
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Privacy-preserving Decentralized Federated Learning over Time-varying
Communication Graph

YANG LU, Lancaster University, UK

ZHENGXIN YU, Lancaster University, UK

NEERAJ SURI, Lancaster University, UK

Establishing how a set of learners can provide privacy-preserving federated learning in a fully decentralized (peer-to-peer, no
coordinator) manner is an open problem. We propose the first privacy-preserving consensus-based algorithm for the distributed
learners to achieve decentralized global model aggregation in an environment of high mobility, where participating learners and the
communication graph between them may vary during the learning process. In particular, whenever the communication graph changes,
the Metropolis-Hastings method [69] is applied to update the weighted adjacency matrix based on the current communication topology.
In addition, the Shamir’s secret sharing scheme [61] is integrated to facilitate privacy in reaching consensus of the global model. The
paper establishes the correctness and privacy properties of the proposed algorithm. The computational efficiency is evaluated by a
simulation built on a federated learning framework with a real-world dataset.

CCS Concepts: • Security and privacy→ Privacy-preserving protocols; Information-theoretic techniques; Usability in security and
privacy; • Computer systems organization→ Peer-to-peer architectures.

Additional Key Words and Phrases: federated learning, decentralized aggregation, privacy, mobility

ACM Reference Format:
Yang Lu, Zhengxin Yu, and Neeraj Suri. 2022. Privacy-preserving Decentralized Federated Learning over Time-varying Communication
Graph. 1, 1 (April 2022), 39 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

1.1 Background and motivation

Federated learning is a collaborative machine learning technique providing privacy preservation of the individual
learners’ local training data [33, 45]. Each learner downloads the current global model from a centralized server, updates
it by incorporating its local training data, and then sends the updated model back to the server. The server then
aggregates the local models of all the individual learners to update the global model. Thus, only local training models
can be observed during the training process, while raw training data do not leave their owners’ devices. Given this
significant feature of privacy preservation, federated learning has been applied to a wide range of applications, including
wireless communications [51], autonomous driving [15], multi-access edge computing [74], smart manufacturing [10],
and healthcare [70].

Authors’ addresses: Yang Lu, Lancaster University, InfoLab21, Lancaster, UK, y.lu44@lancaster.ac.uk; Zhengxin Yu, Lancaster University, InfoLab21,
Lancaster, UK, z.yu8@lancaster.ac.uk; Neeraj Suri, Lancaster University, InfoLab21, Lancaster, UK, neeraj.suri@lancaster.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Yang Lu, Zhengxin Yu, and Neeraj Suri

The traditional federated learning paradigm has two major issues. First, it requires a centralized server such that it is
connected to all the local learners. In some scenarios, the learners are geographically dispersed over a large area and
may lack such a connect-to-all server. In addition, the paradigm is not robust, since if the single centralized server fails,
then the whole learning task cannot proceed. Second, the local training models are directly uploaded to the centralized
server. As has been recently pointed out [16, 50], it is possible that private local training data can be reconstructed from
local training models via model inference or inversion attacks. The above two issues necessitate new mechanisms that
can achieve federated learning in a decentralized and privacy-preserving manner.

1.2 Related works

Multiple recent works have addressed the issue with fixed centralized server. Based on the technologies in achieving
model aggregation, these works can be mainly categorized into two classes. The first class of works dynamically selects
a learner to take the role of the centralized server [7, 56, 73]. Informally, for each round of model updates, a learner is
first selected, either randomly or by following specific rules. All the other learners send their local models, possibly
relayed via in-between learners, to the selected learner, who then performs model aggregation to update the global
model. This approach requires all the learners to coordinate to select the learner for performing model aggregation in
each round of model update. Another class of works adopts consensus-based algorithms, where the learners iteratively
update their local models to reach consensus on the desired global model [37, 41, 59]. At each iteration, the learners
exchange their local models only with their one-hop neighbors. In contrast to the first approach, the consensus-based
approach does not require global coordination1 between the learners and hence is easier for practical implementation.
However, all these works only consider a fixed communication topology and not applicable to an environment of high
mobility where the communication topology may change between successive rounds of model aggregation. In addition,
all the aforementioned works directly exchange local models between the learners and thus still suffer from model
inference and inversion attacks.

In this work, we develop the first privacy-preserving consensus-based decentralized federated learning algorithm
that considers mobility. This is closely related to the problem of privacy-preserving consensus, where the target is to
protect the privacy of the participants’ initial states in the process of reaching consensus.

Existing works on privacy-preserving multi-agent consensus and machine learning can be categorized into four
classes.

The first class of works uses perturbation-based approaches. An important branch of works in this class uses the
technique of differential privacy [28, 29, 52, 75]. Noticeably, instead of considering the consensus-based framework for
the case of a single global model, the work [4] considered the case where learners have different learning objectives and
developed a decentralized differentially private machine learning scheme. Differentially private schemes add random
perturbations into individuals’ private data such that the participation of an individual cannot be inferred via perturbed
data by an adversary with access to arbitrary auxiliary information [14]. Due to the usage of persistent random noises,
there is a fundamental trade-off between privacy and utility [21, 43]. The very recent work [30] proposed a different
perturbation-based approach, which, inspired by the combinatorial block design theory, partitioned learners into
disjoint groups so as to minimize communications between different groups during an Alternating Direction Method of
Multiplier (ADMM)-based iterative algorithm for decentralized aggregation. This approach has two limitations. First,
as revealed by Theorem III.2 (and explicitly mentioned by the second bullet of the contribution statement in page 1)

1By global coordination, we mean that all the learners need to participate to make certain network-wide decision.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 3

therein, this approach also has a fundamental trade-off between privacy and accuracy. In particular, this approach can
only support a limited number of iterations, while privacy will be compromized if going beyond the limit. Second, this
approach only heuristically reduces privacy leakage between different groups by reducing their communications, but
does not address the privacy issue between learners in a same group, or the case where adversarial learners in different
groups can collaborate with each other.

The second class of works obfuscates exchanged data by adding decaying or correlated noises, which can guarantee
consensus accuracy [19, 20, 27, 44, 47]. This approach ensures that the private data cannot be uniquely determined.
However, it still causes privacy leakage in the sense of information entropy of the private data, and the level of privacy
leakage is determined by the magnitude of the noises [27].

The third class of works adopts the technique of homomorphic encryption [32, 36, 42, 63]. Informally speaking,
homomorphic encryption allows certain algebraic operations to be carried out on ciphertexts, thus generating an
encrypted result which, when decrypted, matches the result of operations performed on plaintexts [72]. Existing
homomorphic encryption-based works require the existence of a centralized third party to carry out aggregation over
ciphertexts. Hence, they are not applicable to the decentralized setting. Additionally, homomorphic encryption schemes
usually incur heavy computational overheads. It is worth noting that several papers, e.g., [3, 8, 49], developed multiparty
homomorphic encryption (MHE) schemes, which allow multiple parties to cooperatively generate a common public
key whose private key is distributed among the parties. This enables the parties to cooperatively decrypt a ciphertext
without learning anything beyond the plaintext. Please refer to Section III-A of [49] for a detailed discussion of MHE.
MHE schemes have been applied to distributed learning settings where the homomorphic evaluation is carried out
cooperatively by all the parties [18, 58]. While these works do not employ a peer-to-peer setting, it is promising that
they can be extended to such a setting by incorporting, e.g., threshold secret sharing techniques [48].

The fourth class of works leverages state decomposition to achieve privacy-preserving consensus in a decentralized
setting [57, 65]. In this approach, a scalar step size shared between two neighboring agents is constructed as a product
of two scalar numbers, each randomly generated by one of the two agents and kept unknown to the other one. During
the consensus algorithm, the agents exchange the product of their states and the randomly generated step size splits.
Without knowing their step size splits, one agent cannot determine the values of the states of its neighbors. However,
to guarantee convergence of the underlying consensus algorithm, the step size splits have to be restricted in a small
interval. This will cause privacy degradation, as one can have a good estimate of the value of an agent’s state by
knowing the admissible interval and observing the product of the state and the step size split.

Positioning our research

To overcome the above limitations of existing works, we propose a new algorithm which integrates Shamir’s secret
sharing (SSS) to achieve privacy-preserving consensus-based decentralized federated learning. Informally speaking, SSS
distributes a secret among a group of participants, each of whom is allocated a share of the secret. As established by
Shamir [61], the secret can be reconstructed only when a sufficient number of shares are combined together, while
a smaller number of shares contain no information of the secret. This technique has been widely applied to secure
multiparty computation (SMC) on complete graphs [11], where each participant can communicate with each other
participant. Roughly speaking, each participant sends one share of its secret to each other participant. Each participant
then computes an aggregation of the shares it receives from all the other participants. When a sufficient number of
aggregated results are combined, the desired aggregation of the secrets of all the participants can be reconstructed.
While these approaches work well in fully connected graphs, most real-world applications entail sparse graphs, e.g.,

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Yang Lu, Zhengxin Yu, and Neeraj Suri

optimal resource allocation in power systems [9], multi-robot formation control [1], and distributed environmental
monitoring [2]. In addition, in an environment of high mobility, the communication topology may change over time. For
SMC over time-varying sparse graphs, where, at each round of computation, each participant can only communicate
with its current neighbors, the above mechanisms cannot be applied. Few research has been conducted to SMC over
sparse graphs. An exception is the recent work [39], which applied SSS to achieve privacy-preserving average consensus
over sparse graphs. The work [39] has three major limitations. First, the approach of [39] needs to randomly activate
one learner at each iteration, which requires global coordination between the learners. Second, the approach of [39]
can only deal with the case where each learner has at least two neighbors and the three learners form a fully connected
graph. Third, rigorous correctness and privacy analysis are absent in [39]. The paucity of SMC research on time-varying
sparse graphs motivates our work to establish fundamental results therein.

1.3 Overview of approach and contributions

This paper considers the problem of privacy-preserving decentralized federated learning over a time-varying communi-
cation graph. Specifically, we consider the case where the global training model is updated as a weighted average of the
learners’ local training models, and an average consensus algorithm is adopted to achieve decentralized aggregation.
First, a simplified problem setting is considered, where the participating learners are fixed and the communication
topology between can only change between successive training rounds. In each round of model aggregation, the
Metropolis-Hastings method [69] is applied to update the weighted adjacency matrix based on the current communi-
cation topology to ensure convergence of average consensus. To protect the privacy of local training models against
semi-honest learners, the learners use the Shamir’s secret sharing scheme [61] to distribute their local models to
their one-hop neighbors. Upon receiving the shares from its neighbors, each learner updates its model by inputting
the sum of the shares it holds to the consensus algorithm. The algorithm is then extended to deal with the issues of
change of participating learners and time-varying communication topology within a training round. Whenever the
communication graph changes, the Metropolis-Hastings method is applied to update the weighted adjacency matrix.
When a learner leaves the network, its current state is sent to one of its neighbors. The usage of the Shamir’s secret
sharing scheme guarantees that there is no additional privacy leakage in these operations. A proper scaling operation is
exerted at the end of the consensus process to ensure correctness. The contributions of our work are fourfold.

• First, the proposed algorithm is the first that can achieve federated learning over a time-varying communication
graph in a fully decentralized (without any global coordination between the learners during the iterative training
process) and provably privacy-preserving manner.

• Second, in terms of privacy-preserving consensus, the proposed algorithm, for the first time, simultaneously
achieves the following properties: (i) applicable to an arbitrary undirected connected communication graph
without the need of a third party; (ii) no additional loss on accuracy of consensus (model aggregation) other
than that caused by quantization error; (iii) no additional privacy leakage beyond the learners’ own inputs (the
local training models) and outputs (the updated global models); (iv) no privacy-convergence trade-off; (v) allow
collaborations between adversarial learners.

• Third, the correctness and privacy properties of the proposed algorithm are rigorously analyzed. In particular,
the correctness analysis addresses new challenges brought by signed real-valued models and termination of
consensus iteration, and the privacy analysis addresses new challenges in potential additional privacy leakage

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 5

caused by consensus process and time-varying communication topology. Please refer to Section 4.2 for detailed
discussions.

• Fourth, the correctness and computational efficiency of the proposed algorithm are demonstrated by a simulation
on a federated learning framework using a real-world dataset.

1.4 Organization

The rest of this paper is organized as follows. Section 2 introduces the problem statement for a simplified setting, where
participating learners are fixed and the communication graph between them only varies between successive training
rounds, while keeping fixed within a training round. Section 3 provides some necessary technical preliminaries. New
challenges in algorithm design and analysis are identified in Section 4. The proposed algorithm for the problem setting
of Section 2 is detailed in Section 5. Its correctness and privacy properties are analyzed in Section 6. An extended
algorithm is developed in Section 7 to further deal with change of learners and time-varying communication topologies
within a training round. In Section 8, case studies are presented to test the performance of the proposed algorithms.
Conclusions and future works are found in Section 9.

2 PROBLEM STATEMENT

In this section, we first review the framework of centralized federated learning. Next, we formulate the problem of
decentralized federated learning over a time-varying communication graph and identify its privacy issue. Subsequently,
we introduce the adopted attacker model and privacy definition. Finally, we clarify the objectives of the paper.

2.1 Centralized federated learning

Consider a set of 𝑁 learnersV ≜ {1, · · · , 𝑁 }. Each learner 𝑖 holds a set of𝑚𝑖 ∈ N local data samples, denoted by 𝐷𝑖 .
The learners aim to collaboratively train a common global model 𝜃 ∈ R𝑛 over all the 𝐷𝑖 ’s, where 𝑛 is the dimension of
the model to be trained. In federated learning, for the purpose of preserving privacy of individual 𝐷𝑖 ’s, in each round 𝑡
of model update, each learner 𝑖 first trains a local model 𝜃 (𝑡)

𝑖
∈ R𝑛 over 𝐷𝑖 . This can be expressed as

𝜃
(𝑡)
𝑖

= F𝑖 (𝜃 (𝑡,0)𝑖
, 𝐷𝑖), (1)

where 𝜃 (𝑡,0)
𝑖
∈ R𝑛 is the initial model for learner 𝑖’s local training in round 𝑡 , and F𝑖 is its local training algorithm, e.g.,

a stochastic gradient descent-based algorithm [46].
The global model 𝜃 (𝑡) ∈ R𝑛 is derived by performing a weighted aggregation over all the 𝜃 (𝑡)

𝑖
’s as

𝜃 (𝑡) =
∑︁
𝑖∈V

𝑤𝑖𝜃
(𝑡)
𝑖
, (2)

where 𝑤𝑖 > 0 is the weight on 𝜃 (𝑡)
𝑖

. A popular choice of 𝑤𝑖 is given by 𝑤𝑖 = 𝑚𝑖
𝑚 with𝑚 =

∑
𝑖∈V𝑚𝑖 , i.e., 𝑤𝑖 is the

proportion of learner 𝑖’s training data in the overall training data. Notice that in an execution of Eq. (2), only the local
training models 𝜃 (𝑡)

𝑖
’s can be observed, while the raw training data never leave their owners’ devices.

In the centralized setting, as shown by Fig. 1, each learner 𝑖 uploads 𝜃 (𝑡)
𝑖

to a centralized server. Upon receiving the
local models from all the learners, the centralized server updates the global model 𝜃 (𝑡) by Eq. (2) and sends 𝜃 (𝑡) to all
the learners. Each learner 𝑖 then sets 𝜃 (𝑡+1,0)

𝑖
= 𝜃 (𝑡) and 𝑡 ← 𝑡 + 1, and progresses to Eq. (1) for the next round of local

training.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Yang Lu, Zhengxin Yu, and Neeraj Suri

Fig. 1. Centralized federated learning.

2.2 Decentralized federated learning over a time-varying communication graph

The above centralized federated learning paradigm with a fixed centralized server is not robust and suffers from the
issue of single-point failure, i.e., if the single centralized server fails, then the whole learning task cannot proceed. A
popular approach to mitigate this issue is to dynamically select a learner to play the role of the centralized server for
each new round of training, where it requires that each newly selected learner must be able to directly communicate
with all the other learners. This approach in general works well for the settings with a fixed set of learners connected
by a complete communication topology, i.e., each learner can communicate with each other learner. However, this
approach may not be suitable for the following two important settings:

(i) A fixed set of learners connected by a fixed sparse communication topology where a centralized server does not
exist;

(ii) A set of mobile learners, leading to time-varying communication topologies, where it is difficult or even impractical
to establish a connect-to-all centralized server, due to, e.g., learners’ limited communication range and high mobility.

A motivating application for setting (i) is load forecasting of distributed energy resources (DERs) in the smart grids
[64]. In particular, a set of DERs, e.g., solar and wind power generators, aim to collaboratively predict future energy
consumption at the consumer level. This task can be effectively formulated as a machine learning problem where future
load is learned from historical data of smart meters installed at the side of consumers of participating DERs. However,
data stored at smart meters must be kept confidential to the corresponding consumers, as energy-use information
attached to the data act as an information-rich side channel, exposing consumer habits and behaviors. It has been
shown that power load profiles at a granularity of 15 minutes may reveal whether a child is left alone at home and
at a finer granularity may reveal the daily routines of consumers [23]. Federated learning is therefore a promising
candidate to achieve load prediction while protecting privacy of individual consumers’ smart meter data. However, in
the modern smart grids, DERs are usually geographically dispersed over a large area and connected via a quite sparse
communication topology without a connect-to-all entity, rendering existing federated learning schemes that rely on a
centralized server (either fixed or dynamically updated) inapplicable.
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 7

A motivating application for setting (ii) is vehicular ad-hoc networks (VANET)-based high-definition (HD) mapping
in autonomous driving [71]. Specifically, a fleet of vehicles aim to leverage the underlying VANET to collaboratively
update the HD map of their surrounding area. This task can be formulated as a machine learning problem where
the updated HD map can be learned from the image sensing data of participating vehicles. However, such image
sensing data contain sensitive location trace information and must be kept confidential to their owners. The contextual
information attached to location traces may significantly reveal individuals’ habits, interests, activities and relationships
[34]. It can also reveal their personal or corporate secrets, expose them to unwanted advertisement and location-based
spams, cause social reputation or economic damage, make them victims of blackmail or even physical violence. Again,
due to the privacy concern, federated learning is a promising machine learning candidate to be applied. However, the
aforementioned federated learning paradigms may not be suitable because it is difficult or even impractical to establish
a centralized server in VANET. First, each vehicle has a limited wireless (e.g., Wi-Fi and Bluetooth) communication
range and can only talk to its neighboring vehicles which are within the range. Hence, while all the vehicles in the
network may form time-varying connected graphs, usually there is no one that is close enough to all the other vehicles
at any time instant. Additionally, even for the cases where communication range is not a critical constraint (e.g., the
concerned geographic area is small enough such that the vehicles’ communication range is beyond the diameter of
the area), establishing a stable centralized server is difficult due to vehicles’ high mobility. Since individual vehicles
can freely join and leave the network, the centralized server may need to be updated frequently, and, to guarantee
performance, a complete communication topology should be maintained at any time instant among all the currently
participating vehicles. This might be difficult due to, e.g., constraints on communication bandwidth and energy.

