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Abstract—Cloud computing offers a model where resources
(storage, applications, etc.) are abstracted and provided “as-a-
service” in a remotely accessible manner. Although there are
numerous claimed benefits of the Cloud to ensure confidentiality,
integrity, and availability of the stored data, the number of
security breaches is still on the rise. The lack of security assurance
and transparency prevented customers/enterprises from trusting
the Cloud Service Providers (CSPs). Unless the customer’s
security requirements are identified and documented by the
CSPs, customers can not be assured that the CSPs will satisfy
their requirements. Furthermore, the customer’s compensation
upon a violation is a manual time intensive process.

In this paper we address the aforementioned challenges by
proposing a decentralized customer-based monitoring approach
running over Ethereum blockchain. The proposed approach
allows the customer(s) to validate the compliance of CSP(s) to
the contracted services in the Service Level Agreements (SLAs)
and “autonomsly” compensate customers in case of security
breaches. At the same time, the proposed approach prevents
customers from misreporting for financial gain. The approach
builds upon the Ethereum blockchain infrastructure in order to
securely store monitoring logs and incorporate SLAs as smart
contracts. The compliance validation framework is implemented
and its functionality is evaluated on Amazon EC2 and Ethereum
Blockchain.

Index Terms—Cloud, Security, SLA, Ethereum Blockchain

I. INTRODUCTION

Cloud computing drives the vast spectrum of both current
and emerging applications, products, and services, and is
also a key technology enabler for the future Internet. In
such a service-based environment, service provisioning relies
on a Service Level Agreement (SLA) which represents a
formal contract established between the Cloud customer and
the Cloud Service Provider (CSP). The SLA specifies how
provisioning takes place as well as the respective rights and
duties of the customer as well as the CSP. Furthermore, the
SLA includes the list of Service Level Objectives (SLOs)
which are the measurable elements of an SLA that specify
the Cloud services’ levels requested by the customers, and
required to be achieved by the CSP.

Although Cloud computing direct economic value is unam-
biguously substantial, taking full advantage of Cloud comput-
ing requires considerable acceptance of off-the-shelf services.
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Specifically, both security assurance and transparency remain
as two of the main requirements to enable customer’s trust
in CSPs. The lack of assurance and transparency, along
with the current paucity of techniques to quantify security,
often results in Cloud customers being unable to assess the
security of the CSP(s) they are paying for. In this context,
a number of Cloud community stakeholders (e.g., ISO 2700x
[1], the European Union Agency for Network and Information
Security (ENISA) [2], and Cloud Security Alliance (CSA) [3])
are pushing towards the inclusion of security parameters and
CSP’s security implementation in Service Level Agreements
(named security SLAs or secSLAs [4]). Examples of security-
related information are ciphers used to encrypt data, vulner-
ability management/assessment procedures, minimum/average
incident response times, security controls’, and configuration
elements such as metrics for measuring cybersecurity perfor-
mance, etc.

A. Problem Statement

Despite the benefits of disclosing the security related infor-
mation in secSLAs, Cloud customers still face major problems
that need to be addressed. In theory, by signing the secSLA, a
CSP commits to providing the specified security level through-
out the full life-cycle of the service. However, in practice, the
service may not comply with the security level contracted in
the secSLA during its full operation time. Accordingly, the
compensations to be paid to the customer upon any detected
violation are specified in the secSLA. Thus, monitoring the
service levels described in secSLAs throughout the Cloud full
life-cycle is a critical task. The responsibility of this task is
usually taken over by either Cloud providers or third-parties.

• Cloud provider side monitoring: The CSPs develop
their own monitoring tools and market them as part of the
Cloud service package (e.g., Amazon CloudWatch [5])

• Third-party system: A trusted organization provides
a monitoring tool and takes over the responsibility of
monitoring the system’s quality levels [6]. For example,
Nagios [7], and Zabbix [8]

Thus, most of the existing monitoring and security com-
pliance approaches have been proposed to help the CSP to
manage security compliance of their services, whereas none



of the approaches addresses compliance management from the
customer side. Hence, how can customers:
P1. Verify if the contracted security level is actually delivered.
P2. Detect and prove any violations to the contracted service

levels in the secSLA at any time during the service life-
cycle.

P3. Get compensated “autonomously” in case of security
breaches and at the same time, how to prevent the
customers from misreporting for financial gain.

