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Abstract

The choice of error model used for robustness evaluation
of Operating Systems (OSs) influences the evaluation run
time, implementation complexity, as well as the evaluation
precision. In order to find an “effective” error model for
OS evaluation, this paper systematically compares the rel-
ative effectiveness of three prominent error models, namely
bit-flips, data type errors and fuzzing errors using fault in-
jection at the interface between device drivers OS. Bit-flips
come with higher costs (time) than the other models, but
allow for more detailed results. Fuzzing is cheaper to im-
plement but is found to be less precise. A composite error
model is presented where the low cost of fuzzing is com-
bined with the higher level of details of bit-flips, resulting in
high precision with moderate setup and execution costs.

1. Introduction

This paper focuses on ascertaining the robustness of OSs
to errors in device drivers. While multiple OS robustness
studies using fault-injection have been reported, for instance
[2, 9, 13, 15], in most cases, the results are applicable
mainly for the specific underlying error model. The choice
of error model and location of injection directly influences
the accuracy and usefulness of the obtained results.

The relative effectiveness of three distinct error models
at the OS-Driver interface is compared. The OS-Driver in-
terface was chosen as it represents an interface shared by
all drivers, it is reasonably well documented and supplies
the level of access needed for this type of studies. The error
models are compared for efficiency (cost and coverage), im-
plementation complexity and execution time requirements
and a new composite error model is presented. Conse-
quently, the paper proposes guidelines on selecting the ap-
propriate error model for OS robustness evaluation. The
results of such an evaluation are useful both in system de-
sign, i.e., where the OS and the drivers are integrated as part
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of a larger system, for finding hot-spots in the system war-
ranting refinements, and component evaluation for compar-
ing the suitability of certain components in a system. The
chosen approach makes possible a comparative study of the
influence of drivers on system robustness, without requiring
source code access. Experimental quantitative approaches,
such as this one, complement analytical approaches (like
[4]) and provide easy means for quantifying dynamic be-
havior of the system under study.

The chosen error models span: a) bit-flips (BF), where a
bit in a data word is flipped, from 0 to 1, or vice versa. BF
were used, for instance, in [9] where the robustness of the
Linux kernel was evaluated. b) Data type-based corruption
(DT), where the value of a parameter in a call to a func-
tion is changed, according to its data type, for instance to
boundary values. This technique was used in [1] and [13].
In [3, 11] both BF and DT errors are used. c) Fuzzing (FZ),
which assigns a randomly chosen value to the parameter in
a function call. FZ has previously been used, for instance,
in [17, 19].

Paper Contributions & Structure: Selecting an “effec-
tive” error model to use in a particular setting is not straight-
forward and guidelines are of value for both OS designers
and evaluators. Building on previous experiences on OS
robustness evaluation [13], this paper represents a step to-
wards providing such a guideline. Using a case study based
on Windows CE .NET and three different drivers (serial,
network and storage card drivers) the paper specifically pro-
vides two distinct contributions, namely i) a comparative
study of error model effectiveness in terms of coverage and
cost, and ii) it establishes the effectiveness of using a com-
posite error model for OS robustness evaluation.

The paper is presented detailing four main blocks:

Prerequisites: Defining the system model [Section 2];
background information on the studied error models
[Section 3]; a presentation of the evaluation criteria for
the error models, i.e., error propagation, failure mode
analysis and execution time [Section 4].

Implementation: Presentation of the target system and
the experimental technique used [Section 5].

Results: Presentation of the results from fault-injection



experiments [Section 6] with interpretations [Section 7].
Composite Model: Definition and results for the com-

posite error model [Section 8]; discussion and summary
of the main findings [Section 9].

2. System Model

Similar to [1, 2] we use a four-layered model of the OS:
Application, OS, Driver and Hardware layer. This model
applies to most common monolithic OSs, such as Windows,
UNIX and Linux. The OS-Driver interface (Figure 1) is our
target of study.
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Figure 1. System model

A system containing N drivers (D1 . . . Dy . . . DN ) is
considered. Each driver exports and imports a set of ser-
vices dsx.y where x.y is xth service of driver Dy . The ef-
fects of errors are observed at the OS-Application interface
by manually instrumenting a number of benchmark applica-
tions with assertions. For each system service si used, we
study its behavior to detect deviations from the golden run.

