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Abstract—Wireless Sensor Networks are seeing increasing
usage in several applications such as military, rescue and
surveillance scenarios. Typical for such scenarios is that mobile
nodes cooperate side-by-side with stationary sensor nodes to
monitor the area of interest and to support the core network
operations such as data transport. Global maps of the sensor
field, such as temperature and residual energy maps, are of
high interest for both users and network designers. However,
the map construction can become very inefficient if it requires
an extensive intervention of the resource-limited sensor nodes.
In this work, we present gMAP, an extremely efficient mobility-
assisted approach to construct global maps. In gMAP (a) sensor
nodes do not need to process readings of other nodes and (b)
require to communicate a minimal number of messages compared
to all existing approaches. This is achieved by opportunistically
exploiting node mobility to collect data of interest, keeping sensor
nodes transmit only their own readings on-demand to a mobile
node in their transmission area.

I. INTRODUCTION

Wireless Sensor Networks (WSN) represent networked au-
tonomous embedded systems. With diversity as a key hall-
mark, WSNs often comprise computing nodes with heteroge-
neous communication, sensing, processing and storage capa-
bilities. WSNs can be embedded in varied indoor and outdoor
environments with the primary goal of sensing, monitoring and
detecting phenomenons of interest in battle field, disaster area,
wild- and sea-life etc. In such scenarios mobility is inherent
as mobile nodes cooperate with stationary sensor nodes to
support the core functionality and operations.

A map is an aggregated view on the spatial raw samples of a
chosen attribute at a specific time. The attributes of interest are
system properties (residual energy, connectivity etc.) physical
world characteristics (temperature, humidity etc.) leading to
network maps (nMAPs) and user maps (uMAPs) respectively.
Maps transform the less comprehensible raw data into an
information which is understandable for WSN users, designers
and operators. Global maps are of high interest for the design,
reconfiguration, deployment and maintenance of a WSN [1].

One key map is the energy map (E-map for short) which
depicts the spatial distribution of residual energy of the WSN
elements. An E-map partitions the WSN area into regions
containing nodes of similar residual energy, i.e., regions of
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homogeneous energy density. E-maps provide elementary util-
ities/support for (1) network design, (2) network functionality
and (3) network management. The E-map is valuable for the
evaluation and optimization of the energy consumption since it
can be used to compare protocols with respect to their energy
efficiency/needs and to identify suspicious energy drains etc.
The E-map can be utilized to enhance network functionality,
e.g., to re-route data traffic to avoid energy-weak regions. An
example of supporting the network management is to utilize
the E-map to detect and predict important vulnerabilities such
as network partitioning.

A variety of inter-node communication based approaches
have been developed to build global maps (G-maps) [2]–[10].
However, all these approaches rely on multi-hop communi-
cation and/or in-network aggregation, which overstrains the
stationary sensor nodes through the use of their limited energy
and processing resources. In [11], the authors demonstrated
that node mobility can increase the capacity of ad hoc net-
works, if the mobile nodes transport the message closer to the
destination instead of immediately using multi-hop commu-
nication. This comes at the cost of higher end-to-end delays
for communication. Several WSN applications and network
management tasks can tolerate delays in the range of minutes,
hours or even days [12]–[15]. Given normal operational con-
ditions the energy distribution in the sensor field changes only
on a relatively large time scale. Therefore, the data collection
for constructing and updating the E-map can last longer, e.g.,
some hours. In this paper, we focus on attributes that do
not change suddenly or radically in magnitude and develop
novel delay-tolerant algorithms for collection of map data. Our
approach that we refer to gMAP, opportunistically, exploits
the mobility of some nodes for this collection. We show that
gMAP is highly efficient compared to approaches that base on
in-network aggregation. The gMAP approach presents also a
novel technique to construct G-maps from the collected data.
In this paper we focus on the example of E-map. However,
our algorithms are tunable and can be easily adopted to create
further maps such as temperature/humidity maps, provided that
the considered attribute has a long time relevance, i.e., changes
slowly over time.

The paper is organized as follows. After the discussion of
related work in Section II, Section III presents our system
model. Section IV presents our novel gMAP approach using



the example of E-maps. In Section V we evaluate our approach
and compare it to related work. We conclude the paper and
give some directions of future work in Section VI.

II. RELATED WORK

In cartography [16], isoline (also isopleth or contour) and
choropleth are the common types of maps. Isoline maps are
based on the assumption that, the phenomenon represented has
a continuous distribution and smoothly changes in value in all
directions of the plane. Contrary to isoline maps, choropleth
(or density shading) maps usually give a better impression of
spatial distribution. Therefore, the use of choropleth maps is
proposed for gMAP.

