
1

Adversarial Attack Detection via Fuzzy Predictions
Yi Li, Member, IEEE, Plamen Angelov, Fellow, IEEE, Neeraj Suri, Senior Member, IEEE

Abstract—Image processing using neural networks act as a tool
to speed up predictions for users, specifically on large-scale image
samples. To guarantee the clean data for training accuracy, var-
ious deep learning-based adversarial attack detection techniques
have been proposed. These crisp set-based detection methods
directly determine whether an image is clean or attacked, while,
calculating the loss is non-differentiable and hinders training
through normal back-propagation. Motivated by the recent
success in fuzzy systems, in this work, we present an attack
detection method to further improve detection performance,
which is suitable for any pre-trained neural network classifier.
Subsequently, the fuzzification network is used to obtain feature
maps to produce fuzzy sets of difference degree between clean
and attacked images. The fuzzy rules control the intelligence
that determines the detection boundaries. Different from previous
fuzzy systems, we propose a fuzzy mean-intelligence mechanism
with new support and confidence functions to improve fuzzy
rule’s quality. In the defuzzification layer, the fuzzy prediction
from the intelligence is mapped back into the crisp model
predictions for images. The loss between the prediction and label
controls the rules to train the fuzzy detector. We show that the
fuzzy rule-based network learns rich feature information than
binary outputs and offer to obtain an overall performance gain.
Experiment results show that compared to various benchmark
fuzzy systems and adversarial attack detection methods, our
fuzzy detector achieves better detection performance over a wide
range of images.

Index Terms—Neural network, adversarial attack detection,
fuzzification, fuzzy mean-intelligence, confidence function

I. INTRODUCTION

W ITH the advent of deep learning, neural network

models [1]–[3] have demonstrated revolutionary per-

formance in machine learning tasks, for example, natural

language processing (NLP) [4], object detection [5] and audio

signal processing [6], of real-world datasets. Nevertheless,

the vulnerability of neural networks to image corruptions

and adversarial examples has been unveiled [7]. Adversarial

attacks are techniques used to manipulate neural networks

by introducing small, often imperceptible, perturbations to

input images, audio, and videos, causing the model to make

incorrect predictions [8]. The impact of adversarial attacks is

significant, as they can undermine the reliability and security

of AI systems in critical applications, such as autonomous

driving [9], cyber security [10] and facial recognition [11].

Addressing these vulnerabilities is crucial for developing ro-

bust and trustworthy neural networks. Consequently, research

in adversarial defense mechanisms and attack detection [12]–

[14] has become a vital area in the field of AI.

In the machine learning, neural networks are trained to re-

estimate the input image sample by minimizing the recon-

struction loss between the re-constructed and original images.
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Towards guarantee credibility of input images by attack de-

tection, recent research looks at the distribution of the mean

reconstruction error (MRE) for attacked and original image

samples [15]. Particularly, image samples with higher MRE is

potentially caused by an adversarial attack or perturbation to

the clean image which leads to a wrong prediction or poorer

reconstruction as the model output. Since adversarial attacks

from new diverse sources become increasingly sophisticated,

obtaining lebelled images of all possible attack algorithms or

building attack detection techniques for each type of attack

algorithms are not feasible. There are various deep learning

methods [16]–[18] to make models more to unknown attack

algorithms. However, some require retraining of the model

with adversarial examples [19] or altering loss functions during

the training step.

Recently, fuzzy set theory is widely applied in deep learning

techniques [20], [21]. Different from crisp set-based tech-

niques, which output 0 or 1, fuzzy logic is a system of many-

valued logic where the truth value of variables can be any

real number between 0 and 1 [22]. It is applied to process

the concept of partial truth, where the truth value may range

between completely true and completely false. Recent studies

have shown that the fuzzy system offers several advantages in

handling problems traditionally addressed by crisp set-based

techniques. Firstly, fuzzy sets enable the representation of

uncertainty by assigning degrees of membership to elements

[20], [22]. In contrast, crisp sets operate under a binary classi-

fication, which proves inadequate in situations with vague or

uncertain information, particularly in the context of small and

imperceptible adversarial attacks. Secondly, Fuzzy sets exhibit

greater robustness in the presence of noise or data attacks

[23], while crisp sets, which are sensitive to exact values, are

adversely affected by small variations. Therefore fuzzy logic

can potentially handle tasks at several levels, from low level

(e.g., binary classification) to a high level (e.g., model-based

structural recognition and scene interpretation). It provides a

flexible framework for information fusion as well as powerful

tools for reasoning and decision making [24]. In this paper, we

show how the use of fuzzy detectors offers significant benefits

in adversarial attack detection. Specifically, we propose a

fuzzification process with difference degree between clean and

attacked images.

The contributions of this paper are summarized as follows:

• A fuzzy rule-based detector, simplified as fuzzy detector,

is introduced as a novel approach to address the adversarial

attack detection problem. The proposed method addresses the

limitations of crisp set-based predictions and offers advantages

in imperceptible attack detection.

• Different from previous intelligence in fuzzy logic, we

propose a new intelligence mechanism to improve fuzzy rule’s

quality. The proposed support and confidence functions are
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shown to be better adapted to the fitness function than the

previous work.

• A comprehensive evaluation of the proposed fuzzy detec-

tor with various backbones over a wide range of datasets and

attack algorithms is presented. The experimental results con-

firm the effectiveness of the proposed method. Furthermore,

it shows a promising way to apply fuzzy logic in adversarial

attack detection task.

