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Abstract

Broadcasting is a commonly used communication primitive needed by many appli-
cations and protocols in mobile ad hoc networks (MANET). Unfortunately, most
broadcast solutions are tailored to one class of MANETSs with respect to node
density and node mobility and are unlikely to operate well in other classes. In this
paper, we introduce hypergossiping, a novel adaptive broadcast algorithm that com-
bines two strategies. Hypergossiping uses adaptive gossiping to efficiently distribute
messages within single network partitions and implements an efficient heuristic to
distribute them across partitions. Simulation results in ns-2 show that hypergos-
siping operates well for a broad range of MANETSs with respect to node densities,
mobility levels and network loads.

Key words: MANET, adaptive broadcast, network partitioning

1 Introduction

Mobile ad hoc networks (MANETS) are networks formed on-the-fly by mobile
nodes equipped with short range communication capabilities. Such networks
are suitable for scenarios where an infrastructure is unavailable and communi-
cation must be deployed quickly, e.g. in disaster-rescue or military scenarios.
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MANETS also suit well for scenarios where infrastructure is costly. For exam-
ple an infrastructure to monitor road traffic jams and to warn drivers may
be expensive, so authors in [1] suggest to exploit ad hoc communication to
form vehicle ad hoc networks and to aggregate speed information to recognize
traffic jams.

Broadcasting is a common communication mechanism in MANETSs. It is fre-
quently deployed for news spreading (such as alarms and announcements),
for resource discovery and advertisement (such as topology discovery and
maintenance [2]), and for sensor data dissemination (such as data aggrega-
tion [1] and consistency update propagation [3]). Some broadcast applications
require timeliness such as route discovery for on-demand routing protocols.
Other broadcast applications tolerate higher delays in range of seconds, min-
utes or even hours depending on the semantic of data. Examples of these
delay-tolerant applications are spreading of announcements (e.g. usenet-on-
the-fly [4]) or propagation of updates that do not change frequently (e.g. room
temperature).

Flooding is a common approach to realize broadcasting in MANETSs because
of its topology independence. In flooding-based approaches nodes forward a
received message to all their neighbors. Subsequently, all nodes within the
network should receive the message.

But flooding exhibits some serious problems. At the two extremes we can con-
sider dense MANETSs and sparse MANETSs with respect to the node density,
i.e. the number of nodes operating in a given area. While dense MANETSs
encounter so-called broadcast storms [5], where collisions on the Media Ac-
cess Control (MAC) layer extinguish broadcast messages, sparse MANETS are
challenged by frequent network partitioning [6], where messages do not reach
every node in one flooding round. Two common strategies can be applied
to conquer these extreme cases. First, selective strategies, e.g. gossiping [7],
cause only a subset of nodes to forward a message reducing the probability of
broadcast storms. Second, selective repetition of broadcasts, e.g. hyperflood-
ing [8-10], can be used to overcome network partitions.

Most broadcasting techniques are unfortunately tailored to one class of MA-
NETs and are likely not to operate well in other classes. Our main objective
is to provide an adaptive broadcast algorithm for a wide range of MANET
operation conditions. The main contribution of this paper is hypergossiping,
a novel generalized broadcast mechanism that combines two strategies and
provides a configuration depending on the local density of a node, reflected by
the number of its neighbors. Using simulation results we show that hypergos-
siping can be deployed in a wide spectrum of MANETSs with respect to node
densities, mobility levels and network loads.



The remainder of this paper is organized as follows. The next section describes
the system model and the requirements on a generalized broadcast strategy
for MANETSs. In Section 3 we discuss the related work. Section 4 introduces
our generalized broadcast strategy, i.e. hypergossiping. In Section 5 we first
define the simulation model and the evaluation metrics, then we calibrate
the parameters of hypergossiping, evaluate it and compare it to related work.
Section 6 summarizes the paper and gives an overview of ongoing and future
work.

2 Preliminaries

This section briefly presents the underlying system model of our approach.
Based on the characteristics of the system model we derive some important
requirements on our generalized broadcast algorithm.

2.1 System Model

In this work, we consider MANETSs that are formed by mobile nodes of sim-
ilar communication capabilities (communication range and bandwidth). We
assume nodes have no knowledge about their position or speed. The MANET
may show very heterogeneous spatial distribution of nodes, from locally very
sparse to very dense, and very heterogeneous node mobility pattern, from low
mobile to highly mobile. We assume that devices do not change their trajec-
tories for communication purposes like in [11].

Broadcast data has typically a temporal and spatial relevance [12]. Broadcast
algorithms have to consider this spatio-temporal relevance while broadcasting.
In this paper, we consider only the temporal relevance of data and assume that
information becomes irrelevant after a certain period of time, i.e. its lifetime.
Lifetime is application dependent and may be in the range of seconds, minutes,
or even hours.

2.2  Requirements

Based on the system model we present some important requirements on our
generalized hypergossiping algorithm.

Because node density heavily influences the performance of broadcasting, and
MANETSs may show a wide range of node densities, the first requirement on a
generalized broadcast strategy for MANETS is to adapt to the density of the



network, in order to reduce broadcast storms and overcome network partition-
ing. Since global state in MANETS is hard to obtain and spatial distribution
of nodes may change continuously, the second requirement on such a strategy
is that nodes independently adapt to local MANET characteristics. Finally,
different instances of the adaptive broadcast strategy have to interoperate in
order to deliver messages through the network where different instances are
present due to heterogeneity of density.

3 Related Work

The design of broadcast algorithms is a fundamental problem in MANETSs and
several broadcast protocols have been proposed in the literature. In [13], [14]
and [15] the authors provide three comparative studies for the existing broad-
casting techniques. [14] classifies broadcasting schemes into heuristic-based
and topology-based. [13] subclassifies heuristic-based class into probability-
based and area-based. We categorize all these protocols into adaptive and
non-adaptive protocols.

3.1  Non-Adaptive Broadcast Algorithms

Non-adaptive heuristic-based protocols use heuristics with predefined fixed pa-
rameters to reduce broadcast storms. They do not adapt to the time-varying
MANET situations that show quite different levels of broadcast storms. Exam-
ples of non-adaptive probability-based schemes are gossiping [5,7] and counter-
based [5]. Examples of non-adaptive area-based schemes are location-based [5]
and distance-based schemes [5].

