
On Enhancing the Robustness of Commercial

Operating Systems�

Andréas Johansson, Adina Sârbu, Arshad Jhumka and Neeraj Suri

Department of Computer Science
Technische Universität Darmstadt, Germany

{aja,adina,arshad,suri}@informatik.tu-darmstadt.de

Abstract. A ubiquitous computing system derives its operations from
the collective interactions of its constituent components. Consequently,
a robust ubiquitous system entails that the discrete components must be
robust to handle errors arising in themselves and over interactions with
other system components. This paper conceptually outlines a profiling
framework that assists in finding weaknesses in one of the fundamental
building blocks of most computer based systems, namely the Operating
System (OS). The proposed framework allows a system designer to as-
certain possible error propagation paths, from drivers through the OS to
the applications. This knowledge significantly helps enhance the OS (or
driver/application) with selective robustness hardening capabilities, i.e.,
robustness wrappers.

1 Introductions: The Ubiquitous Computing Perspective

A ubiquitous computing (UC) environment harnesses the collective capabilities
of diverse computational components via dynamic resource management as war-
ranted in mobile, networked and heterogeneous system environments. The utility
of such UC systems arises only if adequate robustness in the UC infrastructure
exists for it to provide for dependable service delivery. It is evident that achieving
an acceptable level of trust in such consolidated systems also necessitates corre-
sponding design methods for evaluating (and forecasting) how perturbations in
the system affect the services provided. Such perturbations could arise as device
defects, in UC component interactions, bugs in software etc. For UC components
themselves, the aspects of heterogeneity and mobility translate to the problem of
not knowing at design time the precise characterization of their operational en-
vironment(s). The problem is further complicated that many of the devices are
too deeply embedded to be modifiable. However, during deployment, (robust-
ness) profiling of the system is viable. This will give rise to suggested locations
of robustness gaps (hence, of enhancements) within the system. However, owing
to the dynamic nature of UC, profiling the overall system is not viable. Thus,
we propose to perform a two-level profiling: (i) profiling the platform, includ-
ing components that will be long-term present in the system (middleware, OS,
� We appreciate the inspration & insights from Dr Martin Hiller and the funding

support of Microsoft Research through the Innovation Excellence Program.



drivers, HW etc) (ii) profiling the applications, which continually change over the
operation of the system. The problems with equipping the system with added
capabilities during run-time or deployment include (a) not knowing which errors
to protect against, (b) not knowing where to add enhancements in the system,
and (c) how to design effective and efficient wrappers.

1.1 The Role of OS: Paper Objectives

Targeting the OS as a key building block in any UC system, OS robustness hard-
ening is a fundamental driver for providing robustness of the systems built upon
them. The OS manages the hardware resources available and acts as a supplier
of services for applications through programming interfaces. A potential prob-
lem for any OS is that it must be able to handle diverse hardware resources
and applications. The risk of robustness gaps in the OS is apparent and the
need for robustness enhancements exists. Naturally, adding robustness enhance-
ments comes as a cost trade-off with other system properties, e.g., performance,
determinism etc. A trade-off analysis needs span the need for enhancements
(wrappers) and their consequent properties (coverage, timing etc).

As the overall goal is to prevent application failure, the interactions across
application and OS are key. Owing to the dynamic nature of UC, the information
needs to be categorized into two parts: (i) an OS profile, and (ii) an application
profile. These profiles will aid in identifying vulnerabilities in the system, thereby
guiding the effective placement of wrappers in the system. Thus, our research
objectives, to facilitate development of a systematic robustness process, i.e.,
placement and compositions of wrappers in an OS span the following themes:

– A profile of possible OS vulnerabilities based on system error propagation.
– Application profiles, including (a) criticality of the applications, (b) the ap-

plications use of the OS, and (c) sensitiveness to robustness gaps in the OS.
– Error detection mechanisms ranging in type, size and complexity depend-

ing on their placement. Estimations of the properties of the detectors (e.g.,
completeness, accuracy, overhead in performance, size, cost).

