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ABSTRACT
The reuse of software components is a common practice in
commercial applications and increasingly appearing in safety
critical systems as driven also by cost considerations. This
practice puts dependability at risk, as differing operating
conditions in different reuse scenarios may expose residual
software faults in the components. Consequently, software
fault injection techniques are used to assess how residual
faults of reused software components may affect the system,
and to identify appropriate counter-measures.
As fault injection in components’ code suffers from a num-

ber of practical disadvantages, it is often replaced by error
injection at the component interface level. However, it is
still an open issue, whether such injected errors are actu-
ally representative of the effects of residual faults. To this
end, we propose a method for analyzing how software faults
turn into interface errors, with the ultimate aim of support-
ing more representative interface error injection experiments.
Our analysis in the context of widely used software libraries
reveals that existing interface error models are not suitable
for emulating software faults, and provides useful insights for
improving the representativeness of interface error injection.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Fault tolerance; D.2.5
[Testing and Debugging]: Error handling and recovery

General Terms
Reliability, Verification, Performance
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Assessment, Software Faults/Errors, FMECA, Off-The-Shelf
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1. INTRODUCTION
The reuse of legacy or off-the-shelf software components

plays a key role in the development of software systems. Un-
fortunately, component-based software development imposes
significant risks for dependability [14, 41, 43]: When a com-
ponent is reused in a new context, the system may use parts
of the component that were previously seldom used and only
lightly tested, or may interact with the component in un-
foreseen ways, thus exposing residual software faults in the
component that had not been discovered before.
Software fault injection (SFI) is a valuable and advocated

approach to assess the dependability of component-based
systems in the presence of faulty software components, by de-
liberately introducing faults in its components1 [10,13,16,41].
SFI enables several strategies for the dependability assess-
ment of complex and component-based software, including:

• Validating fault-tolerance mechanisms: SFI can
evaluate error detection and handling mechanisms (such
as assertions and exception handlers) against compo-
nent faults, and to improve such mechanisms if neces-
sary (e.g., by introducing error checks) [2, 24,32].

• Aiding FMECAs (Failure Mode, Effects, and
Criticality Analysis): Developers can quantify the
impact of a faulty component on the overall system
(e.g., in terms of catastrophic system failures), and mit-
igate risks by comprehensively testing the most critical
components and revising the system design [16,29,42].

• Dependability benchmarking: SFI helps develop-
ers to choose among alternative systems or components
the one that provides the best dependability and/or
performance in the presence of other, faulty, compo-
nents [22].

Despite the extensive development of various approaches,
SFI remains a complex process, and technical limitations af-
fect the feasibility and the quality of SFI experiments. A
well-known approach is to introduce small code changes in
the target component through code mutations (CM) [13, 30,
32], in a similar way to mutation testing but with different
goals and approaches [20, 30]. This approach is able to em-
ulate software faults in a representative way, i.e., the errors
1According to the definitions of [3], a fault is a software de-
fect, and an error is an incorrect state caused by a fault.



generated by injected faults match the effects of real resid-
ual software faults in a component, as proved in [1, 11]. In
turn, fault representativeness is a requirement for a trust-
worthy assessment of dependability properties, as discussed
in Section 2 and in [26, 30]. Unfortunately, the mutation of
components’ code requires either the availability of source
code for the target component, which may be impossible to
obtain in the case of proprietary third-party components, or
the ability to mutate the binary code. The latter has proven
very difficult: In some cases it is impossible to correctly rec-
ognize and mutate high-level programming constructs in bi-
nary code [9]. Another issue with CM is efficiency, in terms
of number of experiments that actually exhibit a component
error, since injected faults may be difficult to activate and
not produce any perceived error during the experiments [7].
Interface error injection (IEI) is an alternative SFI ap-

proach that overcomes these limitations of CM. IEI mimics
the effects (i.e., errors) produced by faults in a component,
by injecting exceptional or invalid values at the component’s
interface [15,27,44]. IEI is a practical and popular approach
since it does not change the code of components, and as-
sures the efficiency of experiments by definition since every
injection produces an error. IEI approaches include:

• The injection of incorrect return values provided by
external library functions, using the FST [15] and LFI
[27] tools, to assess the effectiveness of error handling
mechanisms of UNIX and Windows applications;

• The injection of incorrect system call parameters using
pre-defined invalid data values, such as NULL pointers
and out-of-bounds values with the BALLISTA tool [24],
and random “flipping” of individual bits or bytes of
parameters using the MAFALDA tool [2], to assess OSs
against faulty user applications and device drivers [44];

• The injection of incorrect service invocation parameters
with pre-defined invalid inputs, to assess SOA systems
against faulty and malicious users [25];

• The random corruption of data words by bit-flipping
heap, global, and stack areas, using the FIAT [4] and
FERRARI [21] tools, to assess the effectiveness of error
detection mechanisms within a program.

The representativeness of interface errors is less of an is-
sue for traditional testing, where invalid values are useful at
exposing inputs that lead to software failures. Nevertheless,
the use of IEI for the representative emulation of compo-
nent faults (as required by dependability assessment strate-
gies [22,29,41]) is questionable, as there is a lack of evidence
that IEI can realistically emulate software faults.

Paper Contributions. This work aims at analyzing how
software faults in components’ code result in errors at com-
ponents’ interfaces, in order to provide some constructive
evidence towards more representative IEI techniques. Our
paper makes the following contributions:

1. Amethod for analyzing error propagation at the
interfaces of software components. Our method
identifies how faults in software components manifest
as interface errors. The method first injects faults in
the software component under analysis by performing
code mutations using a set of representative fault types
that are based on field failure data on real faults from

deployed software systems [7,13]. Then, it instruments
and executes the software component and identifies the
effects of injected faults on the program that uses the
component, including the corruption of data structures
shared between the program and the component and
erroneous return values from function calls. We have
implemented a tool to perform the analysis in a fully
automated manner.

2. Experimental identification of representative er-
rors. We experimentally analyze interface error prop-
agation for a set of three software components, dis-
tributed as libraries and widely adopted in real-world
software applications. The analysis provides useful in-
sights for injecting representative interface errors.

Paper Results. The key findings of the analysis are:

• Faults within components corrupt larger amounts of
data than what is usually assumed by previous IEI
techniques [44]. This suggests that the corruption of
individual bits or bytes in interface parameter values
cannot be considered representative of software faults.

• Erroneous return values from component invocations
are accompanied by heap/stack data corruption: In al-
most all cases, when an error code is returned, data
corruption also occurs. Therefore, both erroneous re-
turn values and data corruptions should be injected at
the same time to achieve representativeness.

• Corrupted memory areas are correlated with the amount
of memory accesses performed on that area: The more
frequently the library accesses to a byte, the more likely
that the byte will be corrupted by library faults.

• A considerable number of CMs do not produce any no-
ticeable effect on the experiment, thus demonstrating
the aforementioned efficiency issue with CM.

2. RELATED WORK
The representativeness of faults is a key property for the

quantitative assessment of dependability properties through
fault injection. In [33], Ng and Chen designed a write-back
file cache with the requirement to be as reliable as a write-
through file cache. To validate this requirement, software
faults are injected in the OS to estimate the probability of
data loss. Using fault injection experiments, the authors
identified weak points of their file cache and iteratively im-
proved its design until its reliability was comparable to a
write-through cache. In [5], fault injection was adopted to
evaluate whether the PostgreSQL DBMS exhibits fail-stop
behavior in the presence of software faults, and to measure
its fault detection latency. The study found that the trans-
action mechanism is effective at preventing fail-stop viola-
tions, reducing them from 7% to 2%. Kao et al. [23] per-
formed a Markov reward analysis, based on fault injection
experiments, to quantify the expected impact of faults on
performance and availability. Tang and Hetch [39] proposed
an approach for accelerating the probabilistic evaluation of
high-reliability systems (e.g., with a failure rate in the order
of 10−6) that adopts fault injection to force the occurrence of
rare events. In [42], Voas et al. inject errors within a program
to identify where to place assertions and to avoid error prop-
agation. The accuracy of these measures and the confidence