In [9], we proposed an approach to continuously monitor
and validate the compliance of the provided Cloud service to
the contracted security level in a secSLA. However, on the
one hand, how can customers prove a detected violation and
on the other hand, how to prevent customers from misreporting
violations for financial gain were not presented. Furthermore,
one of the problems facing the Cloud customers is the “manual
time intensive” compensation process. The current compensa-
tion process involves: (a) the customer opening a case with the
support team, (b) waiting for someone to analyze the validity
of the case, and finally (c) a payment or a refund is initiated
in terms of credit for future usage.

B. Contributions
To solve the aforementioned challenges, we propose an

approach to continuously monitor and validate the compliance
of the provided Cloud service to the contracted security level
in a secSLA and autonomously compensates the customer
if a secSLA violation is detected. The approach runs over
Ethereum blockchain to automate the validation and compen-
sation process, eliminating the need for human intervention
during the measurement, monitoring, and validation processes.
The aggregated monitoring logs are stored on the blockchain
in a trustworthy manner. This allows the CSPs to validate the
claimed violation in a transparent and trustworthy way. To
summarize, we make the following contributions:

1) Defining a measurement procedures to determine the
measurable SLO values. The measurements are used by
the proposed framework to validate the SLOs compliance
to the contracted values in the secSLA. Furthermore,
we establish a monitoring scheme for validating the
compliance of the service to the secSLA.

2) Enforcing the secSLA using smart contract deployed over
the Ethereum blockchain. The smart contract receives
and aggregates the monitoring logs corresponding to
the measured SLOs. The aggregation scheme is fully
decentralized.

3) Implementing and evaluating the functionality and per-
formance of the monitoring scheme on Amazon Elas-
tic Compute Cloud (Amazon EC2) instances [10] and
Ethereum blockchain [11].

To the best of our knowledge, our approach is the first
attempt to provide customers with a decentralized customer
side monitoring scheme with the enforcement of the secSLA
using a smart contract deployed over the Ethereum blockchain.
In addition to, implementing an autonomous compensation
process for customers if a violation is detected.

C. Outline

The rest of the paper is organized as follows. Section II
develops the background and the basic terminologies related
to Cloud secSLAs and blockchain. The architecture of the
proposed framework is elaborated in Section III. Section IV
presents an evaluation of the proposed approach using Amazon
EC2 and Ethereum blockchain. Section V describes the related
work.

II. BACKGROUND

In this section we provide background information, which
is necessary for better comprehension of the other sections.
Practically, we define the concepts of security Service Level
Agreement (secSLA) which is used throughout the paper.
Furthermore, we give a brief explanation of blockchain tech-
nology.

A. Security Service Level Agreements

A Cloud secSLA describes the provided security services,
and represents the binding commitment between a CSP and a
customer. Basically, this outlines the desired security services,
each of which contains a list of SLOs. Each SLO is composed
of one or more metric values that help in the measurement of
the Cloud SLOs. Based on the analysis of the state of practice
presented in [12], Cloud secSLAs are graphically modeled
using a hierarchical structure, as shown in Figure 1. The root
of the structure defines the main container for the secSLA. The
intermediate levels (second and third levels in Figure 1) are the
services which form the main link to the security framework
used by the CSP. The lowest level (SLO level) represents the
actual SLOs committed by the CSP which are consequently
offered to the Cloud customer. These SLOs are the threshold
values which are specified in terms of security metrics.

Entitlement category 
(S2.1)

Percentage of 
timely incident 
reports (S1.1.1)

Recovery time 
(S1.1.2)

Crypt brute force 
resistance 

(S2.1.1)

Password 
storage 

protection level 
(S2.1.2)

R
o

o
t 

level

 

SLO
 level

Services level

Cloud secSLA

Identity and Access 
Management IAM 

(S1)

Information Security 
Incident Management 

(S1.1)

 

Application 
&Interface 

Security
AIS (S2)

Fig. 1. Cloud secSLA hierarchy based on security posture provided by the
STAR repository and compliant with the relevant ISO/IEC 19086 standard.



B. Consensus Algorithms

Blockchain is a distributed public ledger storing all cryp-
tocurrency transactions whether it’s Bitcoin transactions or any
other digital currency. The transactions are stored in blocks and
these blocks are cryptographically chained together forming
the blockchain. Unlike traditional systems which require users
to trust third parties for its operation, the blockchain enables
a trustless environment, where no trusted third-party exists.

In order for the blockchain technology to enable a trustless
environment, a consensus mechanism is needed where all
participating nodes in the blockchain network adhere to. The
most prominent consensus mechanism widely adopted is the
proof-of-work algorithm PoW which is introduced by Bitcoin
[13]. The PoW is a puzzle competition which allows the first
node to find a random number, called nonce, the right to
propose the next block in the blockchain. Using this nonce,
the hash of the entire block becomes lower than the current
difficulty target. The blockchain difficulty target is used to
adjust the average time spent by miner nodes to provide the
proof of work solution.