– Error correction mechanisms following error detection; ranging from halting
the system to performing advanced recovery.

– Assessment and tradeoffs - effectiveness & cost - analysis framework.

This paper focuses on the first two problems, i.e., to develop systematic
methods for OS profiling. Profiles provide information on where errors in the
OS are more likely to appear and cause damage. The purpose is to determine
robustness gaps in the OS that can be used to guide locating and constructing
effective robustness wrappers. We discuss the relevant profiling process and their
experimental assessment. The result of this profiling will invariably depend on
the errors considered. We specifically intend to address errors occurring in OS
drivers and their impact on services the OS provides for applications.



1.2 Robustness Hardening: Related Work

Software profiling represents the process of assessing the data flow properties
within the software structures. A common type of profiling is determining where
the execution time of a program is spent. Such profiling can locate performance
bottlenecks and even design errors in a program. Other profiles might tell the
programmer which functions in the OS are used and the relative time spent
performing them, e.g., the strace utility for UNIX-like systems, which profiles a
program’s use of the OS by showing the system calls made and the signals used.

In our EPIC framework (Exposure, Permeability, Impact and Criticality)[9]
static modular SW (fixed set of modules that interact in a predefined manner),
was profiled for error flow to ascertain the most effective placement of wrappers.
The framework (and the supporting experimental tool PROPANE [8, 7]) focused
on profiling the signals used in the interaction between modules. The profiling
consisted of both error propagation and effect profiles. Using the permeability,
and exposure metrics, propagation profiles reveal information on where errors
propagate through the system and which modules/signals are more exposed to
propagating errors. The error effect profiles are used to cover the cases where an
error is unlikely to occur, but potentially has a high impact on system output.
The software model for EPIC is static software; this makes it possible to find
all communication paths in the system and then profile accordingly. In our OS
themed work, the emphasis is on dynamic SW interactions. Also the set of appli-
cations is not generally known, all possible interaction paths (and consequently
error propagation paths) are not known a priori.

In [5] errors in C-libraries were studied. A tool called HEALERS was de-
veloped which automatically tests (using fault injection) the library functions
against their specification and generates wrappers to stop non-robust calls to
be made. This approach differs from our profiling strategy since it only focuses
on robustness in library functions. We are more interested in how errors can
propagate in the system, thus allowing us to choose more than one possible lo-
cation for wrappers (OS-application or OS-driver interface). However, the type
of errors proposed in HEALERS are similar to the ones considered in our work.

A related approach is used in Ballista [4, 3]. Here, OS interfaces are tested
with a combination of correct and incorrect parameter values and the behavior
of the OS categorized according to a failure scale, ranging from “OS crash” to
“no observation”. Using this relatively simple approach, this method managed
to find a number of robustness flaws (crashed or hung OS’s) in both commercial
and Open Source OS’s.

Both HEALERS and Ballista are different from our proposed approach as
they study the effect of malfunctioning applications on the OS whereas our
method considers the effect of malfunctioning drivers on the OS. Both of these
areas are important and they should be seen as complementary perspectives.

A fault injection based approach was used in [1], where the behavior of micro-
kernel based OS’s in presence of faults was studied. Faults were injected in both
the memory of the kernels and in parameter values in calls to kernel primitives
by applications. The effect on applications was studied along with error propa-



gation between the kernel modules. This study differs from ours as we consider
a constrained model of the OS, where internal communication details are not
accessible. Also the errors considered are different. We focus on errors occurring
in drivers and not in applications or internal kernel errors.

Nooks [15, 14], focuses on errors in the driver subsystem considering that
drivers are a primary source of OS failures. A new subsystem layer is defined
in which kernel extensions (like device drivers) can be isolated in protection
domains. A driver executing in a protection domain has limited possibilities of
corrupting kernel address space and objects. Nooks provides good coverage for
many software and hardware faults occurring in extensions at the price of high
execution overhead (up to 60% slowdown for a web server benchmark). Nooks
focuses on isolating drivers from all errors impacting the OS. However, we focus
on data level errors and find out which specific errors actually propagate and
then protect against these. Nooks also requires a white box approach unlike our
black box model of SW. Both methods are useful for malfunctioning drivers but
they have different properties such as coverage and performance.

