
On the Impact of Injection Triggers for OS Robustness Evaluation∗

Andréas Johansson, Neeraj Suri
Dept. of CS, TU-Darmstadt, Germany
{aja,suri}@informatik.tu-darmstadt.de

Brendan Murphy
Microsoft Research, Cambridge, UK

bmurphy@microsoft.com

Abstract

The traditional method of software robustness evalua-
tion, through error injection, is for errors to be injected at
reaching a specific code location. This paper studies what
impact varying the time for error injection has on evalua-
tion of software (specifically Operating Systems (OS)) ro-
bustness. A strategy to guide the appropriate error injec-
tion timing is proposed, based on the observation that the
operational usage profile of a driver shows a high degree of
regularity in the calls being made. Using the concept of call
blocks (i.e., a distinct sequence of calls made to the driver),
the trigger for injection can be used to guide injections into
different system states, corresponding to the operations car-
ried out. A real-world case study compares the effectiveness
of the proposed strategy to a traditional location-based ap-
proach, and shows that significantly more useful insights
can be gained using the proposed approach.

1. Introduction

Fault injection (FI) has been identified as a useful and ef-
fective technique for robustness evaluation [1, 5, 8, 12]. The
purpose of robustness evaluation is to establish the failure
modes of the system, identify error propagation paths and
to expose possible vulnerabilities related to external pertur-
bations. A key parameter for FI is the time of injection. The
effectiveness of the injection (its ability to reveal a vulner-
ability) depends on the state of the system at the time of
injection. A failure of a system is more likely if a fault (or
error) is inserted while the system is processing a critical
path (holding shared resources for instance).

With device drivers considered as a prominent cause of
OS failures [3, 15, 19], the focus of this paper is on OS ro-
bustness evaluation w.r.t. faults in the interface between de-
vice drivers and the OS. Several proposals have been made
on how to evaluate the robustness of a system in the pres-
ence of faults in drivers, for instance [8, 9, 10]. A promis-

∗This research has been supported, in part, by Microsoft Research, EU
FP6 NoE ReSIST, EU FP6 IP DECOS and DFG TUD GK MM.

ing technique for such evaluation is fault injection. For FI
three key questions need to be answered: a) which faults
(or errors) to inject, b) where to inject them, and c) when
to inject them. Several previous efforts have focused es-
pecially on the first two questions. Although the need for
controlling the time of injection has been identified as im-
portant, it is to a large degree a manual process entailing
selection of triggering events. The selection of appropri-
ate triggers is difficult and system dependent. Tradition-
ally, mainly two generic strategies have been employed to
select the events triggering an injection: first-occurrence
(also location-based) and time-triggered. First-occurrence
is based on the premise that since we cannot generally know
when the system is in a vulnerable state, we identify (code)
locations for injections and inject the error as soon as the
system reaches these locations. This is particularly useful
for software (SW) faults, which by nature are tied to a code
location. The error duration can then vary from transient
to permanent. The time-triggered approach defines a time-
out, after which an error is injected at a specific location,
or possibly a randomly selected one. First occurrence can
then be applied after the timeout. The key issue here is then
to set timeouts appropriately, alternatively do sufficiently
many injections with a random distribution in time. This ap-
proach is particularly useful when simulating physical faults
such as radiation or EMI.

This paper proposes a novel technique for controlling the
timing of error injection in the interface between drivers and
the OS using the usage profile of the driver. Calls invoked
on the driver are divided into call blocks, repeating subse-
quences of calls. Additionally, the lifetime of the driver
is divided into phases, such as initialization, working and
clean up phases. Our proposed injection methodology uses
this timing model to select the call blocks and phases where
errors are injected, thereby enabling more fine-grained con-
trol over the time of injection, compared to first occurrence
and time-triggered injection.

The contribution of this paper is two-fold, a) it proposes
a novel timing model for driver-based fault injection, based
on the operational usage profile of the system, and b) it sub-
stantiates the value of controlling the timing of error injec-



tion via extensive experimentation on a real system.

The structure of the paper is as follows: Sections 2 and 3
introduce the system and error models used. Section 4 then
defines the key concepts of the usage profiling approach:
call blocks and call strings. The experimental setup is de-
tailed in Section 5 and the used evaluation criteria is pre-
sented in Section 6. The results of the case study are pre-
sented in Section 7 and further discussed and interpreted in
Section and 8. Section 9 presents relevant related work and
the paper is summarized in Section 10.

2. System Model

The system model consists of a set of interacting SW
components. Interactions across components take place us-
ing specified interfaces. An interface is a set of interaction
points, or services. Interaction takes place by one compo-
nent invoking the service of another component. The sys-
tem as a whole also provides services to a user (which in
turn can be another system). A failure of the system is ob-
served when the system service can no longer be provided
as stipulated. One can define a set of disjoint failure modes
for the system services.