C. Ethereum Blockchain

Unlike Bitcoin which is utilized only as digital decentralized
currency, Ethereum is a distributed computing platform using
the computing platform turing-complete programming lan-
guage [11]. Ethereum enables complex computations to be ex-
ecuted in the blockchain. Ethereum has its own cryptocurrency
called ether “ETH”. One ether can be divided into smaller
units of currency, where one ether corresponds 103 finney, 106

szabo, and 1018 wei. Ethereum allows developers to develop
smart contracts and decentralized applications “Dapps”. The
following sections present the most important aspects of the
Ethereum blockchain.

1) Ethereum Accounts: There are two main types of ac-
counts in Ethereum:

• Externally Owned Account (EOA): This account is held
by external actors, in other words, it’s controlled by pri-
vate keys of the account’s creator and hence, transactions
must be signed with the corresponding private key before
being stored in the blockchain.

• Contract Account: Is an account controlled by the source
code of the smart contract which defines its behaviour.
When this account receives a transaction, it starts to
execute the corresponding snippet of code and changes its
state after a successful execution. This type of accounts
can also interact with another contract account or an
EOA.

2) Ethereum Virtual Machine: Ethereum Virtual Machine
“EVM” is the runtime environment for Ethereum smart con-
tracts. The EVM executes the smart contracts in an iso-
lated fashion, in other words, the execution has no access
to network, file-system or other processes [14]. This makes
the execution results deterministic and any malicious node
trying to alter the execution results can be easily detected.
Computations in the EVM are done via a stack-based bytecode

language similar to traditional assembly languages, where the
programs are composed of operational codes (opcodes). Each
opocode has a predefined execution cost in a unit called “Gas”,
where gas is the internal pricing for running a transaction or
contract in Ethereum.

3) Smart Contracts: Smart contracts are basically the pro-
grams that reside in the Ethereum blockchain network and
are executed by miner nodes. Any smart contract has set of
functions that define its behaviour and data that defines its
state [15]. For every smart contract created and deployed over
the Ethereum blockchain, there exists a contract account. Each
contract account has an address which allows users to interact
with the contract by invoking its functions.

Fortunately, smart contracts are not directly written in the
EVM language but are written in high level language such
as Solidity. The code is then compiled into bytecode to be
deployed over the blockchain and gets executed by the miner
nodes EVM.

4) How to Interact with Smart Contracts: The first step to-
wards interacting with a smart contract is running an Ethereum
node connected to the public Ethereum blockchain. Geth is the
official Ethereum node implementation that can be installed
in order to connect to the public Ethereum blockchain [16].
There are two main components that are crucial to interact with
the smart contracts deployed over the blockchain, namely the
Web3 API and oracles.

• Web3 API: The Web3 API is the most widely used
API by decentralized applications, it offers the Ethereum
nodes to interact smoothly with the blockchain.

• Oracles: By design the smart contracts are passive when
it comes to the interaction with the outside world (outside
the blockchain). This means smart contracts are not
allowed to fetch data from external sources and need
trustworthy data feeders to feed them with the required
data. An oracle is basically a data feeder that collects
real-world data and send it to the smart contract. Hence,
the oracle plays the role of an intermediary between the
outside world and the blockchain. Oracles can utilize the
web3 API in order to be able to interact with the smart
contracts deployed on the blockchain [17].

III. SECSLA COMPLIANCE MONITORING FRAMEWORK
ARCHITECTURE

After the customer finds the best matching CSP which
satisfies his/her requirements, the CSP commits to deliver the
agreed-on SLOs in the secSLA. In order for the customer
to validate the agreed-on SLOs compliance, a monitoring
approach is proposed as shown in Figure 2. The proposed
approach is composed of the following three progressive
stages:
Stage (1) The agreed-on SLOs’ values are extracted from the

secSLA and the measurement technique for each
SLO is defined. The defined SLOs’ measurement
techniques are formulated as “tests” to be executed
during the monitoring scheme. These tests are used
to determine the real-time values of the SLOs. Both



the contracted SLOs and the tests are developed in
the smart contract. The smart contract is deployed
and executed in the blockchain.

Stage (2) The CSP’s SLOs are monitored over a certain period
of time using customer data oracle as shown in
Figure 2.

