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Abstract—Error Propagation Analysis (EPA) is a technique for
understanding how errors affect a program’s execution and result
in program failures. For this purpose, EPA usually compares the
traces of a fault-free (golden) run with those from a faulty run of
the program. This makes existing EPA approaches brittle for mul-
tithreaded programs, which do not typically have a deterministic
golden run. In this paper, we study the use of likely invariants
generated by automated approaches as alternatives for golden
run based EPA in multithreaded programs. We present Invariant
Propagation Analysis (IPA), an approach and a framework for
automatically deriving invariants for multithreaded programs,
and using the invariants for EPA. We evaluate the invariants
derived by IPA in terms of their coverage for different fault
types across six representative programs through fault injection
experiments. We find that stable invariants can be inferred in all
six programs, although their coverage of faults depends on the
application and the fault type.

Index Terms—Error Propagation Analysis; Fault Injection;
Concurrency; Multithreading;

I. INTRODUCTION

Software fault injection (SFI) [5], [25], [1] is a technique for
testing the robustness of software to faults in its operational
environment. For this purpose, SFI introduces faults into the
software under test (SUT) and its environment, executes the
SUT, and observes its behavior under the faults. While the
nature of SFI closely resembles that of mutation analysis, the
faults considered in SFI are not limited to syntactical mutation
operators, but also include real world faults (e.g., software
bugs). Similar to other types of robustness tests, such as fuzzing
approaches, SFI relies on negative oracles to determine if a test
passes. Unlike traditional tests that pass if the SUT’s output
matches an expected output, SFI tests pass if certain undesired
behaviour does not occur (e.g., program crashes).

An important type of negative oracle is error propagation,
i.e., the corruption of a module’s internal state by an injected
fault. In general, error propagation is undesirable because it
can lead to failures that are hard to diagnose and recover from.
The identification of how such state corruptions evolve from a
fault activation in execution is referred to as error propagation
analysis (EPA). EPA typically requires capturing a detailed
execution trace of the program when running a test. After the
termination of a test, its execution trace is compared to an
execution trace from a fault-free execution, also known as the
golden run [3], [13], [20]). Any deviation from the golden run
is considered to be an instance of error propagation.

While the golden run comparison technique works well for
EPA of deterministic programs and execution environments,
it can lead to spurious outcomes in the presence of non-
determinism, which can cause trace deviations that do not
indicate error propagation. One of the primary sources of non-
determinism is the use of multithreading in programs, which
is becoming more prevalent as processors attain increasing
core counts. In a multithreaded program, threads can execute
in different orders (due to non-deterministic scheduling), and
hence the traced values in the program may differ across runs.

In this paper, we propose the use of dynamically generated
“likely” invariants [6] to perform EPA for multithreaded
programs. An invariant is a property on a program’s data
values that holds across all of its executions. Likely invariants
are those that hold across some executions of the program but
do not necessarily hold across others. There are three reasons
why likely invariants are a good fit for the EPA problem. First,
likely invariants can be automatically generated by analyzing
the traces from different executions of a program, without any
programmer intervention. This is critical for the technique to
scale to large, real-world applications. Second, likely invariants
are often compact, and can be checked with low overhead
at run-time, e.g., as predicates for executable assertions. This
makes them easily applicable as oracles. Thirdly, and most
importantly, likely invariants can be conditioned such that they
hold across the entire set of executions on which the program
is trained, automatically abstracting out non-deterministic parts
of the program. However, likely invariants characterize correct
executions with less precision than true invariants [6], which
may reduce their efficacy for EPA.

Consequently, the question we ask in this paper is: “How
effective are the invariants1 generated by automated techniques
in tracking error propagation in multithreaded programs?”. It
is important to answer this question to determine if existing
invariant generation techniques are sufficient for EPA, or if new
techniques need to be developed. We experimentally measure
the effectiveness of an invariant in terms of two attributes,(1) the
stability of the generated invariant set across different (non-
deterministic) executions of the program, and (2) the fault
coverage of the generated invariants for different fault types,
corresponding to common software faults.

1From this point on, when we say invariants, we mean likely invariants.
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We make the following contributions in this paper:
• We propose the use of invariants for performing EPA in

multithreaded programs.
• We build a framework called IPA (Invariant-based Prop-

agation Analysis) to derive dynamic invariants for mul-
tithreaded programs through an automated, end-to-end
process (Section III-B).

• We empirically assess the efficacy of the invariants derived
using IPA for six representative multithreaded programs
through fault-injection experiments (Section IV). We
find that the traditional form of EPA is unsuitable for
multithreaded programs due to their non-determinism. We
also find that the invariants derived by IPA are stable
across multiple executions, and provide coverage ranging
from 10% to 97% depending on the fault type and program.
Finally, we find that the proposed IPA framework is
substantially faster than traditional EPA-based analysis,
while incurring a 2-90% one time setup overhead.

II. BACKGROUND AND RELATED WORK

In this section, we first describe the notions of fault injection
and EPA. We then describe likely invariants and related work
in the field on using likely invariants.

A. Fault Injection

Fault injection is the technique of modifying one or more
components of a software system to emulate bugs. It has
been widely deployed to advance test coverage and software
robustness by exploring error handling paths of programs
(e.g., [17], [7], [8], [9], [24]). There are two categories of
fault injection: compile-time injection and run-time injection.
Compile-time injections typically involve modifying source
code (e.g., SAFE [25]) or binary code (e.g., G-SWFIT [5] or
EDFI [11]), similar to mutation testing. In contrast, run-time
injections mimic software events that corrupt instructions and
memory at run-time. The sensitivity of programs to such events
is difficult to assess through traditional testing techniques [33].
We focus on run-time injections, and refer to these as fault
injections in this paper.