Non-adaptive topology-based protocols (e.g. Multipoint Relaying Broadcast-
ing [16], Connected Dominating Set Based [17,18], Minimum Forwarding Set
Based [19], deterministic broadcast [20], generic self-pruning [21], LENWB
[22], and SBA [23]) require an accurate topology information which is hard
to acquire in highly mobile environments and due to collisions. That is why
these protocols perform poorly in terms of delivery ratio for highly mobile
scenarios [13] [15] or highly congested ones.

The common drawback of all these broadcasting techniques is that they are de-
veloped for unpartitionable MANETS, and subsequently break in partitioned
ones. Summarizing we conclude that all these schemes are optimized for spe-
cific scenarios and do not support a broader range of MANET situations.



3.2 Adaptive Broadcast Algorithms

In order to suit non-adaptive broadcast schemes to a broader range of opera-
tion conditions, some of them have been adapted to local MANET character-
istics. The basic idea of adaptive topology-based approaches is to better man-
age node mobility for the purpose to avoid stale topology information [24,25].
Adaptive heuristic-based protocols however adapt the heruristic to the number
of neighbors [25,26].

In [24] authors proposed to use two different communication ranges for topol-
ogy management and for data transmission. They recommend to select a
shorter range for topology management and to adapt the difference between
the two ranges to node mobility, which requires speed information. In [25]
the authors proposed one adaptive topology-based scheme, called neighbor-
coverage scheme (NC). The authors adapted the NC scheme by adjusting
dynamically the HELLO interval to node mobility reflected by neighborhood
variation, so that the needed 2-hop topology information gets more accurate.
Despite these optimizations, the adaptive topology-based schemes still have
the main drawback that neighborhood information may be inaccurate in con-
gested networks.

In [25] the authors also proposed two adaptive heuristic-based schemes, called
adaptive counter-based (ACB) and adaptive location-based (ALB). Using a
simulation-based approach the authors derived the best appropriate counter-
threshold and coverage-threshold for ACB respectively ALB as a function of
the number of neighbors. The authors showed that these adaptive schemes
outperform the non-adaptive schemes and recommend ACB if location infor-
mation is unavailable and simplicity is required. We will compare our strategy
to ACB. [26] introduced the density-aware probabilistic flooding. Nodes use
the following forward probability: p = min{1,11/n}, where n is the number
of neighbors. We will also compare our strategy to this scheme.

Although the above adaptive schemes support a broad range of dense MA-
NETSs, they still show poor delivery ratio in partitioned ones.

The first step towards a single solution for all MANET situations was an inte-
grated scheme presented in [9,10]. We refer to this scheme as integrated flood-
ing (IF). Nodes switch at run-time between three flooding schemes, namely,
plain flooding, scoped flooding, and hyperflooding. Authors recognize mobility
as main cause of broadcast partitioning [27] and switch between these schemes
according to the relative node mobility [9]. To this end, nodes include velocity
information (speed and direction) in HELLO beacons. If a node has a current
value of relative velocity to its neighbors higher than a high_threshold the node
switches to hyperflooding mode. If the relative velocity is below low_threshold,



scoped flooding is used. Otherwise, the node switches to plain flooding. Alter-
natively the same authors suggest in [10] that IF switches between the three
schemes based on network load. Authors use MAC layer collisions as an indi-
cator of network load. If a node has a current number of collisions higher than
a high_threshold the node switches to scoped flooding mode. If the number
of collisions is lower than low_threshold, hyperflooding is used. Otherwise, the
node switches to plain flooding. The authors however do not mention how
to combine both switching criteria. Furthermore these switching criteria may
lead to opposite decisions. For example, in low mobile networks with low traf-
fic, the relative velocity based switching would install scoped flooding, but the
network load based switching would install hyper-flooding. For these reasons
and because we mainly focus on wide ranges of network conditions concerning
node density and node mobility and less concerning network load, we consider
in this paper only the relative velocity based switching criteria for IF.

To the best of our knowledge, IF is the single existing adaptive MANET
broadcast protocol that considers both connected and partitionable networks.
Unfortunately, IF shows the following three drawbacks. First, hyperflooding
deploys a very simple broadcast repetition strategy, i.e. on each discovery of
a new neighbor, all cached packets are re-transmitted. If the buffering time
of packets is high, this strategy leads to a high number of useless but costly
broadcast repetitions in highly mobile networks. If the buffering time is low,
the strategy shows a poor delivery ratio in low mobile and partitioned net-
works. Second, scoped flooding uses a predefined forward threshold, which
makes IF less efficient than the above adaptive schemes in highly dense sce-
narios. Third, relying on velocity information presents a strong limitation of
the deployment of IF. In Subsection 5.6, we compare our solution to IF.

4 Hypergossiping (HG)

In this section, we first state the problem using a motivation scenario, and
then present our generalized solution fulfilling the requirements above. Hy-
pergossiping provides an adaptive broadcast strategy combining a selective
flooding strategy, so as to reduce broadcast storms, and a repetition strategy,
in order to overcome network partitioning. In contrast to IF, which adapts to
node mobility, hypergossiping uses the local node density as the main criteria
for adaptation.



4.1 Problem Statement

In the following we present a motivation scenario and mention the problems
that our approach has to deal with. We consider the pedestrian scenario in
Fig. 1, where a source node S broadcasts data, which we assume to remain
relevant after time ¢5.

