
Evaluation of Partition-Aware MANET Protocols and Applications with ns-2

Abdelmajid Khelil, Pedro José Marrón, Rüdiger Dietrich, Kurt Rothermel
Universität Stuttgart, IPVS/VS

Universitätsstrasse 38, 70569 Stuttgart, Germany
Tel: (+49) 711-7816-{251, 223, 434}

Fax: (+49) 711-7816-424
{khelil, marron, rothermel}@informatik.uni-stuttgart.de , ruediger.dietrich@gmx.net

Keywords: MANET, Network Partitioning, Protocol Evalu-
ation, ns-2, Hypergossiping

Abstract
Mobile Ad Hoc Networks (MANET) are composed of mobile
devices equipped with short range radio capabilities. Commu-
nication is possible between devices located in each other’s
transmission range. Especially in sparse MANETs, node mo-
bility leads to frequent network partitioning, which makes
typical networking tasks much more difficult. Although we
observe an increasing need for partitioning information, the
widely used network simulator ns-2 does not support proto-
col developers to easily evaluate their protocols concerning
network partitioning.

To simplify the evaluation of MANET partition-aware pro-
tocols and applications in ns-2, we extend the simulator to
provide partitioning information at the simulation time. De-
velopers might be interested in using this information to eval-
uate their partition-aware protocols and applications and to
compare their performance to the optimal case.

Hypergossiping is a partition-aware broadcast protocol for
MANETs. Nodes rebroadcast messages upon joining the par-
titions that have not yet received these messages. Hypergos-
siping uses a heuristic to detect partition joins. We show the
feasibility of our approach and the applicability of the parti-
tioning information we provide for ns-2 users to compare the
performance of our approach to the optimal case.

INTRODUCTION
The number of mobile devices equipped with wireless net-

work interfaces is continuously increasing. Many existing
wireless technologies such as WLAN and Bluetooth provide
besides an infrastructure-based communication mode an ad
hoc communication mode. The ad hoc mode allows mobile
devices to directly communicate if they enter each others
communication range. If nodes can act as routers, multihop
communication between nodes is possible. The so formed
networks are refered as Mobile Ad Hoc Networks (MANET).
MANETs are suitable for scenarios where an infrastructure is
very costly or even unavailable.

MANETs show frequent network partitioning [1], i.e. the
network goes into groups of nodes that can not communicate

directly or indirectly with each other. Partitioning happens
due to node movement, communication link failures (e.g. spa-
tial constraints), or node failures (e.g. energy depletion).

Partitioning leads to the reduction and degradation of the
quality of network services or even to their unavailability.
Therefore, many existing MANET protocols and applications
need to consider and handle network partitioning and network
merging.

TORA [2] is a MANET unicasting protocol that provides a
mechanism to detect network partitioning in order to erase
depreciated routes. The “Epidemic Routing for Partially-
Connected Ad-Hoc Networks” [3], the “Probabilistic Routing
in Intermittently Connected Networks” [4], and the “Deliver-
ing Messages in Disconnected Mobile Ad-Hoc Networks” [5]
present MANET routing protocols that provide mechanisms
to deliver messages even in partitioned networks.

MAODV [6] is a MANET multicasting protocol that han-
dles network partitioning. The protocol initiates the multicast
group election procedure once the multicast tree becomes par-
titioned. If two parts of the tree become connected once again
the tree has to be repaired.

Hypergossiping [7] is a MANET broadcasting protocol
that considers network partitioning in order to increase the
delivery reliability of gossiping in sparse networks. Hyper-
gossiping deploys a heuristic to detect partition joins and re-
broadcasts the appropriate messages from buffer on partition
join detection.

MANET autoconfiguration aims at assigning dynamically
IP-addresses for MANET nodes. Many algorithms have been
developed to allow autoconfiguration such as MANETconf
[8], Prophet [9], [10], and [11]. These algorithms handle par-
tition merging in order to avoid address conflicts (duplicates).

Because of the importance of handling MANET partition-
ing some research is done to detect, predict and prevent this
partitioning. In [12] the authors present an algorithm to de-
tect MANET partitioning using border nodes. For partition
prediction in MANETs, the authors in [13, 14] use velocity-
clustering. In [15] the authors predict network partitioning
by means of the so-called multiple disjoint paths set. [16]
presents methods to predict network partitioning in location-
aware MANETs. Partitioning prevention or retardation in
MANETs can be realized by changing the trajectories of cer-

tain nodes such as suggested in [17] and [18] or by adapting
the transmission range.

