
Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 1

Safety Verification utilizing Model-based Development

for Safety Critical Cyber-Physical Systems

TASUKU ISHIGOOKA
†1, a)

 HABIB SAISSI
†2, b)

 THORSTEN PIPER
†2, c)

STEFAN WINTER
†2, d)

 NEERAJ SURI
†2, e)

Abstract: The application of cyber-physical systems (CPSs) in safety-critical application domain requires rigorous verification

of their functional correctness and safety-relevant properties. We propose a practical verification process which enables to

conduct safety verification of safety critical CPSs. The verification process consists of (a) a system model construction method,

which generates a system model by combining software described in C and plant model code reused from model-based

development, (b) a model transformation method, which transforms the plant models including differential algebraic equations

(DAE) to approximate models without DAE to reduce verification complexity induced by DAE solver execution, (c) a model

simplification framework, which enables the simplification of bond-graph plant models using domain-knowledge-based

replacement of complex model components for further verification overhead reductions, and (d) a formal verification based on

symbolic execution.

We implemented the proposed methods and framework, and successfully applied the proposed verification process for safety

verification of automotive brake control systems. The results of the study demonstrate that the verification detects a complex

failure condition in a real-world brake control system from the generated system model and that the automated model

transformations of the CPS models yield significant verification complexity reductions without impairing the ability to detect

unsafe behavior.

Keywords: Symbolic execution, model-based development, model transformation, bond-graph, signal-flow graph, automotive

cyber-physical systems

1. Introduction

 A cyber-physical system (CPS) is an embedded control

system that strongly links computing and physical systems

[1][2]. For example, automotive safety-critical CPSs consist of

controllers (cyber), called electronic control units (ECU), and

control targets, such as mechanical components (physical),

called plants. The ECU software measures plant behavior

through sensors and controls actuators by issuing control

commands in real time in accordance with the sensed state of

the plant. Automotive safety-critical CPSs implement a highly

collaborative control process between electronic and mechanical

components.

Automotive CPSs have stringent safety requirements, because

system failures may cause critical damage to users. Therefore,

the development process for CPSs requires rigorous verification

steps. In automotive CPSs, the model based development

(MBD) approach prevails. The approach requires controller

models, which execute discrete processing, and plant models,

which have continuous behavior based on the physical laws, as

shown in Figure 1. Concretely, the controller model comprises

control algorithms described by ordinary differential equations

(ODE) and the plant model replicates physical control target

behavior described by differential algebraic equations (DAE) for

the energy conservation theorem, in which power of action to

the physical object and power of reaction from the object are

 †1 Hitachi Ltd.

 †2 Technical University of Darmstadt

 a) tasuku.ishigoka.kc@hitachi.com

 b) saissi@cs.tu-darmstadt.de

 c) piper@deeds.informatik.tu-darmstadt.de

 d) sw@cs.tu-darmstadt.de

 e) suri@cs.tu-darmstadt.de

equal.

These models are used to validate the system design of

automotive CPSs prior to building an actual prototype. The

system behavior is simulated by numeric solvers, such as ODE

solvers and DAE solvers. However, it is difficult for users to

identify subtle design faults which occur only upon rare

combinations of specific conditions, because these constitute a

vanishingly small fraction of all possible test cases. This makes

the selection of such cases in the testing process very unlikely.

Nevertheless, if these rare conditions occur during operation of

the system, any unidentified defects can severely threaten the

safety of its users.

While the requirement for safety verification for critical CPSs

is easy to state, i.e., ensuring coverage of all possible computing

and control interactions, it is infeasible to achieve using

conventional engineering approaches. Complicated

control/computing interactions often result in timing and

sequence malfunctions that are particularly hard to uncover.

Additionally, as a design engineer often only has detailed

knowledge of either the control or computing domain, resolving

such issues is further complicated.

Differing from conventional statistical, experimental or

simulation based approaches, the formal methods community

Figure 1. Control system

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 2

has developed rigorous techniques, such as model checking, that

target automated and comprehensive coverage of a system's

states to discover complex malfunctions, such as timing faults.

Amongst the varied model checking technologies, there exists

an approach for hybrid system model checking which can

express both discrete and continuous aspects [3][4][5][6][7].

However, hybrid system modeling is often not easy for most

engineers because they are only conversant with their own

design aspects, such as software or mechanical design.

Recently researchers have started investigating formal

verification methods, which construct practical hybrid system

models by combining achievements from different domains to

conduct hybrid system verification [8][9][10]. Especially,

methods, that combine model checking of software and

simulation of plant models, are being studied. However, as the

verification of control systems with analog input values has to

explore an enormous state space, the verification method needs

huge efforts and long verification time. It is difficult to achieve

the verification, taking into account effects caused by

differences of analog values, such as sensor values of system

input or of signal timing. Consequently, the development of a

verification method, which can verify system

behavior/misbehavior across the entire range of possible inputs

at all possible times is challenging.

As a suitable approach for such challenging scenarios,

symbolic execution based formal verification is being advocated

[11]. Verification properties are described in the form of

assertion instructions. Once an unsatisfied assertion, i.e., a

malfunction, is encountered, the symbolic execution engine

analyzes the conditions under which it may occur and generates

a test case with concrete input values that exhibit the detected

defect during execution.

This paper proposes a practical verification process for safety

critical CPSs. The process can find system level malfunctions by

checking safety relevant properties of system models, which

simulate control system behaviors by combining control

software and plant source code, on the basis of symbolic

execution based formal verification.

We assume that the plant code is generated from plant models

developed for a simulation purpose. This triggers verification

complexity due to DAE solvers for numerical calculation and

sophisticated plant models. In order to address this issue, our

proposed verification process contains a plant model

transformation method and a model simplification framework to

reduce the complexity of CPS verification.

In summary, this paper makes the following contributions to

the state of the art in CPS verification.

 Construction of a practical verification process for safety

critical CPS,

 Design of a system model construction method for safety

verification based on symbolic execution,

 Development of a plant model transformation procedure

that eliminates the need of DAEs,

 Construction of a plant model simplification framework to

support the plant model simplification, which reduces the

computation load by domain-knowledge-based

replacement of complex model components and

approximation of the model behavior by model parameter

configuration based on feedback of simulation results,

 Implementation and evaluation of these proposed methods

and framework using two case study examples from the

automotive industry.

This paper is based on [12][13] and is organized as follows:

In Section 2, we provide a background. Section 3 describes our

proposed verification process and methods. Section 4 and

Section 5 present experiment results through two case study

examples. Section 6 discusses effects of the proposed methods.

Section 7 introduces related work. Section 8 concludes this

paper.

2. Background

We start by describing the target CPS’s using a concrete

example in Section 2.1, before we present a model-based

development in Section 2.2. A general symbolic execution based

formal verification is explained in Section 2.3.

2.1 Target Cyber Physical System

 Figure 2 shows our target CPS. It consists of one or more

controllers, one shared plant, either an operator or the

environment, or both. The controller senses maneuver events of

a human operator, such as braking operation, and events, which

are generated according to changes in the environment, such as

sideslip. We assume that these maneuver events and

environment events may vary on seconds scale. This is a

limitation of our approach. However, that is valid for many

scenarios, for example events generated by a human operator.