At time t; we observe three partitions {S,A,B,C}, {X,Y,Z} and {M}. The
main reason for this network partitioning is the lack of a (multihop) MAC-
link between the source node and some destination nodes. This happens if the
spatial distance between nodes is larger than the communication range or if
obstacles are situated between nodes and prohibit them to communicate. Now
we assume that a heuristic-based or a topology-based scheme is implemented
for broadcasting. If S initiates a broadcast at time ¢;, it sends the packet to
all its neighbors using MAC broadcast. Receivers of this packet or a subset of
them (e.g. A) may MAC broadcast this packet to their neighbors. We say node
A forwards the packet. By this way the broadcast reaches nodes A, B and C
but does not reach the nodes X, Y, Z, and M. At time ¢ the partitions {X,Y,Z}
and {M} join the partition {S,A,B,C}, and the MANET becomes connected. If
node A has buffered some still-relevant messages, A should share them with X.
If node A repeats the forwarding of buffered messages, we say A rebroadcasts
these messages. Similarly S has to rebroadcast its buffered messages to M. If
node X relays the received messages to its neighbors Z and Y, we say also that
X rebroadcasts these messages.

obstacle

O

time t; time t,>t,
(a) MANET is partitioned (b) MANET is connected

Figure 1. Problem statement

Besides network partitioning, broadcast storms may stop the broadcast to
continue progressing. For example, if S and C start to transmit simultaneously,
collisions may happen at A and B. In this case, the broadcast of S extinguishes
at the source and S should rebroadcast the message.



Due to the lack of a global view on the MANET, it is challenging to detect
partition joins and to rebroadcast the appropriate messages. In the following
we present our novel approach.

4.2 Approach

In general we can consider a MANET as a set of partitions, which may join
or split over time. Thus, we decide to superpose the following two strategies
to realize hypergossiping. The first strategy allows an efficient broadcasting
within a single partition of the MANET. We refer to this strategy as ”intra-
partition forwarding” (Fig. 2 a)). The second strategy permits an efficient
broadcast repetition on partition joins. We call this strategy ”broadcast rep-
etition”. To this end nodes have to buffer messages during their lifetime and
have to rebroadcast these messages or a subset of them on partition joins.
After broadcast repetition the first strategy can continue to distribute the
message to the joining nodes (Fig. 2 b)). Depending on the mobility of nodes,
the node spatial distribution and the lifetime value, messages will succeed to
other partitions or not.

a) Forwarding

— Forward
---+ Rebroadcast

repetitipn O
(rebroadcst)O A Intrapartition

‘ 5 /0 foryarding
.. (rebrpadcast)

b) Rebroadcasting

Figure 2. Approach

In our approach, we assume that each node stores the list of IDs of messages re-
ceived or originated with their remaining lifetime in a so-called broadcast_table.
Thus nodes are able to decide, whether a received copy of a given message is
the first one. Nodes continuously decrement the lifetimes of received packets.
Nodes purge entries from the broadcast_table and possibly from the buffer,
when the correspondent lifetime expires. When a message is forwarded or re-
broadcasted, the remaining lifetime is included in the message.



4.3 Intra-Partition Forwarding

The analysis of the broadcast storm problem [2] suggests gossiping or proba-
bilistic flooding, thus we chose gossiping for intra-partition forwarding.

On receiving the first copy of a given message, gossiping forwards or rebroad-
casts the message, with a probability p, to all nodes in the receiver’s commu-
nication range. In order to reduce broadcast storms while gossiping, we follow
a couple of strategies. First, nodes delay each intra-partition forwarding for a
random time between 0 and fDelay, which reduces collisions. Second, we adapt
the gossiping probability p to the node’s current number of neighbors, which
reduces forward redundancy, contention, and collisions. For this purpose nodes
acquire the number of their neighbors by means of periodic HELLO beaconing.

4.4 Broadcast Repetition

The common strategy to overcome partitioning is the repetition of forwarding,
i.e. rebroadcasting. For this purpose nodes need two mechanisms; one to detect
when to rebroadcast and a second to decide what to rebroadcast. In the fol-
lowing we introduce our novel partition detection heuristic and rebroadcasting
protocol.

4.4.1 Partition Detection

We let nodes share with their neighbors the IDs of recently received or locally
originated packets. We call this list ”Last Broadcast Received” or LBR (Fig.
3). The rational behind this is that two neighboring nodes that belong to the
same partition should have received the same broadcasts that had taken place
in this partition. By this means nodes are able to conclude whether they are
populating the same partition. If a node receives an LBR that ”sufficiently”
differs from its own LBR, the node can conclude with a certain confidence
that it is joining a new partition. We denote the maximum allowed size of
an LBR by mazLBRlength. Nodes trigger rebroadcasting, only if the overlap
between received LBR and own LBR does not exceed a given percentage of the
own LBR. We denote this percentage threshold by ”intersection threshold”
(IS_threshold). In order to provide an accurate detection of partition joins,
maxL.BRlength and IS_threshold have to be dimensioned appropriately. In
Subsection 5.4 we show how we calibrate maxLLBRlength and IS_threshold.

The above strategy is suitable to detect both causes of broadcast interruption:
Network partitioning and broadcast storms. First, if two partitions say P1
and P2 join, some nodes of partition P1 will receive LBRs from other nodes



belonging to the formerly partition P2. In this way nodes are able to detect
the join event. Second, if a broadcast stops to progress within a partition due
to collision or contention, nodes that received the broadcast may detect this
on receiving the LBR of one neighbor that has not yet received the packet.

Our strategy is also suitable for MANETS, where nodes may disappear and
appear due to put-on-off or reboot. These nodes miss broadcasts taking place
while they are unavailable. If a node appears, its LBR-list is empty. Therefore,
a neighboring node, whose LBR list is empty, is able to detect this kind of
partitioning.

In order to save bandwidth, nodes exploit the existing HELLO beaconing to
share their LBRs. Exchanging the LBRs is only necessary if a new neighbor is
detected. Thus we do not include the LBR in each HELLO beacon but only
in that beacon that just follows the discovery of a new neighbor. This delays
the broadcast repetition until the next discovery of a new neighbor, in case of
broadcast interruptions caused by broadcast storms.

4.4.2  Rebroadcasting

To allow rebroadcasting nodes should buffer messages that need to be rebroad-
casted. If not otherwise stated, we assume that nodes buffer all received and
originated messages during their lifetimes, i.e. m = n in Fig. 3.