2 System & Error Model

Our intent is to develop a profiling framework applicable to diverse OS’s. Thus,
we utilize a generic model of a computer system, comprising of four major layers;
hardware, drivers, OS and applications, see Figure 1. Each layer supplies a set
of services to the next layer. For us, a service is typically a function call, i.e.,
for drivers it is an entry point in the driver and for the OS it is the system call
or library functions. We say that a set of services makes up an interface, for
instance a driver interface.

...

OS & Libraries

s
1 ... ...

APP1

AS
b

...
AS

M1
AS

a

d1 d2 dD

s
2

s
3

s
i

s
k+1

s
S-1

s
S

APPN

AS
b

...
AS

MN
AS

a

... ... ...

...

...
... ...

Operating System Layer

Applications layer

Driver Layer

Hardware Platform Layer Hardware

Fig. 1. General System Model



We do not assume any specific hardware architecture (CPU, disks, peripheral
devices etc.), as long as the hardware layer contains all devices needed to support
the remaining layers of the system.

The driver layer is responsible for handling the interaction between the hard-
ware and the OS. Drivers are SW programs that are generally specific to a
certain piece of hardware and OS. The system has a set of drivers D, denoted
d1, d2, · · · , dD. Each driver provides a set of services to the OS.

In the OS layer, we also include shared libraries that exist in the system. We
include them in the OS layer as it reflects the point of view of a programmer, i.e.,
the libraries support functionalities that the programs need, very much the same
as the OS. The OS provides a set of services (OS services), S = {si : i ∈ [1, S]},
to be used by the applications.

The top layer is the application layer, where the programs execute perform-
ing some specific task for a user. Applications make use of OS resources either
directly or through the use of libraries. The services provided in S may selec-
tively be used by a certain application, i.e., each application uses a subset of S.
Each application, APP k, uses Mk of the interfaces provided by the OS. Thus we
define the set of interfaces that APP k uses, as: Pk = {si ∈ S used by APPk}.

In this work we consider a black box SW model, i.e., we assume no knowledge
about the components in the respective layers but only their interface specifica-
tions. They are supplied in binary form (for SW) and can be executed on a given
hardware platform. We do not make any assumption constraining the behavior
of any component when it is subjected to errors/stresses. Such stress conditions
could be heavy load on a component, misuse of its interface or resource depletion.

2.1 Error Model

Focusing on a black-box model of the system, the only place where monitor-
ing/wrapping can take place is at the interfaces between the layers in the system.
We define two major interfaces, between the OS and the drivers and the OS and
applications. We consider data level errors occurring in the OS-driver interface
as our primary error model. Recent studies have demonstrated that drivers are a
major source of OS failures [2, 15, 12]. This arises as they are often not tested as
rigourously as the OS kernel; they may have been designed external to the OS
development team, lacking complete details of the system; and they may also
be affected by malfunctioning hardware. Drivers represent a large part of an OS
package in sheer size which further warrants their focused consideration (as the
number of expected faults generally increases as the size increases). We focus on
data level errors as they are possible to use with a black box system. They also
represent a set of detectable errors, i.e., one can define detectors in the form of
assertions to detect them.

In other robustness studies different fault/error models where used, mostly
bit-flips in parameter values and/or data and code memory areas of programs
[7, 1, 6]. Instead, we focus on data level faults at interface levels as they best
represent actual SW errors.



A data level error implies that the value of the data communicated through
the interface is “erroneous”, i.e., not the expected value according to some om-
niscient viewer. Thus, the “state” of the program changes, and this error prop-
agates to the OS causing subsequent errors. To simulate data errors, we specif-
ically change the values of parameters used in the targeted interface. The type
of error injected is decided by the type of the parameter used. It is important to
note that the chosen error model and its representativeness of actual OS errors,
fundamentally affects the relevance of any obtained results.