In this context, robustness evaluation aims to investigate
how the system handles faults occurring in external com-
ponent interactions. Typically, an external component or
system is identified as the source of faults, and errors are
introduced in the interface between this component and the
target system. As the invocation volume for such interac-
tions can be very high, a selection of which interactions to
target must be performed. As mentioned, a common ap-
proach is to first identify services to target and then inject
using first occurrence.

For the case study presented in this paper the targeted
component is a device driver and the system where the out-
puts are observed is the operating system together with the
workload (applications) running on it. Perturbations are in-
troduced in the interfaces between the device drivers and
the OS. Drivers provide services for the OS to use. Appli-
cations call the OS to perform specific operations using the
devices attached to the system, which translates into one or
more calls to driver services.

For each targeted device driver we identify the services
defining the exported functionality provided by the driver
(dx in Figure 1). The OS uses these services to interact
with the driver. The driver completes these service requests
using services provided by other components, mainly the
OS itself, but also other libraries shipped with the OS and
other drivers (sx in Figure 1).

...

Operating System
... ...

APP1
...

D1 D2 DN

APPn
...

...

... ... ...

... ...

...
... ...

OS Layer

Application layer

Driver Layer

Hardware Layer Hardware Platform

... ...

[OS-Application inteface]

[OS-Driver interface] }sx

}dx

Figure 1. The system model.

3. Error Model

The errors we inject represent the subset of software (and
hardware) errors that manifest themselves at the OS-Driver
interface. A service in this interface is typically invoked
multiple times during the lifetime of the system. Errors at
the interface level represent multiple potential faults (and
fault locations) in the driver. Consecutive invocations of a
service by a driver may stem from different locations in the
code and thus occur when the driver is in different states.
It is therefore very reasonable that multiple invocations are
targeted, i.e., that the time of injection is controlled and used
to guide the injections. Note that this does not in general
hold for code level injections, where the location of injec-
tion corresponds to the location of the fault.

For this study, bit-flips are used to represent the faults in
drivers. Bit-flips were chosen based on their effectiveness in
provoking system vulnerabilities, as reported for instance in
[10]. Bit-flips have also been successfully used for instance
in [5] and [21]. It is important to note that the goals of
a robustness evaluation is to provide clear failure modes of
the system, to find and expose robustness vulnerabilities and
to guide further QA resources across system components.
For these purposes bit-flips are well suited.

Previous studies have shown that many driver errors
manifest as memory access errors, which are possible to de-
tect using sandboxing techniques [19]. However, still some
errors can slip through over the interfaces to other compo-
nents and these are the target of this study.

As previously mentioned the target location for the errors
is the OS-Driver interface. This location was chosen as it
is a well defined interface, which is suitable for robustness
evaluation as it defines an input interface for the OS. It also
allows injection of errors without access to the source code
of the driver.

Errors are injected in the parameters used in service invo-

2



cations, by manipulation of the values used. A bit is flipped
in the value used and the call is passed on to the OS. We tar-
get each parameter carrying a value from the driver to the
OS. For each parameter we target all bits once, giving a to-
tal of 32 injections per parameter for types using all 32 bits,
such as integers. However, our FI environment previously
detailed in [9, 10] additionally allows injecting errors also in
the members of C-structs, commonly used in the OS-Driver
interface, which is based on C.

We target a transient error model, i.e., an error appears
for one invocation of a service and then disappears, leav-
ing subsequent invocations error-free. Since we assume that
base line functional testing has been performed for each
component our error model represents hard-to-find Heisen-
bugs as well as external perturbations.

4. Driver Usage Profile

A service request from an application translates to one
or more calls into the driver by the OS. In practice only
some sequences of calls make sense from a semantic point
of view. It doesn’t, for instance, make sense for an applica-
tion to try to read a file from disk before it has been opened,
although there is nothing stopping it from trying. Since such
problems can be expected to have been found during test-
ing, the operational behavior of the driver can be broken
down into a series of calls to the driver, where certain sub-
sequences are more frequent than others. Each such sub-
sequence represents common sequences of calls made from
the application, thereby defining what the driver is “doing”,
such as “reading”, or “setting connection parameters” etc.
We call each of these discrete blocks of calls a call block.

The operational usage profile of a driver is a list of ser-
vice invocations carried out on the driver (the dx services
in Figure 1). Note that this definition differs from the tradi-
tional definition of operational profile by Musa [16]. For
completing the request sent by the OS the driver makes
use of OS services and other help libraries (sx in Figure
1). These calls to other services form the interface between
the driver and the OS, which is the target for our robustness
evaluation. As the same OS service may be invoked mul-
tiple times, i.e., called from different locations within the
driver and with different internal states, it is pertinent to tar-
get as many of them as possible. By guiding the injection
using the usage profile we get a much finer granularity and
control of injection timing.

4.1. Call Strings and Call Blocks

The usage profile of a driver can be illustrated as a time-
service diagram, like in Figure 2. The services invoked
(a − d) are shown as rectangles. By assigning a token to
each service from a predefined alphabet, the series of calls

made to the driver can be represented as a string, the call
string. The call string in Figure 2 is ababcdabdab. Note
that we do assume sequential operation of the driver. Fur-
ther discussion on this is presented in Section 8.