Traditionally, fault injection tools have targeted hardware
faults, such as single event upsets caused by particle strikes
on chips. However, an increasing number of fault injection
systems now target software faults. Fault injection systems,
such as FIAT [32], LLFI [22], or PDSFIS [15] explicitly
support the emulation of a wide range of software faults at
run-time. For instance, buffer overflow errors can be simulated
by under-allocating malloc calls by some number of bytes.
Other examples include simulating invalid pointer errors by
randomly corrupting pointer addresses, and race conditions by
acquiring non-existent or incorrect locks.

B. Error Propagation Analysis (EPA)

The effects of a software fault depends on both its type and
its location in which it occurs. Therefore, EPA attempts to
answer the following question: “How does an injected fault
propagate within a program?”

Existing EPA approaches in tools such as PROPANE [13]
or LLFI [22] make use of either instruction or variable trace
comparisons between golden and faulty runs of programs.
Deviations between traces can be interpreted as data violations
or control flow violations. Data violations occur when identical
instructions at the same program point are invoked with
different values. Control flow violations occur when the
instruction orders differ. Either violation is considered an
indication of a software fault. However, this approach assumes
that traces from golden runs are identical as long as the program
is operating on the same inputs. Any non-determinism in the
program can violate this assumption, such as that caused by
multithreading.

Lemos et. al. [21] addressed the non-determinism problem
in EPA using approximate comparison techniques used in
computational biology (e.g., DNA sequencing) to compare
golden traces and faulty traces. This approach, however, does
not compare the non-deterministic portions of the trace with
the golden run, effectively limiting its coverage. Unfortunately,
there is a significant amount of non-deterministic state in
multithreaded programs.

Leeke et al. [20] attempt to solve the non-determinism
problem in EPA using a reference model, which is a statistical
characterization of the system’s outputs. At a high-level,
reference models are similar to likely invariants. However,
unlike likely invariants, which can be automatically derived,
the reference model requires significant manual effort and also
detailed domain knowledge. Further, for many systems, it may
not be possible to derive a reference model if the outputs do
not conform to well-known statistical distributions.

C. Likely Invariants

True invariants are predicates that are valid across the set of
all executions of a program. Therefore, the violation of a true
invariant necessarily indicates the presence of a fault, provided
the invariant was inferred from a correct program. Thus, true
invariants are sound, but not necessarily complete indicators
for error propagation. Unfortunately, the existence of such true
invariants is undecidable in the general case [28], which makes
their automated inference difficult, if not impossible.

Likely invariants in contrast, only hold for observed execu-
tions but not necessarily for all executions. Thus, they may
contain spurious invariants in addition to true invariants. Further,
likely invariants may not comprise all true invariants as some
true invariants may not be exercised in the set of observed
executions. Consequently, likely invariants are both incomplete
and unsound in the general case, and hence incur both false
negatives and false positives.

Although likely invariants, unlike true invariants, bear a risk
of false positives, we assert that this risk is substantially lower
than for golden run comparisons in non-deterministic programs.
This is because EPA is typically done over a set of known
inputs, and we only require that the likely invariants are stable
over this set. Further, likely invariants can be generated through
automated techniques [6], [12], [4], which make them a viable
option even for highly complex programs.
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In this paper, we focus on the likely invariants generated
by Daikon [6], which is the most widely used likely invariant
inference engine. Daikon infers and reports likely invariants
based on a set of execution traces. DySy [4] and DIDUCE [12]
are other examples of dynamic invariant generation tools.
DySy first applies symbolic execution and then observes
dynamic execution traces to generate invariants. DIDUCE
detects invariants and subsequently checks their violations to
help programmers locate bugs. However, all three systems suffer
from the effects of thread non-determinism [18], rendering
them unsuitable for multithreaded programs. In recent work,
Kusano et al. [18] addressed this problem by developing a
custom interleaving explorer for multithreaded programs as
Udon. However, Udon is not used for the purpose of EPA,
which is our focus. Our framework builds on top of Udon for
invariant inference.

Prior work has used likely invariants for mutation testing
and error detection. For example, Schuler et al. [31] assess
the viability of invariant checking in mutation testing. They
find that an invariant approach yields a 97% detection rate in
their mutation experiments. However, they evaluate the efficacy
of invariants through the proportion of equivalent mutants
detected (i.e., mutations that yield syntactically different but
semantically identical results), which is different from our goal
of using them for EPA. Sahoo et al. [30] use likely invariants to
detect hardware faults through software-level symptoms. Their
experiments show that their approach is able to identify over
95% of hardware faults. However, they focus only on range-
based invariants (i.e., checking if values lie in a closed interval),
significantly limiting the scope of the approach. Further, they
focus on hardware faults (i.e., single bit flips). Lu et al. [23]
develop a custom invariant extractor and utilize invariants to
expose atomicity violations between thread interleavings. In
contrast to these papers, our paper explores the use of a broad
set of likely invariants to trace the propagation of software
run-time faults in multithreaded programs.

III. METHODOLOGY

We first provide an overview of our proposed solution
in Section III-A, followed by the development of IPA, the
framework that implements our solution, in Section III-B. We
then present an example to show the applicability of IPA.