The naive approach to collect raw data for map construc-
tion would be if each node reports its value to the sink
using multi-hop communication. This is obviously inefficient.
Consequently, more efficient approaches have been developed
based on techniques such as in-network aggregation [6]–[8].
Other approaches use suppression mechanisms to reduce the
number of nodes reporting their raw readings to the sink [9],
[10], [17].

A. Aggregation-based Approaches

eScan [6] and isobar [7] are approaches based on polygon
aggregation. First, a request for energy values is flood to all
network nodes. This constructs an aggregation tree that can
be used to aggregate the energy values while being reported
by each node. The aggregation consists in grouping sensor
readings that meet a certain criteria (being geographically
adjacent and in the same value range). The outcome of the
aggregation is a list of (spatial) regions. A region is a polygon
that is defined by the line spanning its border nodes. At the
sink the aggregation results in an energy map delivered to the
user. The approach assumes that all nodes know their exact
position, which is a strong requirement on the WSN. Each
sensor propagates its position along with the energy values
for aggregation purposes. Furthermore, the sensor nodes (even
those that have critical residual energy level and especially
those closer to the sink) are main actors in map construction,
leading to higher processing and communication activities and
subsequently to a serious degradation of the network lifetime
and disturbance of the core functionality.

INLR [8] is an aggregation-based approach that focuses on
small scale WSNs. A sensor node sends its reading or the
calculated aggregate not only to its parent in the aggregation
tree but to all its neighbors that are 1-hop closer to the sink.
Therefore, nodes possess a partial map and the sink the global
map (choropleth). The knowledge of sensor node locations is
needed at the sink. While using more than one parent increases
the accuracy of the map, the efficiency is sacrificed.

B. Suppression-based Approaches

Isoline [9] is an approach based on localized isocluster
aggregation. The map building is reduced to the detection
of isolines. Neighboring nodes share their readings. A node
compares its reading with the readings of all neighbor nodes

and detects an isoline, when the readings lie in different sides
of a globally defined isoline. The detection of an isoline needs
to be reported to the sink by the closest neighbor to the sink.
The isocluster aggregation outperforms polygon aggregation in
terms of accuracy with minor energy savings. The locations
of all sensor nodes are needed at the sink.

Meng et al. [10] motivate the use of contour (isoline) maps
for efficient continuous monitoring in sensor networks. The
main contribution of this paper is the design of a temporal and
spatial local suppression mechanism that prohibits some nodes
to report their readings. The number of saved reports highly
depends on the spatial correlation between sensor readings.
Sensor nodes report their readings using multi-hop routing
without any in-network processing. The map is constructed
on the sink using interpolation and smoothing techniques. The
sink has knowledge about the position of all network nodes.

Iso-Map [17] also does not rely on in-network processing.
It uses a suppression mechanism to reduce the number of
nodes that report their readings to the sink using multi-
hop communication. This approach is very similar to that
of Isoline [9]. However nodes need to report the gradient
direction of the isolines, which requires excessive processing
on sensor nodes.

C. Our Contributions Compared to the Existing Approaches

Our gMAP approach uses a minimal number of messages
without sacrificing the completeness of sensor information.
This provides for high efficiency with respect to both energy
and bandwidth consumption. The gMAP approach does not
require that sensor nodes necessarily know their location.
In gMAP we decouple the collection of the sensor values
from the construction of the map, which results in minimal
processing on sensor nodes reducing the energy consump-
tion on them. Furthermore, gMAP charges all sensor nodes
similarly and contributes to the desired energy balancing in
WSNs. As mentioned earlier, our approach is independent
from the map’s attribute and can be used for further maps
with minimal changes. In fact many maps can be generated
simultaneously with a minor modification, i.e., nodes piggy-
back the different attributes values and reply with one message.
This only leads to a slightly larger communication overhead.
Also the gMAP’s overhead can be shared between several in-
stances interested for different maps. Our approach is resilient
to network partitioning, which increases the dependability
of the WSN, since monitoring tasks can continue reporting
the health of the network even if critical failures/situations
occur. gMAP replicates maps onto the sink and mobile nodes
which increases their availability for sensor nodes. Nodes
can postpone querying relevant global information till they
encounter a mobile node. By this way not only the map
construction is highly efficient but also its use.