Stage (3) The monitoring logs measured in Stage (2) along
with the measurement techniques defined in Stage
(1) are used to validate the contracted SLOs;
whereas the contracted values from the secSLA are
used as the validation reference.

Before detailing each of the three monitoring stages, we
explain the main components of our model as depicted in
Figure 2:
1) Ethereum private blockchain is the underlying infrastruc-

ture of our system. It serves as a decentralized trustless
computing platform, where our smart contract is executed
in a decentralized manner. The execution results are veri-
fied and stored by every blockchain node.

2) The smart contract is the key component of our proposed
approach. The smart contract includes the contacted sec-
SLA SLOs and the measurement techniques of each SLO.
Furthermore, the smart contract is responsible of:
- Interacting with different oracles (e.g., receiving the

monitoring logs from data oracles).
- Aggregating the monitoring logs using the defined mea-

surement techniques (where each SLO value is validated
against its contracted SLO value).

- Autonomous compensation in case of secSLA violation.
- Offering both time-based and on demand secSLA can-

cellation.
3) Oracles which represent the implemented off-chain soft-

ware, which depends heavily on the Ethereum web3 API
and certainly can only interact with the blockchain through
a valid Ethereum EOA account. In the proposed approach,
there are three types of oracles (a) customer data oracles,
(b) log-retrieval data oracle, and (c) cancellation oracles.
The customer data oracle (shown in Figure 2) is responsible
for:
- Executing the monitoring tests according to a predefined

monitoring frequency to report the values of the SLOs.
- Preprocessing and batching the monitored logs to be

understandable by the deployed smart contract.
- Sending the preprocessed batched logs along with the

secSLA compliance session parameters to the smart
contract (e.g., number of batches, oracleID).

The log-retrieval data oracle (shown in Figure 2) is re-
sponsible of retrieving back the batched logs based on
transaction ID from the blockchain.
The cancellation oracles are used in the default smart
contract cancellation mechanism. Note that, oracles can
only interact with the blockchain through a valid Ethereum
EOA account.

We do mention that, both the CSP and the Cloud cus-
tomer are running nodes in the same Ethereum blockchain

and can interact with the deployed smart contract via their
corresponding oracles as depicted in Figure 2. No other entity
has access to the smart contract’s functions as our developed
smart contract only accepts transactions originating from either
the CSP address or the customer’s address. Both the CSP and
the customer must agree on all the used oracles and their
responsibilities beforehand. Each monitoring stage is detailed
in the following sections.

A. Stage (1): Measurement Definitions

In this stage, the process of defining SLO measurement
techniques is specified. The description as well as the metric
of each SLO are studied to define an appropriate measurement
of the SLO’s value. The measurement definition describes the
process used to determine the value of each SLO from the
customer side. In [9], 142 SLOs were examined (provided by
NIST [18], Center of Internet and Security (CIS) [19], EC
CUMULUS [20], EC A4Cloud [21] and EC SPECS [22]).
Out of all the examined SLOs, 9.4% can be measured from
the customer side [9]. The measurement can yield exact values
which can be directly compared to the values provided by the
CSP. The small number of the SLOs which can be measured
is due to the limited visibility and control of the customer on
the Cloud model. The majority of the proposed SLOs requires
access to the Cloud platform. We use three different SLOs
in our evaluation and validation experiments to illustrate our
proposed approach, namely percentage of uptime, percentage
of processed requests, and secure cookies forced. We explain
each of these SLOs and their measurement techniques as
follows:

1) Percentage of Uptime: It is the percentage of time slots
in which the service is considered available. Accordingly,
the measurement period is divided into timeslots of fixed
length slotSize. A slot is considered available if the percentage
of failed requests within a timeslot is less than a defined
percentage.

Measurement. To monitor the availability of the service
throughout the full life cycle, requests are sent periodically
to the service with a predefined frequency and the response
of the CSP is verified. The status of the requests are used to
calculate the percentage of uptime using Equation 1.∑

AvailableSlots∑
slots

(1)

2) Percentage of Processed Requests: A request is consid-
ered successful, if the service was delivered without an error
and within a predefined time frame.

Measurement. To measure this SLO, service requests are
generated at a predefined frequency and the percentage of
successful requests is calculated over the measurement period.∑

SuccessfulRequests∑
Requests

(2)

3) Secure Cookies Forced: Secure cookies forced SLO
[22] reports whether the service enforces the usage of secure
cookies or not. This SLO is used to serve sensitive data



Fig. 2. Monitoring system architecture

protection, for protecting data in transmission. The secure
attribute is set for a cookie to restrict sending it over secure
channels only (HTTPS connections) [23].