Decentralized model aggregation. The above discussions indicate that, in some scenarios, especially when the
learners are geographically dispersed over a large area, there may not exist a centralized server that is connected to all
the learners; please see Fig. 2 as an illustration. In such cases, the learners need to carry out the model aggregation Eq.
(2) in a decentralized manner over the underlying communication graph between them.

Fig. 2. Centralized aggregation vs decentralized aggregation.

Time-varying communication graph. In an environment of mobile learners, the communication topology between
the learners may vary between successive rounds of model aggregation as depicted in Fig. 3.

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Yang Lu, Zhengxin Yu, and Neeraj Suri

Fig. 3. Communication topology change between successive rounds of model aggregation.

Denote G (𝑡) = (V, E (𝑡)) as the communication graph between the learners during the 𝑡-th round of model
aggregation, where E (𝑡) ⊆ V ×V is the set of communication links such that (𝑖, 𝑗) (𝑡) ∈ E (𝑡) if and only if learner
𝑖 can receive messages from learner 𝑗 during the 𝑡-th round of model aggregation. Denote N (𝑡)

𝑖
⊆ V as the set of

neighbors of learner 𝑖 in G (𝑡) , i.e., N (𝑡)
𝑖

= { 𝑗 ∈ V \ {𝑖} : (𝑖, 𝑗) (𝑡) ∈ E (𝑡) }. Denote N̄ (𝑡)
𝑖

= N (𝑡)
𝑖
∪ {𝑖}. In this paper, we

first study the case characterized by the following assumption on G (𝑡) . This assumption will be relaxed in Section 7.

Assumption 2.1. For any 𝑡 ∈ N, G (𝑡) is undirected, connected, and time invariant within the 𝑡-th round of model

aggregation.

Remark 2.1. Assumption 2.1 covers a wide range of applications with fixed or slowly changing participating learners

and communication topologies. For example, this is the case for many applications in the smart grids, where the participating

learners are power generators. In such applications, the update of the participating power generators (i.e., joining of new

power generators and leaving of existing ones) and the underlying communication topology usually change at a very

slow time scale, because such updates will incur significant budgets on new constructions as well as many other strategic

considerations. A concrete example is the problem of load forecasting of DERs mentioned in Section 2.2.

Privacy issue. During each round 𝑡 of model aggregation, for each learner 𝑖 , its local model 𝜃 (𝑡)
𝑖

must be kept private
to itself, as breach of 𝜃 (𝑡)

𝑖
may enable an attacker to reconstruct learner 𝑖’s local training data by inference or inversion

attacks.

2.3 Attacker model

We consider the semi-honest attacker model, i.e., an adversarial learner correctly follows the designed algorithm but
attempts to use its received data to infer others’ private data ([26], pp-20). Moreover, the adversarial learners can
collaborate with each other to infer the benign learners’ local models. This attacker model has been widely used in
various applications, e.g., privacy-preserving linear programming, dataset process and consensus [13, 17, 29]. We assume
that the communication links between the learners are secure2.

2Secure communication links can be enforced by cryptographic technologies such as encryption schemes.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 9

2.4 Privacy definition

As discussed above, our concerned problem is how all the learners can collaboratively compute the correct global
model 𝜃 (𝑡) without disclosing their local models 𝜃 (𝑡)

𝑖
’s to other learners. This is a secure multiparty computation (SMC)

problem. Perfect secrecy, which will be adopted in this paper, is a standard privacy notion for SMC. Roughly speaking,
an algorithm provides perfect secrecy if, after executing the algorithm, the adversarial entities only know their own
inputs and outputs, but do not know anything beyond them, even if they have unlimited computing power [62]. It is
worth noting that, unlike perturbation-related privacy notions, e.g., differential privacy, perfect secrecy does not induce
the issue of utility-privacy trade-off.

We next provide the formal definition of perfect secrecy in the general context of SMC, where, given a set of entities
V , each entity 𝑖 ∈ V has a secret input 𝑥𝑖 and aims to compute the value of 𝑓𝑖 ({𝑥 𝑗 } 𝑗 ∈V). To do that, we need to
introduce the notions of perfect indistinguishability and view. First, the following definition states that two distributions
are perfectly indistinguishable if they follow the same distribution.

Definition 2.1 ([11]). Let X = {X(𝜅)}𝜅∈N andY = {Y(𝜅)}𝜅∈N be two distribution ensembles, where, for each 𝜅 ∈ N,
X(𝜅) and Y(𝜅) are two random variables with the same probability space and the same range 𝑅(𝜅). We say that X and Y
are perfectly indistinguishable, denoted by X

𝑝
≡Y, if the following holds∑︁

𝑟 ∈𝑅 (𝜅)
| Pr[X(𝜅) = 𝑟] − Pr[Y(𝜅) = 𝑟] | = 0, ∀𝜅 ∈ N.

Next, we introduce the notion of view. Informally, the view of an entity is the set of all the messages the entity can
see after the execution of the algorithm.

Definition 2.2 ([11, 22]). Let Π be an algorithm for computing 𝑓 = {𝑓𝑖 }𝑖∈V . For an execution of Π on a joint input

𝑥 = {𝑥𝑖 }𝑖∈V , the view of entity 𝑖 , denoted by VIEWΠ
𝑖
(𝑥), is VIEWΠ

𝑖
(𝑥) ≜ {𝑥𝑖 ,𝑚𝑖1, · · · ,𝑚

𝑖
𝑡𝑖
}, where 𝑡𝑖 is the total number

of messages received by entity 𝑖 , and for each ℓ ∈ {1, · · · , 𝑡𝑖 },𝑚𝑖ℓ is the ℓ-th message it receives.

This provides the basis to define perfect secrecy.

Definition 2.3 ([11]). Let Π be an algorithm for computing 𝑓 = {𝑓𝑖 }𝑖∈V . Given a joint input 𝑥 = {𝑥𝑖 }𝑖∈V , denote the

joint view of the entities in a set I ⊆ V by VIEWΠ
I (𝑥). Let A be the set of adversarial learners. We say that Π provides

perfect secrecy against A if there exists a probabilistic polynomial-time algorithm 𝑆 , such that for any admissible 𝑥 , it

holds that

𝑆 (A, {𝑥𝑖 }𝑖∈A , {𝑓𝑖 }𝑖∈A)
𝑝
≡VIEWΠ

A (𝑥). (3)

The condition Eq. (3) implies that whatever can been seen by A after the execution of Π can be simulated by an
algorithm 𝑆 using onlyA’s own inputs and outputs, andA cannot distinguish 𝑆 (A, {𝑥𝑖 }𝑖∈A , {𝑓𝑖 }𝑖∈A) and VIEWΠ

A (𝑥)
even if it has unlimited computing power. In other words, the execution of Π does not provide A any additional
information beyond what it must know, i.e., A’s own inputs and outputs.

2.5 Design objectives

In this paper, we aim to design a privacy-preserving decentralized algorithm for the model aggregation Eq. (2) over a time-
varying sparse communication graph satisfying Assumption 2.1, such that the following properties are simultaneously
guaranteed:

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Yang Lu, Zhengxin Yu, and Neeraj Suri

• Correctness: For every round 𝑡 ∈ N, all the learners derive the correct global model 𝜃 (𝑡) given by Eq. (2), up to
a quantization error (which is introduced due to usage of fixed-point arithmetic so as to apply SSS; please refer
to part (i) in Section 4.2 and Remark 5.1).

• Privacy: The proposed algorithm protects the privacy of benign learners’ local models 𝜃 (𝑡)
𝑖

’s against semi-honest
learners in the sense of perfect secrecy.

3 TECHNICAL PRELIMINARIES

In this paper, we achieve the objectives stated in Section 2.5 by integrating average consensus and Shamir’s secret
sharing. This section provides necessary technical preliminaries of the two techniques.

3.1 Consensus-based decentralized model aggregation

Average consensus is an effective method to achieve decentralized aggregation over sparse communication graphs. This
subsection first provides preliminaries on average consensus-based decentralized model aggregation, then introduces
the Metropolis-Hastings method to deal with time-varying communication graphs. More detailed discussions can be
found in [60, 68, 69].
Average consensus. Roughly speaking, this method enables a set of entities over a sparse connected communication
graph, each with an initial state, to iteratively interact with their neighbors and update their states, such that all the
entities’ states will asymptotically converge to the average of their initial states.

To apply the average consensus method, for each round 𝑡 of model aggregation, the communication graph G (𝑡)

needs to be equipped with a weighted adjacency matrix 𝐴(𝑡) = [𝑎 (𝑡)
𝑖 𝑗
] ∈ R𝑁×𝑁 such that 𝑎 (𝑡)

𝑖 𝑗
> 0 if (𝑖, 𝑗) (𝑡) ∈ E (𝑡)

and 𝑎 (𝑡)
𝑖 𝑗

= 0 otherwise. For now, we assume that 𝐴(𝑡) is given and provide the average consensus update rule and its
convergence property. The construction of 𝐴(𝑡) will be illustrated afterwords.

With 𝐴(𝑡) , to carry out the model aggregation Eq. (2) in a decentralized manner, each learner 𝑖 iteratively constructs
a sequence of weighted local models {𝜃 (𝑡)

𝑖
(𝑘)}, where 𝑘 is the iteration index for the consensus algorithm below, such

that 𝜃 (𝑡)
𝑖
(0) = 𝑤𝑖𝜃 (𝑡)𝑖 , and the update rule is given by

𝜃
(𝑡)
𝑖
(𝑘 + 1) = 𝑎 (𝑡)

𝑖𝑖
𝜃
(𝑡)
𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡)

𝑖

𝑎
(𝑡)
𝑖 𝑗
𝜃
(𝑡)
𝑗
(𝑘) . (4)

For any 𝑘 ∈ N, let 𝜃 (𝑡) (𝑘) = {𝜃 (𝑡)
𝑖
(𝑘)}𝑖∈V be the learners’ joint state at iteration 𝑘 . Given an initial joint state

𝜃 (𝑡) (0), we say that the learners asymptotically reach average consensus if all the learners’ states converge to the
average of their initial states as 𝑘 tends to infinity, i.e.,

lim
𝑘→∞

𝜃
(𝑡)
𝑖
(𝑘) = 1

𝑁

∑︁
𝑗 ∈V

𝜃
(𝑡)
𝑗
(0), ∀𝑖 ∈ V . (5)

If Eq. (5) is true, then each learner 𝑖’s state 𝜃 (𝑡)
𝑖
(𝑘) will asymptotically converge to 𝜃 (𝑡)

𝑖
(∞) = 1

𝑁

∑
𝑗 ∈V 𝜃

(𝑡)
𝑗
(0) =

1
𝑁

∑
𝑗 ∈V 𝑤 𝑗𝜃

(𝑡)
𝑗

= 1
𝑁
𝜃 (𝑡) , and hence each learner 𝑖 can derive the global model 𝜃 (𝑡) by computing 𝑁𝜃 (𝑡)

𝑖
(∞).

The following lemma provides a sufficient and necessary condition for reaching average consensus.

Lemma 3.1 ([68]). With 𝐴(𝑡) in each round 𝑡 of model aggregation, the learners can achieve asymptotic average

consensus Eq. (5) by the update rule Eq. (4) from any initial joint state 𝜃 (𝑡) (0) if and only if the following conditions are
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 11

simultaneously satisfied

𝜌 (𝐴(𝑡) − 1
𝑁

1𝑁 1𝑇𝑁) < 1, (6)

1𝑇𝑁𝐴
(𝑡) = 1𝑇𝑁 , (7)

𝐴(𝑡)1𝑁 = 1𝑁 , (8)

where 1𝑁 is the 𝑁 -dimensional column vector with all ones, and 𝜌 (·) denotes the spectral radius3 of a square matrix.

The intuition of Lemma 3.1 lies in that condition (6) guarantees asymptotic consensus, while conditions (7) and (8)
ensure that the convergence is to the desired average point 1

𝑁

∑
𝑗 ∈V 𝜃

(𝑡)
𝑗
(0).

The next question is how to construct 𝐴(𝑡) that satisfies all the conditions (6)–(8). One efficient approach is the
Metropolis-Hastings method, illustrated next.
Metropolis-Hastings method. For a time-varying communication graph, the Metropolis-Hastings method [69] can be
applied to update 𝐴(𝑡) to ensure asymptotic average consensus. In particular, for each round 𝑡 , based on its current
local communication topology, each learner 𝑖 constructs weights 𝑎 (𝑡)

𝑖 𝑗
’s for all 𝑗 ∈ N̄ (𝑡)

𝑖
as follows

𝑎
(𝑡)
𝑖 𝑗

=


1

max{ |N (𝑡)
𝑖
|, |N (𝑡)

𝑗
| }+1

if 𝑗 ∈ N (𝑡)
𝑖

1 − ∑
𝑗 ∈N (𝑡)

𝑖

1
max{ |N (𝑡)

𝑖
|, |N (𝑡)

𝑗
| }+1

if 𝑗 = 𝑖,
(9)

where | · | denotes the cardinality of a set.
As an illustrative example, in Fig. 4, the figure on the left shows the communication topology between four learners,

and the matrix on the right is the corresponding weighted adjacency matrix 𝐴(𝑡) constructed by (9).

Fig. 4. An example of matrix 𝐴(𝑡) constructed by the Metropolis-Hastings method (9).

The following lemma states that 𝐴(𝑡) constructed by (9) satisfies all the conditions of Lemma 3.1.

Lemma 3.2 ([60]). Under Assumption 2.1, in each round 𝑡 , if 𝐴(𝑡) is constructed by (9), then the conditions (6)–(8) are
all satisfied.

3The spectral radius of a square matrix is the largest absolute value of its eigenvalues.

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Yang Lu, Zhengxin Yu, and Neeraj Suri

Under Assumption 2.1, by Lemmas 3.1 and 3.2, the update rule (4) with 𝐴(𝑡) constructed by (9) ensures asymptotic
average consensus (5). Notice that in running both (4) and (9), each learner only needs information from its neigh-
bors. Hence, the aforementioned consensus-based method realizes the model aggregation (2) over a time-varying
communication graph in a fully decentralized manner.

On the other hand, in implementing (4), each learner 𝑖 directly sends its state 𝜃 (𝑡)
𝑖
(𝑘) at each consensus iteration 𝑘

to its neighbors. This causes the breach of its initial state 𝜃 (𝑡)
𝑖
(0) and of its local training model 𝜃 (𝑡)

𝑖
. Hence, the privacy

issue remains to be addressed for the implementation of (4).

Remark 3.1. Notice that the construction of 𝐴(𝑡) by (9) is completely local. That is, to construct 𝑎 (𝑡)
𝑖 𝑗

, learner 𝑖 only

has to communicate with its neighbor 𝑗 ∈ N (𝑡)
𝑖

, while the construction of 𝑎 (𝑡)
𝑖 𝑗

is completely independent of all the other

learners and thus does not need a global coordination. This is in contrast to the works [7, 39, 56, 73], which need to perform

global coordinations to enable all the learners to collaboratively select a new learner (as the centralized server in [7, 56, 73],

and as the single update entity of the current training round in [39]) at the beginning of each training round.

3.2 Shamir’s secret sharing

In the paper, we will adopt SSS to facilitate privacy in the implementation of (4). This subsection provides some
preliminaries on how to use SSS to distribute a secret over a finite set of entities. More detailed discussions can be found
in [11, 61].
Shares generation. To distribute a secret 𝑠 over a set of entitiesV , SSS uses a polynomial of degree smaller than |V|
to generate |V| shares of 𝑠 , one share for one entity of V . Formally, given a prime number 𝑝 > |V| and a positive
integer 𝜏 < |V|, a secret 𝑠 ∈ Z𝑝 is split into |V| shares {H 𝑖 }𝑖∈V by Algorithm 1. In the algorithm, 𝑝 is the parameter
to set the underlying finite field for SSS, and 𝜏 is the degree of the polynomial used to generate shares of 𝑠 . After shares
generation, the shareH 𝑖 is sent to entity 𝑖 for all 𝑖 ∈ V .

Algorithm 1: Shamir’s secret shares generation

Syntax: {H 𝑖 }𝑖∈V = Algssg (𝑠, 𝑝, 𝜏,V).
The executor selects 𝜏 scalars 𝑐1, · · · , 𝑐𝜏 ∈ Z𝑝 uniformly at random with 𝑐𝜏 ≠ 0, defines a polynomialH as
H(𝜂) = 𝑠 + 𝑐1𝜂 + · · · + 𝑐𝜏𝜂𝜏 , and computesH 𝑖 = H(𝑖) mod 𝑝 for all 𝑖 ∈ V .

Reconstruction. As given by the following lemma, the secret 𝑠 can be reconstructed by collecting arbitrary 𝜏 + 1 or
more shares via the technique of Lagrange interpolation. This property directly follows the fact that a polynomial of
degree 𝜏 can be uniquely determined by any 𝜏 + 1 or more points of the polynomial.

Lemma3.3 ([11]). Let (𝑠, 𝑝, 𝜏,V) and {H 𝑖 }𝑖∈V be a set of inputs and corresponding outputs of Algorithm 1, respectively.

Then for any set C ⊆ V with |C| ≥ 𝜏 + 1, 𝑠 can be reconstructed as 𝑠 =
∑
𝑖∈CH 𝑖𝛿C,𝑖 mod 𝑝 , where

𝛿C,𝑖 =
∏

𝑗 ∈C, 𝑗≠𝑖

𝑗

𝑗 − 𝑖 mod 𝑝, ∀𝑖 ∈ C. (10)

Privacy. The privacy property of SSS is given by the following lemma, which states that the collection of any 𝜏 or less
shares generated by Algorithm 1 contains no information of 𝑠 . This property follows the fact that it takes at least 𝜏 + 1
points to define a polynomial of degree 𝜏 .

Lemma 3.4 ([11]). SSS provides perfect secrecy against any set I ⊆ V such that |I | ≤ 𝜏 .
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 13

4 NEW CHALLENGES IN ALGORITHM DESIGN AND ANALYSIS

In this section, we first provide the high-level idea of algorithm design based on integrating SSS with average consensus.
After that, we identify new challenges to a trivial integration brought by the nature of the concerned problem setting.