To discuss the specifics of CPSs modeling, we consider the

simplified automotive brake control system, which satisfies the

assumption for our target CPSs, presented in Figure 3. The

brake control system produces a brake force in accordance with

the moving amount of the brake pedal stroke operated by a

driver. As shown in Figure 3, the system consists of mechanical

Figure 3. An example automotive brake system

Figure 2. Target CPS

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 3

components, such as brake calipers, which is a speed reducer,

hydraulic circuits and motors, and electronic components such

as ECUs controlling the motors. In the system, an ECU controls

the brake force by monitoring the movement of the brake pedal

stroke operated by the driver and assisting the pedal force by

controlling the motor in synchronization with the moving

amount of the stroke. The assistance enables users to lightly

push the brake pedal.

The example of Figure 3 shows how current piston force F is

determined. Current piston force F is the sum of the pedal force

produced by the driver Fdriver, force produced by the motor Fmotor,

and the reactive force from hydraulic circuit Freactive. Freactive is

the result of applying function g with argument F. These

formulae reflect the law of energy conservation resulting in the

plant of the brake control system being modeled as equations

with an algebraic loop. As a consequence, the plant model

includes DAE, which impose a challenge to automated or

computer-assisted verification.

2.2 Model-based Development

As we described in Section 1, a control system model consists

of a controller model and a plant model. The controller model

implements the system control logic and sends commands to the

plant model which simulates the reactions of the physical

component of the system. The combination of each model's

sequential and iterative interactions constitutes the simulation of

the system behavior.

Model-based development strongly supports the controller

model design including discrete state transitions and the plant

model design including ODE or DAE. The approach has been

extensively used in the industry and been proven to be beneficial

to the development of safety critical CPS.

There are modeling tools that aid the design of controller or

plant models. For example, the controller model design is

commonly conducted by signal-flow diagram based modeling

tools such as MATLAB/Simulink®[14]. Simulink supplies code

generation functions assuring automatic translation of the

controller model into a runnable program. For the plant model

design, bond-graph modeling tools such as AMESim™[15],

Simscape™[16], and Modelica®[17] are predominant.

Bond-graph modeling enables users to design plant models by

combining physical components such as spring, mass, and

hydraulic circuit. Each component can be mapped to a real

physical component and has a specific equation, such as a

motion or constraint equation, and specific configurable

parameters, such as weight, length, and so on.

As shown in Figure 4, a bond-graph model consists of

elements which translate to components, effort, flow and stroke.

Effort and flow are domain-independent in bond-graph notation.

For example, in the mechanical domain, effort means force and

flow means velocity. In the hydraulic domain, effort means

pressure and flow means volume or flow rate. Stroke means

flow direction. In the example, the flow value calculated by the

left element is an input to the right one. The stroke reflects the

causality in the calculation order of equations of each

component. Finally, arrows describe energy direction.

Unfortunately, for a sophisticated behavior simulation of

safety-critical CPSs solely ODE-based models are not

sufficiently expressive. In many cases models of these systems

contain DAE to reflect the energy conservation theorem. In

numerical simulation, the plant behavior is simulated by

leveraging a DAE solver. The DAE solver is executed at every

calculation step in the simulation in order to find a set of

suitable values of specific variables, such as a set of action and

reaction forces by convergence calculation. Thereby, the DAE

solver enables correct physical simulation but produces

excessive computation load, which complicates automated

verification beyond practicability.

The model-based development enables hardware-less system

testing called hardware-in-the-loop simulation (HILS) as shown

in Figure 5. The HILS technology uses micro-controllers, which

implement control software involving the controller logic and

basic software, and special devices, which simulate the plant

model, and some wiring to physically connect these components.

The plant code is generated by discretization of the continuous

plant model and translation into C source code. In the

discretization process, the sampling rate is chosen according to

the Nyquist sampling theorem [18] such that the equivalence

between the continuous plant model and the resulting

discretized model is guaranteed. HILS enables the engineers to

test control systems with their actual product's control software

using system inputs without real hardware and is extensively

used in the industry. However, as typical HILS has no

synchronization mechanism between the micro-controller and

the special device for HILS, it is difficult to conduct a system

test on exhaustive values, timings, and sequence of system

inputs.

2.3 Symbolic Execution based Formal Verification

Symbolic execution based formal verification helps users to

identify input values resulting in errors of target source code.

The reason is that the verification can investigate all possible

effects caused by changes in the values of variables, which users

Figure 4. Notation of bond-graph

Figure 5. Hardware-In-the-Loop Simulation Process

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 4

define as symbols. Consequently, if users define input variables

of verification targets as symbols and insert assertions

describing the verification property, the symbolic execution

engine can find an input causing errors if the target does not

satisfy the property specified in the assertions.

Figure 6 shows an example of symbolic execution based

formal verification. In this example, we consider a function

written in the C language (see Figure 6(a)). The target conducts

a simple calculation at line 2 and an assertion code which

catches the error behavior by comparing the result of the

calculation to the assumed error condition at line 3, in which

case the assertion is violated (see line 4). As shown in Figure

6(b), the symbolic execution based formal verification analyzes

program logics of the verification target and extracts a formula

describing constraints on the symbolic variables for specific

paths in the code. In every step, the constraints are updated to

describe the changes affecting the symbolic variables. When a

branching statement is encountered, two constraint systems are

created, one where the branching condition is evaluated to false

and one where it's evaluated to true. Upon the execution of an

assert statement the current constraint system is checked for

satisfiability using a constraint solver. If it is not satisfiable, the

search is resumed, otherwise an assignment of the symbolic

variables is returned. The returned concrete values can be used

as a test case to reproduce the found malfunction. Once all

possible paths in the program are investigated, one can assume

that the system satisfies the properties.

In HILS, DAE solver runs with upper bounds of the number

of convergence calculation guaranteeing real-time performance.

However, the use of the DAE solver increase the verification

complexity because the symbolic execution tool has to analyze

DAE solver code in addition to verification target. While

approaches exist to remove DAE by formula manipulation of

partial differentiation and substitution, they are difficult for

engineers to manually apply without introducing errors into the

transformed models and, thereby, threatening the validity of the

verification.

3. Verification Process

We propose a formal verification process in Section 3.1. Our

system model construction method of a verification target and

property definition for safety verification are explained in

Section 3.2 and Section 3.3, respectively. Then, we present a

plant model transformation method and a plant model

simplification framework in Section 3.4, and Section 3.5,

respectively.

3.1 Overview

In order to reduce efforts for the safety verification, it is

important to establish a verification process, which is

compatible with the HILS process (Figure 5) because the

process enables the safety verification by combining design

results from respective domains. We propose a verification

process as shown in Figure 7. Our proposed process enables a

verification of the whole control system. In the process, a

system model, which simulates target control system behaviors,

is built by combining the control software, basic software,

which is abstracted for microcontroller independent

implementation, plant code, safety requirements, and system

information, such as system inputs, task execution periods, and

plant discretization time (see Figure 7(c)). Next, the system

model behavior is checked using symbolic execution based

formal verification (see (d)). The system model construction is

detailed in Section 3.2. The plant code is extracted from its

HILS counterpart, excluding code which is dependent on the

HILS emulation device.