II. RELATED WORK

A. Attacks

As one of commonly used single-step adversarial attacks,

Fast Gradient Sign Method (FGSM) calculate the gradient by

using backpropagation [25]. Assume y and x are the clean

image and the attacked image, respectively, the adversarial

image is calculated as y + ǫ ∗ sign(∆yJ(λ, x, y)) with the

scale of the distortion ǫ and the cost function J(λ, x, y). As

an iterative version of the FGSM, Projected Gradient Descent

(PGD) introduces a perturbation in each step during the

training to improve robustness [26]. The PGD attack motivates

the recent success in diffusion models [27]. In [28], the authors

assert DeepFool is the first effective method to accurately

compute the robustness of state-of-the-art deep classifiers to

perturbations on large-scale datasets. Moreover, Basic Iterative

Method (BIM) attack is introduced in [29] show that neural

networks are vulnerable to adversarial examples by feeding

adversarial images obtained from a cell-phone camera to a pre-

trained classifier and measuring the classification accuracy of

the system. Carlini & Wagner (CW) [30] demonstrate that con-

ventional defensive algorithms cannot guarantee the robustness

of neural networks by introducing unseen attack algorithms

that are successful on both distilled and undistilled neural

networks with 100% probability. In [31], the authors introduce

Jacobian-based saliency map attack (JSMA) to generate craft

adversarial samples based on a precise understanding of the

mapping between inputs and outputs of neural networks.

As the most recent adversarial attack, semantic similarity

attack on high-frequency components (SSAH) concentrates in

semantic similarity on feature representations [7]. To maintain

the perceptual similarity between original and adversarial

data, the authors introduce a low-frequency constraint to limit

perturbations within high-frequency components of input data.

The high-frequency components of an image capture minor

details and noise, while the low-frequency components convey

fundamental information. The authors report that the algorithm

is one of the strongest attacks to recent detection and defense

techniques [7].

B. Adversarial Attack Detection

In [32], a general framework is introduced to defend ob-

ject detectors against adversarial attacks by using segment

and complete defense (SAC). Each image is segmented into

patches by patch masks which provide pixel-level localization

of adversarial patches. Then the completion algorithm is

trained to remove the adversarial patch from the image if

the outputs of the segmenter are within a certain Hamming

distance of the ground-truth patch masks. Qi et al. train two

neural networks in [33]. Some adversarial attack samples

are generated toward the local DL model. Then, the target

model is attacked and produces perturbed samples. In the

adversarial training, the misclassification probability of all

training samples is estimated by the local model to detect

and delete perturbed samples from the dataset. Different from

these techniques, multiple prediction heads (i.e., detectors)

are combined to generate predictions from different depths in

deep models and introduce shallow information for inference

[34]. The distribution parameter is estimated by moment

matching. Then, cognitive uncertainty from the adversarial

attacks becomes easier to remove. As a semi-supervised learn-

ing network, an adversarial autoencder enables imperceptible

attack learning multiclassification tasks for adversarial attacks

[35]. The experiments show high detection accuracy of the

AAE model with only very limited training samples. In more

recent attack detection techniques, center-outward ordering

of points is estimated with the data distribution [36], which

makes the halfspace-mass (HM) depth a natural choice for

adversarial attack detection in the feature space. To improve

the performance of the attack detector, Hussian et al. apply

naturally occurring noises to generate boundary- and decision-

based attacks to attack the neural network [37].

C. Fuzzy Systems

Recent fuzzy system studies demonstrate high performance

on classification and detection tasks. In order to enhance the

detection performance of adversarial attacks to deep models

and boost machine learning robustness, classification bound-

aries are blurred [38]. The network traffic is set with linear

decision trees are wrapped by a one-class-membership scor-

ing algorithm. In [39], a multiple-attribute decision-making

(MADM) model is introduced for fuzzy classification. Mem-

bership functions of a fuzzy set from training data are con-

structed to form a decision-making matrix. However, these

techniques have some shortcomings, e.g., limited generaliza-

tion capability, which leads to obtaining extensive uncovered

image samples over new unseen samples. Therefore, multiple

fuzzy candidate rules to each example [40]. The usage of

more rules boosts the generalization capacity of the feature

information to further improve the classification accuracy.

Furthermore, in order to efficiently address anomaly detection

problem, accurate and interpretable rules are extracted [21].

The population of individual rules is evolved in an evolution

system. Then, the fuzzy rules in the system are mined with a

Michigan cooperative approach.

III. PROPOSED METHOD

In this section, we present the fuzzy detector-based adver-

sarial attack detection framework. Data preparation and the

encoder in the overall framework of the proposed method is

introduced in the first subsection, followed by the description

of the fuzzy detector and training losses in the remaining

subsections.

A. Data Preparation and Encoder

The overall framework of the proposed fuzzy detector-based

adversarial attack detection is presented in Fig. 1. The aim
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Fig. 1. Proposed training framework of the proposed fuzzy detector-based adversarial attack detection method. The fuzzy detector obtains the feature maps
Fc and Fa and converts the difference between them into a fuzzy set. Then, a fuzzy prediction is generated by using the fuzzy rule with the proposed support
and confidence functions. The defuzzification module converts the fuzzy set back into a crisp model prediction. Furthermore, the loss between the label and
model prediction is utilized to fine-tune the fuzzy rule and make more accurate predictions.

of adversarial attack detection is to learn feature information

of images and detect the difference between feature maps of

clean and attacked images at the pixel level by re-estimating

the image sample.

Initially, the noisy data is generated by attacking a clean

image sample with a random attack algorithm, e.g., FGSM

attack. The feature maps Fc and Fa are extracted from

clean and attacked images by using a pre-trained ImageNet

model, respectively. Particularly, we select the pre-trained

EfficientNetV2-XL on the ILSVRC dataset [41] because it

achieves the state-of-the-art benchmark on the ILSVRC chal-

lenge. The comparison of different encoder backbones will be

provided in the experiment section.