Time
b baa

α1 α2 β α3 γ α4

c d db baa

Figure 2. Example of invoked services.

In the example in Figure 2 it can be seen that services
a and b are invoked multiple times during the execution of
the component. Each time a is called it is followed by an
invocation of b; a and b thus form a call block, which is
repeated during the execution of the component. The se-
quences cd and d are not repeating and cannot be added
to any other call block. These sequences form the non-
repeating call blocks. The whole call string can therefore be
split into call blocks as indicated in Figure 2 as the sequence
(ab){2}cd(ab)(d)(ab)1. The assignment of call blocks is
typically done through a combination of identification of
repeating blocks and a priori knowledge regarding the func-
tionality of the driver.

Time

α1 α2 α3 α4β γ

si sjsk sl sm

Figure 3. Driver invoked services.

Figure 3 shows the same call blocks as Figure 2, α, β and
γ. When injecting in service si, first occurrence would only
inject an error in the first invocation of si in α. Subsequent
invocations of si, in α1 or elsewhere are not targeted, unless
the error is made permanent. Using call blocks allows us to
inject errors in multiple invocations of a service.

4.2. Operational Phases

Generally the lifetime of a driver can be divided into
three disjoint phases, as seen in Figure 4. First the driver
executes an initialization phase, where the driver registers
its presence with the OS and initializes software and device
specific resources. Then follows a number of blocks where
the driver performs work on behalf of applications (indi-
rectly) or the OS directly, the working phase. At the end is
a clean up phase where the driver deregisters with the OS
and may free any resources allocated to it.

1The syntax (ab){2} means that the symbols ab are repeated twice.

3



The concept of operational phases becomes important
when selecting which call blocks to inject errors into. It
is to be expected that failures in the initialization and clean
up phases have more severe consequences, since in these
phases the driver interacts with many OS services, which
may affect the state of the system, not only the driver.

time

Initialization
phase

Operational phase Clean up phase

Figure 4. The operational phases of a driver.

4.3. Injection Targets

Injections are targeted at each call block. When a call
block is repeated multiple times, a filtering may take place
to reduce the number of injections needed. Preferably at
least one call block per phase is targeted, when possible. For
each targeted call block, first occurrence injection is done
on each service invoked at least once within the call block.

5. Experimental Setup

To evaluate the influence of the time of injection on the
outcome of the robustness evaluation this section presents a
case study where two drivers have been evaluated with in-
jections targeting all unique call blocks. The two drivers, a
serial port driver (cerfio serial.dll) and a network
card driver (91C111.dll), are built for Windows CE .Net,
running on an Intel XScale reference board. The experi-
mental setup is illustrated in Figure 6. The reference boards
are connected to a host computer handling logging of the
results. Both drivers are provided by the reference board
vendor and are shipped with the hardware in binary form,
prohibiting source code modifications.

5.1. Targeted Drivers

The two drivers studied were selected as they represent
two common types of functionality found in most modern
OS’s. They are also different, with the serial port driver re-
lying heavily on the OS to perform its operations, whereas
the network card driver uses the OS mostly during the ini-
tialization phase. This is clearly shown in Figure 5 which
indicates the serial driver invoking a higher number of ser-
vices and more frequently than the network card driver. It is
therefore to be expected that the utility of the proposed call
block approach will show up most clearly for the serial port
driver.

For the serial port driver 41 services are used by the
driver. A service is invoked 30.5 times on average for the

 

Serial driver
Network driver

0

 20

 40

 60

 80

 100

 120

 140

 160

N
r o

f i
n

vo
ca

ti
o

n
s

Services invoked

Figure 5. Driver invocation profiles.

given workload with a standard deviation of 53.5 and me-
dian of 2. This reflects the fact that there are some services
that are used frequently (for reading/writing, synchroniza-
tion etc.) and some only once or twice (like configuration
of the device). The same data for the network card driver
shows an average number of invocations of 5.4 with a me-
dian of 1 and standard deviation of 11.7.

Device drivers for Windows CE are implemented as
dynamic link libraries which are loaded into the memory
of a dedicated driver process at system load time. Both
drivers implement the standard stream interface used for
such drivers in Windows CE which exports the ten func-
tions. Table 1 show the exported services by the serial port
driver. The COM prefix is specific to the serial port driver
and is different for other drivers. The order in which drivers
are loaded in the system is configured using the registry.
In Windows CE network card drivers do not use the nor-
mal stream interface to interact with the OS, instead the
driver uses the NDIS.dll library for implementing the
needed functionality. We have therefore built an intermedi-
ate NDIS driver that tracks all NDIS calls to the driver. As
drivers in Windows CE are implemented as dynamic link
libraries (Dll’s) a dedicated function exported by the driver
(DllMain for the serial driver and DriverEntry for the
network driver invoked as the first thing when it is loaded
into the system. Typically some basic setup of synchroniza-
tion objects etc. is done in this function. On top of this both
drivers provide additional initialization functions called by
the OS at a later time.