3 Measures of Error Propagation

The purpose of a profiling framework is to outline SW characteristics for a
designer. The desired characteristic also drives the method used to gather data.
Our focus is on effective location of OS wrappers to handle driver errors. Thus,
we target determining the specific drivers that have a higher likelihood of error
propagation. Similarly, on error occurrence, to establish which OS services are
more exposed to these errors.

The final goal of our profiling is to estimate the impacts errors have on the
services provided by applications. The problem is that profiling with respect to
a certain set of applications running on the system will not give the same result
as a different set of applications. The way applications use the OS and their
importance will influence the results of the profiling. To capture this distinction
we propose to use a separate profile for an application’s use of the OS. This
profile must include information revealing which OS services the application
depends upon and notions of each service importance to the application (some
are most likely more important for the continued functioning of the application
than others). To analyze a system with more than one application, with varying
importance, priorities must be established across them. This can then be used
when the assignment of wrappers is made.

3.1 Operating System Profiles

The OS profiles consider how errors in drivers spread through the OS to its
services for applications. These profiles are naturally specific to an OS and its
drivers. The first measure (Service Error Permeability) defines the probability of
errors propagating through the OS. This measure is used to ascertain which OS
services are more susceptible to propagating errors (OS Service Error Exposure)
and which drivers are more likely to spread them (Driver Error Diffusion).

Service Error Permeability The goal of OS profiling is to characterize how
errors in drivers influence the OS services provided. We start by defining the
service error permeability, P j,k for an OS service sj ∈ S and a driver dk ∈ D.

P j,k = Pr (error in sj |error in dk) (1)



Eq. 1 describes the relation of one driver to one OS service. This measure
gives an indication of the permeability of the particular OS service, i.e., how
’easily’ does the service let errors in the driver propagate to applications using
it. A higher probability naturally means that either (a) the driver needs to be
enhanced to make sure that it does not produce errors, or (b) some detection is
needed in the application or elsewhere to handle errors propagating.

OS Service Error Exposure The OS error permeability considers discrete
drivers on a stand-alone basis. To ascertain which OS service is the most sensi-
tive to errors propagating through the OS, then more than one driver needs to
be considered. We use the measure OS error permeability, to compose the OS
Service Error Exposure for an OS service sj , namely Ej :

Ej =
∀dk∈D∑

P j,k (2)

For Ej we consider the set of all drivers, G. If one driver does not affect
a service, for instance it is not at all used by that service, then the OS error
permeability will be zero and thus should not affect the OS service error ex-
posure. The Service Error Exposure gives an ordering across OS services (given
that more than one service has been tested and have service permeability values)
which orders services based on their susceptibility to errors passing through the
OS kernel. With this measure the tester can focus attention to particular OS
services that may require more work or as a means to place wrappers.

Driver Error Diffusion One might not only be interested in finding out which
services are more exposed to errors but also which driver is spreading them the
most, i.e., which driver, if acting faulty, has the potential of spreading errors the
most in the system. To find these drivers we define a measure that considers one
particular driver’s relation to many services, Driver Error Diffusion, Dk, for a
driver dk ∈ D set of services:

Dk =
∀sj∈S∑

P j,k (3)

The Driver error diffusion also creates an ordering across the drivers. It ranks
the drivers according to their potential for spreading errors in the system. Note
that we do not try to test the drivers per se, so this measure only tells us which
drivers may corrupt the system by spreading errors. It is actually a property of
the OS and not the drivers.

3.2 Application Profile

To estimate the effect of errors in OS services, we need to establish the appli-
cations usage of these services, specifically (a) which services are invoked and
(b) their respective “importance”. The importance of the service is defined with



respect to how critical it is to the continued functioning of the application. If an
error in an OS service always causes the application to crash, we say that this OS
service is important to the application. On the other hand, if it does not have any
effect on the application, because the application has built-in error correction,
it is of no importance. The importance ij, 0 ≤ ij ≤ 1 of an OS service sj ∈ Pk

is defined as the probability that given an error in an OS service, it causes the
application APPk to fail. Ak is a set of tuples, (si, ii). For each OS interface
si ∈ Pk used by the application there is one and only one such tuple. Each tuple
includes the service itself and the value ii which describes the importance of the
service to the application. The application profile can and should be constructed
before the system is deployed, i.e., not during run-time.