A node triggers rebroadcasting by MAC-broadcasting a list of the broadcast
IDs the node has received yet. We call this list ” Broadcast Received” or short
BR (Fig. 3). Thus neighbors know which packets the sender has already re-
ceived and can select from buffer the packets that missed this sender. On
receiving these new packets the sender gossips them, so they can reach all
joining nodes. To increase rebroadcasting efficiency nodes do not rebroadcast
immediately upon the reception of BR list(s), but schedule the rebroadcast-
ing for a random time between 0 and rDelay. Nodes cancel rebroadcasting, if
one neighbor starts to rebroadcast before the scheduled time. To reduce the
probability of collisions nodes do not rebroadcast all packets at once but wait
a random time between 0 and fDelay before rebroadcasting the next packet.

The pseudo-code description for hypergossiping is given by Algorithm 1. We
denote by card(X) a function that returns the number of elements of set X,
and by random(z) a function that returns a random float value € [0, z].
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Algorithm 1 Hypergossiping (HG)

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:

23:
24
25:
26:
27:
28:
29:
30:

31:

32:
33:
34:
35:
36:
37:
38:

Var: p, fDelay, [S_threshold, maxLLBRlength, lifetime, rDelay
List: myLBR, myBR, broadcast_table
__ On receiving a message (msg) M
e if M is DATA do gossiping(p):
if M is received for the first time then
deliver M
insert {M.ID, remaining lifetime} to broadcast_table
insert a copy of M to buffer
if myLBR.length < maxLBRlength then
insert {M.ID} to myLBR
else
use FIFO to insert M.ID to myLBR
end if
if random(1.0) < p then
wait (random(fDelay))
send M to all neighbors
end if
else
discard M
end if
e if M is HELLO with LBR do partition detection:
is < card(myLBR N recvLBR)/card(myLBR)
if is < IS_threshold then
send BR to neighbors
end if
e if M is HELLO with BR do rebroadcasting;:
set timeout <= random(rDelay)
On receiving a DATA msg with ID € (myBR — recv BR) before timeout:
exit()
On timeout:
for all buffered msg M with ID € (myBR — recvBR) do
wait(random( f Delay))
rebroadcast M
end for
On discovering a new neighbor
insert myLBR to next HELLO beacon
On expiration of lifetime of msg M
if M € buffer then
delete M from buffer
end if
if M.ID € myLBR then
delete M.ID from myLLBR
end if
delete the entry {M.ID, remaining lifetime} from broadcast_table
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broadcast_table LBR buffer

M1.ID!i t1 M1.1D M1
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Figure 3. Definition of BR, LBR and buffer

5 Performance Evaluation

In this section, we introduce the simulation model and define our performance
evaluation metrics. Afterwards, we study the performance of hypergossiping
and compare it to related work.

5.1  Sitmulation Model

For evaluation we use the network simulator ns-2 [28]. The implementation of
the physical and the MAC layer relies on the IEEE 802.11 standard. We use
for the physical layer the TwoRayGround propagation model. We generate N
mobile nodes in a 1000mx1000m field, where these nodes move according to
the random waypoint mobility model. We set min speed equal to max speed in
order to prevent the speed decay effect described in [29]. Table 1 summarizes
the simulation parameters of our experiments, which show a wide range of
node densities and node speeds.

As mentioned above, nodes get neighborhood information using HELLO bea-
coning. For all simulations in this work we use a random beaconing period
between 0.75s and 1.25s. A neighbor is removed from neighbor list, if during
2s no beacon is received from this neighbor.

We use the following communication load model: At the beginning of the
simulation s from N nodes initiate broadcasting at a random time between
1 and 3 s, and continue to send packets with a constant packet rate. This
load model is suitable for the different application scenarios mentioned in the
motivation, where data sources may send updates with a frequency that ranges
from one update every hour to one update every second. A room-temperature
sensor may trigger an update of the room’s temperature every hour, since
the temperature normally does not vary so frequently in rooms. But a vehicle
has to trigger an update of its speed more frequently in order to allow jam
recognition on the highway [1]. That is why we assume that packet rates
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Parameters

Value(s)

Simulation area

1000m x 1000m

Number of nodes

N in {50, 100, 200, 300, 500}

Com. range R = 100m
Bandwidth r =1 Mbit/s
Data packet size 280 bytes

Movement pattern

- Max(=min) speed

Random Waypoint
-vin {0, 1, 3, 5, 12.5, 20, 30} m/s

- Pause - Uniform betw. 0 and 2s
fDelay 10ms

rDelay 10ms

Lifetime [5 .. 1800] s

Packet rate

[0.001 .. 1] packet/s

Table 1

Simulation parameters

ranging from 0.001 packet/s to 1 packet/s cover a wide range of our operation
scenarios. We use a fixed lifetime value during a simulation, i.e. all senders

use the same lifetime for all packets they generate.

For the performance evaluation we consider the first s packets generated, the
following packets generate a background traffic. Simulations stop some seconds
after the lifetimes of the first s packets expire. For the same simulation scenario
we ran 10 passes with 10 different movement traces and considered the average.

5.2  Ewaluation Metrics

For the evaluation of broadcast protocols the following metrics are typically

used:

e REachability (RE): the ratio of mobile nodes receiving the packet to the
total number of mobile nodes. This metric measures the delivery reliability

of the broadcast algorithm.

e MNF(R): Mean Number of Forwards (and Rebroadcasts) per node and
packet. MNF(R) in combination with RE is an efficiency metric of the

broadcast algorithm.
e Delay: Average end-to-end delay over all receivers.

13




Metric Symbol | Value
Gossiping

REachability GRE | = cardiC))
Mean Number of Forwards MNF = %Nomw)
Average end-to-end delay over | delay = m Yicr@)(ti —ts)
all receivers

Hypergossiping
REachability HGRE | = crdiHG)
Mean Number of Forwards | MNFR | = Card(Reb)Jr]‘i?rd(Forwd)
and Rebroadcasts
Aﬁ/erage end-to-end delay over | delay = Wl(HG)) * D icrma)(ti —ts)
all receivers
Rebroadcasting gain gain = %

Table 2
Evaluation metrics

In Table 2 we illustrate the above metrics for both gossiping and hypergossip-
ing. We denote by ¢4 the origination time of the packet and by ¢; the arrival
time of the packet at node i. With respect to a given broadcast packet we

define the following five sets of nodes:

Forwd: Nodes that forward the packet.
Reb: Nodes that rebroadcast the packet.
R(G): Nodes receiving the packet during the first round of the broadcast,

i.e. only using forwarding and without any rebroadcasting.