Measurement. By sending HTTP GET request to the
service and examining the Set-Cookie header in the responses,
we can check if the secure attribute is set to true in order to
validate the usage of secure cookies.

As previously mentioned, the measurement for each SLO is
formulated as tests and developed in the smart contract.

B. Stage (2): Monitoring Approach

In this stage we introduce the Cloud monitoring approach
that enables customers to validate the compliance of a running
Cloud service to its secSLA as depicted in Figure 3. The
monitoring and validation processes comprise the following
phases:

1) Phase 0:

- Private Ethereum blockchain is created and both the CSP
and the customer exchange their Ethereum addresses.

- The CSP deploys the smart contract with an ether deposit
value equals to the customer subscription’s value and in-
cludes the customer’s address.

- The smart contract’s constructor function is autonomously
called on successful deployment to set its balance to the
received ether and to mark the start time of the secSLA.

- After a successful deployment, the CSP shares the smart
contract’s address with the corresponding Cloud customer.

- The smart contract contains the contracted SLO values as
well as each SLO measurement technique defined in Section
III-A.

2) Phase 1:

- The customer initiates a validation session by sending a
validation request to his/her data oracle. The request includes
some information about the CSP (e.g., IP address or host-
name) and the SLO(s) required to be validated.

- The customer’s data oracle is responsible of: (a) executing
the tests according to a predefined monitoring frequency to
report the values of the measured SLO(s), and (b) batching
the monitoring logs and then preprocessing the batched logs
to match data formats that can be manipulated by the smart
contract.

- The customer’s data oracle interacts with the corresponding
function of the smart contract by sending the total number
of batches and its oracle ID.

- The smart contract grants the customer’s data oracle access
to the corresponding receiving logs function only if there is
no other oracle already interacting with the same function.
This feature acts like a mutex which synchronizes the access
of the distributed customer data oracles to the different smart
contract’s receiving logs functions.

- The smart contract receives the batches from the customer’s
oracle and once all the agreed on batches (e.g., 30 batches
for one month monitoring logs) have been received, the
contract starts the validation phase (Phase 2).
3) Phase 2:

- The smart contract starts “aggregating” the received batches
that constitute the whole monitoring logs session (e.g., one
month). Smart contract aggregates the received monitoring
logs according to the measurement technique of each SLO
in order to obtain the SLO measurement value. This value
is validated against the corresponding contracted SLO value
developed in the smart contract in the initial phase.

- The smart contract performs an SLO compliance by validat-



Fig. 3. System workflow phases - sequence diagram

ing the aggregated values against the SLO values from the
secSLA.

- In case of a detected violation, the smart contract compen-
sates the customer based on the severity of the violation.
The equivalent compensation value in ether is automatically
sent to the customer address.

- If the aggregated values are in adherence to the agreed on
SLOs, the smart contract records the incidence as compliant
logs.

- Phase 1 and Phase 2 are repeated until, the contract’s end
date arrives or the smart contract receives an early contract
cancellation from both parties (the CSP and the customer).
The proposed monitoring framework enables the customer

to adjust the monitoring configuration (e.g., monitoring fre-
quency, monitoring duration, validation period) according to
his/her required monitoring coverage. All the processes per-
formed by the framework are automated.

C. Stage (3): Monitoring System Processes

The smart contract executes the aggregation and compensa-
tion process such that:

1) The smart contract starts a secSLA enforcement session
only when the authorized customer1 sends to the smart
contract the session parameters.

2) To verify the logs freshness, the smart contract examines
the session ID, which is a unique value which represents

1The customer’s Ethereum address matches the Cloud customer’s address
stored in the smart contract

the secSLA enforcement session and relates to the mon-
itoring logs. If the session ID has not been recogonized
(not stored in the sessionIDs contract’s storage), this
emphasizes that the logs are fresh and eligible for a
secSLA enforcement session.

3) The smart contract keeps on receiving the logs’ batches
and once the number of batches received are equal to
the contracted number of batches (e.g., thirty batches for
one month logs), it starts aggregating the received batches
using the corresponding measurement formula and stores
the aggregated result.

4) The aggregated result is validated by the smart contract
against its corresponding SLO. If the aggregated result
is not compliant to its contracted SLO, the customer is
compensated via Ethereum blockchain transaction origi-
nating from the smart contract (deducted from the CSP’s
deposit paid on deployment).