A. Solution Overview

In our approach, we start with a set of correct program
executions and generate a set of likely invariants F from
them, before we inject a fault and run the program again. The
potentially faulty execution is then validated against the likely
invariants. Suppose σ denotes an execution of a program and
σf denotes a faulty execution of the same program. Let sσ
denote the set of all states reachable by σ. A likely invariant
f is defined as a predicate over sσ such that f(s) is true for
all s ∈ sσ . An execution σf is said to deviate from the correct
runs if and only if there is an invariant f ∈ F such that f(s)
is false for some s ∈ sσf

.

To be effective for EPA, the generated invariants must have
the following properties, on which we base our empirical
assessment in Section IV. Both properties are discussed in
detail in Sections IV-D and IV-E.

1) Stability: The invariant must hold across multiple fault-
free executions of the programs targeted for injection with
different numbers of threads for a given set of inputs. This
ensures a low false-positive rate.

2) Coverage: The invariants must provide high coverage for
different types of faults, thereby ensuring a low false-
negative rate. We define coverage of an invariant under
a certain fault type as the probability that the invariant
is violated given that a fault of this type occurs in the
program and is activated during program execution.

B. IPA: EPA Using Likely Invariants

We now introduce IPA, a new EPA framework for multi-
threaded programs using dynamically inferred likely invariants.
IPA consists of three main modules, (1) program profiling, (2)
invariant inference, and (3) fault detection. Figure 1 overviews
the EPA process using the IPA framework.

The profiling module (label À) is invoked at program
compilation time, and instruments the tracing functions at
the entry and exit points of every function in the program.
Tracing program values at function entry and exit points allows
us to capture preconditions and postconditions of procedures,
which broadly encapsulate its functionality. A unique invocation
nonce is also assigned to each pair of function entry and exit
values, on a per thread basis. The invocation nonce enables
inferred invariants to associate exit values with entry values.
All of the traced values are accumulated in a trace file, which
is then passed to the invariant inference module.

The invariant inference module (label Á) examines the
values in the trace file and generates likely invariants with
a 100% confidence, meaning that the invariants will never
be falsified within the given trace file. As discussed in
Section III-A, this stability across different runs is desired
to keep the false-positive rate low. Therefore, programs must
be checked to ensure that the set of likely invariants are
stable for a given set of inputs. Typically, for terminating
programs, this problem can be remedied by using multiple
profiling runs to generate the trace file. Traces from multiple
program runs can produce fewer invariants than single runs
due to the heightened probability for falsification, but can also
generate more invariants as larger traces offer higher statistical
significance for previously neglected invariants. Once the
invariant inference module produces a stable set of invariants,
the invariants can be deployed for validation against faulty
traces (i.e., traces generated from faulty program runs).

Finally, the fault detection module (label Â) parses and
groups the invariants by their invoked functions. These invariant
groupings are stored in a hash map structure. The faulty trace,
which mirrors the format of the golden trace, is scanned line
by line. The fault detection module retrieves the corresponding
invariant(s) from the hash map and validates the invariant(s)
based on the faulty trace values. The invariant violations are
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reported in a new file, which records the line number in the
faulty trace, the function name, a flag indicating function entry
or exit, and the violated invariant.

C. Example

We outline an example of using IPA on the Blackscholes
application, a multithreaded benchmark program introduced in
Section IV-B. Figure 2 features a function within this program.
The profiling module instruments the entry and exit points of
this function while executing Blackscholes multiple times with
a fixed input set. InputX , as the sole function argument, is the
only variable traced at the function entry. At the function exit,
both InputX and the return value are traced. Using the trace
files, the invariant inference module generates two sets of invari-
ants at the entry and exit points respectively: {InputX > 0},
{InputX = orig(InputX), return 6= orig(InputX)}. The
entry invariant (f ) specifies that all observed values of InputX
are greater than 0. The first exit invariant (f1′) specifies that the
final value of InputX must be equal to the value of InputX
that was passed into the function. The second exit invariant
(f2′) asserts that the function cannot return the passed-in value
of InputX .

Suppose a patch of the program incorrectly alters the boolean
expression in line 7 to InputX > 0.0 (an easy mistake even
by experienced programmers [35], [16]). By inspecting the
code, we observe that the bug leads to an erroneous change
of InputX at line 8. The fault detection module can detect
this bug by validating the data trace of InputX against the
set of invariants, reporting the violation of f1′. We applied this
mutation and found that IPA reports the violation of f1′ in
100% of the faulty runs involving the same inputs on varying
numbers of threads. We also observe that the value of InputX
influences the return value, OutputX . However, we did not
observe any violations of f2′ in the faulty runs.

Violated invariants not only reveal the presence of faults,
but also localize the source of faults. Since f is retained, and
f1
′ is violated, the fault must have occurred between the entry

point and the exit point. Note that these statements are not
necessarily from the same function as other threads might have
been interleaved with the function and might have modified
the value of some of the variables. Thus, an invariant based
approach can avert the pernicious effects of thread variance.

IV. EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate the effectiveness
of the likely invariants derived by IPA in performing EPA. As
mentioned in Section III-A, to be effective, a likely invariant
should have two properties: (1) stability, and (2) coverage.
To evaluate the stability, we execute the program multiple
times, and measure the number of executions after which the
invariant set stabilizes (Section IV-D). We then measure the
coverage provided by the invariants for different fault types by
injecting faults into the program and checking whether any of
the invariants are violated due to a fault (Section IV-E). We
also group the invariants into different classes based on their
structure, and measure the coverage provided by each class of

invariants (Section IV-F). Finally, we measure the performance
overhead of the IPA and EPA approaches (Section IV-G).