R(H): Nodes reached by means of rebroadcasting.
R(HG): Nodes reached by HG, i.e. by means of either forwarding or

rebroadcasting. This results in R(HG) = R(H) + R(G).

Gain is the mean number of additionally reached nodes per rebroadcast. It

presents a suitable efficiency metric for broadcast repetition strategies.

5.8 Adaptation of Gossiping

In this section, we adapt gossiping to local node density by determining the
appropriate gossiping probability as a function of the number of neighbors. For
this study, we use the same parameters as given in Table 1 with v = 3m/s,
and one sender (s = 1) that sends one single packet during simulation time.

We set the simulation time to 20s.
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Fig. 4 a) shows the reachability and MNF of gossiping for different probabilities
and different numbers of nodes. We can easily conclude that the reachability of
gossiping strongly depends on these parameters. For 500 nodes a probability
higher than 0.6 provides a reachability of 100%. Whereas for lower probabilities
the reachability drops. We also conclude from Fig. 4 a) that MNF increases
linearly with the used probability value. This is evident, if we consider that
all nodes use the same probability p, and subsequently the ratio of nodes that
do forward the packet is also p. The main goal of gossiping adaptation is
to increase the efficiency of gossiping while maintaining the reachability very
high. Therefore, we have to select for gossiping the minimal probability value
that maintains reachability at about 100%. From the observations above we
recommend a probability of 0.6 for 500 nodes. Now if we repeat this calibration
process for different numbers of nodes, we get the appropriate probability for
the correspondent node densities.

We define spreading ratio at time t as the ratio between the number of nodes
that received the broadcast until time ¢ to the total number of nodes. Fig.
4 b) shows the spreading ratio of gossiping over time ¢ for 500 nodes and
different probabilities. We conclude that only higher probabilities than 0.6
provide a reachability near to 100%. We also conclude that probability 0.6
provides faster propagation than higher probabilities. This is due to more
collisions and higher contention if more than 60% of nodes forward the packet.
So investigating the spreading ratio provides an alternative approach to fix the
appropriate gossiping probability.

In previous work [30], we proposed an epidemic analytical model for infor-
mation dissemination in MANETSs. According to that model, we can describe
information spreading using the so-called infection rate (denoted by a and
measured in infections/s). Infection rate depends on the MANET characteris-
tics and on the broadcast algorithm. Given the infection rate for the considered
MANET and the considered broadcast algorithm, we can use an analytical ex-
pression to compute the spreading ratio over time ¢. Infection rate is therefore
a measure for reachability and delay. It is shown in [30] that, the higher is the
infection rate the lower is the mean delay.

In the following we show how we used these results to adapt gossiping. In case
of gossiping, the infection rate basically depends on the node density of the
MANET and on the gossiping probability p. In order to adapt the gossiping
probability to the node density, we have to select that gossiping probability
that maximizes the infection rate. We vary node density and the gossiping
probability p and compute for each parameter combination the corresponding
infection rate. Fig. 5 a) shows the measured infection rates and their interpo-
lation. Fig. 5 b) shows the optimal probability, which should be used by nodes
depending on node density.
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Figure 4. Adaptation of gossiping

Consistent with our second requirement of generalized broadcasting strategy,
we let every node set locally and independently the gossiping probability.
Given n the number of neighbors and R the communication range, a node
computes easily its local density by:

n+1

d:W*RQ (1)

According to this value the node has to set on-the-fly the gossiping probabil-
ity. To avoid the computation of local node density, which also assumes that
nodes know their communication range, we recommend that nodes select the
gossiping probability depending on the current number of neighbors n. By
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Figure 5. Adaptation of gossiping (Approach 3)

scaling the x-axis of Fig. 5 b) using formula (1), we get the probability p as
a function of n. We provide the discreate values of this function as a lookup
table that maps number of neighbors to the probability values. At run-time
we let nodes have access to this lookup table in order to set the gossiping
probability dynamically depending on their current number of neighbors.
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5.4 Calibration of Partition Detection

To evaluate and calibrate the partition detection heuristic we may use the
global view given by the simulator. A metric for the accuracy of the heuristic
is the ratio of correct detections to all detections. This ratio has to be maxi-
mized while dimensioning the heuristic. In this paper, we evaluate our partition
detection by measuring the efficiency of rebroadcasting. A suitable efficiency
metric for rebroadcasting is the mean number of additionally reached nodes
per rebroadcast, i.e. its gain. The higher its gain, the more efficient is rebroad-
casting. To dimension the partition detection parameters, i.e. [S_threshold and
maxLBRlength, we select the values with maximal gain.

For calibration we arbitrarily fix the lifetime to 60s and the node speed to
30m/s, and we vary IS_threshold in {0%, 25%, 50%, 75%, 100%} and maxL-
BRlength in {1, 5, 10, 25, 50, 100}. For every combination we compute the
gain and select the combination that maximizes the gain. LBR serves anyway
for the identification of a certain partition until the next join. An identification
should consider the size of the partition (reflected by number of nodes) and
the number of broadcasts originated per unit of time in that partition (re-
flected by the packet rate). That is why we repeated the calibration process
for a wide range of number of nodes and packet rates. The combinations, for
which the gain is maximal, are listed in Table 3. We repeated these steps for
lifetime values of 600s and 1800s and concluded that these combinations are
almost independent from the lifetime value. We explain this as follows. Higher
lifetimes means higher number of partition joins within lifetime period. Since
gain is a relative metric that measures the mean efficiency of the broadcast
repetition strategy over all partition joins and if we assume that this efficiency
remains almost constant for every join, we can conclude that the mean effi-
ciency is independent from the number of joins and therefore independent from
the lifetime. A variation of node speed can be also interpreted as a variation
of the lifetime with respect to the calibration process. Since both variations
lead to a variation of the number of partition joins within the lifetime period.
Therefore, we conclude that also node speed has no significant impact on the
calibration process.