We observe an increasing need for partitioning information
to develop and evaluate partition-aware protocols and appli-
cations for MANETs. Simulation with the tool ns-2 [19] is
widely used in the MANET community. Although there are
many projects that handle MANET partitioning, ns-2 does not
provide extra partitioning information for the protocol eval-
uation concerning network partitioning. The main contribu-
tion of this paper is an extension for ns-2, which simplifies
the evaluation and the performance comparison of partition-
aware protocols and permits an easy definition of optimal
protocols. Furthermore, we show using the example of hy-
pergossiping the practical importance of this extension. We
provide patches for common versions of ns-2 and for com-
mon operating systems, which allows an easy installation of
the framework.

The remainder of this paper is organized as follows. In Sec-
tion we define key terms, present our system model, and
briefly introduce ns-2. Section discusses related work. In
Section we present our approach to provide partitioning in-
formation for ns-2 users. Using hypergossiping as an exam-
ple, we show in Section the applicability of the provided in-
formation. Finally, Section concludes this paper.

PRELIMINARIES
Let us first define some key terms concerning network par-

titioning, fix our system model, and briefly introduce ns-2.

Terminology
Network split (or partitioning) is the division of the net-

work into two (or more) disjoint groups of nodes that can not
communicate with each other. We refer to these groups as net-
work partitions. In the simplest case, a partition may consist
of only one isolated node. A partition is uniquely identified by
its constituting nodes and the time the partition is formed. A
MANET where partitioning occurs is said to be partitioned.

Partition join (or merging) is the combination (coalescing)
of two (or more) partitions into one bigger partition. Partition
merging occurs when two partitions come in the communica-
tion range of each other.

System Model
We consider MANETs formed by N mobile devices that

move according to an arbitrary mobility model within a two-
dimensional area of interest. The mobility model can inte-
grate movement constraints, but we do not consider the im-
pact of these constraints on the propagation characteristics of
the communication link. We assume that nodes are uniquely
identified, e.g. using their MAC addresses. Without lost of
generality we enumerate the N nodes using numbers (node-
ID) from 0 to N − 1. We assume that all nodes use the same

fixed communication range R. Nodes can communicate once
their distance is below R. We model each partition in the
MANET as an undirected graph. The nodes constituting the
partition present the vertices of this graph. An edge between
two nodes is added if their distance is below R. Thus each
snapshot of the MANET is a set of undirected graphs. We as-
sume that nodes do not fail, e.g. they do not crash or run out
of energy.

The network simulator ns-2
Ns-2 [19] is a discrete event simulator targeted at wired

and wireless networking research. For efficiency reasons ns-2
is implemented in OTcl and C++. OTcl is an object-oriented
extension of the interpreted language Tcl (the Tool Control
Language). Ns-2 uses OTcl for control and C++ for data ma-
nipulation, since OTcl permits an easy and dynamic simula-
tion configuration and C++ a fast and efficient manipulation
of data and implementation of protocols.

GOD (General Operations Director) is a central omniscient
instance of ns-2. GOD stores global state information. The
GOD instance implemented by the current ns-2 version man-
ages the shortest path information between nodes. This global
information is used by MANET routing protocol developers.

RELATED WORK
In [1] authors provide a quantitative analysis of network

partitioning using their own event-based simulator. They de-
fine partitioning metrics and present them for different move-
ment patterns. We adopt their metrics and provide them for
ns-2 users dynamically at simulation-time.

MANET routing protocol developers need global path
length information in order to analyse the path length opti-
mality of their ad hoc routing protocols. The optimal route
length is given by the shortest path length. This is the reason
GOD continuously provides the length in hops of the shortest
path between any two nodes [19]. For this goal the indepen-
dent utility calcdest is provided for ns-2. Calcdest an-
notates movement pattern files generated for ns-2 with lines
of GOD information. These lines are needed to load the GOD
instance with the appropriate information at the appropriate
time. Calcdest calculates the number of hops of the short-
est path between nodes based on the nominal radio range. The
GOD instance does not calculate this on the fly during simu-
lation runs, since it can be quite time consuming. Global path
knowledge is loaded into the GOD instance from the move-
ment pattern file using OTcl commands. Currently, the GOD
instance is used only to store an array of the shortest num-
ber of hops required to reach from one node to one other, and
does not provide partitioning information.

PROVIDING PARTITIONING INFORMA-
TION FOR NS-2

In this section, we compute partitioning information for ar-
bitrary movement patterns and provide an interface, which
satisfies the most important needs of partition-aware proto-
cols and applications developers.

Approach
We follow a similar approach to that of generating GOD in-

formation for MANET routing. We first annotate movement
trace files with basic partitioning information. The GOD in-
stance then loads this information at the simulation begin.
During simulation GOD aggregates partitioning information
and generates dynamic partitioning information. For MANET
developers GOD provides a generic interface that simplifies
the use of partitioning information during simulation (Fig.1).