A. Research Questions

We ask the following research questions (RQ’s) in our
experimental evaluation.
• RQ0: Is golden run EPA a sound method to identify error

propagation in multithreaded programs?
• RQ1: Do the invariants stabilize across multiple execu-

tions of the program?
• RQ2: What is the coverage provided by the invariants as

a whole, for different kinds of errors in the program?
• RQ3: What is the coverage provided by invariants of a

specific type/class, for different kinds of errors in the
program?

• RQ4: What is the performance overhead of IPA compared
to EPA?

B. Experimental Setup

IPA2 consists of three modules as shown in Figure 1, namely
the program profiling module, the invariant inference module,
and the fault detection module. The program profiling module
is implemented as a LLVM [19] compiler transformation
pass, which is based on the instrumentation pass in the Udon
tool [18]. The invariant inference module utilizes Daikon [6],
since it is presently the most widely used tool for likely
invariant generation. Therefore, the primary function of the
program profiling module is to produce a trace file in a
Daikon-compatible format. This involves some customized
configurations in the LLVM compiler pass. For simplicity
of implementation, IPA only traces the values of function
arguments belonging to primitive data types – this is similar
to what Udon [18] does. Lastly, the fault detection module
consists of a single Python script and compares the values in
the trace file with the derived invariants.

We evaluate the IPA framework using six representative
multithreaded benchmarks that perform a wide variety of tasks:
Quicksort, Blackscholes, Swaptions, Streamcluster, Nullhttpd,
and Nbds. These benchmarks range from roughly 300 to 3000
lines of code. All benchmarks are implemented in C/C++, and
use the POSIX threading library (i.e., pthreads). We run all
benchmarks using default program inputs that come with the
benchmark suites. Quicksort, as its name suggests, sorts a
sequence of integers both sequentially and concurrently using
the Quicksort algorithm, and returns a response code to denote
success or failure. Blackscholes, Swaptions, Streamcluster
are part of the PARSEC benchmark [2]. Blackscholes is an
application that solves the Black-Scholes partial differential
equation, which prices a portfolio of European-style stock
options. Swaptions uses the Monte Carlo pricing algorithm to
compute the prices of swaptions, a form of financial derivative.
Streamcluster is a web server application performing the online
clustering problem with streaming data. Nullhttpd is a small and
efficient multithreaded web server for Linux and Windows [27].

2We have made IPA publicly available at http://github.com/
DependableSystemsLab/LLFI-IPA.
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Fig. 1: IPA: Invariant-based EPA Model

1 fptype CNDF ( fptype InputX ) {
2 int sign;
3

4 fptype OutputX;
5

6 // Check for negative value of InputX
7 if (InputX < 0.0) {
8 InputX = -InputX;
9 sign = 1;

10 } else
11 sign = 0;
12

13 OutputX = computeNPrimeX(InputX);
14

15 if (sign) {
16 OutputX = 1.0 - OutputX;
17 }
18

19 return OutputX;
20 }

Fig. 2: Example function in the Blackscholes application

Nbds [26] is an implementation of non-blocking data structures
supporting concurrent key-value store transactions. We choose
these benchmarks to represent a wide variety of domains where
multithreading is commonly applied.

We use LLFI [22], a LLVM based tool, to perform fault
injections. While LLFI was originally developed for hardware
faults, it currently supports both software and hardware faults3.
LLFI injects software faults into the program IR by modifying
instruction or register values of the program at runtime. We
assume that faults are uniformly distributed throughout the
program code. Table I describes how LLFI injects each software
fault. We consider only activated faults, i.e., those in which the
modified data is read by the program, when reporting coverage.

In this paper, we consider the following 6 software faults:
data corruptions, file I/O buffer overflows, buffer overflows
(involving) malloc, function call corruptions, invalid pointers
and race conditions. These software faults represent common
bugs [34] that are difficult to capture through unit or regression
tests, and have been used in prior work to emulate software
faults [14], [10]. Data corruption is a generic fault type that can
capture a wide variety of errors due to logical errors (e.g., the
example in Section III), and implementation bugs (e.g., integer
overflows, uninitialized variables). The buffer overflow fault

3Available at: https://github.com/DependableSystemsLab/LLFI

TABLE I. Description of faults injected using LLFI

Fault Type LLFI Implementation
Data Corruption Randomly flips a single bit in an arbi-

trary data value in the program
File I/O Buffer Over-
flow

Randomly increases the size in fread
and fwrite operations

Buffer Overflow Malloc Under allocates malloc and calloc to em-
ulate overflowing the allocated buffers

Function Call Corrup-
tion

Randomly corrupts the source register
(i.e., parameter) of a function call

Invalid Pointer Randomly corrupts the returned pointer
from malloc and calloc

Race Condition Replaces a lock of a mutex in the
program with a fake mutex

categories can occur due to common bugs in C/C++ programs
where array and pointer bounds are not checked. We distinguish
between file I/O-related buffer overflows and other buffer
overflows as the former can lead to security vulnerabilities.
Function call corruptions can occur when one passes the wrong
parameters to a function, and represents incorrect invocation of
functions i.e., interface errors. Invalid pointers can arise due to
errors in pointer arithmetic, or due to the use of pointers after
freeing them, i.e., use-after-free bugs. Finally, race conditions
occur due to locks not being acquired or acquired incorrectly,
and with at least one of the threads performing a write to
shared data. We limit ourselves to six fault modes to keep the
number of experiments tractable - all six faults are supported
by LLFI [29]. Note that the fault types above are broader
than those covered by traditional mutation testing, in that they
involve corruption of the program state beyond simple syntactic
changes.