4.1 High-level description

As mentioned, in this paper, we achieve privacy-preserving decentralized federated learning by integrating SSS with
the average consensus update rule (4). Informally speaking, to protect the privacy of 𝜃 (𝑡)

𝑖
(0), each learner 𝑖 uses a new

state 𝑠 (𝑡)
𝑖
(0) as the initial state in executing (4). The new states 𝑠 (𝑡)

𝑖
(0)’s need to simultaneously satisfy:

• Correctness: The average consensus point under the initial states 𝑠 (𝑡)
𝑖
(0)’s is or can be used to locally derive

the desired global model 𝜃 (𝑡) .
• Privacy: The observation and the derivation process of 𝑠 (𝑡)

𝑖
(0)’s do not disclose any information of 𝜃 (𝑡)

𝑖
(0)’s.

To this end, the learners generate 𝑠 (𝑡)
𝑖
(0)’s via SSS, as informally illustrated as follows. First, by Algorithm 1, each

learner 𝑖 uses a polynomial of degree |N (𝑡)
𝑖
| to generate |N (𝑡)

𝑖
| + 1 shares of 𝜃 (𝑡)

𝑖
(0), distributes |N (𝑡)

𝑖
| shares to

its corresponding neighbors, while keeping one share private to itself. After the exchange of shares, each learner 𝑖
aggregates the |N (𝑡)

𝑖
| shares received from its neighbors and the one share generated and held secretly by itself to form

𝑠
(𝑡)
𝑖
(0), and uses it as the initial state in executing (4).
We next informally discuss the correctness and privacy intuitions of the above procedure.

• Correctness: By the convergence property of (4), all the learners can derive
∑
𝑖∈V 𝑠

(𝑡)
𝑖
(0), which is the ag-

gregation of all the shares of all the learners’ local models {𝜃 (𝑡)
𝑖
(0)}𝑖∈V . Notice that, by the reconstruction

property of SSS, each individual 𝜃 (𝑡)
𝑖
(0) can be reconstructed by aggregating all of its |N (𝑡)

𝑖
| + 1 shares. Hence,∑

𝑖∈V 𝑠
(𝑡)
𝑖
(0) can be used to reconstruct

∑
𝑖∈V 𝜃

(𝑡)
𝑖
(0), which is the global model 𝜃 (𝑡) .

• Privacy: By the privacy property of SSS, 𝜃 (𝑡)
𝑖
(0) is perfectly secret if and only if not all of its |N (𝑡)

𝑖
| + 1 shares

are known to the adversarial learners. It can be perceived that a necessary condition for this is that learner 𝑖
has at least one benign neighbor.

4.2 New challenges

The last subsection presents a high-level framework based on the integration of the consensus method and SSS. However,
for the concerned problem setting, a trivial integration is far from enough. In this subsection, we identify new challenges
in terms of design and analysis which are critical for establishing rigorous correctness and privacy properties. Besides,
we also briefly illustrate how these challenges are addressed in this paper, while the details are provided in Section 5
and Section 6.

There are four major challenges, as detailed next. Specifically, the first two are due to the real-valued setting of our
problem of interest, and bring new challenges to correctness guarantee. The last two stem from more complicated
information flow caused by the iterative nature of the consensus process as well as time-varying communication
topology between successive training rounds, and bring new challenges to privacy analysis.
(i) Signed real-valued models. The standard SSS scheme involves modular operations and has to be implemented over
non-negative integers. However, the training models in federated learning usually take signed real values. To address
this mismatch, we propose a transformation between non-negative integers and signed real numbers (given by (15)).
Roughly speaking, the learners transform their local models into integers and apply the procedure described in the last
subsection. After the final non-negative integer-valued consensus model is derived, each agent then uses the proposed

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Yang Lu, Zhengxin Yu, and Neeraj Suri

transformation to turn it back to a signed real-valued model. If the parameter 𝑝 in Algorithm 1 is sufficiently large (a
sufficient lower bound of 𝑝 is provided by (16)), then it is guaranteed that the transformed real-valued model is the
correct global model.
(ii) Termination of consensus iteration. As mentioned in the last paragraph, the learners input integer-valued models
into the procedure described in Section 4.1. Hence, theoretically, the asymptotic consensus result is a non-negative
integer-valued model. To reconstruct the global model by SSS, before the integer-to-real transformation, this model
needs to be exerted a modulo 𝑝 operation (please refer to Lemma 3.3 and (14)). However, since the convergence of
the consensus update rule is only asymptotic and the weights 𝑎 (𝑡)

𝑖 𝑗
’s in (4) are decimals, the intermediate results of

(4) may also be decimals. Due to the subsequent modulo 𝑝 operation, even if the terminating result is close to the
theoretical integer-valued result, there could be a large deviation in the remainder after the modulo operation. To see
this, consider the case where the terminating result is 99.4 and rounded to 99, the theoretical result is 100, and the value
of 𝑝 is 50. After the modulo 𝑝 operation, the remainders for the terminating result and the theoretical result are 49
and 0, respectively. This shows that, compared to usual consensus applications, we need a more careful control on
the termination condition. To address this challenge, we identify a sufficient lower bound of the number of consensus
iterations (given by (17)) that guarantees that the absolute difference between the terminating and the theoretical results
is strictly smaller than 0.5, and hence the result after the rounding operation is just the theoretical result.
(iii) Privacy leakage during consensus process. For the standard SSS-based secure sum computation over a complete
communication graph, each entity receives all the other entities’ shares just once and then performs an aggregation. For
this standard scheme, as long as there is an honest majority (more specifically, the number of adversarial entities is no
greater than the degree of the polynomial used to generated shares), then the adversarial entities cannot gain anything
beyond the sum of all the entities’ private inputs. However, in our case, since the communication graph is sparse, secure
sum computation is further facilitated by a consensus process, where the shares need to be iteratively exchanged and
aggregated according to the consensus update rule and the underlying communication topology. Such multiple rounds
of communications may cause additional privacy leakage, e.g., partial sum (the sum of the local models of a subset of
learners). This indicates that new privacy analysis is needed for the consensus process. To address this challenge, we
identify a graph-oriented condition, which can be used to characterize the view of the adversarial learners throughout
the whole consensus process (please refer to Lemma 6.1).
(iv) Privacy property under time-varying communication topology. Besides the privacy issue caused by the
consensus process, the time-varying communication topology further induces new challenges to privacy preservation.
Specifically, due to time-varying communication topology, one-shot privacy preservation (privacy for one round of
training) is not enough. Instead, wemust establish a privacy conditionwith respect to the evolution of the communication
topology. To address this challenge, we further extend the graph-oriented condition mentioned in the last paragraph to
derive a sufficient and necessary condition under which perfect secrecy is achieved throughout the evolution of the
communication topology (please refer to Theorem 6.2).

5 PRIVACY-PRESERVING DECENTRALIZED ALGORITHM DESIGN

In this section, the proposed privacy-preserving decentralized federated learning algorithm for the problem setting
characterized by Assumption 2.1 is developed. First, we illustrate the design details and highlight how the challenges
identified in the last section are addressed. A summary of the whole design is provided afterwards.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 15

5.1 Design details

In this paper, we use finite precision to cope with transformations between real numbers and integers. In particular,
throughout the paper, the precision level is set by 𝜎 ∈ N, that is, for any real number, only the first 𝜎 fraction digits are
kept while rest ones are dropped.

The overall design has three phases, secret shares generation of local models, consensus iteration, and global model
reconstruction. The design is detailed next.
Secret shares generation of local models. All the learners first agree on a positive prime number 𝑝 , which can be
realized by a maximum consensus algorithm offline. We next fix a training round 𝑡 and a learner 𝑖 , and illustrate the
secret shares generation of 𝜃 (𝑡)

𝑖
(0).

First, for each 𝑗 ∈ N̄ (𝑡)
𝑖

, learner 𝑖 computes 𝛿 (𝑡)
N̄ (𝑡)
𝑖
, 𝑗
by (10). Then, for each 𝑙 ∈ {1, · · · , 𝑛} (recall that 𝑛 is the

dimension of the model to be trained), learner 𝑖 first transforms 𝜃 (𝑡)
𝑖𝑙
(0) into an integer via multiplying by 10𝜎 , and then

applies Algorithm 1 to use a polynomial of degree |N (𝑡)
𝑖
| to generate |N̄ (𝑡)

𝑖
| = |N (𝑡)

𝑖
| + 1 shares of integer 10𝜎𝜃 (𝑡)

𝑖𝑙
(0),

denoted as {H 𝑗 (𝑡)
𝑖𝑙
}
𝑗 ∈N̄ (𝑡)

𝑖

= Algssg (10𝜎𝜃 (𝑡)
𝑖𝑙
(0), 𝑝, |N (𝑡)

𝑖
|, N̄ (𝑡)

𝑖
). In light of Lemma 3.3, to facilitate later reconstruction

of 10𝜎𝜃 (𝑡)
𝑖𝑙
(0), learner 𝑖 further computes {S 𝑗 (𝑡)

𝑖𝑙
}
𝑗 ∈N̄ (𝑡)

𝑖

as

S 𝑗 (𝑡)
𝑖𝑙

= H 𝑗 (𝑡)
𝑖𝑙

𝛿
(𝑡)
N̄ (𝑡)
𝑖
, 𝑗

mod 𝑝, ∀𝑗 ∈ N̄ (𝑡)
𝑖

. (11)

For each 𝑗 ∈ N̄ (𝑡)
𝑖

, with S 𝑗 (𝑡)
𝑖𝑙

ready for all 𝑙 ∈ {1, · · · , 𝑛}, learner 𝑖 forms S 𝑗 (𝑡)
𝑖

= {S 𝑗 (𝑡)
𝑖𝑙
}𝑙 ∈{1,· · · ,𝑛} . Then learner 𝑖

sends S 𝑗 (𝑡)
𝑖

to learner 𝑗 for each 𝑗 ∈ N (𝑡)
𝑖

, while keeping S𝑖 (𝑡)
𝑖

private to itself.
Consensus iteration. The learners agree on a positive integer 𝐾 , which is the number of iterations for running the
average consensus algorithm. Again, this can be realized by a maximum consensus algorithm offline. In each training
round 𝑡 , upon receiving S𝑖 (𝑡)

𝑗
generated as above from all of its neighbors 𝑗 ∈ N (𝑡)

𝑖
, each learner 𝑖 constructs its new

initial state 𝑠 (𝑡)
𝑖
(0) as

𝑠
(𝑡)
𝑖
(0) =

∑︁
𝑗 ∈N̄ (𝑡)

𝑖

S𝑖 (𝑡)
𝑗

mod 𝑝, (12)

and sends 𝑠 (𝑡)
𝑖
(0) to learner 𝑗 for all 𝑗 ∈ N (𝑡)

𝑖
. Then, from 𝑘 = 0 to 𝑘 = 𝐾 − 1, each learner 𝑖 iteratively updates its state

𝑠
(𝑡)
𝑖
(𝑘) by

𝑠
(𝑡)
𝑖
(𝑘 + 1) = 𝑎 (𝑡)

𝑖𝑖
𝑠
(𝑡)
𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡)

𝑖

𝑎
(𝑡)
𝑖 𝑗
𝑠
(𝑡)
𝑗
(𝑘), (13)

and sends 𝑠 (𝑡)
𝑖
(𝑘 + 1) to learner 𝑗 for all 𝑗 ∈ N (𝑡)

𝑖
.

Global model reconstruction. At the end of the consensus iteration, each learner 𝑖 first performs the following
roundness4 and modular operations over 𝑠 (𝑡)

𝑖
(𝐾)

𝑧
(𝑡)
𝑖𝑙

= ⌊𝑁𝑠 (𝑡)
𝑖𝑙
(𝐾)⌉ mod 𝑝, ∀𝑙 ∈ {1, · · · , 𝑛}. (14)

In (14), the rounding operation is needed to ensure perfect correctness. Specifically, with𝐴(𝑡) generated by (9), the update
rule (13) ensures that 𝑠 (𝑡)

𝑖
(𝑘) asymptotically converges to the point 1

𝑁

∑
𝑗 ∈V 𝑠

(𝑡)
𝑗
(0). Hence, for each 𝑙 ∈ {1, · · · , 𝑛},

4Given 𝑎 ∈ R, denote by ⌊𝑎⌋ the greatest integer less than or equal to 𝑎; by ⌈𝑎⌉ the least integer greater than or equal to 𝑎; and by ⌊𝑎⌉ the roundness of
𝑎, such that ⌊𝑎⌉ = ⌊𝑎⌋ if 𝑎 − ⌊𝑎⌋ < 0.5, and ⌊𝑎⌉ = ⌈𝑎⌉ if ⌈𝑎⌉ − 𝑎 ≤ 0.5.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Yang Lu, Zhengxin Yu, and Neeraj Suri

𝑁𝑠
(𝑡)
𝑖𝑙
(𝑘) asymptotically converges to the point

∑
𝑗 ∈V 𝑠

(𝑡)
𝑗𝑙
(0), which is a non-negative integer. However, since the

convergence is asymptotic, there could be a difference between 𝑁𝑠 (𝑡)
𝑖𝑙
(𝐾) and ∑

𝑗 ∈V 𝑠
(𝑡)
𝑗𝑙
(0). If 𝐾 is large enough such

that the condition |𝑁𝑠 (𝑡)
𝑖𝑙
(𝐾) −∑𝑗 ∈V 𝑠

(𝑡)
𝑗𝑙
(0) | < 0.5 holds, then it is guaranteed that the rounded integer in (14) is equal

to the correct consensus point, i.e., ⌊𝑁𝑠 (𝑡)
𝑖𝑙
(𝐾)⌉ = ∑

𝑗 ∈V 𝑠
(𝑡)
𝑗𝑙
(0). Based on this condition, a sufficient lower bound of 𝐾

is given by (17) in Section 6.1.
Notice that each 𝑧 (𝑡)

𝑖𝑙
is a non-negative integer smaller than 𝑝 (because it is a remainder of modulo 𝑝 operation). Each

learner 𝑖 then transforms 𝑧 (𝑡)
𝑖𝑙

for every 𝑙 ∈ {1, · · · , 𝑛} back to a signed real number as follows

𝜃
(𝑡)
𝑖𝑙

=

{
𝑧
(𝑡)
𝑖𝑙
/10𝜎 , if 0 ≤ 𝑧 (𝑡)

𝑖𝑙
≤ (𝑝 − 1)/2,

(𝑧 (𝑡)
𝑖𝑙
− 𝑝)/10𝜎 , if (𝑝 + 1)/2 ≤ 𝑧 (𝑡)

𝑖𝑙
< 𝑝.

(15)

In (15), the divide by 10𝜎 operation transforms the integer 𝑧 (𝑡)
𝑖𝑙

into a real number 𝜃 (𝑡)
𝑖𝑙

with 𝜎 fraction digits, while the

sign of 𝜃 (𝑡)
𝑖𝑙

is determined by the location of 𝑧 (𝑡)
𝑖𝑙

in the range of [0, 𝑝). For sufficiently large 𝑝 , the sign correctness

is guaranteed. Roughly, 𝑝 needs to be larger than twice of 10𝜎 |𝜃 (𝑡)
𝑙
|, as informally explained next. Following the

reconstruction property of SSS and the convergence of the consensus update rule, we should have 10𝜎𝜃 (𝑡)
𝑙

mod 𝑝 = 𝑧
(𝑡)
𝑖𝑙

.

The question is, given the remainder 𝑧 (𝑡)
𝑖𝑙

, how to use it to reconstruct 10𝜎𝜃 (𝑡)
𝑙

with the correct sign. Under the condition

𝑝 > 2 × 10𝜎 |𝜃 (𝑡)
𝑙
|, if 𝜃 (𝑡)

𝑙
≥ 0, then the remainder 𝑧 (𝑡)

𝑖𝑙
must locate in the left half of [0, 𝑝), while if 𝜃 (𝑡)

𝑙
< 0, then 𝑧 (𝑡)

𝑖𝑙

must locate in the right half of [0, 𝑝). Hence, conversely, as given by (15), the location of 𝑧 (𝑡)
𝑖𝑙

in [0, 𝑝) can be used to

correctly reconstruct the sign of 𝜃 (𝑡)
𝑙

. A rigorous sufficient lower bound of 𝑝 is given by (16) in Section 6.1.

Remark 5.1. Notice that, to enable usage of SSS, fixed-point arithmetic is applied by setting the precision level 𝜎 . This

will cause a quantization error, as, for each learner’s local model, only the first 𝜎 fraction digits are kept while the rest are

dropped. Consequently, with 𝑁 learners, the quantization error in one round of model aggregation is upper bounded by

𝑁10−𝜎 . Notice that this quantization error is fundamentally different from the privacy-utility trade-off in differentially

private schemes. There, the accuracy loss is caused by usage of random noises and a sufficient amount of accuracy loss is

necessary to have predefined privacy level. In contrary, in our case, the precision level does not affect privacy and it can be

tuned to reduce the quantization error arbitrarily small.