In Table 3 we observe that the denser the network or the more congested it is,
the smaller the IS_threshold but the higher maxLLBRlength should be selected.
In this work, we use a simple calibration of partition detection. We use for
MANETSs with higher densities than 200 nodes/km? the tuple (0%, 100),
otherwise we use the tuple (25%, 100). This calibration is suitable for most
of simulated scenarios in Table 3. Consistent with our second requirement,
we let every node select locally and independently the IS_threshold value: At
run-time a node sets IS_threshold to 25%, if its current number of neighbors
is lower than 6, and 0% otherwise.
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N 50 100 200 300 500
n 0.57 2.14 5.28 8.42 14.7
1 packet/s 25%, 100 | 25%, 100 | 0%, > 50 | 0%, 100 | 0%, 100
0.1 packet /s 50%, 100 | 25-50%, | 25-50%, | < 50%, | 0%, > 50
100 > 25 > 25
0.001 packet/s 25-75%, | < 5%, | < 5%, | < 50%, | 0%, > 25
> 25 > 25 > 10 > 25

Table 3
Calibration of partition detection

5.5  Performance of Hypergossiping

After adaptation and calibration we now evaluate hypergossiping for a wide
range of node densities and speeds, and packet rates. Finally, we compare the
performance of hypergossiping to that of IF, ACB and density-aware proba-
bilistic flooding. We select for all scenarios 25 senders. If node speed is 0 m/s,
the nodes are static and do not discover new neighbors; therefore they do
not trigger broadcast repetition; that is why hypergossiping goes into simple

gossiping.

5.5.1 Impact of Node Density and Mobility

In this section, we investigate the performance of hypergossiping for a wide
range of node densities and node speeds.

Node mobility may contribute to overcome network partitioning. It then fol-
lows that the higher is the mobility, the higher is the reachability and the lower
is the delay. Fig. 6 shows that the impact of node mobility on reachability is
more significant for lower lifetimes. For very short lifetimes the reachability of
hypergossiping tends to the reachability of simple gossiping. Fig. 6 illustrates
that reachability saturates at around 80% for 50 nodes. We explain this as
follows. At a packet rate of 0.0005 packet/s every sender originates only 1
packet within lifetimes up to 2000s. So within lifetimes considered in Fig. 6
only 25 messages are relevant in the MANET at a given time point. LBRs
can store all IDs of these messages. The partition condition (overlap < 25%)
becomes over time stronger and some partitions could not be detected. In [31]
we investigated the accuracy of our partition detection heuristic with more
details using the global view given by the simulator.

We now arbitrarily set the lifetime value to 600s and the packet rate to 0.001
packet/s. This means that the packet’s lifetime expires before the source orig-
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Figure 6. Imapct of lifetime on reachability

inates the following packets. Fig. 7 a) shows that rebroadcasting can strongly
increase reachability in sparse MANETS; For 50 nodes and 3m/s reachability
increases from 8% to 76%. Hypergossiping also increases reachability if gossip-
ing reachability drops because of collisions; Reachability increases from 70%
to 92% for 500 nodes and 3m/s. Hypergossiping keeps the MNFR very low
while increasing reachability; Nodes namely forward and rebroadcast a given
message in average maximal 1.1 times (Fig. 7 b)). The bend in reachability
and MNFR at 200 nodes, in Fig. 7 a) and b), is due to our simple calibration
of partition detection, where IS_threshold jumps from 25% to 0% by node
densities around 200 nodes/km? (see Subsection 5.4). In ongoing work, we are
looking for smoothing the selection of IS_threshold.

5.5.2 Impact of Network Load

In this section, we discuss the performance of hypergossiping for a wide range
of packet rates. For this study, we consider 50, 300 and 500 nodes and node
speed of 30 m/s. The lifetime is arbitrarily set to 200 s. We vary the packet
rate from 0.001 packet/s to 1 packet/s.

Fig. 8 shows that even for high network traffic hypergossiping provides a very
high reachability. Actually the reachabilty surprisingly increases if packet rate
increases. Similar to the saturation effect in Fig. 6, We explain this effect as
follows. If the packet rate increases, nodes update faster their LBRs, so that
partition detection condition gets weaker and saturation effect less important.
This also leads to higher MNFR. This effect shows again the need for adapting
IS_threshold to packet rate.
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Figure 8. HG_RE and MNFR versus packet rate
5.5.83 Message and Storage Overhead

Now we investigate buffer size, BR size, LBR size, number of BR beacons and
number of LBR beacons. For this study, we arbitrarily set lifetime to 200s and
node speed to 30m/s, and vary packet rate and number of nodes. The number
of BRs and the number of LBRs are counted within the simulation time, which
is set to 250s. The buffer size and BR size are metrics for the storage overhead.
BR- and LBR-size and -number quantify the additional bandwidth use, caused
by the exchange of BR and LBR beacons.

The number of LBR beacons depends on the frequency of discovering new
neighbors, which depends on the node density and node speed (Fig. 9 a)).
The number of LBR beacons increases with node density. It increases slightly
with higher packet rates because of more frequent collisions, which makes
neighborhood information less accurate. The mean size of LBR increases with
increasing packet rate and node density but it is limited by maxLLBRlength
value, i.e. 100 IDs.

Similar to LBR, the size and number of BRs increase with increasing packet
rate (Fig. 9 b)). In contrast to LBR, size and number of BRs decrease with
increasing node density. This is due to calibration of partition detection, which
uses stronger detection condition (0%) for dense networks and thus triggers
less BR-beacons. Less BR beacons leads to higher delay and thus lower mean
BR sizes.

Fig. 9 c¢) illustrates buffer size versus packet rate. The mean buffer size is
computed over time and over all nodes. The buffer size increases with packet
rate. For high packet rates the buffer size decreases with node density. This
is due to the number of collisions, that increases with increasing packet rates.
Ongoing work is aiming to limit buffer overhead, by deploying appropriate re-
placement strategies (e.g. those that take residual lifetime into consideration)
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and by adapting the buffer capacity to node characteristics (e.g. to mobility).