C. RQ0: Golden Run Variance

We conduct golden trace analysis (the traditional EPA model)
over the benchmark applications (see Section IV-B), by varying
the number of threads for each program. To conduct EPA
following the traditional EPA model shown in Figure 3, the
application is compiled and instrumented to invoke a tracing
function at every LLVM IR instruction. Hence, each line
in a trace file represents an instruction identifier and its
corresponding data value in the program. A golden trace of the
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Fig. 3: Golden run based EPA
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Fig. 4: Average variance between golden run traces

original program instructions is generated in a process known
as profiling. Then, a fault is injected into the program and a
trace of the modified program instructions is produced. Finally,
EPA is performed by comparing the golden and faulty traces
line by line. Discrepancies between the two traces will reveal
how faults propagate through the program execution paths.

We collect golden runs over all benchmark programs except
Nullhttpd 4, running them with a single thread, 4 threads,
8 threads, 16 threads, and 32 threads respectively. We find
considerable variance between the golden traces upon running
the applications with different numbers of threads using the
same input, which obviously does not indicate error propagation.
Variance is measured by taking the proportion of line conflicts
between two trace files relative to the total number of lines
in a single trace file (i.e., proportion of dynamic instructions
with different values).

Figure 4 depicts the average variances between 5 golden
traces of each application, executed with three distinct thread
levels. The variance between the golden runs is 10% on average
due to multithreading non-determinism. However, we observed
golden run variance when sending multiple server requests
concurrently thus spawning multiple threads.

Note that it is possible to use traditional EPA for the
deterministic portions of the program. However, it is non-
trivial to identify the deterministic portions a priori, as these
depend both on the number of threads and the inputs given to
the program. Therefore, traditional methods for EPA cannot
be used in a multithreaded context.

4This experiment was not conducted on Nullhttpd since the thread number
was not externally configurable.

Observation 1 If a multithreaded program is repeatedly ex-
ecuted with the same input, the golden runs extracted from
these executions differ from each other.

D. RQ1: Stability

To use invariants for EPA while minimizing false positives,
the invariants must be reproducible among repeated program
executions. In this experiment, we evaluate the stability of
the set of dynamically generated invariants across execution
reiterations. Let n denote the number of execution recurrences.
Each application begins with n = 1 to produce a trace file,
which is then delivered to the invariant inference module. The
invariant inference module returns a single set of invariants.
This process is repeated with n = 2, 3, 4, 5, 10, 15, resulting in
a family of sets of invariants. The number of invariants obtained
at each n value is reported in Figure 5. In all of our sample
applications, we observe a convergence of likely invariants by
n = 5. We also verified manually that the invariant sets match
when the invariants converge, i.e., the invariants derived are
the same after 5 executions.

Table II shows the counts of inferred invariants in our sample
applications. These are shown only for the stable invariants.
We find that there is roughly one invariant for every 10–100
lines of source code, with the sole exception of Nullhttpd. Few
invariants were inferred from Nullhttpd as many of its functions
were parameterless. This ratio is captured by the invariant
density, ρ, which represents the number of invariants per lines
of code. The invariant counts show that stable invariants can
be inferred from multithreaded programs, when repeatedly
executed with the same inputs.

Observation 2 If a multithreaded program is repeatedly exe-
cuted with the same input, the likely invariants generated from
these executions stabilize within ten executions.
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Fig. 5: Number of invariants generated from varying numbers
of profiling runs for six benchmark applications

For our coverage assessment in the following section, we
consider only the stable invariants, or those invariants that
hold across all observed executions (in our experiments). This
allows us to minimize the number of false-positives and obtain
conservative lower bounds on the coverage.
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TABLE II. Invariant counts and classification (refer to Table III) of IPA’s generated invariants

Benchmark LOC Functions Invariants ρ (%) Invariant Classes
A B C D E F G H Other

Quicksort 330 9 27 8.2 3 - - - 1 1 16 6 -
Blackscholes 526 5 29 5.5 - - - - 3 - 15 11 -
Streamcluster 1580 11 23 1.5 1 - - - - - 14 6 2
Swaptions 1635 14 94 5.7 7 4 3 1 4 4 59 11 1
Nullhttpd 2500 20 8 0.3 - - - 2 - - 4 2 -
Nbds 3158 27 80 2.5 - - - - 4 - 36 39 1

E. RQ2: Coverage

As we showed in the previous sections, using invariants
instead of golden run based comparisons, we were able to
improve the soundness of EPA for multithreaded applications,
i.e., minimize false positives. An important question is, whether
we also miss true positives in the process of reducing false
positives, i.e., if the likelihood of false negatives is increased for
invariant based EPA. To answer this question, we perform 1000
fault injections of each fault type in Table I, one per run, on
the benchmark applications. We choose a sample size of 1000
fault injections such that the error bars of the fault coverage
rates fall within a 95% confidence interval. Subsequently, we
compare the faulty program traces against the set of inferred
invariants. If any of the likely invariants was violated due to
the injected fault, we label the run as a successful detection.