Ak = {(si, ii) : si ∈ Pk} (4)

A third parameter of interest is the criticality of the application. If there is
more than one application running on the system, some of them might be more
important than others. We then say that it has a higher degree of criticality.
For comparing profiles across applications we need to know if adding wrappers
to “help” a certain application is more important than another application. In
EPIC [9] a scale from 0 to 1 was used for weighing the output signals according
to their criticality. 1 indicated the highest possible criticality and a 0 indicated
that the output signal is non-critical. A similar scale is used here too, indicating
a range from non-critical to highly critical. A criticality value, C is thus assigned
to every application APPk, 0 ≤ Ck ≤ 1.

3.3 Application Service Exposure

The Service Error Exposure and the Application profile together determine how
one application is affected by errors occurring in drivers. This can be used to es-
tablish wrapper locations, given a set of drivers and applications. Potentially this
trade-off can be made online (if applications are shipped profiles) as applications
comes (and leaves) the system.

SEk = Ck ·
∀si∈Ak∑ (

Ei · ii
)

(5)

Eq. 2 & 4 aid in predicting how an application will react to errors propagating in
the system. The service exposure composes the error permeability profiles with
the application profiles, to predict the behavior of the application. For an ap-
plication APPk, given the profile Ak and the corresponding service propagation
values. The values of the application error exposures are used to create a relative
ranking of applications and also the wrapping priority.

4 Experimental Evaluations

To make use of the analytical framework presented in the previous section, values
for the profiles must be obtained. Code inspection analyses, expert analyses, bug



reports/error logs and fault injection (FI) experiments are all possible approaches
in this respect. We have chosen FI as its utility has been established (and also
used in the EPIC framework using the PROPANE tool [8, 7]); it is also usable
at design time (in contrast to bug reports and error logs) and it can be used
without the full source code availability.

As indicated in Sec. 3 the only measure that needs to be experimentally
estimated is OS Error Permeability, P j,k, as both Service Error Exposure and
Driver Error Diffusion can be derived from this measure. To get an experimental
estimation of P j,k we will inject faults in the interface between driver dk and the
OS and monitor the result of executions of service sj by writing an application
that uses this service. We estimate the error permeability as the ratio of detected
errors, ndetected at the service level to the number of injected errors ninjected.

P i,j
est =

ndetected

ninjected
(6)

The values of Ej
est and Dj

est can be calculated using P i,j
est using Eq. 2 & 3.

Naturally not all application cause usuage of all drivers, or all of their services,
so the FI experiments will be limited to the driver services actually used. Eq.
6 requires detecting that an error has actually propagated. There are several
types of outcomes from a FI experiments and they can be classified in different
categories. We use a failure mode scale similar to the one used in [3] as:

– No visible error at the OS service
– Error propagated, but still satisfied the specification of the service
– Error propagated but violated the specification of the service
– The OS hung due to the error
– The OS crashed due to the error

The first category is straightforward as the error injected caused no visible
error at the OS service level. The error might be dormant within the system, but
in order to limit the time to perform the experiments a timeout will be defined
after which the error is considered not to have propagated.

For the second category it must be clear what is meant by a specification.
In this work we consider the specification given to a programmer for the OS.
This can be for instance man files for Linux/UNIX or the help sections for a
Windows computer. An example of an outcome that will end up in this category
is (a) when an error code or exception is returned that is a member of the set of
allowed codes for this call, or (b) if a data value was corrupted and propagated
to the service, but did not violate the specification.