Apart from the exported services each driver makes use
of services provided by the OS and other system libraries,
possibly including other drivers. This is the interface we
target for FI.

5.2. Experimental Process

The tracker module keeps track of which calls have been
made to the driver and notifies the injector module when the

4



Table 1. Stream interface for serial driver.
Number Name

0 COM Init
1 COM Deinit
2 COM Open
3 COM Close
4 COM Read
5 COM Write
6 COM Seek
7 COM IOControl
8 COM PowerDown
9 COM PowerUp

targeted call block has been reached. The injector module
then injects the error using first occurrence injection. For
the first occurrence experiments the injector module is con-
figured to ignore the instructions from the tracker module
and instead inject according to the first occurrence strategy.
The system also has a manager module, handling setup and
selection of injection cases, and a host computer for storing
the log files produced for each injection.

Operating System & libs

Target driver

InjectorTracker

Host
Computer

Experiment
Manager

- Exp. Setup
- Exp Synch.
- Logging
- Restarting

Test Applications

Figure 6. The experimental setup.

For each experiment run (injections for a specific driver
and call block) a new image of the whole system is built,
downloaded and stored in flash memory on the reference
board. When the system boots up it loads the image from
flash into RAM, thus guaranteeing that each injection is per-
formed on a fresh copy of the correct OS image. The first
time the system boots up it configures all the injections that
can be performed and stores them in a designated flash de-
vice. It then proceeds and runs the workload and profiles
the system filter out non-activated injections (see next sec-
tion). Logs are sent to the host computer over either Ether-
net or serial communication, depending on which driver is
targeted. After each injection the system is rebooted. This
way dormant errors are not present at the time of injection.
However, it does limit the ability to study effects of multiple
errors and possible state degradation effects.

5.3. Pre-profiling

For any FI approach, keeping the number of activated in-
jections (those where the injected fault turns into an error)
high is desirable as it reduces the time needed to conduct
the experiments. To achieve a 100% activation rate a pre-
profiling phase is employed before each injection campaign.
The system is executed without injecting any error, record-
ing which services are used and in which call blocks. All
injection cases which will not be activated can thus be fil-
tered out a priori, either because the service is not used at
all or because it is not used in the targeted call block.

5.4. Workload

To drive the experiments and to make sure that the tar-
geted drivers are used, a workload consisting of a set of
test applications are executed on the system as indicated
in Figure 6. There are two types of test applications, OS
level test applications exercising generic OS services, such
as memory management, process and thread management,
file system operations etc. The second type is device spe-
cific test applications, dedicated to specific devices attached
to the system. For the reference boards used in this study
we have dedicated test applications for attached external
storage (CompactFlash), serial and Ethernet communica-
tion with the host computer. The device specific test appli-
cations first set up the application level setup required to use
the driver, then sends and receives data and finally closes the
communication. This mimics the operational phases of the
driver itself, with initialization, working and cleanup phases
as shown previously in Figure 4 and we consequently call
these the operational phases of the test application.

5.5. Injection

At system boot time the targeted service for injection is
read from a configuration file. As the driver is loaded, a
wrapper is built enabling tracking and injection of errors
into that service. As the service is triggered for injection,
a selected bit in the specified parameter of the service is
flipped. The remaining bits are left unchanged. Once the
bit is flipped the system continues running. The error is
only injected once. Subsequent service invocations are not
targeted.

For first-occurrence injections the error is injected the
first time the service is invoked. For the proposed call block
approach the injection is performed only after the specified
call block has been reached. The actual injection is exactly
the same, only the triggering even differs.

5



5.6. Identifying Call Strings & Call Blocks

To find the call blocks the drivers are first exercised with-
out any errors injected. The tracker module records the calls
made, and in which order, forming the call string for the
driver. For the setup used in this paper, the workload is de-
terministic, i.e., the same call string is generated every time.
This simplifies the problem of tracking the call blocks as
it is reduced to counting the calls, and triggering injection
when a specified number of invocations have taken place.

Serial port driver: For the serial driver the test applica-
tion first writes a string of characters to the serial port and
an application on the connected host computer reads them
and sends the same characters back, which are read, charac-
ter by character. This is then repeated once more. On top of
this, the DllMain function is called before any other call
to the driver, forming a call block by itself. In total the call
string for the serial port driver contains 152 tokens.

Figure 7 shows the call string for the serial driver. The
number for each service invoked is taken from Table 1. It
shows the run starting with a call to DllMain (D) followed
by service 0 (Init) which both belong to the initialization
phase of the driver (and the workload). The working phase
of the driver consists of a sequence of Open calls and calls
for writing characters to the port, followed by a repeated
sequence of reads and control calls. The clean up phase
of the workload then ends with a call to Close. This pat-
tern then repeats (open + writing + reading) a second time,
but without the initialization calls. The application consis-
tently gives rise to the same call string. A discussion on
non-determinism and concurrency is found in Section 8.