5.2 Overall algorithm design summary

Algorithm 2 presents our overall design, with its operational steps summarized next.
At step 1, all the learners agree on three parameters. In particular, 𝑝 is the parameter to set the finite field for SSS, 𝑇

is the number of training rounds, and 𝐾 is the number of consensus iterations in each training round. As mentioned in
the last subsection, these parameters can be realized by a maximum consensus algorithm offline. At step 2, each learner
𝑖 sets the initial model 𝜃1,0

𝑖
for its local training in the first round. At step 3, each learner 𝑖 trains its local model 𝜃 (𝑡)

𝑖
by

F𝑖 with its initial model 𝜃𝑡,0
𝑖

and dataset 𝐷𝑖 . At step 4, based on its current local communication topology, each learner
𝑖 constructs its local weights 𝑎 (𝑡)

𝑖 𝑗
in 𝐴(𝑡) by the Metropolis-Hastings method. At steps 5–8, each learner 𝑖 applies SSS

to generate shares of 10𝜎𝜃 (𝑡)
𝑖
(0) and distributes the shares {S 𝑗 (𝑡)

𝑖
}
𝑗 ∈N (𝑡)

𝑖

to its neighbors. At step 9, each learner 𝑖

constructs the initial state 𝑠 (𝑡)
𝑖
(0) for the consensus iteration as the sum of all the shares assigned to it. At step 10,

each learner 𝑖 updates its state 𝑠 (𝑡)
𝑖
(𝑘) by the average consensus algorithm with 𝐴(𝑡) . At steps 11–13, each learner 𝑖

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 17

Algorithm 2: Privacy-preserving decentralized federated learning

1 The learners agree on a positive prime number 𝑝 and two positive integers 𝑇 and 𝐾 ; // Agreement of
hyper-parameters

foreach 𝑖 ∈ V do
2 Learner 𝑖 arbitrarily sets 𝜃 (1,0)

𝑖
∈ R𝑛 ; // Local training initialization

for 𝑡 = 1; 𝑡 ≤ 𝑇 ; 𝑡 = 𝑡 + 1 do
foreach 𝑖 ∈ V do

3 Learner 𝑖 trains 𝜃 (𝑡)
𝑖

by (1); // Local training
foreach 𝑗 ∈ N̄ (𝑡)

𝑖
do

4 Learner 𝑖 constructs 𝑎 (𝑡)
𝑖 𝑗

by (9); // Construction of local weights in 𝐴(𝑡)

5 Learner 𝑖 constructs 𝛿 (𝑡)
N̄ (𝑡)
𝑖
, 𝑗
by (10); // Construction of polynomials for Lagrange interpolation

foreach 𝑙 ∈ {1, · · · , 𝑛} do
6 Learner 𝑖 generates {H 𝑗 (𝑡)

𝑖𝑙
}
𝑗 ∈N̄ (𝑡)

𝑖

= Algssg (10𝜎𝜃 (𝑡)
𝑖𝑙
(0), 𝑝, |N (𝑡)

𝑖
|, N̄ (𝑡)

𝑖
) by Algorithm 1; //

Generation of secret shares of local models
foreach 𝑗 ∈ N̄ (𝑡)

𝑖
do

7 Learner 𝑖 computes S 𝑗 (𝑡)
𝑖𝑙

by (11); // Construction of secret shares after Lagrange interpolation

foreach 𝑗 ∈ N̄ (𝑡)
𝑖

do
8 Learner 𝑖 forms S 𝑗 (𝑡)

𝑖
= {S 𝑗 (𝑡)

𝑖𝑙
}𝑙 ∈{1,· · · ,𝑛} and sends S 𝑗 (𝑡)

𝑖
to learner 𝑗 ; // Distribution of secret

shares

foreach 𝑖 ∈ V do
9 Learner 𝑖 constructs 𝑠 (𝑡)

𝑖
(0) by (12) and sends it to learner 𝑗 , ∀𝑗 ∈ N (𝑡)

𝑖
; // Construction of initial

states for consensus iteration
for 𝑘 = 0; 𝑘 < 𝐾 ; 𝑘 = 𝑘 + 1 do

foreach 𝑖 ∈ V do
10 Learner 𝑖 constructs 𝑠 (𝑡)

𝑖
(𝑘 + 1) by (13) and sends it to learner 𝑗 , ∀𝑗 ∈ N (𝑡)

𝑖
; // Average consensus

foreach 𝑖 ∈ V do
foreach 𝑙 ∈ {1, · · · , 𝑛} do

11 Learner 𝑖 constructs 𝑧 (𝑡)
𝑖𝑙

by (14); // Roundness operation
12 Learner 𝑖 constructs 𝜃 (𝑡)

𝑖𝑙
by (15); // Transformation back to signed real numbers

13 Learner 𝑖 forms 𝜃 (𝑡)
𝑖

= {𝜃 (𝑡)
𝑖𝑙
}𝑙 ∈{1,· · · ,𝑛} ; // Form the trained model as a vector

14 Learner 𝑖 sets 𝜃 (𝑡+1,0)
𝑖

= 𝜃
(𝑡)
𝑖

. // Update initial model for the next round’s local training

transforms the consensus model back to a signed real-valued model 𝜃 (𝑡)
𝑖

. At step 14, each learner 𝑖 sets 𝜃 (𝑡)
𝑖

as the
initial model 𝜃 (𝑡+1,0)

𝑖
for its local training in round 𝑡 + 1.

In Algorithm 2, communications between learners incur at steps 4, 8, 9 and 10. Particularly, at step 4, each learner
𝑖 sends the scalar |N (𝑡)

𝑖
| to each of its neighbors. Thus, at this step, each learner 𝑖 sends (and also receives) |N (𝑡)

𝑖
|

scalars in total. At each of steps 8, 9 and 10, each learner 𝑖 sends an 𝑛-dimensional vector to each of its neighbors (S 𝑗 (𝑡)
𝑖

,
𝑠
(𝑡)
𝑖
(0), and 𝑠 (𝑡)

𝑖
(𝑘 + 1), respectively). Thus, at each of these three steps, each learner 𝑖 sends (and also receives) |N (𝑡)

𝑖
|

𝑛-dimensional vectors in total.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Yang Lu, Zhengxin Yu, and Neeraj Suri

Remark 5.2. It is worth noting that Algorithm 2 requires a one-time global coordination for determining the hyper-

parameters, 𝑝 , 𝑇 and 𝐾 , during the initialization step (step 1 of Algorithm 2), and this one-time coordination can be carried

out offline. However, Algorithm 2 does not have any repeated global coordinations throughout the loop of the training phase

(steps 2–14 of Algorithm 2). This is in contrast to the schemes in [7, 39, 56, 73], which incur repeated global coordinations

at each round of training. The frequency of such global coordinations should be minimized as they introduce additional

computational burdens and communication delays, especially for sparse communication topologies without a connect-to-all

entity, where a global coordination itself usually has to be implemented via an additional consensus process.

6 CORRECTNESS, PRIVACY, AND VULNERABILITY ANALYSIS

This section first establishes the correctness and privacy properties for Algorithm 2. After that, based on the privacy
property, vulnerability analysis is further provided.

6.1 Correctness analysis

The correctness property of Algorithm 2 is established by the following theorem, which states that each learner 𝑖 ∈ V
derives the correct aggregated global model 𝜃 (𝑡) for each round 𝑡 .

Theorem 6.1. Suppose that Assumption 2.1 holds. By Algorithm 2, with sufficiently large 𝑝 and 𝐾 such that

𝑝 > max{𝑁, 1 + 2 × 10𝜎𝑁 max
𝑡,𝑖,𝑙
|𝜃 (𝑡)
𝑖𝑙
|}, (16)

max
𝑡

2𝑝
√
𝑁 ∥𝑁 (𝐴(𝑡))𝐾 − 1𝑁 1𝑇𝑁 ∥ < 1, (17)

where ∥ · ∥ the ℓ2 norm of a matrix, it holds that 𝜃 (𝑡)
𝑖

= 𝜃 (𝑡) for all 𝑖 ∈ V and all 𝑡 ∈ {1, · · · ,𝑇 }.

Proof: By Lemma 3.3, we have ∑︁
𝑗 ∈N̄𝑖

S 𝑗 (𝑡)
𝑖𝑙
≡ 10𝜎𝜃 (𝑡)

𝑖𝑙
(0) mod 𝑝. (18)

By (12), we have ∑︁
𝑖∈V

𝑠
(𝑡)
𝑖
(0) ≡

∑︁
𝑖∈V

∑︁
𝑗 ∈N̄ (𝑡)

𝑖

S𝑖 (𝑡)
𝑗

mod 𝑝. (19)

Notice that
∑
𝑖∈V

∑
𝑗 ∈N̄ (𝑡)

𝑖

S𝑖 (𝑡)
𝑗

is just the sum of all shares generated by all the 𝑁 learners. Hence, by a rearrangement
of the summation order, we have ∑︁

𝑖∈V

∑︁
𝑗 ∈N̄ (𝑡)

𝑖

S𝑖 (𝑡)
𝑗

=
∑︁
𝑖∈V

∑︁
𝑗 ∈N̄ (𝑡)

𝑖

S 𝑗 (𝑡)
𝑖

. (20)

By (18), (19) and (20), we have ∑︁
𝑖∈V

𝑠
(𝑡)
𝑖
(0) ≡

∑︁
𝑖∈V

10𝜎𝜃 (𝑡)
𝑖
(0) mod 𝑝. (21)

Fix any 𝑙 ∈ {1, · · · , 𝑛}. Let 𝑠𝑙 (𝑡) (𝑘) = {𝑠 (𝑡)
𝑖𝑙
(𝑘)}𝑖∈V . By (13), we obtain

𝑠𝑙 (𝑡) (𝑘 + 1) = 𝐴(𝑡)𝑠𝑙 (𝑡) (𝑘), (22)

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 19

which further leads to

𝑠𝑙 (𝑡) (𝑘) = (𝐴(𝑡))𝑘𝑠𝑙 (𝑡) (0) . (23)

Under Assumption 2.1, by Lemmas 3.1 and 3.2, 𝑠 (𝑡)
𝑖𝑙
(𝑘) asymptotically converges to 1

𝑁
1𝑇
𝑁
𝑠𝑙 (𝑡) (0), and hence 𝑁𝑠 (𝑡)

𝑖𝑙
(𝑘)

asymptotically converges to 1𝑇
𝑁
𝑠𝑙 (𝑡) (0) for all 𝑖 ∈ V . Notice that, for all 𝑖 ∈ V , it holds that 0 ≤ 𝑠 (𝑡)

𝑖𝑙
(0) < 𝑝 , because

𝑠
(𝑡)
𝑖𝑙
(0) is a remainder of modulo 𝑝 operation derived by (12). Since 𝑠𝑙 (𝑡) (0) is an 𝑁 -dimensional vector, we then have

∥𝑠𝑙 (𝑡) (0)∥ < 𝑝
√
𝑁 . (24)

With a slight abuse of notation, let 𝐴(𝑡)𝐾
𝑖

be the 𝑖-th row of (𝐴(𝑡))𝐾 . By (17), (23) and (24), we have

|𝑁𝑠 (𝑡)
𝑖𝑙
(𝐾) − 1𝑇𝑁 𝑠

𝑙 (𝑡) (0) |

= |𝑁𝐴(𝑡)𝐾
𝑖

𝑠𝑙 (𝑡) (0) − 1𝑇𝑁 𝑠
𝑙 (𝑡) (0) | (25a)

≤ ∥𝑁𝐴(𝑡)𝐾
𝑖
− 1𝑇𝑁 ∥∥𝑠

𝑙 (𝑡) (0)∥ (25b)

≤ ∥𝑁 (𝐴(𝑡))𝐾 − 1𝑁 1𝑇𝑁 ∥∥𝑠
𝑙 (𝑡) (0)∥ (25c)

< ∥𝑁 (𝐴(𝑡))𝐾 − 1𝑁 1𝑇𝑁 ∥𝑝
√
𝑁 (25d)

< 0.5, (25e)

where the equality (25a) is due to (23); the inequality (25b) is a well-known relationship for norm operators; the
inequality (25c) is because 𝑁𝐴(𝑡)𝐾

𝑖
− 1𝑇

𝑁
is the 𝑖-th row of 𝑁 (𝐴(𝑡))𝐾 − 1𝑁 1𝑇

𝑁
, and the ℓ2 norm of any one row of a

matrix is no greater than that of the whole matrix; the inequality (25d) is due to (24); and the inequality (25e) is due to
(17). Notice that 1𝑇

𝑁
𝑠𝑙 (𝑡) (0) is a non-negative integer. By (25), we then have ⌊𝑁𝑠 (𝑡)

𝑖𝑙
(𝐾)⌉ = 1𝑇

𝑁
𝑠𝑙 (𝑡) (0) = ∑

𝑗 ∈V 𝑠
(𝑡)
𝑗
(0).

By (21), we then have

⌊𝑁𝑠 (𝑡)
𝑖𝑙
(𝐾)⌉ ≡

∑︁
𝑗 ∈V

10𝜎𝜃 (𝑡)
𝑗𝑙
(0) =

∑︁
𝑗 ∈V

10𝜎𝑤 𝑗𝜃
(𝑡)
𝑗𝑙

mod 𝑝. (26)

By (16), noticing that𝑤 𝑗 ≤ 1 for all 𝑗 ∈ V , we have

𝑝 > 1 + 2 × 10𝜎𝑁 max
𝑡,𝑖,𝑙
|𝜃 (𝑡)
𝑖𝑙
|

≥ 1 + 2 × 10𝜎
∑︁
𝑗 ∈V
|𝑤 𝑗𝜃 (𝑡)𝑗𝑙 |

≥ 1 + 2 × 10𝜎 |
∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙
|. (27)

By (27), it is either

0 ≤ 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙

< (𝑝 − 1)/2 (28)

or

−(𝑝 − 1)/2 < 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙

< 0. (29)

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Yang Lu, Zhengxin Yu, and Neeraj Suri

In the case of (28), by (14) and (26), we have

𝑧
(𝑡)
𝑖𝑙

= 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙

mod 𝑝 = 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙

(30)

By (28) and (30), we have 0 ≤ 𝑧 (𝑡)
𝑖𝑙

< (𝑝 − 1)/2. By (30) and (15), we then have

𝜃
(𝑡)
𝑖𝑙

= 𝑧
(𝑡)
𝑖𝑙
/10𝜎 =

∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙
. (31)

In the case of (29), by (14) and (26), we have

𝑧
(𝑡)
𝑖𝑙

= 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙

mod 𝑝 = 𝑝 + 10𝜎
∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙

(32)

By (29) and (32), we have (𝑝 + 1)/2 < 𝑧
(𝑡)
𝑖𝑙

< 𝑝 . By (32) and (15), we then have

𝜃
(𝑡)
𝑖𝑙

= (𝑧 (𝑡)
𝑖𝑙
− 𝑝)/10𝜎 =

∑︁
𝑗 ∈V

𝑤 𝑗𝜃
(𝑡)
𝑗𝑙
. (33)

By (31) and (33), we have that 𝜃 (𝑡)
𝑖𝑙

=
∑
𝑗 ∈V 𝑤 𝑗𝜃

(𝑡)
𝑗𝑙

always holds. The above analysis holds for all 𝑡 ∈ {1, · · · ,𝑇 }, all

𝑖 ∈ V , and all 𝑙 ∈ {1, · · · , 𝑛}. Therefore, by (2), we have that 𝜃 (𝑡)
𝑖

= 𝜃 (𝑡) for all 𝑖 ∈ V and all 𝑡 ∈ {1, · · · ,𝑇 }. This
completes the proof.

Remark 6.1. By the analysis above, we can see that perfect average consensus is reached after a finite 𝐾 number of

iterations. We note that this finite average consensus is only due to the usage of finite precision. By (16) and (17), we can see

that the bound of 𝐾 increases with the value of the precision level 𝜎 . When 𝜎 tends to infinity, then 𝐾 also tends to infinity,

which indicates asymptotic average consensus.

6.2 Privacy analysis

To develop the privacy property of Algorithm 2, we first introduce the following notions.
Let B and A be the sets of benign and adversarial learners, respectively. Notice that B ∪ A = V . Given any

round 𝑡 ∈ {1, · · · ,𝑇 }, we say that a subset B𝑠 ⊆ B of benign learners are surrounded by A in G (𝑡) if there exists
a connected subgraph of G (𝑡) consisting of all the benign learners in B𝑠 but no benign learners in B\B𝑠 and no
adversarial learners in A, such that for each 𝑖 ∈ B𝑠 , it holds that N (𝑡)𝑖 ∩ (B\B𝑠) = ∅. That is, for every benign learner
in B𝑠 , all of its benign neighbors, if any, are inside B𝑠 . Let B̂ (𝑡) be the set containing all such sets B𝑠 ’s in round 𝑡 , i.e.,
B̂ (𝑡) = {B𝑠 ⊆ B : the learners in B𝑠 are surrounded by A in G (𝑡) }.

First, the following lemma establishes the view of the adversarial learners throughout the execution of Algorithm 2.

Lemma 6.1. By Algorithm 2, in each round 𝑡 ∈ {1, · · · ,𝑇 }, the adversarial learners in A can obtain the value of

{∑𝑖∈B𝑠 𝜃 (𝑡)𝑖 (0)}B𝑠 ∈B̂ (𝑡) , but nothing beyond it.
Proof: Fix any 𝑡 ∈ {1, · · · ,𝑇 } for concreteness of illustration. Consider any B𝑠 ∈ B̂ (𝑡) . Let B̄𝑠 be the complementary

set of B𝑠 inV , i.e., B̄𝑠 = V\B𝑠 . For each 𝑙 ∈ {1, · · · , 𝑛}, let 𝑠𝑙 (𝑡)B𝑠 (𝑘) = {𝑠
(𝑡)
𝑖𝑙
(𝑘)}𝑖∈B𝑠 and 𝑠

𝑙 (𝑡)
B̄𝑠
(𝑘) = {𝑠 (𝑡)

𝑖𝑙
(𝑘)}𝑖∈B̄𝑠 . With

a slight abuse of notation, let 𝐴(𝑡)𝑘B𝑠 be the rows of (𝐴(𝑡))𝑘 corresponding to 𝑠𝑙 (𝑡)B𝑠 (𝑘). Moreover, let 𝐴(𝑡)𝑘B𝑠 ,B𝑠 and 𝐴
(𝑡)𝑘
B𝑠 ,B̄𝑠

be the columns of 𝐴(𝑡)𝑘B𝑠 corresponding to 𝑠𝑙 (𝑡)B𝑠 (𝑘) and 𝑠
𝑙 (𝑡)
B̄𝑠
(𝑘), respectively. By (23), we have

𝑠
𝑙 (𝑡)
B𝑠 (𝑘) = 𝐴

(𝑡)𝑘
B𝑠 𝑠

𝑙 (𝑡) (0) = 𝐴(𝑡)𝑘B𝑠 ,B𝑠 𝑠
𝑙 (𝑡)
B𝑠 (0) +𝐴

(𝑡)𝑘
B𝑠 ,B̄𝑠

𝑠
𝑙 (𝑡)
B̄𝑠
(0) . (34)

Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 21

By the definition of B̂ (𝑡) , for any 𝑖 ∈ B̄𝑠 , 𝑠 (𝑡)𝑖𝑙 (0) can only reach 𝑠𝑙 (𝑡)B𝑠 (𝑘) either directly from or relayed by some learner

inA. Therefore, by knowing 𝐴(𝑡) , the learners in A can compute the value of 𝐴(𝑡)𝑘B𝑠 ,B̄𝑠
𝑠
𝑙 (𝑡)
B̄𝑠
(0). For any 𝑖 ∈ B𝑠 such that

N (𝑡)
𝑖
∩ A ≠ ∅, by (34), the learners in A can derive the value of 𝐴(𝑡)𝑘

𝑖,B𝑠 𝑠
𝑙 (𝑡)
B𝑠 (0) as

𝐴
(𝑡)𝑘
𝑖,B𝑠 𝑠

𝑙 (𝑡)
B𝑠 (0) = 𝑠

(𝑡)
𝑖𝑙
(𝑘) −𝐴(𝑡)𝑘

𝑖,B̄𝑠
𝑠
𝑙 (𝑡)
B̄𝑠
(0) . (35)

