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Abstract

Mobility plays a major role in mobile ad hoc networks
(MANETs), since it stresses networking tasks such as routing
on the one hand, but aids to increase the network capacity and
to overcome network partitioning on the other hand. To bene-
fit from node mobility, a new class of MANET protocols and
applications are designed to be delay-tolerant and mobility-
aided. The main communication paradigm here is store-and-
forward. For delay-tolerant mobility-aided networking, mo-
bility on a large time-scale is a key feature. So far however, a
few work is done to adapt store-and-forward concepts to the
large time-scale mobility.

Our first step that simplifies the adaptation to node mo-
bility, is the set of novel mobility metrics presented in [1].
These metrics quantify the mobility on a large time-scale and
are based on the pair-wise contacts between mobile nodes.
In this paper, we show how to exploit these mobility met-
rics to design an efficient buffering strategy for hypergossip-
ing [2,3], a delay-tolerant mobility-aided MANET broadcast-
ing protocol. The novel buffering strategy detects relevant
mobility patterns at run-time, using contact-based mobility
metrics, and adapts the buffering decision to the detected mo-
bility pattern.

INTRODUCTION
The number of mobile devices equipped with wireless net-

work interfaces is continuously increasing. Many existing
wireless technologies such as WLAN and Bluetooth pro-
vide besides an infrastructure-based communication mode
an ad hoc communication mode. The ad hoc mode allows
mobile devices to directly communicate if they enter each
others communication range. If nodes can act as routers,
multihop communication between nodes is possible. The so
formed networks are referred to as Mobile Ad Hoc Networks
(MANET). MANETs are suitable for scenarios where an in-
frastructure is very costly or even unavailable.
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Mobility of network nodes stresses protocols and applica-
tions by disrupting routes, changing propagation effects and
causing network partitioning. However, it can also be ex-
ploited to increase network capacity [4] and to overcome net-
work partitioning.

To profit from these mobility benefits, a new challenging
class of mobility-aided applications and protocols have been
recently developed. These protocols and applications tolerate
higher communication delays. They are grouped under the
delay-tolerant networking research field (see the Delay Toler-
ant Networking Research Group (DTNG) [5] [6] [7] [8] [9]).
The communication in delay-tolerant networking architec-
ture basically relies on asynchronous, store-and-forward mes-
sage delivery. This communication paradigm does not assume
a contemporaneous end-to-end connectivity; (some) mobile
nodes have to physically transport data from source to desti-
nations.

Because node mobility plays an important role in realizing
mobility-aided systems, we designed a set of novel mobility
metrics that quantify the mobility of nodes on a large time
scale, i.e. for time periods in the range of minutes, hours, or
even days. These metric should simplify the design and the
adaptation of delay-tolerant mobility-aided protocols and ap-
plications. In this paper, we show how we use these metrics to
improve the performance of one delay-tolerant and mobility-
aided broadcast protocol, called hypergossiping [2, 3].

The remainder of this paper is organized as follows. In Sec-
tion 2, we define key terms, present our system model, and
briefly introduce hypergossiping. Using one real-world sce-
nario, we present in Section 3 the problem and our objectives.
In Section 4, we present our approach to reduce the buffering
overhead of hypergossiping using some contact-based mobil-
ity metrics. In Section 5, we calibrate some parameters and
evaluate our work using simulations. Section 6 discusses re-
lated work. Finally, Section 7 concludes the paper.

PRELIMINARIES
In this section, we first define our system model. We then

review our novel contact-based mobility metrics that we have
defined and investigated in detail in [1]. Finally, we briefly
introduce hypergossiping, our generalized broadcast strategy
for broadcasting in mobile ad hoc networks [2, 3].



System Model
In this work, we consider MANETs that are formed by N

mobile nodes. We assume nodes have no knowledge about
their position or speed. We assume in this work that nodes
neither crash nor run out of energy. We assume that nodes
are uniquely identified, e.g. using their Medium Access Con-
trol (MAC) addresses. Nodes move according to an arbitrary
mobility model. The MANET may show very heterogeneous
spatial distribution of nodes, from locally very sparse to very
dense, and very heterogeneous node mobility pattern, from
low mobile to highly mobile. We assume that devices do
not change their trajectories for communication purposes like
in [10].