In order to reduce verification complexity, the verification

process also contains a plant model simplification phase (see

(a)) and a plant model transformation phase (see (b)).

As Figure 7 shows, a bond-graph plant model with DAE,

which is an input file, is automatically simplified at the model

simplification phase, which is presented in Section 3.5, and then

is transformed into the signal flow plant model with ODE at the

model transformation phase, which is presented in Section 3.4.

The purpose of safety verification is to prove CPS safety in

specific situations where potential safety violations might occur.

The specific situations means system state transitions, such as a

state transition, in which a driver strongly pushes a brake pedal

immediately after the brake pedal was released. We assume

that the verification engineers verify individual safety properties.

Although our verification approach employs bounded state

Figure 6. Symbolic Execution based Formal Verification

Figure 7. Proposed Verification Process

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 5

search algorithm, the verification is conducted in the verification

time defined according to the time, which can cover the duration

of the specific situation, such as the time to monitor system

behavior change caused by system input change.

In our verification process, we conduct the model

simplification before the model transformation because it is

easier to simplify the bond-graph plant model than the

signal-flow plant model.

3.2 System Model Construction

Figure 8 shows an overview on the system model structure.

The integration of software and plant code into a common

system model is not straightforward, as real-time constraints

necessitate a synchronization mechanism for coordination of

software and plant code. Therefore, the system model includes a

communication module for data synchronization and a

synchronization module for time synchronization.

Specifically, the communication module forwards the current

control command, which the control software calculates for the

actuator control, to the plant which receives the output value

from the controller model.

Also, the module forwards the current sensor values, which

reflect the behavior of the plant, to the control software which

receives the output value from the plant model. The interaction

between electronic control units (ECUs) is supported by the

communication module as well.

The synchronization module maintains the current states of

the software and the plant by sequential and iterative invocation

at specific timings defined by task scheduling or update

frequency of the plant state. Additionally, the module limits the

verification time for feasibility. The reason is that an unlimited

system model shows infinite behaviors because the software

under control loops maintains continuous periodic invocations

to control the plant. As presented in Section 3.1, the user has to

determine the verification time. For example, if users want to

see the system effect caused by the combination of exhaustive

timings or sequence of system inputs, the bound is determined

according to the time to check the change of the system

behavior caused by the combination. Consequently, the bounded

time should be defined taking into account properties of the

target system.

For symbolic execution based formal verification, we

developed symbol definition modules and assertion modules in

the system model. The symbolic definition module defines

system inputs such as user operations or events from the

environment of the verification target as symbols. To monitor

the exhaustive effect given by the system input value change,

the module needs to redefine them. However, as the redefinition

creates new symbols, the verification complexity increases. To

avoid the frequent redefinition, we limit the redefinitions to

specific timing, e.g., every 1 second or after the occurrence of a

specific event. The redefinition frequency depends on the update

frequency of system inputs of target CPSs. The effect is

discussed using an example in Section 4.4. Additionally, as the

system model updates its plant behavior at every discretization

time, the decision of optimal discretization time is important for

the verification complexity as well. The discretization time

should be determined on the basis of the sampling theorem. The

assertion module, which is an assertion code, checks properties

of the target CPS by monitoring variables of the system model.

The property definition method is detailed in Section 3.3.

3.3 Property Definition for CPS Verification

The property for CPS verification should carefully be defined

taking into account response delays of actuator behaviors

against system inputs or control commands from software

because the plant behavior is affected by physical phenomenon.

That means the property should include waiting time to check

the property. Otherwise, the verification using the property will

frequently return false-positives.

Figure 9 shows an example of a false positive in safety

verification of an automotive brake control system. This

example indicates that the verification using the property

without waiting time causes a false positive detection. As the

property of this example applies that unintended brake doesn't

occur, the property is defined as a condition where the brake

force doesn't increase when no braking is happening. However,

as the brake force still increases even though the brakes are not

pushed (see (a)) because of the response delay of the plant

behavior (see (b)), the verification detects false positive.

Consequently, it is required to include waiting time for the

response delay (d) in the property definition to get rid of the

false positives. In Section 4.3 we discuss our property definition

method using an example.

3.4 Plant Model Transformation Method

 Elimination of DAE from bond-graph plant models is known

to be difficult because it entails the elimination of energy

exchange in the bond-graph models which follows the law of

conservation of energy. There is an approach in which the

engineers design ODE models by manually transforming the

Figure 9. Example of False Positive Caused by

Response Delay of Plant Behavior

Figure 8. System Model Structure

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 6

DAE models, which requires deep knowledge about formulae

translations in physics. We assume that test engineers take over

the verification process and conduct the safety verification as

part of the system test process. Therefore, the engineers

conducting safety verification cannot be expected to have the

intimate knowledge required for manual model transformation.

Thus, we propose a model transformation method, which

transforms the bond-graph model to the signal-flow graph model

and converts the model with DAE to ODE by adding delay

blocks in between blocks with energy exchange.

A simple model transformation would replace a bond-graph

model with an signal flow model. However, the transformed

model will still contain the algebraic loop from bond-graph

model. Our approach can eliminate the algebraic loop by

inserting one-step-delay blocks into feedback loops between

components. The purpose of delay blocks is to make the

connected block use the signal value generated at the previous

period. In the first calculation step, the delay block produces an

initial value defined by the user. The initial value should be

copied corresponding parameters of the components calculated

at the beginning of the specific situation of simulation.

Consequently, our proposed method can remove the algebraic

loop from the plant model.

The delay block produces calculation errors at every

simulation step. However, our evaluation results presented in

Section 6.1 show that these errors remain negligibly small for

the short simulation times commonly required for the

assessment of individual safety properties.

In order to reduce the effort and avoid human errors during

the model transformation, we propose an automated plant model

transformation method which transforms bond-graph plant

models to signal-flow plant models. Figure 10 shows an

overview of the automatic plant model transformation method.

This method analyzes input files which store bond-graph plant

models and extracts structural information on the plant models.

In parallel, the method generates signal-flow subsystems

according to the equation of each element in the bond-graph

model. Each subsystem corresponds to exactly one element in

the bond-graph model. The method places these subsystems

according to the previously extracted structural information.

Hence, it links each subsystem according to our proposed

connection rule. Ultimately, this method outputs signal-flow

graph plant models.

We defined connection rules of signal-flow-graph subsystems

to preserve the energy flow direction with bond-graph

component interactions. Figure 11 shows our proposed

connection rules. In bond-graphs, there are two data types, flow

and effort. Moreover, there are two connection types, direct and

multiple. The direct connection connects one element to another.