Cancellation Process: Cancellation function is used in
case both the CSP and the customer decided to cancel the
secSLA smart contract before its intended termination date.
Cancellation function entails two main steps: (a) receives from
the CSP/customer their request to cancel the contract, and (b)
sends the deposit back to the CSP (or the remainder) and then
deactivate permanently the smart contract. The cancellation
function only enforces the cancellation process if it receives
from both the CSP and the customer a cancellation request.

Furthermore, we utilize a time-based cancellation mech-
anism to adhere to the traditional agreements that define



TABLE I
INSTANCES CONFIGURATIONS

US EC2 FRA EC2 TKY EC2
Region US East(N. Virginia) EU(Frankfurt) Asia Pacific(Tokyo)

Instance type t2.nano
Amazon M/C Image Amazon Linux AMI 2016.09.0 (HVM) [10]

Network Default
Availability zone us-east-1d eu-central-1b ap-northeast-1a

Tenancy Shared

start/end date. We utilize the block timestamp, in which the
smart contract was mined at, in order to mark the start date
of the contract. Beside that, we rely on the date data-type
in the solidity programming language to set beforehand the
termination date of the smart contract.

D. Security Vulnerabilities of Ethereum Smart Contracts

Software vulnerabilities are very destructive in the context
of smart contracts, as they can result in losing control of cus-
tomers’ digital wallets containing ether. This section discusses
a duplicate compensation scenario. Duplicate compensation
is the process of compensating a customer more than once
based on the same monitoring session. Thus, the deployed
smart contract has to keep track of the successfully aggregated
monitoring sessions to prevent duplicate compensations. To
avoid this, the proposed system includes a unique session
ID attribute which is basically used to uniquely identify the
different monitoring sessions by the customer’s data oracle.
The session ID is sent to the smart contract along with the
monitoring logs. The session ID is used by the smart contract
for the aggregation, compliance tests and compensation pro-
cesses. There are three session types in the proposed approach
which are related to the three used SLOs. Each session has
its own session ID variable declared in the smart contract.
The smart contract marks the session ID as a successful
aggregated session only when the whole batches are received
and the aggregation process along with the compliance and
the compensation processes are successfully executed.

IV. IMPLEMENTATION AND EVALUATION

The proposed approach is evaluated by conducting two ex-
periments. In the first experiment, we evaluate the functionality
of the approach on Amazon EC2. The second experiment
measures and compares the overall gas consumed by the oracle
(with different batch sizes).

In these experiments, a machine with the following speci-
fications is used: 4 GB RAM, Intel Core i5-3337U CPU 1.80
GHz x4, Ubuntu 16.04 LTS, OS-type 64 bit, disk 60 GB.

A. Setting-up Ethereum Blockchain

Due to the need of high storage requirements to run a
Geth Ethereum node and connect to a public test-network2

as well the intensive computational power needed for mining,

2Examples of public Ethereum test-networks are ropsten [24] (so far more
than 2.7 million blocks with almost 16 million transactions) and Rinkeby [25]
(so far almost 2 million blocks with more than 4 million transactions)

we execute our evaluation and analysis using the TestRPC
Ethereum blockchain network simulation. TestRPC is a node.js
implementation of the Ethereum protocol which offers web3
API for the interaction with the blockchain. However, it only
simulates the mining process which requires high compu-
tational resources. TestRPC provides ten external Ethereum
accounts each one with a hundred ethers.

Firstly, we implement three different aggregation mech-
anisms according to the SLOs specified in Section III-A
(i.e., uptime-availability, percentage of processed requests, and
secure cookies forced). Further, we develop a synchronization
mechanism for the interleaving oracles. The on-demand and
the time-based cancellation is also assured through the smart
contract. Finally, we develop a compensation mechanism.
The developed smart contract functions as well as the smart
contract deployment process are presented in the following
subsections.

B. Smart Contract Functions

The deployed smart contract is composed of the following
functions:

1) SecSLA enforcement smart contract constructor. The
smart contract constructor is called automatically when
the contract is successfully deployed.

2) SLO related functions, which are implemented to receive
the SLOs’ logs from the customer data oracle. These
functions are also used to synchronize the access to these
functions in case of interacting with multiple oracles.

C. Customer Data Oracle

The Cloud customer data oracle is implemented in python
programming language. To monitor the service provider, firstly
the information about the service to be monitored must be
provided, including the IP address of the service and the
hostname of the web based management interface. Secondly,
the customer specifies (a) the duration of the monitoring
session3, and (b) the frequency at which the measurements
of the SLO are conducted during the monitoring session. The
higher the chosen frequency the more fine grained is the
measurement.

Using these specifications, as well as the SLOs’ values, the
monitoring session is initiated. Using the frequency specified
by the customer, the monitoring framework measures the value
of the SLOs’ by continuously monitoring the provided service.