Nodes in this paper are of similar communication capa-
bilities (communication range and bandwidth) and can only
communicate if their sight distance is below the communica-
tion range R. Nodes are also of similar storage capabilities.

Broadcast data has typically a temporal and spatial rele-
vance [11]. Broadcast algorithms have to consider this spatio-
temporal relevance while broadcasting. In this paper, we con-
sider only the temporal relevance of data and assume that in-
formation becomes irrelevant after a certain period of time,
i.e. its lifetime. Lifetime is application dependent and may be
in the range of seconds, minutes, or even hours.

Contact-Based Mobility Metrics
In the following we first define the important terms en-

counter and contact. Then, we briefly review the contact-
based mobility metrics, which are defined and investigated
in detail in [1].

We say that two nodes encounter each other when the dis-
tance inbetween becomes smaller than the communication
range R. The encounter is said to be lost, if the nodes leave
the communication range of each other. We represent an en-
counter by the two nodes, its time of incidence and its dura-
tion. We define a contact between two nodes as the list of all
encounters between them. A contact between two nodes be-
gins with the first encounter between them, and ends with the
last one. We assume nodes manage a history of their encoun-
ters in a local contact table during a fixed period of time that
we refer to as observation interval, or obs− interval for short.

The Average Encounter Rate (AER) is defined as the num-
ber of new encounters experienced by a node per unit of time.
We define the Average Contact Rate (ACR) as the number of
new contacts experienced by a node per unit of time. Both
these metrics quantify the relative mobility between nodes.

The Average Encounter Frequency (AEF) is the average
number of encounters per contact. It quantifies the mixture
between nodes, i.e. how often two nodes encounter each other
per unit of time.

We also defined two contact-based metrics based on the
encounter and contact durations: The Average Encounter Du-

ration (AED) and the Average Contact Duration (ACD). Both
metrics quantify the neighborhood stability of nodes.

Contact-based metrics can be defined either at the network
level or at the node level. At the network level, this informa-
tion helps to understand the mixture of the population. If the
information is node-centric it describes the relative mobility
of that node to the other nodes.

Contact-based metrics may be used at design-time to sim-
plify the evaluation of delay-tolerant protocols and applica-
tions, but also at run-time to adapt these protocols and appli-
cations to node mobility.

Network-wide metrics are metrics that are not easy to com-
pute at run-time, since they need a high communication over-
head. Network-wide metrics are appropriate at the design
stage and should be used by developers to well design their
protocols for a wide range of mobilities.

Node-centric metrics are easy to acquire at run-time. En-
counters can be perceived using a simple neighbor discovery
protocol such as HELLO beaconing. These metrics can be
then used to adapt protocols and application on-the-fly.

Hypergossiping (HG)
Hypergossiping [2, 3] is a representative of the class of

delay-tolerant mobility-aided ad hoc protocols.
Hypergossiping is a generalized MANET broadcasting

protocol that considers network partitioning in order to in-
crease the delivery reliability of gossiping in sparse networks.
Hypergossiping deploys a heuristic to detect partition joins
and rebroadcasts the appropriate messages from buffer on
partition join detection.

Hypergossiping combines two strategies to distribute mes-
sages to all nodes. The first strategy is called gossiping (prob-
abilistic flooding) and aims at efficient distribution of mes-
sages within the same partition. The second strategy is called
broadcast repetition and aims at overcoming network parti-
tioning. Hypergossiping buffers messages and rebroadcasts
them on partition joins. For this, hypergossiping utilizes a
partition join detection heuristic to detect partition joins and
a rebroadcasting protocol to send the appropriate messages.

The partition join detection heuristic works as follows.
Nodes share with their new neighbors an ID-list of Last
Broadcast Received (LBR list). If a node encounters a node
that has a sufficiently different LBR it assumes that a partition
join has just occurred and triggers the rebroadcasting proto-
col.

The rebroadcasting protocol first sends the complete ID-
list of Broadcasts Received (BR list). Nodes receiving this
BR list have then to rebroadcast messages from their buffer
that have not yet received by the sender of the BR list.



PROBLEM STATEMENT AND OBJECTIVES
In the following, we state the problem and mention our ob-

jectives towards more efficient hypergossiping buffering. We
investigate one real-world scenario, from which we identify
certain mobility patterns that are relevant to mobility-aided
information dissemination.