The multiple connection involves more than 2 elements. The

connection is implemented by a 0 junction or a 1 junction (see

Figure 11 (c) and (d)). This means that there are 4 connection

relationships in bond-graph modelling [19]. Our proposed

connection rules cover them. The connection rule (a) is used for

the direct connection situation when E1 outputs flow signals to

E2 and E2 feedbacks effort signals to E1. The effort signals are

delayed by one period through a one-step-delay block. The

connection rule (b) is used in the opposite situation. The

connection rule (c) is used for the multiple connections situation

when E1 and E2 output flow signals to E3 and E3 feedbacks

effort signals to E1 and E2. The connection rule (d) is used in the

opposite situation from (c).

3.5 Plant Model Simplification Framework

We assume that the bond-graph plant models, which are

configured to approximate the plant behavior. The configuration

originally developed for simulation purposes, are reused for

verification purposes. These plant models are highly

sophisticated because they are designed to check whether the

controller model (see Figure 1) meets functional and real-time

requirements such as the increase of a parameter value by a

specific amount within specific time. Unfortunately, formal

verification approaches are commonly very sensitive to the

complexity of the verification target. Luckily, the verification of

safety properties can commonly be conducted on dramatically

less complex models that overapproximate the original model’s

properties. However, as we mentioned in Section 3.4, most

verification engineers do not have the knowledge to

approximate plant models in MBD for verification. As a

consequence, the construction of additional simpler models for

the sole purpose of verification does not only require redundant

Figure 11. Connection rule

Figure 10. An overview of automatic plant model

transformation method

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 7

work, but it is also error-prone if conducted by the verification

engineers who have limited experience in crafting such models.

Therefore, we propose an automatic simplification framework,

which helps the engineers to conduct simplification for

bond-graph plant models to reduce computation load without

requiring manual model redesign.

The idea of the simplification approach is to find elements,

which produce excessive computational load but have little

impact on verification-relevant parameters and replace them

with functionally equivalent elements that create lesser

computational load during verification. Figure 12 shows an

overview of this simplification approach using an example of a

sophisticated plant model. In this example, the plant model for

simulation includes an advanced piston, which dynamically

calculates friction force according to the current velocity. This

dynamic calculation approach can provide highly accurate

physical simulation.

Our proposed approach replaces advanced elements, such as

the advanced piston, by simple elements, such as the simple

piston. Which element should be replaced depends on the target

system. For example, in a brake control system the advanced

piston is a candidate element for replacement because the

physical size of the piston and its amount of produced friction

force are relatively small. In this case, a simple piston with a

configurable constant friction force parameter is a viable

substitute. The parameter is based on simulation results, which

are calculated before the replacement procedure. Two examples

for such configurations are (1) the constant configuration of a

parameter value as its maximum assumed in simulation and (2)

the definition of a mapping table for a series of values the

parameter assumes in simulation depending on some other

parameter. The two options are illustrated in the lower left of

Figure 12. We assume that the replacement setting for an

approximation by utilizing element replacement procedure was

conducted by plant design engineers.

Figure 13 illustrates the simplification approach by 1:1

element replacement. In this example, a sophisticated mass Iso of

a mass spring model is replaced with a simple mass Isi. The left

bond graph model is equal to the right simplified mass spring

model at the symbolic level. Our proposed simplification

method replaces an element by a simpler instance of the same

element type such as Iso and Isi in Figure 13 and configures the

parameter of the replaced element according to fixed parameters

of the original elements (such as weight) and variable

parameters, which are dynamically calculated. Dynamically

changing parameter values are based on simulation results.

Figure 14 shows the simplification approach by N:1 element

replacement. In this case we replace target elements by the same

procedure as 1:1 element replacement. Furthermore, we remove

irrelevant elements. In this brake control system example in

Figure 14, the simplification method replaces a sophisticated

mass including a relative element with a simple mass. The

velocity of sophisticated mass is measured by leveraging TF,

which represents a force sensor to monitor mass force calculated

on the basis of mass velocity, and dynamically calculates

friction force of the mass according to its velocity. The friction

force is used for calculation of precise mass force. For example,

if we want to replace a sophisticated mass with a simple mass,

the simplification method replaces Isi of the above bond-graph

model. The method also removes TF as an irrelevant element

because the simplified Isi uses fixed friction force instead.

Figure 15 shows our proposed automatic plant model

simplification framework. The replacement and configuration

setting is implemented by plant design engineers as a

replacement table and is reused by verification engineers. Our

proposed framework conducts automatic simplification

according to this table. The replacement table stores information

on the relationship of complex elements to their simpler

replacement candidates in the target system and information on

the recommended configuration approach for variable

parameters.

Our framework extracts structural information from a

bond-graph plant model stored in an input file. Then, the method

conducts element replacement by identifying candidate elements

for replacement in the bond-graph according to the replacement

table and structural information, replacing them by simple ones,

Figure 13. An example of simplification approach by 1:1

element replacement

Figure 14. An example of simplification approach by N:1

element replacement

Figure 12. An overview of simplification approach

using an example of sophisticated plant

model

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 8

and setting the simpler elements’ configuration parameters. In

Figure 15, the maximum value of dynamic friction force

observed in simulation results is used as a constant value of

static friction force.

The framework requires the replacement table with

replacement setting. We assume the initial setting is

implemented as the replacement table by plant design engineers.

The verification engineer conducts the simplification procedure

according to our proposed framework.

An error check of the simplified model is conducted by both

the verification engineer and the plant design engineer in order

to evaluate whether the accuracy of the simplified plant model

can satisfy the verification purpose. If the accuracy is acceptable,

the simplification procedure finishes. If not, e.g., due to

over-approximation, the plant design engineer makes a new

replacement setting and updates the replacement table. Then the

verification engineer conducts the replacement procedure again.

The simplification process by using the framework is shown as

the following. The framework:

1. reads a plant model from the input file,

2. runs the simulation,

3. reads the replacement table,

4. stores target simulation result according to the

approximation option

5. deletes target components of the plant model,

6. adds components and stores instance ID of the added

components,

7. connects ports of the added components to one of the

other,

8. sets constant value of the added component by the value

stored at 4., and

9. runs simulation for error checking.

After the above procedure, the error check was conducted by

verification engineers and plant design engineers.

The replacement table consists of component class ID for

advanced component (A_CLASS_ID), instance ID of the class

ID (A_INS_ID), other component class ID for simple

component (S_CLASS_ID), information of approximation

option. For example, if the option is approximation by constant,

the information consists of target variables of A_CLASS_ID,

the referred value of the variable, such as maximum value, and

copied variables of S_CLASS_ID. For example, if maximum

value is selected, the framework stores the maximum value of

the target variable of A_INS_ID of the simulation result.

At step 5, components with A_INS_ID described in the

replacement table are deleted. The A_CLASS_ID and

A_INS_ID include 0/1 junction or removed element information,

such as TF in Figure 14. At step 6, a component of

S_CLASS_ID is added and the instance ID of the simple

component (S_INS_ID) is stored. At step 7, ports of the added

component are connected with the corresponding ports, which

connected to ports of deleted components. The framework has

the information on port mapping, which create port connections

to make the same energy flow direction with before, between

A_CLASS_ID and S_CLASS_ID. At step 8, constant value of

the component with S_INS_ID defined at step 6 is set by the

value stored at step 4.

