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Fig. 1. Centralized federated learning.

2.2 Decentralized federated learning over a time-varying communication graph

The above centralized federated learning paradigm with a fixed centralized server is not robust and suffers from the
issue of single-point failure, i.e., if the single centralized server fails, then the whole learning task cannot proceed. A
popular approach to mitigate this issue is to dynamically select a learner to play the role of the centralized server for
each new round of training, where it requires that each newly selected learner must be able to directly communicate
with all the other learners. This approach in general works well for the settings with a fixed set of learners connected
by a complete communication topology, i.e., each learner can communicate with each other learner. However, this
approach may not be suitable for the following two important settings:

(i) A fixed set of learners connected by a fixed sparse communication topology where a centralized server does not
exist;

(ii) A set of mobile learners, leading to time-varying communication topologies, where it is difficult or even impractical
to establish a connect-to-all centralized server, due to, e.g., learners’ limited communication range and high mobility.

A motivating application for setting (i) is load forecasting of distributed energy resources (DERs) in the smart grids
[64]. In particular, a set of DERs, e.g., solar and wind power generators, aim to collaboratively predict future energy
consumption at the consumer level. This task can be effectively formulated as a machine learning problem where future
load is learned from historical data of smart meters installed at the side of consumers of participating DERs. However,
data stored at smart meters must be kept confidential to the corresponding consumers, as energy-use information
attached to the data act as an information-rich side channel, exposing consumer habits and behaviors. It has been
shown that power load profiles at a granularity of 15 minutes may reveal whether a child is left alone at home and
at a finer granularity may reveal the daily routines of consumers [23]. Federated learning is therefore a promising
candidate to achieve load prediction while protecting privacy of individual consumers’ smart meter data. However, in
the modern smart grids, DERs are usually geographically dispersed over a large area and connected via a quite sparse
communication topology without a connect-to-all entity, rendering existing federated learning schemes that rely on a
centralized server (either fixed or dynamically updated) inapplicable.
Manuscript submitted to ACM
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A motivating application for setting (ii) is vehicular ad-hoc networks (VANET)-based high-definition (HD) mapping
in autonomous driving [71]. Specifically, a fleet of vehicles aim to leverage the underlying VANET to collaboratively
update the HD map of their surrounding area. This task can be formulated as a machine learning problem where
the updated HD map can be learned from the image sensing data of participating vehicles. However, such image
sensing data contain sensitive location trace information and must be kept confidential to their owners. The contextual
information attached to location traces may significantly reveal individuals’ habits, interests, activities and relationships
[34]. It can also reveal their personal or corporate secrets, expose them to unwanted advertisement and location-based
spams, cause social reputation or economic damage, make them victims of blackmail or even physical violence. Again,
due to the privacy concern, federated learning is a promising machine learning candidate to be applied. However, the
aforementioned federated learning paradigms may not be suitable because it is difficult or even impractical to establish
a centralized server in VANET. First, each vehicle has a limited wireless (e.g., Wi-Fi and Bluetooth) communication
range and can only talk to its neighboring vehicles which are within the range. Hence, while all the vehicles in the
network may form time-varying connected graphs, usually there is no one that is close enough to all the other vehicles
at any time instant. Additionally, even for the cases where communication range is not a critical constraint (e.g., the
concerned geographic area is small enough such that the vehicles’ communication range is beyond the diameter of
the area), establishing a stable centralized server is difficult due to vehicles’ high mobility. Since individual vehicles
can freely join and leave the network, the centralized server may need to be updated frequently, and, to guarantee
performance, a complete communication topology should be maintained at any time instant among all the currently
participating vehicles. This might be difficult due to, e.g., constraints on communication bandwidth and energy.

Decentralized model aggregation. The above discussions indicate that, in some scenarios, especially when the
learners are geographically dispersed over a large area, there may not exist a centralized server that is connected to all
the learners; please see Fig. 2 as an illustration. In such cases, the learners need to carry out the model aggregation Eq.
(2) in a decentralized manner over the underlying communication graph between them.

Fig. 2. Centralized aggregation vs decentralized aggregation.

Time-varying communication graph. In an environment of mobile learners, the communication topology between
the learners may vary between successive rounds of model aggregation as depicted in Fig. 3.
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Fig. 3. Communication topology change between successive rounds of model aggregation.

Denote G (𝑡 ) = (V, E (𝑡 ) ) as the communication graph between the learners during the 𝑡-th round of model
aggregation, where E (𝑡 ) ⊆ V ×V is the set of communication links such that (𝑖, 𝑗) (𝑡 ) ∈ E (𝑡 ) if and only if learner
𝑖 can receive messages from learner 𝑗 during the 𝑡-th round of model aggregation. Denote N (𝑡 )

𝑖
⊆ V as the set of

neighbors of learner 𝑖 in G (𝑡 ) , i.e., N (𝑡 )
𝑖

= { 𝑗 ∈ V \ {𝑖} : (𝑖, 𝑗) (𝑡 ) ∈ E (𝑡 ) }. Denote N̄ (𝑡 )
𝑖

= N (𝑡 )
𝑖
∪ {𝑖}. In this paper, we

first study the case characterized by the following assumption on G (𝑡 ) . This assumption will be relaxed in Section 7.

Assumption 2.1. For any 𝑡 ∈ N, G (𝑡 ) is undirected, connected, and time invariant within the 𝑡-th round of model

aggregation.

Remark 2.1. Assumption 2.1 covers a wide range of applications with fixed or slowly changing participating learners

and communication topologies. For example, this is the case for many applications in the smart grids, where the participating

learners are power generators. In such applications, the update of the participating power generators (i.e., joining of new

power generators and leaving of existing ones) and the underlying communication topology usually change at a very

slow time scale, because such updates will incur significant budgets on new constructions as well as many other strategic

considerations. A concrete example is the problem of load forecasting of DERs mentioned in Section 2.2.

Privacy issue. During each round 𝑡 of model aggregation, for each learner 𝑖 , its local model \ (𝑡 )
𝑖

must be kept private
to itself, as breach of \ (𝑡 )

𝑖
may enable an attacker to reconstruct learner 𝑖’s local training data by inference or inversion

attacks.

2.3 Attacker model

We consider the semi-honest attacker model, i.e., an adversarial learner correctly follows the designed algorithm but
attempts to use its received data to infer others’ private data ([26], pp-20). Moreover, the adversarial learners can
collaborate with each other to infer the benign learners’ local models. This attacker model has been widely used in
various applications, e.g., privacy-preserving linear programming, dataset process and consensus [13, 17, 29]. We assume
that the communication links between the learners are secure2.

2Secure communication links can be enforced by cryptographic technologies such as encryption schemes.
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2.4 Privacy definition

As discussed above, our concerned problem is how all the learners can collaboratively compute the correct global
model \ (𝑡 ) without disclosing their local models \ (𝑡 )

𝑖
’s to other learners. This is a secure multiparty computation (SMC)

problem. Perfect secrecy, which will be adopted in this paper, is a standard privacy notion for SMC. Roughly speaking,
an algorithm provides perfect secrecy if, after executing the algorithm, the adversarial entities only know their own
inputs and outputs, but do not know anything beyond them, even if they have unlimited computing power [62]. It is
worth noting that, unlike perturbation-related privacy notions, e.g., differential privacy, perfect secrecy does not induce
the issue of utility-privacy trade-off.

We next provide the formal definition of perfect secrecy in the general context of SMC, where, given a set of entities
V , each entity 𝑖 ∈ V has a secret input 𝑥𝑖 and aims to compute the value of 𝑓𝑖 ({𝑥 𝑗 } 𝑗 ∈V ). To do that, we need to
introduce the notions of perfect indistinguishability and view. First, the following definition states that two distributions
are perfectly indistinguishable if they follow the same distribution.

Definition 2.1 ([11]). Let X = {X(^)}^∈N andY = {Y(^)}^∈N be two distribution ensembles, where, for each ^ ∈ N,
X(^) and Y(^) are two random variables with the same probability space and the same range 𝑅(^). We say that X and Y
are perfectly indistinguishable, denoted by X

𝑝
≡Y, if the following holds∑︁

𝑟 ∈𝑅 (^)
| Pr[X(^) = 𝑟 ] − Pr[Y(^) = 𝑟 ] | = 0, ∀^ ∈ N.

Next, we introduce the notion of view. Informally, the view of an entity is the set of all the messages the entity can
see after the execution of the algorithm.

Definition 2.2 ([11, 22]). Let Π be an algorithm for computing 𝑓 = {𝑓𝑖 }𝑖∈V . For an execution of Π on a joint input

𝑥 = {𝑥𝑖 }𝑖∈V , the view of entity 𝑖 , denoted by VIEWΠ
𝑖
(𝑥), is VIEWΠ

𝑖
(𝑥) ≜ {𝑥𝑖 ,𝑚𝑖1, · · · ,𝑚

𝑖
𝑡𝑖
}, where 𝑡𝑖 is the total number

of messages received by entity 𝑖 , and for each ℓ ∈ {1, · · · , 𝑡𝑖 },𝑚𝑖ℓ is the ℓ-th message it receives.

This provides the basis to define perfect secrecy.

Definition 2.3 ([11]). Let Π be an algorithm for computing 𝑓 = {𝑓𝑖 }𝑖∈V . Given a joint input 𝑥 = {𝑥𝑖 }𝑖∈V , denote the

joint view of the entities in a set I ⊆ V by VIEWΠ
I (𝑥). Let A be the set of adversarial learners. We say that Π provides

perfect secrecy against A if there exists a probabilistic polynomial-time algorithm 𝑆 , such that for any admissible 𝑥 , it

holds that

𝑆 (A, {𝑥𝑖 }𝑖∈A , {𝑓𝑖 }𝑖∈A )
𝑝
≡VIEWΠ

A (𝑥). (3)

The condition Eq. (3) implies that whatever can been seen by A after the execution of Π can be simulated by an
algorithm 𝑆 using onlyA’s own inputs and outputs, andA cannot distinguish 𝑆 (A, {𝑥𝑖 }𝑖∈A , {𝑓𝑖 }𝑖∈A ) and VIEWΠ

A (𝑥)
even if it has unlimited computing power. In other words, the execution of Π does not provide A any additional
information beyond what it must know, i.e., A’s own inputs and outputs.

2.5 Design objectives

In this paper, we aim to design a privacy-preserving decentralized algorithm for the model aggregation Eq. (2) over a time-
varying sparse communication graph satisfying Assumption 2.1, such that the following properties are simultaneously
guaranteed:
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10 Yang Lu, Zhengxin Yu, and Neeraj Suri

• Correctness: For every round 𝑡 ∈ N, all the learners derive the correct global model \ (𝑡 ) given by Eq. (2), up to
a quantization error (which is introduced due to usage of fixed-point arithmetic so as to apply SSS; please refer
to part (i) in Section 4.2 and Remark 5.1).

• Privacy: The proposed algorithm protects the privacy of benign learners’ local models \ (𝑡 )
𝑖

’s against semi-honest
learners in the sense of perfect secrecy.

3 TECHNICAL PRELIMINARIES

In this paper, we achieve the objectives stated in Section 2.5 by integrating average consensus and Shamir’s secret
sharing. This section provides necessary technical preliminaries of the two techniques.

3.1 Consensus-based decentralized model aggregation

Average consensus is an effective method to achieve decentralized aggregation over sparse communication graphs. This
subsection first provides preliminaries on average consensus-based decentralized model aggregation, then introduces
the Metropolis-Hastings method to deal with time-varying communication graphs. More detailed discussions can be
found in [60, 68, 69].
Average consensus. Roughly speaking, this method enables a set of entities over a sparse connected communication
graph, each with an initial state, to iteratively interact with their neighbors and update their states, such that all the
entities’ states will asymptotically converge to the average of their initial states.

To apply the average consensus method, for each round 𝑡 of model aggregation, the communication graph G (𝑡 )

needs to be equipped with a weighted adjacency matrix 𝐴(𝑡 ) = [𝑎 (𝑡 )
𝑖 𝑗
] ∈ R𝑁×𝑁 such that 𝑎 (𝑡 )

𝑖 𝑗
> 0 if (𝑖, 𝑗) (𝑡 ) ∈ E (𝑡 )

and 𝑎 (𝑡 )
𝑖 𝑗

= 0 otherwise. For now, we assume that 𝐴(𝑡 ) is given and provide the average consensus update rule and its
convergence property. The construction of 𝐴(𝑡 ) will be illustrated afterwords.

With 𝐴(𝑡 ) , to carry out the model aggregation Eq. (2) in a decentralized manner, each learner 𝑖 iteratively constructs
a sequence of weighted local models {\̄ (𝑡 )

𝑖
(𝑘)}, where 𝑘 is the iteration index for the consensus algorithm below, such

that \̄ (𝑡 )
𝑖
(0) = 𝑤𝑖\ (𝑡 )𝑖 , and the update rule is given by

\̄
(𝑡 )
𝑖
(𝑘 + 1) = 𝑎 (𝑡 )

𝑖𝑖
\̄
(𝑡 )
𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡 )

𝑖

𝑎
(𝑡 )
𝑖 𝑗
\̄
(𝑡 )
𝑗
(𝑘) . (4)

For any 𝑘 ∈ N, let \̄ (𝑡 ) (𝑘) = {\̄ (𝑡 )
𝑖
(𝑘)}𝑖∈V be the learners’ joint state at iteration 𝑘 . Given an initial joint state

\̄ (𝑡 ) (0), we say that the learners asymptotically reach average consensus if all the learners’ states converge to the
average of their initial states as 𝑘 tends to infinity, i.e.,

lim
𝑘→∞

\̄
(𝑡 )
𝑖
(𝑘) = 1

𝑁

∑︁
𝑗 ∈V

\̄
(𝑡 )
𝑗
(0), ∀𝑖 ∈ V . (5)

If Eq. (5) is true, then each learner 𝑖’s state \̄ (𝑡 )
𝑖
(𝑘) will asymptotically converge to \̄ (𝑡 )

𝑖
(∞) = 1

𝑁

∑
𝑗 ∈V \̄

(𝑡 )
𝑗
(0) =

1
𝑁

∑
𝑗 ∈V 𝑤 𝑗\

(𝑡 )
𝑗

= 1
𝑁
\ (𝑡 ) , and hence each learner 𝑖 can derive the global model \ (𝑡 ) by computing 𝑁\̄ (𝑡 )

𝑖
(∞).

The following lemma provides a sufficient and necessary condition for reaching average consensus.