As stated before, for delay-tolerant mobility-aided ad hoc
networking mobility plays a major role in data transport.
Nodes buffer messages and monitor the network condition,
in order to retransmit them whenever the destination becomes
more easily reachable.

So far, hypergossiping uses the following simple buffer-
ing strategy. The protocol allows all nodes to buffer all re-
ceived messages as long as they are still relevant, i.e. for the
residual lifetime. This strategy unfortunately may produce a
high buffering overhead, which is not practical for devices
with limited resources and for applications that initiate a lot
of broadcasts with high lifetimes. Therefore, we need new
strategies that reduce the buffer overhead of hypergossiping.
Our over-all objective is to design a buffering strategy with
lower demands on buffer space, and without or with low loss
of reachability.

Although the random waypoint mobility model is widely
used for evaluation of MANET protocols, real users are not
likely to move around randomly, but rather move in a realistic
fashion based on the correlation between nodes or repeating
behavioral patterns. Some users such as soldiers and rescuers
tend to move in groups. Others such as busses and trains tend
to repeat their movements. However, there are also singular
nodes that behave unpredictably. Without loss of generality,
we can consider a MANET as a set of node groups that meet
and leave over time. Using the example of random waypoint,
groups are constituted of single nodes.

We are convinced that mobility characteristics of nodes
play a major role to design store-and-forward mechanisms in
mobility-aided networking. At the example of mobility-aided
delay-tolerant information dissemination, such as hypergos-
siping, mobility patterns are crucial for developing efficient
buffering strategies. Since we are dealing with highly diverse
mobility patterns in MANETs, that may change over scenar-
ios or over time within the same scenario, we also believe that
the perception of relevant mobility characteristics is a major
factor for the adaptation of store-and-forward mechanisms at
run-time.

Two examples of mobility patterns, from which buffer-
ing strategies could benefit, are examined in the following.
Firstly, nodes moving in a group can cooperate concerning
message buffering. The group can "select" one of its members
to buffer the message. This can reduce the total number of
nodes buffering the message during its lifetime, and therefore
reduce the number of nodes buffering a certain message. Sec-
ondly, nodes that constantly encounter new nodes (e.g. racer

staff students
encounter rate low high
encounter duration high low
encounter frequency ≈ 1 ≈ 1
contact rate low high
contact duration high low

Table 1: Campus scenario

cars on the highway) should buffer more messages than other
nodes, that rarely encounter new nodes.

It is challenging for mobile nodes to detect such patterns at
run-time. Since these patterns have a large time scale, we are
convinced that contact-based metrics are valuable for recog-
nizing such patterns and for detecting them at run-time.

In the following we motivate, using the example of a cam-
pus scenario, the idea of mobility-aware buffering and the ma-
jor role that contact-based mobility metrics can play for the
perception of relevant mobility patterns.

Consider the MANET formed by mobile devices carried
by students and staff members on a campus during working
hours. Firstly, we qualitatively analyze the properties of the
mobility of nodes on a large time scale using our contact-
based metrics. Secondly, we show the usefulness of these
metrics for delay-tolerant information dissemination in the
considered MANET.

Staff members are generally grouped into departments,
which in their turn are grouped in faculties. Offices for one
department or one faculty are normally grouped geographi-
cally. Staff members work most of time in their offices, and
sometimes meet each other. We assume that nodes located
in different campus buildings can not communicate directly
with each other. Also we assume that not all nodes located
in the same building can communicate directly. From these
observations, we can conclude that mobile devices carried
by staff members form a relatively stable network topology.
Thus they show low encounter and contact rates but high en-
counter and contact durations.

Students commute frequently between departments, facul-
ties, classrooms, libraries and cafeterias. Therefore, their en-
counter and contact rates are higher, but their contact and en-
counter durations are lower than that of staff members. Ta-
ble 1 shows a qualitative analysis of the contact-based metrics
for both groups.