Only the interface specifications (OS-Driver and OS-
Application) are required, but no source code, neither for
the drivers, nor for the OS itself. However, access is needed
to the source code of the benchmark applications, for instru-
menting them with assertions. The availability of interface
specifications is a basic requirement for any OS open for
extensions by new types of drivers/applications.

3. The Spread of Error Models

The three error models are chosen based on their appro-
priateness as reported in multiple previous studies and by
their relation to real faults, such as those defined by Orthog-
onal Defect Classification (ODC) [5]. ODC is a method of
classifying defects into orthogonal classes, enabling process
feedback and control. As it mainly focuses on in-process

defects, it uses source code as an intrinsic basis for classi-
fication. Our decision not to require access to source code
implies that we cannot directly use the ODC classification.
However, an attempt is made to classify the error models de-
pending on the defect classes they belong to. The interface
class of ODC is a potential source for each of the models, as
it deals with external interaction, such as drivers. The error
models were also chosen as they represent a class of errors
that previously have been reported as difficult to detect and
recover from [20].

Errors are injected in service parameters. We do single
injections, i.e., we do not simultaneously inject in multiple
parameters. Injection is performed by intercepting calls and
manipulating data at runtime.

For all three error models we use a transient error oc-
currence and duration model, i.e., the error appears once
and then disappears. Errors are injected on first occurrence.
This implies that the error is injected the first time a service
is invoked. Previous studies have suggested that the impact
of the time of injection is small [21]; however this remains
to be comprehensively established.

All three error models handle pointers and structures as
special cases, and inject errors in the target of a pointer and
the members of a structure, when possible. Only if a pointer
or structure member is already set to NULL an injection is
not performed.

3.1. Bit-Flip Error Model

Bit-flips is an extensively used error model deriving its
origins from transient hardware defects. Its ease of use and
implementation has made it a candidate to also be used to
simulate software (SW) defects. As it changes the value of
a parameter (by manipulating one of the bits) it belongs to
the Assignment class of ODC defects.

In the BF model, each parameter is treated as an integer
(typically a 32-bit word). The model’s greatest advantage
is also its greatest disadvantage, namely simplicity. While
it makes it very easy to implement, it suffers in expressive-
ness, with respect to abstract data types (strings etc.).

Each injection case flips one bit, thus resulting in 32 in-
jection cases per parameter. However, some parameters are
16 (or 8) bit wide only, and we therefore restrict these pa-
rameters to use fewer injections.

3.2. Data Type Error Model

Data type errors are chosen depending on the data type of
the targeted parameter. As the targeted interface is defined
using the C language, the data types considered are all C-
style. This excludes high level abstract data types supported
in other high-level languages, such as classes in C++.



We follow established testing practice by choosing for
each type a set of predefined (no randomness) test values,
offset values and boundary values. The offset values allow
us to modify the previous value (present in the intercepted
call), such as adding a number to it. The number of injec-
tions defined is typically less than ten, allowing this error
model to incur fewer injections (on average) than the BF
model. However, there is no such inherent property and it
depends on the number of cases defined for each type. This
model also belongs to the Assignment class of ODC, though
it could also be a Checking defect, resulting from a failing
or missing check of a data value.

The number of data types for which injection cases
need to be defined depends only on the data types actually
used[7, 15]. Many services use the same data types for their
parameters, making the approach scalable. The same obser-
vation was made in the Ballista project [15] regarding the
POSIX API. In total, the three drivers targeted in this pa-
per result in injections for 22 data types being defined. An
overview is shown in Table 1. For structures (struct) the
number of cases depends on the members (marked with * in
the table). DT errors also treat pointers as special data type
and reserves one injection case for the pointer, namely set-
ting it to NULL. Wrong use of NULL-pointers is a common
programming mistake. To further illustrate how DT errors
are defined, Table 2 shows the cases for the type int.

Data type C-Type #Cases
int 7
unsigned int 5
long 7

Integers unsigned long 5
short 7
unsigned short 5
LARGE INTEGER 7

Misc * void 3
HKEY 6
struct {...} *
Strings 4

Characters char 7
unsigned char 5
wchar t 5

Boolean bool 1
Enums multiple cases #identifiers

Table 1. Overview of the data types used.

3.3. Fuzzing Error Model

Fuzzing a parameter implies assigning it a pseudo-
random value from the set of legal values for the type.

Case # New value
1 (Previous value) - 1
2 (Previous value) + 1
3 1
4 0
5 -1
6 INT MIN
7 INT MAX

Table 2. Error cases for type int.