Lemma 3.1 ([68]). With 𝐴(𝑡 ) in each round 𝑡 of model aggregation, the learners can achieve asymptotic average

consensus Eq. (5) by the update rule Eq. (4) from any initial joint state \̄ (𝑡 ) (0) if and only if the following conditions are
Manuscript submitted to ACM
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simultaneously satisfied

𝜌 (𝐴(𝑡 ) − 1
𝑁

1𝑁 1𝑇𝑁 ) < 1, (6)

1𝑇𝑁𝐴
(𝑡 ) = 1𝑇𝑁 , (7)

𝐴(𝑡 )1𝑁 = 1𝑁 , (8)

where 1𝑁 is the 𝑁 -dimensional column vector with all ones, and 𝜌 (·) denotes the spectral radius3 of a square matrix.

The intuition of Lemma 3.1 lies in that condition (6) guarantees asymptotic consensus, while conditions (7) and (8)
ensure that the convergence is to the desired average point 1

𝑁

∑
𝑗 ∈V \̄

(𝑡 )
𝑗
(0).

The next question is how to construct 𝐴(𝑡 ) that satisfies all the conditions (6)–(8). One efficient approach is the
Metropolis-Hastings method, illustrated next.
Metropolis-Hastings method. For a time-varying communication graph, the Metropolis-Hastings method [69] can be
applied to update 𝐴(𝑡 ) to ensure asymptotic average consensus. In particular, for each round 𝑡 , based on its current
local communication topology, each learner 𝑖 constructs weights 𝑎 (𝑡 )

𝑖 𝑗
’s for all 𝑗 ∈ N̄ (𝑡 )

𝑖
as follows

𝑎
(𝑡 )
𝑖 𝑗

=


1

max{ |N (𝑡 )
𝑖
|, |N (𝑡 )

𝑗
| }+1

if 𝑗 ∈ N (𝑡 )
𝑖

1 − ∑
𝑗 ∈N (𝑡 )

𝑖

1
max{ |N (𝑡 )

𝑖
|, |N (𝑡 )

𝑗
| }+1

if 𝑗 = 𝑖,
(9)

where | · | denotes the cardinality of a set.
As an illustrative example, in Fig. 4, the figure on the left shows the communication topology between four learners,

and the matrix on the right is the corresponding weighted adjacency matrix 𝐴(𝑡 ) constructed by (9).

Fig. 4. An example of matrix 𝐴(𝑡 ) constructed by the Metropolis-Hastings method (9).

The following lemma states that 𝐴(𝑡 ) constructed by (9) satisfies all the conditions of Lemma 3.1.

Lemma 3.2 ([60]). Under Assumption 2.1, in each round 𝑡 , if 𝐴(𝑡 ) is constructed by (9), then the conditions (6)–(8) are
all satisfied.

3The spectral radius of a square matrix is the largest absolute value of its eigenvalues.
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12 Yang Lu, Zhengxin Yu, and Neeraj Suri

Under Assumption 2.1, by Lemmas 3.1 and 3.2, the update rule (4) with 𝐴(𝑡 ) constructed by (9) ensures asymptotic
average consensus (5). Notice that in running both (4) and (9), each learner only needs information from its neigh-
bors. Hence, the aforementioned consensus-based method realizes the model aggregation (2) over a time-varying
communication graph in a fully decentralized manner.

On the other hand, in implementing (4), each learner 𝑖 directly sends its state \̄ (𝑡 )
𝑖
(𝑘) at each consensus iteration 𝑘

to its neighbors. This causes the breach of its initial state \̄ (𝑡 )
𝑖
(0) and of its local training model \ (𝑡 )

𝑖
. Hence, the privacy

issue remains to be addressed for the implementation of (4).

Remark 3.1. Notice that the construction of 𝐴(𝑡 ) by (9) is completely local. That is, to construct 𝑎 (𝑡 )
𝑖 𝑗

, learner 𝑖 only

has to communicate with its neighbor 𝑗 ∈ N (𝑡 )
𝑖

, while the construction of 𝑎 (𝑡 )
𝑖 𝑗

is completely independent of all the other

learners and thus does not need a global coordination. This is in contrast to the works [7, 39, 56, 73], which need to perform

global coordinations to enable all the learners to collaboratively select a new learner (as the centralized server in [7, 56, 73],

and as the single update entity of the current training round in [39]) at the beginning of each training round.

3.2 Shamir’s secret sharing

In the paper, we will adopt SSS to facilitate privacy in the implementation of (4). This subsection provides some
preliminaries on how to use SSS to distribute a secret over a finite set of entities. More detailed discussions can be found
in [11, 61].
Shares generation. To distribute a secret 𝑠 over a set of entitiesV , SSS uses a polynomial of degree smaller than |V|
to generate |V| shares of 𝑠 , one share for one entity of V . Formally, given a prime number 𝑝 > |V| and a positive
integer 𝜏 < |V|, a secret 𝑠 ∈ Z𝑝 is split into |V| shares {H 𝑖 }𝑖∈V by Algorithm 1. In the algorithm, 𝑝 is the parameter
to set the underlying finite field for SSS, and 𝜏 is the degree of the polynomial used to generate shares of 𝑠 . After shares
generation, the shareH 𝑖 is sent to entity 𝑖 for all 𝑖 ∈ V .

Algorithm 1: Shamir’s secret shares generation

Syntax: {H 𝑖 }𝑖∈V = Algssg (𝑠, 𝑝, 𝜏,V).
The executor selects 𝜏 scalars 𝑐1, · · · , 𝑐𝜏 ∈ Z𝑝 uniformly at random with 𝑐𝜏 ≠ 0, defines a polynomialH as
H([) = 𝑠 + 𝑐1[ + · · · + 𝑐𝜏[𝜏 , and computesH 𝑖 = H(𝑖) mod 𝑝 for all 𝑖 ∈ V .

Reconstruction. As given by the following lemma, the secret 𝑠 can be reconstructed by collecting arbitrary 𝜏 + 1 or
more shares via the technique of Lagrange interpolation. This property directly follows the fact that a polynomial of
degree 𝜏 can be uniquely determined by any 𝜏 + 1 or more points of the polynomial.

Lemma3.3 ([11]). Let (𝑠, 𝑝, 𝜏,V) and {H 𝑖 }𝑖∈V be a set of inputs and corresponding outputs of Algorithm 1, respectively.

Then for any set C ⊆ V with |C| ≥ 𝜏 + 1, 𝑠 can be reconstructed as 𝑠 =
∑
𝑖∈CH 𝑖𝛿C,𝑖 mod 𝑝 , where

𝛿C,𝑖 =
∏

𝑗 ∈C, 𝑗≠𝑖

𝑗

𝑗 − 𝑖 mod 𝑝, ∀𝑖 ∈ C. (10)

Privacy. The privacy property of SSS is given by the following lemma, which states that the collection of any 𝜏 or less
shares generated by Algorithm 1 contains no information of 𝑠 . This property follows the fact that it takes at least 𝜏 + 1
points to define a polynomial of degree 𝜏 .

Lemma 3.4 ([11]). SSS provides perfect secrecy against any set I ⊆ V such that |I | ≤ 𝜏 .
Manuscript submitted to ACM
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4 NEW CHALLENGES IN ALGORITHM DESIGN AND ANALYSIS

In this section, we first provide the high-level idea of algorithm design based on integrating SSS with average consensus.
After that, we identify new challenges to a trivial integration brought by the nature of the concerned problem setting.

4.1 High-level description

As mentioned, in this paper, we achieve privacy-preserving decentralized federated learning by integrating SSS with
the average consensus update rule (4). Informally speaking, to protect the privacy of \̄ (𝑡 )

𝑖
(0), each learner 𝑖 uses a new

state 𝑠 (𝑡 )
𝑖
(0) as the initial state in executing (4). The new states 𝑠 (𝑡 )

𝑖
(0)’s need to simultaneously satisfy:

• Correctness: The average consensus point under the initial states 𝑠 (𝑡 )
𝑖
(0)’s is or can be used to locally derive

the desired global model \ (𝑡 ) .
• Privacy: The observation and the derivation process of 𝑠 (𝑡 )

𝑖
(0)’s do not disclose any information of \̄ (𝑡 )

𝑖
(0)’s.

To this end, the learners generate 𝑠 (𝑡 )
𝑖
(0)’s via SSS, as informally illustrated as follows. First, by Algorithm 1, each

learner 𝑖 uses a polynomial of degree |N (𝑡 )
𝑖
| to generate |N (𝑡 )

𝑖
| + 1 shares of \̄ (𝑡 )

𝑖
(0), distributes |N (𝑡 )

𝑖
| shares to

its corresponding neighbors, while keeping one share private to itself. After the exchange of shares, each learner 𝑖
aggregates the |N (𝑡 )

𝑖
| shares received from its neighbors and the one share generated and held secretly by itself to form

𝑠
(𝑡 )
𝑖
(0), and uses it as the initial state in executing (4).
We next informally discuss the correctness and privacy intuitions of the above procedure.

• Correctness: By the convergence property of (4), all the learners can derive
∑
𝑖∈V 𝑠

(𝑡 )
𝑖
(0), which is the ag-

gregation of all the shares of all the learners’ local models {\̄ (𝑡 )
𝑖
(0)}𝑖∈V . Notice that, by the reconstruction

property of SSS, each individual \̄ (𝑡 )
𝑖
(0) can be reconstructed by aggregating all of its |N (𝑡 )

𝑖
| + 1 shares. Hence,∑

𝑖∈V 𝑠
(𝑡 )
𝑖
(0) can be used to reconstruct

∑
𝑖∈V \̄

(𝑡 )
𝑖
(0), which is the global model \ (𝑡 ) .

• Privacy: By the privacy property of SSS, \̄ (𝑡 )
𝑖
(0) is perfectly secret if and only if not all of its |N (𝑡 )

𝑖
| + 1 shares

are known to the adversarial learners. It can be perceived that a necessary condition for this is that learner 𝑖
has at least one benign neighbor.

4.2 New challenges

The last subsection presents a high-level framework based on the integration of the consensus method and SSS. However,
for the concerned problem setting, a trivial integration is far from enough. In this subsection, we identify new challenges
in terms of design and analysis which are critical for establishing rigorous correctness and privacy properties. Besides,
we also briefly illustrate how these challenges are addressed in this paper, while the details are provided in Section 5
and Section 6.

There are four major challenges, as detailed next. Specifically, the first two are due to the real-valued setting of our
problem of interest, and bring new challenges to correctness guarantee. The last two stem from more complicated
information flow caused by the iterative nature of the consensus process as well as time-varying communication
topology between successive training rounds, and bring new challenges to privacy analysis.
(i) Signed real-valued models. The standard SSS scheme involves modular operations and has to be implemented over
non-negative integers. However, the training models in federated learning usually take signed real values. To address
this mismatch, we propose a transformation between non-negative integers and signed real numbers (given by (15)).
Roughly speaking, the learners transform their local models into integers and apply the procedure described in the last
subsection. After the final non-negative integer-valued consensus model is derived, each agent then uses the proposed
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transformation to turn it back to a signed real-valued model. If the parameter 𝑝 in Algorithm 1 is sufficiently large (a
sufficient lower bound of 𝑝 is provided by (16)), then it is guaranteed that the transformed real-valued model is the
correct global model.
(ii) Termination of consensus iteration. As mentioned in the last paragraph, the learners input integer-valued models
into the procedure described in Section 4.1. Hence, theoretically, the asymptotic consensus result is a non-negative
integer-valued model. To reconstruct the global model by SSS, before the integer-to-real transformation, this model
needs to be exerted a modulo 𝑝 operation (please refer to Lemma 3.3 and (14)). However, since the convergence of
the consensus update rule is only asymptotic and the weights 𝑎 (𝑡 )

𝑖 𝑗
’s in (4) are decimals, the intermediate results of

(4) may also be decimals. Due to the subsequent modulo 𝑝 operation, even if the terminating result is close to the
theoretical integer-valued result, there could be a large deviation in the remainder after the modulo operation. To see
this, consider the case where the terminating result is 99.4 and rounded to 99, the theoretical result is 100, and the value
of 𝑝 is 50. After the modulo 𝑝 operation, the remainders for the terminating result and the theoretical result are 49
and 0, respectively. This shows that, compared to usual consensus applications, we need a more careful control on
the termination condition. To address this challenge, we identify a sufficient lower bound of the number of consensus
iterations (given by (17)) that guarantees that the absolute difference between the terminating and the theoretical results
is strictly smaller than 0.5, and hence the result after the rounding operation is just the theoretical result.
(iii) Privacy leakage during consensus process. For the standard SSS-based secure sum computation over a complete
communication graph, each entity receives all the other entities’ shares just once and then performs an aggregation. For
this standard scheme, as long as there is an honest majority (more specifically, the number of adversarial entities is no
greater than the degree of the polynomial used to generated shares), then the adversarial entities cannot gain anything
beyond the sum of all the entities’ private inputs. However, in our case, since the communication graph is sparse, secure
sum computation is further facilitated by a consensus process, where the shares need to be iteratively exchanged and
aggregated according to the consensus update rule and the underlying communication topology. Such multiple rounds
of communications may cause additional privacy leakage, e.g., partial sum (the sum of the local models of a subset of
learners). This indicates that new privacy analysis is needed for the consensus process. To address this challenge, we
identify a graph-oriented condition, which can be used to characterize the view of the adversarial learners throughout
the whole consensus process (please refer to Lemma 6.1).
(iv) Privacy property under time-varying communication topology. Besides the privacy issue caused by the
consensus process, the time-varying communication topology further induces new challenges to privacy preservation.
Specifically, due to time-varying communication topology, one-shot privacy preservation (privacy for one round of
training) is not enough. Instead, wemust establish a privacy conditionwith respect to the evolution of the communication
topology. To address this challenge, we further extend the graph-oriented condition mentioned in the last paragraph to
derive a sufficient and necessary condition under which perfect secrecy is achieved throughout the evolution of the
communication topology (please refer to Theorem 6.2).

5 PRIVACY-PRESERVING DECENTRALIZED ALGORITHM DESIGN

In this section, the proposed privacy-preserving decentralized federated learning algorithm for the problem setting
characterized by Assumption 2.1 is developed. First, we illustrate the design details and highlight how the challenges
identified in the last section are addressed. A summary of the whole design is provided afterwards.
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5.1 Design details

In this paper, we use finite precision to cope with transformations between real numbers and integers. In particular,
throughout the paper, the precision level is set by 𝜎 ∈ N, that is, for any real number, only the first 𝜎 fraction digits are
kept while rest ones are dropped.