We suggest the following two simple heuristics to reduce
buffer overhead. Firstly, students and not staff members have
to buffer messages, since students commute more proba-
bly between different network partitions. Therefore, students
are more suitable as a transport mechanism between parti-
tions. From Table 1 hypergossiping can easily approximate,
whether a node is suitable for buffering the message. Nodes
with higher contact rate should be chosen. Secondly, nodes



moving in a group intuitively do not all have to buffer the
same message. However group members should cooperate to
buffer messages.

MOBILITY-AWARE PROBABILISTIC
BUFFERING

In order to exploit the previous observations on mobil-
ity characteristics of real users with the purpose of reducing
the buffering overhead of hypergossiping, we propose a new
challenging buffering strategy for this protocol. Our approach
uses contact-based mobility metrics to compute the utility of
buffering a certain broadcast message for future rebroadcast-
ing.

Overview
As stated before, our objective is to limit the number of

nodes buffering a given message without reducing the deliv-
ery ratio too much.

As assumed in the system model, nodes are of similar stor-
age capabilities. Therefore, we do not select the buffering
nodes with respect to the node storage capabilities. In this
paper, we only consider the nodes’ mobility pattern for the
selection of buffering nodes. In MANETs that are composed
of nodes of heterogeneous capabilities we propose to also use
other information such as available memory, CPU power, and
available battery energy to differentiate nodes, while defining
the utility of a certain node to buffer a certain message. For
example, we should use laptops instead of PDAs if both can
be used to buffer a message.

Our approach attempts to allow the node, which is most
likely to deliver the message and with lowest cost, to buffer
the messages. We use utility metrics to try to determine the
node most appropriate to buffer the message and to deliver it
to the destination. Since we differentiate nodes only with re-
gard to their movement patterns, we should analyze the pat-
terns most relevant for buffering and design efficient concepts
to detect these patterns at run-time. Afterwards, we should
define metrics for the selection of the appropriate nodes with
regards to their movement patterns.

Our approach is based on two components. The first com-
ponent efficiently detects two movement patterns relevant for
the store-and-forward mechanism of hypergossiping. We re-
alize this component based on particular contact-based mo-
bility metrics. The second component is used by nodes to
compute the buffering utility for each newly received mes-
sage. This component defines a buffering utility and provides
a method for computing it, depending on the mobility pattern
perceived by the first component.

Detecting the Relevant Mobility Patterns
In the following, we present our approach, which uses the

contact-based metrics for an efficient detection of the mobil-

ity patterns relevant for the reduction of the buffering over-
head of hypergossiping.

Relevant Mobility Patterns:
As stated before, we consider a MANET as a set of node

groups that meet and leave over time. Some real-world sce-
narios, such as the campus scenario, confirm this view of the
MANET. If we consider a node moving in isolation as a one-
node group, we can transform every mobility model, where
nodes move uncorrelated, to a group mobility model. Thus,
by appropriate choice of parameters, existing mobility mod-
els, such as random waypoint and graph-based, can be con-
sidered as group mobility models.

While investigating the campus scenario, we showed that
nodes moving in a group or nodes roaming very frequently
between different groups may play a particular role for store-
and-forward information dissemination. Therefore, we are
looking to exploit these movement patterns to reduce the
buffering overhead of hypergossiping.

The group movement pattern helps the group members to
share the buffering task. Our approach is to let nodes moving
in a group cooperate in order to select nodes that buffer a
certain message.

Nodes showing a roaming pattern are good candidates to
buffer messages and transfer the broadcast from one partition
to the next. Roaming nodes in our campus scenario are mainly
the students.

The store-and-forward feature of hypergossiping takes
place on a large time scale (given by the lifetime of data).
Subsequently, the mobility patterns that are relevant for hy-
pergossiping should be of a similar time-scale. Since our
contact-based metrics model the mobility on a large-time
scale, we are convinced that these metrics are valuable for
capturing the group movement and roaming movement pat-
terns.

Pattern Detection:
In this section we show how we deploy contact-based met-

rics to characterize the mobility patterns mentioned above.

Group Movement Detection: A set of nodes moving in a
group is a set of nodes, which show very correlated move-
ments. At the macroscopic-level group members show a cer-
tain physical proximity. According to this, we define a group
as follows:

Definition: Two mobile nodes A and B belong to a group,
over a time interval [t1, t2], if they show a strong correlation
between their position coordinates during this time interval.