4. Experiment: Case Study 1

We conducted a case study on safety verification of a

simplified automotive brake control system in order to check the

feasibility of our proposed system model construction method

and safety verification based on symbolic execution. We

attempted to find difficult-to-find malfunctions in an automotive

brake control system involving the whole control system. The

found malfunction results in faulty unintended braking behavior

which was fortunately found during driving test of a commercial

car.

We present the experiment environment, the target CPS,

verification setting, and verification result in Section 4.1, 4.2,

4.3, and 4.4, respectively.

4.1 Experiment Environment

For this experiment, we implemented a system model

generator from scratch and applied KLEE-MultiSolver [20],

which is an extension of KLEE [21], for the symbolic execution

based formal verification to implement our proposed

verification process. KLEE is well known as a stable practical

symbolic execution tool. KLEE-MultiSolver has mechanisms to

support the use of different satisfiability modulo theories (SMT)

solvers such as STP solver [22] and Z3 solver [23].

In the case study, the control software and the plant model

described by ODE were implemented by ourselves as a

simplified real-world automotive brake control system.

Specifically, we firstly abstracted a specification of the real

product and implemented a simplified Simulink plant model and

C language control software of two ECUs. Then, we conducted

safety verification using system model generation and

KLEE-MultiSolver in accordance with given safety

requirements. The details of the brake control system are

presented in Section 4.2. The verification result is discussed in

Section 4.4.

Our experiment ran on a machine with 3.60 GHz Intel®

Xeon® quad-core processors and 8 GB of RAM. Operating

system is Ubuntu® 12.04 64-bit. KLEE-Multisolver

configuration is default. We used the STP solver which is the

default solver of KLEE-Multisolver.

Figure 15. An overview of the automatic plant model

simplification framework

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 9

4.2 Example of Safety Critical CPS: Brake Control System

Figure 16 shows an overview of the simplified brake control

system we used in the first case study. There are two ECUs, a

brake control unit (BCU), an electronic stability control unit

(ESC), and a brake caliper which is a speed reducer using

hydraulic pressure (HP). BCU controls the caliper by producing

hydraulic pressure using a brake assist motor in accordance with

the brake pedal position. If the car sideslips, ESC takes over

hydraulic pressure control of BCU and controls the caliper by

producing hydraulic pressure using a pump to stabilize the car.

ESC is only active during phases of sideslip. When ESC acts,

the valve of the hydraulic pressure circuit is closed by ESC and

its pump produces the hydraulic pressure of the ESC side by

absorbing oils from the BCU side (the upstream side) of the

valve. After the car becomes stable, ESC reopens the valve and

returns the hydraulic pressure control to BCU. To avoid the

collision of shared brake actuator control between the two ECUs,

they coordinate each other using an in-vehicle network called

Controller Area Network (CAN) and only one ECU can control

the actuator. The interactions between ECUs, and between

ECUs and hydraulic pressure control add to the complexity of

the system.

Figure 17 shows an overview of the brake control system

model. The model is abstracted at high level data

communication. This means that the interaction between

controller model and plant model is based on control commands,

not low level data communication such as pulses to control the

brake assist motor and so on. The control command is calculated

on the basis of proportion control, which is simplified for the

case study, by the control software. Each ECU executes a 1

millisecond periodic task which calculates the current control

commands.

The hydraulic pressure, the pump, the brake assist motor, the

valve, and the brake caliper were modeled as a plant model

which contains 121 blocks in Simulink. The plant code for HILS

was generated by Simulink Coder at 100 microseconds

discretization. These control software, which consist of the

controller and basic software that is only a task activator of the

operating system because of our abstraction, were manually

implemented. We obtained the system model of the brake

control system using our implemented system model generator.

4.3 Verification Setting

We present the property and the symbol definition for the

verification target in this section.

In order to find the known malfunctions, we defined the

non-existence of unintended brake behavior in the brake control

system as a property. This property is one of the most general

safety relevant properties in a brake control system. We divided

the property into the following conditions which should be

always satisfied.

(1) Driver doesn't push brake pedal

(2) Sideslip of the car doesn't occur

(3) Brake force doesn't increase after 500 ms under

satisfactions of (1) and (2)

These conditions are implemented as an assertion code. The

500 ms of (3) indicates waiting time for the response delay of

the plant model to avoid false positives shown in Figure 9.

While the response time is defined in the plant specification, in

the case study, we fixed the waiting time by trial and error. For

example, we firstly conducted safety verification of the case

study by utilizing 100 ms as the waiting time because we

considered that the time need to be set more than control period

of the software and to be taken into account response delays of

the actuator behaviour. If the verification find false positive, we

added further 100 ms to the waiting time and re-verified until no

false positive appears. By such process, we fixed the waiting

time. We consider that the approach is better than opposite

because the long time may cause false negative.

The system level malfunction of the brake control system

only appears at the specific combination of the driver's specific

brake and the car's specific sideslip given a specific combination

of sequence and timing. The brake depends on the brake pedal

stroke which means moving distance from the initial position

and the sideslip depends on the car's speed. While we should

define these analog system inputs as symbols, the available

symbolic execution tools cannot deal with floating point data

types for analog data expression in Simulink. For example,

Ariadne can deal with floating point data types, but is not

published yet [24]. Consequently, we transformed the analog

system inputs into binary system inputs such as brake

occurrence and sideslip occurrence. For example, the brake

occurrence is expressed as ON or OFF. ON means to strongly

push the brake pedal like sudden brake. OFF means to release

the brake pedal. In the case of the sideslip occurrence, ON

means that the car sideslips at high speed and OFF means that

the car is stable. This approach enables the available tools to

define analog system inputs as symbols indirectly.

Additionally, to find the malfunctions given a specific

combination of sequence and timing, we used iterative symbol

Figure 16. Brake Control System
Figure 17. Brake Control System Model

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 10

definitions of respective system inputs. As the optimal

redefinition frequency depends on verification targets, the

frequency was clarified by trial and error. The verification time

depends on the redefinition frequency because we need to define

significant time to check the system behavior affected by the

system input's changes. In the case study, the verification time is

tentatively limited at 5 seconds taking into account the response

delay of the plant behavior. Furthermore, due to efficient

verification on conditions of overlapping system inputs, we

inserted time offsets into the timing of the brake occurrence.

The system model generator generated the system model

which consists of the control software of BCU and ESC, the

plant code, the communication module, the symbol definition

module, the assertion module, and the synchronization module.

The system model is approximately 2000 code lines of C

language source code.

4.4 Verification Results

To find the complex system level malfunction, we tried to

conduct the safety verification of the brake control system with

different symbol definition frequency. Finally, the safety

verification detected the expected malfunction.