Ns-2 mvmt
trace file

Mvmt file with
partitioning
information

GOD instance

Partition-aware protocols and
applications

Interface

CALCPARTITION
(Annotates partitioning information)

NS-2

Use partition
information

Partitioning info

of
fli

n
e

D
u

ri
n

g
 s

im
u

la
tio

n

S
im

u
la

tio
n

 b
e

g
in

Mvmt info

Figure 1: Approach

We do the annotation offline. This increases the reusabil-
ity of trace files, since the annotation only depends on the
node movement provided that the communication range re-
mains constant. This also reduces simulation run-time, since
calculating partition information may be quite time-intensive.
The generated partitioning information is calculated based on
a fixed communication model, where we assume that nodes
can communicate if their distance is below a given constant
value R. This makes the information invalid, if nodes fail or
adjust communication range at run-time, which we except in
our system model.

Annotation
An annotation is a set of OTcl commands for ns-2. We have

to annotate complete partitioning information while keeping
the size of trace file as small as possible. But we also have to
generate offline as much statistics as possible, to keep simu-
lation time as short as possible.

The tool calcpartition is able to annotate every ns-2
movement trace file, independently from the mobility model
and from the generation tool. The path of the movement trace
file as well as the nominal communication range are provided
as arguments to calcpartition.

One approach for providing partitioning information is to
annotate the partitions constituting the MANET at the begin-
ning of the scenario and at each subsequent time this MANET
composition will change, i.e. on each future join or split
event. In order to reduce the size of this information we pro-
ceed as follows. We first annotate the initial partition com-
position of the MANET and then we annotate only the event
type and the resulting partition(s).

We annotate the initial partitions constituting the MANET
by means of OTcl commands under the following form:

$god_ set-part ‹partition-list›

‹partition-list›= {‹node-list›} ({‹node-list›})*

‹node-list› = ‹node-ID›(, ‹node-ID›)*
Set-part is a function we added to the GOD class. The sub-
sequent partition join and split events are annotated using the
following commands respectively:

$ns_ at ‹time›"$god_ set-join ‹new-partition›"

$ns_ at ‹time›"$god_ set-split ‹partition-list›"
Set-join and set-split are two functions we also added to the
GOD class. We annotate on each event only the nodes that
are concerned by that event. This decreases the size of the
annotated trace file.
The following example of annotation

$god_ set-part { 0, 1 } { 2 } { 3, 4 }

$ns_ at 4.26 "$god_ set-join { 0, 1, 2 } "

$ns_ at 6.54 "$god_ set-split { 3 } { 4 } "
means that at the beginning of the scenario the MANET ist
formed by 3 partitions. The first partition contains nodes 0
and 1. The isolated node 2 presents the second partition.
Nodes 3 and 4 form the third partition. At time 4.26 s, the
partitions { 0, 1 } and { 2 } merge. At time 6.54 s, the parti-
tion { 3, 4 } splits into two partitions.

At the end of the scenario file calcpartition lists
some helpful statistics like the number of joins, the number
of splits, the average (min, max) partition size, the average
number of partitions, and the average time to next split or join
(in ms). These statistics are valid for the movement scenario
time and are printed out as OTcl comments.

Interface
After loading the annotated partitioning information from

the scenario file, GOD prepares this information for protocol
developers. For this, GOD provides an interface for ns-2 users
(Fig.1).

This interface is generic and easy to use. It provides suffi-
cient functions to satisfy the needs of the ns-2 users. Protocol
developers need to debug and evaluate their protocols by ob-
serving important indicators or by defining optimal protocols
to compare their performance to the optimal case.

The TORA routing protocol [2] needs to detect partition
splits. For global evaluation of TORA concerning network
partitioning, nodes have to subscribe for split events. In the
optimal case nodes have to react on split events by erasing
from their routing table the routes to all destinations that be-
long to the splitting partition. For this, nodes need to query the
node-IDs of the own partition or the node-IDs of the splitting
one.

MAODV [6] has to consider both join and split events. In
the optimal case, MAODV initiates the multicast election on
partition split in both resulting partitions, and repairs the mul-
ticast tree on every partition join.

Dynamic IP-address assignment algorithms have to con-
sider only partition joins. In the optimal case, one of the nodes
that trigger a partition join has to find out if there are duplicate
IP addresses in the new formed partition. For the global eval-
uation of the assignement algorithms, nodes have to query the
IP-addresses of all nodes populating the same partition, in or-
der to check whether duplicate addresses exist.

From the examples above we distinguish two main classes
of possible needs of protocol developers. A developer may
be interested in some instantaneous or statistical values or in
some split or join events. Therefore, our GOD interface for
partitioning information provides two user modes. First, the
Query-Interface allows users to query instantaneous or sta-
tistical partition information. Second, the Subscribe-Interface
allows nodes to subscribe for and then to unsubscribe from
partition join or split events.