The overall design has three phases, secret shares generation of local models, consensus iteration, and global model
reconstruction. The design is detailed next.
Secret shares generation of local models. All the learners first agree on a positive prime number 𝑝 , which can be
realized by a maximum consensus algorithm offline. We next fix a training round 𝑡 and a learner 𝑖 , and illustrate the
secret shares generation of \̄ (𝑡 )

𝑖
(0).

First, for each 𝑗 ∈ N̄ (𝑡 )
𝑖

, learner 𝑖 computes 𝛿 (𝑡 )
N̄ (𝑡 )
𝑖
, 𝑗
by (10). Then, for each 𝑙 ∈ {1, · · · , 𝑛} (recall that 𝑛 is the

dimension of the model to be trained), learner 𝑖 first transforms \̄ (𝑡 )
𝑖𝑙
(0) into an integer via multiplying by 10𝜎 , and then

applies Algorithm 1 to use a polynomial of degree |N (𝑡 )
𝑖
| to generate |N̄ (𝑡 )

𝑖
| = |N (𝑡 )

𝑖
| + 1 shares of integer 10𝜎 \̄ (𝑡 )

𝑖𝑙
(0),

denoted as {H 𝑗 (𝑡 )
𝑖𝑙
}
𝑗 ∈N̄ (𝑡 )

𝑖

= Algssg (10𝜎 \̄ (𝑡 )
𝑖𝑙
(0), 𝑝, |N (𝑡 )

𝑖
|, N̄ (𝑡 )

𝑖
). In light of Lemma 3.3, to facilitate later reconstruction

of 10𝜎 \̄ (𝑡 )
𝑖𝑙
(0), learner 𝑖 further computes {S 𝑗 (𝑡 )

𝑖𝑙
}
𝑗 ∈N̄ (𝑡 )

𝑖

as

S 𝑗 (𝑡 )
𝑖𝑙

= H 𝑗 (𝑡 )
𝑖𝑙

𝛿
(𝑡 )
N̄ (𝑡 )
𝑖
, 𝑗

mod 𝑝, ∀𝑗 ∈ N̄ (𝑡 )
𝑖

. (11)

For each 𝑗 ∈ N̄ (𝑡 )
𝑖

, with S 𝑗 (𝑡 )
𝑖𝑙

ready for all 𝑙 ∈ {1, · · · , 𝑛}, learner 𝑖 forms S 𝑗 (𝑡 )
𝑖

= {S 𝑗 (𝑡 )
𝑖𝑙
}𝑙 ∈{1,· · · ,𝑛} . Then learner 𝑖

sends S 𝑗 (𝑡 )
𝑖

to learner 𝑗 for each 𝑗 ∈ N (𝑡 )
𝑖

, while keeping S𝑖 (𝑡 )
𝑖

private to itself.
Consensus iteration. The learners agree on a positive integer 𝐾 , which is the number of iterations for running the
average consensus algorithm. Again, this can be realized by a maximum consensus algorithm offline. In each training
round 𝑡 , upon receiving S𝑖 (𝑡 )

𝑗
generated as above from all of its neighbors 𝑗 ∈ N (𝑡 )

𝑖
, each learner 𝑖 constructs its new

initial state 𝑠 (𝑡 )
𝑖
(0) as

𝑠
(𝑡 )
𝑖
(0) =

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖

S𝑖 (𝑡 )
𝑗

mod 𝑝, (12)

and sends 𝑠 (𝑡 )
𝑖
(0) to learner 𝑗 for all 𝑗 ∈ N (𝑡 )

𝑖
. Then, from 𝑘 = 0 to 𝑘 = 𝐾 − 1, each learner 𝑖 iteratively updates its state

𝑠
(𝑡 )
𝑖
(𝑘) by

𝑠
(𝑡 )
𝑖
(𝑘 + 1) = 𝑎 (𝑡 )

𝑖𝑖
𝑠
(𝑡 )
𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡 )

𝑖

𝑎
(𝑡 )
𝑖 𝑗
𝑠
(𝑡 )
𝑗
(𝑘), (13)

and sends 𝑠 (𝑡 )
𝑖
(𝑘 + 1) to learner 𝑗 for all 𝑗 ∈ N (𝑡 )

𝑖
.

Global model reconstruction. At the end of the consensus iteration, each learner 𝑖 first performs the following
roundness4 and modular operations over 𝑠 (𝑡 )

𝑖
(𝐾)

𝑧
(𝑡 )
𝑖𝑙

= ⌊𝑁𝑠 (𝑡 )
𝑖𝑙
(𝐾)⌉ mod 𝑝, ∀𝑙 ∈ {1, · · · , 𝑛}. (14)

In (14), the rounding operation is needed to ensure perfect correctness. Specifically, with𝐴(𝑡 ) generated by (9), the update
rule (13) ensures that 𝑠 (𝑡 )

𝑖
(𝑘) asymptotically converges to the point 1

𝑁

∑
𝑗 ∈V 𝑠

(𝑡 )
𝑗
(0). Hence, for each 𝑙 ∈ {1, · · · , 𝑛},

4Given 𝑎 ∈ R, denote by ⌊𝑎⌋ the greatest integer less than or equal to 𝑎; by ⌈𝑎⌉ the least integer greater than or equal to 𝑎; and by ⌊𝑎⌉ the roundness of
𝑎, such that ⌊𝑎⌉ = ⌊𝑎⌋ if 𝑎 − ⌊𝑎⌋ < 0.5, and ⌊𝑎⌉ = ⌈𝑎⌉ if ⌈𝑎⌉ − 𝑎 ≤ 0.5.
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𝑁𝑠
(𝑡 )
𝑖𝑙
(𝑘) asymptotically converges to the point

∑
𝑗 ∈V 𝑠

(𝑡 )
𝑗𝑙
(0), which is a non-negative integer. However, since the

convergence is asymptotic, there could be a difference between 𝑁𝑠 (𝑡 )
𝑖𝑙
(𝐾) and ∑

𝑗 ∈V 𝑠
(𝑡 )
𝑗𝑙
(0). If 𝐾 is large enough such

that the condition |𝑁𝑠 (𝑡 )
𝑖𝑙
(𝐾) −∑𝑗 ∈V 𝑠

(𝑡 )
𝑗𝑙
(0) | < 0.5 holds, then it is guaranteed that the rounded integer in (14) is equal

to the correct consensus point, i.e., ⌊𝑁𝑠 (𝑡 )
𝑖𝑙
(𝐾)⌉ = ∑

𝑗 ∈V 𝑠
(𝑡 )
𝑗𝑙
(0). Based on this condition, a sufficient lower bound of 𝐾

is given by (17) in Section 6.1.
Notice that each 𝑧 (𝑡 )

𝑖𝑙
is a non-negative integer smaller than 𝑝 (because it is a remainder of modulo 𝑝 operation). Each

learner 𝑖 then transforms 𝑧 (𝑡 )
𝑖𝑙

for every 𝑙 ∈ {1, · · · , 𝑛} back to a signed real number as follows

\̃
(𝑡 )
𝑖𝑙

=

{
𝑧
(𝑡 )
𝑖𝑙
/10𝜎 , if 0 ≤ 𝑧 (𝑡 )

𝑖𝑙
≤ (𝑝 − 1)/2,

(𝑧 (𝑡 )
𝑖𝑙
− 𝑝)/10𝜎 , if (𝑝 + 1)/2 ≤ 𝑧 (𝑡 )

𝑖𝑙
< 𝑝.

(15)

In (15), the divide by 10𝜎 operation transforms the integer 𝑧 (𝑡 )
𝑖𝑙

into a real number \̃ (𝑡 )
𝑖𝑙

with 𝜎 fraction digits, while the

sign of \̃ (𝑡 )
𝑖𝑙

is determined by the location of 𝑧 (𝑡 )
𝑖𝑙

in the range of [0, 𝑝). For sufficiently large 𝑝 , the sign correctness

is guaranteed. Roughly, 𝑝 needs to be larger than twice of 10𝜎 |\ (𝑡 )
𝑙
|, as informally explained next. Following the

reconstruction property of SSS and the convergence of the consensus update rule, we should have 10𝜎\ (𝑡 )
𝑙

mod 𝑝 = 𝑧
(𝑡 )
𝑖𝑙

.

The question is, given the remainder 𝑧 (𝑡 )
𝑖𝑙

, how to use it to reconstruct 10𝜎\ (𝑡 )
𝑙

with the correct sign. Under the condition

𝑝 > 2 × 10𝜎 |\ (𝑡 )
𝑙
|, if \ (𝑡 )

𝑙
≥ 0, then the remainder 𝑧 (𝑡 )

𝑖𝑙
must locate in the left half of [0, 𝑝), while if \ (𝑡 )

𝑙
< 0, then 𝑧 (𝑡 )

𝑖𝑙

must locate in the right half of [0, 𝑝). Hence, conversely, as given by (15), the location of 𝑧 (𝑡 )
𝑖𝑙

in [0, 𝑝) can be used to

correctly reconstruct the sign of \ (𝑡 )
𝑙

. A rigorous sufficient lower bound of 𝑝 is given by (16) in Section 6.1.

Remark 5.1. Notice that, to enable usage of SSS, fixed-point arithmetic is applied by setting the precision level 𝜎 . This

will cause a quantization error, as, for each learner’s local model, only the first 𝜎 fraction digits are kept while the rest are

dropped. Consequently, with 𝑁 learners, the quantization error in one round of model aggregation is upper bounded by

𝑁10−𝜎 . Notice that this quantization error is fundamentally different from the privacy-utility trade-off in differentially

private schemes. There, the accuracy loss is caused by usage of random noises and a sufficient amount of accuracy loss is

necessary to have predefined privacy level. In contrary, in our case, the precision level does not affect privacy and it can be

tuned to reduce the quantization error arbitrarily small.

5.2 Overall algorithm design summary

Algorithm 2 presents our overall design, with its operational steps summarized next.
At step 1, all the learners agree on three parameters. In particular, 𝑝 is the parameter to set the finite field for SSS, 𝑇

is the number of training rounds, and 𝐾 is the number of consensus iterations in each training round. As mentioned in
the last subsection, these parameters can be realized by a maximum consensus algorithm offline. At step 2, each learner
𝑖 sets the initial model \1,0

𝑖
for its local training in the first round. At step 3, each learner 𝑖 trains its local model \ (𝑡 )

𝑖
by

F𝑖 with its initial model \𝑡,0
𝑖

and dataset 𝐷𝑖 . At step 4, based on its current local communication topology, each learner
𝑖 constructs its local weights 𝑎 (𝑡 )

𝑖 𝑗
in 𝐴(𝑡 ) by the Metropolis-Hastings method. At steps 5–8, each learner 𝑖 applies SSS

to generate shares of 10𝜎 \̄ (𝑡 )
𝑖
(0) and distributes the shares {S 𝑗 (𝑡 )

𝑖
}
𝑗 ∈N (𝑡 )

𝑖

to its neighbors. At step 9, each learner 𝑖

constructs the initial state 𝑠 (𝑡 )
𝑖
(0) for the consensus iteration as the sum of all the shares assigned to it. At step 10,

each learner 𝑖 updates its state 𝑠 (𝑡 )
𝑖
(𝑘) by the average consensus algorithm with 𝐴(𝑡 ) . At steps 11–13, each learner 𝑖
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Algorithm 2: Privacy-preserving decentralized federated learning

1 The learners agree on a positive prime number 𝑝 and two positive integers 𝑇 and 𝐾 ; // Agreement of
hyper-parameters

foreach 𝑖 ∈ V do
2 Learner 𝑖 arbitrarily sets \ (1,0)

𝑖
∈ R𝑛 ; // Local training initialization

for 𝑡 = 1; 𝑡 ≤ 𝑇 ; 𝑡 = 𝑡 + 1 do
foreach 𝑖 ∈ V do

3 Learner 𝑖 trains \ (𝑡 )
𝑖

by (1); // Local training
foreach 𝑗 ∈ N̄ (𝑡 )

𝑖
do

4 Learner 𝑖 constructs 𝑎 (𝑡 )
𝑖 𝑗

by (9); // Construction of local weights in 𝐴(𝑡 )

5 Learner 𝑖 constructs 𝛿 (𝑡 )
N̄ (𝑡 )
𝑖
, 𝑗
by (10); // Construction of polynomials for Lagrange interpolation

foreach 𝑙 ∈ {1, · · · , 𝑛} do
6 Learner 𝑖 generates {H 𝑗 (𝑡 )

𝑖𝑙
}
𝑗 ∈N̄ (𝑡 )

𝑖

= Algssg (10𝜎 \̄ (𝑡 )
𝑖𝑙
(0), 𝑝, |N (𝑡 )

𝑖
|, N̄ (𝑡 )

𝑖
) by Algorithm 1; //

Generation of secret shares of local models
foreach 𝑗 ∈ N̄ (𝑡 )

𝑖
do

7 Learner 𝑖 computes S 𝑗 (𝑡 )
𝑖𝑙

by (11); // Construction of secret shares after Lagrange interpolation

foreach 𝑗 ∈ N̄ (𝑡 )
𝑖

do
8 Learner 𝑖 forms S 𝑗 (𝑡 )

𝑖
= {S 𝑗 (𝑡 )

𝑖𝑙
}𝑙 ∈{1,· · · ,𝑛} and sends S 𝑗 (𝑡 )

𝑖
to learner 𝑗 ; // Distribution of secret

shares

foreach 𝑖 ∈ V do
9 Learner 𝑖 constructs 𝑠 (𝑡 )

𝑖
(0) by (12) and sends it to learner 𝑗 , ∀𝑗 ∈ N (𝑡 )

𝑖
; // Construction of initial

states for consensus iteration
for 𝑘 = 0; 𝑘 < 𝐾 ; 𝑘 = 𝑘 + 1 do

foreach 𝑖 ∈ V do
10 Learner 𝑖 constructs 𝑠 (𝑡 )

𝑖
(𝑘 + 1) by (13) and sends it to learner 𝑗 , ∀𝑗 ∈ N (𝑡 )

𝑖
; // Average consensus

foreach 𝑖 ∈ V do
foreach 𝑙 ∈ {1, · · · , 𝑛} do

11 Learner 𝑖 constructs 𝑧 (𝑡 )
𝑖𝑙

by (14); // Roundness operation
12 Learner 𝑖 constructs \̃ (𝑡 )

𝑖𝑙
by (15); // Transformation back to signed real numbers

13 Learner 𝑖 forms \̃ (𝑡 )
𝑖

= {\̃ (𝑡 )
𝑖𝑙
}𝑙 ∈{1,· · · ,𝑛} ; // Form the trained model as a vector

14 Learner 𝑖 sets \ (𝑡+1,0)
𝑖

= \̃
(𝑡 )
𝑖

. // Update initial model for the next round’s local training

transforms the consensus model back to a signed real-valued model \̃ (𝑡 )
𝑖

. At step 14, each learner 𝑖 sets \̃ (𝑡 )
𝑖

as the
initial model \ (𝑡+1,0)

𝑖
for its local training in round 𝑡 + 1.