The group members are identified based on a time window
w, i.e. the length of the time interval [t1, t2] (e.g. 5 minutes).



We assume that the groups are not known in advance and
that they can form dynamically. We therefore need mecha-
nisms to discover groups in the MANET.

We assume that the geographical proximity of group mem-
bers is within the scale of the communication range or lower.
Therefore, we expect that group members are within the com-
munication range of each other, most of time. We also tolerate
group members leaving each others communication range for
a short time period and then encountering each other again.
Fig. 1 outlines a contact between node A and node B that
consists of three encounters. It is obvious on the macroscopic-
level that nodes A and B move in a group. Observing the
contact-based metrics of nodes moving in a group we can
expect them to have long encounter durations (subsequently
also higher contact duration), or short encounter duration but
a long contact duration with the other group members.

Thus, we define two nodes as moving in a group, if they
show a long contact duration.

B
A1. E*

2. E 3. E

E*=Encounter

Figure 1: Detection of nodes moving in a group

In this way, one node is able to detect neighbors that move
with it in a group. Again, the length of the contact history
should be set appropriately (depending on the application). If
two nodes encounter each other for some minutes and then
leave, should we consider this encounter as a group move-
ment or not? This decision depends on the time scale of the
information dissemination process, which in its turn depends
on the delay-tolerance of the broadcast application. We mod-
eled the delay tolerated by the application using the so-called
lifetime of broadcast data. Considering the information dis-
semination using hypergossiping, we conclude from the ob-
servations above that the contact history time depends on the
lifetime of broadcast data. In the evaluation section, we cali-
brate the length of the contact history.

The higher the current encounter duration of a certain node
with a certain neighbor, the higher the probability that both
nodes are moving in the same group. In this paper, we simply
assume that, if two nodes have a contact duration higher than
80% of contact history time, then both nodes are moving in a
group.

Roaming Movement Detection: Nodes that frequently
move between groups constantly encounter new nodes. Con-
sidering the contact-based metrics for these nodes, we expect
that these node are characterized by high contact rates.

Buffering Utility
Our approach for buffering is utility-based. Each node de-

fines a utility for each received message. The utility presents a
metric for the relevance of buffering the message. The higher
the utility, the more useful the buffering.

To this end, we define a utility metric that we call buffering
utility, u(n,mi)∈ [0,1], at every node n and for each broadcast
message mi received by that node. This indicates how useful it
is for the node n to buffer the message mi for broadcast repeti-
tion. If a node receives a broadcast message for the first time,
it computes the buffering utility of that message and buffers it
with a probability equal to the utility value p(n,mi) = u(n,mi)
and for a time period equal to the message’s residual lifetime.

This strategy offers the following two advantages. Firstly,
the buffering of the messages will be shared equally between
nodes with the same utility value. This increases the fairness
of buffering. Secondly, the strategy is completely decentral-
ized, since there is no need for coordination between nodes,
in order to determine which node buffers which message.

The buffering utility has to be updated by a node according
to the mobility patterns detected by that node. Since we aim
to consider two mobility patterns, we superimpose two com-
ponents to calculate the buffering utility. The first part is to
update the metric depending on the group movement pattern.
The second is to update the utility with respect to the roaming
degree of the node.

Group-Based Buffering:
We propose the cooperation of nodes moving in a group

and suggest the following approach. We assume that nodes
currently moving in a group are also likely to remain in
the same group. Nodes belonging to the same group should
cooperate in order to share the buffering of messages. The
subsequent step is to fix which node has to buffer the mes-
sages. Clustering and centralized coordination to distribute
the buffering task is one approach that we should avoid since
it produces high message overhead, especially in highly mo-
bile networks, where the clustering algorithms have to be run
more frequently.