D02775(747){23}732775(747){23}73

Figure 7. The serial driver call string.

Figure 8 illustrates the call string. Five distinct call
blocks have been identified (δ, α, β, γ and ω), with all but
the first two (δ and α) repeating. We target each repeat once
and for the consecutive repeats of γ we target one of the re-
peats, in the first run the first block, and in the second run
the sixth. For the sake of discussion in the following sec-
tions we term the targeted call blocks δ, α, β1, γ1, ω1, β2, γ2

and ω2 as shown along the x-axis in Figure 8, here indicat-
ing time in terms of call block ordering.

Network card driver: The workload for the network
card driver works in a similar fashion as the serial port
driver, by sending packets of data to the host machine and
then listening for incoming packets (the same data sent
back). Similarly to to the serial port driver we have man-
ually inspected the call string to the driver and identified
eight call blocks with two of them repeating, as illustrated
in Figure 9. The call blocks are named in a similar fashion

0
D

α

αδ

2775 2775β

β1

γ

γ1

747 747... 747 747...

δ

ω1

ω

β2 γ2 ω2

C
al

l B
lo

ck

73 73

timem

Figure 8. The call blocks for the serial port.

to the call blocks for the serial port driver. The network card
call string contains 59 tokens.

time

α1 α2
δ

β
γ1

ω
�

γ2

C
al

l B
lo

ck

Figure 9. The network driver call blocks.

6. Evaluation

To evaluate the efficiency of the call block based injec-
tion we will perform experiments with the proposed tech-
nique and compare it with a classical first occurrence based
injection. The comparison will focus on the ability to find
severe failures and on the required number of injections
(i.e., the execution time of the experiments).

The comparison uses failure mode analysis. The failure
modes are defined from a user perspective, i.e., based on
the service provision of the system. Failure mode analysis
is a common approach used to classify FI experiments, see
for instance [2, 13, 18] Four failure classes are defined as
follows, based on the behavior during the golden run of the
test applications.

Class NF: No visible deviation of service behavior, i.e.,
No Failure class. Three distinguishable explanations
account for an injection resulting in this class, namely
a) the error location not being activated; b) the error
being overwritten by the system; or c) the error being
dormant, i.e., still present in the system but propagation
is not yet activated.

Class 1: A deviation from golden run behavior visible
for the OS services, but still satisfies the OS service
specification. Examples of class 1 outcomes include

6



returning valid error codes, propagation of data errors
also fall into this category.

Class 2: The specification of the service is violated, like
an unforseen hang or crash of the application. An ap-
plication is considered hung after 40 seconds of non-
responsiveness, exceeding 100% of normal execution
time. Note that the rest of the system is still function-
ing after the failure.

Class 3: The OS becomes irresponsive due to a crash or
a hang. No further progress is possible.

7. Results

For each of the two drivers we carried out FI experiments
as previously described. Table 2 details the results obtained,
with names as defined in Section 5.6. Using these results
Figure 10 and 11 graphically compares the results obtained
with the call block approach to those obtained with first oc-
currence. For a trigger to be useful it should find many high
severity failures (Class 3) with as few injections as possible.

Serial port driver: Figure 10 shows the distribution
across failure classes for each of the call blocks (and first
occurrence, FO) used together with the number of injec-
tions carried out for each call block. The NF class, which
amounts to 75-95% of the cases is not shown in the figure.

The call blocks showing the lowest ratio of Class 3 fail-
ures are γ1 and γ2. These call blocks correspond to the
working phase of the driver, where it is sending and receiv-
ing data. In this phase one can expect the system to be built
to be better prepared to fluctuations in behavior. The figure
also clearly shows a small difference in the number of Class
2 failures seen, with γ2 have a slightly higher ratio.

In contrast to the working phase, the initialization and
clean up phases show higher ratios of Class 3 failures. In
these phases the driver is interacting with the OS using sen-
sitive OS services. Whereas ω1 and ω2 show close to iden-
tical distributions, β2 shows more Class 1 failures than β1.

Figure 10 also shows that the δ call block is less prone to
Class 3 failures than the other initialization phase α. This
can be explained by the fact that during load time drivers are
discouraged to do any complex operations, minimizing the
calls being made to the OS only initializing synchronization
objects and other lightweight operations. As a consequence
we see fewer Class 3 failures, but since these operations
may now fail, we see a rise in Class 2 failures as the driver
is unable to do any progress.

Looking at the specific services where injecting errors
actually gives rise to Class 3 failures Table 3 shows the
results for the serial port driver. Out of a total of 41 ser-
vices being targeted for this driver, injections in 13 services
caused Class 3 failures. From Table 3 it can be seen that
five services which did not show any Class 3 failures for the
first occurrence injections, do show failures when injected

0.0

5.0

10.0

15.0

20.0

25.0

30.0

FO
Call blocks

#Injections

 0

 50
0

 10
00

 15
00

 20
00

Fa
ilu

re
 c

la
ss

 d
is

tri
bu

tio
ns

 [%
]

#I
nj

ec
tio

ns

Class 3 Class 2 

α1δ β1 γ1 ω1 β2 γ2 ω2

Class 1 #Injections

Figure 10. Failure class distribution and num-
ber of injections for each call block of the se-
rial port driver.