B. Fuzzy Detector

The feature maps Fc and Fa from the pre-trained encoder

are fed into the proposed fuzzy detector with hard labels,

i.e., clean or attacked samples. Then, the mean squared error

(MSE) loss at the pixel level between the feature maps is

calculated as:

LF =
1

N

N
∑

n=1

(Fa −Fc)
2 (1)

where n refers to index of each pixel in feature maps and N is

the total number of pixels. We select the MSE loss because it

is more simple, interpretable, and differentiable [42] than other

loss algorithms, e.g., cross entropy loss. Then, in order to learn

more feature information than the crisp value-based prediction,

the loss is converted into the fuzzy set, which describes the

difference degrees between clean and attacked feature maps

at the pixel level. Particularly, high loss values refer to very

different feature information, which leads to a high possibility

of attacks to the image, and vice versa. In this work, we

use a triangular fuzzifier [43] to design the fuzzification. As

a consequence of the fuzzification, we obtain a non-interval

type-2 fuzzy system in which sets are characterised by fuzzy

subsets of the truth range and the membership function is

cropped triangular. The degree of differences in the fuzzy set

quantifies the difference levels across the feature maps of clean

and attacked images. The triangular membership function is

illustrated in Fig. 2.

Fig. 2. The membership of the fuzzy set.

The rules of the proposed fuzzifier follow a commonly used

fuzzy-rule-based classifier [20], [22] as:

Ri : IF (o1 is around oi∗
1

)

AND (o2 is around oi∗
2

)

AND · · ·AND(on is around oi∗n
)

THEN
(

P i
)

(2)

where o = [o1, o2, . . . , on]
T

is the pixels of feature maps.

The prototype of i-th fuzzy rule is denoted as oi∗n . In the

intelligence layer, (on is around oi∗n ) indicates the l-th fuzzy

set of the i-th fuzzy rule Ri. To achieve that, we consider

the Eucledian Distance d between on and oi∗n with a hyper-

parameter αi
n. When the distance d is smaller than αi

n, the

fuzzy prediction with the i-th fuzzy rule is P i that predicts

how much the model trusts the image. The hyperparameter

αi
n is further updated to improve the boundary accuracy in

the training stage.

In order to determine the detection boundaries based on

the membership function shown in Fig. 2, we propose a

fuzzy mean-intelligence (FZ-I) mechanism. Firstly, we define

a fitness function f(·) based on a combination of a confidence

function C(·) and a support function S(·) with the i-th fuzzy

rule Ri described in equation (2).

f (Ri) = C (Ri) + S (Ri) (3)

where C(Ri) measures accuracy of the fuzzy rule with the

m-th sample xm and the p-th class Classp as:

C (Ri) =

∑

m∈Classp

∑L

l=1
ϕ (vkl (xm))

∑

m=1

∑L

l=1
ϕ (vkl (xm))

(4)
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where vkl represents the k-th dimension of the membership

degree of the l-th antecedent fuzzy set. In this work, we

exploit the binary classification (i.e., clean or attacked images)

in adversarial attack detection problem. We define the binary

function of the membership degree ϕ(vkl) with the threshold

value T as:

ϕ (vkl (xm)) =

{

1 if vkl (xm) > T
0 Otherwise

}

(5)

Fuzzy logic leverages human expertise and intuition in system

design [22]. An adaptive threshold allows system designers

to incorporate their domain knowledge or intuition into the

fuzzy system, adjusting the threshold to align with the task.

Moreover, in real-world datasets, input data potentially vary

due to different distributions. The adaptability in the threshold

helps the system handle different scenarios. Therefore, we

empirically set the threshold value from the distribution of

the dataset. This adaptive threshold mechanism used in the

fitness function aims to adapt the miner system to problems

with dynamic training data. The adaptive threshold mechanism

is also used in our inference system for attack detection. To

find the winner rule, our inference system compute, for each

rule in the database, the sum of the membership degrees. If

the obtained result exceeds the defined threshold value, the

instance is classified as an anomaly; otherwise, it is classified

as normal. Moreover, S(Ri) with the i-th fuzzy rule Ri

measures how often the fuzzy rule appears in training images:

S (Ri) =

∑

m∈Classp

∑J

j=1
ϕ (vkl (xmj))

M × J
(6)

where j is the index of mutant vectors. These mutant vectors

are combined sets of linguistic values, e.g., very clean, few

clean, medium, very noisy, and extreme noisy. Total numbers

of samples and mutant vectors are denoted as M and J ,

respectively. In the proposed FZ-I mechanism, we maximize

the fitness function so as to be more adapted to the fuzziness

of the system and thus improve the rule’s quality.

A centroid defuzzification method is exploited to convert

the fuzzy prediction set into the model prediction [44]. Par-

ticularly, the center of gravity of the fuzzy set is calculated

along the difference degree as:

P =

∑

i µD (Pi)Pi
∑

i µD (Pi)
(7)

where P is the model prediction, i.e., 0 or 1 for clean or

attacked image. The membership function µD(·) is:

µD =

{

1, if a < x < b

0, otherwise
(8)

where a and b are both trainable hyper-parameters. The

fuzzification and defuzzification are summarized in Fig. 3.

C. Training Losses

The training loss is calculated as follows. Firstly, we calcu-

late the fuzzy loss LF between the label and fuzzy prediction.

Fig. 3. Proposed fuzzy set-based fuzzy detector. The crisp difference between
feature maps from clean and attacked images are converted into a fuzzy set to
map into a fuzzy measure between 0 and 1 to describe how noisy is the input
image, i.e., higher values indicate more noisy images. The defuzzification
module makes a crisp prediction based on the fuzzy set.

Secondly, the overall loss L is calculated by the loss between

the label and model prediction LM with λ1 and λ2 as:

L =

{

λ1 · LF , if LM 6= 0

LF/λ2, otherwise
(9)

The loss L updates the parameter αn to refine the fuzzy

rules, making more accurate fuzzy predictions. The pseudo-

code of the proposed fuzzy rule-based attack detection method

is summarized in Algorithm 1.