III. SYSTEM MODEL

In this work, we consider the established mobile Wireless
Sensor Network (mWSN) model. This model is used in a
variety of WSN deployments, in particular in emergency



and military scenarios. The main functionality of the mWSN
is implemented by a large number of stationary resource-
limited sensor nodes (SN) that are deployed following either
an arbitrary or structured spatial distribution in the area of
interest. Also one dedicated stationary sink is selected as the
interface to the user. Additionally, a few mobile assist nodes
(AN) are deployed with generalized support roles such as (1)
application support (e.g., additional interface to users), (2)
functionality support (e.g., delay-tolerant data transport), and
(3) network support (e.g., diagnosis). The mobile nodes cover
a functional capability spanning robots, unmanned air vehicle
(UAV), etc. In this paper, we consider a mWSN composed of
N − 1 SNs, with one sink and one mobile AN.

We consider two major classes of mobility: Structured
mobility, i.e., predictable & controllable, and unstructured mo-
bility, i.e., unpredictable & uncontrollable. The AN possesses
high processing, storage and energy capabilities compared to
SNs. Furthermore, it has no energy limitations because it
can recharge its batteries by means of on-board renewable
energy resources [18] or through moving to recharging energy-
stations. We assume that SNs use the batteries as a main energy
source. These batteries continuously discharge following a
long-running process in the range of months or even years.
We consider that AN knows its position. For the SNs we
consider both cases: Either they know their position or not.
We assume that all deployed nodes are cooperating and that
no misbehaving nodes may exist.

For simplicity, we consider all nodes (AN and SNs) are
equipped with a conformal level of communication technology
and are able to communicate if they are in each others
transmission range R. We use a CSMA/CA based MAC layer,
where communication links are symmetric and bidirectional,
and collisions may occur. Furthermore, we assume that net-
work can get partitioned, i.e., some SNs may not be able to
communicate with the sink. We allow for the use of duty
cycles for SNs. However, we assume that the magnitude of
the movement distance covered by the AN during the time
period of a duty cycle is negligible and that the duty cycles
scheduler assures that all SNs in the AN’s transmission area
eventually receive the messages sent by the AN.

IV. EMAP: MOBILITY-ASSISTED ENERGY MAP
CONSTRUCTION

We now present our novel gMAP approach comprising new
algorithms to collect samples in a mobility-assisted way and
a new technique to construct maps. We use the E-maps as
an example, however, our methodology is generic and can be
easily adopted for other functionality maps. We refer to our
gMAP approach for E-maps by eMAP.

A. Overview of Approach

The main reasoning behind the eMAP approach to construct
E-maps is that battery depletion occurs over an extended
period of time and it is sufficient to check the battery level
at a daily or weekly basis. This shows that collection of
energy-based health indications is a delay-tolerant process,

which allows us to deploy established concepts from the delay-
tolerant networking research. Accordingly, the main design
principle for the eMAP approach is to exploit the mobility of
nodes to transport messages and collect information in a delay-
tolerant way, thus reducing the communication overhead.

We let the mobile AN scan the sensor field and collect
the energy information from each node it encounters. We are
using one single mobile AN for simplicity of communicating
the idea whereas a real implementation can consider multiple
nodes or some primary/secondary arrangements. The AN
sends a short beacon, on which nodes reply with their energy
value and optionally their position. We proceed progressively,
by first considering a structured scenario and then an unstruc-
tured one. For each scenario we consider both possibilities,
whether stationary SNs know their position or not, and design
appropriate algorithms to collect energy information. Overall,
we perform the following three steps. First, we develop a sam-
pling algorithm for a structured scenario, i.e., SNs are located
according to a pre-known topology (e.g., the grid topology)
and the mobility of the AN is predictable and controllable.
Second, we consider the same structured scenario, however
the SNs now do not know their positions and, therefore, reply
only with their residual energy values. Third, we consider
an unstructured scenario, where the mobility of the AN is
neither controllable nor predictable, and also treat both cases
concerning the position knowledge for SNs.

We also present an efficient technique for the mobile AN
to locally construct an appropriate E-map from the collected
energy samples. The technique is based on measuring inequal-
ities between neighboring samples and to group similar values
into a region. Therefore, we refer to our technique by regioning
(Section IV-C).

B. Energy Information Collection

We first classify the topological mWSN scenarios and
then present for each class a suitable information collection
algorithm.