In Algorithm 2, communications between learners incur at steps 4, 8, 9 and 10. Particularly, at step 4, each learner
𝑖 sends the scalar |N (𝑡 )

𝑖
| to each of its neighbors. Thus, at this step, each learner 𝑖 sends (and also receives) |N (𝑡 )

𝑖
|

scalars in total. At each of steps 8, 9 and 10, each learner 𝑖 sends an 𝑛-dimensional vector to each of its neighbors (S 𝑗 (𝑡 )
𝑖

,
𝑠
(𝑡 )
𝑖
(0), and 𝑠 (𝑡 )

𝑖
(𝑘 + 1), respectively). Thus, at each of these three steps, each learner 𝑖 sends (and also receives) |N (𝑡 )

𝑖
|

𝑛-dimensional vectors in total.
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Remark 5.2. It is worth noting that Algorithm 2 requires a one-time global coordination for determining the hyper-

parameters, 𝑝 , 𝑇 and 𝐾 , during the initialization step (step 1 of Algorithm 2), and this one-time coordination can be carried

out offline. However, Algorithm 2 does not have any repeated global coordinations throughout the loop of the training phase

(steps 2–14 of Algorithm 2). This is in contrast to the schemes in [7, 39, 56, 73], which incur repeated global coordinations

at each round of training. The frequency of such global coordinations should be minimized as they introduce additional

computational burdens and communication delays, especially for sparse communication topologies without a connect-to-all

entity, where a global coordination itself usually has to be implemented via an additional consensus process.

6 CORRECTNESS, PRIVACY, AND VULNERABILITY ANALYSIS

This section first establishes the correctness and privacy properties for Algorithm 2. After that, based on the privacy
property, vulnerability analysis is further provided.

6.1 Correctness analysis

The correctness property of Algorithm 2 is established by the following theorem, which states that each learner 𝑖 ∈ V
derives the correct aggregated global model \ (𝑡 ) for each round 𝑡 .

Theorem 6.1. Suppose that Assumption 2.1 holds. By Algorithm 2, with sufficiently large 𝑝 and 𝐾 such that

𝑝 > max{𝑁, 1 + 2 × 10𝜎𝑁 max
𝑡,𝑖,𝑙
|\ (𝑡 )
𝑖𝑙
|}, (16)

max
𝑡

2𝑝
√
𝑁 ∥𝑁 (𝐴(𝑡 ) )𝐾 − 1𝑁 1𝑇𝑁 ∥ < 1, (17)

where ∥ · ∥ the ℓ2 norm of a matrix, it holds that \̃ (𝑡 )
𝑖

= \ (𝑡 ) for all 𝑖 ∈ V and all 𝑡 ∈ {1, · · · ,𝑇 }.

Proof: By Lemma 3.3, we have ∑︁
𝑗 ∈N̄𝑖

S 𝑗 (𝑡 )
𝑖𝑙
≡ 10𝜎 \̄ (𝑡 )

𝑖𝑙
(0) mod 𝑝. (18)

By (12), we have ∑︁
𝑖∈V

𝑠
(𝑡 )
𝑖
(0) ≡

∑︁
𝑖∈V

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖

S𝑖 (𝑡 )
𝑗

mod 𝑝. (19)

Notice that
∑
𝑖∈V

∑
𝑗 ∈N̄ (𝑡 )

𝑖

S𝑖 (𝑡 )
𝑗

is just the sum of all shares generated by all the 𝑁 learners. Hence, by a rearrangement
of the summation order, we have ∑︁

𝑖∈V

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖

S𝑖 (𝑡 )
𝑗

=
∑︁
𝑖∈V

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖

S 𝑗 (𝑡 )
𝑖

. (20)

By (18), (19) and (20), we have ∑︁
𝑖∈V

𝑠
(𝑡 )
𝑖
(0) ≡

∑︁
𝑖∈V

10𝜎 \̄ (𝑡 )
𝑖
(0) mod 𝑝. (21)

Fix any 𝑙 ∈ {1, · · · , 𝑛}. Let 𝑠𝑙 (𝑡 ) (𝑘) = {𝑠 (𝑡 )
𝑖𝑙
(𝑘)}𝑖∈V . By (13), we obtain

𝑠𝑙 (𝑡 ) (𝑘 + 1) = 𝐴(𝑡 )𝑠𝑙 (𝑡 ) (𝑘), (22)
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which further leads to

𝑠𝑙 (𝑡 ) (𝑘) = (𝐴(𝑡 ) )𝑘𝑠𝑙 (𝑡 ) (0) . (23)

Under Assumption 2.1, by Lemmas 3.1 and 3.2, 𝑠 (𝑡 )
𝑖𝑙
(𝑘) asymptotically converges to 1

𝑁
1𝑇
𝑁
𝑠𝑙 (𝑡 ) (0), and hence 𝑁𝑠 (𝑡 )

𝑖𝑙
(𝑘)

asymptotically converges to 1𝑇
𝑁
𝑠𝑙 (𝑡 ) (0) for all 𝑖 ∈ V . Notice that, for all 𝑖 ∈ V , it holds that 0 ≤ 𝑠 (𝑡 )

𝑖𝑙
(0) < 𝑝 , because

𝑠
(𝑡 )
𝑖𝑙
(0) is a remainder of modulo 𝑝 operation derived by (12). Since 𝑠𝑙 (𝑡 ) (0) is an 𝑁 -dimensional vector, we then have

∥𝑠𝑙 (𝑡 ) (0)∥ < 𝑝
√
𝑁 . (24)

With a slight abuse of notation, let 𝐴(𝑡 )𝐾
𝑖

be the 𝑖-th row of (𝐴(𝑡 ) )𝐾 . By (17), (23) and (24), we have

|𝑁𝑠 (𝑡 )
𝑖𝑙
(𝐾) − 1𝑇𝑁 𝑠

𝑙 (𝑡 ) (0) |

= |𝑁𝐴(𝑡 )𝐾
𝑖

𝑠𝑙 (𝑡 ) (0) − 1𝑇𝑁 𝑠
𝑙 (𝑡 ) (0) | (25a)

≤ ∥𝑁𝐴(𝑡 )𝐾
𝑖
− 1𝑇𝑁 ∥∥𝑠

𝑙 (𝑡 ) (0)∥ (25b)

≤ ∥𝑁 (𝐴(𝑡 ) )𝐾 − 1𝑁 1𝑇𝑁 ∥∥𝑠
𝑙 (𝑡 ) (0)∥ (25c)

< ∥𝑁 (𝐴(𝑡 ) )𝐾 − 1𝑁 1𝑇𝑁 ∥𝑝
√
𝑁 (25d)

< 0.5, (25e)

where the equality (25a) is due to (23); the inequality (25b) is a well-known relationship for norm operators; the
inequality (25c) is because 𝑁𝐴(𝑡 )𝐾

𝑖
− 1𝑇

𝑁
is the 𝑖-th row of 𝑁 (𝐴(𝑡 ) )𝐾 − 1𝑁 1𝑇

𝑁
, and the ℓ2 norm of any one row of a

matrix is no greater than that of the whole matrix; the inequality (25d) is due to (24); and the inequality (25e) is due to
(17). Notice that 1𝑇

𝑁
𝑠𝑙 (𝑡 ) (0) is a non-negative integer. By (25), we then have ⌊𝑁𝑠 (𝑡 )

𝑖𝑙
(𝐾)⌉ = 1𝑇

𝑁
𝑠𝑙 (𝑡 ) (0) = ∑

𝑗 ∈V 𝑠
(𝑡 )
𝑗
(0).

By (21), we then have

⌊𝑁𝑠 (𝑡 )
𝑖𝑙
(𝐾)⌉ ≡

∑︁
𝑗 ∈V

10𝜎 \̄ (𝑡 )
𝑗𝑙
(0) =

∑︁
𝑗 ∈V

10𝜎𝑤 𝑗\
(𝑡 )
𝑗𝑙

mod 𝑝. (26)

By (16), noticing that𝑤 𝑗 ≤ 1 for all 𝑗 ∈ V , we have

𝑝 > 1 + 2 × 10𝜎𝑁 max
𝑡,𝑖,𝑙
|\ (𝑡 )
𝑖𝑙
|

≥ 1 + 2 × 10𝜎
∑︁
𝑗 ∈V
|𝑤 𝑗\ (𝑡 )𝑗𝑙 |

≥ 1 + 2 × 10𝜎 |
∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙
|. (27)

By (27), it is either

0 ≤ 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙

< (𝑝 − 1)/2 (28)

or

−(𝑝 − 1)/2 < 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙

< 0. (29)
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In the case of (28), by (14) and (26), we have

𝑧
(𝑡 )
𝑖𝑙

= 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙

mod 𝑝 = 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙

(30)

By (28) and (30), we have 0 ≤ 𝑧 (𝑡 )
𝑖𝑙

< (𝑝 − 1)/2. By (30) and (15), we then have

\̃
(𝑡 )
𝑖𝑙

= 𝑧
(𝑡 )
𝑖𝑙
/10𝜎 =

∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙
. (31)

In the case of (29), by (14) and (26), we have

𝑧
(𝑡 )
𝑖𝑙

= 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙

mod 𝑝 = 𝑝 + 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙

(32)

By (29) and (32), we have (𝑝 + 1)/2 < 𝑧
(𝑡 )
𝑖𝑙

< 𝑝 . By (32) and (15), we then have

\̃
(𝑡 )
𝑖𝑙

= (𝑧 (𝑡 )
𝑖𝑙
− 𝑝)/10𝜎 =

∑︁
𝑗 ∈V

𝑤 𝑗\
(𝑡 )
𝑗𝑙
. (33)

By (31) and (33), we have that \̃ (𝑡 )
𝑖𝑙

=
∑
𝑗 ∈V 𝑤 𝑗\

(𝑡 )
𝑗𝑙

always holds. The above analysis holds for all 𝑡 ∈ {1, · · · ,𝑇 }, all

𝑖 ∈ V , and all 𝑙 ∈ {1, · · · , 𝑛}. Therefore, by (2), we have that \̃ (𝑡 )
𝑖

= \ (𝑡 ) for all 𝑖 ∈ V and all 𝑡 ∈ {1, · · · ,𝑇 }. This
completes the proof.

Remark 6.1. By the analysis above, we can see that perfect average consensus is reached after a finite 𝐾 number of

iterations. We note that this finite average consensus is only due to the usage of finite precision. By (16) and (17), we can see

that the bound of 𝐾 increases with the value of the precision level 𝜎 . When 𝜎 tends to infinity, then 𝐾 also tends to infinity,

which indicates asymptotic average consensus.

6.2 Privacy analysis

To develop the privacy property of Algorithm 2, we first introduce the following notions.
Let B and A be the sets of benign and adversarial learners, respectively. Notice that B ∪ A = V . Given any

round 𝑡 ∈ {1, · · · ,𝑇 }, we say that a subset B𝑠 ⊆ B of benign learners are surrounded by A in G (𝑡 ) if there exists
a connected subgraph of G (𝑡 ) consisting of all the benign learners in B𝑠 but no benign learners in B\B𝑠 and no
adversarial learners in A, such that for each 𝑖 ∈ B𝑠 , it holds that N (𝑡 )𝑖 ∩ (B\B𝑠 ) = ∅. That is, for every benign learner
in B𝑠 , all of its benign neighbors, if any, are inside B𝑠 . Let B̂ (𝑡 ) be the set containing all such sets B𝑠 ’s in round 𝑡 , i.e.,
B̂ (𝑡 ) = {B𝑠 ⊆ B : the learners in B𝑠 are surrounded by A in G (𝑡 ) }.

First, the following lemma establishes the view of the adversarial learners throughout the execution of Algorithm 2.

Lemma 6.1. By Algorithm 2, in each round 𝑡 ∈ {1, · · · ,𝑇 }, the adversarial learners in A can obtain the value of

{∑𝑖∈B𝑠 \̄ (𝑡 )𝑖 (0)}B𝑠 ∈B̂ (𝑡 ) , but nothing beyond it.
Proof: Fix any 𝑡 ∈ {1, · · · ,𝑇 } for concreteness of illustration. Consider any B𝑠 ∈ B̂ (𝑡 ) . Let B̄𝑠 be the complementary

set of B𝑠 inV , i.e., B̄𝑠 = V\B𝑠 . For each 𝑙 ∈ {1, · · · , 𝑛}, let 𝑠𝑙 (𝑡 )B𝑠 (𝑘) = {𝑠
(𝑡 )
𝑖𝑙
(𝑘)}𝑖∈B𝑠 and 𝑠

𝑙 (𝑡 )
B̄𝑠
(𝑘) = {𝑠 (𝑡 )

𝑖𝑙
(𝑘)}𝑖∈B̄𝑠 . With

a slight abuse of notation, let 𝐴(𝑡 )𝑘B𝑠 be the rows of (𝐴(𝑡 ) )𝑘 corresponding to 𝑠𝑙 (𝑡 )B𝑠 (𝑘). Moreover, let 𝐴(𝑡 )𝑘B𝑠 ,B𝑠 and 𝐴
(𝑡 )𝑘
B𝑠 ,B̄𝑠

be the columns of 𝐴(𝑡 )𝑘B𝑠 corresponding to 𝑠𝑙 (𝑡 )B𝑠 (𝑘) and 𝑠
𝑙 (𝑡 )
B̄𝑠
(𝑘), respectively. By (23), we have

𝑠
𝑙 (𝑡 )
B𝑠 (𝑘) = 𝐴

(𝑡 )𝑘
B𝑠 𝑠

𝑙 (𝑡 ) (0) = 𝐴(𝑡 )𝑘B𝑠 ,B𝑠 𝑠
𝑙 (𝑡 )
B𝑠 (0) +𝐴

(𝑡 )𝑘
B𝑠 ,B̄𝑠

𝑠
𝑙 (𝑡 )
B̄𝑠
(0) . (34)
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By the definition of B̂ (𝑡 ) , for any 𝑖 ∈ B̄𝑠 , 𝑠 (𝑡 )𝑖𝑙 (0) can only reach 𝑠𝑙 (𝑡 )B𝑠 (𝑘) either directly from or relayed by some learner

inA. Therefore, by knowing 𝐴(𝑡 ) , the learners in A can compute the value of 𝐴(𝑡 )𝑘B𝑠 ,B̄𝑠
𝑠
𝑙 (𝑡 )
B̄𝑠
(0). For any 𝑖 ∈ B𝑠 such that