on fault tolerance mechanisms is based on the assumption
that the injected faults are representative of real software
faults. In [40], Vieira and Madeira proposed a dependability
benchmark to evaluate different DBMS configurations with
respect to operator and software faults in order to aid sys-
tem administrators; in this case, a representative set of faults
is required to make systems comparable and to identify the
best configuration.
The representativeness of error injection techniques with

respect to software faults was investigated in many studies.
In order to accelerate the consequences of software fault in-
jection experiments through error injection, Christmansson
and Chillarege [7] proposed a methodology to derive a set of
representative errors that match the effects of residual soft-
ware faults of a system, by analyzing failure data at the users’
site. They proposed to inject errors through bit-flipping,
which corrupts program data at run-time by changing the
contents of individual bits or bytes on heap, global, and stack
areas, and mechanisms that were originally developed for em-
ulating the effects of hardware faults [4,21]. The error types
were derived as the immediate effect of fault activations on
internal program data and classified according to the type of
data corrupted by the fault (e.g., corruption of address vs.
data words). Christmansson et al. [8] observed the benefits
of such error injections over fault injections for evaluating the
fault-tolerance of an embedded real-time system in terms of
experiment setup and execution time. Their experimental
analysis also showed that the lack of error representativeness
has a noticeable impact on experimental results.
It must be noted that the approach of [7] can emulate the

effects of software faults only to a limited extent, as Madeira
et al. [26] showed that bit-flipping is not suitable for mim-
icking faults that involve several statements and complex
data structures. Instead, Daran and Thévenod-Fosse [11]
showed that code mutations are effective at emulating soft-
ware faults, by observing an overlap of the error propaga-
tion of 12 known real faults and 24 mutations in a small
safety-critical program. Nevertheless, their analysis focused
on internal errors rather than interface errors.
As we are interested in how faulty components can affect

other components, our focus is on error manifestations at
component interfaces, rather than immediate effects on in-
ternal data of the targeted component as in [7, 11]. Moraes
et al. [28] and Jarboui et al. [19] investigated the represen-
tativeness of error injections at component interfaces, by
comparing the failure distributions obtained from IEI and
from CM, respectively. From a series of comparative exper-
iments between fault injection based on representative code
changes [13] and data-type-based interface errors commonly
adopted in robustness testing (encompassing parameter cor-
ruptions through bit-flipping, boundary values such as −231,
and invalid values such as NULL pointers [24,44]), they con-
cluded that IEI and CM produce failures.
A limitation of previous analyses on error propagation

[11,19,28] was that they were manually performed on a very
small number of faults and on single programs, due to the
lack of an automated tool for analyzing interface error propa-
gation. Our study thus proposes an automated approach able
to analyze arbitrary memory corruptions of component inter-
face data, focusing on data exchanged via inter-component
interfaces. Unlike previous tools for error propagation anal-
ysis by Kao et al. [23] and by Chandra and Chen [5], our
method is able to precisely distinguish between the corrup-
tion of internal component data and of interface data.
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Figure 1: Relationship between component faults
and interface errors.