Algorithm 1: Fuzzy rule-based detector.

Input: Feature maps Fc and Fa, label X , pixels of

feature maps o = {o1, o2, ..., oN}, prototypes

for i-th fuzzy rule oi∗ = {oi∗
1
, oi∗

2
, ..., oi∗N}, loss

constraints λ1 and λ2, epoch Emax

Output: Model prediction P

1 Initialize hyperparameters a, b, αi
n;

2 for E = 1, 2, ..., Emax do

3 LF = MSE(Fc,Fa) // Calculate the loss between

feature maps;

4 for i = 1, 2, ..., I do

5 Ri ← o, oi∗, αi
n // Update fuzzy rules;

6 f(Ri) = C(Ri)+S(Ri) // FZ-I;

7 if f(Ri) < f(Ri−1) then

8 Ri = Ri−1 // Maximize R with FZ-I ;

9 end

10 if d(on, o
i∗
n ) < αi

n then

11 Pi ← Ri // Fuzzy prediction ;

12 end

13 end

14 P ← Pi, a, b with Eq. (8) // Defuzzification;

15 if X = P then

16 L = LF/λ2;

17 else

18 L = λ1 · LF

19 end

20 a, b, αi
n ← L // Updates parameters with loss ;

21 end

IV. EXPERIMENTAL RESULTS

A. Datasets and Attacks

We extensively perform experiments on ImageNet-R [45],

Canadian Institute For Advanced Research-10 (CIFAR-10)

[46], Common Objects in Context (COCO) [47], and Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC)



5

[41]. In the training, validation, and test stages, 50,000, 10,000,

and 10,000 images are randomly selected from each dataset.

Moreover, we select 7 adversarial attack algorithms to

generate attacked images due to their robustness to recent

defense and recovery techniques [12], [48]. We summarize

the parameters of these attacks in Table I.

TABLE I
PARAMETERS OF SEVEN ADVERSARIAL ATTACKS

Attack Parameters

FGSM ǫ=0.008
PGD ǫ=0.01, α=0.02, Steps=40

SSAH α=0.01
DeepFool Steps=20

BIM ǫ=0.03, α=0.01, Steps=10
CW C=2, Kappa=2, Steps=500, learning rate=0.01

JSMA γ=0.02

B. Backbones and Competitors

As aforementioned we use the pre-trained EfficientNetV2-

XL [49] as the encoder’s backbone. Moreover, we apply the

proposed fuzzy detector on several state-of-the-art backbone

models, e.g., Res2Net-v1b-101 (ResNet ) [50], YOLOX-L

(YOLO) [2], and PRB-FPN6-2PY (PRB) [51]. These models

are initialized and re-trained with the proposed fuzzy logic.

In addition, the proposed method is evaluated and compared

to 7 adversarial attack detection techniques [32]–[37], [48] and

3 fuzzy systems [38]–[40]. It is highlighted that these models

are reproduced as the original implementations in the literature

but with same data as the proposed method.

C. Performance Measure

To evaluate and compare the adversarial attack detection

accuracy, we use the detection rate (DR) [48] as the perfor-

mance measure. In particular, we define a detection rate for

adversarial images ((DRa)) as:

DRa(%) =
TP + TN

TP + TN + FP + FN
× 100 (10)

where TP and TN are true positive and true negative results,

and FP and FN are false positive and false negative results.

Moreover, we define a detection rate for clean images ((DRc))

to evaluate the true positives as:

DRc(%) =
TP

TP + TN
× 100 (11)

D. Implementation Details

We dynamically set hyper-parameters λ1 and λ2 between 1

and 10 due to slightly different performance in experiments

over datasets and attack algorithms. In each experiment, we

aim to find the optimal values of λ1 and λ2 that strike a balance

between the model’s ability to capture the underlying data

distribution and its robustness against adversarial attacks. To

achieve this, we employ a systematic approach to dynamically

tune these hyperparameters based on the specific characteris-

tics of the dataset and the nature of the attacks encountered. By

adapting the values of λ1 and λ2 according to the experimental

conditions, we can effectively tailor the model’s behavior to

the task at hand, thereby enhancing its performance and gener-

alization capabilities. This dynamic parameter tuning strategy

enables us to explore a wide range of parameter configurations

and identify the most suitable settings for robust adversarial

defense. For example, we find that smaller values of λ1 and

λ1 provide slightly better performance (89.3% → 89.8%).

We train the proposed model with the M-SGD optimizer and

empirically set the learning rate to 0.0008. We set the batch

size to 32. The network is trained for 100 epochs with Tesla

V100 GPUs.

E. Number of Fuzzy Rules

We conducted experiments to demonstrate the trade-off

between performance improvement and computational cost,

specifically, varying the number of fuzzy rules. Fig. 4 (upper

left) present these results, with each data point being an

average of 70,000 experiments (10,000 images of ImageNet-R

× 7 attacks).

Fig. 4. Detection performance against the number of fuzzy rules (upper left)
and threshold value (others).

Fig. 4 (upper left) compares the number of fuzzy rules

against detection accuracy on ImageNet-R. The results in-

dicate: (1) I = 35 offers the best trade-off, validating the

chosen implementation setting. (2) The detection performance

is sensitive to the number of fuzzy rules. This is maybe

because the number of rules affects the coverage of different

input scenarios. Limited rules may result in an insufficient

representation of the input space, leading to imprecise or

incomplete decision-making.