Query-Interface
The query-interface processes the requests of nodes for

partitioning information. Developers may need instantaneous
or statistical information.

• Instantaneous partitioning information describes the cur-
rent MANET partitioning topology. Currently the fol-
lowing functions are implemented:

– getNumberOfPartitions(): returns the current num-
ber of partitions.

– getNodesOfPartition(nodei): returns the IDs of
nodes that constitute the partition that contains
nodei.

– getPartitionSize(nodei): return the size of the par-
tition containing nodei.

– belongToSamePartition(node1,node2): checks
whether node1 and node2 belong to the same
partition.

• Statistical partitioning information can be calculated
over time, partitions or nodes [1]. Statistics over time
are done between two past points of time t1 and t2. We
currently provide the following functions:

– getAverageNumberOfPartitions(t1,t2): returns the
average number of partitions over the time interval
between t1 and t2.

– getAveragePartitionSize(t1,t2): returns the average
size of partitions over the time interval between t1

and t2.

– getMinPartitionSize(t1,t2): returns the minimal par-
tition size between t1 and t2.

– getMaxPartitionSize(t1,t2): returns the maximal
partition size between t1 and t2.

– getPartitionChangeRate(nodei,t1,t2): returns the
partition change rate of nodei, i.e. the number of
join or split events that the partition of nodei expe-
riences between t1 and t2.

– getAveragePartitionChangeRate(t1,t2): returns the
average partition change rate over all nodes.

– getSeparationTime(nodei,node j,t1,t2): returns the
cumulative time between t1 and t2, during which
the nodes nodei and node j do not belong to the
same partition.

– getConnectionTime(nodei,node j,t1,t2): returns the
cumulative time between t1 and t2, during which
the nodes nodei and node j belong to the same par-
tition.

– getNumberOfJoins(t1,t2): returns the number of
partition joins between t1 and t2.

– getNumberOfSplits(t1,t2): returns the number of
partition splits between t1 and t2.

Subscribe-Interface
This interface propagates partitioning events to the inter-

ested nodes. Nodes can subscribe for or unsubscribe from
partition join or split events. The current subscribe interface
provides the following major functions:

• subscribeJoin(): Allows nodes to subscribe for all join
events. The subscribers receive a notification each time
a partition join occurs. The join notification mainly con-
tains the nodes constituting the merging partitions, and
the IDs of both nodes that realized the join.

• subscribeSplit(): Allows nodes to subscribe for all split
events. The split notification mainly contains the nodes
constituting the resulting partition.

• unsubscribeJoin().

• unsubscribeSplit().

CASE STUDY: HYPERGOSSIPING
So far we have discussed the partitioning framework. We

now show the usability of some provided global partition-
ing information for the evaluation of partition-aware proto-
cols and applications in ns-2. For this, we experiment with the
behavior of hypergossiping (HG), a partition-aware broadcast
protocol for MANETs, if the GOD information is used to pro-
vide nodes with perfect partitioning information at zero cost.

Hypergossiping (HG)
Hypergossiping [7] combines two strategies to distribute

messages to all nodes. The first strategy is called gossiping
(probabilistic flooding) and aims at efficient distribution of
messages within the same partition. The second strategy is
called broadcast repetition and aims at overcoming network
partitioning. Hypergossiping buffers messages and rebroad-
casts them on partition joins. For this, hypergossiping utilizes
a partition join detection heuristic to detect partition joins and
a rebroadcasting protocol to send the appropriate messages.

The partition join detection heuristic works as follows.
Nodes share with their new neighbors an ID-list of Last
Broadcast Received (LBR list). If a node encounters a node
that has a sufficiently different LBR it assumes that a partition
join has just occured and triggers the rebroadcasting protocol.

The rebroadcasting protocol first sends the complete ID-
list of Broadcasts Received (BR list). Nodes receiving this BR
list have then to rebroadcast messages from their buffer that
have not yet received by the sender of the BR list. To reduce
redundant rebroadcasts hypergossiping deploys a suppression
mechanism: Nodes schedule the begin of rebroadcasting for a
random time between 0 and rDelay and cancel the schedule,
if one neighboring node starts to rebroadcast the messages
before the scheduled time.

Evaluation of HG Without Global Partition In-
formation

For the evaluation of broadcast protocols the following
metrics are typically used [7]:

• REachability (RE): the ratio of mobile hosts receiving
the packet to the total number of mobile hosts. This met-
ric measures the delivery reliability of the broadcast al-
gorithm.

• Delay: Average end-to-end delay over all receivers.

• MNF(R): Mean Number of Forwards (and Rebroadcasts)
per node and packet. MNF(R) measures the efficiency of
the broadcast algorithm.