3. PROPAGATION OF ERRORS AT COM-
PONENT INTERFACES

Our experimental analysis aims at identifying how software
faults in a software component turn into interface errors that
affect other components and the system as a whole. Figure 1
depicts the relationship between faults and errors: When
a component service of the target component is requested
through the component interface (e.g., through an API func-
tion call) by a user component, the target processes input
data from the user, and provides results, by manipulating in-
terface parameters provided by and returned to the user (e.g.,
data structures exchanged through input/output parameters
and through the return value of a function invocation). Dur-
ing the execution of a component service, the activation of
residual software faults in the component results in an in-
ternal error (e.g., corruption of internal data). When the
component service terminates, the interface parameters ex-
changed between the target and the user components can be
corrupted as an effect of such internal errors, thus producing
interface errors. In such cases, we say that errors propagate
from the target component to other components.
We consider software components in the form of libraries

(i.e., collections of functions and classes) linked to a C/C++
main program at compile- or at run-time, as these languages
are predominant in safety-critical control systems and sys-
tems software. However, the general approach applies for any
type of software composition where components exchange
data through shared data structures. Fig. 2 to 5 show the
resulting error propagation paths for data errors in the case
of library functions invoked from a (main) program.
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struct test { !
    int val; !
    ... !
}; !
!
struct test * library_function() { !
    ... !
!
    struct test * p = new struct test; !
!
    p->val = 123; !
!
    ... !
!
    return p; !
} !
!
!
int main() { !
    ... !
!
    p = library_function(); !
!
    ... !
} !
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1 2 

Library data and code 

Program data and code 
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111 !

struct 
test !

Figure 2: Propagation through a library-allocated
heap area.



The first scenario (Figure 2) consists in the corruption of a
data structure that is dynamically allocated on the heap by
the library (À), where the corrupted data structure survives
the component invocation (Á) and is returned to the main
program through a pointer return value (either on the stack
or in a register, depending on calling conventions), which
represents an erroneous interface parameter.
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struct test { !
    int val; !
    ... !
}; !
!
void library_function!
        (struct test * p) { !
    ... !
!
    p->val = 123; !
!
    ... !
} !
!
int main() { !
    ... !
!
    struct test * p = new struct test; !
!
    library_function(p); !
!
    ...!
} !
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Figure 3: Propagation through a user-allocated heap
area.

Figure 3 depicts a similar case, in which a data structure
is allocated by the main program (À), passed to the library
through a pointer interface parameter, and corrupted during
the library invocation (Á). The erroneous value represents
an interface error, as it propagates to the main program by
affecting an input-output interface parameter of the library.
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struct test { !
    char * string; !
    ... !
}; !
!
void library_function!
        (struct test * p) { !
    ... !
!
    p->string = new char[20]; !
!
    strcpy(p->string, “hello”); !
!
    ... !
} !
!
int main() { !
    ... !
!
    struct test * p = new struct test; !
!
    library_function(p); !
!
    ...!
} !
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Figure 4: Propagation through a library-allocated
heap area, reached through a user-allocated heap
area.

Even if interface parameters are not directly corrupted, er-
ror propagation can still indirectly affect the main program
by corrupting data that is pointed to by an interface param-
eter, such as in the case of complex data structures like trees
and linked lists. This is the case in Figure 4, where a user-
allocated data structure (À) is linked to a library-allocated
string (Á and Â) that can get corrupted. A corruption of the
linked string can be considered an interface error, as this area
is reachable by the main program. This applies in general

to any memory area reachable from an interface parameter
through an arbitrary number of pointers.
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void library_function!
        (int vector[], int size) { !
!
    ... !
!
    vector[3] = 123; !
!
    ... !
} !
!
!
int main() { !
    ... !
!
    int vector [10]; !
!
    library_function(vector, 10); !
!
    ...!
} !
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111 !

Figure 5: Propagation through a user-allocated local
variable.

Finally, error propagation is not limited to heap areas, as
in the case of Figure 5, in which an array is allocated as
a local variable by the main program (À), a pointer to the
array is passed to the library through an interface parameter,
and the array’s contents gets corrupted by the library (Á). It
is important to note that we are not analyzing internal errors
that are not visible to the main program (i.e., memory areas
not reachable outside the component). This is the case, for
instance, of local variables allocated by the library, and of
heap memory areas not reachable (neither directly through
interface parameters, nor indirectly) by the main program.