N (𝑡 )
𝑖
∩ A ≠ ∅, by (34), the learners in A can derive the value of 𝐴(𝑡 )𝑘

𝑖,B𝑠 𝑠
𝑙 (𝑡 )
B𝑠 (0) as

𝐴
(𝑡 )𝑘
𝑖,B𝑠 𝑠

𝑙 (𝑡 )
B𝑠 (0) = 𝑠

(𝑡 )
𝑖𝑙
(𝑘) −𝐴(𝑡 )𝑘

𝑖,B̄𝑠
𝑠
𝑙 (𝑡 )
B̄𝑠
(0) . (35)

Notice that 𝐴(𝑡 )𝑘
𝑖,B𝑠 𝑠

𝑙 (𝑡 )
B𝑠 (0) asymptotically converges to

∑
𝑖∈B𝑠 𝑠

(𝑡 )
𝑖𝑙
(0). This implies that the learners in A can derive the

value of
∑
𝑖∈B𝑠 𝑠

(𝑡 )
𝑖𝑙
(0). For each 𝑖 ∈ B𝑠 , by (12) and the definition of B̂ (𝑡 ) , 𝑠 (𝑡 )

𝑖𝑙
(0) can be written as

𝑠
(𝑡 )
𝑖𝑙
(0) =

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖
∩B𝑠

S𝑖 (𝑡 )
𝑗𝑙
+

∑︁
𝑗 ∈N (𝑡 )

𝑖
∩A

S𝑖 (𝑡 )
𝑗𝑙

mod 𝑝. (36)

Notice that in (36), for each 𝑗 ∈ N (𝑡 )
𝑖
∩ A, S𝑖 (𝑡 )

𝑗𝑙
is generated by the adversarial learner 𝑗 . Hence, the learners in A

know the value of
∑
𝑗 ∈N (𝑡 )

𝑖
∩A S

𝑖 (𝑡 )
𝑗𝑙

. By also knowing the value of
∑
𝑖∈B𝑠 𝑠

(𝑡 )
𝑖𝑙
(0), by (36), the learners in A can derive∑︁

𝑖∈B𝑠

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖
∩B𝑠

S𝑖 (𝑡 )
𝑗𝑙
≡

∑︁
𝑖∈B𝑠

𝑠
(𝑡 )
𝑖𝑙
(0) −

∑︁
𝑖∈B𝑠

∑︁
𝑗 ∈N (𝑡 )

𝑖
∩A

S𝑖 (𝑡 )
𝑗𝑙

mod 𝑝. (37)

Notice that in (37),
∑
𝑖∈B𝑠

∑
𝑗 ∈N̄ (𝑡 )

𝑖
∩B𝑠
S𝑖 (𝑡 )
𝑗𝑙

is the sum of all those shares generated by the learners in B𝑠 that are

assigned to the learners in B𝑠 themselves. For each 𝑖 ∈ B𝑠 and for each 𝑗 ∈ N (𝑡 )
𝑖
∩ A, S 𝑗 (𝑡 )

𝑖𝑙
is the share generated by

learner 𝑖 and assigned to the adversarial learner 𝑗 . Hence, the learners inA know the value of
∑
𝑖∈B𝑠

∑
𝑗 ∈N (𝑡 )

𝑖
∩A S

𝑗 (𝑡 )
𝑖𝑙

,
which is the sum of all those shares generated by the learners in B𝑠 that are assigned to the learners in A. Therefore,
given the definition of B̂ (𝑡 ) , the learners in A can derive the sum of all the shares generated by the learners in B𝑠 as∑︁

𝑖∈B𝑠

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖

S 𝑗 (𝑡 )
𝑖𝑙

=
∑︁
𝑖∈B𝑠

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖
∩B𝑠

S𝑖 (𝑡 )
𝑗𝑙
+

∑︁
𝑖∈B𝑠

∑︁
𝑗 ∈N (𝑡 )

𝑖
∩A

S 𝑗 (𝑡 )
𝑖𝑙

. (38)

By the analysis below (20) in the proof of Theorem 6.1, we conclude that the learners in A can then derive the value of∑
𝑖∈B𝑠 \̄

(𝑡 )
𝑖𝑙
(0). The above analysis holds for any 𝑡 ∈ {1, · · · ,𝑇 }, any B𝑠 ∈ B̂ (𝑡 ) and any 𝑙 ∈ {1, · · · , 𝑛}. Therefore, in

each round 𝑡 ∈ {1, · · · ,𝑇 }, the adversarial learners in A can obtain the value of {∑𝑖∈B𝑠 \̄ (𝑡 )𝑖 (0)}B𝑠 ∈B̂ (𝑡 ) .
Next we show that the learners inA do not gain anything beyond the value of {∑𝑖∈B𝑠 \̄ (𝑡 )𝑖 (0)}B𝑠 ∈B̂ (𝑡 ) . LetD𝑠 ⊆ B

be a subset of benign learners that form a connected subgraph within themselves. It suffices to show that if D𝑠 is not
surrounded by A in G (𝑡 ) , then the learners in A do not obtain any information about {\̄ (𝑡 )

𝑖
(0)}𝑖∈D𝑠 . Since D𝑠 ∉ B̂ (𝑡 ) ,

there exists at least one learner 𝑑 ∈ D𝑠 such that N (𝑡 )
𝑑
∩ (B\D𝑠 ) ≠ ∅. Let 𝑑 ′ ∈ N (𝑡 )𝑑

∩ (B\D𝑠 ). We only need to
consider the worst case where (D𝑠 ∪ {𝑑 ′}) ∈ B̂ (𝑡 ) . Similar to the derivation of (37), the learners in A can derive∑︁

𝑖∈D𝑠∪{𝑑′ }

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖
∩(D𝑠∪{𝑑′ })

S𝑖 (𝑡 )
𝑗𝑙
≡

∑︁
𝑖∈D𝑠∪{𝑑′ }

𝑠
(𝑡 )
𝑖𝑙
(0) −

∑︁
𝑖∈D𝑠∪{𝑑′ }

∑︁
𝑗 ∈N (𝑡 )

𝑖
∩A

S𝑖 (𝑡 )
𝑗𝑙

mod 𝑝. (39)

Write the sum
∑
𝑖∈D𝑠∪{𝑑′ }

∑
𝑗 ∈N̄ (𝑡 )

𝑖
∩(D𝑠∪{𝑑′ })

S𝑖 (𝑡 )
𝑗𝑙

as∑︁
𝑖∈D𝑠∪{𝑑′ }

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖
∩(D𝑠∪{𝑑′ })

S𝑖 (𝑡 )
𝑗𝑙

=
∑︁
𝑖∈D𝑠

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖
∩D𝑠

S𝑖 (𝑡 )
𝑗𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡 )𝑑′

S𝑑
′ (𝑡 )

𝑖𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡 )𝑑′

S𝑖 (𝑡 )
𝑑′𝑙
+ S𝑑

′ (𝑡 )
𝑑′𝑙

. (40)
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In the right-hand side of (40), the sum of the first two terms is the sum of all those shares generated by the learners inD𝑠
that are assigned to the learners inD𝑠 themselves and to learner 𝑑 ′, while the sum of the last two terms is the sum of the
shares generated by 𝑑 ′ that are assigned to the learners in D𝑠 and to 𝑑 ′ itself. In order to derive the sum

∑
𝑖∈D𝑠 \̄𝑖𝑙 (0),

the learners in A need to obtain the sum of the first two terms, i.e.,
∑
𝑖∈D𝑠

∑
𝑗 ∈N̄ (𝑡 )

𝑖
∩D𝑠
S𝑖 (𝑡 )
𝑗𝑙
+∑

𝑖∈D𝑠∩N (𝑡 )𝑑′
S𝑑
′ (𝑡 )

𝑖𝑙
. By

(39) and (40), the learners in A know the value of the modular sum∑︁
𝑖∈D𝑠

∑︁
𝑗 ∈N̄ (𝑡 )

𝑖
∩D𝑠

S𝑖 (𝑡 )
𝑗𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡 )𝑑′

S𝑑
′ (𝑡 )

𝑖𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡 )𝑑′

S𝑖 (𝑡 )
𝑑′𝑙
+ S𝑑

′ (𝑡 )
𝑑′𝑙

mod 𝑝. (41)

However, since learner𝑑 ′ is benign, the learners inA do not know the value of
∑
𝑖∈D𝑠∩N (𝑡 )𝑑′

S𝑖 (𝑡 )
𝑑′𝑙
+S𝑑

′ (𝑡 )
𝑑′𝑙

. Since the learn-

ers in A cannot split the modular sum (41), they cannot learn anything about the value of
∑
𝑖∈D𝑠

∑
𝑗 ∈N̄ (𝑡 )

𝑖
∩D𝑠
S𝑖 (𝑡 )
𝑗𝑙
+∑

𝑖∈D𝑠∩N (𝑡 )𝑑′
S𝑑
′ (𝑡 )

𝑖𝑙
. By Lemma 3.4, this implies that the learners inA do not gain any information about {\̄ (𝑡 )

𝑖
(0)}𝑖∈D𝑠 .

This completes the proof.
Based on Lemma 6.1, the perfect secrecy property of Algorithm 2 is established by the following theorem. It states

that the algorithm provides perfect secrecy if and only if all the benign learners in B form a connected subgraph within
themselves for every round 𝑡 . In other words, there is no proper subset of benign learners that are surrounded by A in
any round 𝑡 .

Theorem 6.2. Algorithm 2 provides perfect secrecy against A if and only if B̂ (𝑡 ) = {B} for all 𝑡 ∈ {1, · · · ,𝑇 }.

Proof: By Definition 2.3, if the algorithm provides perfect secrecy against A, then, in each round 𝑡 , the learners in
A must only gain the value of

∑
𝑖∈V \̄

(𝑡 )
𝑖
(0). Notice that the learners in A know the sum of their own local models,

i.e.,
∑
𝑖∈A \̄

(𝑡 )
𝑖
(0). Hence, they definitely can infer the sum of all the benign learners’ local models

∑
𝑖∈B \̄

(𝑡 )
𝑖
(0) by

computing
∑
𝑖∈B \̄

(𝑡 )
𝑖
(0) = ∑

𝑖∈V \̄
(𝑡 )
𝑖
(0) −∑𝑖∈A \̄ (𝑡 )𝑖 (0). Therefore, the algorithm is perfectly secret if and only if the

learners in A do not gain anything about {\̄ (𝑡 )
𝑖
(0)}𝑖∈B beyond the value of

∑
𝑖∈B \̄

(𝑡 )
𝑖
(0) for all 𝑡 ∈ {1, · · · ,𝑇 }.

First, if B̂ (𝑡 ) ≠ {B} for some round 𝑡 , then there exists a proper subset B𝑠 ⊊ B of benign learners such that
B𝑠 ∈ B̂ (𝑡 ) . By Lemma 6.1, the learners in A can then obtain the value of

∑
𝑖∈B𝑠 \̄

(𝑡 )
𝑖
(0), which is an additional piece of

information beyond
∑
𝑖∈B \̄

(𝑡 )
𝑖
(0). Hence, the algorithm is not perfectly secret.

Next, consider the case where B̂ (𝑡 ) = {B} for all 𝑡 ∈ {1, · · · ,𝑇 }. By Lemma 6.1, in each round 𝑡 , the learners in A
gain nothing beyond the value of {∑𝑖∈B𝑠 \̄ (𝑡 )𝑖 (0)}B𝑠 ∈B̂ (𝑡 ) = ∑

𝑖∈B \̄
(𝑡 )
𝑖
(0). Therefore, the algorithm provides perfect

secrecy against A. This completes the proof.

Remark 6.2. The condition of Theorem 6.2, i.e., B̂ (𝑡 ) = {B} for all 𝑡 ∈ {1, · · · ,𝑇 }, ensures the strong privacy property

of perfect secrecy such that the adversarial learners in A do not even know partial sums of the local models of any proper

subset of the benign learners. It would be worth noting that, if we only target on the weaker privacy property such that each

individual benign learner’s local model is not disclosed to the learners in A, then by Lemma 6.1, the condition becomes that

each benign learner has at least one benign neighbor in G (𝑡 ) for all 𝑡 ∈ {1, · · · ,𝑇 }.

6.3 Vulnerability analysis

Lemma 6.1 and Theorem 6.2 provide generic theoretical privacy foundations for Algorithm 2. This subsection uses
these results to perform vulnerability analysis for arbitrary connected communication topologies.

In light of Lemma 6.1 and Theorem 6.2, in general, a denser connection is favorable for a higher privacy level, because
it is more likely that a subset of benign learners are directly connected to more other benign learners and thus less
Manuscript submitted to ACM
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likely to be completely surrounded by adversarial learners. In terms of individual privacy, the above theoretical results
indicate that the more neighbors a benign learner has, the less likely its local model will be disclosed to adversarial
learners. Therefore, in a general connected (sparse) communication topology, the leaf benign learners (a leaf learner
is a learner that only has one neighbor) are most vulnerable to local model leakage, while the benign learners with
most neighbors are least vulnerable from a likelihood perspective. The above discussion indicates that, in terms of
application, while the proposed algorithm can be applied to arbitrary connected communication topologies to enhance
privacy, it is less vulnerable (more likely to achieve a high privacy level) for dense communication topologies with a
small number of leaf learners.

We next apply Lemma 6.1 and Theorem 6.2 to several representative communication topologies to provide more
insights on the connection between the privacy analysis and the number and position of adversarial learners.

• Complete topology. In a complete topology, any learner can communicate with any other learner. By Lemma
6.1, for any benign learner, its individual local model is not disclosed to the adversarial learners if and only if
there exists at least one different benign learner in the network. In general, the adversarial learners will know
the partial sum of all the benign learners’ local models, but nothing else. Notice that, for a complete topology,
perfect secrecy always holds. This can be seen by applying the condition of Theorem 6.2, as all the benign
learners are fully connected and there is no proper subset of benign learners that are surrounded by adversarial
learners. Therefore, for the extreme case where there is only one benign learner while all the other learners
are adversarial, in which case the adversarial learners will know the local model of the benign learner, it does
not violate the notion of perfect secrecy. Intrinsically, this is because the adversarial learners can derive the
benign learner’s local model solely from what they must know, i.e., their own inputs (their local models) and
output (the aggregation of all local models). This is in consistent with the classical result of SMC on complete
topologies.