F. Threshold Value

As aforementioned, we empirically set the threshold value

in equation (5) to 0.5. In this section, we aim to confirm

the chosen configuration. The results are presented in Fig. 4,

with each data point being an average of 70,000 experiments

(10,000 images × 7 attacks).
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TABLE II
ATTACK DETECTION RATIO (%) ON THE CIFAR-10 AND IMAGENET-R DATASETS.

Detection Ratio (%)

CIFAR-10 ImageNet-R

Method FGSM PGD SSAH DeepFool BIM CW JSMA FGSM PGD SSAH DeepFool BIM CW JSMA

SAC [32] 60.1 59.7 56.8 21.6 16.1 17.7 23.4 58.9 57.5 52.9 19.5 15.8 17.0 21.2
Sim-DNN [48] 70.5 60.0 49.4 26.7 22.3 22.9 31.1 71.0 66.2 61.4 28.3 26.0 26.1 34.6

DTBA [33] 78.3 75.6 71.7 36.2 30.7 32.3 40.4 78.0 72.4 68.9 34.8 32.7 32.9 36.5
MH-UI [34] 79.2 76.5 74.6 49.1 49.7 52.5 71.8 79.4 74.9 70.6 59.2 46.0 44.7 69.9
AAE [35] 80.5 76.9 75.4 63.7 60.4 60.2 75.8 79.7 75.6 71.8 60.8 55.1 55.0 74.9
HSJ [37] 77.5 75.2 75.6 60.1 55.2 59.4 72.0 78.1 76.8 71.3 59.7 48.9 53.6 71.5
HM [36] 86.9 84.5 84.0 80.6 76.7 77.9 87.8 87.3 85.2 80.7 85.2 79.3 81.1 88.4

FCB [38] 49.8 47.1 43.6 15.1 10.7 11.4 16.8 48.5 46.8 43.9 14.9 10.1 10.7 15.9
MF [40] 51.4 48.0 46.1 16.4 11.1 11.9 18.2 53.6 48.2 48.2 15.0 10.7 11.2 16.5

MADM [39] 62.4 54.2 51.5 19.0 15.8 14.3 23.1 60.7 54.0 54.6 21.6 13.8 13.9 20.1

ResNet+Ours 89.3 86.7 85.9 88.8 86.3 86.5 89.6 89.0 85.8 85.2 88.1 85.6 85.7 88.9
PRB+Ours 89.5 87.0 86.2 87.7 86.1 86.8 90.1 89.5 85.9 85.6 90.3 86.2 86.4 90.3

YOLO+Ours 89.6 87.2 86.6 89.5 88.0 85.9 90.1 89.8 86.2 85.7 90.4 87.8 86.1 89.9

TABLE III
ATTACK DETECTION RATIO (%) ON THE COCO AND ILSVRC DATASETS.

Detection Ratio (%)

COCO ILSVRC

Method FGSM PGD SSAH DeepFool BIM CW JSMA FGSM PGD SSAH DeepFool BIM CW JSMA

SAC [32] 58.7 58.9 55.0 21.1 16.0 16.8 22.8 56.3 55.2 52.7 16.2 13.9 16.7 21.0
Sim-DNN [48] 63.5 62.5 57.8 24.2 21.0 22.8 30.5 74.1 70.8 66.7 25.7 25.8 28.2 33.1

DTBA [33] 74.6 70.2 67.1 34.0 25.9 31.6 37.8 79.8 79.1 74.6 36.8 35.3 36.5 40.2
MH-UI [34] 76.0 74.9 71.5 47.5 48.8 50.1 37.5 80.3 81.6 75.0 52.4 52.2 55.6 72.0
AAE [35] 77.3 74.6 72.9 56.5 57.7 55.1 69.1 82.0 83.5 75.4 66.6 58.1 60.7 77.3
HSJ [37] 76.6 73.0 71.7 58.8 51.9 57.5 68.3 73.9 74.8 69.5 56.7 43.6 51.0 68.7
HM [36] 85.6 83.7 81.2 78.3 78.8 75.8 84.9 89.6 83.6 79.9 82.8 76.9 80.1 86.7

FCB [38] 46.7 45.0 39.8 14.3 10.1 10.5 14.4 51.1 48.5 47.8 14.6 9.2 10.5 14.6
MF [40] 48.8 47.6 45.2 15.9 11.0 11.5 17.7 56.4 51.7 50.1 15.8 13.3 12.5 20.1

MADM [39] 61.2 52.6 48.9 18.5 15.3 14.0 22.8 64.8 58.3 56.2 26.7 18.0 17.2 23.5

ResNet+Ours 87.3 84.4 81.9 84.2 87.1 86.8 88.7 90.1 87.3 85.5 88.5 86.8 85.7 90.3
PRB+Ours 86.3 85.5 83.8 85.0 87.2 87.3 89.4 91.0 86.1 84.5 88.3 87.9 85.8 91.4

YOLO+Ours 86.6 85.8 85.9 84.8 87.6 87.4 89.7 91.3 87.0 84.6 88.6 88.5 85.9 91.4

As Fig. 4 (upper right) shows, detection accuracy on

ImageNet-R starts to increase with T = 0.01 and reaches its

peak around T = 0.5, but performance drops after the peak

point. Therefore, Fig. 4 (upper right) suggests the threshold

value T = 0.5 for ImageNet-R. Moreover, Fig. 4 (lower)

confirms that expertise and intuition provide valuable insights

when dealing with datasets that differ significantly from the

current data distribution.

G. Comparisons to SOTA Methods

We compare the proposed method to state-of-the-art ad-

versarial attack detection methods [32]–[35], [48] and fuzzy

systems [38]–[40] with the same attack between the training

and test stage. The results are provided in Tables II&III.