Suppose T is the set of all faulty program traces, and p is
the number of violated invariants in a single trace. Let Tp≥1 be
a subset of T , denoting the set of program traces that violate
at least one invariant. Then,

Fault Coverage =
|Tp≥1|
|T |

The fault coverages for each application are shown in
Figures 6 to 11. The error bounds denote the 95% confidence
intervals of the reported fault coverages. The figures show the
fault coverage for different fault types divided into three failure
modes, as seen in similar fault injection experiments [22]:
Benign, Crash/Hang and Silent Data Corruption (SDC). Benign
indicates faulty program runs with no observable deviations in
the final program output. Faults may still propagate through
internal functions without manifesting into an observable output
deviation. Crash/Hang signifies faulty runs that either terminate
with exceptions or time out. SDC specifies faulty runs that
terminate normally but produce program outputs that deviate
from the golden run (i.e., incorrect outputs). SDCs are often
the most important failure modes, as they are much harder to
detect than crashes.

We find that the fault coverage provided by the invariants
varies widely across applications, from 90%–97% for Swap-
tions, to 10%–15% for Blackscholes. This variation occurs
due to fluctuations in two factors: Invariant densities (ρ), and
invariant relevance (i.e., ability of the invariant to detect faults).
Quicksort and Swaptions have higher invariant densities at
8.2% and 5.7% respectively. However, invariant density does
not express the relevance of the invariants to fault detection.

The sets of invariants for Quicksort and Swaptions both contain
a number of invariants involving computation data, while
Blackscholes is dominated by invariants on local environment
variables. Computation data is more likely to be passed inter-
procedurally, which increases the likelihood of fault detection.
In contrast, local environment variables rarely carry beyond
the scope of functions. Consider the case where a variable is
corrupted at the function exit. If no invariants exist on that
variable at the function exit, the fault would not be captured.
However, the prospect of fault detection increase if the value
is passed to subsequent functions, which may have invariants
checking it.

Further, there is considerable variation across different fault
types and their consequences on the benchmark applications.
For example, in Streamcluster, the coverage for race conditions
is only about 15%, while it is 70% for data corruption errors.
In other benchmarks (e.g., Quicksort), the situation is reversed,
with race conditions having the highest coverage (97%), while
data corruption errors have the lowest coverage (80%). Data
corruption errors directly affect the data as data operand bits
are randomly flipped. On the contrary, the effects of race
conditions can be difficult to predict as they are dependent on
the implementation of locking patterns in the threading library.
In this case, race conditions cause Quicksort and Swaptions to
violate (some) invariants, yet minimal effects are observed in
other benchmarks.

Across all applications, the benign errors constitute a
majority of fault outcomes (73% on average), followed by
Crash/Hang (22%) and SDCs (5%). We do not measure
SDCs in Nullhttpd and Nbds since the applications return
either a successful response code or a failure message. We find
that benign errors exhibit the highest fault coverage overall.
Although benign errors are typically neglected in EPA, benign
fault coverage shows that invariants can track benign faults
before they are masked. This may be important to find latent
bugs in the program. On the contrary, Crash/Hang are the most
blatant failures. Nullhttpd has the highest rate of Crash/Hang
fault coverage among the benchmarks. We find that a set of
initialization invariants are violated whenever the web server
fails to load. Finally, SDCs are typically the least commonly
observed failure outcomes across applications, and consequently
have the least coverage. Quicksort has the highest rates of SDC
error detection among all the applications. This is because it
contains many inequalities, and a single negated inequality can
impact the final ordering of values. Correspondingly, many of
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the invariants in Quicksort consist of inequality conditions and
ordering constraints that are sensitive to such value deviations,
and hence yield high coverage.

Observation 3 If faults are injected in a multithreaded ap-
plication, their effects are indicated by violations of likely
invariants generated from fault-free multithreaded executions
of that application. However, the coverage provided depends
both on the application and the type of faults injected.

F. RQ3: Invariant Classification

During the automated inference of likely invariants, we
observed that many have a similar structure. For example,
some invariants involve inequalities, while others involve set
membership and ordering. This observation leads us to ask
whether differences in structure of the invariants correlate with
differences in the respective invariants’ effectiveness for EPA.
The result can help discover what constitutes a good invariant
for EPA.

To study this effect, we first classify the invariants into
eight different classes based on their structure and then
consider the coverage of the invariant classes. The classes
are: Array-equality, elementwise-initialization, elementwise,
initialization, inequality conditions, multi-value, order, return-
value invariants. Table III provides a brief description of each
invariant class 5. The invariants are classified exclusively,
without overlap between classes. A small number of invariants
did not fall into any of these eight classes – we ignore them
for this study.

We calculate the coverage of an invariant class as the fraction
of fault injection runs that violate at least one of the invariants
in that class. For example, if an invariant class I has two
invariants I1 and I2, and S1 and S2 are the sets of fault

5The rightmost column of Table II shows the number of invariants per class
in each benchmark.
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Fig. 6: Proportion of 1000 faulty Quicksort runs that violate
at least one invariant

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F
a

u
lt

 C
o

v
e

ra
g

e

Fault Type

Swaptions

SDC Crash/Hang Benign

Fig. 7: Proportion of 1000 faulty Swaptions runs that violate
at least one invariant
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Fig. 8: Proportion of 1000 faulty Blackscholes runs that violate
at least one invariant

injection runs that result in violation of the invariants I1 and
I2 respectively, then the coverage of the invariant class I is
given by (|S1 ∪ S2|)/N , where N is the total number of fault
injection runs that had activated faults.