4. PROPAGATION ANALYSIS
The proposed method enables the automated analysis of

errors occurring at the interfaces of C/C++ software com-
ponents, according to the workflow of Figure 6. First, the
library is linked to a main program (which represents the
workload of the experiment) and executed, collecting infor-
mation about (i) memory stores made by the library, (ii) dy-
namic memory allocations of both library and main program,
and (iii) library invocations performed by the program dur-
ing the execution. The raw execution trace is pre-processed,
in order to identify library memory stores that affect memory
areas actually visible to the main program (such as the cases
considered in Figure 2 to 5). The same steps are performed a
second time, with a software fault deliberately injected into
the library. Due to the injected fault, the library can generate
different memory stores to interface parameter data, which
leads to interface errors. To identify such interface errors,
we compare the two execution traces and point out differ-
ences in terms of memory stores that write incorrect data
(i.e., values differing from the fault-free execution), memory
stores omitted by the faulty library, and superfluous memory
stores that are only performed in the faulty execution.
To trace memory accesses performed by the target library,

we perform a dynamic binary instrumentation (DBI) of the
executable program [31]. In general, DBI techniques instru-
ment a program during its execution by adding analysis code
that collects data about the state of the execution. Uses of
DBI range from simple analyses, such as profiling of function
calls and code coverage, to more complex analyses, such as
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Figure 6: Overview of error propagation analysis.

undefinedness of program variables. In particular, we adopt
the disassemble-and-resynthesise DBI approach [31], which
translates the original program (native code) into an inter-
mediate representation (IR), instruments the IR, and trans-
lates the IR back to native code, which is then executed
on the native system. The IR code consists of architecture-
independent, RISC-like instructions that perform individual
operations such as memory stores (in contrast to a native
CISC-like code instruction, such as x86 instructions, that
can have several side effects). DBI takes advantage of con-
ventional compiler optimizations, such as code caching, in
order to accelerate the process of instrumentation. Anal-
ysis code is mixed with the original IR code to obtain an
instrumented IR code: for instance, to track memory modi-
fications, the DBI can add one or more IR instructions after
each IR store instruction, to record the accessed address and
the value written to that address. This approach allows to
analyze memory accesses made by a program at a fine grain,
which is the objective of the analysis of this study.
We developed a DBI analysis tool for tracing library code

on top of the Valgrind program analysis framework [31]. Our
tool inserts the following analysis code at run-time:

• After each instruction, we insert code to check the in-
struction address to detect whether the control flow
moved from the main program to the code of the tar-
get library (i.e., the program enters in library context).
In a similar way, we check whether the control flow re-
turns from the library to the main program. We record
the name of the invoked library function (which is ob-
tained from the symbol table included in the library),
and the return value of the library invocation.

• When library context is entered, we record the current
value of the stack register, which marks the end of the
stack frame of the main program (containing local vari-
ables of the main program) and the beginning of the
stack frame of the library (containing local variables
of the library). While the execution is in library con-
text, we record changes to the stack register, in order
to trace the growth of the library stack frame and, ulti-
mately, to identify writes to local variables of the main
program (which are stored on the stack) and to discard
writes to local variables allocated by the library.

• While in library context, after each IR store instruc-
tion, we insert code for recording the address of the
instruction that writes to memory, the address and the
size of the area being written, and the new contents of
the memory area. The DBI tool records memory ac-
cesses to heap and global data (e.g., Figures 2 to 4),
and to data in the stack frame of the main program
(e.g., Figure 5).

Moreover, the tool wraps and intercepts the invocation of
the following functions of the C library:

• Invocations of mmap(), which is invoked at run-time by
the loader to link a shared library to the address space
of the process: We record the addresses of memory
areas in which library code and data are mapped.