3The duration of the monitoring session is the duration over which the
service is validated



Then, the monitoring logs (of the three SLOs) are batched
according to both the slot and batch sizes. These batches’
feed the smart contract using a smart contract handler class.
The constructor function of this class is responsible for: (a)
creating a web3 API object that connects to the customer’s
Ethereum node, (b) instantiate the deployed contract via its
application binary interface (ABI JSON file) and the contract’s
Ethereum address, and (c) allows the customer’s address to run
the oracle. Using the monitoring logs and the measurement
mechanisms specified in Section III-A, the smart contract
aggregates and validates the values of the SLOs with the
built in contracted SLOs. Finally, a batch retrieval script
is developed (to be used by either the CSP or the Cloud
customer) to extract the batches stored on the blockchain by
the smart contract’s aggregation functions. It can be used, for
instance, by the CSP to make sure that the batches sent by the
customer to the blockchain are exactly the same as the logs
the CSP provided.

Experiment 1: Evaluating the Functionality of the Approach
on Amazon EC2

Three EC2 instances each in a different region, along with
their web based management interfaces (Amazon management
console) are monitored. The instances configuration is shown
in Table I.

The SLA defined by Amazon for EC2 only includes ser-
vice availability. For Amazon EC2, unavailable means that
all of your running instances have no external connectivity.
The value committed in the SLA for this SLO is a lower
bound of 99.95%. The oracle frequently sends Internet Control
Message Protocol (ICMP) echo requests to check if the service
is available. With the aim to detect the shortest possible
change and thereby achieve maximal coverage of changes
in the monitored SLO values. For availability, the shortest
possible change was assumed to be the reboot time of an
instance during which the instance is unavailable. The reboot
time of an instance has been experimentally assessed to be
5 seconds. Hence, the monitoring frequency is set to one
test every 5 seconds. For the other security properties of
the management subsystem, a lower monitoring frequency is
used, since changes in the configuration of the web server
hosting the console are expected to occur less frequently.
Moreover, automated access to the console at high rates might
be considered malicious and thus, the requests might get
blocked by the CSP. Accordingly, the monitoring frequency
for the consoles was configured as 6 times per hour.

TABLE II
AMAZON EC2 INSTANCES RESULTS

US EC2 FRA EC2 TKY EC2
% of Uptime 99.0915% 100% 99.9303%
% of Processed
Requests

99.8088% 99.9930% 99.7571%

The experiment was run for a month with slot size of one
hour for both the uptime-availability and the percentage of
processed requests service level indicators, and a slot size

of 10 minutes for the secure cookies forced. Table II shows
the measured values of the SLOs for all three instances.
According to the results, the instance deployed in the US East
(New Virginia) offered the least percentage of uptime with a
percentage still greater than 99%. The lowest percentage of
processed requests is reported for the instance located in Asia
Pacific (Tokyo).

We analyzed the collected data to investigate the frequencies
and duration of the outages during the measurement period.
The shortest observed outage is the failure of a single request,
i.e., an outage duration of less than 10 seconds. The longest
outage duration extracted from the results of all instances is
255 seconds experienced in the US EC2 instance. Finally, all
the consoles enabled secure cookies.

TABLE III
TOTAL GAS CONSUMED BY THE VALIDATION AND COMPENSATION

PROCESSES BASED ON ONE MONTH LOGS WITH DIFFERENT BATCH SIZES

Batch size Total Gas
Consumed

Equivalent
in Ether

USD Equiv-
alent

1 day 58848167 0.0588 11.64$
3 days 57360993 0.0573 11.34$
5 days 58283227 0.05828 approx.

11.5$

Experiment 2: Consumed Gas (Cost) Evaluation

In this experiment, we compare the overall gas consumed
by our approach according to different batch sizes. As already
mentioned, the SLOs’ monitoring logs are batched4 and used
as an input to the smart contract. We evaluate our approach
based on sending (a) daily monitoring logs (one day batch),
(b) three days batch, and (c) five days batch, to the smart
contract.

A python script is developed to calculate the total consumed
gas by the secSLA compliance validation and compensation
for one month raw logs as depicted in Table III. The total
gas consumed by the approach is depicted in Table III. These
results are calculated based on the current estimated gas price
which is (10−9) Ether at the Ether current market value5.

Furthermore, we calculate the amount of gas consumed by
every transaction sent from the customer’s oracle to the smart
contract. Table IV shows the average cost per transaction for
each SLO’s batch sizes. The web3 estimate transaction gas
function is used to estimate the cost of one transaction holding
5 days of raw secure cookies logs.