1) Scenario Classification: In this work, we focus on two
extreme types of scenarios: Structured and unstructured. They
provide basic features to build realistic scenarios. In the
structured scenario we assume that the spatial deployment
of SNs is known a priori and that the mobility of the AN
is predictable and controllable (Fig. 1 (a)). Without loss of
generality, we consider the grid topology with a cell-size c.
We set the communication range to R =

√
2 ∗ c. In the

unstructured scenario the topology is unknown (e.g., random)
and the mobility of the AN is unpredictable and uncontrol-
lable (Fig. 1 (b)). We selected the commonly used random
waypoint mobility model as its high randomness maximizes
the unpredictability. Our main driver for the scenario selection
is the proof of concept in extreme scenarios. Furthermore,
in a realistic scenario the spatial deployment of SNs can be
partially structured and partially unstructured. The mobility of
the AN can be either controllable or uncontrollable and may
follow varied patterns.
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Fig. 1: Basic scenarios

2) Structured mWSN Scenarios: We now present a simple
algorithm to plan the movement of the AN and two algorithms
to efficiently collect the energy information of SNs.

We adopt a simple movement algorithm to control the
mobility of AN (Fig. 1(a)). The AN traverses the whole area
from top to bottom. It starts from top corner and continues
its movement straight forward till it reaches the border of
the sensor field. Then the AN moves downwards, changes
the direction and moves straight forward. This movement
pattern will continue till the AN encounters all SNs. After
moving 2 ∗ R distance the AN pauses for a small duration
to to collect information and than moves onwards. For arbi-
trary deployments, we will rely on the mature discipline of
motion planning and control. This discipline provides varied
algorithms for different environmental and functional con-
straints [19] [20]. An optimized movement algorithm should
generate the shortest movement path while covering all SNs
and taking into consideration the size of the sensor field and
the communication range R. One may also require that the
movement path ends at the sink in order to minimize the
communication overhead for transmitting the E-map to the
sink. We note here that for a given sensor field, the movement
speed of the AN directly affects the duration of the energy
sampling operation. Accordingly, the speed of the AN can be
adaptively fixed according to the desired sampling latency.

For the structured scenario, where SNs know their location,
we present the following data collection algorithm. The AN
performs a first snapshot by sending a REQ-beacon to all SNs
in its transmission area using a MAC broadcast. A SN replies
by sending a message containing its node-ID, location (loc)
and energy level Elev . In order to reduce collisions, nodes
schedule their reply for a random time trand between 0 and
a maximum value Tmax. The AN performs the subsequent
snapshot after moving for a distance of 2 ∗R, or on changing
the movement direction but after moving for a distance of 3∗c.
The optimal result of the collection operation is a set of N−1
elements with the following structure: {node-ID, loc, Elev}.

If SNs do not know their location, the AN can not assign
for each sample its accurate location. Since it is necessary

for the map construction that each sample is associated with
a location, we have to approximate the sample location, i.e.,
interpolation is needed. One possibility is to assign the position
of the mobile node at the time it initiated the snapshot to all
the samples of the corresponding snapshot. This leads to a
high concentration of the energy on the position of the AN.
Another possibility is that the AN assumes a certain spatial
distribution of nodes (e.g., uniform). Accordingly, the AN can
assign the received energy samples to selected positions in its
transmission area.

3) Unstructured mWSN Scenarios: In an unstructured sce-
nario the movement of the AN is neither controllable nor
predictable. We assume that the mobility of the AN eventually
covers the entire sensor field.

In the following, we present our algorithm to collect energy
information (Alg. 1). If the AN performs a snapshot, moves
2 ∗ R away without changing the direction, and performs a
second snapshot, then both snapshots are covering disjunct
areas. Subsequently, we let the AN perform a second snapshot,
only after moving 2 ∗ R from the location of the previous
snapshot. The information collection completes, when the
total WSN area is covered by all snapshots. We note that if
the AN changes its movement direction, then the snapshots
overlap and some nodes may receive redundant REQ beacons.
The major concern for SNs is to minimize the number of
messages to be sent or received. The AN is powerful enough
to send REQ beacons frequently. However the REQ beacons
are received by energy precious SNs. Therefore, we have to
minimize the number of unnecessary REQ messages sent by
AN. To avoid unnecessary snapshots, the AN maintains a his-
tory of snapshots {snapshotid, snapshotloc}. After moving
2 ∗ R from the location of the previous snapshot and before
performing a second snapshot, the AN uses the history to
calculate if the second snapshot has an additional coverage
higher than a fixed threshold coverage COVth%. Only in this
case the AN performs a snapshot. The value of COVth%
allows to investigate the trade-off between the number of
redundant REQ beacons and the sampling latency. Once the
AN scans the whole sensor field, the history of snapshots will
be flushed and a new round will be initiated by the AN. To
avoid unnecessary transmissions, SNs send information only
once in a round as presented in Alg. 1.