Notice that 𝐴(𝑡)𝑘
𝑖,B𝑠 𝑠

𝑙 (𝑡)
B𝑠 (0) asymptotically converges to

∑
𝑖∈B𝑠 𝑠

(𝑡)
𝑖𝑙
(0). This implies that the learners in A can derive the

value of
∑
𝑖∈B𝑠 𝑠

(𝑡)
𝑖𝑙
(0). For each 𝑖 ∈ B𝑠 , by (12) and the definition of B̂ (𝑡) , 𝑠 (𝑡)

𝑖𝑙
(0) can be written as

𝑠
(𝑡)
𝑖𝑙
(0) =

∑︁
𝑗 ∈N̄ (𝑡)

𝑖
∩B𝑠

S𝑖 (𝑡)
𝑗𝑙
+

∑︁
𝑗 ∈N (𝑡)

𝑖
∩A

S𝑖 (𝑡)
𝑗𝑙

mod 𝑝. (36)

Notice that in (36), for each 𝑗 ∈ N (𝑡)
𝑖
∩ A, S𝑖 (𝑡)

𝑗𝑙
is generated by the adversarial learner 𝑗 . Hence, the learners in A

know the value of
∑
𝑗 ∈N (𝑡)

𝑖
∩A S

𝑖 (𝑡)
𝑗𝑙

. By also knowing the value of
∑
𝑖∈B𝑠 𝑠

(𝑡)
𝑖𝑙
(0), by (36), the learners in A can derive∑︁

𝑖∈B𝑠

∑︁
𝑗 ∈N̄ (𝑡)

𝑖
∩B𝑠

S𝑖 (𝑡)
𝑗𝑙
≡

∑︁
𝑖∈B𝑠

𝑠
(𝑡)
𝑖𝑙
(0) −

∑︁
𝑖∈B𝑠

∑︁
𝑗 ∈N (𝑡)

𝑖
∩A

S𝑖 (𝑡)
𝑗𝑙

mod 𝑝. (37)

Notice that in (37),
∑
𝑖∈B𝑠

∑
𝑗 ∈N̄ (𝑡)

𝑖
∩B𝑠
S𝑖 (𝑡)
𝑗𝑙

is the sum of all those shares generated by the learners in B𝑠 that are

assigned to the learners in B𝑠 themselves. For each 𝑖 ∈ B𝑠 and for each 𝑗 ∈ N (𝑡)
𝑖
∩ A, S 𝑗 (𝑡)

𝑖𝑙
is the share generated by

learner 𝑖 and assigned to the adversarial learner 𝑗 . Hence, the learners inA know the value of
∑
𝑖∈B𝑠

∑
𝑗 ∈N (𝑡)

𝑖
∩A S

𝑗 (𝑡)
𝑖𝑙

,
which is the sum of all those shares generated by the learners in B𝑠 that are assigned to the learners in A. Therefore,
given the definition of B̂ (𝑡) , the learners in A can derive the sum of all the shares generated by the learners in B𝑠 as∑︁

𝑖∈B𝑠

∑︁
𝑗 ∈N̄ (𝑡)

𝑖

S 𝑗 (𝑡)
𝑖𝑙

=
∑︁
𝑖∈B𝑠

∑︁
𝑗 ∈N̄ (𝑡)

𝑖
∩B𝑠

S𝑖 (𝑡)
𝑗𝑙
+

∑︁
𝑖∈B𝑠

∑︁
𝑗 ∈N (𝑡)

𝑖
∩A

S 𝑗 (𝑡)
𝑖𝑙

. (38)

By the analysis below (20) in the proof of Theorem 6.1, we conclude that the learners in A can then derive the value of∑
𝑖∈B𝑠 𝜃

(𝑡)
𝑖𝑙
(0). The above analysis holds for any 𝑡 ∈ {1, · · · ,𝑇 }, any B𝑠 ∈ B̂ (𝑡) and any 𝑙 ∈ {1, · · · , 𝑛}. Therefore, in

each round 𝑡 ∈ {1, · · · ,𝑇 }, the adversarial learners in A can obtain the value of {∑𝑖∈B𝑠 𝜃 (𝑡)𝑖 (0)}B𝑠 ∈B̂ (𝑡) .
Next we show that the learners inA do not gain anything beyond the value of {∑𝑖∈B𝑠 𝜃 (𝑡)𝑖 (0)}B𝑠 ∈B̂ (𝑡) . LetD𝑠 ⊆ B

be a subset of benign learners that form a connected subgraph within themselves. It suffices to show that if D𝑠 is not
surrounded by A in G (𝑡) , then the learners in A do not obtain any information about {𝜃 (𝑡)

𝑖
(0)}𝑖∈D𝑠 . Since D𝑠 ∉ B̂ (𝑡) ,

there exists at least one learner 𝑑 ∈ D𝑠 such that N (𝑡)
𝑑
∩ (B\D𝑠) ≠ ∅. Let 𝑑 ′ ∈ N (𝑡)𝑑

∩ (B\D𝑠). We only need to
consider the worst case where (D𝑠 ∪ {𝑑 ′}) ∈ B̂ (𝑡) . Similar to the derivation of (37), the learners in A can derive∑︁

𝑖∈D𝑠∪{𝑑′ }

∑︁
𝑗 ∈N̄ (𝑡)

𝑖
∩(D𝑠∪{𝑑′ })

S𝑖 (𝑡)
𝑗𝑙
≡

∑︁
𝑖∈D𝑠∪{𝑑′ }

𝑠
(𝑡)
𝑖𝑙
(0) −

∑︁
𝑖∈D𝑠∪{𝑑′ }

∑︁
𝑗 ∈N (𝑡)

𝑖
∩A

S𝑖 (𝑡)
𝑗𝑙

mod 𝑝. (39)

Write the sum
∑
𝑖∈D𝑠∪{𝑑′ }

∑
𝑗 ∈N̄ (𝑡)

𝑖
∩(D𝑠∪{𝑑′ })

S𝑖 (𝑡)
𝑗𝑙

as∑︁
𝑖∈D𝑠∪{𝑑′ }

∑︁
𝑗 ∈N̄ (𝑡)

𝑖
∩(D𝑠∪{𝑑′ })

S𝑖 (𝑡)
𝑗𝑙

=
∑︁
𝑖∈D𝑠

∑︁
𝑗 ∈N̄ (𝑡)

𝑖
∩D𝑠

S𝑖 (𝑡)
𝑗𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡)𝑑′

S𝑑
′ (𝑡)

𝑖𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡)𝑑′

S𝑖 (𝑡)
𝑑′𝑙
+ S𝑑

′ (𝑡)
𝑑′𝑙

. (40)

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Yang Lu, Zhengxin Yu, and Neeraj Suri

In the right-hand side of (40), the sum of the first two terms is the sum of all those shares generated by the learners inD𝑠
that are assigned to the learners inD𝑠 themselves and to learner 𝑑 ′, while the sum of the last two terms is the sum of the
shares generated by 𝑑 ′ that are assigned to the learners in D𝑠 and to 𝑑 ′ itself. In order to derive the sum

∑
𝑖∈D𝑠 𝜃𝑖𝑙 (0),

the learners in A need to obtain the sum of the first two terms, i.e.,
∑
𝑖∈D𝑠

∑
𝑗 ∈N̄ (𝑡)

𝑖
∩D𝑠
S𝑖 (𝑡)
𝑗𝑙
+∑

𝑖∈D𝑠∩N (𝑡)𝑑′
S𝑑
′ (𝑡)

𝑖𝑙
. By

(39) and (40), the learners in A know the value of the modular sum∑︁
𝑖∈D𝑠

∑︁
𝑗 ∈N̄ (𝑡)

𝑖
∩D𝑠

S𝑖 (𝑡)
𝑗𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡)𝑑′

S𝑑
′ (𝑡)

𝑖𝑙
+

∑︁
𝑖∈D𝑠∩N (𝑡)𝑑′

S𝑖 (𝑡)
𝑑′𝑙
+ S𝑑

′ (𝑡)
𝑑′𝑙

mod 𝑝. (41)

However, since learner𝑑 ′ is benign, the learners inA do not know the value of
∑
𝑖∈D𝑠∩N (𝑡)𝑑′

S𝑖 (𝑡)
𝑑′𝑙
+S𝑑

′ (𝑡)
𝑑′𝑙

. Since the learn-

ers in A cannot split the modular sum (41), they cannot learn anything about the value of
∑
𝑖∈D𝑠

∑
𝑗 ∈N̄ (𝑡)

𝑖
∩D𝑠
S𝑖 (𝑡)
𝑗𝑙
+∑

𝑖∈D𝑠∩N (𝑡)𝑑′
S𝑑
′ (𝑡)

𝑖𝑙
. By Lemma 3.4, this implies that the learners inA do not gain any information about {𝜃 (𝑡)

𝑖
(0)}𝑖∈D𝑠 .

This completes the proof.
Based on Lemma 6.1, the perfect secrecy property of Algorithm 2 is established by the following theorem. It states

that the algorithm provides perfect secrecy if and only if all the benign learners in B form a connected subgraph within
themselves for every round 𝑡 . In other words, there is no proper subset of benign learners that are surrounded by A in
any round 𝑡 .

Theorem 6.2. Algorithm 2 provides perfect secrecy against A if and only if B̂ (𝑡) = {B} for all 𝑡 ∈ {1, · · · ,𝑇 }.

Proof: By Definition 2.3, if the algorithm provides perfect secrecy against A, then, in each round 𝑡 , the learners in
A must only gain the value of

∑
𝑖∈V 𝜃

(𝑡)
𝑖
(0). Notice that the learners in A know the sum of their own local models,

i.e.,
∑
𝑖∈A 𝜃

(𝑡)
𝑖
(0). Hence, they definitely can infer the sum of all the benign learners’ local models

∑
𝑖∈B 𝜃

(𝑡)
𝑖
(0) by

computing
∑
𝑖∈B 𝜃

(𝑡)
𝑖
(0) = ∑

𝑖∈V 𝜃
(𝑡)
𝑖
(0) −∑𝑖∈A 𝜃 (𝑡)𝑖 (0). Therefore, the algorithm is perfectly secret if and only if the

learners in A do not gain anything about {𝜃 (𝑡)
𝑖
(0)}𝑖∈B beyond the value of

∑
𝑖∈B 𝜃

(𝑡)
𝑖
(0) for all 𝑡 ∈ {1, · · · ,𝑇 }.

First, if B̂ (𝑡) ≠ {B} for some round 𝑡 , then there exists a proper subset B𝑠 ⊊ B of benign learners such that
B𝑠 ∈ B̂ (𝑡) . By Lemma 6.1, the learners in A can then obtain the value of

∑
𝑖∈B𝑠 𝜃

(𝑡)
𝑖
(0), which is an additional piece of

information beyond
∑
𝑖∈B 𝜃

(𝑡)
𝑖
(0). Hence, the algorithm is not perfectly secret.

Next, consider the case where B̂ (𝑡) = {B} for all 𝑡 ∈ {1, · · · ,𝑇 }. By Lemma 6.1, in each round 𝑡 , the learners in A
gain nothing beyond the value of {∑𝑖∈B𝑠 𝜃 (𝑡)𝑖 (0)}B𝑠 ∈B̂ (𝑡) = ∑

𝑖∈B 𝜃
(𝑡)
𝑖
(0). Therefore, the algorithm provides perfect

secrecy against A. This completes the proof.

Remark 6.2. The condition of Theorem 6.2, i.e., B̂ (𝑡) = {B} for all 𝑡 ∈ {1, · · · ,𝑇 }, ensures the strong privacy property

of perfect secrecy such that the adversarial learners in A do not even know partial sums of the local models of any proper

subset of the benign learners. It would be worth noting that, if we only target on the weaker privacy property such that each

individual benign learner’s local model is not disclosed to the learners in A, then by Lemma 6.1, the condition becomes that

each benign learner has at least one benign neighbor in G (𝑡) for all 𝑡 ∈ {1, · · · ,𝑇 }.

6.3 Vulnerability analysis

Lemma 6.1 and Theorem 6.2 provide generic theoretical privacy foundations for Algorithm 2. This subsection uses
these results to perform vulnerability analysis for arbitrary connected communication topologies.

In light of Lemma 6.1 and Theorem 6.2, in general, a denser connection is favorable for a higher privacy level, because
it is more likely that a subset of benign learners are directly connected to more other benign learners and thus less
Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 23

likely to be completely surrounded by adversarial learners. In terms of individual privacy, the above theoretical results
indicate that the more neighbors a benign learner has, the less likely its local model will be disclosed to adversarial
learners. Therefore, in a general connected (sparse) communication topology, the leaf benign learners (a leaf learner
is a learner that only has one neighbor) are most vulnerable to local model leakage, while the benign learners with
most neighbors are least vulnerable from a likelihood perspective. The above discussion indicates that, in terms of
application, while the proposed algorithm can be applied to arbitrary connected communication topologies to enhance
privacy, it is less vulnerable (more likely to achieve a high privacy level) for dense communication topologies with a
small number of leaf learners.

We next apply Lemma 6.1 and Theorem 6.2 to several representative communication topologies to provide more
insights on the connection between the privacy analysis and the number and position of adversarial learners.

• Complete topology. In a complete topology, any learner can communicate with any other learner. By Lemma
6.1, for any benign learner, its individual local model is not disclosed to the adversarial learners if and only if
there exists at least one different benign learner in the network. In general, the adversarial learners will know
the partial sum of all the benign learners’ local models, but nothing else. Notice that, for a complete topology,
perfect secrecy always holds. This can be seen by applying the condition of Theorem 6.2, as all the benign
learners are fully connected and there is no proper subset of benign learners that are surrounded by adversarial
learners. Therefore, for the extreme case where there is only one benign learner while all the other learners
are adversarial, in which case the adversarial learners will know the local model of the benign learner, it does
not violate the notion of perfect secrecy. Intrinsically, this is because the adversarial learners can derive the
benign learner’s local model solely from what they must know, i.e., their own inputs (their local models) and
output (the aggregation of all local models). This is in consistent with the classical result of SMC on complete
topologies.

• Star topology. In a star topology, there is one centralized learner that is connected to all the other learners,
for which we call plain learners, while all the plain learners cannot communicate with each other. By Lemma
6.1, any benign plain learner’s local model is not disclosed to adversarial learners if and only if the centralized
learner is benign. If the centralized learner is benign, then its local model is not disclosed if and only if there
exists at least one benign plain learner. In general, if the centralized learner is adversarial, then, no matter
whether there are plain adversarial learners, the adversarial learners will know the local model of every benign
learner. If the centralized learner is benign, then the (plain) adversarial learners will know the partial sum of the
local models of all the other learners (i.e., the centralized learner and all the benign plain learners). By Theorem
6.2, perfect secrecy holds if and only if the centralized learner is benign.

• Line topology. In a line topology, all the learners are connected as a line. By Lemma 6.1, for a benign learner on
one edge of the line, its local model is disclosed if and only if its only neighbor is benign. For a non-edge benign
learner, its local model is not disclosed if and only if at least one of its two neighbors is benign. In general, the
adversarial learners will know the partial sums of the local models of the benign learners that are either in
between of two adversarial learners or on one side (till the edge) of one adversarial learner. By Theorem 6.2,
perfect secrecy holds if and only if there is no non-edge adversarial learner.

Remark 6.3. The above analysis indicates that, in some cases, if the total number of benign learners is very small, then

the disclosed partial sum only consists of the local models of very few benign learners and this may be taken as unacceptable.

For the extreme case where there is only one benign learner while all the other learners are adversarial, then, even under
Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Yang Lu, Zhengxin Yu, and Neeraj Suri

perfect secrecy, the adversarial learners will know the local model of the single benign learner. However, we first note that

this is not a new issue caused by decentralized computing on sparse communication topologies, but exists for standard

SMC on complete communication topologies. Moreover, this issue is not due to poor design of SMC algorithms, but is a

fundamental limitation for SMC that targets perfect correctness. In particular, under the requirement of perfect correctness,

the adversarial learners will finally know the correct global model, which is the sum of the local models of all the learners.

They can then derive the sum of the local models of all the benign learners by subtracting the sum of their own local models

from the global model. Therefore, for applications where perfect correctness is critical, such fundamental limitation on

privacy is unavoidable. In practice, the above vulnerability analysis can be used to guide evaluation of suitableness of the

proposed algorithm based on application-specific privacy requirements.

7 TIME-VARYING COMMUNICATION TOPOLOGYWITHIN A TRAINING ROUND

In Algorithm 2, we assume that, within each training round, the participating learners and the communication topology
between them are both fixed; please refer to Assumption 2.1. However, this assumption could be restrictive for
applications with highly mobile learners, especially when 𝐾 needs to be large to ensure consensus convergence. In
such cases, during the consensus process (step 10 of Algorithm 2), the communication topology may change and some
learners may leave the network. This will degrade the correctness of consensus convergence. Especially for the problems
where the learners hold non-IID (independent and identically distributed) data, one learner’s leaving may cause a
significant drift of training data distribution, which may cause a huge deviation on the derived global model. In this
section, we provide an extension of Algorithm 2 to relax Assumption 2.1.

7.1 Relaxed problem setting

The relaxed problem setting is stated as follows. In each training round, the communication topology can change at
any iteration 𝑘 during the consensus process. Moreover, participating learners may leave the network and drop the
training task at certain consensus iterations. We assume that, at each consensus iteration, the current communication
topology between the remaining learners is undirected and connected. Additionally, we require that, new learners can
only join in between successive training rounds, while once a training round begins, no new learners can join in before
this training round terminates. This is in consistent with many robust learning works, which only consider potential
dropping of existing learners. A further discussion on joining of new learners is provided at the end of this section.

7.2 Extended algorithm

We next illustrate how to extend Algorithm 2 for the above problem setting. In the following, for a time-varying quantity
𝑑 , we use the notation 𝑑 (𝑡) (𝑘) to denote its value at consensus iteration 𝑘 of training round 𝑡 .