• Star topology. In a star topology, there is one centralized learner that is connected to all the other learners,
for which we call plain learners, while all the plain learners cannot communicate with each other. By Lemma
6.1, any benign plain learner’s local model is not disclosed to adversarial learners if and only if the centralized
learner is benign. If the centralized learner is benign, then its local model is not disclosed if and only if there
exists at least one benign plain learner. In general, if the centralized learner is adversarial, then, no matter
whether there are plain adversarial learners, the adversarial learners will know the local model of every benign
learner. If the centralized learner is benign, then the (plain) adversarial learners will know the partial sum of the
local models of all the other learners (i.e., the centralized learner and all the benign plain learners). By Theorem
6.2, perfect secrecy holds if and only if the centralized learner is benign.

• Line topology. In a line topology, all the learners are connected as a line. By Lemma 6.1, for a benign learner on
one edge of the line, its local model is disclosed if and only if its only neighbor is benign. For a non-edge benign
learner, its local model is not disclosed if and only if at least one of its two neighbors is benign. In general, the
adversarial learners will know the partial sums of the local models of the benign learners that are either in
between of two adversarial learners or on one side (till the edge) of one adversarial learner. By Theorem 6.2,
perfect secrecy holds if and only if there is no non-edge adversarial learner.

Remark 6.3. The above analysis indicates that, in some cases, if the total number of benign learners is very small, then

the disclosed partial sum only consists of the local models of very few benign learners and this may be taken as unacceptable.

For the extreme case where there is only one benign learner while all the other learners are adversarial, then, even under
Manuscript submitted to ACM
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perfect secrecy, the adversarial learners will know the local model of the single benign learner. However, we first note that

this is not a new issue caused by decentralized computing on sparse communication topologies, but exists for standard

SMC on complete communication topologies. Moreover, this issue is not due to poor design of SMC algorithms, but is a

fundamental limitation for SMC that targets perfect correctness. In particular, under the requirement of perfect correctness,

the adversarial learners will finally know the correct global model, which is the sum of the local models of all the learners.

They can then derive the sum of the local models of all the benign learners by subtracting the sum of their own local models

from the global model. Therefore, for applications where perfect correctness is critical, such fundamental limitation on

privacy is unavoidable. In practice, the above vulnerability analysis can be used to guide evaluation of suitableness of the

proposed algorithm based on application-specific privacy requirements.

7 TIME-VARYING COMMUNICATION TOPOLOGYWITHIN A TRAINING ROUND

In Algorithm 2, we assume that, within each training round, the participating learners and the communication topology
between them are both fixed; please refer to Assumption 2.1. However, this assumption could be restrictive for
applications with highly mobile learners, especially when 𝐾 needs to be large to ensure consensus convergence. In
such cases, during the consensus process (step 10 of Algorithm 2), the communication topology may change and some
learners may leave the network. This will degrade the correctness of consensus convergence. Especially for the problems
where the learners hold non-IID (independent and identically distributed) data, one learner’s leaving may cause a
significant drift of training data distribution, which may cause a huge deviation on the derived global model. In this
section, we provide an extension of Algorithm 2 to relax Assumption 2.1.

7.1 Relaxed problem setting

The relaxed problem setting is stated as follows. In each training round, the communication topology can change at
any iteration 𝑘 during the consensus process. Moreover, participating learners may leave the network and drop the
training task at certain consensus iterations. We assume that, at each consensus iteration, the current communication
topology between the remaining learners is undirected and connected. Additionally, we require that, new learners can
only join in between successive training rounds, while once a training round begins, no new learners can join in before
this training round terminates. This is in consistent with many robust learning works, which only consider potential
dropping of existing learners. A further discussion on joining of new learners is provided at the end of this section.

7.2 Extended algorithm

We next illustrate how to extend Algorithm 2 for the above problem setting. In the following, for a time-varying quantity
𝑑 , we use the notation 𝑑 (𝑡 ) (𝑘) to denote its value at consensus iteration 𝑘 of training round 𝑡 .

• At step 10 of Algorithm 2, for each consensus iteration 𝑘 :
(i) Each learner 𝑖 updates its local weights 𝑎 (𝑡 )

𝑖 𝑗
(𝑘) by (9) based on the current communication topology;

(ii) Each learner 𝑖 sends 𝑠 (𝑡 )
𝑖
(𝑘) to all of its current neighbors N (𝑡 )

𝑖
(𝑘);

(iii) Each learner 𝑖 updates its state by 𝑠 (𝑡 )
𝑖
(𝑘 + 1) = 𝑎 (𝑡 )

𝑖𝑖
(𝑘)𝑠 (𝑡 )

𝑖
(𝑘) +∑

𝑗 ∈N (𝑡 )
𝑖
(𝑘) 𝑎

(𝑡 )
𝑖 𝑗
(𝑘)𝑠 (𝑡 )

𝑗
(𝑘);

(iv) If a learner 𝑖 will leave the network and drop the training task in the next iteration 𝑘 + 1, then, learner 𝑖
arbitrarily picks one of its current neighbors 𝑗 ∈ N (𝑡 )

𝑖
(𝑘) and sends 𝑠 (𝑡 )

𝑖
(𝑘 + 1) together with a message,

e.g., “leaving”, to learner 𝑗 . Learner 𝑗 then sets 𝑠 (𝑡 )
𝑗
(𝑘 + 1) = 𝑠 (𝑡 )

𝑗
(𝑘 + 1) + 𝑠 (𝑡 )

𝑖
(𝑘 + 1).

• At step 11 of Algorithm 2:
Manuscript submitted to ACM
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(v) Each learner 𝑖 constructs 𝑧 (𝑡 )
𝑖𝑙

by 𝑧 (𝑡 )
𝑖𝑙

= ⌊𝑁 (𝑡 ) (𝐾)𝑠 (𝑡 )
𝑖𝑙
(𝐾)⌉ mod 𝑝, ∀𝑙 ∈ {1, · · · , 𝑛}.

The key ideas of the above steps are summarized as follows. Steps (i)–(iii): Whenever the communication topology
changes, the learners update the weighted adjacency matrix and use the new matrix to update their states. For a fixed set
of learners, this strategy guarantees that each learner’s state will asymptotically converge to the correct point, i.e., the
average of all the learners’ initial states. Step (iv): Whenever a learner leaves, its state is added into one of its neighbor’s
state and thus maintained in the remaining consensus process. By this strategy, it guarantees that, if the consensus
process converges at iteration 𝐾 , the converging point is 1

𝑁 (𝑡 ) (𝐾)
∑
𝑖∈V (𝑡 ) (0) 𝑠

(𝑡 )
𝑖
(0), i.e., the sum of the initial states of

all the learners at iteration 0 divided by the number of learners at iteration 𝐾 . Step (v): After the consensus process
terminates, each learner scales its final state by 𝑁 (𝑡 ) (𝐾) to obtain the desired aggregation point

∑
𝑖∈V (𝑡 ) (0) 𝑠

(𝑡 )
𝑖
(0).

Remark 7.1. The above step (iv) can be easily adjusted to cope with different practical situations. For example, if the

picked neighbor will also leave the network in the next iteration, learner 𝑖 can then arbitrarily pick another neighbor. This is

repeated until a neighbor that will stay in the next iteration is found. Moreover, if all of learner 𝑖’s neighbors will also leave

the network in the next iteration, then learner 𝑖 first sends its state 𝑠 (𝑡 )
𝑖
(𝑘 + 1) to one of its neighbor 𝑗 , and then learner 𝑗

sends the updated state 𝑠 (𝑡 )
𝑗
(𝑘 + 1) + 𝑠 (𝑡 )

𝑖
(𝑘 + 1) to one of its neighbors different from learner 𝑖 . This process proceeds until a

learner that will stay in the next iteration is found.

The above extended algorithm assumes that, whenever a learner leaves the network, it is able to take proper actions as

required by step (iv). These actions guarantee that the converging point of the remaining learners is not affected by its

leaving. In practice, there could be scenarios where a learner unintentionally drops out of the network without being able to

take the required actions, or an adversarial learner purposely leaves the network without taking the actions. Such scenarios

need to be investigated under an active attacker model and addressed by robust and resilient learning technologies, and are

thus beyond the scope of this paper. We leave the study of these scenarios to our future works.

7.3 Correctness and privacy analysis

We next provide the correctness and privacy analysis for the above extended algorithm.

7.3.1 Correctness. The correctness property is characterized by the following theorem.

Theorem 7.1. Consider the problem setting of Section 7.1. By the extended algorithm of Section 7.2, if, at each training

round 𝑡 , there exists 𝐾 (𝑡 ) such thatV (𝑡 ) (𝑘) ≡ V (𝑡 ) (𝐾 (𝑡 ) ) for all 𝑘 ≥ 𝐾 (𝑡 ) , i.e., the remaining learners keep constant from

consensus iteration 𝐾 (𝑡 ) (while the communication topology between them can still change), then, with sufficiently large 𝑝

and 𝐾 such that

𝑝 > max{𝑁 (𝑡 ) (0), 1 + 2 × 10𝜎𝑁 (𝑡 ) (0)max
𝑡,𝑖,𝑙
|\ (𝑡 )
𝑖𝑙
|}, (42)

𝐾 > max
𝑡
𝐾 (𝑡 ) +max

𝑡
�̂� (𝑡 ) , (43)

where, for each training round 𝑡 , �̂� (𝑡 ) satisfies

max
𝑡

2𝑝
√︃
𝑁 (𝑡 ) (𝐾 (𝑡 ) )∥𝑁 (𝑡 ) (𝐾 (𝑡 ) )

�̂� (𝑡 )−1∏
𝑘=0

𝐴(𝑡 ) (𝐾 (𝑡 ) + 𝑘) − 1𝑁 (𝑡 ) (�̄� (𝑡 ) )1
𝑇

𝑁 (𝑡 ) (�̄� (𝑡 ) ) ∥ < 1, (44)

it holds that \̃ (𝑡 )
𝑖

= \ (𝑡 ) for all 𝑖 ∈ V (𝑡 ) (𝐾) and all 𝑡 ∈ {1, · · · ,𝑇 }.
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Proof: We fix a training round 𝑡 . At each consensus iteration 𝑘 , by the update rule given above at step (iii), we have∑︁
𝑖∈V (𝑡 ) (𝑘)

𝑠
(𝑡 )
𝑖
(𝑘 + 1) =

∑︁
𝑖∈V (𝑡 ) (𝑘)

[𝑎 (𝑡 )
𝑖𝑖
(𝑘)𝑠 (𝑡 )

𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡 )

𝑖
(𝑘)

𝑎
(𝑡 )
𝑖 𝑗
(𝑘)𝑠 (𝑡 )

𝑗
(𝑘)]

=
∑︁

𝑖∈V (𝑡 ) (𝑘)
𝑎
(𝑡 )
𝑖𝑖
(𝑘)𝑠 (𝑡 )

𝑖
(𝑘) +

∑︁
𝑖∈V (𝑡 ) (𝑘)

∑︁
𝑗 ∈N (𝑡 )

𝑖
(𝑘)

𝑎
(𝑡 )
𝑖 𝑗
(𝑘)𝑠 (𝑡 )

𝑗
(𝑘)

=
∑︁

𝑖∈V (𝑡 ) (𝑘)
𝑎
(𝑡 )
𝑖𝑖
(𝑘)𝑠 (𝑡 )

𝑖
(𝑘) +

∑︁
𝑖∈V (𝑡 ) (𝑘)

[
∑︁

𝑗 ∈N (𝑡 )
𝑖
(𝑘)

𝑎
(𝑡 )
𝑖 𝑗
(𝑘)]𝑠 (𝑡 )

𝑖
(𝑘)

=
∑︁

𝑖∈V (𝑡 ) (𝑘)
[𝑎 (𝑡 )
𝑖𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡 )

𝑖
(𝑘)

𝑎
(𝑡 )
𝑖 𝑗
(𝑘)]𝑠 (𝑡 )

𝑖
(𝑘)

=
∑︁

𝑖∈V (𝑡 ) (𝑘)
𝑠
(𝑡 )
𝑖
(𝑘), (45)

where the last equality is due to the property of 𝐴(𝑡 ) (𝑘) given by (8).
By the above step (iv), at the end of each consensus iteration 𝑘 , if a learner 𝑖 will leave the network in the next

iteration 𝑘 + 1, then, it picks an arbitrary neighbor 𝑗 and 𝑠 (𝑡 )
𝑗
(𝑘 + 1) is updated by 𝑠 (𝑡 )

𝑗
(𝑘 + 1) = 𝑠 (𝑡 )

𝑗
(𝑘 + 1) + 𝑠 (𝑡 )

𝑖
(𝑘 + 1).

This operation guarantees that, at the beginning of iteration 𝑘 + 1, it holds that∑︁
𝑖∈V (𝑡 ) (𝑘+1)

𝑠
(𝑡 )
𝑖
(𝑘 + 1) =

∑︁
𝑖∈V (𝑡 ) (𝑘)

𝑠
(𝑡 )
𝑖
(𝑘 + 1) . (46)

By (45) and (45), we have ∑︁
𝑖∈V (𝑡 ) (𝑘+1)

𝑠
(𝑡 )
𝑖
(𝑘 + 1) =

∑︁
𝑖∈V (𝑡 ) (𝑘)

𝑠
(𝑡 )
𝑖
(𝑘). (47)

Since (47) holds for any 𝑘 , we obtain ∑︁
𝑖∈V (𝑡 ) (𝑘)

𝑠
(𝑡 )
𝑖
(𝑘) =

∑︁
𝑖∈V (𝑡 ) (0)

𝑠
(𝑡 )
𝑖
(0), ∀𝑘. (48)

By Theorem 8.3 of [53], if the dimension of 𝐴(𝑡 ) (𝑘) is fixed from some iteration 𝑘 = 𝐾 (𝑡 ) , then, it holds that

lim
𝐾→∞

𝑁 (𝑡 ) (𝐾 (𝑡 ) )
𝐾∏

𝑘=�̄� (𝑡 )

𝐴(𝑡 ) (𝑘) = 1𝑁 (𝑡 ) (�̄� (𝑡 ) )1
𝑇

𝑁 (𝑡 ) (�̄� (𝑡 ) ) . (49)

By (49), if 𝑝 and 𝐾 satisfy (42), (43) and (44), by following a similar procedure of the proof of Theorem 6.1, we can derive

𝑠
(𝑡 )
𝑖
(𝐾) = 1

𝑁 (𝑡 ) (𝐾 (𝑡 ) )

∑︁
𝑗 ∈V (𝑡 ) (�̄� (𝑡 ) )

𝑠
(𝑡 )
𝑗
(𝐾 (𝑡 ) ), ∀𝑖 ∈ V (𝑡 ) (𝐾 (𝑡 ) ) . (50)

By (48) and (50), noticing that 𝑁 (𝑡 ) (𝐾) = 𝑁 (𝑡 ) (𝐾 (𝑡 ) ) andV (𝑡 ) (𝐾) = V (𝑡 ) (𝐾 (𝑡 ) ), we obtain

𝑠
(𝑡 )
𝑖
(𝐾) = 1

𝑁 (𝑡 ) (𝐾)

∑︁
𝑗 ∈V (𝑡 ) (0)

𝑠
(𝑡 )
𝑗
(0), ∀𝑖 ∈ V (𝑡 ) (𝐾). (51)

By the above step (v), we then have

𝑧
(𝑡 )
𝑖

= ⌊𝑁 (𝑡 ) (𝐾)𝑠 (𝑡 )
𝑖
(𝐾)⌉ mod 𝑝 =

∑︁
𝑗 ∈V (𝑡 ) (0)

𝑠
(𝑡 )
𝑗
(0) mod 𝑝, ∀𝑖 ∈ V (𝑡 ) (𝐾) . (52)
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The remaining proof follows the proof of Theorem 6.1.