For the evaluation and calibration of the broadcast repetition
strategy we used in previous work the metric gain. Gain is the
mean number of additionally covered nodes per rebroadcast
[7].

The above metrics describe qualitatively the performance
of the broadcast repetition strategy. The determination of the
distance to the optimal case is not possible, since the values of
these metrics in the optimal case are impossible to compute
without global partitioning information.

Evaluation of HG Using Global Partition Infor-
mation

In this section, we use global partitioning information in
order to determine the optimality of hypergossiping, i.e. gos-
siping and the broadcast repetition strategy, concerning net-
work partitioning.

Global Information Needed
We need two kinds of global information for the global

evaluation of hypergossiping. First, we need a global view
concerning network partitioning. Gossiping is mainly inter-
ested in the partition size information, since its reachability is
limited by the partition size, where it takes place. The broad-
cast repetition strategy of hypergossiping is mainly interested
in partition joins and in the nodes that caused the joins. These
nodes have to eventually initiate the rebroadcasting protocol.
This first global view is provided by the framework presented
in Section . Secondly, we need broadcast global view, i.e. the
knowledge about the spreading of broadcast messages at ev-
ery point of time. This global view is needed by hypergos-
siping developers, first, to validate if gossiping reaches all
nodes within a single partition, and secondly, to determine the
messages that should be rebroadcasted on partition join. This
knowledge is also required for the evaluation of the partition
join detection heuristic. A partition join should only then be
detected by the heuristic, if the partition has to rebroadcast
messages to the joining partition.

Evaluation of Gossiping
MANET partitioning strongly impacts the reachability of

gossiping. Gossiping aims at reaching efficiently all nodes
of the partition where the broadcasting node is located. In
this section, we aim at investigating the reliability of gossip-
ing. We define the optimal gossiping reachability (OG_RE)
as the ratio of the size of the partition containing the gos-
siping source node to the total number of nodes. Because of
collisions gossiping may not reach all nodes within a single
partition.

Evaluation of the Broadcast Repetition
Using the partitioning and the spreading gobal knowledge

we now perform two studies to evaluate the broadcast repeti-
tion strategy of hypergossiping. The goal of the first study is
to determine the optimal values for the performance metrics
(RE, Delay and MNFR) and thus to show the quality of the
broadcast repetition strategy. The purpose of the second study
is to count the correct, wrong and redundant decisions of the
broadcast repetition strategy.

• Study 1: Optimal Broadcast Repetition

For this study we define the following new protocol: HG
with optimal broadcast repetition, short HG-OBR. The gos-
siping implementation is not modified. Optimal broadcast
repetition means optimal partition join detection and optimal
rebroadcasting protocol. Optimal partition join detection is
easily given by the partitioning GOD interface. Nodes sim-
ply have to subscribe to join events. Optimal rebroadcast-
ing is given if both nodes that triggered the partition join re-
broadcast exactly the messages that the opposite node has not
yet received. Optimal rebroadcasting does not send messages
through MAC, but calls the receive procedure of the opposite
node and waits for fDelay until the next call for next mes-
sage. Note that optimal rebroadcasting prohibits redundant
rebroadcasts.

Mvmt & comm.
patterns

HG

HG with optimal
broadcast
repetition

Broadcast
global
view

Partition
global
view

HG_RE
HG_MNFR
HG_Delay

HG-OBR_RE
HG-OBR_MNFR
HG-OBR_Delay

ns-2

Figure 2: Optimal broadcast repetition (study 1)

For HG-OBR we denote by HG-OBR_RE, HG-
OBR_MNFR and HG-OBR_Delay the values for RE,
MNFR and Delay respectively. Thus the broadcast repetition
strategy of HG can be compared qualitatively to the optimal
case. To enable a fair comparison we use for both protocols
the same movement and communication patterns (Fig.2). For
random number generation we use the same seed in order to
increase the similarity of both scenarios.

This approach has two main advantages. First, we do not
need new evaluation metrics. Secondly, the approach pro-
vides an aggregated (coarse-grained) measurement of the dis-
tance to the optimal broadcast repetition.

Nevertheless this approach shows two main drawbacks.
First, it does not allow an easy back trace to the weak points
of the broadcast repetition strategy; it is not clear if the dif-
ference to the optimal case is due to the partition join detec-
tion heuristic or to the rebroadcasting protocol. Secondly, two
simulation runs are needed; One run for HG and another run
for HG-OBR.

• Study 2: Hypergossiping Observation

This approach is an online monitoring of HG with respect
to network partitioning (Fig.3). Using the partitioning and the
broadcast global view, we validate each decision made by the
broadcast repetition strategy, i.e. each decision made by the
partition join detection and each decision made by the re-
broadcasting protocol.