Table 1 shows relationships between the symbol definition

frequency and the malfunction detection. While the verification

with the symbol definition of short time duration could not

finish within one day, in the case of long time duration such as a

second or 2 seconds, the verification finally could find the

complex malfunction. The duration of the second time scale

satisfies practical demands because our target CPS behavior is

changed by human operation events or environment event

generated at second time scale mentioned in Section 2.1. As the

result, the symbol definition works for system input calculation

of the human operation event or environment event in the target

CPS. However, if one needs to apply our approach to other

CPSs, such as the system operated by electronic control event,

the definition frequency would not be sufficient because the

required frequency of system input generation is millisecond

scale.

To understand the details of the system behavior, we

conducted a simulation using the system input pattern resulting

in the property violation. Figure 18 shows the simulation result.

As the graph shows, the car's sideslip occurs during sudden

braking and then once the car becomes stable, unintended brake

force appears. This is the complex system level malfunction

given by a specific combination of sequence and timing.

Figure 19 shows the details of the system behavior in the

error case. BCU involves a diagnostic program which detects oil

leak on the basis of gaps between pedal stroke value and the

amount of hydraulic pressure. As the graph shows, after the

stability control of ESC, there exists a big gap because the

amount of the oil to stabilize the high speed car was more than

the prediction. Therefore, the diagnostic program detected the

oil leak due to the gap which exceeds the error threshold and

then BCU invoked a fail-safe program which automatically

produces hydraulic pressure by making the brake assist motor

pull the brake pedal in order to brake by the rest of the oil. As

the result, unintended brake occurs.

The factor of the system level malfunction is related to gaps

between response delays of the ECU processing (digital) and the

hydraulic pressure behavior (analog). While a conventional

top-down system development process of safety critical CPS

bears the potential to cause the difficult-to-find system level

malfunctions, through this case study, we established that our

proposed safety verification approach can detect them.

5. Experiment: Case Study 2

In order to evaluate our proposed plant model simplification

framework and transformation method, we conducted the

second case study on the safety verification of a brake control

system, which contain bond-graph plant model described by

DAE.

In this section, we present our experiment environment for the

second case study in Section 5.1, the obtained experimental

results, and a discussion about how to interpret them in Section

5.2.

5.1 Experiment Environment

To validate the feasibility of the proposed methods, three

experiments have been conducted in the second case study

Figure 19. Details of System Behavior in Error Case

Figure 18. Brake Force Behavior in Unsafe Case

Table 1. Symbol Definition Frequency and Malfunction

Detection

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 11

according to the verification process shown in Figure 7. In the

first experiment of the second case study, we measured how

much our model simplification framework reduces computation

load with tolerating any decrease of verification accuracy. While

the contribution of our proposed simplification framework

supports the plant model simplification procedure by automation,

the framework restricts the simplification approach for

computation load reduction. In the second experiment, we

measured to which degree our model transformation method

introduces behavioral deviations between the bond-graph model

and the signal-flow model. In the third experiment, we measured

time for conducting automated safety verification of the

transformed model and checked whether the verification enable

failure detection after our proposed transformation and

simplification method. As a verification tool, we chose KLEE

with default configuration of the symbolic execution engine and

the STP solver for solving path constraints. In the first and

second experiments, the operating system is Windows® 7 32-bit

and in the third experiment it is Ubuntu® 12.04 32-bit. The first

and second experiments ran on a machine with 2.80 GHz Intel®

Core i5 quad-core processors and 2 GB of RAM and in the third

experiment it with 3.0 GHz Intel® Core i7 quad-core processors

and 16 GB of RAM.

We applied the above experiments to an automotive brake

control CPS. We implemented our proposed plant model

simplification framework and transformation method as two

prototype tools. For the model transformation tool, the insertion

of delay blocks has been conducted manually. Additionally, in

the second experiment the model generation procedure, which is

shown in Figure 10, is also conducted manually, in the sense

that signal-flow subsystems for model transformation were

developed manually before the model transformation tool

execution. The tool makes use of these manually developed

subsystems in the component placement procedure shown in

Figure 10. As the manually identified (but automatically

applied) subsystems are reusable for other models that contain

the same subsystems, we consider this a one-time effort. For

example, since the signal-flow piston subsystem is frequently

used in many plant models of the same domain, we consider the

subsystem replacements to be reusable at least for the same

domain, i.e., the product family.

For these experiments, we developed a brake control system

model of the target CPS, shown in Figure 2, which consists of a

controller model implemented in C, and a plant model designed

in AMESim. The plant model is discretized using 100 micro

seconds intervals. This means that one-step delay blocks delay

the target signals for 100 micro seconds. In the first experiment

we measured the effect assessed by simulation and reused the

plant model of the real mass production development with the

same discrete time intervals instead of our developed model in

order to measure the accurate effect.

We embedded a subtle fault, which results in unintended

brake force, in the control software. In the third experiment, the

verification must detect this fault by checking the resulting

violation of the safety requirement, i.e., unintended braking does

not occur. We implemented three conditions to detect the safety

requirement violation as assertion code. If all of these conditions

are satisfied, the safety requirement is violated. The first

condition is that the brake pedal is not actuated. The second

condition is that the elapsed time is at least 500ms after the

pedal released. The time prevents the verification tool from

misdetections caused by the response delay of the plant. The

third condition is that the amount of piston displacement, which

means distance from initial piston position, increases, i.e., the

brake force increases. A brake pedal operation, which is a

system input, is defined as a symbol supplied by KLEE every 1

second through symbol re-definition. We generated the system

model combined by the control software, the plant code, and the

assertion code. The model replicates the system behavior during

5 seconds in verification time and is structured by 2000 lines in

C. We verified the safety of the model.

5.2 Experiment Results

Figure 20, Table 2, and Figure 21 show the first experimental

results of the plant model simplification method. The

simplification tool found an advanced mass and replaced it to

simple mass and configured it for approximation according the

replacement table (see Figure 20). This single replacement

yields approximately 35% computation load reduction in

simulation (see Table 2).

Additionally, in order to compare the simplified plant model

behavior with the original one, we plot their behaviors in Figure

21 for an easy visual comparison. As the result shows, there is

no recognizable difference. This means our model simplification

framework can supply the simplification without affecting the

accuracy of the model although the simplification results depend

on the replacement setting done by the plant design engineer.

Figure 20. The first experimental result on the

model simplification framework

Table 2. Comparison results of simulation time

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 12

Figure 22 shows the second experimental result on the model

transformation method. The model transformation tool could

transform the bond-graph plant model of the brake control

system described in AMESim into a signal-flow plant model for

MATLAB/Simulink. The plotted simulation result shows the

brake piston displacement of the original model (left) and the

transformed model (right) with changing brake force. To achieve

a sound comparison, we applied the same settings for the

numeric solver method and configuration parameter in both

AMESim and MATLAB/Simulink. As the result in Figure 22

illustrates, there was no recognizable error. Figure 23 shows the

third experimental result on the safety verification. In the upper

part of the figure illustrating the driver brake pedal operation,

ON indicates pedal actuation. OFF indicates pedal release. The

piston displacement in the lower part of the figure shows that

there is an increase (indicating brake engagement) despite pedal

release between seconds 4 and 5. This means that unintended

braking occurred even though the driver did not actuate the

brake pedal. This failure was detected by spending 23 minutes

15 seconds of execution time. This failure condition is the

expected result of the fault we embedded. Therefore, the result

confirms that the verification tool was able to properly detect

the fault that represents a potential safety threat from the system

model including the plant model transformed by our prototype

tool. After the failure was fixed, we conducted the safety

verification. The safety was verified by spending 23 minutes 44

seconds of execution time.