7.3.2 Privacy. The privacy property is characterized by the following theorem.

Theorem 7.2. The results of Lemma 6.1 and Theorem 6.2 hold for the extended algorithm of Section 7.2, where the

conditions are exerted on the communication topology at the phase of secret shares generation and sharing for each training

round.

Proof: The proof of Lemma 6.1 indicates that the privacy property is fully determined by the communication topology
at the phase of secret shares generation and sharing. This is because, if a benign learner (or a set of benign learners)
has at least one benign neighbor in this phase, then, one of its shares is coupled with one of this benign neighbor’s
shares and cannot be split in any subsequent operations. Since the extensions of Section 7.2 only modify the consensus
process (more specifically, steps 10 and 11 of Algorithm 2), they do not change the property property.

7.4 Discussion on joining of new learners within a training round

For the case where new learners are allowed to join in within a training round, a straightforward extension is to have
all the learners, including both existing and new ones, to generate shares of their current data and use the new shares
to start a new consensus process. More specifically, in a training round 𝑡 , if new learners join in at consensus iteration
𝑘 , then, these new learners generate shares of their local models (i.e., 10𝜎 \̄ (𝑡 )

𝑖
(0)), while the existing learners generate

shares of their current states (i.e., 𝑠 (𝑡 )
𝑖
(𝑘)). The learners then exchange the shares with their current neighbors and

form the initial states for the new consensus process. It is easy to see that convergence correctness is guaranteed. In
particular, in the proof of Theorem 7.1, we have shown that, for any consensus iteration 𝑘 , the sum of 𝑠 (𝑡 )

𝑖
(𝑘) over all

the current learners is always equal to the sum of 𝑠 (𝑡 )
𝑖
(0) over all the learners at the beginning of the training round.

Hence, with new learners joining in, the new converging point will be the average of the sum of all the current learners’
new shares, which is just the sum of all the current learners’ local models, i.e., the new desired global model. However,
this straightforward extension does not provide desired privacy guarantee. This is because, for the existing learners,
their states 𝑠 (𝑡 )

𝑖
(𝑘)’s are directly shared with their neighbors and thus are not secrets any more. Therefore, even if a

new learner 𝑖’s neighbors at the phase of secret shares generation and sharing are all benign, it is still possible that the
adversarial learners can first obtain all its neighbors’ other shares (those not for learner 𝑖), and then infer its neighbors’
shares for learner 𝑖 (by knowing its neighbors’ states), and further infer all of learner 𝑖’s shares and reconstruct its
local model. In this paper, for change of participating learners within a training round, we focus on the issue of learner
leaving, which is usually more critical in practice, and leave the issue of learner joining to our future works.

8 PERFORMANCE EVALUATION

This section provide comprehensive simulations to test the performance of Algorithm 2 and the extended algorithm
of Section 7.2. It is worth noting that simulations of this section are mainly for the purpose of proof-of-concept, i.e.,
experimentally verifying the convergence results established by Theorem 6.1 and Theorem 7.1.

8.1 Simulation setup

Environment. The simulation environment is as follows. On the hardware side, the simulation is performed on a
Lenovo ThinkPad laptop computer with Intel(R) Core(TM) i5-1135G7 CPU at 2.40 GHz. On the software side, the
simulation is performed on MATLAB R2021b.
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Dataset. The dataset we use in the simulation is MNIST [12], which is a large-scale dataset of handwritten digits
that is broadly used for training various image processing systems. It has a training set of 60000 samples and a testing
set of 10000 samples. Each data sample has 784 features and 1 label. The simulation uses the set of 60000 training data
samples and evenly distributes them over 100 learners. For each data sample, the label is removed. Hence, each learner
has 600 local training data samples and each data sample consists of 784 features.

ML model for local training. In each round 𝑡 , each learner 𝑖 uses an autoencoder to train its local model \ (𝑡 )
𝑖

.
An autoencoder is an unsupervised learning algorithm for neural networks to learn efficient codings of unlabeled
data. A significant advantage of autoencoder is that it can greatly reduce the noise of input data, leading to much
more efficient creation of deep learning models. Due to this advantage, it has been applied to various problems, e.g.,
dimensionality reduction [66], feature detection [25], image recognition [40], defense against backdoor attacks [35],
and anomaly detection [76]. An autoencoder has two parts, an encoder that compresses the input into a latent space
representation, and a decoder that maps this representation to a reconstruction of the input. With ℎ hidden layers, in
each round 𝑡 , each learner 𝑖’s encoder consists of an ℎ × 784 weight matrix𝑊 (𝑡 )

𝑖 (𝑒) and an ℎ × 1 bias vector 𝑏 (𝑡 )
𝑖 (𝑒) , and its

decoder consists of a 784 ×ℎ weight matrix𝑊 (𝑡 )
𝑖 (𝑑) and a 784 × 1 bias vector 𝑏 (𝑡 )

𝑖 (𝑑) . The local model \ (𝑡 )
𝑖

is constructed by

stacking all the entries of𝑊 (𝑡 )
𝑖 (𝑒) , 𝑏

(𝑡 )
𝑖 (𝑒) ,𝑊

(𝑡 )
𝑖 (𝑑) and 𝑏

(𝑡 )
𝑖 (𝑑) into a single column vector. Therefore, the dimension of \ (𝑡 )

𝑖

is 𝑛 = ℎ × 784 + ℎ + 784 × ℎ + 784 = 1569ℎ + 784. Notice that verification of correctness can also be conducted on
other neural network architectures, e.g., feed-forward neural networks and convolutional neural networks, in a similar
manner. To avoid redundancy, in the simulations, we stick to autoencoder for learners’ local training.

8.2 Simulation results for Algorithm 2

We first test the performance of Algorithm 2. For the simulations in this subsection, the learners are fixed throughout
the training process and the communication topology between can only change between successive training rounds. In
the simulation, we set 𝜎 = 2, 𝑝 = 1020431, and 𝑇 = 6. For the correctness verification, we set 𝐾 = 10. We have verified
that the conditions given by (16) and (17) are both satisfied.

We first verify the correctness property of Algorithm 2. Here we use one hidden layer for each learner’s local
training, which leads to 𝑛 = 2353. To simulate time-varying communication topology, for each round 𝑡 , an arbitrary
communication topology satisfying Assumption 2.1 is applied. First, we verify correct average consensus at each
training round. To this end, we pick an arbitrary 𝑙 ∈ {1, · · · , 𝑛} for the illustration. In each training round 𝑡 , for each
𝑖 ∈ V and each 𝑘 ∈ {0, · · · , 𝐾}, with 𝑠 (𝑡 )

𝑖𝑙
(𝑘) generated by (13), we construct 𝑧 (𝑡 )

𝑖𝑙
(𝑘) by (14) with 𝑠 (𝑡 )

𝑖𝑙
(𝐾) replaced by

𝑠
(𝑡 )
𝑖𝑙
(𝑘), and then construct \̃ (𝑡 )

𝑖𝑙
(𝑘) by (15) with 𝑧 (𝑡 )

𝑖𝑙
replaced by 𝑧 (𝑡 )

𝑖𝑙
(𝑘). Notice that 𝑧 (𝑡 )

𝑖𝑙
= 𝑧
(𝑡 )
𝑖𝑙
(𝐾) and \̃ (𝑡 )

𝑖𝑙
= \̃
(𝑡 )
𝑖𝑙
(𝐾).

For each 𝑡 = 1, · · · , 6, the trajectories of \̃ (𝑡 )
𝑖𝑙
(𝑘) for all 𝑖 ∈ V are sequentially shown in Fig. 5. We can see that, for

each round 𝑡 , all the 100 trajectories converge to a same value. Indeed, for each 𝑡 = 1, · · · , 6, we have verified that
all the 100 trajectories converge to the correct value of the desired global sum \𝑙 (𝑡 ) =

∑
𝑖∈V 𝑤𝑖\

(𝑡 )
𝑖𝑙

, i.e., at

𝑘 = 𝐾 = 10, \̃ (𝑡 )
𝑖𝑙
(10) = \𝑙 (𝑡 ) for all 𝑖 ∈ V . To further verify correctness of convergence, we also plot in Fig. 6 the

trajectories of max𝑖∈V,𝑙 ∈{1,· · · ,𝑛} |\̃
(𝑡 )
𝑖𝑙
− \𝑙 (𝑡 ) | for 𝑡 = 1, · · · , 6. In Fig. 6, for each training round 𝑡 , the trajectory of

max𝑖∈V,𝑙 ∈{1,· · · ,𝑛} |\̃
(𝑡 )
𝑖𝑙
−\𝑙 (𝑡 ) | converges to zero. This verifies that \̃ (𝑡 )

𝑖𝑙
converges to the correct value of the desired

global model \𝑙 (𝑡 ) for all 𝑖 ∈ V and all 𝑙 ∈ {1, · · · , 𝑛}. Moreover, we pick an arbitrary 𝑖 ∈ V and plot the trajectories
of \̃ (𝑡 )

𝑖𝑙
and |\̃ (𝑡 )

𝑖𝑙
− \𝑙 (𝑡 ) | for three arbitrarily picked 𝑙 ’s (𝑙 = 1569, 2033, 2040); as shown by Fig. 7 (notice that these two

trajectories are the same for all learners as \̃ (𝑡 )
𝑖𝑙
(𝑘)’s for all 𝑖 ∈ V converge to a same value). In each sub-figure of Fig. 7,

the red dashed curve is the trajectory of |\̃ (𝑡 )
𝑖𝑙
− \𝑙 (𝑡 ) |, i.e., the absolute difference between the consensus value and
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the ground-truth value at each round 𝑡 . Notice that this curve is constant at 0, which indicates that \̃ (𝑡 )
𝑖𝑙

is equal to
\𝑙 (𝑡 ) at all training rounds. This verifies that the global model computed by Algorithm 2 is correct under time-varying
communication topology. The blue solid curve in Fig. 7 is the trajectory of \̃ (𝑡 )

𝑖𝑙
. It illustrates the convergence of the

plain federated learning scheme. Fig. 5 and Fig. 7 together verify the correctness property of Algorithm 2.

Fig. 5. Trajectories of {\̃ (𝑡 )
𝑖𝑙
(𝑘) }𝑖∈V for 𝑡 = 1, · · · , 6, where {\̃ (𝑡 )

𝑖𝑙
(𝑘) } is the set of \̃ (𝑡 )

𝑖𝑙
(𝑘) for 𝑘 = 0, 1, · · · , 10, and {\̃ (𝑡 )

𝑖𝑙
(𝑘) }𝑖∈V is

the collection of {\̃ (𝑡 )
𝑖𝑙
(𝑘) } for all 𝑖 ∈ V .

We next use simulations to show the impact of the communication topology on the convergence rate of the consensus
process. It is well known that the convergence rate is dependent on the overall connectivity degree of the communication
topology. Roughly speaking, for a given number of learners, a denser communication topology usually exhibits a
higher convergence rate. More specifically, the second largest eigenvalue of the underlying weighted adjacency matrix
(𝐴(𝑡 ) ) is an important indicator of topology connectivity. In our problem setting, a smaller second largest eigenvalue of
𝐴(𝑡 ) indicates a denser connectivity of the communication topology and a better convergence rate [53]. To visually
show the impact of the communication topology on the convergence rate, for the same 𝑙 as above, we generate the
sequence of {\̃ (1)

𝑖𝑙
(𝑘)}𝑖∈V under six communication topologies. The first one is the complete topology, i.e., (𝑖, 𝑗) ∈ E (1)

for all 𝑖, 𝑗 ∈ V with 𝑖 ≠ 𝑗 . The second one is a sparse topology where each learner has 40 neighbors. The third and
fourth ones are sparser topologies where each learner has 20 and 10 neighbors, respectively. The fifth one is the star
topology, i.e., there exists one learner 𝑖 such that 𝑗 ∈ N (1)

𝑖
for all 𝑗 ∈ V\{𝑖}, while ( 𝑗, ℓ) ∉ E (1) for any 𝑗, ℓ ∈ V\{𝑖}.

The sixth one is the line topology, i.e., the connection of the learners forms a line. Intuitively, the six topologies have
descending connectivity degrees. Indeed, their corresponding matrix 𝐴(1) have ascending second largest eigenvalues: 0,
0.3259, 0.8181, 0.9555, 0.9900, and 0.9997, respectively. The complete, star and line topologies are three representative
communication topologies and have broad applications. In particular, the complete topology has the largest possible

Manuscript submitted to ACM



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Yang Lu, Zhengxin Yu, and Neeraj Suri

Fig. 6. Trajectories of max𝑖∈V,𝑙∈{1,··· ,𝑛} |\̃ (𝑡 )𝑖𝑙 − \
𝑙 (𝑡 ) | for 𝑡 = 1, · · · , 6.