Mvmt & comm.
patterns HG

HG observer

Broadcast
global
view

Partition
global
view

HG_RE
HG_MNFR
HG_Delay

correct
wrong
redundant

ns-2

correct
wrong
redundant

Join detections
(partition level)

Repetitions
(packet level)

Figure 3: Hypergossiping observation (study 2)

This approach allows a fine-grained evaluation of the
broadcast repetition strategy. It allows an easier back trace
of the weak points of the broadcast repetition strategy, since
a separated evaluation of the partition join detection heuris-
tic and the rebroadcasting protocol is given. Furthermore just
one single simulation run is needed.

For this study we define new metrics. We consider two lev-
els for the definition of these metrics: the partition level and
the packet level. On the partition level we define metrics that
validate the decisions made by the partition join detection
heuristic. On the packet level the metrics validate the deci-
sions made by the rebroadcasting protocol.

1. Partition level: At this level we count the correct and
wrong partition join detection decisions as well as the
redundant decisions, i.e. decisions made by more than
one node from each partition. We assume two partitions,
say P1 and P2, join and that node n1 from P1 and node n2

from P2 triggered the join. We define the following three
metrics:

(a) Correct Detections (CD): We increment CD, if
node n1 (resp. n2), has to rebroadcast a list of pack-
ets HL1 (resp. HL2) and at least one node of P1

(resp. P2) detects the partition join. We also incre-
ment CD, if node n1 (resp. n2) has no packets to
rebroadcast and no node of P1 (resp. P2) detects
the join.

(b) Wrong Detections (WD): We increment WD, if
node n1 (resp. n2), has to rebroadcast a list of pack-
ets HL1 (resp. HL2) and no node of P1 (resp. P2)
detects the partition join. We also increment WD,
if node n1 (resp. n2) has no packets to rebroadcast
and at least one node of P1 detects the join.

(c) Redundant Detections (RD): We increment RD if
more than one node makes a correct detection.

2. Packet level: At this level we validate each decision to
rebroadcast or not to rebroadcast a buffered message,
whether it is correct, wrong or redundant. Similar to the
metrics on partition level we define the following three
metrics.

(a) Correct Repetitions (CR)

(b) Wrong Repetition (WR)

(c) Redundant Repetition (RR)

Algorithm 1 shows the pseudo-code for the HG observer,
which monitors HG and increments the metrics CD, WD, RD,
CR, WR and RR.

Simulations
In this section, we introduce the simulation model and

present the simulation results for the global evaluation of hy-
pergossiping concerning network partitioning.

Simulation Model
We generate N mobile nodes in a 1000mx1000m field,

where these nodes move according to the random waypoint
mobility model. Table 1 summarizes the simulation parame-
ters of our experiments.

We use a random HELLO-beaconing period between 0.75
s and 1.25 s. A neighbor is removed from the neighbor list if
during 2 s no beacon is received from this neighbor. We use
the following communication load model: At the beginning
of the simulation 30 nodes initiate broadcasting at a random
time between 1 and 3 seconds, and continue to send packets
with a constant send rate. Broadcast messages remain relevant
during their lifetime. We assume that nodes buffer all received
messages as long as they are relevant. For the same simulation
scenario we ran 10 passes with 10 different movement traces
and considered the average.

Algorithm 1 HG observer
1: On partition join P1 with P2:
2: for all i ∈ {1,2} do
3: if Pi have to rebroadcast a set of packets HLi then
4: if Pi_detected_join then
5: CORRECT_DETECTION++
6: for all packet ∈ HLi do
7: if rebroadcasted then
8: CORRECT_REPETITION++
9: end if

10: if redundant_rebroadcasted then
11: REDUNDANT_REPETITION++
12: end if
13: if not_rebroadcasted then
14: WRONG_REPETITION++
15: end if
16: end for
17: else
18: WRONG_DETECTION++
19: end if
20: else
21: if Pi_detected_join then
22: WRONG_DETECTION++
23: if a packet is rebroadcasted then
24: WRONG_REPETITION++
25: end if
26: else
27: CORRECT_DETECTION++
28: end if
29: end if
30: end for

Table 1: Simulation parameters
Parameters Value(s)

Simulation area 1000m x 1000m
Number of nodes N ∈ [30,300]
Com. range R = 100m
Bandwidth r = 1 Mbit/s
Data packet size 280 bytes
Movement pattern Random Waypoint
- Max speed - v ∈ {3,10,20,30}m/s
- Pause - Uniform betw. 0 and 2s
fDelay 10 ms
rDelay 100 ms
Lifetime 200 s
Simulation time 250 s
Send rate 0.01 packets/s

Simulation Results
In this section, we present the simulation results for the

global evaluation of hypergossiping. We also show the use-
fulness of information that we provide in GOD instance to
understand the behaviour of hypergossiping and to cristallize
out some improvement opportunities for hypergossiping.