Therefore, the result of the injection may differ across ex-
periments, resulting in the need for multiple experiments to
obtain statistically valid conclusions. A specific discussion
on the number of injections needed appears in Section 6.4.

Whereas BF and DT use the parameter values, FZ dif-
fers in that it ignors these values. FZ belongs to either the
Assignment or Checking classes in ODC. This model was
considered in [17, 19, 10].

The pseudo-random values are chosen using the
rand() C-runtime function. The last value produced in
a round is stored in persistent storage and is used as the
seed for the next round, thus ensuring that different random
values are used every time.

3.4. Other Key Contemporary Models

The work in [1, 2, 3, 8, 12, 14] explored the use of vari-
ous error models and injection techniques for OS robustness
evaluation and benchmarking. For instance, [12] compares
errors similar to the ones considered here, but injected at
different levels of the Linux kernel. In [2] a mutation error
model is used, in which the code segments of drivers are
targeted. Further, in [18] the authors observe that effects
of errors at the interface, though being useful for robust-
ness evaluation, do not represent defects in code. As we
do not inject errors at the code level we can neither verify,
nor falsify this observation. We believe that our systematic
comparison of error models, is a useful contribution to the
community as this comparative aspect at the OS-Driver in-
terface has not been treated in depth before.

The chosen models, even though not complete, still rep-
resent a large operational spectrum. [6] studies defects in
two large OSs and almost 50% of the found defects belong
to the ODC classes represented in this paper.

4. Comparative Evaluation Criteria

The chosen error models are studied based on a diverse
set of commonly used evaluation criteria, namely i) error
propagation (Diffusion), ii) error impact (failure class), iii)



implementation complexity, and iv) execution time. Each
criteria is elaborated in the following subsections.

4.1. Error Propagation Criteria (Diffusion)

In this paper, the focus of error propagation is on Driver
Error Diffusion1 [13]. Diffusion is defined as the degree to
which a driver can spread errors in the system. It allows
drivers to be compared and ranked making it possible for a
system evaluator/designer to make a judgement on where to
expend more resources in terms of testing/verification and
quality improvement.

Diffusion considers the propagation paths from a driver,
through the OS to user applications. It is the sum of the con-
ditional probabilities for an error to propagate, given that an
error exists. Diffusion is itself not a probability but a metric
of sensitivity to input errors, which can be exactly estimated
by code analysis, or approximated experimentally.

Dx =
∑
si

∑
dsx.y

PDSi
x.y (1)

In Equation 1, PDSi
x.j represents the conditional prob-

ability that errors in the driver’s use of OS services (dsx.j)
lead to failure (see also Figure 1).

Diffusion can be used to compare the suitability of
drivers for a particular system based on to their potential
for spreading errors. A higher diffusion value implies that
a driver is more liable to spread errors. However, note that
drivers are not tested per se. Consequently, we stress that
the intent is not to give absolute values for error sensitiv-
ity, but to obtain relative rankings. A detailed discussion on
diffusion and error propagation metrics is found in [13].

It is important to note that an error can propagate in the
system and still remain latent (i.e., not lead to failure) with-
out immediate detection. As the triggers for dormant faults
is not known, we take an optimistic approach and consider
a failure free run of the test applications to imply that the
likelihood of a dormant fault is very low.

4.2. Error Impact Criteria (Failure Class)

To determine and distinguish the impact of a propagated
error we use failure mode analysis. A set of four modes of
increasing severity is defined including the non-propagating
one representing normal or failure-free behavior.

Class NF: No discernible violation observed as outcome
of an experiment, i.e., No Failure class. Three distin-
guishable explanations account for an injection result-
ing in this class, namely a) the error location was not
activated in this execution; b) the error was injected, but

1We use the shorter term Diffusion in the rest of the text.

was masked by the system; or c) the fault is dormant.
Section 5.3 describes how case a) can be avoided.

Class 1: The error propagated to the benchmark appli-
cations, but still satisfied the OS service specification.
Examples of class 1 outcomes include unsuccessful at-
tempts to use services where the error code returned is
in the set of valid codes for this call. The propagation
of data errors also fall into this category.

Class 2: This failure mode captures behaviors violating
the specification of the service. It could be an un-
forseen hang or crash of the application due to the er-
ror or an incorrect error code being returned. An ap-
plication is considered hung after 40 seconds of non-
responsiveness, exceeding 100% of normal execution
time in a golden run experiment. Note that the rest of
the system is still functioning after the failure.