• At step 10 of Algorithm 2, for each consensus iteration 𝑘 :
(i) Each learner 𝑖 updates its local weights 𝑎 (𝑡)

𝑖 𝑗
(𝑘) by (9) based on the current communication topology;

(ii) Each learner 𝑖 sends 𝑠 (𝑡)
𝑖
(𝑘) to all of its current neighbors N (𝑡)

𝑖
(𝑘);

(iii) Each learner 𝑖 updates its state by 𝑠 (𝑡)
𝑖
(𝑘 + 1) = 𝑎 (𝑡)

𝑖𝑖
(𝑘)𝑠 (𝑡)

𝑖
(𝑘) +∑

𝑗 ∈N (𝑡)
𝑖
(𝑘) 𝑎

(𝑡)
𝑖 𝑗
(𝑘)𝑠 (𝑡)

𝑗
(𝑘);

(iv) If a learner 𝑖 will leave the network and drop the training task in the next iteration 𝑘 + 1, then, learner 𝑖
arbitrarily picks one of its current neighbors 𝑗 ∈ N (𝑡)

𝑖
(𝑘) and sends 𝑠 (𝑡)

𝑖
(𝑘 + 1) together with a message,

e.g., “leaving”, to learner 𝑗 . Learner 𝑗 then sets 𝑠 (𝑡)
𝑗
(𝑘 + 1) = 𝑠 (𝑡)

𝑗
(𝑘 + 1) + 𝑠 (𝑡)

𝑖
(𝑘 + 1).

• At step 11 of Algorithm 2:
Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 25

(v) Each learner 𝑖 constructs 𝑧 (𝑡)
𝑖𝑙

by 𝑧 (𝑡)
𝑖𝑙

= ⌊𝑁 (𝑡) (𝐾)𝑠 (𝑡)
𝑖𝑙
(𝐾)⌉ mod 𝑝, ∀𝑙 ∈ {1, · · · , 𝑛}.

The key ideas of the above steps are summarized as follows. Steps (i)–(iii): Whenever the communication topology
changes, the learners update the weighted adjacency matrix and use the new matrix to update their states. For a fixed set
of learners, this strategy guarantees that each learner’s state will asymptotically converge to the correct point, i.e., the
average of all the learners’ initial states. Step (iv): Whenever a learner leaves, its state is added into one of its neighbor’s
state and thus maintained in the remaining consensus process. By this strategy, it guarantees that, if the consensus
process converges at iteration 𝐾 , the converging point is 1

𝑁 (𝑡) (𝐾)
∑
𝑖∈V (𝑡) (0) 𝑠

(𝑡)
𝑖
(0), i.e., the sum of the initial states of

all the learners at iteration 0 divided by the number of learners at iteration 𝐾 . Step (v): After the consensus process
terminates, each learner scales its final state by 𝑁 (𝑡) (𝐾) to obtain the desired aggregation point

∑
𝑖∈V (𝑡) (0) 𝑠

(𝑡)
𝑖
(0).

Remark 7.1. The above step (iv) can be easily adjusted to cope with different practical situations. For example, if the

picked neighbor will also leave the network in the next iteration, learner 𝑖 can then arbitrarily pick another neighbor. This is

repeated until a neighbor that will stay in the next iteration is found. Moreover, if all of learner 𝑖’s neighbors will also leave

the network in the next iteration, then learner 𝑖 first sends its state 𝑠 (𝑡)
𝑖
(𝑘 + 1) to one of its neighbor 𝑗 , and then learner 𝑗

sends the updated state 𝑠 (𝑡)
𝑗
(𝑘 + 1) + 𝑠 (𝑡)

𝑖
(𝑘 + 1) to one of its neighbors different from learner 𝑖 . This process proceeds until a

learner that will stay in the next iteration is found.

The above extended algorithm assumes that, whenever a learner leaves the network, it is able to take proper actions as

required by step (iv). These actions guarantee that the converging point of the remaining learners is not affected by its

leaving. In practice, there could be scenarios where a learner unintentionally drops out of the network without being able to

take the required actions, or an adversarial learner purposely leaves the network without taking the actions. Such scenarios

need to be investigated under an active attacker model and addressed by robust and resilient learning technologies, and are

thus beyond the scope of this paper. We leave the study of these scenarios to our future works.

7.3 Correctness and privacy analysis

We next provide the correctness and privacy analysis for the above extended algorithm.

7.3.1 Correctness. The correctness property is characterized by the following theorem.

Theorem 7.1. Consider the problem setting of Section 7.1. By the extended algorithm of Section 7.2, if, at each training

round 𝑡 , there exists 𝐾 (𝑡) such thatV (𝑡) (𝑘) ≡ V (𝑡) (𝐾 (𝑡)) for all 𝑘 ≥ 𝐾 (𝑡) , i.e., the remaining learners keep constant from

consensus iteration 𝐾 (𝑡) (while the communication topology between them can still change), then, with sufficiently large 𝑝

and 𝐾 such that

𝑝 > max{𝑁 (𝑡) (0), 1 + 2 × 10𝜎𝑁 (𝑡) (0)max
𝑡,𝑖,𝑙
|𝜃 (𝑡)
𝑖𝑙
|}, (42)

𝐾 > max
𝑡
𝐾 (𝑡) +max

𝑡
𝐾̂ (𝑡) , (43)

where, for each training round 𝑡 , 𝐾̂ (𝑡) satisfies

max
𝑡

2𝑝
√︃
𝑁 (𝑡) (𝐾 (𝑡))∥𝑁 (𝑡) (𝐾 (𝑡))

𝐾̂ (𝑡)−1∏
𝑘=0

𝐴(𝑡) (𝐾 (𝑡) + 𝑘) − 1𝑁 (𝑡) (𝐾̄ (𝑡))1
𝑇

𝑁 (𝑡) (𝐾̄ (𝑡)) ∥ < 1, (44)

it holds that 𝜃 (𝑡)
𝑖

= 𝜃 (𝑡) for all 𝑖 ∈ V (𝑡) (𝐾) and all 𝑡 ∈ {1, · · · ,𝑇 }.
Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Yang Lu, Zhengxin Yu, and Neeraj Suri

Proof: We fix a training round 𝑡 . At each consensus iteration 𝑘 , by the update rule given above at step (iii), we have∑︁
𝑖∈V (𝑡) (𝑘)

𝑠
(𝑡)
𝑖
(𝑘 + 1) =

∑︁
𝑖∈V (𝑡) (𝑘)

[𝑎 (𝑡)
𝑖𝑖
(𝑘)𝑠 (𝑡)

𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡)

𝑖
(𝑘)

𝑎
(𝑡)
𝑖 𝑗
(𝑘)𝑠 (𝑡)

𝑗
(𝑘)]

=
∑︁

𝑖∈V (𝑡) (𝑘)
𝑎
(𝑡)
𝑖𝑖
(𝑘)𝑠 (𝑡)

𝑖
(𝑘) +

∑︁
𝑖∈V (𝑡) (𝑘)

∑︁
𝑗 ∈N (𝑡)

𝑖
(𝑘)

𝑎
(𝑡)
𝑖 𝑗
(𝑘)𝑠 (𝑡)

𝑗
(𝑘)

=
∑︁

𝑖∈V (𝑡) (𝑘)
𝑎
(𝑡)
𝑖𝑖
(𝑘)𝑠 (𝑡)

𝑖
(𝑘) +

∑︁
𝑖∈V (𝑡) (𝑘)

[
∑︁

𝑗 ∈N (𝑡)
𝑖
(𝑘)

𝑎
(𝑡)
𝑖 𝑗
(𝑘)]𝑠 (𝑡)

𝑖
(𝑘)

=
∑︁

𝑖∈V (𝑡) (𝑘)
[𝑎 (𝑡)
𝑖𝑖
(𝑘) +

∑︁
𝑗 ∈N (𝑡)

𝑖
(𝑘)

𝑎
(𝑡)
𝑖 𝑗
(𝑘)]𝑠 (𝑡)

𝑖
(𝑘)

=
∑︁

𝑖∈V (𝑡) (𝑘)
𝑠
(𝑡)
𝑖
(𝑘), (45)

where the last equality is due to the property of 𝐴(𝑡) (𝑘) given by (8).
By the above step (iv), at the end of each consensus iteration 𝑘 , if a learner 𝑖 will leave the network in the next

iteration 𝑘 + 1, then, it picks an arbitrary neighbor 𝑗 and 𝑠 (𝑡)
𝑗
(𝑘 + 1) is updated by 𝑠 (𝑡)

𝑗
(𝑘 + 1) = 𝑠 (𝑡)

𝑗
(𝑘 + 1) + 𝑠 (𝑡)

𝑖
(𝑘 + 1).

This operation guarantees that, at the beginning of iteration 𝑘 + 1, it holds that∑︁
𝑖∈V (𝑡) (𝑘+1)

𝑠
(𝑡)
𝑖
(𝑘 + 1) =

∑︁
𝑖∈V (𝑡) (𝑘)

𝑠
(𝑡)
𝑖
(𝑘 + 1) . (46)

By (45) and (45), we have ∑︁
𝑖∈V (𝑡) (𝑘+1)

𝑠
(𝑡)
𝑖
(𝑘 + 1) =

∑︁
𝑖∈V (𝑡) (𝑘)

𝑠
(𝑡)
𝑖
(𝑘). (47)

Since (47) holds for any 𝑘 , we obtain ∑︁
𝑖∈V (𝑡) (𝑘)

𝑠
(𝑡)
𝑖
(𝑘) =

∑︁
𝑖∈V (𝑡) (0)

𝑠
(𝑡)
𝑖
(0), ∀𝑘. (48)

By Theorem 8.3 of [53], if the dimension of 𝐴(𝑡) (𝑘) is fixed from some iteration 𝑘 = 𝐾 (𝑡) , then, it holds that

lim
𝐾→∞

𝑁 (𝑡) (𝐾 (𝑡))
𝐾∏

𝑘=𝐾̄ (𝑡)

𝐴(𝑡) (𝑘) = 1𝑁 (𝑡) (𝐾̄ (𝑡))1
𝑇

𝑁 (𝑡) (𝐾̄ (𝑡)) . (49)

By (49), if 𝑝 and 𝐾 satisfy (42), (43) and (44), by following a similar procedure of the proof of Theorem 6.1, we can derive

𝑠
(𝑡)
𝑖
(𝐾) = 1

𝑁 (𝑡) (𝐾 (𝑡))

∑︁
𝑗 ∈V (𝑡) (𝐾̄ (𝑡))

𝑠
(𝑡)
𝑗
(𝐾 (𝑡)), ∀𝑖 ∈ V (𝑡) (𝐾 (𝑡)) . (50)

By (48) and (50), noticing that 𝑁 (𝑡) (𝐾) = 𝑁 (𝑡) (𝐾 (𝑡)) andV (𝑡) (𝐾) = V (𝑡) (𝐾 (𝑡)), we obtain

𝑠
(𝑡)
𝑖
(𝐾) = 1

𝑁 (𝑡) (𝐾)

∑︁
𝑗 ∈V (𝑡) (0)

𝑠
(𝑡)
𝑗
(0), ∀𝑖 ∈ V (𝑡) (𝐾). (51)

By the above step (v), we then have

𝑧
(𝑡)
𝑖

= ⌊𝑁 (𝑡) (𝐾)𝑠 (𝑡)
𝑖
(𝐾)⌉ mod 𝑝 =

∑︁
𝑗 ∈V (𝑡) (0)

𝑠
(𝑡)
𝑗
(0) mod 𝑝, ∀𝑖 ∈ V (𝑡) (𝐾) . (52)

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 27

The remaining proof follows the proof of Theorem 6.1.

7.3.2 Privacy. The privacy property is characterized by the following theorem.

Theorem 7.2. The results of Lemma 6.1 and Theorem 6.2 hold for the extended algorithm of Section 7.2, where the

conditions are exerted on the communication topology at the phase of secret shares generation and sharing for each training

round.

Proof: The proof of Lemma 6.1 indicates that the privacy property is fully determined by the communication topology
at the phase of secret shares generation and sharing. This is because, if a benign learner (or a set of benign learners)
has at least one benign neighbor in this phase, then, one of its shares is coupled with one of this benign neighbor’s
shares and cannot be split in any subsequent operations. Since the extensions of Section 7.2 only modify the consensus
process (more specifically, steps 10 and 11 of Algorithm 2), they do not change the property property.

7.4 Discussion on joining of new learners within a training round

For the case where new learners are allowed to join in within a training round, a straightforward extension is to have
all the learners, including both existing and new ones, to generate shares of their current data and use the new shares
to start a new consensus process. More specifically, in a training round 𝑡 , if new learners join in at consensus iteration
𝑘 , then, these new learners generate shares of their local models (i.e., 10𝜎𝜃 (𝑡)

𝑖
(0)), while the existing learners generate

shares of their current states (i.e., 𝑠 (𝑡)
𝑖
(𝑘)). The learners then exchange the shares with their current neighbors and

form the initial states for the new consensus process. It is easy to see that convergence correctness is guaranteed. In
particular, in the proof of Theorem 7.1, we have shown that, for any consensus iteration 𝑘 , the sum of 𝑠 (𝑡)

𝑖
(𝑘) over all

the current learners is always equal to the sum of 𝑠 (𝑡)
𝑖
(0) over all the learners at the beginning of the training round.

Hence, with new learners joining in, the new converging point will be the average of the sum of all the current learners’
new shares, which is just the sum of all the current learners’ local models, i.e., the new desired global model. However,
this straightforward extension does not provide desired privacy guarantee. This is because, for the existing learners,
their states 𝑠 (𝑡)

𝑖
(𝑘)’s are directly shared with their neighbors and thus are not secrets any more. Therefore, even if a

new learner 𝑖’s neighbors at the phase of secret shares generation and sharing are all benign, it is still possible that the
adversarial learners can first obtain all its neighbors’ other shares (those not for learner 𝑖), and then infer its neighbors’
shares for learner 𝑖 (by knowing its neighbors’ states), and further infer all of learner 𝑖’s shares and reconstruct its
local model. In this paper, for change of participating learners within a training round, we focus on the issue of learner
leaving, which is usually more critical in practice, and leave the issue of learner joining to our future works.

8 PERFORMANCE EVALUATION

This section provide comprehensive simulations to test the performance of Algorithm 2 and the extended algorithm
of Section 7.2. It is worth noting that simulations of this section are mainly for the purpose of proof-of-concept, i.e.,
experimentally verifying the convergence results established by Theorem 6.1 and Theorem 7.1.

8.1 Simulation setup

Environment. The simulation environment is as follows. On the hardware side, the simulation is performed on a
Lenovo ThinkPad laptop computer with Intel(R) Core(TM) i5-1135G7 CPU at 2.40 GHz. On the software side, the
simulation is performed on MATLAB R2021b.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Yang Lu, Zhengxin Yu, and Neeraj Suri

Dataset. The dataset we use in the simulation is MNIST [12], which is a large-scale dataset of handwritten digits
that is broadly used for training various image processing systems. It has a training set of 60000 samples and a testing
set of 10000 samples. Each data sample has 784 features and 1 label. The simulation uses the set of 60000 training data
samples and evenly distributes them over 100 learners. For each data sample, the label is removed. Hence, each learner
has 600 local training data samples and each data sample consists of 784 features.

ML model for local training. In each round 𝑡 , each learner 𝑖 uses an autoencoder to train its local model 𝜃 (𝑡)
𝑖

.
An autoencoder is an unsupervised learning algorithm for neural networks to learn efficient codings of unlabeled
data. A significant advantage of autoencoder is that it can greatly reduce the noise of input data, leading to much
more efficient creation of deep learning models. Due to this advantage, it has been applied to various problems, e.g.,
dimensionality reduction [66], feature detection [25], image recognition [40], defense against backdoor attacks [35],
and anomaly detection [76]. An autoencoder has two parts, an encoder that compresses the input into a latent space
representation, and a decoder that maps this representation to a reconstruction of the input. With ℎ hidden layers, in
each round 𝑡 , each learner 𝑖’s encoder consists of an ℎ × 784 weight matrix𝑊 (𝑡)

𝑖 (𝑒) and an ℎ × 1 bias vector 𝑏 (𝑡)
𝑖 (𝑒) , and its

decoder consists of a 784 ×ℎ weight matrix𝑊 (𝑡)
𝑖 (𝑑) and a 784 × 1 bias vector 𝑏 (𝑡)

𝑖 (𝑑) . The local model 𝜃 (𝑡)
𝑖

is constructed by

stacking all the entries of𝑊 (𝑡)
𝑖 (𝑒) , 𝑏

(𝑡)
𝑖 (𝑒) ,𝑊

(𝑡)
𝑖 (𝑑) and 𝑏

(𝑡)
𝑖 (𝑑) into a single column vector. Therefore, the dimension of 𝜃 (𝑡)

𝑖

is 𝑛 = ℎ × 784 + ℎ + 784 × ℎ + 784 = 1569ℎ + 784. Notice that verification of correctness can also be conducted on
other neural network architectures, e.g., feed-forward neural networks and convolutional neural networks, in a similar
manner. To avoid redundancy, in the simulations, we stick to autoencoder for learners’ local training.

8.2 Simulation results for Algorithm 2

We first test the performance of Algorithm 2. For the simulations in this subsection, the learners are fixed throughout
the training process and the communication topology between can only change between successive training rounds. In
the simulation, we set 𝜎 = 2, 𝑝 = 1020431, and 𝑇 = 6. For the correctness verification, we set 𝐾 = 10. We have verified
that the conditions given by (16) and (17) are both satisfied.

We first verify the correctness property of Algorithm 2. Here we use one hidden layer for each learner’s local
training, which leads to 𝑛 = 2353. To simulate time-varying communication topology, for each round 𝑡 , an arbitrary
communication topology satisfying Assumption 2.1 is applied. First, we verify correct average consensus at each
training round. To this end, we pick an arbitrary 𝑙 ∈ {1, · · · , 𝑛} for the illustration. In each training round 𝑡 , for each
𝑖 ∈ V and each 𝑘 ∈ {0, · · · , 𝐾}, with 𝑠 (𝑡)

𝑖𝑙
(𝑘) generated by (13), we construct 𝑧 (𝑡)

𝑖𝑙
(𝑘) by (14) with 𝑠 (𝑡)

𝑖𝑙
(𝐾) replaced by

𝑠
(𝑡)
𝑖𝑙
(𝑘), and then construct 𝜃 (𝑡)

𝑖𝑙
(𝑘) by (15) with 𝑧 (𝑡)

𝑖𝑙
replaced by 𝑧 (𝑡)

𝑖𝑙
(𝑘). Notice that 𝑧 (𝑡)

𝑖𝑙
= 𝑧
(𝑡)
𝑖𝑙
(𝐾) and 𝜃 (𝑡)

𝑖𝑙
= 𝜃
(𝑡)
𝑖𝑙
(𝐾).