FO
Call blocks

#Injections

0

 50
0

 10
00

 15
00

 20
00

Fa
ilu

re
 c

la
ss

 d
is

tri
bu

tio
ns

 [%
]

#I
nj

ec
tio

ns

Class 3 Class 2 

α1 α2δ β1 γ1

Class 1 #Injections

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Figure 11. Failure class distribution and num-
ber of injections for each call block of the net-
work card driver.

in later call blocks. This shows that choosing the trigger-
ing event for injection for the serial port driver does have
a large impact on the results obtained and that first occur-
rence is not sufficient for a comprehensive evaluation.

Network card driver: Table 2 and Figure 11 show that
for the network card driver the call block δ shows a very
similar distribution to the first occurrence approach (FO).
The call blocks π, γ2 and ω2 defined in Section 5.6 did
not have any injections performed as no service invocations
take place. These call blocks are not shown. Call blocks
α2, β1 and γ1 show very similar behavior, with a distinctly
lower number of injections. Call block α1 does not show
any failures at all.

As speculated in Section 5.1 the impact of the call block
strategy is minimal for the network card driver. No new
Class 3 failures where found and the δ call block shows a
very similar behavior to the first occurrence (in contrast to

7



Table 2. Injection results for the serial (cerfio serial.dll) and the network card driver (91C111.dll).
NF C1 C2 C3

Driver Name Call Blocks #Injections # % # % # % # %
FO 2436 1872 76.85% 37 1.52% 467 19.17% 60 2.46%
δ 1217 923 75.84% 18 1.48% 269 22.10% 7 0.58%
α 1098 969 88.25% 9 0.82% 103 9.38% 17 1.55%
β1 1356 1082 79.79% 5 0.37% 218 16.08% 51 3.76%

cerfio serial.dll γ1 580 565 97.41% 2 0.34% 13 2.24% 0 0.00%
ω1 1124 979 87.10% 103 9.16% 24 2.14% 18 1.60%
β2 1328 979 73.72% 161 12.12% 145 10.92% 43 3.24%
γ2 580 550 94.83% 2 0.34% 28 4.83% 0 0.00%
ω2 1125 984 87.47% 90 8.00% 32 2.84% 19 1.69%
FO 1820 1289 70.82% 417 22.91% 50 2.75% 64 3.52%
δ 1756 1159 66.00% 494 28.13% 32 1.82% 71 4.04%
α1 96 96 100.00% 0 0.00% 0 0.00% 0 0.00%

91C111.dll α2 171 101 59.06% 65 38.01% 1 0.58% 4 2.34%
β1 171 99 57.89% 65 38.01% 4 2.34% 3 1.75%
γ1 171 102 59.65% 64 37.43% 2 1.17% 3 1.75%

the serial port driver), which confirms that for drivers which
perform few calls, and especially during the initialization
phase, first occurrence is to be preferred.

8. Discussion

This section interprets the results presented in the previ-
ous section and discusses some of the issues involved. Fo-
cus of the discussion is on the most severe failures from a
robustness point of view, the Class 3 failures.

Driver types: The results show a distinct difference be-
tween the two drivers. Where for the serial driver a sig-
nificant number of additional services experienced Class 3
failures the network card driver gave no additional services
using the call block strategy. As explained in Section 5.1
the serial port driver relies heavily on the OS to perform its
services. As expected, the call block approach is only more
effective for drivers which use many services multiple times
throughout the lifetime of the driver, which is not the case
for the network card driver used in this study. A profiling
of the targeted drivers (like in Figure 5) should therefore
be conducted before triggers are selected, to minimize the
time for implementation and number of injections required.
Note that such profiling can be conducted prior to injection!

Comparing with first occurrence: The first occurrence
approach has several advantages compared to using call
blocks: it uses fewer injections, it is useful for code level
faults and it is simple to implement. Table 4 shows a quan-
titative comparison of the two approaches.

The number of injections needed for the call block ap-
proach is significantly higher than that for first occurrence,
even though the pre-profiling reduces the number of injec-

tions needed for each call block. However, the higher price
is inherently inevitable given the fact that the call block ap-
proach injects in multiple invocations of a service, whereas
first occurrence only injects in the first invocation, i.e., the
first occurrence injections is a subset of the injections per-
formed when all call blocks are targeted.

The additional number of injections give rise to a trade-
off with the usefulness of the results gained. Section 7
clearly shows that there are indeed services found to be vul-
nerable only using the call block approach. Using first oc-
currence found eight services for the serial port driver to
be vulnerable. Using the call block approach additionally
five more services were identified, an increase of more than
60%. On the other hand, for drivers that do not use the OS
services as much, or mostly during initialization, the call
block approach gives no benefit.