Class 3: The OS becomes irresponsive due to a crash or
a hang. No further progress is possible.

The failure modes give rise to a partitioning of the ex-
periment outcomes. Similar to for instance [16], when an
experiment could be placed in multiple classes, e.g., when
it first gives an application error code (class 1) and then the
system crashes (class 3) the more severe class is assigned.

4.3. Implementation Complexity Criteria

The complexity of implementing the FI campaign is a
subjective and qualitative estimation of the effort needed to
implement the three different error models. A discussion on
the implementation complexity appears in Section 7.

4.4. Experiment Execution Time Criteria

Experiment execution time significantly influences the
usability of the chosen approach. We therefore track the ex-
ecution time of all experiments. Failures requiring manual
intervention (Class 3) are assigned 200 seconds. This is the
standard timeout used by the system to detect if no progress
is made and a reboot is required. It is set to be sufficiently
large to capture any delays incurred by an error, i.e., to de-
tect that the system is hung and is not just delayed.

5. Target Setup

The conducted experiments use Windows CE .Net 4.2.
The hardware is a development board, using the Intel XS-
cale PXA255 platform, with 64 MB RAM and 32 MB ROM
(flash). The board is connected using serial and Ethernet
connections. The board also provides a Compact Flash (CF)
slot. We have used this setup as its structure is very simi-
lar to most other OSs and hardware. It is also small in size
making it easy to work with and control.



From a SW perspective, the system comprises two main
components, namely the Interceptor and the Experiment
Manager (Figure 2). The Interceptor intercepts all calls
to or from a specific driver, and can then inject errors on
request. It interacts with the Experiment Manager, receiv-
ing commands and sending the results back in form of log
messages. The Experiment Manager is responsible for set-
ting up the needed infrastructure, sending injection com-
mands to the Interceptor, transmitting log messages to the
host computer and for monitoring the outcome of the exper-
iments. The Experiment Manager starts the test applications
and monitors their behavior, receives reports of triggered as-
sertions, and passes them on as log messages. It is also re-
sponsible for restarting the machine after each experiment.

Operating System

Driver xDriver x Target
driver

Interceptor

Test
Applications

Host
Computer

Experiment
Manager

- Exp. Setup
- Exp Synch.
- Logging
- Restarting

Figure 2. Experiment setup

Information on the selected experiments to perform is
stored in a file in persistent storage (flash memory) on the
target computer. The file is created the first time the system
boots up. The injection is configured using the registry and
the Interceptor automatically generates all test cases for the
selected set of targeted services and the chosen error model.

Each experiment run (combination of error model and
driver) uses a newly built OS image. Each experiment starts
with a cold reboot where the OS image is read from ROM
into RAM, ensuring that each injection is performed using
a fresh, uncorrupted, OS image. Persistence between injec-
tions is limited to the error configuration file, and for FZ
errors to the seed to the random number generator. Logs are
stored on the host computer.

5.1. Targeted Drivers

For comparison, we target three different drivers for our
experiments. Table 3 shows the number of services targeted
and the total number of injection cases for the three targeted
error models. The number of services reported includes
both exported services, used by the OS, and imported OS
services that the driver uses.

The drivers were chosen to represent three common, yet
different, functional classes of drivers. The serial driver

(cerfio_serial) implements the common RS232 serial
interface, a well established and commonly used interface.
The Ethernet driver (91C111) represents network interface
drivers. The CF driver (atadisk) represents a different
class of interfaces altogether, namely filesystem drivers.

# Injection cases
Driver #Services BF DT FZ
cerfio serial 60 2362 397 1410
91C111 54 1722 255 1050
atadisk 47 1658 294 1035

Table 3. Overview of the target drivers.

5.2. Benchmark Applications

The benchmark applications consist of five different pro-
cesses. One application uses the driver that is currently tar-
geted, thus there are test applications testing serial and Eth-
ernet communication (with the host computer) as well as
testing multiple reads and writes to the CF card. The gen-
eral benchmark applications target a variety of general OS
services, such as process creation and synchronization, file
system operations and memory allocation/manipulation.

The applications are chosen to activate the system in a
varied manner and to drive the experiments, i.e., function
as workload for the targeted driver. For a system designer,
the set of applications to be used in the target product may
be known, and if so they should be used to drive the exper-
iments. If not, then benchmark applications form the best
choice, as they usually target many common features.