• Invocations of memory allocation functions (e.g., new,
malloc()), both in library context and in the main
program: We record the address and the size of each
allocated and freed memory area, and the code location
that allocated that memory area. This information is
used later in the analysis for identifying memory areas
reachable by the main program.

As a result, the execution trace obtained from the DBI tool
provides (i) all invocations of and returns from library func-
tions (lib_invocation and lib_return events), and their
return value, (ii) all memory writes made by the library out-
side its local variables (store events), and (iii) all memory
allocations and deallocations (allocation and free events).
The trace is then processed (Figure 6) to identify memory

stores that write data accessible by the main program, that
is, interface parameter data. These data are identified by
building a graph, where nodes represent memory areas (i.e.,
a range of contiguous memory addresses, such as an array
of bytes allocated on the heap), and edges represent pointer-
pointee relationship between memory areas (i.e., a memory
area contains a pointer variable, pointing to another memory
area). A memory area is reachable by a program using the
library if there is a path in the graph between that memory
area and any variable of the user program, i.e., a variable
in the user heap (represented by the UH node), in the user
stack (US node) or an output value from the library function
call (O node). Figure 7 shows an example.

UH 
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O 

struct test { char * s; }; !
!
int main() { !
!

   int v [10]; !
   struct test * p = new struct test; !
!
   char * c = library_function(p, v); !
} !
!
char * library_function!
          (struct test * p, int v[]) { !
!

   char * tmp = new char[3]; !
   delete [] tmp; !
!
   p->s = new char[20]; !
!
   return new char[5]; !
} !

struct 
test 

char 
[20] 

int 
[10] 

char 
[5] 

user- 
allocated 

areas 

library- 
allocated 

areas 

Figure 7: Example of reachability graph.

Figure 8 provides the detailed algorithm for building and
analyzing the graph. The trace is analyzed in three passes.
Each pass processes events of the trace in sequential order,
by invoking for each event a function according to the type
of event (e.g., when a store event is encountered while scan-
ning the trace, it is processed by invoking handle_store).
Pass 1. This pass (Fig. 8a) identifies heap memory areas

that are allocated and de-allocated within the same library
invocation (i.e., “temporary” memory areas used during an
individual library invocation, such as “tmp” in Figure 7),
and removes them from the analysis (Fig. 8a, line 20), since
these areas cannot be accessed by the user program (they
do not “survive” a library invocation). The remaining heap
areas can still potentially be accessed by the main program.



1: Allocs← LibraryGlobalAreas
2: AllocsLib← ∅

3: function handle_lib_invocation
4: library_context← 1
5: end function

6: function handle_lib_return
7: library_context← 0
8: Allocs← Allocs ∪ AllocsLib
9: AllocsLib← ∅
10: end function

11: function handle_allocation(new_alloc)
12: if library_context = 1 then
13: AllocsLib← AllocsLib ∪ {new_alloc} . library allocation
14: else
15: Allocs← Allocs ∪ {new_alloc} . user allocation
16: end if
17: end function

18: function handle_free(alloc)
19: if library_context = 1 then
20: AllocsLib← AllocsLib \ {alloc}
21: end if
22: end function

(a) Pass 1: Collection of memory allocations.

1: E ← get_library_allocated_areas(Allocs) ∪ {UH,US,O}
2: V ← ∅

3: function handle_store(store)
4: pointed_area← IntervalSearch(Allocs, store.value)

5: if pointed_area 6= ∅ ∧ (is_lib_heap_area(pointed_area) ∨
is_lib_global_area(pointed_area)) then

6: accessed_area← IntervalSearch(Allocs, store.address)
7: if accessed_area 6= ∅ then
8: if is_user_heap_area(accessed_area) then
9: V ← V ∪ (pointed_area, UH)
10: else
11: V ← V ∪ (pointed_area, accessed_area)
12: end if
13: else if is_user_stack_data(store.address) then
14: V ← V ∪ (pointed_area, US)
15: end if
16: end if
17: end function

18: function handle_lib_return(returned_value)
19: pointed_area← IntervalSearch(Allocs, returned_value)
20: if pointed_area 6= ∅ then
21: V ← V ∪ (pointed_area,O)
22: end if
23: end function

(b) Pass 2: Generation of the reachability graph.