For each 𝑡 = 1, · · · , 6, the trajectories of 𝜃 (𝑡)
𝑖𝑙
(𝑘) for all 𝑖 ∈ V are sequentially shown in Fig. 5. We can see that, for

each round 𝑡 , all the 100 trajectories converge to a same value. Indeed, for each 𝑡 = 1, · · · , 6, we have verified that
all the 100 trajectories converge to the correct value of the desired global sum 𝜃𝑙 (𝑡) =

∑
𝑖∈V 𝑤𝑖𝜃

(𝑡)
𝑖𝑙

, i.e., at

𝑘 = 𝐾 = 10, 𝜃 (𝑡)
𝑖𝑙
(10) = 𝜃𝑙 (𝑡) for all 𝑖 ∈ V . To further verify correctness of convergence, we also plot in Fig. 6 the

trajectories of max𝑖∈V,𝑙 ∈{1,· · · ,𝑛} |𝜃
(𝑡)
𝑖𝑙
− 𝜃𝑙 (𝑡) | for 𝑡 = 1, · · · , 6. In Fig. 6, for each training round 𝑡 , the trajectory of

max𝑖∈V,𝑙 ∈{1,· · · ,𝑛} |𝜃
(𝑡)
𝑖𝑙
−𝜃𝑙 (𝑡) | converges to zero. This verifies that 𝜃 (𝑡)

𝑖𝑙
converges to the correct value of the desired

global model 𝜃𝑙 (𝑡) for all 𝑖 ∈ V and all 𝑙 ∈ {1, · · · , 𝑛}. Moreover, we pick an arbitrary 𝑖 ∈ V and plot the trajectories
of 𝜃 (𝑡)

𝑖𝑙
and |𝜃 (𝑡)

𝑖𝑙
− 𝜃𝑙 (𝑡) | for three arbitrarily picked 𝑙 ’s (𝑙 = 1569, 2033, 2040); as shown by Fig. 7 (notice that these two

trajectories are the same for all learners as 𝜃 (𝑡)
𝑖𝑙
(𝑘)’s for all 𝑖 ∈ V converge to a same value). In each sub-figure of Fig. 7,

the red dashed curve is the trajectory of |𝜃 (𝑡)
𝑖𝑙
− 𝜃𝑙 (𝑡) |, i.e., the absolute difference between the consensus value and

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 29

the ground-truth value at each round 𝑡 . Notice that this curve is constant at 0, which indicates that 𝜃 (𝑡)
𝑖𝑙

is equal to
𝜃𝑙 (𝑡) at all training rounds. This verifies that the global model computed by Algorithm 2 is correct under time-varying
communication topology. The blue solid curve in Fig. 7 is the trajectory of 𝜃 (𝑡)

𝑖𝑙
. It illustrates the convergence of the

plain federated learning scheme. Fig. 5 and Fig. 7 together verify the correctness property of Algorithm 2.

Fig. 5. Trajectories of {𝜃 (𝑡)
𝑖𝑙
(𝑘) }𝑖∈V for 𝑡 = 1, · · · , 6, where {𝜃 (𝑡)

𝑖𝑙
(𝑘) } is the set of 𝜃 (𝑡)

𝑖𝑙
(𝑘) for 𝑘 = 0, 1, · · · , 10, and {𝜃 (𝑡)

𝑖𝑙
(𝑘) }𝑖∈V is

the collection of {𝜃 (𝑡)
𝑖𝑙
(𝑘) } for all 𝑖 ∈ V .

We next use simulations to show the impact of the communication topology on the convergence rate of the consensus
process. It is well known that the convergence rate is dependent on the overall connectivity degree of the communication
topology. Roughly speaking, for a given number of learners, a denser communication topology usually exhibits a
higher convergence rate. More specifically, the second largest eigenvalue of the underlying weighted adjacency matrix
(𝐴(𝑡)) is an important indicator of topology connectivity. In our problem setting, a smaller second largest eigenvalue of
𝐴(𝑡) indicates a denser connectivity of the communication topology and a better convergence rate [53]. To visually
show the impact of the communication topology on the convergence rate, for the same 𝑙 as above, we generate the
sequence of {𝜃 (1)

𝑖𝑙
(𝑘)}𝑖∈V under six communication topologies. The first one is the complete topology, i.e., (𝑖, 𝑗) ∈ E (1)

for all 𝑖, 𝑗 ∈ V with 𝑖 ≠ 𝑗 . The second one is a sparse topology where each learner has 40 neighbors. The third and
fourth ones are sparser topologies where each learner has 20 and 10 neighbors, respectively. The fifth one is the star
topology, i.e., there exists one learner 𝑖 such that 𝑗 ∈ N (1)

𝑖
for all 𝑗 ∈ V\{𝑖}, while (𝑗, ℓ) ∉ E (1) for any 𝑗, ℓ ∈ V\{𝑖}.

The sixth one is the line topology, i.e., the connection of the learners forms a line. Intuitively, the six topologies have
descending connectivity degrees. Indeed, their corresponding matrix 𝐴(1) have ascending second largest eigenvalues: 0,
0.3259, 0.8181, 0.9555, 0.9900, and 0.9997, respectively. The complete, star and line topologies are three representative
communication topologies and have broad applications. In particular, the complete topology has the largest possible

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Yang Lu, Zhengxin Yu, and Neeraj Suri

Fig. 6. Trajectories of max𝑖∈V,𝑙∈{1,··· ,𝑛} |𝜃 (𝑡)𝑖𝑙 − 𝜃
𝑙 (𝑡) | for 𝑡 = 1, · · · , 6.

Fig. 7. Trajectories of 𝜃 (𝑡)
𝑖𝑙

and |𝜃 (𝑡)
𝑖𝑙
− 𝜃𝑙 (𝑡) | for three arbitrarily picked 𝑙 ’s.

connectivity degree (densest) and is typical for, e.g., secure mulitparty computation tasks [11]; the star topology depicts
the (sparse) spoke–hub distribution paradigm and is common in, e.g., cloud computing [6]; and the line topology has
the smallest possible connectivity degree (sparsest) for connected graphs and is widely used in, e.g., power systems
[24]. The other three cases depict three different connectivity degrees in between and are used to simulate general
sparse graphs covering a wider range of connectivity degrees. The trajectories of 𝜃 (1)

𝑖𝑙
(𝑘) for all 𝑖 ∈ V under these six

communication topologies are shown in Fig. 8. We can see that under all the six communication topologies, all the
100 trajectories converge to the value of the desired global sum 1.04, but clearly with descending convergence rates,
which matches discussion above. By (25), we can see that the convergence rate can be estimated by the decaying rate of
∥𝑁 (𝐴(𝑡))𝑘 − 1𝑁 1𝑇

𝑁
∥. The trajectories of ∥𝑁 (𝐴(1))𝑘 − 1𝑁 1𝑇

𝑁
∥ under the above six communication topologies are shown

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 31

in Fig. 9 (the small figure shows the convergence under the line topology). It matches the convergence rates observed in
Fig. 8. Notice that the trajectory of ∥𝑁 (𝐴𝑘 − 1𝑁 1𝑇

𝑁
∥ for a given matrix 𝐴 can be generated offline. Hence, if the learners

have prior knowledge of average connectivity degree of G (𝑡) , then based on the decaying rate of ∥𝑁 (𝐴(𝑡))𝑘 − 1𝑁 1𝑇
𝑁
∥

for possible communication topologies, they may be able to choose a less conservative value of 𝐾 .

Fig. 8. Trajectories of {𝜃 (1)
𝑖𝑙
(𝑘) }𝑖∈V under different communication topologies.

Finally we verify the computational efficiency of Algorithm 2. Breakdowns of computational overhead under different
communication topologies and autoencoder hidden layers are shown in Table 1. In the table, ℎ is the number of
autoencoder hidden layers, 𝑛 is the number of model features (recall that 𝑛 = 1569ℎ + 784), 𝑡1 is the time of constructing
the weighted adjacency matrix 𝐴(𝑡) per learner per round, 𝑡2 is the time of secret shares generation and sharing per
learner per round, and 𝑡3 is the time of consensus process per learner per round. For each communication topology,
the number of consensus iterations 𝐾 is fixed at a value where convergence is achieved. The table shows that, for
each communication topology, as ℎ and 𝑛 increase, 𝑡1 does not change, while 𝑡2 and 𝑡3 increase correspondingly. The
unchange of 𝑡1 is due to that 𝑡1 only depends on the number of the learners’ neighbors and independent from ℎ or 𝑛. The
increase of 𝑡2 and 𝑡3 is because the average number of shares increases. In particular, the average number of shares per
learner per round is |N𝑎𝑣𝑔 |𝑛, where |N𝑎𝑣𝑔 | denotes the average number of neighbors per learner per round. Therefore,
for a given communication topology, |N𝑎𝑣𝑔 | is fixed, and 𝑡2 and 𝑡3 will increase as 𝑛 increases. Moreover, for fixed ℎ and
𝑛, for the communication topologies from left to right in the table, 𝑡1 and 𝑡2 decrease, while 𝑡3 increases. The decrease
of 𝑡1 and 𝑡2 is due to that, from left to right, the communication topology is sparser and sparser, and thus |N𝑎𝑣𝑔 | is
smaller and smaller, so that, in average, the learners need fewer operations in constructing 𝐴(𝑡) and also generate
fewer shares. The increase of 𝑡3 is due to that, for a sparser communication topology, more iterations are needed for
consensus convergence. The table indicates that a learner’s computational overhead is mainly determined by the total
number of shares it needs to generate and the number of iterations of the consensus process. We next further examine
these relationships. First, we examine the relationship between computational overhead and the total number of shares.

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Yang Lu, Zhengxin Yu, and Neeraj Suri

Fig. 9. Trajectories of ∥𝑁 (𝐴(1))𝑘 − 1𝑁 1𝑇
𝑁
∥ under different communication topologies.

As mentioned, this number depends on two factors, one is N̄ (𝑡)
𝑖

, the number of its neighbors including itself, and the
other is 𝑛, the dimension of 𝜃 (𝑡) . Notice that the first factor is related to the size of learners. In each training round 𝑡 , a
learner’s total number of shares is N̄ (𝑡)

𝑖
𝑛. To examine the relationship between the computational overhead and N̄ (𝑡)

𝑖
𝑛,

an easy way is to tune the values of 𝑛 by tuning the values of ℎ according to the equation 𝑛 = 1569ℎ + 784. Without
loss of generality, the following simulations adopt a fixed communication topology, where the learners’ connectivity
degrees are well balanced (i.e., they have similar number of neighbors). We use an arbitrary such communication
topology where the average number of neighbors for one learner is 87. For each value of 𝑛, Algorithm 2 is run for
𝑇 = 10 rounds, and in each round 𝑡 , the consensus algorithm is run for 𝐾 = 10 iterations. The results are shown in the
left sub-figure of Fig. 10, where the 𝑥-axis is the average number of total shares per learner per round (in this case,
87𝑛), and the 𝑦-axis is the average time per learner per training round for the phase of global model aggregation (steps
4–14 of Algorithm 2). From the left sub-figure of Fig. 10, we can see that when the average total number of shares per
learner per round is 106, the average time per learner per training round is merely around 2.4 seconds. In addition,
this sub-figure illustrates that the average time per learner per training round grows linearly with the average total
number of shares per learner per round, where the growth rate is very slow, approximately 2.315 × 10−6. This verifies
that our algorithm is computationally efficient and scales well with large-size dense networks and high
dimensional training models. Next we examine the relationship between the running time for the consensus process
(step 10 of Algorithm 2) and the number of consensus iterations 𝐾 . The above communication topology is adopted and
fixed. For each value of 𝐾 , Algorithm 2 is run for 𝑇 = 10 rounds, and in each round 𝑡 , the consensus algorithm is run
for 𝐾 iterations. The results are shown in the right sub-figure of Fig. 10, where the 𝑥-axis is the value of 𝐾 , and the
𝑦-axis is the average consensus time per learner per training round. From the right sub-figure of Fig. 10, we can see that
when 𝐾 = 105, the average consensus time per learner per training round is merely around 0.6153 seconds. In addition,
Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 33

this sub-figure shows that the average consensus time per learner per training round grows linearly with the value
of 𝐾 , where the growth rate is also very slow, approximately 6.155 × 10−6. This verifies that our algorithm is also
computationally efficient for sparse networks which may need a large number of consensus iterations.

Table 1. Breakdowns of computational overhead under different communication topologies and autoencoder hidden layers, where ℎ
is the number of autoencoder hidden layers, 𝑛 is the number of model features, 𝐾 is the number of consensus iterations, 𝑡1 is the
time of constructing the weighted adjacency matrix 𝐴(𝑡) , 𝑡2 is the time of secret shares generation and sharing, and 𝑡3 is the time of
consensus process, all times measured per learner per round

complete 40-neighbor 20-neighbor 10-neighbor star line
ℎ 𝑛 𝑡 (s) 𝐾 = 2 𝐾 = 60 𝐾 = 150 𝐾 = 300 𝐾 = 2000 𝐾 = 50000

1 2353
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 0.74 0.12 0.034 0.016 0.012 0.0012
𝑡3 0.00016 0.00059 0.0015 0.0022 0.015 0.34

3 5491
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 1.72 0.33 0.082 0.020 0.018 0.0016
𝑡3 0.00043 0.0014 0.0028 0.0049 0.032 0.76

5 8629
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 3.36 0.50 0.14 0.036 0.035 0.0021
𝑡3 0.00053 0.0018 0.0048 0.0083 0.061 1.18

7 11767
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 4.35 0.62 0.18 0.040 0.038 0.0031
𝑡3 0.00060 0.0025 0.0068 0.0095 0.063 1.65

9 14905
𝑡1 0.00009 0.00008 0.00006 0.00005 0.00004 0.00002
𝑡2 5.44 0.74 0.24 0.052 0.045 0.0037
𝑡3 0.00068 0.0028 0.0084 0.012 0.079 1.97

8.3 Simulation results for the extended algorithm of Section 7.2

We next test the performance of the extended algorithm of Section 7.2. In particular, the simulations in this subsection
focus on consensus convergence under time-varying communication topologies and leaving of learners within a training
round. To see the effect of non-IID data, we purposely modify the distributions of the learners’ local models such that
10 learners’ local model distributions are significantly different from those of the remaining 90 learners. Without loss of
generality, we choose these 10 learners to be the last 10 learners in the index system, i.e., learners 91∼100.

First, we simulate the case where 𝐾 = 600 and the 10 learners whose data distributions are significantly different
from the majority leave the network at iteration 100. The simulation results are shown in Fig. 11. In all the three
sub-figures, the red dashed curve depicts the correct value of the desired global model

∑100
𝑖=1 𝜃

(𝑡)
𝑖𝑙
(0), which is −122.53.

The first sub-figure applies the restart method. That is, at iteration 100, the remaining 90 learners regenerate shares
of their local models, {10𝜎𝜃 (𝑡)

𝑖𝑙
(0)}90

𝑖=1, based on the current communication topology and start a new consensus

process with the new shares. The remaining 90 learners’ converging point is thus
∑90
𝑖=1 𝜃

(𝑡)
𝑖𝑙
(0) = 431.88. The deviation

between the converging point and the correct global model is 431.88 − (−122.53) = 554.41. The second sub-figure
Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Yang Lu, Zhengxin Yu, and Neeraj Suri

Fig. 10. Relationship between computational overhead and total number of shares (left) and number of consensus iterations 𝐾 (right).

applies the trivial extension method where, at iteration 100, learners 91∼100 just leave the network without taking
any actions, and the remaining 90 learners just use their current states {𝑠 (𝑡)

𝑖
(100)}90

𝑖=1 to proceed to the next consensus
iteration under the new communication topology. As shown by the second sub-figure, the remaining 90 learners’
converging point is at the value of 1781.66. The deviation between this converging point and the correct global model
is 1781.66 − (−122.53) = 1904.19, which is even larger than the deviation under the restart method. In fact, by the proof
of Theorem 7.1, the deviation of {𝑠 (𝑡)

𝑖
(𝐾)}90

𝑖=1 under the trivial extension method is equal to
∑100
𝑖=91 𝑠

(𝑡)
𝑖
(100), and this

value can be very large. The second sub-figure shows that Algorithm 2 with the above trivial extension method can
perform poorly if the learners hold non-IID data and some learners leave the network within a training round. The
third sub-figure applies our extended algorithm of Section 7.2. We can see that, by our proposed extended method,
all the remaining 90 learners’ local models converge to the correct global model at the value of −122.53. This
verifies the correctness of the proposed extended algorithm.

We next simulate the proposed extended algorithm for the general case where both change of communication
topology and leaving of learners happen atmultiple iterations within a training round. In particular, we set that
changes of communication topology happen at 50 randomly chosen iterations, and leaving of learners happens at itera-
tions 100, 200, 300, 400, and 500, where, each time, 10 learners leave the network. The trajectories of {𝜃 (𝑡)

𝑖𝑙
(𝑘)}𝑖∈V (𝑡) (𝐾)

are shown in Fig. 12. We can see that all the remaining 50 learners’ local models converge to the correct global
model at the value of −122.53. Moreover, Fig. 12 shows that, after convergence is achieved or nearly achieved, if
leaving of learners happen again, there will be a new transient process by which the remaining learners’ local models
re-converge to the correct global model. Therefore, in theory, to guarantee correctness of consensus convergence,
we need that no further leaving of learners happens after some iteration. In practice, the learners can terminate the
consensus process if their states keep constant for a few consecutive iterations.

Manuscript submitted to ACM

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 35

Fig. 11. Trajectories of {𝜃 (𝑡)
𝑖𝑙
(𝑘) }

𝑖∈V (𝑡) (𝐾) for the case where 10 learners whose data distributions are significantly different from
the majority leave the network at iteration 100.

Fig. 12. Trajectories of {𝜃 (𝑡)
𝑖𝑙
(𝑘) }

𝑖∈V (𝑡) (𝐾) for the general case where both change of communication topology and leaving of learners
happen multiple times within a training round.

9 CONCLUSIONS AND FUTUREWORKS

This paper develops a new algorithm for privacy-preserving decentralized federated learning over a time-varying
communication graph. First, a simplified problem setting is considered, where the participating learners are fixed
and the communication topology between can only change between successive training rounds. A consensus-based
framework is adopted to enable decentralized global model aggregation. In each round of model aggregation, the

Manuscript submitted to ACM

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Yang Lu, Zhengxin Yu, and Neeraj Suri

Metropolis-Hastings method is applied to update the weighted adjacency matrix based on the current communication
topology so as to ensure convergence of average consensus. The technique of Shamir’s secret sharing scheme is further
integrated with the consensus-based framework to facilitate privacy preservation. The algorithm is then extended to
deal with the issues of change of participating learners and time-varying communication topology within a training
round. The correctness and privacy properties of the proposed algorithm are both analyzed. Its correctness, convergence
rate and computational overhead are examined by a case study on a federated learning application using the MNIST
dataset. Beyond global model aggregation in federated learning, the proposed algorithm can be readily applied to general
secure aggregation tasks over sparse time-varying communication graphs, e.g., decentralized opinions agreement,
multi-vehicle rendezvous, and energy supply/consumption aggregation. Moreover, it can also be applied to facilitate
privacy for more complicated problems that are solvable by consensus-based approaches [31], e.g., distributed formation
control, state estimation, unconstrained convex optimization, and resource allocation.