For each injection, all applications are used and their re-
sults tracked for deviations using assertions. Each applica-
tion is written specifically for testing purposes, therefore its
expected behavior is known a priori. This makes it possible
to manually track the used services and add assertions.

5.3. System Pre-Profiling

To expedite the injection process, the system is first pro-
filed to remove injections that will not lead to an error being
injected. This is achieved by first generating all injections
for a driver and then running the benchmark applications
while keeping track of which services are being used. Af-
ter successful execution of the benchmark applications, the
list of injections is reduced to include only services actually
called during profiling run. This typically reduces the num-
ber of test cases by half or more. The number of injections
greatly influences the time required to execute the exper-
iments. The more unnecessary cases identified, the more
time is saved. Thus, the most time (in absolute numbers)
is saved for the BF error model, since it requires the most
injection cases in this study.



6. Experimental Results

A range of experiments were conducted for the three
drivers. The next sections present the comparative results
for the selected criteria. Due to the nature of the error mod-
els studied, BF use a significantly larger set of injection
cases. Consequently, the time taken to perform the exper-
iments is also significantly longer. The discussions in the
following sections focus on class 3 failures, as these are rel-
evant for robustness evaluation. Appropriate references to
the other classes are clearly indicated. For FZ we report val-
ues for fifteen injections per parameter. Section 6.4 details
a discussion on the number of injections needed.

Driver BF DT FZ
cerfio serial 1.05 1.50 1.56
91C111 0.98 0.73 0.69
atadisk 1.86 0.63 0.29

Table 4. Driver Diffusion for class 3 failures.

6.1. Comparing Drivers

Driver Diffusion (as defined in Section 4.1) is used to
compare the drivers. The probability PDSi

x.j is approxi-
mated as the ratio of failures to the number of injections.
Table 4 summarizes the results showing that DT and FZ
identify the serial driver to be the most vulnerable driver
(higher Diffusion value), whereas BF pin-points atadisk
to be the most vulnerable.

Table 6 details the results for each driver and error
type. Overall the class 3 ratio is below 5%, indicating
that the OS is indeed able to handle most introduced per-
turbations. Furthermore, we conclude that the error model
does not significantly impact the ratios for the 91C111 and
cerfio_serial drivers. For class 3 failures the per-
centage of injections (last column) varies between 3.22%
and 3.97% for the serial driver and 2.35% and 4.24% for
91C111 driver. For atadisk the differences are larger,
but still within 1.26% and 3.98% with BF identifying it as
more vulnerable. The results show slight differences be-
tween the drivers as well as between the error models.

While Diffusion values in Table 4 for BF indicate
atadisk to have highest diffusion, the experimental re-
sults from Table 6 show that 91C111 has a higher ratio of
class 3 failures. This is due to Diffusion being a “sum of
probabilities”. Diffusion shows that atadisk has more
services with higher propagation probability than 91C111.

For class 2 failures there are some distinct differences
between the drivers. 91C111 and atadisk drivers have
considerably fewer class 2 failures. This is due to differ-

ences in how the drivers function, i.e., blocking vs. non-
blocking. Failed blocking services are more likely to cause
hangs of the system, i.e., class 2 failures. This suggests that
there is, as expected, a difference between the tested drivers,
which is exactly what the Diffusion metric captures. For
class 1 failures, we notice the same difference with the se-
rial driver having fewer cases due to its blocking nature.

Overall, many injections, for all drivers and all error
models, end up in the NF category, i.e., no observable devi-
ation from the expected behavior could be seen. This is in
line with several previous studies, e.g., [2], [9] and [12].
It is important to note that all cases reporting the errors
were in fact activated, since the pre-profiling eliminated the
not used services a priori. Outcomes in the NF category
are either masked by the system, for instance by not be-
ing used or overwritten; or handled by built-in error detec-
tion/correction mechanisms checking incoming parameter
values for correctness. Another explanation could be that
the fault is dormant in the system and has not yet propa-
gated to the OS-Application interface.

Execution Time
Driver Error Model hours minutes

BF 38 14
cerio serial DT 5 15

FZ 20 44
BF 17 20

91C111 DT 1 56
FZ 7 48
BF 20 51

atadisk DT 2 56
FZ 11 55

Table 5. Experiment execution times.