C. E-Map Construction

The prime goal of the map construction is to identify
inequalities of energy density. Expected is an E-map that
divides the sensor field into regions, which are indicators
of similar energy-densities. The input of the construction
algorithm is the collected residual-energy information and the
output is the map’s regions. The E-map is a geometrical/spatial
data structure (e.g., tree) which is easy to evaluate. The con-
struction operation has to satisfy some crucial requirements.
First, it should be easy to evaluate on the AN. Second, two
neighboring regions should have two ”sufficiently” different
energy densities. The map construction process is composed
of the spatial partitioning of the sensor field (space partition)



Algorithm 1 Collection Algorithm for Unstructured mWSN
1: /***** On Assist Node (AN) ******/
2: var HISTsnapshot

3: Initiate a new round roundid for sampling
4: AN: Do first snapshot: SEND REQ beacon with roundid

5: AN: STORE {snapshotid,ANloc} in HISTsnapshot

6: snapshotid + +
7: If AN has moved a distance of 2*R since previous snapshot do:
8: AN: CHECK HISTsnapshot

9: AN: Compute COVadditional from current ANloc and
HISTsnapshot

10: if COVadditional ≥ COVth then
11: AN: SEND REQ beacon with roundid

12: AN: STORE {snapshotid,ANloc} in HISTsnapshot

13: snapshotid + +
14: else
15: AN: Suppress REQ beacon
16: end if
17: AN: RECEIVE Emsg

18: AN: GOTO 7
19: /***** On Sensor Node (SN) ******/
20: SN: RECEIVE REQ beacon
21: if SN: new round then
22: SN: Schedule transmission between 0 < trand < Tmax

23: SN: SEND Emsg {ID, SNloc (optional), Elev}
24: else
25: SN: Suppress SEND Emsg

26: end if

and the fusion of the regions of similar residual energy values
(regioning).

For space partitioning, Voxel grid, triangulation (e.g.,
Voronoi or Delaunay), octree, k-d tree and BSP tree [21] can
be used. All these schemes, except the Voxel grid are depen-
dent from the input data. For this reason we select the simple
Voxel grid for space partitioning. The primitive parameter to
divide the sensor field is the size of smallest fragment of area,
i.e., grid-cell size or the partitioning resolution (r). The energy
density in the cell is the basis to form a region. Selecting r is
a crucial decision for creating the E-map. Depending on this
resolution a cell may contain more than one SN. We refer to
the residual energy value of one cell by the sum of the energy
values of all the nodes in that cell.

In order to merge the cells into regions (regioning), we
need to ascertain if neighboring cells have similar values for
residual energy. For this we need a technique to decide if
two neighbor cells can be merged or not. A first possible
technique is to use a metric to measure the inequality between
two neighboring cells. In the literature we identify several
inequality indices [22] that measure the inequality of a set:
Variance, entropy coefficients, Hoover coefficient, Coulter
coefficient, Gini coefficient etc. A second technique is to
use global classes. In the eMAP approach we rely on the
class-based technique for its simplicity and easy evaluation
on ANs. Furthermore, we are investigating the suitability of
other indices in ongoing work. The cells are classified into
a fixed number of classes depending on their energy density.
Neighboring cells are merged into the same region if they
belong to the same class.

In Alg. 2 we propose the pseudocode of our regioning
algorithm. This algorithm is based on searching and is inspired
by the region growing algorithm for image segmentation [23].
We assign a region-ID to any cell to start regioning. Then
we check if neighbor cells can be merged with this cell.
When we merge cells we assign the same region ID to them.
Once the neighbor cells are checked for merge, we will repeat
the process of cell merging for the neighbors that have been
successfully merged to the current region. After completing
regioning for the starting cell, all the other cells (which are
not assigned to a region) will form regions in the same way.
Hence we complete regioning for the whole WSN field.