6. Discussion

In order to facilitate the automated verification of safety

properties in critical CPSs, we have proposed model

transformations and simplifications. Obviously, none of the

proposed modifications to the CPS models should affect the

validity of the verification. In the following we discuss the

effects of our modifications on the system behavior.

6.1 Effects from the Model Transformation Approach

Our model transformation approach inserts one-step delay

blocks between components. In order to clarify the impact

caused by the blocks, we measured each output signal value of

the transformed plant model in Simulink in the case of one-step

delay, which our approach inserts, and in the case of two-step

delay for the comparison to extract the difference. We did not

measure the signal value of the model with no delay blocks

because the model did not work in Simulink due to the algebraic

loops. As we mentioned earlier, one step means 100 micro

seconds. The measurement was done at the same condition of

the second experiment in Simulink. The result showed that the

maximum difference of plant output signal was 0.1 %. We

consider that the difference is acceptable because it’s smaller

than the modelling error.

Bond-graph modeling enables us to design the plant model by

connecting physical components. Our transformation method

inserts a delay block into a feedback loop between two

components. The block delays one simulation step such as 100

micro seconds to the value of the feedback. This means each

component state is individually updated by the current input

signal and the previous output signal as reaction value.

Therefore, the delays caused by the blocks do not sum up.

Consequently, the effect from our model transformation

approach is acceptable.

6.2 Effects from the Model Simplification Approach

The purpose of our safety verification method is to check

software logical error resulting in the safety violation from the

view of the system behavior. In order to reduce the verification

complexity of the plant model, our model simplification

approach abstracts the target plant model. The model abstraction

approach may cause false positives or false negative. Therefore,

as our simplification framework relies on the replacement

setting defined by plant design engineer, the effects of the

Figure 22. The second experimental result on the

model transformation method

Figure 21. Comparison results of plant behavior

before and after simplification

Figure 23. The third experimental result on the safety

verification

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 13

simplification must be evaluated by verification engineers and

plant design engineers at the error check step in Figure 15.

While our proposed framework can support the automation of

the simplification procedure, the automation of the error check

procedure is a challenge for the future work.

The simplification framework limits approximation method

because the replacement procedure works in situations where

bond-graph tools have simple component models and their ports

complying with the ports of advanced component models. The

experiment result in Section 5.2 showed that the limitation is

acceptable.

7. Related Work

There are related work for multi-domain model-based design

and verification approach [25][26]. The approach enables the

safety verification of a system model made up by hybrid

automata [27]. The system model is individually created by

users without utilizing controller models or plant models as

verification view of the system design although the system

model imports constraints between each model behavior defined

in heterogenous models [28][29]. As described in Section 1, it’s

difficult for industry to create hybrid system models described

in hybrid automata from scratch. Our approach applied an

automatic generation of system models utilizing MBD as

described in Section 3.2. Consequently, our approach is

practicable if developed software and plant models are ready at

the phase of the safety verification. As a similar approach,

Crescendo tools are provided by DESTECS project [30]. The

project also presents synchronization mechanism, called

co-models, between software and plant models [31]. However,

the co-models do not support the limitation of the verification

time because the project focuses on the simulation.

Simulink Design Verifier [32] has the capability of verifying

the Simulink model. It can verify the functionality of the control

system. However, if failures of the verification target are

embedded into basic software such as I/O driver described in C,

the verification cannot detect the failure because the system

model of the verification target doesn’t include the basic

software. Our proposed verification process has the capability of

verifying the system model including the basic software.

Therefore, our process is suitable for the safety verification.

Majumdar et al. [33] present a symbolic execution technique

for closed-loop control systems. The technique realizes

robustness verification, which verifies system control stability.

This research doesn’t discuss about how to cope with the

response delay of plant models for property definition, which is

described in Section 3.3

8. Conclusion

In this paper we propose a practical verification process for

the safety verification of safety critical CPSs. The process

conducts the system model construction, which automatically

generates system models of the verification target, and the safety

verification of the system model in accordance with safety

relevant properties by symbolic execution based formal

verification. Our approach has an advantage in comparison with

simulation approach because simulation approaches require the

manual specification of test inputs causing system level

malfunctions. In contrast, the proposed approach identifies

possible violations of safety properties from model analyses

along with the input conditions under which the violations

occur.

Furthermore, the verification process conducts the plant

model transformation and simplification for verification

complexity reduction. The developed model transformation

method transforms bond-graph plant models with algebraic

loops into signal-flow models without algebraic loops to make

them applicable for existing automated verification approaches.

The model simplification framework support the plant model

simplification procedure, which replaces complex components

by simpler ones that exhibit approximate behavior to a sufficient

degree, by automation of a part of the procedure. In the

framework. the replacement is based on expert knowledge,

which is captured in replacement libraries for reusability, and

application-specific parameter tuning based on simulation. We

applied the proposed verification process for two case studies on

the safety verification of a safety-critical automotive brake

control CPS. The first experiment results showed that our

verification approach can detect difficult-to-find system level

malfunctions from the abstracted system model by iterative

symbol and property definitions taking into account the

response delay of the plant behavior. The second experimental

results showed that the model simplification framework yields

approximately 35% computation load reduction in simulation

and the model transformation method yields signal-flow models

without recognizable errors. Additionally, the proposed

verification approach was able to correctly detect unsafe

behavior of the brake control system model, which was

transformed. In future work, we plan to develop an error

localization method to aid debugging when safety violations are

indicated by the presented verification approach.

Reference
[1] ACATECH (Ed.): Cyber-Physical Systems - Driving Force for

Innovation in Mobility, Health, Energy and Production (2011).

[2] Lee, E. A. and A. Seshia, S.: Introduction to Embedded Systems, A

Cyber-Physical Systems Approach. http://LeeSeshia.org. ISBN

978-0-557-70857-4 (2011).

[3] Alur, R.: Formal Verification of Hybrid Systems. Proc. ACM Intl.

Conf. on Embedded Software, pp. 273--278 (2011).

[4] Henzinger, T. A., Ho, P. and Wong-toi, H.: HyTech: A model

checker for hybrid systems. Proc. ACM Intl. Conf. on Computer

Aided Verification, pp. 460--463 (1997).

[5] Frehse, G..: PHAVer: Algorithmic Verification of Hybrid Systems

past Hytech. Journal on Software Tools for Technology Transfer,

Vol. 10, Issue 3, pp. 263--279 (2008).

[6] Tiwari, A.: HybridSAL Relational Abstracter. Proc. ACM Intl. Conf.

on Computer Aided Verification, pp. 725--731 (2012).