Table II shows the number of invariants that occur in different
classes for the five applications. Due to space constraints,
we only show the results for the Quicksort and Swaptions
applications. However, similar results were observed for all
benchmarks. Tables IV and V show the results of the fault
injection experiment for these two programs, grouped by
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Fig. 9: Proportion of 1000 faulty Streamcluster runs that violate
at least one invariant
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Fig. 10: Proportion of 1000 faulty Nullhttpd runs that violate
at least one invariant

invariant classes. Note that the figures only show those invariant
classes (see Table II that had at least one invariant in that
application.

We observe that different invariant classes have different
coverage depending on the application. For example, in
Quicksort (Table IV), the order invariants have the highest
fault coverage, followed by return-value invariants. The order
invariants check whether arrays are sorted in either ascending
or descending order. The order invariants are violated if at
least one element in an array is misplaced, which accounts for
their high fault coverage in Quicksort. A sizeable proportion of

TABLE III. Description of Invariant Classes

Invariant Class Description
A Array-

equality
Equality condition on every element of an
array

B Elementwise-
initialization

Initial values of array elements

C Elementwise Condition on the elements of an array
D Initialization Invariants that associate post-conditions

to pre-conditions
E Multi-value Variable value must match exactly one

element of a set
F Order Array is sorted in ascending or descending
G Relational

conditions
Invariants involving both equalities and
inequalities

H Return-
value

Invariants involving the return value of a
function

TABLE IV. Classification of violated invariants from 1000
faulty Quicksort runs and their coverage

Fault Type Failure Invariant Classes (%)
A C D E F G H

DataCorruption
SDC 6 1 - - 24 - 24
Crash - 1 - - 27 - -
Benign 1 1 - 2 30 - 1

FileI/OBufferOverflow
SDC 8 2 - 2 37 - 37
Crash 1 2 - - 9 - 1
Benign 2 3 - 2 49 - 1

BufferOverflowMalloc
SDC 9 3 1 2 33 - 33
Crash 1 1 - - 9 - -
Benign 3 3 2 2 50 3 3

FunctionCallCorruption
SDC 7 1 - 1 20 - 20
Crash 1 2 - - 27 - -
Benign 1 1 - 2 34 - 1

InvalidPointer
SDC 6 1 - 2 21 - 21
Crash 1 1 - - 30 - -
Benign 1 1 - 2 31 - 1

RaceCondition
SDC - - - - 2 - 2
Crash 1 1 - - 1 - -
Benign 1 1 - - 97 - -

TABLE V. Classification of violated invariants from 1000 faulty
Swaptions runs and their coverage

Fault Type Failure Invariant Classes (%)
A B C D H

DataCorruption
SDC 3 3 6 1 1
Crash - - 38 - -
Benign 26 26 51 - -

FileI/OBufferOverflow
SDC 3 3 6 1 1
Crash 1 1 18 - -
Benign 42 41 72 - -

BufferOverflowMalloc
SDC 4 4 8 1 1
Crash - - 18 - -
Benign 42 42 71 - -

FunctionCallCorruption
SDC 2 2 6 1 1
Crash - - 40 - -
Benign 26 26 49 - -

InvalidPointer
SDC 2 2 5 - -
Crash - - 40 - -
Benign 28 28 48 - -

RaceCondition
SDC - - - - -
Crash - - - - -
Benign 58 58 70 - -
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Fig. 11: Proportion of 1000 faulty Nbds runs that violate at
least one invariant

faulty runs with violated order invariants result in SDC failures.
A proportion of the runs also resulted in benign failures, despite
violating order invariants. This may occur in Quicksort since it
returns a response code rather than the sorted numbers as output.
In comparison, return-value invariants have a lower overall fault
coverage than order invariants. However, we observe that the
majority of return-value invariant violations result in SDCs,
thus showing their importance.

On the other hand, the elementwise invariants have the high-
est fault coverage overall in Swaptions (Table V). Elementwise
invariants correspond to predicates on individual elements of an
array. Swaptions stores its dataset in an array, which is passed
back and forth between its functions. As a result, a number of
array element constraints arise. Elementwise invariants offer
a marginally higher fault detection rate for SDCs compared
to the other invariant classes. This contrasts with Quicksort
where order and return-value invariants collectively yield high
SDC fault detection.

However, there is much less variation in the coverage
provided by different invariant classes for different types of
faults. For example, in Quicksort, order invariants offer high
coverage regardless of fault type, while multi-value invariants
offer uniformly low coverage for this application. Thus, the
application and the invariant class have a greater impact on
the fault coverage than the fault type, across applications.

Observation 4 The coverage of invariants for an application
differs across different classes of likely invariants generated
from fault-free multithreaded executions of the application.

G. RQ4: Performance Evaluation

We evaluate the performance of IPA by comparing each step
shown in Figure 1, described in Section III-B, to its equivalent
in EPA. Table VI exhibits the average durations for each step,

TABLE VI. IPA vs EPA Performance Measured in Seconds
for step numbers 1, 2 and 3 (refer to Figure 1).