Fig. 7. Trajectories of \̃ (𝑡 )
𝑖𝑙

and |\̃ (𝑡 )
𝑖𝑙
− \𝑙 (𝑡 ) | for three arbitrarily picked 𝑙 ’s.

connectivity degree (densest) and is typical for, e.g., secure mulitparty computation tasks [11]; the star topology depicts
the (sparse) spoke–hub distribution paradigm and is common in, e.g., cloud computing [6]; and the line topology has
the smallest possible connectivity degree (sparsest) for connected graphs and is widely used in, e.g., power systems
[24]. The other three cases depict three different connectivity degrees in between and are used to simulate general
sparse graphs covering a wider range of connectivity degrees. The trajectories of \̃ (1)

𝑖𝑙
(𝑘) for all 𝑖 ∈ V under these six

communication topologies are shown in Fig. 8. We can see that under all the six communication topologies, all the
100 trajectories converge to the value of the desired global sum 1.04, but clearly with descending convergence rates,
which matches discussion above. By (25), we can see that the convergence rate can be estimated by the decaying rate of
∥𝑁 (𝐴(𝑡 ) )𝑘 − 1𝑁 1𝑇

𝑁
∥. The trajectories of ∥𝑁 (𝐴(1) )𝑘 − 1𝑁 1𝑇

𝑁
∥ under the above six communication topologies are shown
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in Fig. 9 (the small figure shows the convergence under the line topology). It matches the convergence rates observed in
Fig. 8. Notice that the trajectory of ∥𝑁 (𝐴𝑘 − 1𝑁 1𝑇

𝑁
∥ for a given matrix 𝐴 can be generated offline. Hence, if the learners

have prior knowledge of average connectivity degree of G (𝑡 ) , then based on the decaying rate of ∥𝑁 (𝐴(𝑡 ) )𝑘 − 1𝑁 1𝑇
𝑁
∥

for possible communication topologies, they may be able to choose a less conservative value of 𝐾 .

Fig. 8. Trajectories of {\̃ (1)
𝑖𝑙
(𝑘) }𝑖∈V under different communication topologies.

Finally we verify the computational efficiency of Algorithm 2. Breakdowns of computational overhead under different
communication topologies and autoencoder hidden layers are shown in Table 1. In the table, ℎ is the number of
autoencoder hidden layers, 𝑛 is the number of model features (recall that 𝑛 = 1569ℎ + 784), 𝑡1 is the time of constructing
the weighted adjacency matrix 𝐴(𝑡 ) per learner per round, 𝑡2 is the time of secret shares generation and sharing per
learner per round, and 𝑡3 is the time of consensus process per learner per round. For each communication topology,
the number of consensus iterations 𝐾 is fixed at a value where convergence is achieved. The table shows that, for
each communication topology, as ℎ and 𝑛 increase, 𝑡1 does not change, while 𝑡2 and 𝑡3 increase correspondingly. The
unchange of 𝑡1 is due to that 𝑡1 only depends on the number of the learners’ neighbors and independent from ℎ or 𝑛. The
increase of 𝑡2 and 𝑡3 is because the average number of shares increases. In particular, the average number of shares per
learner per round is |N𝑎𝑣𝑔 |𝑛, where |N𝑎𝑣𝑔 | denotes the average number of neighbors per learner per round. Therefore,
for a given communication topology, |N𝑎𝑣𝑔 | is fixed, and 𝑡2 and 𝑡3 will increase as 𝑛 increases. Moreover, for fixed ℎ and
𝑛, for the communication topologies from left to right in the table, 𝑡1 and 𝑡2 decrease, while 𝑡3 increases. The decrease
of 𝑡1 and 𝑡2 is due to that, from left to right, the communication topology is sparser and sparser, and thus |N𝑎𝑣𝑔 | is
smaller and smaller, so that, in average, the learners need fewer operations in constructing 𝐴(𝑡 ) and also generate
fewer shares. The increase of 𝑡3 is due to that, for a sparser communication topology, more iterations are needed for
consensus convergence. The table indicates that a learner’s computational overhead is mainly determined by the total
number of shares it needs to generate and the number of iterations of the consensus process. We next further examine
these relationships. First, we examine the relationship between computational overhead and the total number of shares.
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Fig. 9. Trajectories of ∥𝑁 (𝐴(1) )𝑘 − 1𝑁 1𝑇
𝑁
∥ under different communication topologies.

As mentioned, this number depends on two factors, one is N̄ (𝑡 )
𝑖

, the number of its neighbors including itself, and the
other is 𝑛, the dimension of \ (𝑡 ) . Notice that the first factor is related to the size of learners. In each training round 𝑡 , a
learner’s total number of shares is N̄ (𝑡 )

𝑖
𝑛. To examine the relationship between the computational overhead and N̄ (𝑡 )

𝑖
𝑛,

an easy way is to tune the values of 𝑛 by tuning the values of ℎ according to the equation 𝑛 = 1569ℎ + 784. Without
loss of generality, the following simulations adopt a fixed communication topology, where the learners’ connectivity
degrees are well balanced (i.e., they have similar number of neighbors). We use an arbitrary such communication
topology where the average number of neighbors for one learner is 87. For each value of 𝑛, Algorithm 2 is run for
𝑇 = 10 rounds, and in each round 𝑡 , the consensus algorithm is run for 𝐾 = 10 iterations. The results are shown in the
left sub-figure of Fig. 10, where the 𝑥-axis is the average number of total shares per learner per round (in this case,
87𝑛), and the 𝑦-axis is the average time per learner per training round for the phase of global model aggregation (steps
4–14 of Algorithm 2). From the left sub-figure of Fig. 10, we can see that when the average total number of shares per
learner per round is 106, the average time per learner per training round is merely around 2.4 seconds. In addition,
this sub-figure illustrates that the average time per learner per training round grows linearly with the average total
number of shares per learner per round, where the growth rate is very slow, approximately 2.315 × 10−6. This verifies
that our algorithm is computationally efficient and scales well with large-size dense networks and high
dimensional training models. Next we examine the relationship between the running time for the consensus process
(step 10 of Algorithm 2) and the number of consensus iterations 𝐾 . The above communication topology is adopted and
fixed. For each value of 𝐾 , Algorithm 2 is run for 𝑇 = 10 rounds, and in each round 𝑡 , the consensus algorithm is run
for 𝐾 iterations. The results are shown in the right sub-figure of Fig. 10, where the 𝑥-axis is the value of 𝐾 , and the
𝑦-axis is the average consensus time per learner per training round. From the right sub-figure of Fig. 10, we can see that
when 𝐾 = 105, the average consensus time per learner per training round is merely around 0.6153 seconds. In addition,
Manuscript submitted to ACM
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this sub-figure shows that the average consensus time per learner per training round grows linearly with the value
of 𝐾 , where the growth rate is also very slow, approximately 6.155 × 10−6. This verifies that our algorithm is also
computationally efficient for sparse networks which may need a large number of consensus iterations.

Table 1. Breakdowns of computational overhead under different communication topologies and autoencoder hidden layers, where ℎ
is the number of autoencoder hidden layers, 𝑛 is the number of model features, 𝐾 is the number of consensus iterations, 𝑡1 is the
time of constructing the weighted adjacency matrix 𝐴(𝑡 ) , 𝑡2 is the time of secret shares generation and sharing, and 𝑡3 is the time of
consensus process, all times measured per learner per round

complete 40-neighbor 20-neighbor 10-neighbor star line
ℎ 𝑛 𝑡 (s) 𝐾 = 2 𝐾 = 60 𝐾 = 150 𝐾 = 300 𝐾 = 2000 𝐾 = 50000

1 2353
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 0.74 0.12 0.034 0.016 0.012 0.0012
𝑡3 0.00016 0.00059 0.0015 0.0022 0.015 0.34

3 5491
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 1.72 0.33 0.082 0.020 0.018 0.0016
𝑡3 0.00043 0.0014 0.0028 0.0049 0.032 0.76

5 8629
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 3.36 0.50 0.14 0.036 0.035 0.0021
𝑡3 0.00053 0.0018 0.0048 0.0083 0.061 1.18

7 11767
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 4.35 0.62 0.18 0.040 0.038 0.0031
𝑡3 0.00060 0.0025 0.0068 0.0095 0.063 1.65

9 14905
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 5.44 0.74 0.24 0.052 0.045 0.0037
𝑡3 0.00068 0.0028 0.0084 0.012 0.079 1.97

8.3 Simulation results for the extended algorithm of Section 7.2

We next test the performance of the extended algorithm of Section 7.2. In particular, the simulations in this subsection
focus on consensus convergence under time-varying communication topologies and leaving of learners within a training
round. To see the effect of non-IID data, we purposely modify the distributions of the learners’ local models such that
10 learners’ local model distributions are significantly different from those of the remaining 90 learners. Without loss of
generality, we choose these 10 learners to be the last 10 learners in the index system, i.e., learners 91∼100.

First, we simulate the case where 𝐾 = 600 and the 10 learners whose data distributions are significantly different
from the majority leave the network at iteration 100. The simulation results are shown in Fig. 11. In all the three
sub-figures, the red dashed curve depicts the correct value of the desired global model

∑100
𝑖=1 \̄

(𝑡 )
𝑖𝑙
(0), which is −122.53.

The first sub-figure applies the restart method. That is, at iteration 100, the remaining 90 learners regenerate shares
of their local models, {10𝜎 \̄ (𝑡 )

𝑖𝑙
(0)}90

𝑖=1, based on the current communication topology and start a new consensus

process with the new shares. The remaining 90 learners’ converging point is thus
∑90
𝑖=1 \̄

(𝑡 )
𝑖𝑙
(0) = 431.88. The deviation

between the converging point and the correct global model is 431.88 − (−122.53) = 554.41. The second sub-figure
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Fig. 10. Relationship between computational overhead and total number of shares (left) and number of consensus iterations 𝐾 (right).

applies the trivial extension method where, at iteration 100, learners 91∼100 just leave the network without taking
any actions, and the remaining 90 learners just use their current states {𝑠 (𝑡 )

𝑖
(100)}90

𝑖=1 to proceed to the next consensus
iteration under the new communication topology. As shown by the second sub-figure, the remaining 90 learners’
converging point is at the value of 1781.66. The deviation between this converging point and the correct global model
is 1781.66 − (−122.53) = 1904.19, which is even larger than the deviation under the restart method. In fact, by the proof
of Theorem 7.1, the deviation of {𝑠 (𝑡 )

𝑖
(𝐾)}90

𝑖=1 under the trivial extension method is equal to
∑100
𝑖=91 𝑠

(𝑡 )
𝑖
(100), and this

value can be very large. The second sub-figure shows that Algorithm 2 with the above trivial extension method can
perform poorly if the learners hold non-IID data and some learners leave the network within a training round. The
third sub-figure applies our extended algorithm of Section 7.2. We can see that, by our proposed extended method,
all the remaining 90 learners’ local models converge to the correct global model at the value of −122.53. This
verifies the correctness of the proposed extended algorithm.

We next simulate the proposed extended algorithm for the general case where both change of communication
topology and leaving of learners happen atmultiple iterations within a training round. In particular, we set that
changes of communication topology happen at 50 randomly chosen iterations, and leaving of learners happens at itera-
tions 100, 200, 300, 400, and 500, where, each time, 10 learners leave the network. The trajectories of {\̃ (𝑡 )

𝑖𝑙
(𝑘)}𝑖∈V (𝑡 ) (𝐾)

are shown in Fig. 12. We can see that all the remaining 50 learners’ local models converge to the correct global
model at the value of −122.53. Moreover, Fig. 12 shows that, after convergence is achieved or nearly achieved, if
leaving of learners happen again, there will be a new transient process by which the remaining learners’ local models
re-converge to the correct global model. Therefore, in theory, to guarantee correctness of consensus convergence,
we need that no further leaving of learners happens after some iteration. In practice, the learners can terminate the
consensus process if their states keep constant for a few consecutive iterations.
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Fig. 11. Trajectories of {\̃ (𝑡 )
𝑖𝑙
(𝑘) }

𝑖∈V (𝑡 ) (𝐾 ) for the case where 10 learners whose data distributions are significantly different from
the majority leave the network at iteration 100.

Fig. 12. Trajectories of {\̃ (𝑡 )
𝑖𝑙
(𝑘) }

𝑖∈V (𝑡 ) (𝐾 ) for the general case where both change of communication topology and leaving of learners
happen multiple times within a training round.

9 CONCLUSIONS AND FUTUREWORKS

This paper develops a new algorithm for privacy-preserving decentralized federated learning over a time-varying
communication graph. First, a simplified problem setting is considered, where the participating learners are fixed
and the communication topology between can only change between successive training rounds. A consensus-based
framework is adopted to enable decentralized global model aggregation. In each round of model aggregation, the
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Metropolis-Hastings method is applied to update the weighted adjacency matrix based on the current communication
topology so as to ensure convergence of average consensus. The technique of Shamir’s secret sharing scheme is further
integrated with the consensus-based framework to facilitate privacy preservation. The algorithm is then extended to
deal with the issues of change of participating learners and time-varying communication topology within a training
round. The correctness and privacy properties of the proposed algorithm are both analyzed. Its correctness, convergence
rate and computational overhead are examined by a case study on a federated learning application using the MNIST
dataset. Beyond global model aggregation in federated learning, the proposed algorithm can be readily applied to general
secure aggregation tasks over sparse time-varying communication graphs, e.g., decentralized opinions agreement,
multi-vehicle rendezvous, and energy supply/consumption aggregation. Moreover, it can also be applied to facilitate
privacy for more complicated problems that are solvable by consensus-based approaches [31], e.g., distributed formation
control, state estimation, unconstrained convex optimization, and resource allocation.

An interesting future work topic is to extend the attacker model to also include active (malicious) inference attacks
targeting on inferring benign learners’ local models. Several papers, e.g., [5, 38, 54, 67], have shown that, in a centralized
federated learning setting, a malicious centralized server can elude SMC protocols to infer benign learners’ local models
by maliciously modifying the global model shared with the learners. A very recent paper [55] also pointed out this issue
as an open question for federated learning in a decentralized setting. Compared to centralized setting, decentralized
setting in general has a broader attack surface. On the other hand, in a centralized setting, if the centralized server
is malicious, then it may be able to leverage the aforementioned active attack to infer local models of all the benign
learners. A decentralized setting may be able to mitigate this issue as a benign learner’s individual privacy may only
depend on its direct neighbors, in which case, if a benign learner does not have malicious direct neighbors, it can
survive such active attacks. However, it still remains to be investigated whether a malicious learner can devise a
sophisticated yet computationally feasible strategy to modify the models it shares with its direct neighbors so as to infer
the local models of its multi-hop neighbors. In any case, how to configure SMC protocols to resist such active inference
attacks is a critical challenge for both centralized and decentralized federated learning. Another interesting future work
topic is to investigate active data poisoning attacks targeting on failing the learning task. For example, with external
data poisoning attacks, data transmitted over communication links may be tampered by external attackers; and with
Byzantine attacks, the learners themselves may be corrupted to maliciously deviate from the designed algorithm. These
attacks may cause a significant distort in the global model aggregation, leading to very poor learning performance or
even learning failure. In the presence of such active data poisoning attacks, a resilient algorithm needs to be developed
which can maintain a satisfactory learning performance.
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