6.2. Execution Time

Table 5 details the execution time for each experiment
run. The BF model with the most injections, has the longest
execution time. However, the execution time also depends
on the outcome of the experiments (class 2 and 3 take longer
time as they typically require timeouts to be triggered) and
the nature of the test applications. There are also slight vari-
ations in the boot-up time of the target system. The serial
driver and the atadisk driver both take longer time when
failing, which also influences the execution time.

6.3. Comparing Error Models

Table 7 depicts services incurring class 3 failures. It
shows the number of failures for each service/error model.
BF clearly outperforms the other error models in terms of



Driver Error Model No Failure % Class 1 % Class 2 % Class 3 %
BF 1771 74.98% 209 8.85% 306 12.96% 76 3.22%

cerfio serial DT 264 66.50% 65 16.37% 53 13.35% 15 3.78%
FZ 931 66.03% 218 15.46% 205 14.54% 56 3.97%
BF 1166 67.71% 482 27.99% 1 0.06% 73 4.24%

91111C DT 181 70.98% 67 26.27% 1 0.39% 6 2.35%
FZ 670 63.81% 350 33.33% 1 0.10% 29 2.76%
BF 1246 75.15% 343 20.69% 3 0.18% 66 3.98%

atadisk DT 191 64.97% 98 33.33% 1 0.34% 4 1.36%
FZ 531 51.30 % 483 46.67% 7 0.67% 13 1.26%

Table 6. The number of experiments is shown for each driver, error model and failure class.

Service BF DT FZ
SERIAL OPEN 1 x x
CreateThread 4 1 x
DisableThreadLibraryCalls 6 x
FreeLibrary 4 1
InitializeCriticalSection 1
LoadLibraryW 2 2
LocalAlloc 2 4 x
MapPtrToProcess 2 1
memcpy 77 3 32
memset 74 3 29
MmMapIoSpace 11 9 26
NDISInitializeWrapper 1 x
NDISMSetAttributesEx 4
NDISMSynchronizeWithInterrupt 7 1 2
QueryPerformanceCounter 2
SetProcPermissions 1 1 7
wcscpy 6
wcslen 11

Table 7. Services identified by class 3 fail-
ures. “x” indicates class 2 service failures.

identifying vulnerable services, a key aspect for robustness
enhancing efforts, such as using wrappers. In order to in-
crease the identification coverage for the DT and FZ models
we have indicated in the table which services exhibit class
2 failures, which increases the coverage slightly. Still there
are four services identified only by BF. The DT model per-
forms slightly better than FZ, but in two cases FZ identifies
a service which DT does not. It is also important to note
that one service is only found by FZ.

6.4. The Number of Injections for Fuzzing

A crucial question regarding the FZ model is how many
injection cases are needed. Figure 3 shows how Diffusion
changes with increasing number of injections. The X-axis
shows the number of injection and the Y-axis shows the dif-
fusion values using x injections. Diffusion stabilizes after
roughly ten injections. We have injected fifteen cases for all
three drivers and all of these are included in Tables 3-7.
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Figure 3. Stability of Diffusion for the FZ
model wrt. the number of injections.

7. Interpretation & Discussion

Error Models & Error Severity: The first major find-
ing is that the BF model causes more severe failures than the
other models. Table 6 shows that BF finds by far the most
class 3 failures of all error models. However, the number
of injections used is also high, which comes with a cost in
terms of execution time (Table 5). Therefore, when time is
crucial, other error models may be considered. In terms of
number of injections and execution time the DT error model
performs the best, with FZ in the middle.



Comparing BF & FZ: The second major finding
found in Table 7 is that BF identifies more services hav-
ing class 3 failures than any of the other two mod-
els. FZ, on the other hand, identifies one service
(InitializeCriticalSection) that none of the
other two identified. So the question is: why are some of
the services not identified by FZ? FZ chooses a new random
value to be used in an injection, whereas the BF and DT er-
ror models modify the existing value. For services that have
some basic level of checking of incoming parameters values
which are well off the expected, as a random value is likely
to be, are easy to find. However, values that are close to the
expected value (as when only one bit is changed) are more
difficult to find, and may therefore slip through and cause
a failure of the system. This happens for instance when
targeting different types of handles (to modules, libraries,
memory areas etc.) and when targeting typical control val-
ues, such as bit-mask flags. Interestingly, FZ is traditionally
regarded as not being very effective. However, our results
are displaying its surprising effectiveness based on the num-
ber of injections used, especially when the intent is to iden-
tify drivers using the Diffusion metric.