Tables II&III shows the averaged attack detection perfor-

mance of the proposed method as compared with those of

the methods using the CIFAR-10, ImageNet-R, COCO, and

ILSVRC datasets. From these tables, it can be observed

that: (1) In all the evaluated models, the proposed fuzzy

prediction-based methods with different backbones offer the

best effectiveness. Different from crisp set-based decision-

making pipelines, the proposed fuzzy detectors convert the loss

between feature maps into fuzzy sets and provide difference

scores (’very clean’, ’few clean’, ’medium’, ’very noisy’, and

’extreme noisy’). Therefore, the proposed method exploits

more feature information than binary decisions. The fuzzy

rules are trained with difference scores to help the detector

make more accurate decisions. (2) The proposed method offers

the best attack detection performance with the YOLO model

on all datasets. The reason is likely due to the combined

implicit knowledge and explicit knowledge in the YOLOX

decoder [2]. (3) Compared to the improvement in FGSM,

PGD, and SSAH attacks, the improvement of detection accu-

racy tends to fall drastically when evaluating the true positives

on clean image samples. For example, compared to ESMAF

model, the proposed method with the YOLO model obtain

7.9% improvement on PGD attacked CIFAR-10 dataset, while

it is only 2.8% on the true positive evaluation.

Furthermore, some qualitative analysis are given in Fig.

5 which are related to the reconstructions after detecting

attacks of three randomly selected images from the COCO

dataset. After comparing the reconstructed images with the

original and attacked images, it can be observed that the

reconstructions obtained via the proposed method, i.e., Fig.

5 (d), are closer to original images, which again confirms the

efficacy of the proposed method.

Fig. 6 compares confusion matrices of AAE (left) and

ours (right) on ImageNet-R. The results indicate: (1) Our

model outperforms AAE in both TP and TN. (2) TP and TN

are both relatively high, but there is a significant difference
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TABLE IV
ATTACK DETECTION RATIO (%) WITH DIFFERENT ENCODER BACKBONES. EACH RESULT IS THE AVERAGE OF 40,000 EXPERIMENTS. BOLD INDICATES

THE BEST RESULTS. Italic SHOWS THE PROPOSED METHODS.

Detection Ratio (%)

Method clean FGSM PGD SSAH DeepFool BIM CW JSMA Average

Pre-trained EfficientNetV2-XL + YOLO + Ours 94.2 89.3 86.6 85.7 88.3 88.0 86.3 90.3 88.6

Pre-trained VGG-16 + YOLO + Ours 93.8 89.4 86.4 85.8 88.1 88.2 86.0 89.8 88.4
Pre-trained Resnet56 + YOLO + Ours 93.2 88.8 85.5 85.1 87.2 86.9 85.6 89.4 87.7

Reproduced EfficientNetV2-XL + YOLO + Ours 94.0 89.1 86.2 85.6 87.9 87.8 86.0 90.0 88.3
Reproduced VGG-16 + YOLO + Ours 93.5 89.0 86.2 85.1 87.4 87.8 85.5 89.3 88.0
Reproduced ResNet56 + YOLO + Ours 93.0 88.5 85.1 84.7 87.0 86.3 84.9 89.2 87.3

Pre-trained EfficientNetV2-XL + AAE 90.6 80.5 78.0 74.1 62.4 57.5 58.2 74.9 72.0

AAE 90.5 80.0 77.7 73.9 61.9 57.8 57.8 74.3 71.7

Fig. 5. Attack detection results: (a) original images; (b)&(c) attacked by
random attack types and error rates; (d) reconstruction from attacks.

Fig. 6. Confusion matrices of AAE (left) and ours (right).

between them. This suggests that while the model performs

well in correctly identifying clean images, it shows even

greater proficiency in correctly classifying attacked images.

Moreover, Fig. 7 presents the t-distributed stochastic neigh-

bour embedding (t-SNE) visualisation of the penultimate layer

of the baseline YOLO model [2], proposed fuzzy rule-based

YOLO model, and fuzzy mean-intelligence based YOLO

model. We observe that the feature embeddings by the baseline

YOLO model are not quite separable for detection of clean

(blue) and attacked (yellow) images. The features representa-

tion from both proposed fuzzy detectors is generally better sep-

arated than those from the baseline YOLO model because the

proposed fuzzy prediction-based methods capture more feature

information than crisp value-based predictions. Moreover, the

proposed method with the YOLO detector achieves the best

separated clusters among clean and attacked images, which

means that the learned representations in the embedding space

are more distinguishable. These t-SNE visualization results

demonstrate that proposed methods are able to learn discrim-

inative feature representations which are better generalized to

adversarial attack detection with various attack algorithms.

H. Comparison of Encoder Backbones

Moreover, to confirm the fair of experiments, we conduct

experiments without pre-trained model. Firstly, we use dif-

ferent pre-trained models, i.e., VGG-16 [52] and Resnet56

[1] because they are commonly used feature extractor [48].

Secondly, we reproduce them with same data. Thirdly, we

replace the original encoder in AAE [35] to pre-trained

EfficientNetV2-XL [49] to evaluate the performance improve-

ment when comparing to original implementation in [35]. It is

highlighted that this experiment share the same experimental

setting with Section IV. E, i.e., same attack algorithms and

dataset between the training and test stages. Each result in

Table IV is the average of 40,000 experiments (10,000 images

× 4 datasets).

From Table IV, it can be observed that the proposed fuzzy

detector brings much more performance improvement than the

pre-trained encoders, which further confirms the effectiveness

of the proposed fuzzy detector. For an example, when the

pre-trained EfficientNetV2-XL is implemented as the feature

extractor, the proposed method with the YOLO model achieves

16.6% better accuracy than the AAE decoder. However, com-

paring to original AAE, the combination of the pre-trained

EfficientNetV2-XL and AAE only obtains a slight improve-

ment, i.e., 0.3%, which again confirms the effectiveness of

the proposed fuzzy detector than the SOTA attack detector.