In the following, we consider a set of nodes moving in a
group. We denote this set of nodes as G. We denote the num-
ber of the members of group G as |G|. The utility should be
defined inversely proportional to the number of group mem-
bers. As an example, we deploy the simple function 1/x.
We propose to compute the group-based buffering utility as
shown in Eq (1).



ugroup(n,mi) =
1
|G|

(1)

It is obvious that ugroup(n,mi) ∈ [0,1] since |G| ≥ 1. Please
note that we use the same utility for all messages, since we
are only considering the mobility characteristics. We then set
the probability for probabilistic buffering equal to the utility
as shown in Eq (2).

pgroup(n,mi) = ugroup(n,mi) =
1
|G|

(2)

The probability that the group of nodes G fails to buffer the
message is shown in Eq (3), Eq (4) and Eq (5).

pe = ∏
n∈G

(1− pgroup(n,mi)) (3)

pe = ∏
n∈G

(1− 1
|G|

) = (1− 1
|G|

)|G|) (4)

For large groups, pe is on average equal to:

pe ≈ 1/e ≈ 1/2.72 ≈ 0.37 ≈ 37% (5)

The probability of successful message buffering (ps) is
given in Eq (6).

ps = 1− pe ≈ 1−1/e ≈ 0.63 ≈ 63% (6)

Using this simple calculation we recommend increasing
the buffering utility and probability by introducing an effi-
ciency parameter k as follows:

ugroup2(n,mi) = pgroup2(n,mi) = min{ k
|G|

,1.0} (7)

The probability of buffering failure is then pe ≈ e(−k). If
k ≥ |G| all nodes buffer and we get the performance of the
original algorithm. In the evaluation section we vary the value
of k and calibrate it.

Roaming-Based Buffering:
Cross-moving nodes that roam between different groups

are expected to show very low encounter frequencies (≈ 1).
These nodes should buffer more messages than other nodes.
Therefore, the utility should be defined inversely proportional
to the encounter frequency. As an example, we deploy the
simple function 1/x.

uroam(n,mi) =
1

AEF
=

ACR
AER

(8)

Again AEF, ACR and AER are the node’s Average En-
counter Frequency, Contact Rate and Encounter Rate respec-
tively.

Similar to the group-based buffering, we set the roaming
probability as depicted in Eq (9).

proam(n,mi) = uroam(n,mi) =
1

AEF
(9)

Please note that proam(n,mi) ∈ [0,1] since AEF ≥ 1.

Integrated Probabilistic Buffering:
In general, different factors such as node capabilities,

MANET characteristics and message properties may impact
the buffering decision of nodes. To consider different factors,
we propose that nodes define different utilities for different
factors and to superimpose these utilities depending on their
relevance for buffering.

In this work, we investigate only mobility patterns and ex-
actly two mobility patterns; group motion and roaming pat-
terns. Therefore, we consider both utilities for a buffering de-
cision, i.e. group-based and roaming-based utilities. Hence,
we should weight each probability and use the average for
buffering decision (Eq. 10).

p(n,mi) = α∗ pgroup(n,mi)+(1−α)∗ proam(n,mi) (10)

The appropriate value of α depends on the decision, which
mobility pattern roaming or group-motion is more appropri-
ate for reducing buffer overhead. In the remainder of this
work, we only focus on group movement patterns as exam-
ples, and therefore select α = 1.

PERFORMANCE EVALUATION
In this section, we first introduce the simulation model and

the performance metrics. Then, we calibrate the length of
the contact history and the efficiency buffering parameter k.
Finally, we present the performance of hypergossiping with
mobility-aware buffering and compare it to the performance
of the original algorithm.

Simulation Model
We generate N mobile nodes in a 1000mx1000m field,

where these nodes move according to an arbitrary mobility
model. The mobility models that we consider in this paper are
the RPGM group mobility model [12], the random waypoint
(rw) model [13] and the graph-based mobility model [14]. For
all mobility models, we vary the nodal speed between 0 and
a maximum speed value, and select a pause time uniformly
between 0 and 2s. For the RPGM mobility model, nodes are
generated in groups consisting of 10± 5 nodes. The group
members are also geographically grouped, since nodes are
located at a maximum of 10m away from the group center.
Table summarizes the simulation parameters of our experi-
ments.



Parameters Value(s)
Sim. area 1000m x 1000m
Num. of nodes N ∈ [50,300]
Comm. range R = 100m
Bandwidth r = 1 Mbit/s
Message size 280 bytes
Movement ∈ {rw, rpgm, graph-based}
Lifetime 600 s
Sim. time obs-interval+lifetime+20s

Table 2: Simulation parameters

We use a random HELLO-beaconing period between 0.75s
and 1.25s. A neighbor is removed from the neighbor list if
during 2s no beacon is received from this neighbor. Before
initiating hypergossiping, we run a warm-up phase for a pe-
riod of time equal to the obs-interval. This allows nodes to
have a complete history of contacts, before starting hypergos-
siping.