Model Choice: Table 4 shows a difference in the re-
sult between the models. BF identifies atadisk as the
most vulnerable driver and the other models identify the se-
rial driver as most vulnerable. As described in Section 3
there are significant differences between the models. Ulti-
mately, the choice of error model is influenced by many fac-
tors. Section 8 discusses some of the trade-offs that must be
made, with respect to time, implementation complexity and
more importantly the goals of the evaluation.

Implementation Complexity/Cost: Table 5 shows that
BF and FZ are clearly more expensive in terms of execution
time compared to DT. However, a major drawback with the
DT error model is the cost for implementation. Since for ev-
ery service in the interface the type of each parameter needs
to be kept, it requires implementing support for this. BF and
FZ on the other hand do not have this requirement, making
their implementation considerably cheaper. The higher cost
for the DT model could potentially be reduced by use of
automatic parsing tools and/or reflection-capable program-
ming languages. As this cost is a one-time cost for each
driver, the cost might be acceptable if the experiments are
to be repeated in a regression testing fashion.

Experiment Time: A factor influencing the experiment
time is the degree of operator involvement. The operator is
required to specify which experiment to run and for which
driver. The time to do this is the same for all models. Some
experiments force the system into a state where it cannot
itself reboot, requiring the operator to manually reboot the
system. 21.3% of the class 3 failures result in the system
being left in a state where it cannot itself reboot. A conse-
quence is that without external reboot mechanisms the ex-

periment is delayed until the operator takes action, which
can prolong the execution time substantially. We have not
included this time in the total execution time for the exper-
iments, since we cannot make any assumption on the pres-
ence of the operator. Each manual reboot is given a generic
penalty of 200 seconds which is the timeout used to detect
a hung system which automatically restarts.

Class 2/3 & Bugs: A question one might ask after seeing
these results is whether the fact that class 2 and 3 failures
are observed indicate that the system contains bugs? The
answer is: not necessarily. It has until now been common
practice to use a “gentlemen’s agreement” between the OS
and the drivers. This is mostly due to the fact that the costs
of checking each and every call to the kernel would be too
high for most systems. So the fact that the system crashes
might not be due to a bug in the traditional sense. It is how-
ever from a robustness point of view a “vulnerability”. All
targeted drivers are deployed drivers, i.e., their producer has
tested them to some extent and they do work well in our sys-
tem when no errors are injected.

8. Developing the Composite Error Model

The results from Section 6 provides two major findings:
a) BF pinpoints the most services for class 3 failures and
b) FZ gives similar Diffusion results to BF at markedly a
lower cost, but does not find as many services. This sec-
tion explores these differences and use them to combine the
two error models into a composite error model (CM) that
identifies as many vulnerable services as BF but with fewer
injections. We focus on the class 3 failures, as these are
of highest interest when conducting robustness evaluation.
The composite model combines BF & FZ by not utilizing
the full bit space of the BF model. Thus a key step is to
identify the subset of the BF model bits to combine with
the FZ model. The following two subsections establish this
basis to result in the selected composite model (CM).

8.1. CM Setup: Bit Failure Distribution

The relative inefficiency of BF in terms of execution time
is a result of the number of injections. As noted in Section
3.1 the 32 bits available for flipping are not used uniformly.
Figure 4 indicates that there are more services only sensitive
to flips in the least significant bits than in the most signif-
icant. The bits below 10 (to the right in the figure) clearly
cause failures in more services. Figure 5 shows the cumu-
lative number of services identified, starting at bit 0 (from
right to left). The figure shows that after bit 9 only bit 31
identifies a service not previously identified. Thus, the ser-
vices having (class 3) failures for bits 10-31 also have fail-
ures for bits 0-9 (with InitializeCriticalSection



being the only exception for bit 31). Thus, focus of the in-
jections should be put on these bits.
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Figure 4. The number of services identified
by Class 3 failures by the BF model.
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Figure 5. Moving from bit 0 and upwards the
number of services increases until bit 10.

The observations made in Figures 4 and 5 allow us to
modify the BF model to use fewer injections (only bits 0-9
and 31). Using only these bits reduces the number of test
cases for BF by 62% (to 2164 in total), while still identi-
fying all services. It is important to note that these results
are system specific and the result of our experimental setup.
Further research on methods for extracting such profiles at
minimum cost is needed.