1: Trace← ∅

2: function handle_store(store)
3: area← IntervalSearch(Allocs, store.address)
4: address← store.address
5: if is_lib_heap_area(area)∨is_lib_global_area(area) then
6: if is_reachable_by_user(V,E, address) then
7: Trace← Trace ∪ {store}
8: end if
9: else if is_user_heap_area(area) ∨

is_user_stack_data(address) then
10: Trace← Trace ∪ {store}
11: end if
12: end function

(c) Pass 3: Event filtering.

Figure 8: Trace pre-processing.

The address ranges [start, end) of remaining heap areas are
arranged in an interval tree, the Allocs set (Fig.8a, line 8),

which is a data structure that allows to search for ranges
containing a given value: We use this feature in subsequent
passes to find, for a given address in the trace, the heap area
to which that address belongs. Address ranges of global data
structures of the library (obtained from the library symbol
table) are also inserted in the interval tree at the beginning
of the pass (Fig. 8a, line 1).
Pass 2. This pass (Fig. 8b) constructs a directed graph

(E, V ) representing pointer-pointee relationships between li-
brary-allocated memory areas, and between these areas and
memory areas of the user program. Node A of the graph (rep-
resenting a memory area A) is connected to node B if the area
A contains a pointer with an address to the memory area B
(i.e., B is “reachable” by A). The graph includes a node for
each library-allocated memory area. Moreover, we introduce
in the graph the UH, US, and O nodes (Fig. 8b, line 1): if
a node A is connected to any of these nodes, then the mem-
ory area A is directly reachable through user-allocated heap
memory, user stack memory, or an output value of a function
call, respectively. To identify pointer-pointee relationships,
we check the value written by store operations (store.value)
and see whether that value represents an address within one
of the memory areas in Allocs: if this is the case, then the
written value represents a pointer, and the two areas (i.e.,
the one containing the pointer, and the one with the pointed
address) are connected in the graph (Fig. 8b, line 11). If a
library-allocated heap/global area is pointed to by user heap
areas, the user stack, or values returned by library invoca-
tions, that library-allocated area is connected to UH, US,
or O, respectively (Fig. 8b, lines 9, 14, 21). This pass uses
an interval tree search in Allocs (Fig. 8b, line 4) to identify
pointers and the areas they point to.
Pass 3. It identifies memory stores to areas that are reach-

able by the main program (Fig. 8c). If the address of the store
(store.address) belongs to a library-allocated area, the algo-
rithm inspects the graph using the is_reachable_by_user
function (Fig. 8c, line 6) to find whether the area is reach-
able outside the library, and only adds the store to the final
trace if there exists a path in the graph between the memory
area and one of the US, UH, or O nodes (i.e., the area is
reachable by the user). Stores on user-allocated memory are
also included in the trace (Fig. 8c, line 10).
After the execution of an experiment and of pre-processing,

we obtain a trace consisting of a sequence of tuples, each rep-
resenting a memory store performed by the library on user-
reachable memory. A tuple is defined as: <instruction ad-
dress, memory address, store size, stored value>. A “faulty”
execution trace is then compared with a “fault-free” execu-
tion trace. Given that execution traces are always identical
when the target software is executed without faults (effects of
non-determinism must be factored out, as discussed below),
any differences between the faulty and the fault-free traces
are actually due to injected faults. Traces are compared by
searching for the longest common subsequences, using the al-
gorithm described in [18]: it aligns two sequences such that
two tuples at the same position in the aligned sequences
will have the same values, by comparing, respectively, the
instruction, the address, the size and the value of memory
stores. In the example of Figure 9, the first and the third
stores of both sequences are aligned; the stores at the sec-
ond position are performed by the same instruction on the
same memory area (a heap area allocated at buf.c:158 ), but