5.6 Comparison to Related Work

In this section, we compare hypergossiping to the density-aware probabilistic
flooding (PROB-FLOOD) [26], to the adaptive counter-based scheme (ACB)
[25] and to the integrated flooding (IF) [9,10]. For this study, we consider a
wide range of node densities and speeds and arbitrarily fix the packet rate to
0.001 packet/s.

The adaptive thresholds are shown in Fig. 10. For ACB we use the dynamic
threshold given in [25]. ACB uses a random time span to count redundant
packet receptions and possibly forwards the message after this span. This time
period is comparable to the random forwarding delay of gossiping (fDelay) and
PROB-FLOOD. We choose the same value for these parameters, i.e. 10 ms,
which is also used in [13].
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Figure 10. Adaptive thresholds

For IF we use the following parameters (most of them are stated in [9]). In
scoped flooding a node forwards a new received message, if at least 15% of its
neighbors are not covered by the previous forwards. We note here that scoped
flooding is a topology-based scheme that needs 2-hop topology information,
which means that nodes have to include their neighbor list in HELLO beacons.
Hyperflooding holds packets for a fixed time period and rebroadcasts them on
discovering a new neighbor. Nodes install scoped flooding if their relative speed
to all their neighbors is lower than 10m/s. If the relative speed is higher than
25m /s hyperflooding is selected. Otherwise plain flooding is deployed. We note
that for node speed values until 12.5m/s, nodes will never reach the higher
switching threshold of IF (i.e. 25m/s) and thus hyperflooding will never be
installed in such configuration. For higher speed values some nodes may install
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hyperflooding mode, which should increase the reachability of IF. For node
speed equals 3m/s the max relative node speed is 6m/s, that is why only
scoped flooding is installed by IF.

For hypergossiping we arbitrarily fix the lifetime to 600s and use the same
buffering strategy as IF. IF buffers all packets for a given fixed time, called
buffer_timeout. We arbitrarily set the value of buffer_timeout to 60s. ACB and
PROB-FLOOD show almost mobility-independent performance and thus we
present for these protocols only results for 3m/s.
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1 o
e NS DU, S
) e
0.8 S
o7 5 Q
0.6
*
Woos :
0.4
¥ 7
0.3 7 ACB_3m/s —— |
A PROB_FLOOD_3m/s ------
) HG_3m/s -
. HG_30m/s ~{-}
IF_3m/s -
) IF_12.5m/s --O--
IF_20m/s @~
IF_30m/s - -A--
0 ‘ |
50 100 150 200 250 300 350 200 pen o

number of nodes

(a) Reachability

lifetime=600s , buffer_size=inf , buffer_TO=60s, 25 senders, 0.001 pa/s

900 |- IF_30m/s —+— e
IF_20ATs =<
o
F 7o
Z
600
=
T e
300
1.6
ACB_3m/s ——
1.4 PPROB-FLOOD_3m/s ——-%---
HG_3m/s K-
12 HG_30m/s {7}
IF_3m/s —-Il--
~ 1R IF_12.5m/s ---O--
= SR — I —
0.8 emrrTIE A s
= iz S T
= o6 B BT -
0 /
02 e
== Il
150 200 250 300 350 400 450 500

number of nodes
(b) MNF(R)

Figure 11. Comparison to related work

We can easily conclude from Fig. 11 a) that hypergossiping reachability out-
performs PROB-FLOOD and ACB reachability for sparse networks and highly

dense networks while keeping MNFR below 1. This is due to that HG reme-
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dies both causes of broadcast interruption: Network partitioning and broadcast
storms.

Comparing HG and IF we conclude that IF does not provide an efficient
partition detection strategy: IF provides namely a very high reachability for
highly mobile MANETS, but MNFR ranges from 400 to 900 rebroadcasts per
packet and node (Simulation results show that even for very low buffer timeout
values, MNFR is very high for highly mobile scenarios: for buffer_timeout = 5s
and N = 100 nodes, M NF R = 11). For lower mobility IF installs only scoped
flooding or plain flooding and subsequently performs similar to ACB and
PROB-FLOOD for sparse networks but worse than these schemes for dense
networks, lack of adaptation of scoped flooding to node density.

6 Conclusion and Future Work

In this paper, we introduced hypergossiping, an adaptive MANET broadcast
algorithm, which presents our first steps towards a single broadcast solution
for a wide range of MANET operation conditions. Hypergossiping covers MA-
NETs with larger node densities and speeds, and network loads. We presented
a novel method to adapt gossiping probability to node density and reduce the
broadcast storms. Moreover, we presented a novel heuristic for repetition of
broadcasts in order to overcome different causes of broadcast interruptions,
such as network partitioning.

We are working on more sophisticated adaptation techniques of partition de-
tection parameters. In future work, we will investigate different buffer man-
agement strategies to reduce buffer overhead. We expect that these strategies
have to take into consideration the residual lifetime of buffered packets and
that adapting the buffer capacity to node mobility contributes to reduce the
buffering overhead of hypergossiping.

References

[1] J. Tian, P. J. Marrén, K. Rothermel, Location-based hierarchical data
aggregation for vehicular ad hoc networks, in: Proceedings of Communication
in Distributed Systems 2005 (KiVS), Kaiserslautern, Germany, 2005.

[2] Z. Cheng, W. Heinzelman, Flooding strategy for target discovery in wireless
networks, in: Proceedings of the 6th ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Venice,
Italy, 2003.

26



[3] J. Hahner, K. Rothermel, C. Becker, Update-linearizability: A consistency
concept for the chronological ordering of events in manets, in: Proceedings of
the first IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS), Fort Lauderdale, USA, 2004.

[4] C. Becker, M. Bauer, and J. Hahner, Usenet-on-the-fly: supporting locality of
information in spontaneous networking environments, in: Proceedings of CSCW
2002 Workshop on Ad hoc Communications and Collaboration in Ubiquitous
Computing Environments, New Orleans, USA, 2002.