Selecting Call Blocks: Figure 10 and 11 show that not
all call blocks are effective at identifying Class 3 failures.
By inspecting the call blocks that do not show any such fail-
ures it becomes evident that these are mostly in the working
phase of the driver as well as the workload. To reduce the
number of injections performed one could focus on mostly
the initialization and clean up phases.

Finding Call Blocks: Depending on the workload used
for the evaluation the call strings induced varies in length.
For the case study presented in this paper manual inspec-
tion was sufficient to deduce relevant call blocks. However,
when call strings are significantly longer and when knowl-
edge about the semantics of services is lacking, manual in-
spection may not be a feasible option. For this case some
level of automation is required. The repeating nature of call
blocks can be used to identify them within the call string.

8



Table 3. The services having Class 3 failures for the serial port driver.
Service/Call block FO δ α β1 γ1 ω1 β2 γ2 ω2

CreateThread x x x
DisableThreadLibraryCalls x x
EventModify X X
FreeLibrary x x
HalTranslateBusAddress X
InitializeCriticalSection X
InterlockedDecrement X
LoadLibraryW x x
LocalAlloc x x
memcpy x x x
memset x x x
SetProcPermissions x x x
TransBusAddrToStatic X

Table 4. Comparing the first occurrence and
call block approaches.

Serial driver Network driver
Trigger #Injections #C3 #Injections #C3
First occ. 2436 8 1820 12
Call blocks 8408 13 2356 12

Several algorithms and data structures have been developed
for similar problems, like identification of repeating sub-
strings in dna (see for instance [6]), which can be applied
here as well. A future extension of this work is indeed to
develop such algorithms.

Determinism: A call block represents an operation car-
ried out by the driver and may consist of more than one
service invocation. To define the call blocks for a driver
the call string needs to be stable, i.e., the invocation pattern
needs to be deterministic. The workload used for the case
study is indeed deterministic and actually most benchmarks
are, since they should provide repeatable results. An appli-
cation used for a specific product may not be deterministic
and may therefore have to be transformed in such a way that
the invocation pattern it induces is deterministic.

Concurrency: Drivers can in general be accessed con-
currently by multiple applications, depending on the seman-
tics of the driver. For instance, the serial driver used in the
case study uses a non-sharable semantics (only one appli-
cation can have access to the serial port at a given time),
whereas other drivers can be accessed concurrently. In this
paper we have deliberately focused on the simpler case,
where only single applications access the driver at any given
moment in time. In order to handle concurrent accesses the
call strings relating to different applications need to be kept

apart and treated individually. Call blocks can then be de-
fined for each of them individually. However, the interleav-
ing of the accesses may still be problematic. Whether such
a situation is desirable or not from a robustness evaluation
point of view can be discussed, as it potentially leads to un-
desirable non-determinism as described above.

Workload selection: As the phases and the call blocks
form the basis for the usage profile it is important to iden-
tify a representative workload for the experiments, repre-
sentative of the expected workload of the system once it be-
comes operational, if known, or representative of common
applications within the targeted area if not. In the latter case
it is important to use a diverse workload that exercises the
systems in all possible ways that may be required of real
applications. Load and stress scenarios may also be part of
the workload, but it is important that the workload can be
executed without any problems in error-free settings, such
that a golden-run comparison can be made.

9. Related Work

Multiple robustness studies of OSs and other software
systems have been carried out. [8, 14] studies the impact
of software faults in device drivers using code mutations.
Here not only the type of errors injected (code level) but
also the location of the injection differs from ours. We have
opted for a more general technique by using the interfaces
between components for injection.

Interface level errors where used for instance in [1] and
[2] for the Linux kernel and for micro-kernel-based systems
respectively. It was also used for user level applications for
instance in [4, 13, 20].

Injection timing has been identified to be of great impor-
tance to the effectiveness of fault injection. Whittaker notes
that injecting faults into SW interfaces is important for test-

9



ing robust and reliable systems, but that it is very hard to
know where and when to inject [22]. [21] injects errors into
CPU registers and memory locations by flipping bits. The
goal is to select the time of injection to maximize the acti-
vation rate of errors. Both workload based and path-based
injection is studied. The path-based approach has more sim-
ilarities with our technique but it is based on the assembler
code of the program. The execution paths for given inputs
are found a priori and faults are selected along these paths,
using the code location as trigger. Also [7] considers the
time of injection, but again based on source code level er-
rors and not from the interface level as our approach. In [17]
the authors injects bit-flips in the stack area corresponding
to the parameters in a call using a randomly selected time
of injection. We believe that with the approach presented
in this paper increases the effectiveness of the injections by
controlling the time of injection to maximize the effects of
the injections. Multiple other tools allow controlling the
injection of errors to some degree, for instance FERRARI
[11] which allows a user to set both spatial (location) and
timed triggers. The spatial trigger injects an error after a
location is invoked n time. This is similar to our proposed
method, but our approach does provide guidance on select-
ing n, using the call block concept.