The third category contains those outcomes where the result is violating
the specification of the service. For instance returning a string of certain length
when another parameter specifying the length holds a different number. Raising
an unspecified exception or returning an unspecified error code also ends up in
this category. If the application hangs or crashes but other applications in the
system remain unharmed, they end up in this category as well.



If the OS hangs, then no service progresses. This state must be detected by an
outside monitor. The difference to the crash category is that the latter produces
some form of dump, indicating that the OS has crashed and some additional
information. We separate these categories because a crashed computer might be
easier to detect and correct (by restarting) than a hung one which inherently
must be detected by some watchdog timer.

4.1 Inserting Probes

Sec. 3 outlines the need to facilitate monitoring between the system layers, see
Fig 1. Thus, we need to insert probes between the application and OS layers and
between the OS and drivers layers. These probes are needed to (a) monitor the
communication between the layers in the system and (b) for actually inserting
perturbations in this communication, i.e., simulating the occurrence of errors.
The first case, can be achieved simply by writing special purpose applications
which sole purpose is to actively use the services provided by the OS. To achieve
the latter monitoring we design a new driver that is loaded instead of the driver
which we want to monitor/wrap. The needed “wrapping driver” is to first load
the existing driver and then set up all data structures. Then it passes on any
calls from the OS to the real driver and the result back to the OS. None of
the methods interfere with our intent to use black-box methods since it does
not involve modifications of the OS and/or the existing applications or drivers.
Some reconfiguration may be needed but access to source code is not required.

4.2 Estimating Application Profile

To obtain the application service exposure presented in Sec. 3.3 (using Eq. 2
and 5) we need to experimentally derive the application profile Ak and the error
permeability values for each driver P j,k. The application profile is derived using
a profiling tool that executes the application and produces a list of calls made to
the OS. The calls are matched against S to produce Ak. For each interface that
one application uses, an importance value must be assigned. The importance
value ii can be derived using a tool that injects faults in the output of system
calls made by the application. Calls are intercepted by additional wrapper layer,
the actual call is made to the OS and the return value can then be altered,
i.e., an error can be inserted and the result is passed on to the OS. A similar
approach was used for the Fuzz tool where UNIX utilities were fed with random
input strings and their robustness depended on their response to these streams
[11]. Another similar approach was used for Windows NT applications in [13].
The results from a similar tool can be used to assign the importance values.

Finally the criticality value must be assigned. This value represents the crit-
icality of an application relative to other applications. It is used to bias the ap-
plication service profile towards the applications that are of higher importance.
This value is assigned by the profiler and it depends on the set of applications
present. Ck is a value between 0 and 1, where 1 indicates high criticality.



5 Discussion and Future Work

As noted in Sec. 3, the profiles presented will only provide a relative ordering
across OS services, drivers and applications. To get real values for the proba-
bilities of real errors occurring we need to know precise nature and the arrival
rate of real errors. However, our method is targeted at placement of wrappers.
It illustrates to the profiler which services are more exposed to errors and thus
require wrapping. Note that this is always an estimation based on the proba-
bilistic nature of testing. Additional knowledge about the system can be used to
complement the profiling. For instance, if empirical knowledge exists about the
“quality” of different drivers, this can be used in the profiling to exclude certain
drivers from the profile or weigh their scores so that their impact is reduced.

To be able to decide, with the help of the profiles, if more resources should
be spent within the system on adding wrappers, some notion of robustness level
is needed. We need methods for determining when enough wrappers have been
added to the system. Possible heuristics can entail removing all potential crashes
of the system and then one by one removing the less severe errors until a requisite
number have been removed incrementally.

Another issue that may impact the location of wrappers is the wrappers
themselves. Each wrapper comes with an associated cost, in size and overhead.
The cost-efficiency trade-off is part of our intended future work, as well as the
actual design and evaluation of wrappers. For evaluating wrappers, important
parameters include the completeness and the accuracy, i.e., how many of the real
errors are detected and how many mistakes are made. Also, the more complex
a wrapper is, the higher its execution cost is. A coverage versus performance
trade-off is an essential consideration.