Algorithm 2 Regioning
1: cell := structure{cellID, neighborList[], regionID=-1, energy-

Class}
2: grid := array of all cells
3: var currentRegionID
4: var currentRegion:= array of all cells with re-

gionID=currentRegionID
5: /********* regioning () *********/
6: regioning()
7: for each celli ∈ grid do
8: if celli.cellID > −1 then
9: next iteration

10: end if
11: celli.regionID=currentRegionID;
12: regionMaking(celli)
13: for each cellj merged with the region of celli do
14: regionMaking(cellj)
15: end for
16: currentRegionID++
17: end for
18: /***** regioning with the 8 neighboring cells ******/
19: regionMaking(myCell)
20: for each neighborCell do
21: if (myCell.energyClass = neighborCell.energyClass) then
22: neighborCell.regionID = myCell.regionID
23: end if
24: end for

We observe a trade-off between the accuracy and compre-
hensibility of the constructed map. The accuracy of the E-map
depends on the accuracy of energy information collection and
on the accuracy of regioning. Regioning accuracy is important
to comprehend node distribution. If the model provides such
a map that only the neighboring cells with the same energy-
level form regions, it becomes the most accurate region map.
It would be a worse map if regions consist of cells with highly
different energy densities.

The selection of the number of energy classes is crucial
since it allows for tuning the trade-off between map accuracy
and comprehensibility. It should take into account the range
of possible values and the level of inequality tolerated for
regioning. Selecting a higher number of classes provides for
higher map accuracy on the one hand but hardens regioning
and subsequently the comprehensibility of the map on the
other hand. A lower number of classes sacrifices accuracy
in order to provide for a better comprehensibility. However,
if the number of classes is too low, we merge cells with



high difference in energy densities. Thus, regioning weakly
reflects the energy spatial distribution. This results in an
erroneous map. Summarizing, the number of classes should
be appropriately selected to provide for the required trade-off
between accuracy and comprehensibility.

V. EVALUATION

In this section, we compare the message complexity, pro-
cessing complexity and data completeness of gMAP to that of
the existing approaches. We further provide simulation results
for map accuracy and comprehensibility.

A. Comparison to Related Work

We compare the performance of the gMAP approach with
that of the naive (NAIVE), aggregation-based (AGG) and
suppression-based (SUP) approaches. We are mainly interested
in the message and processing overhead on SNs, since this
determines their energy consumption concerning map con-
struction. For the sake of simplicity we consider the structured
scenario with a

√
Nx

√
N grid topology, the sink in the corner

and a communication range of R =
√

2 ∗ c as depicted in
Fig. 1(a) to derive analytical results.

In the NAIVE approach every node sends one message
directly to the sink through multihop unicast. We assume
a perfect shortest path routing for simplicity. Relying on
Fig. 1(a), one node that is located on the border of the WSN
k ∗ c far away from the sink requires k transmissions to send
one message via multihop. For the grid topology, there are
2k + 1 nodes that need k transmissions to send a message to
the sink. Therefore, the total number of message transmissions
needed for the NAIVE approach is computed as follows:

#MSGNAIV E =

√
N−1∑

k=1

(2k + 1)k

= 2 ∗
√

N−1∑

k=1

k2 +

√
N−1∑

k=1

k

= 2
(
√

N − 1)(
√

N)(2
√

N − 1)
6

+
(
√

N − 1)(
√

N)
2

=
1
3
(2N1.5 −N + N0.5)

Therefore
#MSGNAIV E = O(N1.5) (1)

The AGG approaches are based on convergecast communi-
cation. The message complexity of the in-network aggregation
depends on the aggregation level of reported data, i.e., how
many nodes aggregate the received data messages and how
many nodes just forward them. According to [24] the upper
and lower bound for the message complexity of aggregation,
and consequently of AGG approaches, is given by:

N − 1 ≤ #MSGAGG ≤ (N − 2) ∗ d + 1 (2)

where d is the diameter of the network graph. These bounds
are independent from the topology and from the location of

the source. For the structured scenario (Fig. 1(a)), obviously
d =

√
N . Therefore, an upper-bound for the AGG message

complexity is
√

N(N − 2) + 1.
In SUP approaches nodes behave like the naive approach,

however some nodes are prohibited to send their messages to
the sink. Depending on the efficiency of suppression a fraction
of N, say x%, of nodes will not transmit their messages. Taken
this into account and given Eq.(1) the optimal complexity of
SUP approaches (conform to [17]) is:

#MSGSUP = O(N0.5) (3)

The communication model of our approach is single hop
unicast. Assuming perfect suppression of redundant energy
transmissions, each SN sends one single message for the
mobile node, the message complexity of gMAP is then exactly:

#MSGgMAP = N − 1 (4)

We note that if gMAP would use the spatial suppression mech-
anisms provided by SUP approaches the message complexity
becomes the minimal among all existing approaches. However
spatial suppression would sacrifice the data completeness.