• Global Evaluation of Gossiping

The reachability of gossiping should correlate with the par-
tition size. Fig.4(a) shows that the gossiping reachability is
as expected below the optimal gossiping reachability (parti-
tion_size / total_number_of_nodes). This is due to collisions,
which prohibit gossiping to progress, and which become
more frequent with increasing number of nodes. Fig.4(b)
shows the frequency histogram of the ratio of the number of
nodes reached by gossiping to the sender’s partition size. This
figure shows that in most cases gossiping reaches either more
than 90% of the partition nodes or less than 10% of nodes.

This study shows the importance of partition size informa-
tion we provide.

• Global Evaluation of the Broadcast Repetition

Next we show the simulation results for the global evalua-
tion of the broadcast repetition strategy.

- Study 1: Optimal Broadcast Repetition
Fig.5 shows HG_RE and the values for HG_RE, if the

broadcast repetition is optimal, i.e. HG-OBR_RE. For 30 m/s
and starting from 100 nodes, the HG-OBR_RE slightly de-
creases for increasing number of nodes; this is due to colli-
sions (we use the real implementation of gossiping). As ex-
pected the HG-OBR_RE is higher than the HG_RE. But for
300 nodes, where the MANET consists of a very large par-
tition and some isolated nodes, hypergossiping reaches a lit-
tle more nodes than hypergossiping with optimal broadcast
repetition. This is due that the broadcast repetition of hyper-
gossiping is able to remedy the gossiping breaks caused by
collisions besides overcoming network partitioning [7].

The comparison to the optimal case shows that there is still
improvement opportunities to increase the reachability of hy-
pergossiping in sparse MANETs. The improvement potential
is higher for higher mobility.

- Study 2: Hypergossiping Observation
Fig.6(a) shows the number of the correct, wrong and redun-

dant detections of the broadcast repetition strategy as well as
the doubled number of joins. In Fig.6(b) we present the num-
ber of correct, wrong and redundant broadcast repetitions.
The Fig.6(a) shows that the number of correct and wrong
detections correlates well with the doubled number of joins.
We notice that the number of wrong detections is relatively
high. Simulation results show that these are mainly the joins
that were not detected by the heuristic. We also notice that

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 250 200 150 100 75 50

re
ac

ha
bi

lit
y

number of nodes

 sendrate = 0.01 pa/s

gossiping
optimal gossiping

(a) G_RE , OG_RE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

fr
eq

ue
nc

y
/ #

go
ss

ip
in

gs

gossiping reachability / partition size

300 nodes, sendrate = 0.01 pa/s

distribution of gossiping reachability

(b) Frequency histogram of the ratio G_RE to OG_RE

Figure 4: Gossiping evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 250 200 150 100 75 50 30

re
ac

ha
bi

lit
y

number of nodes

 sendrate = 0.01 pa/s

hypergossiping (3 m/s)
hypergossiping with optimal repetition (3 m/s)

hypergossiping (30 m/s)
hypergossiping with optimal repetition (30 m/s)

Figure 5: Optimal broadcast repetition

the number of redundant detections respectively the number
of redundant broadcast repetitions is very low. This means
that our detection heuristic respectively suppression mecha-
nism works well to minimize redundant detections respec-
tively repetitions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 300 250 200 150 100 75 50 30

#d
et

ec
tio

ns

number of nodes

 max speed = 3 m/s, sendrate = 0.01 pa/s

correct detections
wrong detections

redundant detections
2 * #joins

(a) Correct, wrong and redundant detections

 0

 100

 200

 300

 400

 500

 600

 700

 800

 300 250 200 150 100 75 50 30

#r
ep

et
iti

on
s

number of nodes

60 packets generated, max speed = 3 m/s, sendrate = 0.01 pa/s

correct repetitions
wrong repetitions

redundant repetitions

(b) Correct, wrong and redundant repetitions

Figure 6: Hypergossiping observation

The observation of the broadcast repetition shows that
there is still some potential to improve the partition join de-
tection heuristic. One has to increase the number of correct
detections, in order to increase the reachability of hypergos-
siping efficiently.

CONCLUSION
The observation of the increasing need for partitioning in-

formation while developing MANET protocols and applica-

tions encouraged us to provide generic partitioning informa-
tion for the widely used network simulator ns-2. In this paper,
we provide a utility, calcpartition, to annotate arbitrary
movement files with partitioning information and an interface
to easily use this information during simulation. We release
the source code of calcpartition and a patch for the re-
quired ns-2 modifications for ns-2 community 1.