A desired property of wrappers is to be able to generate them during run-
time. When an application is loaded for execution, its associated profile is com-
posed with the OS profile to find out if the current placement of wrappers in the
system is optimal. We therefore need both the means to do the trade-off during
run-time as well as the means to instantiate and deactivate wrappers without
interfering with the functioning of the rest of the system.

A limitation of our approach is that dependencies between the application
and the OS might exist that we currently do no cover. For instance we do not
consider the order in which calls are made by an application to the OS. The
ordering of calls, with respect to errors, might have an impact on the resulting
behavior of the application. Investigating such dependencies and their implica-
tions for wrapper placement is part of future extensions for our work.

When determining if an error propagated, one needs to know what con-
stitutes an error for a service. This information can (ideally) be derived from
the specification of the service. This is not always possible due to the lack of
or incompleteness of the specifications given. In the past, many fault injection
experiments have utilized a so called golden run, i.e., a test program is exe-
cuted without faults and the outcome is then compared with one run with faults
presents to find deviations, i.e., errors. For OS’s creating a golden run is non-
trivial given the non-determinism in scheduling etc. One option would be to



restart the system before every experiment and then conduct the tests (golden
runs as well as FI experiments). Another option would be to run several tests
without faults and use a mean behavior as the golden run.

6 Summary

Overall, the proposed profiling framework described in this paper aids a designer
to effectively enhance the OS with error protection wrappers. By studying how
errors propagate from drivers through the OS, potentially exposed OS services
can be identified. Combining this with knowledge on the dependencies between
the OS and an application, a suggested placement of wrappers can be obtained.

References

1. J. Arlat et al. Dependability of COTS Microkernel-based Systems. IEEE Trans.
on Computers, 51(2):138–163, 2002.

2. A. Chou et al. An Empirical Study of Operating System Errors. In Symposium on
Operating Systems Principles, pp. 73–88, 2001.

3. J. DeVale and P. Koopman. Performance Evaluation of Exception Handling in I/O
Libraries. In Proc. DSN, pp. 519–524, 2001

4. J. DeVale and P. Koopman. Robust Software - No More Excuses. In Proc. DSN,
pp. 145–154, 2002

5. C. Fetzer and Z. Xiao. An Automated Approach to Increasing the Robustness of
C Libraries. In Proc. DSN, pp. 155–164, 2002

6. W. Gu et al. Characterization of Linux Kernel Behavior Under Errors. In Proc.
DSN, pp. 459–468 , 2003

7. M. Hiller, A. Jhumka, and N. Suri. PROPANE: An Environment for Examining
the Propagation of Errors in Software. In Proc. of ISSTA, pp. 81–85, 2002

8. M. Hiller, A. Jhumka, and N. Suri. An Approach for Analysing the Propagation
of Data Errors in Software. In Proc. DSN, pp. 161–170, 2001

9. M. Hiller, A. Jhumka, and N. Suri. EPIC: Profiling the Propagation and Effect of
Data Errors in Software. in IEEE Trans. on Computers, pp. 512-530, May 2004

10. C. Michael and R. Jones. On the Uniformity of Error Propagation in Software. In
Proc. of COMPASS, pp. 68–76, 1997

11. B. Miller et al. An Empirical Study of the Reliability of Unix Utilities. CACM
33(12):32–44, 1990

12. B. Murphy and B. Levidow. Windows 2000 Dependability. In Proc. of the Work-
shop on Dependable Networks and OS, DSN, 2000

13. M. Schmid et al. Techniques for Evaluating the Robustness of Windows NT Soft-
ware. In Proc. of DARPA Information Survivability Conference & Exposition,
volume 2, pp. 1347–1360, 2000

14. M. Swift et al. Nooks: An Architecture for Reliable Device Drivers. In Proc of the
Tenth ACM SIGOPS European Workshop, pp. 101–107, 2002

15. M. Swift et al. Improving the Reliability of Commodity Operating Systems. In
Proc of SOSP, pp. 207–222, 2003