The message size for the gMAP, SUP and NAIVE ap-
proaches remains constant during the collection of energy
information. However the AGG messages get larger as they
are transported towards the sink. The result is that the AGG
approaches lead to higher energy consumption on nodes closer
to the sink, which results in an unbalanced energy consumption
in the network. Furthermore, the closer the nodes to the
sink, the more complicated the aggregation operation becomes,
which leads to even more overuse of the nodes closer to the
sink. SUP approaches rely on dedicated nodes that report their
readings to the sink, this also leads to unbalanced energy
consumption among nodes. The gMAP approach provides
however for a balanced use of resources on nodes with respect
to energy and processing.

AGG has an additional overhead to construct and maintain
the aggregation tree. SUP requires an additional overhead to
select the reporting nodes. Also gMAP has a supplementary
overhead resulting from the short beacons sent by the AN. The
gMAP related overhead for the SNs consists only in receiving
these beacons. However, we designed a suppression mecha-
nism that minimizes the number of unnecessary snapshots.

We rely on the results in [17] and the above discussion
to summarize in Table I the message complexity, processing
complexity and the collection completeness for the gMAP as
well as the existing approaches.

The investigation above proves that the gMAP approach
provides for the minimal processing complexity and for a
relatively low message complexity while keeping the data
completeness maximal. This comes out at the cost of higher
end-to-end latency, which is not a concern for the delay-
tolerant energy-information collection.

B. Simulation

We first describe our simulation settings. Then we define
the evaluation metrics based on which we present our results.



Approach Message Process. Max. data Latency
complex. complex. completeness

isobar [7] O(N) O(N) < 100% ∼ sec
eScan [6] O(N1.5) O(N4) 100% ∼ sec
INLR [8] O(N1.5) Ω(N1.5) 100% ∼ sec
Isoline [9] O(N0.5) O(N) <100% ∼ sec
Meng [10] O(N) Ω(Nd) <100% ∼ sec
Iso-Map [17] O(N0.5) O(N) <100% ∼ sec
gMAP N − 1 O(1) 100% ∼ hr

TABLE I: Comparison with existing approaches

1) Simulation Settings: We use Tossim [25] and its Tython
extension for network simulations, and Matlab for map con-
struction. Tossim is an event-driven simulation tool widely
used in the WSN community. We have used the disc radio
model provided by Tossim with 5 units communication range.
All nodes lying in this communication range communicate
without errors and have symmetric links. Although collisions
may occur. We have considered 225 SNs either generated
randomly in the area of 42 unit x 42 unit or in a grid
topology of 15 x 15 (cell size c = 3 units) including sink.
The AN moves either in controlled fashion (with pause time of
t0 = 3sec) or according to the random-waypoint model using
a constant speed of 1 unit/sec. SNs use Tmax = 500ms as
a maximum time to schedule their replies to REQ beacons.

Nodes initially have energy values following an arbitrary
distribution. In this work we use the distribution depicted in
Fig. 2(a). The choice of space partitioning resolution (r) is
critical. Intuitively a good choice is D ≤ r ≤ R, where D
is the average distance between two neighboring SNs. For the
structured as well as the unstructured scenarios (225 nodes and
42 x 42 units area), simulations with different r values showed
that r = 3 units allows for the most comprehensive E-map.
This is about the average distance between two neighboring
SNs in the structured scenario.

2) Evaluation Metrics: The performance of constructing
global maps is commonly measured with respect to its com-
pleteness, efficiency and regioning accuracy.
• Collection Completeness: The ratio of nodes whose val-

ues are collected by the AN to the total number of SNs.
• Collection Efficiency: To measure collection efficiency we

consider the number of energy messages per SN, i.e., the
ratio of total number of energy messages sent by SNs
to the number of SNs that received a REQ-beacon. We
also consider the number of snapshots as overhead since
it implies the reception of beacons by the SNs.

• Region Accuracy: To evaluate the regioning accuracy we
compare the E-map constructed by the AN with the
perfect E-map, i.e., the map constructed from complete
energy information.