[5] S.Y.Ni, Y. C. Tseng, Y.-S. Chen, J.-P. Sheu, The broadcast storm problem in
a mobile ad hoc network, in: Proceedings of the 5th Annual ACM/IEEE Int.
Conf. on Mobile Computing and Networking (MOBICOM), Seattle, USA, 1999.

[6] J. H&hner, D. Dudkowski, P. J. Marrén, K. Rothermel, A quantitative analysis
of partitioning in mobile ad hoc networks, in: extended abstract in Proceedings

of the Joint Int. Conf. on Measurement and Modeling of Computer Systems
(Sigmetrics-Performance), New York, USA, 2004.

[7] Z. Haas, J. Halpern, L. Li, Gossip-based ad hoc routing, in: Proceedings of
IEEE INFOCOM, New York, USA, 2002.

[8] K. Obraczka, G. Tsudik, K. Viswanath, Pushing the limits of multicast in ad
hoc networks, in: Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), Phoenix, USA, 2001.

[9] K. Viswanath, K. Obraczka, An adaptive approach to group communications
in multi hop ad hoc networks, in: Proceedings of the IEEE Symposium on
Computers and Communications (ISCC), Vienna, Austria, 2002.

[10] K. Viswanath, K. Obraczka, An adaptive approach to group communications
in multi-hop ad hoc networks, in: Proceedings of the International Conference
on Networking (ICN), Atlanta, USA, 2002.

[11] W. Zhao, M. Ammar, E. Zegura, A message ferrying approach for data delivery
in sparse mobile ad hoc networks, in: Proceedings of the ACM Symposium on
Mobile Ad Hoc Networking and Computing (MOBIHOC), Tokyo, Japan, 2004.

[12] A. Ouksel, O. Wolfson, B. Xu, Opportunistic resource exchange in inter-vehicle
ad hoc networks, in: Proceedings of the IEEE International Conference on
Mobile Data Management (MDM), Berkeley, USA 2004.

[13] B. Williams, T. Camp, Comparison of broadcasting techniques for mobile ad
hoc networks, in: Proceedings of the ACM Symposium on Mobile Ad Hoc
Networking and Computing (MOBIHOC), Lausanne, Switzerland, 2002.

[14] Y. Yi, M. Gerla, T. Kwon, Efficient flooding in ad hoc networks: a comparative
performance study, in: Proceedings of the IEEE International Conference on
Communications (ICC), Anchorage, USA, 2003.

[15] F. Dai, J. Wu, Performance analysis of broadcast protocols in ad hoc networks
based on self-pruning, in: IEEE Transactions on Parallel Distributed Systems,
Vol. 15, No. 11, 2004.

27



[16] A. Laouiti, A. Qayyum, L. Viennot, Multipoint relaying: An efficient technique
for flooding in mobile wireless networks, in: Proceedings of the 35th Annual
Hawaii International Conference on System Sciences (HICSS), Hawaii, USA,
2002.

[17] J. Wu and H. Li, On calculating connected dominating set for efficient routing in
ad hoc wireless networks, in: Proceedings of the 3rd International Workshop on
Discrete Algorithms and Methods for Mobile Computing and Communications
(DIAL-M), Seattle, USA, 1999.

[18] I. Stojmenovic, M. Seddigh, J. Zunic, Dominating sets and neighbor elimination-
based broadcasting algorithms in wireless networks, in: IEEE Transactions on
Parallel and Distributed Systems, Vol. 13, No. 1, 2002.

[19] G. Calinescu, I. Mandoiu, P. J. Wan, A. Zelikovsky, Selecting forwarding
neighbors in wireless ad hoc networks, in: Proceedings of the 5th International
Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications (DIAL-M), Rome, Italy, 2001.

[20] S. Basagni, D. Bruschi, I. Chlamtac, A mobility transparent deterministic
broadcast mechanism for ad hoc networks, in: ACM/IEEE Transactions on
Networking, Vol. 7, No. 6, 1999.

[21] J. Wu, F. Dai, Broadcasting in ad hoc networks based on self-pruning, in:
Proceedings of IEEE INFOCOM, San Francisco, USA, 2003.

[22] J. Sucec, I. Marsic, An efficient distributed network-wide broadcast algorithm
for mobile ad hoc networks, CAIP Technical Report 248 - Rutgers University,
2000.

[23] W. Peng , X. C. Lu, On the reduction of broadcast redundancy in mobile ad
hoc networks, in: Proceedings of the ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC), Boston, USA, 2000.

[24] J. Wu, F. Dai, Mobility management and its applications in efficient
broadcasting in mobile ad hoc networks, in: Proceedings of IEEE INFOCOM,
Hong Kong, China, 2004.

[25] Y. C. Tseng, S. Y. Ni., E.Y. Shih, Adaptive approaches to relieving broadcast
storms in a wireless multihop mobile ad hoc networks, in: IEEE Transactions
on Computers, Vol. 52, No. 5, 2003.

[26] J. Cartigny, D. Simplot, Border node retransmission based probabilistic
broadcast protocols in ad-hoc networks, in: Proceedings of the 36th Annual
Hawaii International Conference on System Sciences (HICSS), Hawaii, USA,
2003.

[27] C. Ho, K. Obraczka, G. Tsudik, K. Viswanath, Flooding for reliable multicast
in multi-hop ad hoc networks, in: Proceedings of the 3rd International
Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications (DIAL-M), Seattle, USA, 1999.

28



[28] S. McCanne, S. Floyd, Ns network simulator.
URL http://www.isi.edu/nsnam/ns/

[29] J. Yoon, M. Liu, B. Noble, Random waypoint considered harmful, in:
Proceedings of IEEE INFOCOM, San Francisco, USA, 2003.

[30] A. Khelil, C. Becker, J. Tian, K. Rothermel, An epidemic model for information
diffusion in MANETS, in: Proceedings of the 5th ACM International Workshop

on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM), Atlanta, USA, 2002.

[31] A. Khelil, P. J. Marrén, R. Dietrich, K. Rothermel, Evaluation of partition-
aware MANET protocols and applications with ns-2, in: Proceedings of

the International Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS), Philadelphia, USA, 2005.

29