Moreover, the detection accuracy of reproduced models makes

a slight difference to pre-trained models, which confirms the

implementation.

I. Unseen Domain Study

In this experiment, to evaluate and compare the detection

performance in a more challenging case, we use unseen attack

algorithms and datasets in domains between the training and

test stages. To achieve that, we first randomly select 5000,

1000, and 1000 images from each dataset for the training,

validation, and test stages. Then, each image is attacked by

using a random attack algorithm. Therefore, there are 140,000,
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(a) Baseline YOLO (b) YOLO + Fuzzy rules (c) YOLO + Ours

Fig. 7. t-SNE feature visualization of the model penultimate layer of (a) Baseline YOLO model [2]; (b) YOLO + proposed fuzzy rules; (c) YOLO + proposed
fuzzy rules + fuzzy mean-intelligence.

28,000 and 28,000 samples (5,000, 1000 and 1000 images ×
4 datasets × 7 attack algorithms) images are labelled with the

attack algorithm and dataset for the training, validation, and

test stages, respectively. In each batch of 5000 training samples

with same attack algorithm and dataset, we randomly select

samples with different labels from test images. For example,

the proposed fuzzy detector and competitor models are trained

by using images with unseen attack algorithms and datasets,

while evaluated by using images with FGSM attack from the

COCO dataset. Therefore, each result in Table V is the average

of 18,000 experiments (1000 images × 3 datasets × 6 attack

algorithms).

TABLE V
ATTACK DETECTION RATIO WITH UNSEEN ATTACK ALGORITHMS AND

DATASETS IN THE TEST STAGE. EACH RESULT IS THE AVERAGE OF 18,000
EXPERIMENTS.

Method Detection Ratio (%)

SAC [32] 50.7
DTBA [33] 60.4
MH-UI [34] 63.8
AAE [35] 66.7

FCB [38] 40.9
MF [40] 45.1

MADM [39] 65.6

ResNet + Ours 72.5
PRB + Ours 73.3

YOLO + Ours 73.4

We can observe from Table V that the proposed fuzzy

rule-based models achieve better performance than previous

models. Moreover, compared to Table II, it is possible to note

that the proposed DGAD models performance tends to fall

less than the previous models when less training data applied

and unseen attack type evaluated. The goal of the adversarial

training provided by the MH-UI and AAE is to increase

the model’s robustness, however, they lack generalisation to

unseen domains, i.e., datasets and attack algorithms. The

proposed fuzzy detector maintains its performance stable even

when adversarial or clean images from unknown datasets

are presented to the detection model due to its inner fuzzy

rules and detection mechanism that was projected for such

scenarios.

We further conduct a more challenging experiment with

different semantics, e.g., clear weather and foggy weather. The

proposed methods and competitors are trained with 50,000

images from the ImageNet-R dataset. Table VI presents the

results, each of them is average of 5,000 images of clear

weather from the Cityspaces dataset or 5,000 images of foggy

weather from the Foggy Cityscapes dataset [53].

TABLE VI
ATTACK DETECTION RATIO WITH IMAGENET-R → CITYSCAPES. F REFERS

TO FOGGY WEATHER. β IS THE ATTENUATION COEFFICIENT.

Method Clear F (β=0.0005) F (β=0.001) F (β=0.002)

SAC [32] 59.9 58.4 57.9 55.0
Sim-DNN [48] 63.4 63.0 62.1 60.4

DTBA [33] 66.3 66.1 65.5 64.6
MH-UI [34] 70.7 69.9 69.5 67.7
AAE [35] 73.1 73.0 72.4 71.1

FCB [38] 56.5 55.9 55.2 52.6
MF [40] 59.8 59.2 58.3 56.0

MADM [39] 69.9 69.8 69.2 68.1

ResNet + Ours 71.7 71.5 71.1 70.5
PRB + Ours 72.9 72.6 72.2 71.7

YOLO + Ours 73.3 73.1 73.0 72.5

It can be observed that the proposed method with YOLO

outperforms the competitor models for both clear and foggy

weathers. The proposed method with PRB and ResNet is also

competitive with AAE, the best of the state-of-the-art methods,

particularly at high attenuation coefficients. (71.7% VS 71.1%
with β=0.002).

J. Ablation Study

In this experiment, we investigate the effectiveness of each

contribution based on the ImageNet-R dataset. The cross mark

7 for fuzzy logic means we only use crisp values to train the

decoder. Then, we break the fitness function into the support

function and confidence function. Then, we study the perfor-

mance improvement of these two sub-functions individually.

The ablation study is presented in Table VII and the setting

of adversarial attack parameters is the same as Table I. It is

highlighted that this experiment share the same experimental

setting with Section IV. G, i.e., different attack algorithms and

dataset between the training and test stages. Each result in

Table VII is the average of 18,000 experiments (1,000 images

× 3 datasets × 6 attack algorithms).

Initially, the effectiveness of the fuzzy prediction is stud-

ied. Compared to the baseline, the detection performance is

significantly improved by the fuzzy detector. The reason is

membership scores from fuzzification in the proposed fuzzy

detector are added as new features to improve detection

performance. As the most influential contribution, the fuzzy
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TABLE VII
ABLATION STUDY OF TWO CONTRIBUTIONS IN THE PROPOSED METHOD.

EACH RESULT IS THE AVERAGE OF 18,000 EXPERIMENTS. BOLD

INDICATES THE BEST RESULTS.

Ablation Settings
DR (%)

Fuzzy rule Support function Confidence function

✗ ✗ ✗ 61.6
X ✗ ✗ 69.3
✗ X ✗ -
✗ ✗ X -

✗ X X -
X ✗ X 70.8
X X ✗ 71.1

X X X 73.4

prediction provides a soft response whereas crisp predictions

have discontinuous response at the detection boundary, which

enables smoother fits and hence lower bias around the split

boundaries.