We use the following broadcast traffic model. 25 nodes ini-
tiate broadcasting at a random time between 1 and 3 seconds
after the warm-up phase. Broadcast messages remain relevant
during their lifetime. For the same simulation scenario we ran
5 passes with 5 different movement traces and considered the
average.

Performance Metrics
For the evaluation of hypergossiping, we use the following

metrics:

• REachability (RE): the ratio of mobile nodes receiving
the message to the total number of mobile nodes. This
metric measures the delivery reliability of the broadcast
algorithm.

• Delay: Average end-to-end delay over all receivers.

• MNFR: Mean Number of Forwards and Rebroadcasts
per node and message. MNFR measures the efficiency
of the broadcast algorithm.

For the evaluation of the buffering strategy, we define the
following evaluation metrics:

• BUFF-ratio: is the ratio of nodes buffering a given mes-
sage to the total number of nodes that have received this
message. We note that BUFF-ratio ∈ [0,1].

• Average number of encounters: The major additional
overhead to perceive contact-based mobility metrics is
the storage overhead for the contact table. This is simply
given by the number of encounters forming the table. For
each encounter we need 4 bytes to store the encounter ID

(e.g. MAC address), 4 bytes for its time of incidence and
4 bytes for its duration. Therefore, we need 12 bytes in
total, for each encounter.

Calibration
Contact-based group detection, as well as the probabilistic

buffering strategy have some parameters that still have to be
calibrated, i.e. the observation time period (obs− interval)
and the efficiency parameter for buffering (k).

As stated before, the contact history depends on how the
application defines a set of nodes to be moving in a group.
Since our protocol acts on a time-scale given by the lifetime
of broadcast data, we fix the obs-interval depending on the
lifetime. We set obs− interval = obs− scale ∗ li f etime and
vary obs-scale for calibration. The obs-scale parameter im-
pacts the size of the contact table and the the groups detected.
As shown in Fig. 2 a), the average number of encounters per
contact table increases if obs-scale increases. Hence, for cali-
bration, we have to minimize the obs-scale value, while keep-
ing the groups detected correctly from the point of view of the
application.

The efficiency parameter k impacts the ratio of group mem-
bers that decide to buffer the message. k also determines the
buffering failure, i.e. no group member buffers the message.
For calibration, we should minimize k, to reduce as much
buffering overhead as possible, but we also have to minimize
buffering failures, so that the RE of hypergossiping will not
break. According to the error function (Fig. 2 a)), if we tol-
erate buffering failures of 5% or lower, we have to choose
k ≥ 3.

We use the RPGM mobility model for the calibration pro-
cess. So far, we assumed that the group’s geographic prox-
imity is within the range of the communication range. For
our settings for the RPGM mobility model, we expect a max-
imum distance of 20m between two group members. Since
we set the communication range to 100m, the assumption
above holds. However, if the communication range is lower
than 20m, our group detection strategy may not detect some
group members. This leads to a higher buffering utility, which
increases the number of nodes buffering a certain broadcast
message.

From Fig. 2 a), we conclude that for k = 3 the buffering
overhead of hypergossiping can be reduced by approximately
50%-64%. We therefore select k = 3 for our buffering strat-
egy.

After calibration of k, we now calibrate obs− scale. The
investigation of the reachability of hypergossiping (Fig. 2 b))
shows that probabilistic buffering introduces some oscilla-
tions. Due to the probabilistic nature of buffering, the nodes
that buffer the message change from one simulation run to
another. This may lead the group members that detect a parti-
tion join not being those that buffer the appropriate messages.
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Figure 2: Calibration of probabilistic buffering strategy

However the impact of k and the obs−scale on the reachabil-
ity of hypergossiping is not clear. Therefore, the calibration of
obs-scale can not be done using this simulation set.

For the calibration of obs− scale we proceed as follows.
Intuitively, a message that is received by a node has a resid-
ual lifetime equal, on average to half of the lifetime value set
by the source of the message. If the node decides to buffer the
message, it will buffer it, on average, for the residual half life-
time value. Subsequently, a node has to detect the nodes, with
which it has been moving in last half lifetime period and as-
sume that this group will hold for the next half lifetime period.
From this observation we propose to use obs−scale = 0.5 for
the buffering strategy.