Benchmark IPA EPA S× D×1 2 3 1 3
Quicksort 5.5 5.4 0.4 1.1 1.4 0.1 2.7
Blackscholes 5.5 8 0.5 4.1 72 0.29 72
Streamcluster 5.5 7.3 0.7 4.1 52.2 0.31 44
Swaptions 9.5 8.9 1.1 18.1 >300 0.96 151
Nullhttpd 5.6 4.9 0.3 3.6 22.1 0.32 27
Nbds 32 18.3 7.4 49.2 28.3 0.98 7.3

measured in seconds, each averaged over 5 runs. No faults
were injected in this experiment as we wanted to obtain the
worst case performance overheads (i.e., when the application
executes to completion).

We divide the overhead comparisons into two categories:
setup overhead ratio (S), and fault detection overhead ratio
(D). The values of S and D are computed using formulas
(1) and (2), where the variable subscripts refer to the steps in
EPA/IPA.

S =
E1

I1 + I2
(1) D =

E1 + E3

I1/5 + I3
(2)

In IPA, the one-time setup overhead for the fault injection
experiments consists of golden run profiling (I1) over 5 runs,
and invariant generation (I2). In EPA, only golden run profiling
is performed (E1), and there is no invariant generation step.
We find that IPA induces a 2-90% setup overhead over EPA
in our benchmarks.

Unlike the setup overhead which is a one-time cost, the
fault detection overhead is incurred after every fault injection.
In IPA, this process consists of generating a single trace file
(I1/5) and executing the fault detection module (I3). In EPA,
this process involves a line by line trace validation between
golden and faulty runs (E3). We define D, the fault detection
overhead ratio, as the time taken by EPA divided by that of
IPA for fault detection. We find that IPA is 2.7× to as much
as 151× faster than EPA as far as fault detection is concerned,
depending on the benchmark. This is because EPA traces the
program execution after each point, while IPA only checks for
consistency of invariants at function entries and exits.

Thus, IPA incurs slightly higher setup overhead compared
to EPA, but has substantially lower fault detection overheads.
Since the fault detection overhead is incurred on each run
(which potentially number thousands in a typical fault injection
experiment), it is much more important than the setup overhead.

Observation 5 IPA incurs a higher setup overhead compared
to EPA, but has significantly lower fault detection overhead.

V. DISCUSSION

In this section, we first present the implications of our results,
and then the threats to the validity of our study.

A. Implications
In this paper, we address the question whether likely

invariants derived by automated techniques can be used for
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EPA in multithreaded programs. EPA requires stable invariants,
which provide high coverage for different types of faults. We
find that the invariants stabilize within a few executions of the
program. However, their coverage is highly dependent on the
application. For some applications, the coverage provided is
high (80% to 90%), while for other applications, the coverage
is quite low (10% or less). The type of inferred invariants is
another factor for consideration. In Table II, relational invariants
(Type G) are predominant in all benchmarks. Conversely, as
seen in both Tables IV and V, their fault coverages are low.
This suggests that existing invariants derived by automated
tools such as Daikon [6] may not be sufficient to ensure high
fault coverage across applications.

Furthermore, the coverage provided by the invariants depends
on the specific fault that is injected, e.g., race conditions. Finally,
most of the invariants provide coverage for benign failures
and crashes, both of which are much more numerous than
SDCs. However, SDCs are an important concern in practice,
as they can result in catastrophic failures, and likely invariants
do not currently provide high coverage for SDCs. Improving
the coverage of likely invariants for SDCs is a direction for
future work.

We further study the effect of invariant structure on fault
coverage by grouping the invariants into different categories.
Similar to the prior experiments in Section IV-E, we observe a
significant correlation between the invariant structure and fault
coverage though this is more dependent on the application
rather than the fault type. However, we find that there is no
single class of invariants that provides high coverage across
all applications. This implies that it may be better to derive
invariants on an application-specific basis, say based on its
algorithm, than to use generic approaches such as Daikon for
deriving the invariants.This is also a direction for future work.

B. Threats to Validity

There are three threats to the validity of our results. First, IPA
uses Daikon for generating likely invariants. Some results may
not apply if an alternate approach to likely invariant generation
is used, which is an external threat to validity. However, as
Daikon is the most common likely invariant generator used
today, we consider our results valid for most scenarios.

Second, since IPA is limited to tracing local values of
primitive data types, the set of generated invariants excludes
invariants involving objects and global values. As a result, the
invariants deployed for validation are not necessarily the most
relevant invariants for the program. This is an internal threat
to validity. However, most benchmarks in this study use only
primitive data types in their function parameters, and hence
this was not an issue in our programs.

Finally, we consider only a limited number of fault types (6)
and a limited number of benchmark programs to evaluate IPA.
However, we chose the fault types to cover common software
bugs, and hence we believe the results are representative.
Further, we choose the benchmarks to represent a wide variety
of scenarios where multi-threading is commonly used.

VI. CONCLUSION

With processors expanding core counts, multithreaded pro-
grams are rising in prevalence. Despite this trend, existing
methods for EPA that make use of golden traces, are unequipped
to handle multithreaded programs. To address this problem,
we present an EPA framework using likely invariants in lieu
of golden traces, and experimentally evaluate the effectiveness
of invariants. Our results indicate that invariants can be
dynamically derived in all of our benchmark applications, with
reasonable stability. However, the fault coverage provided by
the invariants is highly variable across applications. Therefore,
likely invariants offer a viable replacement for golden-run based
EPA only in some applications, and not others.

As future work, we plan to investigate the use of application-
specific invariants for increasing fault coverage, and explore
the stability-coverage tradeoff in more detail.
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