Moreover, the experiment is performed by adding the pro-

posed fitness function f(·). This is due to the different mecha-

nisms implemented in the learning process, more specifically,

the new support and confidence sub-functions used in the

fitness function which are more adapted to the fuzziness of

the system and the mechanism of sharing information between

fuzzy rules through the fuzzy detector. In the proposed frame-

work, the difference degrees are converted into fuzzy sets

through a fuzzification process. Different from conventional

approaches, the intelligence are tailored for each fuzzy rule

as an important step in the framework. The complexity is

increased when fuzzy sets shared by all fuzzy rules, but

the intelligence of fuzzy system improves and further boost

detection performance.

K. Discussion

The above detailed experimental results confirm that the

proposed fuzzy detector with a new fuzzy mean-intelligence

mechanism can further improve adversarial attack detection

performance in different scenarios, i.e., seen or unseen datasets

and attack algorithms, compared to the state-of-the-art attack

detection methods and fuzzy systems.

YOLO shows better accuracy because it is optimized for ob-

ject detection tasks, with a well-balanced structure for feature

extraction and detection speed. The backbone integrates deep

feature hierarchies effectively, making it robust to adversarial

perturbations. In contrast, ResNet and PRB may not capture

multi-scale features as efficiently in combination with the

encoder, which could explain the lower accuracy. YOLOX’s

architecture may better align with EfficientNetV2-XL in ex-

tracting discriminative features from adversarial inputs.

Expertise and intuition may still provide valuable insights

when dealing with datasets that differ significantly from the

current data distribution, which is even more critical. Our

understanding of the underlying data generating processes,

potential biases, and domain-specific nuances are leveraged to

make most appropriate decisions about adapting the threshold.

Intuition, developed through experience and familiarity with

the data, can also guide practitioners in identifying patterns,

outliers, and anomalies that may impact the detection accuracy.

However, it’s essential to fine-tune the threshold on the new

dataset to ensure the effectiveness and generalizability of the

detection approach across different datasets. In future work,

incorporating automated techniques, such as cross-validation

or model monitoring, can help enhance the adaptability and

robustness of the proposed method in diverse data settings.

The major limitation of this paper includes encoder and

prototypes. Firstly, the proposed fuzzy logic is implemented

on the decoder and further studies on encoder are out of scope

of this paper. The fuzzy logic-based encoder is considered by

converting feature vectors into fuzzy concepts in the future

work. Secondly, prototypes play an important part in recent

studies [48], which allows a reasoning process that relies on

the similarity (proximity in the feature space) of a data sample

to a given prototype. In the further study, we will exploit local

peaks of the density as the prototype to help calculate the

difference degree between clean and attacked image samples.

V. CONCLUSION

In this paper, we have proposed a fuzzy detector-based

adversarial attack detection method, a simple yet effective

replacement to the conventional crisp set-based decision-

making pipelines. Differing from these pipelines, the differ-

ence degrees between clean and attacked feature maps provide

rich information to improve the proposed model’s ability to

detect adversarial attacks. Moreover, we have proposed a

fuzzy mean-intelligence mechanism with new support and

confidence functions to improve fuzzy rule’s quality. Our

evaluation with different datasets and attacks has demonstrated

the high effectiveness of the proposed method.
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[40] L. Jara, A. González, and R. Pérez, “A new multi-rules approach to
improve the performance of the Chi fuzzy rule classification algorithm,”
Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), 2022.
[41] A. Howard, E. Park, and W. Kan, “Imagenet object localization chal-

lenge,” Proceedings of International Journal of Computer Vision (IJCV),
2015.

[42] J. Ren, M. Zhang, C. Yu, and Z. Liu, “Balanced MSE for imbalanced
visual regression,” Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2022.
[43] P. Qi, T. Jiang, L. Wang, X. Yuan, and Z. Li, “Triangular fuzzification of

random variables and power of distribution tests: Empirical discussion,”
Computational Statistics Data Analysis, vol. 51, no. 9, pp. 4742–4750,
2007.

[44] T. J. Ross, “Fuzzy logic with engineering applications,” John Wiley Sons

Ltd, 2004.
[45] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo,

R. Desai, T. Zhu, S. Parajuli, M. Guo, D. Song, J. Steinhardt, and
J. Gilmer, “The many faces of robustness: a critical analysis of out-
of-distribution generalization,” Proceedings of IEEE/CVF International

Conference on Computer Vision (ICCV), 2021.
[46] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

Master’s thesis, 2009.
[47] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,

P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO:
common objects in context,” Proceedings of European Conference on

Computer Vision (ECCV), 2014.
[48] E. Soares, P. Angelov, and N. Suri, “Similarity-based deep neural

network to detect imperceptible adversarial attacks,” IEEE Symposium

Series on Computational Intelligence (SSCI), 2022.
[49] M. Tan and Q. V. Le, “EfficientNetV2: smaller models and faster

training,” Proceedings of International Conference on Machine Learning

(ICML), 2021.
[50] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and

P. Torr, “Res2Net: A New Multi-scale Backbone Architecture,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 2, pp. 652–662, 2021.

[51] P.-Y. Chen, M.-C. Chang, J.-W. Hsieh, and Y.-S. Chen, “Parallel residual
bi-fusion feature pyramid network for accurate single-shot object detec-
tion,” IEEE transactions on Image Processing, vol. 30, pp. 9099–9111,
2021.

[52] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Proceedings of International Conference

on Learning Representations (ICLR), 2015.
[53] C. Sakaridis, D. Dai, and L. V. Gool, “Semantic foggy scene understand-

ing with synthetic data,” International Journal of Computer Vision, vol.
126, p. 973–992, 2018.

View publication stats