[7] Platzer, A. and Quesel, J.: KeYmaera: A Hybrid Theorem Prover

for Hybrid Systems. Proc. Intl. Conf. on Automated Reasoning, pp.

171--178 (2008).

[8] Lerda, F., Kapinski J., Maka, H., Clarke, E. M. and Krogh, B. H.:

Model Checking In-The-Loop: Finding Counterexamples by

Systematic Simulation. Proc. IEEE American Control Conference,

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 14

pp. 2734--2740 (2008).

[9] Kawahara, R., Dotan, D. and Sakairi, T.: Verification of embedded

system's specification using collaborative simulation of SysML and

simulink models. Proc. IEEE Intl. Conf. on Model-Based Systems

Engineering, pp.21-28 (2009).

[10] Nakajima, S., Furukawa, S. and Ueda, Y.:, Co-Analysis of SysML

and Simulink Models for Cyber-Physical Systems Design, Proc.

IEEE Intl. Conf. on Embedded and Real-Time Computing Systems

and Application, pp. 473-478 (2012).

[11] Coen-Porisini, A., Denaro, G., Ghezzi, C., and Pezze, M.: Using

Symbolic Execution for Verifying Safety-Critical Systems. Proc.

ACM Intl. Conf. on European Software Engineering, pp.142-151

(2001).

[12] Isihgooka, T., Saissi, H., Piper, T., Winter, S. and Suri, N.: Practical

Use of Formal Verification for Safety Critical Cyber-Physical

Systems: A Case Study. Proc. IEEE Intl. Conf. on Cyber-Physical

Systems, Networks, and Applications, pp.7-12 (2014).

[13] Isihgooka, T., Saissi H., Piper T., Winter, S. and Suri, N.: Practical

Formal Verification for Model Based Development of

Cyber-Physical Systems. Proc. IEEE/IFIP Intl. Conf. on Embedded

and Ubiquitous Computing, pp.1-8 (2016).

[14] The MathWorks Inc: Simulink R2016b (online), available from

<http://www.mathworks.com/products/simulink/> (accessed

2016-11-08).

[15] Siemens PLM Software: Amesim (online), available from

<http://www.plm.automation.siemens.com/en_us/products/lms/ima

gine-lab/amesim/> (accessed 2016-11-08)

[16] The MathWorks Inc.: Simscape R2016b (online), available from

<http:www.mathworks.com/products/simscape/> (accessed

2016-11-08)

[17] The Modelica Association: The Modelica Specification, Version

3.3 Revision 1 (online), available from https://www.modelica.org/

(accessed 2016-11-08)

[18] Marks II, R. J.: Introduction to Shannon Sampling and

Interpolation Theory, Springer-Verlag (1991)

[19] Borutzky, W.: Bond Graph Modelling and Simulation of

Mechatronic Systems An Introduction into the Methodology, Proc.

European Conf. on Modeling and Simulation (2006).

[20] Palikareva, H. and Cadar, C.: Multi-solver support in symbolic

execution. Proc. ACM Intl. Conf. on Computer Aided Verification,

pp.53-68 (2013).

[21] Cadar, C., Dunbar, D. and Engler, D.: KLEE: Unassisted and

Automatic Generation High-Coverage Tests for Complex Systems

Programs. Proc. USENIX Conf. on Operating Systems Design and

Implementation, pp.209-224 (2008).

[22] Ganesh, V. and Dill, D. L.: A Decision Procedure for Bit-Vectors

and Arrays. Proc. Intl. Conf. on Computer Aided Verification,

pp.519-531 (2007).

[23] Moura, L. D. and Bjorner, N.: Z3: an efficient SMT solver. Proc.

ACM Intl. Conf. on Tools and Algorithms for the Construction and

Analysis Systems, pp.337-340 (2008).

[24] Barr, E. T., Vo, T., Le, V. and Su, Z.: Automatic Detection of

Floating-Point Exceptions. Proc. ACM symposium on Principles of

Programming Languages, pp.549-560 (2013).

[25] Rajhans, A. and Krogh. B. H.: Heterogenous Verification of

Cyber-Physical Systems using Behavior Relations, Proc. ACM Intl.

Conf. on Hybrid System Computation and Control, pp.35-44

(2012).

[26] Bhave, A., Krogh, B., Garlan, D. and Schmerl, B.: Multi-domain

Modeling of Cyber-Physical Systems Using Architectural Views.

Proc. of Analytic Virtual Integration of Cyber-Physical Systems

Workshop (2010).

[27] Henzinger, T. A.: The theory of hybrid automata. Proc. IEEE

symposium on Logic in Computer Science, p.278 (1996).

[28] Bhave, A., Krogh, B. H., Garlan, D. and Schmerl, B.: View

Consistency in Architectures for Cyber-Physical Systems. Proc.

IEEE/ACM Intl. Conf. on Cyber-Physical Systems, pp.151-160

(2011).

[29] Rajhans, A., Bhave, A., Loos, S. and Krogh, B. H.: A. Platzer, D.

Garlan. Using Parameters in Architectural Views to Support

Heterogeneous Design and Verification. Proc. IEEE Conf. on

Decision and Control and European Control, pp. 2705-2710

(2011)

[30] DESTECS project: The Crescendo Tool (online), available from

<http://crescendotool.org/> (accessed 2017-03-01).

[31] Fitzgerald, J., Pierce, K. and Larsen, P. G.: Co-modelling and

Co-simulation in the Engineering of Systems of Cyber-physical

Systems, Proc. IEEE Intl. Conf. on System of Systems Engineering,

pp.67-72 (2014)

[32] The MathWorks Inc.: Simulink Design Verifier R2016b (online),

available from

<https://jp.mathworks.com/products/sldesignverifier/> (accessed

2016-11-08).

[33] Majumdar, R., Saha, I., Shashidhar, K. C. and Wang, Z.: CLSE:

Closed-Loop Symbolic Execution. Proc. Intl. symposium on NASA

Formal Methods, pp.356-370 (2012).

 Acknowledgments Research supported in part by TUD

CySEC. We also thank Hitachi Automotive Systems for

providing the application examples.

Tasuku Ishigooka received a master

degree from Musashi Institute of

Technology in 2008. He is a researcher

at Center of Technology Innovation -

Controls, Research and Development

Group, Hitachi Ltd. His research topics

include real-time distributing processing design and

verification.

Habib Saissi is a PhD student at TU

Darmstadt. His work targets the

development of formal methods for the

efficient verification of software systems.

Thorsten Piper received his Ph.D. from

TU Darmstadt in 2015. His research

targets the assessment and design of safety

mechanisms for safety-critical software

systems. He is currently with Continental

Automotive.

Stefan Winter has obtained a doctoral

degree in Computer Science from TU

Darmstadt in 2015, where he is now

working as a postdoctoral research fellow.

His research focuses on the design and

analysis of dependable software systems.

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 15

Neeraj Suri received his Ph.D. from the

UMass-Amherst and is a Chair Professor

at TU Darmstadt, Germany. His research

addresses the design, analysis and

assessment of trustworthy systems and

software