Simulation Results
In this section, we present the performance of hypergossip-

ing. In this study, we vary the mobility models, and arbitrarily
set the maximum speed of nodes to 3m/s. We set the lifetime
of broadcast data to 600s. Nodes maintain contact tables for
300s.

In Fig. 3, we observe that for the random waypoint our
strategy does not detect any motion groups and therefore does
not reduce the number of nodes buffering a certain broadcast
message. Using the graph-based mobility model our strategy
detects a few groups for a higher number of nodes and there-
fore saves some bufferings (about 5% for N=300). Since al-
most all receivers buffer the message for both random way-
point and graph-based models, the performance of hyper-
gossiping (reachability, MNFR and delay) using probabilis-
tic buffering is very close to the performance hypergossiping
without probabilistic buffering (Fig. 4 a) b) and c)).
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The RPGM model shows inherently more motion groups.
Our strategy detects many of the groups and prohibits be-
tween 63% (N=50 nodes) and 70% (N=300 nodes) of re-
ceivers from buffering the broadcast message. As a result the
number of broadcast repetitions and therefore MNFR slightly
decreases (Fig. 4 b)). Subsequently, the reachability of hyper-
gossiping with probabilistic buffering (Fig. 4 a)) decreases
compared to the case without probabilistic buffering. The av-
erage end-to-end delay also slightly decreases, since the total
number of reached nodes has decreased (Fig. 4 c)).

For the overhead caused by the management of contact
tables, we note that HELLO beaconing is needed by the
hypergossiping protocol anyway. The main additional over-
head is therefore the storage overhead for the contact tables.
The maximum table size needed, would be for N=300 nodes
and for the graph-based mobility model, i.e. 58 encounters
(Fig. 3). This implies a storage overhead of 58*12 byte, which
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Figure 4: Performance of HG with probabilistic buffering

is equivalent to the buffering overhead of 2.5 messages. This
demonstrates the limitation of the additional overhead in-
duced by the maintenance of contact-based information. Al-
though, this overhead will be higher for higher obs-interval
values and for higher node speeds, we are convinced, that
this overhead remains tolerable, compared to the buffer space
gained. We note also that this overhead remains constant for
higher broadcast traffic, where the saved buffer overhead in-
creases. Furthermore, contact-based mobility information can
be used for protocols and applications.

RELATED WORK
In [15, 16], the authors pointed out that the fundamental

characteristics of group mobility is the similarity of the ve-
locity. According to this, the authors presented a localized
method to detect group members by sharing velocity infor-
mation with neighbors. Since this approach relies on velocity
information, the approach has strong limitations regarding its
use in application scenarios. As we are designing a gener-
alized solution for MANETs, we will not consider this ap-
proach further.

In [17], the authors proposed a scheme to detect the pres-
ence of groups among the nodes of a network by performing
a correlation index test on the mobility traces. The method
assumes a global view (position of all nodes over the time-
interval considered) and is, therefore, unapplicable for our
purposes.

In [18] the authors presented a group discovery method that
assumes the existence of an up-to-date routing table, which in
turn assumes the availability of a proactive routing protocol.
Proactive routing protocols are, however, only appropriate for
one class of MANETs, i.e. not highly dynamic, and there-
fore the group discovery strategy is only applicable for some
MANET scenarios and not for others. Hence the strategy is
not applicable for our generalized dissemination strategy.

CONCLUSION AND FUTURE WORK
In this paper, we have shown the importance of detecting

relevant mobility patterns for successful design and adapta-
tion of delay-tolerant mobility-aided ad hoc protocols.

We have demonstrated how contact-based mobility metrics
can help developers to design and adapt delay-tolerant ad hoc
protocols and applications. Using these metrics we could de-
tect nodes moving in a group and then adapt the buffering
strategy of hypergossiping, one delay-tolerant mobility-aided
broadcast protocol, to node mobility.

In future work, we propose to consider further relevant fea-
tures, such as node capabilities or message properties, while
computing the buffering utility and the establishment of the
integrated utility-based buffering.
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