8.2. Distinguishing Control vs Data

A study of the parameters targeted for the services identi-
fied by BF, but not by FZ, reveals a prevailing trend: the pa-
rameters used are all control values, like pointers to data or
handles to files, modules, functions etc. It is reasonable that
these parameters are more sensitive to changes in the least
significant bits (LSB) than to changes in the most signifi-
cant bits (MSB). E.g., for a pointer that points to data within
the process’ memory region changes in the LSB will yield
a new pointer within the region (but to possibly non-valid
data) whereas changes of the MSB will yield a non-valid
pointer which is easily detectable on modern hardware.
Flipping a bit in the MSB is more likely to yield a non-valid
pointer than changes to the LSB, and consequently we see
a difference in the failure distribution. FZ, using random
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Figure 7. Diffusion and comparison of the
number of injections with combined BF & FZ.

32-bit values, is also less likely to produce a valid pointer.
However, since the value is random, it can also trigger fail-
ures not found by more structured injections (which is lim-
ited to changes to existing values or a small subset of special
values), as shown by the fact that only FZ identifies a class
3 failure for service InitializeCriticalSection.

8.3. Composite Model & Effectiveness

The results in the previous sections have established the
need for using multiple error models. Therefore, we rec-
ommend using both BF and FZ when resources are plenti-
ful. When not, we propose to use a composite model where
the least significant bits (together with the most significant
one) are targeted with BF, alongside a series of FZ experi-
ments. Section 6.4 established that ten FZ injections are suf-
ficient for stabilizing the Diffusion metric. It is reasonable
that more injections will increase the probability of finding
“rare” cases (such as InitializeCriticalSection)
but at the cost of increased number of injections.

A composite model, using only bits 0-9 and 31, together
with ten FZ injections, identifies the same set of class 3
vulnerable services as the full set of BF and FZ injections.
An overview of the results is shown in Figure 7. The ta-
ble presents the Diffusion results for the composite model
and it also shows how the composite model saves injection
cases compared to performing all BF and fifteen FZ cases.



The Diffusion results are very similar to those presented for
the individual error models in Table 4, identifying the serial
driver as being the most vulnerable one, followed by the
91C111 and atadisk.

Figure 6 shows the results of CM alongside the other
models, and it clearly show a similar trend as for the original
error models, with a significant portion of the experiments
ending up in the NF class. The number of injection cases is
in the same range as those for BF, but higher than that for FZ
with fifteen cases. Compared to performing both (BF & FZ)
it corresponds to performing only 48.7 % of the injections,
a significant reduction. Many other factors influences the
actual execution time of the experiments. Assuming the ex-
ecution time being proportional to the number of injections
the CM gives a saving of up to 60 hours experimentation
time for the combined BF & FZ.

9. Conclusions

This paper reports on extensive fault injection experi-
ments carried out for three commonly used error models:
bit-flip, data type and fuzzing. The results show bit-flips
as the most acute one, but with the highest implementa-
tion cost. Based on these findings a new composite error
model has been defined that compared to extensive bit-flip
and fuzzing experiments achieves a) comparable error prop-
agation results, and b) identifies the same set of vulnerable
services. This is achieved using less than half the number
of injections.

As this paper reports on experimental techniques the re-
sults must be viewed in this specific context, but we believe
that there are some general guidelines that can be applied in
the selection of the error model, namely:

• When comparing drivers on their potential to spread of
errors, or evaluating the robustness of the OS to driver
errors all three error models (and the composite) suffice
to give guidance using the Diffusion metric. The ex-
periments also validate the effectiveness of the Diffusion
metric as an initial guideline.

• Data type errors come with a higher implementation cost,
whereas bit-flips have a higher execution cost. If imple-
mentation cost (time) is a critical factor then bit-flips or
fuzzing are recommended. Fuzzing gives similar Dif-
fusion results as bit-flips with fewer injections. Thus
making it the appropriate model to use when comparing
drivers using Diffusion.

• When identifying services that may have serious failures,
bit-flips is the most efficient error model followed by data
type. However, fuzzing, being random in nature, may
find cases where other models do not.

• A new composite error model, consisting of selective
bit-flips with a series of fuzzing injections gives accu-

rate results at a moderate execution/setup cost, compared
to performing extensive bit-flip campaigns together with
fuzzing injections.
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