It is worth noting that, the cost of the secure cookies
enforcement session cost for the five days batch scenario
cannot be measured, due to the huge transaction size which
exceeds the block limit (6721975 gas). This huge size comes
from the fact that the secure cookies logs were collected at
a higher frequency (10 minutes slots). The number of slots
comprising a one day of secure cookies logs is 6 times larger
than the uptime-availability and the processed requests.

4The monitoring logs batching is performed according to the slot and batch
sizes

5https://ethereumprice.org/; Currently 1 Ether corresponds to 132.56$



TABLE IV
THE CONSUMED GAS OF THE VALIDATION AND COMPENSATION PROCESSES PER SLO

Average cost per transaction
Service Level Indicator 1 day of logs per Tx 3 day of logs per Tx 5 day of logs per Tx

Uptime-Availability 337705 951055 1661498
Percentage of processed requests 348743 989013 1725654

Secure-cookies forced 1275156 3796030 > 6721975

V. RELATED WORK

Multiple approaches have been proposed to validate the
compliance of the service to the SLA, by verifying the enforce-
ment of the contracted properties. Haq et al. [26] proposed a
framework to manage SLA validation by defining rules to map
high-level SLOs to low-level metrics that the CSP can monitor
throughout the service life-cycle. Furthermore, Rak et al. [27]
and Liu et al. [28] proposed Cloud application monitoring
tools that detect SLA violations. Although these approaches
provide effective techniques to detect SLA violations, they are
only focused on (as well as most other existing monitoring
techniques, such as Rana et al. [29] and Zhang et al. [30])
monitoring performance properties rather than security prop-
erties.

Few approaches that are concerned with monitoring secu-
rity properties of Cloud services have been proposed in the
literature. Ullah et al. [31] proposed an SLA management
solution that installs monitoring agents on the Cloud service
to measure service security properties. Ullah et al. [32] and
Majumdar et al. [33] proposed tools to be used by the CSP to
audit the compliance of their services to some security prop-
erties by depending on log analysis. Nevertheless, all of the
previously mentioned approaches address CSP side validation
by proposing solutions managed/deployed by/at the CSP or
require cooperation from the CSP. Hence, customers cannot
validate the effectiveness of these approaches or guarantee
transparency of the reported results. In our previous study [9],
we proposed a customer side monitoring framework validation
which enables cloud customers to validate the compliance
of the provided cloud service. However, how can customers
detect/prove violations and get compensated autonomously at
the same time how to prevent customers from misreporting for
financial gain were not presented in the paper.

Few approaches have been proposed to utilize the
blockchain technology in Cloud computing. Margheri et al.
[34] proposed a design and implementation of a governance
approach for the Federated Cloud as-a-Service (FaaS) Euro-
pean union project (sunfish) [35]. Their proposed approach
utilizes the blockchain technology as an infrastructure to
ensure a distributed and democratic governance. Gaetani et al.
[36] proposed an approach for tackling the database integrity
challenges in the Cloud environment through utilizing the
blockchain technology. Shafagh et al. [37] proposed a new
paradigm for managing IoT data in the Cloud. Liu et al. [38]
proposed a blockchain based approach to replace the data
integrity services provided by the Cloud service providers on
the IoT data. Ferdous et al. [39] proposed a decentralized

approach for runtime access control systems in Cloud fed-
erations. Lee et al. [40] proposed a new approach for identity
and authentication management as-a-service (IDaaS) offered
by Cloud providers to their customers.

VI. CONCLUSION

Although many approaches help CSPs to monitor their
compliance to the secSLA to take corrective actions in case
of violation, existing approaches do not allow customers to
manage the compliance validation process by themselves.
Consequently, limiting their ability to assess whether con-
tracted security levels are actually provided. In this paper, a
decentralized customer side monitoring approach to monitor
and detect secSLA violations and autonomously compensate
customers is proposed. The proposed approach monitors the
compliance of Cloud services to the contracted properties in
secSLAs. The approach relies on Ethereum blockchain as a
decentralized platform to securely store monitoring logs and
incorporate secSLAs as smart contracts. The deployed smart
contract integrate and aggregate measurable SLOs and check
continuously the compliance of Cloud services to contracted
SLOs. Furthermore, autonomously compensate the customer
upon violation. The proposed monitoring approach has been
evaluated on commercial IaaS Cloud service. The results have
proven our approach suitable for measuring the values of the
SLOs and identifying violations of contracted SLO values.
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