10. Conclusions & Outlook

This paper presents a novel approach for selection of in-
jection triggers for OS robustness evaluation. The usage
profile of a driver (a list of invocations to the driver) ia split
into disjoint call blocks and each block is targeted for injec-
tion. The results presented establish the fact that control-
ling the time of injection is crucial. Applying the approach
to Windows CE shows that a significantly higher number
of services can be identified as vulnerable, compared to a
traditional first occurrence based approach. A profiling of
the invocation pattern of the driver can be conducted to give
insights on whether call block triggers or a traditional first
occurrence trigger will be more effective. Such profiling
can be conducted before any injections have taken place.
Furthermore, inspection of the results show the initializa-
tion and clean up phases of the drivers having a distinctly
higher number of vulnerabilities than the working phase.

Future extensions of our work include enlarging the set
of models and drivers studied. We are also looking into
methods for automatic detection of call blocks from call
strings. Applying the technique in a larger industrial sce-
nario would allow for more detailed evaluation of the ef-
ficacy of the used models and study of the bug revealing
capabilities of different models.

References

[1] A. Albinet, et. al., Characterization of the Impact of Faulty
Drivers on the Robustness of the Linux Kernel. In Proc. of
DSN, pp. 807–816, 2004.

[2] J. Arlat, et. al., Dependability of COTS Microkernel-Based
Systems. IEEE Trans. on Computers, 51(2):138–163, Feb.
2002.

[3] A. Chou, et. al., An Empirical Study of Operating System
Errors. In Proc. of SOSP, pp. 73–88, 2001.

[4] C. Fetzer and Z. Xiao. An Automated Approach to Increas-
ing the Robustness of C Libraries. In Proc. of DSN, pp.
155–164, 2002.

[5] W. Gu, et. al., Characterization of Linux Kernel Behavior
under Errors. In Proc. of DSN, pp. 459 – 468, 2003.

[6] D. Gusfield. Algorithms on Strings, Trees and Sequences.
Cambridge University Press, 1997.

[7] J. Christmansson, et. al., An Experimental Comparison of
Fault and Error Injection. In Proc. of ISSRE, pp. 378–396,
1998.

[8] J. Durães and H. Madeira. Multidimensional Characteriza-
tion of the Impact of Faulty Drivers on the Operating System
Behavior. IEICE Trans., E86-D(12):2563–2570, Dec. 2003.

[9] A. Johansson and N. Suri. Error Propagation in Operating
Systems. In Proc. of DSN, pp. 86–95, 2005.

[10] A. Johansson, et. al.,. On the Selection of Error Model(s) for
OS Robustness Evaluation. In Proc. of DSN, 2007.

[11] G. A. Kanawati, et. al., FERRARI: A Flexible Software-
Based Fault and Error Injection System. IEEE Trans. on
Computers, 44(2):248–260, Feb 1995.

[12] K. Kanoun, et. al., Benchmarking the Dependability of Win-
dows and Linux using PostMark Workloads. In Proc. of IS-
SRE, pp. 11–20, 2005.

[13] P. Koopman and J. DeVale. Comparing the Robustness of
POSIX Operating Systems. In Proc. of FTCS, pp. 72–79,
1999.

[14] W. lun Kao, et. al., FINE: A Fault Injection and Monitoring
Environment for Tracing the UNIX System Behavior under
Faults. IEEE Trans. on Software Engineering, 19(11):1105–
1118, Nov 1993.

[15] B. Murphy and B. Levidow. Windows 2000 dependability.
In Proc. of the Workshop on Dependable Networks and OS,
pp. D20–28, 2000.

[16] J. Musa. Operational Profiles in Software-Reliability Engi-
neering. IEEE Software, pp. 14–32, Mar. 1993.

[17] M. Rodriguez, A. Albinet, and J. Arlat. MAFALDA-RT: A
Tool for Dependability Assessment of Real-Time Systems.
In Proc. of DSN, pp. 267–272, 2002.

[18] A. Steininger and H. Schweinzer. A Model for the Analysis
of the Fault Injection Process. In Proc. of FTCS, pp. 186–
195, 1995.

[19] M. M. Swift, et. al. Improving the Reliability of Commodity
Operating Systems. In Proc. of SOSP, pp. 207–222, 2003.

[20] T. Tsai and N. Singh. Reliability Testing of Applications on
Windows NT. In Proc. of DSN, pp. 427–436, 2000.

[21] T. K. Tsai, et. al., Stress-Based and Path-Based Fault Injec-
tion. IEEE Trans. on Computers, 48(11):1183–1201, Nov
1999.

[22] J. A. Whittaker. How to Break Software. Addison-Wesley,
2003.

10


	. Introduction
	. System Model
	. Error Model
	. Driver Usage Profile
	. Call Strings and Call Blocks
	. Operational Phases
	. Injection Targets

	. Experimental Setup
	. Targeted Drivers
	. Experimental Process
	. Pre-profiling
	. Workload
	. Injection
	. Identifying Call Strings & Call Blocks

	. Evaluation
	. Results
	. Discussion
	. Related Work
	. Conclusions & Outlook