An interesting future work topic is to extend the attacker model to also include active (malicious) inference attacks
targeting on inferring benign learners’ local models. Several papers, e.g., [5, 38, 54, 67], have shown that, in a centralized
federated learning setting, a malicious centralized server can elude SMC protocols to infer benign learners’ local models
by maliciously modifying the global model shared with the learners. A very recent paper [55] also pointed out this issue
as an open question for federated learning in a decentralized setting. Compared to centralized setting, decentralized
setting in general has a broader attack surface. On the other hand, in a centralized setting, if the centralized server
is malicious, then it may be able to leverage the aforementioned active attack to infer local models of all the benign
learners. A decentralized setting may be able to mitigate this issue as a benign learner’s individual privacy may only
depend on its direct neighbors, in which case, if a benign learner does not have malicious direct neighbors, it can
survive such active attacks. However, it still remains to be investigated whether a malicious learner can devise a
sophisticated yet computationally feasible strategy to modify the models it shares with its direct neighbors so as to infer
the local models of its multi-hop neighbors. In any case, how to configure SMC protocols to resist such active inference
attacks is a critical challenge for both centralized and decentralized federated learning. Another interesting future work
topic is to investigate active data poisoning attacks targeting on failing the learning task. For example, with external
data poisoning attacks, data transmitted over communication links may be tampered by external attackers; and with
Byzantine attacks, the learners themselves may be corrupted to maliciously deviate from the designed algorithm. These
attacks may cause a significant distort in the global model aggregation, leading to very poor learning performance or
even learning failure. In the presence of such active data poisoning attacks, a resilient algorithm needs to be developed
which can maintain a satisfactory learning performance.

REFERENCES
[1] J. Alonso-Mora, E. Montijano, M. Schwager, and D. Rus. 2016. Distributed multi-robot formation control among obstacles: A geometric and

optimization approach with consensus. In 2016 IEEE International Conference on Robotics and Automation. 5356–5363.
[2] R. Aragues, C. Sagues, and Y. Mezouar. 2013. Feature-based map merging with dynamic consensus on information increments. In 2013 IEEE

International Conference on Robotics and Automation. 2725–2730.
[3] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. 2012. Multiparty Computation with Low Communication,

Computation and Interaction via Threshold FHE. In Advances in Cryptology – EUROCRYPT 2012. 483–501.
[4] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi. 2018. Personalized and Private Peer-to-Peer Machine Learning. In Proceedings of the Twenty-First

International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 84). PMLR, 473–481.
[5] F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi, I. Shumailov, and N. Papernot. 2021. When the Curious Abandon Honesty: Federated

Learning Is Not Private. arXiv preprint (2021). [Online] https://arxiv.org/abs/2112.02918.
[6] L. Chao. 2015. Cloud computing networking: Theory, practice, and development. CRC Press.

Manuscript submitted to ACM

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 37

[7] C. Che, X. Li, C. Chen, X. He, and Z. Zheng. 2021. A Decentralized Federated Learning Framework via Committee Mechanism with Convergence
Guarantee. arXiv preprint (2021). [Online] https://arxiv.org/pdf/2108.00365.pdf.

[8] H. Chen, W. Dai, M. Kim, and Y. Song. 2019. Efficient Multi-Key Homomorphic Encryption with Packed Ciphertexts with Application to Oblivious
Neural Network Inference. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 395–412.

[9] A. Cherukuri and J. Cortés. 2015. Distributed Generator Coordination for Initialization and Anytime Optimization in Economic Dispatch. IEEE
Transactions on Control of Network Systems 2, 3 (2015), 226–237.

[10] R. Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo, and F. De Felice. 2020. Artificial Intelligence and Machine Learning Applications in Smart
Production: Progress, Trends, and Directions. Sustainability 12, 2 (2020), 1–26.

[11] R. Cramer, I. Damgård, and J. B. Nielsen. 2015. Secure Multiparty Computation and Secret Sharing. Cambridge University Press.
[12] L. Deng. 2012. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal Processing Magazine 29, 6 (2012),

141–142.
[13] J. Dreier and F. Kerschbaum. 2011. Practical privacy-preserving multiparty linear programming based on problem transformation. In Proceedings of

the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing.
916–924.

[14] C. Dwork and A. Roth. 2014. The Algorithm Foundations of Differential Privacy. Foundations and Trends in Theoretical Computer Science 9, 3–4
(August 2014), 211–407.

[15] A. M. Elbir, B. Soner, and S. Coleri. 2020. Federated Learning in Vehicular Networks. arXiv preprint (2020). [Online]
https://arxiv.org/pdf/2006.01412.pdf.

[16] M. Fredrikson, S. Jha, and T. Ristenpart. 2015. Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. 1322–1333.

[17] M. J. Freedman, K. Nissim, and B. Pinkas. 2004. Efficient Private Matching and Set Intersection. In Proceedings of the 2004 International Conference on
the Theory and Applications of Cryptographic Techniques. 1–19.

[18] D. Froelicher, J. R. Troncoso-Pastoriza, A. Pyrgelis, S. Sav, J. Sousa, J. Bossuat, and J. Hubaux. 2021. Scalable Privacy-Preserving Distributed Learning.
Proceedings on Privacy Enhancing Technologies 2021, 323–347.

[19] S. Gade and N. H. Vaidya. 2018. Privacy-Preserving Distributed Learning via Obfuscated Stochastic Gradients. In 2018 IEEE Conference on Decision
and Control. 184–191.

[20] S. Gade and N. H. Vaidya. 2018. Private Optimization on Networks. In 2018 Annual American Control Conference. 1402–1409.
[21] Q. Geng and P. Viswanath. 2014. The Optimal Mechanism in Differential Privacy. In 2014 IEEE International Symposium on Information Theory.

2371–2375.
[22] O. Goldreich. 2004. Foundations of Cryptography: Volume 2-Basic Applications. Cambridge University Press.
[23] Y. Gong, Y. Cai, Y. Guo, and Y. Fang. 2016. A privacy-preserving scheme for incentive-based demand response in the smart grid. IEEE Transactions

on Smart Grid 7, 3 (2016), 1304–1313.
[24] B. Gäde, A. M. Lehmann, J. Deutschmann, and J. B. Huber. 2017. A power line communication topology module for ns-3 and DCE. In 2017 IEEE

International Conference on Smart Grid Communications (SmartGridComm). 295–301.
[25] A. Géron. 2019. Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems.

O’Reilly.
[26] C. Hazay and Y. Lindell. 2010. Efficient Secure Two-Party Protocols–Techniques and Constructions. Springer.
[27] J. He, L. Cai, P. Cheng, J. Pan, and L. Shi. 2019. Distributed Privacy-Preserving Data Aggregation Against Dishonest Nodes in Network Systems.

IEEE Internet of Things Journal 6, 2 (2019), 1462–1470.
[28] J. He, L. Cai, and X. Guan. 2020. Differential Private Noise Adding Mechanism and Its Application on Consensus Algorithm. IEEE Transactions on

Signal Processing 68 (2020), 4069–4082.
[29] Z. Huang, S. Mitra, and G. Dullerud. 2012. Differentially Private Iterative Synchronous Consensus. In ACM workshop on privacy in the electronic

society. 81–90.
[30] B. Jeon, S. M. Ferdous, M. R. Rahman, and A. Walid. 2021. Privacy-Preserving Decentralized Aggregation for Federated Learning. In IEEE INFOCOM

2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 1–6.
[31] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez. 2019. Tutorial on Dynamic Average Consensus: The Problem, Its

Applications, and the Algorithms. IEEE Control Systems Magazine 39, 3 (2019), 40–72.
[32] K. Kogiso and T. Fujita. 2015. Cyber-security enhancement of networked control systems using homomorphic encryption. In Proceedings of 2015

IEEE 54th Annual Conference on Decision and Control (CDC). 6836–6843.
[33] J. Konečný, H. McMahan, D. Ramage, and P. Richtárik. 2016. Federated Optimization: Distributed Machine Learning for On-Device Intelligence.

arXiv preprint (2016). [Online] https://arxiv.org/pdf/1610.02527.pdf.
[34] I. Krontiris, F. C. Freiling, and T. Dimitriou. 2010. Location privacy in urban sensing networks: research challenges and directions. IEEE Wireless

Communications 17, 5 (2010), 30–35.
[35] H. Kwon. 2021. Defending Deep Neural Networks against Backdoor Attack by Using De-trigger Autoencoder. IEEE Access (2021), 1–1.
[36] R. L. Lagendijk, Z. Erkin, and M. Barni. 2013. Encrypted signal processing for privacy protection: Conveying the utility of homomorphic encryption

and multiparty computation. IEEE Signal Processing Magazine 30, 1 (2013), 82–105.

Manuscript submitted to ACM

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Yang Lu, Zhengxin Yu, and Neeraj Suri

[37] A. Lalitha, O. Cihan Kilinc, T. Javidi, and F. Koushanfar. 2019. Peer-to-Peer Federated Learning on Graphs. arXiv preprint (2019). [Online]
https://arxiv.org/pdf/1901.11173.pdf.

[38] M. Lam, G. Wei, D. Brooks, V. J. Reddi, and M. Mitzenmacher. 2021. Gradient Disaggregation: Breaking Privacy in Federated Learning by
Reconstructing the User Participant Matrix. In Proceedings of the 38th International Conference on Machine Learning, Vol. 139. 5959–5968.

[39] Qiongxiu Li and Mads Graesbøll Christensen. 2019. A Privacy-Preserving Asynchronous Averaging Algorithm based on Shamir’s Secret Sharing. In
2019 27th European Signal Processing Conference (EUSIPCO). 1–5.

[40] Y. Liu, X. Hou, J. Chen, C. Yang, G. Su, andW. Dou. 2014. Facial expression recognition and generation using sparse autoencoder. In 2014 International
Conference on Smart Computing. 125–130.

[41] S. Lu, Y. Zhang, and Y. Wang. 2020. Decentralized Federated Learning for Electronic Health Records. In 2020 54th Annual Conference on Information
Sciences and Systems (CISS). 1–5.

[42] Y. Lu and M. Zhu. 2018. Privacy preserving distributed optimization using homomorphic encryption. Automatica 96, 10 (October 2018), 314–325.
[43] Y. Lu and M. Zhu. 2019. A control-theoretic perspective on cyber-physical privacy: Where data privacy meets dynamic systems. Annual Reviews in

Control 47 (2019), 423–440.
[44] N. E. Manitara and C. N. Hadjicostis. 2013. Privacy-preserving asymptotic average consensus. In 2013 European Control Conference. 760–765.
[45] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas. 2017. Communication-Efficient Learning of Deep Networks from Decentralized Data.

In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Vol. 54. 1273–1282.
[46] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas. 2017. Communication-Efficient Learning of Deep Networks from Decentralized

Data. In International Conference on Artificial Intelligence and Statistics (AISTATS).
[47] Y. Mo and R. M. Murray. 2017. Privacy Preserving Average Consensus. IEEE Trans. Automat. Control 62, 2 (2017), 753–765.
[48] C. Mouchet, E. Bertrand, and J. Hubaux. 2023. An Efficient Threshold Access-Structure for RLWE-Based Multiparty Homomorphic Encryption.

Journal of Cryptology 36, 10 (2023), 1–20.
[49] C. Mouchet, J. R. Troncoso-Pastoriza, J. Bossuat, and J. Hubaux. 2021. Multiparty Homomorphic Encryption from Ring-Learning-with-Errors. In

Proceedings on Privacy Enhancing Technologies, Vol. 2021. 291–311.
[50] M. Nasr, R. Shokri, and A. Houmansadr. 2019. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks

against Centralized and Federated Learning. In 2019 IEEE Symposium on Security and Privacy. 739–753.
[51] S. Niknam, H. S. Dhillon, and J. H. Reed. 2019. Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges. arXiv

preprint (2019). [Online] https://arxiv.org/pdf/1908.06847.pdf.
[52] E. Nozari, P. Tallapragada, and J. Cortés. 2017. Differentially private average consensus: Obstructions, trade-offs, and optimal algorithm design.

Automatica 81 (2017), 221–231.
[53] A. Olshevsky and J. N. Tsitsiklis. 2009. Convergence Speed in Distributed Consensus and Averaging. SIAM Journal on Control and Optimization 48,

1 (2009), 33–55.
[54] D. Pasquini, D. Francati, and G. Ateniese. 2022. Eluding Secure Aggregation in Federated Learning via Model Inconsistency. In Proceedings of the

2022 ACM SIGSAC Conference on Computer and Communications Security. 2429–2443.
[55] D. Pasquini, M. Raynal, and C. Troncoso. 2022. On the Privacy of Decentralized Machine Learning. arXiv preprint (2022). [Online]

https://arxiv.org/abs/2205.08443.
[56] A. Guha Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger. 2019. BrainTorrent: A Peer-to-Peer Environment for Decentralized Federated

Learning. arXiv preprint (2019). [Online] https://arxiv.org/pdf/1905.06731.pdf.
[57] M Ruan, H. Gao, and Y. Wang. 2019. Secure and Privacy-Preserving Consensus. IEEE Trans. Automat. Control 64, 10 (2019), 4035–4049.
[58] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J. Bossuat, J. Sousa, and J. Hubaux. 2021. POSEIDON: Privacy-Preserving Federated

Neural Network Learning. Network and Distributed Systems Security Symposium (NDSS), 1–18.
[59] S. Savazzi, M. Nicoli, and V. Rampa. 2020. Federated Learning With Cooperating Devices: A Consensus Approach for Massive IoT Networks. IEEE

Internet of Things Journal 7, 5 (2020), 4641–4654.
[60] V. Schwarz, G. Hannak, and G. Matz. 2014. On the convergence of average consensus with generalized Metropolis-Hasting weights. In 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). 5442–5446.
[61] A. Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (November 1979), 612–613.
[62] C. E. Shannon. 1949. Communication Theory of Secrecy Systems. Bell System Technical Journal 28, 4 (October 1949), 656–715.
[63] Y. Shoukry, K. Gatsis, A. Alanwar, G. J. Pappas, S. A. Seshia, M. Srivastava, and P. Tabuada. 2016. Privacy-Aware Quadratic Optimization Using

Partially Homomorphic Encryption. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control. 5053–5058.
[64] P. Su, X. Tian, Y. Wang, S. Deng, J. Zhao, Q. An, and Y. Wang. 2017. Recent Trends in Load Forecasting Technology for the Operation Optimization

of Distributed Energy System. Energies 10, 9 (2017), 1–13.
[65] Y. Wang. 2019. Privacy-Preserving Average Consensus via State Decomposition. IEEE Trans. Automat. Control 64, 11 (2019), 4711–4716.
[66] Y. Wang, H. Yao, and S. Zhao. 2016. Auto-encoder based dimensionality reduction. Neurocomputing 184 (2016), 232–242.
[67] Y. Wen, J. A. Geiping, L. Fowl, M. Goldblum, and T. Goldstein. 2022. Fishing for User Data in Large-Batch Federated Learning via Gradient

Magnification. In Proceedings of the 39th International Conference on Machine Learning, Vol. 162. 23668–23684.
[68] L. Xiao and S. Boyd. 2003. Fast linear iterations for distributed averaging. In 42nd IEEE International Conference on Decision and Control, Vol. 5.

4997–5002.

Manuscript submitted to ACM

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Privacy-preserving Decentralized Federated Learning over Time-varying Communication Graph 39

[69] L. Xiao, S. Boyd, and S. Kim. 2007. Distributed average consensus with least-mean-square deviation. J. Parallel and Distrib. Comput. 67, 1 (2007),
33–46.

[70] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang. 2021. Federated Learning for Healthcare Informatics. Journal of Healthcare Informatics
Research 5 (2021), 1–19.

[71] B. Yang, M Liang, and R. Urtasun. 2018. HDNET: Exploiting HD Maps for 3D Object Detection. In Proceedings of The 2nd Conference on Robot
Learning, Vol. 87. 146–155.

[72] X. Yi, R. Paulet, and E. Bertino. 2014. Homomorphic Encryption and Applications. Springer.
[73] Z. Yu, J. Hu, G. Min, H. Xu, and J. Mills. 2020. Proactive Content Caching for Internet-of-Vehicles based on Peer-to-Peer Federated Learning. In 2020

IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). 601–608.
[74] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain. 2021. Mobility-Aware Proactive Edge Caching for Connected Vehicles Using Federated

Learning. IEEE Transactions on Intelligent Transportation Systems 22, 8 (2021), 5341–5351.
[75] C. Zhao, J. Chen, J. He, and P. Cheng. 2018. Privacy-Preserving Consensus-Based Energy Management in Smart Grids. IEEE Transactions on Signal

Processing 66, 23 (2018), 6162–6176.
[76] C. Zhou and R. C. Paffenroth. 2017. Anomaly Detection with Robust Deep Autoencoders. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. 665–674.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Related works
	1.3 Overview of approach and contributions
	1.4 Organization

	2 Problem Statement
	2.1 Centralized federated learning
	2.2 Decentralized federated learning over a time-varying communication graph
	2.3 Attacker model
	2.4 Privacy definition
	2.5 Design objectives

	3 Technical Preliminaries
	3.1 Consensus-based decentralized model aggregation
	3.2 Shamir's secret sharing

	4 New Challenges in Algorithm Design and Analysis
	4.1 High-level description
	4.2 New challenges

	5 Privacy-Preserving Decentralized Algorithm Design
	5.1 Design details
	5.2 Overall algorithm design summary

	6 Correctness, Privacy, and Vulnerability Analysis
	6.1 Correctness analysis
	6.2 Privacy analysis
	6.3 Vulnerability analysis

	7 Time-varying communication topology within a training round
	7.1 Relaxed problem setting
	7.2 Extended algorithm
	7.3 Correctness and privacy analysis
	7.4 Discussion on joining of new learners within a training round

	8 Performance Evaluation
	8.1 Simulation setup
	8.2 Simulation results for Algorithm 2
	8.3 Simulation results for the extended algorithm of Section 7.2

	9 Conclusions and Future Works
	References