3) Results: The results of our simulations are summarized
in Table II. We observe that the completeness of energy
information is close to but lower than 100% in both scenarios.
In structured scenarios, this is due to MAC collisions. In
unstructured scenarios, besides collisions, mobility leads to

Structured Unstructured
COVth=70% COVth=90%

Completeness 94.66% 88.4% 81.3%
Efficiency 1.0 1.0 1.0
#Snapshots 25 61 43
Latency [min] 5 40.71 39.25

TABLE II: Simulation results for gMAP

fast topology changes and therefore to additional message
loss. We observe that lower COVth values provide for higher
completeness at the cost of higher number of snapshots. This
is due to the fact that if COVth is increased higher overlaps
between snapshots is tolerated. After sufficient number of
snapshots, the additional coverage will not be able to be
higher than COVth and no further snapshots are possible
although some nodes have not received a REQ beacon. This
results in higher efficiency (limited number of snapshots) but
the completeness of collected information may suffer. The
efficiency is 1.0 in both scenario, given the fact that nodes
that receive a REQ beacon respond with one single message
per collection round, irrespective of AN received it or not. This
shows the reliability of our temporal suppression mechanisms
that is based on rounds. The latency of gMAP is as expected in
the range of minutes to hours. The latency for data collection
in unstructured scenarios is higher than that in structured
scenarios. This is due to the fact the movement of the AN is
random implying that more time is needed to cover the sensor
field. Generally, these simulation results confirm the analytical
results presented in last section and prove the gMAP efficiency.

Given that energy levels are between 0 and 100%, and as it
is likely to tolerate 10% difference within the single region, we
use for regioning 10 classes of energy levels. Fig. 2(a) shows
the isolines of the considered energy distribution. We use this
map as a reference and compare different E-maps generated by
our approach. In Fig. 2(b) we show the perfect choropleth E-
map of the structured scenario. Obviously choropleth is more
expressive and comprehensive than the isolines. In Fig. 2(c)-
(d) we show the E-maps constructed by the eMAP approach
for structured scenarios. If nodes reply with their exact po-
sitions, the E-map (Fig. 2(c)) is very similar to the perfect
map (Fig. 2(b)). The difference is due to the incompleteness
of data which is presented by white cells in the E-map.
This proves the high accuracy of our regioning algorithm. If
nodes do not know their positions, the accuracy of the E-map
suffers (Fig. 2(d)). Although the regioning algorithm detects
the major regions which are comparable to Fig. 2(a). Overall
the resolution of the E-map is low since we are using a low
number of nodes.

For unstructured scenario the perfect E-map is shown in
Fig. 3(a). This perfect map looks different from Fig. 2(b) due
to the fact that in this scenario the nodes are not uniformly
distributed, which results in holes in the perfect map. Fig. 3(b)-
(c) represent the E-maps constructed by our approach for
COVth = 70% and for the considered unstructured scenario



(a) Perfect isoline E-map (b) Perfect Choropleth E-
map

(c) Structured with loca-
tion

(d) Structured without
location

Fig. 2: Accuracy of eMAP (structured scenario)

(a) Perfect E-map (b) Unstructured with
location

(c) Unstructured with-
out location

Fig. 3: Accuracy of eMAP (unstructured scenario)

(worst case). If nodes reply with their exact locations the
constructed E-map is depicted in Fig. 3(b). Despite node
density variations the regioning algorithm detects the major
regions which are comparable to Fig. 3 (a). The difference is
due to the incompleteness (88.4%) of energy information. If
nodes do not know their locations (Fig. 3 (c)), the accuracy
of the E-map decreases. The magnitude of this degradation is
a function of the ratio of communication range to the sensor
field size. As G-maps are more suitable for large scale WSNs,
we are convinced that gMAP will provide for high accuracy
also in the case where nodes do not know their locations.

VI. CONCLUSION AND FUTURE WORK

We have presented gMAP, an extremely energy-efficient
methodology that collects data of interest from the WSN and
presents its geographical distribution as a map. Our approach
is opportunistic as it exploits existing node mobility to collect
data. Being mobility-assisted the collection process lasts for
the time that mobile entities need to scan the whole sensor
field. Therefore, data should be of high time relevance, i.e., do
not change suddenly or radically in magnitude. As an example

we focussed on the map of residual energy (E-map) since the
battery depletion is a long-running process. Considering two
extreme scenarios, i.e., structured and unstructured, we showed
the efficiency and the accuracy of our gMAP approach.

In ongoing work, we are investigating update strategies to
keep the map consistent over the network lifetime. For a
generalized WSN scenario, we are convinced that aggregation-
based, suppression-based and mobility-assisted strategies must
co-exist to provide for high efficient and accurate global maps.
We also want to use the global maps to enhance functionality
and dependability of WSN. In particular we are investigating
the use of energy maps to predict network partitioning.
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