We showed by example the applicability of the provided in-
formation. For this, we evaluated hypergossiping, a MANET
broadcast protocol that considers network partitioning. This
global evaluation showed some improvement potentials for
hypergossiping, which we will consider in future work.

REFERENCES
[1] J. Hähner, D. Dudkowski, P. J. Marrón, and Kurt Rothermel. A

quantitative analysis of partitioning in mobile ad hoc networks.
In Proc. of the Joint Int. Conf. on Measurement and Modeling
of Computer Systems (Sigmetrics-Performance) (extended ab-
stract), pages 12–16, June 2004.

[2] Vincent Park and M. Scott Corson. Temporally-Ordered Rout-
ing Algorithm (TORA). Internet Draft (draft-ietf-tora-spec-
04.txt), July 2001.

[3] A. Vahdat and D. Becker. Epidemic routing for partially-
connected ad hoc networks. Technical report, 2000. Duke
University.

[4] Anders Lindgren, Avri Doria, and Olov Schelén. Poster: Prob-
abilistic routing in intermittently connected networks. In Pro-
ceedings of The Fourth ACM International Symposium on Mo-
bile Ad Hoc Networking and Computing (MobiHoc 2003),
June 2003.

[5] Ritesh Shah and Norman C. Hutchinson. Delivering messages
in disconnected mobile ad hoc networks. In Proc. of ADHOC-
NOW 2003, pages 72–83, 2003.

[6] E. M. Royer and C. E. Perkins. Multicast operation of
the ad-hoc on-demand distance vector routing protocol. In
ACM/IEEE MOBICOM, 1999.

[7] Abdelmajid Khelil, Pedro José Marrón, Christian Becker, and
Kurt Rothermel. Hypergossiping: A generalized broadcast
strategy for mobile ad hoc networks. In Proceedings of The
2005 Conference on Communication in Distributed Systems
(KiVS), February 2005.

[8] Sanket Nesargi and Ravi Prakash. Manetconf: Configuration
of hosts in a mobile ad hoc network. In Proc. of IEEE Joint
Conference of Computer and Communication Societies (IN-
FOCOM 2002), pages 1059–1068, June 2002.

[9] H. Zhou, L.M. Ni, and M.W. Mutka. Prophet address alloca-
tion for large scale manets. In Proc. of IEEE Joint Conference
of Computer and Communication Societies (INFOCOM 2003),
pages 1304–1311, April 2003.

1Available for download from http://canu.informatik.uni-
stuttgart.de/calcpartition/

[10] J.P.O. Grady, A. McDonald, and D. Pesch. network merger
and its influence on address assignment strategies for mobile
ad hoc networks. In Proc. of IEEE Vehicular Technology Con-
ference Fall 2004, September 2004.

[11] N. H. Vaidya. Weak duplicate address detection in mobile ad
hoc networks. In Proc. of the third ACM international sym-
posium on mobile ad hoc networking and computing (mobihoc
2002), pages 206–216, 2002.

[12] Hartmut Ritter, Rolf Winter, and Jochen Schiller. A partition
detection system for mobile ad-hoc networks. In First IEEE
Communications Society Conference on Sensor and Ad Hoc
Communications and Networks (SECON 2004), 2004.

[13] Karen Wang and Baochun Li. Group mobility and parti-
tion prediction in wireless ad-hoc networks. In Proceedings
of IEEE International Conference on Communications (ICC
2002), pages 1017–1021, April 2002.

[14] Karen Wang and Baochun Li. Efficient and guaranteed service
coverage in partitionable mobile ad-hoc networks. In Proc.
of IEEE Joint Conference of Computer and Communication
Societies (INFOCOM 2002), pages 1089–1098, June 2002.

[15] Michaël Hauspie, David Simplot, and Jean Carle. Partition
detection in mobile ad-hoc networks using multiple disjoint
paths. In Proc. 1st International Workshop on Objects models
and Multimedia technologies (OMMT), 2003.

[16] B. Milic, N. Milanovic, and M. Malek. Prediction of partition-
ing in location-aware mobile ad hoc networks. In Proceedings
of the Hawaii International Conference on System Sciences,
HICSS-38, 2005.

[17] M. Ahmed, S.V. Krishnamurthy, R.H. Katz, and S. Dao. Tra-
jectory control of mobile gateways for range extension in ad
hoc networks. Comput. Networks, 39(6):809–825, 2002.

[18] Qun Li and Daniela Rus. Sending messages to mobile users
in disconnected ad-hoc wireless networks. In Proceedings of
the sixth ACM/IEEE International Conference on Mobile Com-
puting and Networking (mobicom 2000), pages 44–55, August
2000.

[19] S. McCanne and S. Floyd. Ns network simulator.