Instruction  Address            Size  Value                    Instruction  Address            Size  Value !
!
buf.c:613,   HEAP-buf.c:158+20, 8,    0000000000000004         buf.c:613,   HEAP-buf.c:158+20, 8,    0000000000000004 !
buf.c:614,   HEAP-buf.c:158+c,  4,    00002002            |    buf.c:614,   HEAP-buf.c:158+c,  4,    00004004 !
buf.c:614,   HEAP-buf.c:158+8,  4,    00000004                 buf.c:614,   HEAP-buf.c:158+8,  4,    00000004 !
buf.c:616,   HEAP-buf.c:171+4,  1,    00                  > ! missing store !

Fault-free trace Faulty trace 

Figure 9: Example of comparison between faulty and fault-free traces.

a wrong value is written in the faulty execution; the fourth
store is only performed in the fault-free execution, while it is
omitted in the faulty one. In this example, 4 bytes are cor-
rupted by writing a wrong value at the second position, and
another byte is corrupted since its initialization is omitted at
the fourth position. We also detect corruptions due to spu-
rious stores not performed in the fault-free execution. In a
similar way, we compare return values of library invocations.
When comparing faulty and fault-free traces, we focus on

memory stores and return values produced by the first library
function invocation that exhibits differences from fault-free
executions. The differences exhibited by subsequent invo-
cations of library functions need to be discarded since they
may not be due to the injected fault, but due to an incorrect
behavior of the main program caused by the first “faulty”
library invocation. Focusing on the first faulty library invo-
cation is more precise and avoids confusion between effects.
Our approach is able to catch interface errors produced both
by the injected library function, and by library functions that
are indirectly impacted by the injected one.
Another important aspect that we needed to take into ac-

count in the design of our DBI technique is the degree of
non-determinism in execution traces. The comparison of
traces in faulty and fault-free conditions (as depicted in Fig-
ure 6) requires that differences between traces are actually
due to faults, and not due to random variations caused by
non-determinism. In our experimental setup, we took into
account the following sources of non-determinism:
Memory management. A dynamically-allocated mem-

ory area can be mapped at different addresses in different
executions. To enable the comparison of store operations
performed on the same heap area, we rewrite memory ad-
dresses in the trace by replacing absolute addresses of heap
memory areas with relative addresses within that area. Rel-
ative addresses are composed by a pair <area id, offset>
(e.g., Figure 9); the offset represents the distance between
the beginning of the heap area and the address being rewrit-
ten, and the area id is a number that uniquely identifies the
allocation, which is computed from the code location where
the area was allocated, the call stack at the time of alloca-
tion, and an incrementing integer. This allows to identify
two identical stores (i.e., stores performed by the same in-
struction, on same heap area, and with the same value) even
if the heap area is mapped at different addresses. In a similar
way, the trace is rewritten to replace addresses belonging to
global areas with relative addresses.
Thread scheduling. The program execution flow and,

therefore, the sequence of stores performed during the exe-
cution, can vary among executions due to thread scheduling.
Recording and replay techniques can be adopted to mitigate
this source of non-determinism [35, 38]: the reference execu-
tion (i.e., the execution without faults) can be recorded, and
then replayed while executing the faulty version of the tar-
get software. Since the current implementation of our DBI
tool does not support deterministic recording and replay, in

the experiments of this work we focus on single-threaded
workloads, and plan to extend the analysis to multi-threaded
workloads in future. Previous studies on recording and re-
play for DBI [35,38] (unfortunately not supported by the Val-
grind framework at the time of writing) makes us confident
that the approach is applicable to multi-thread software.
I/O operations. Similarly to thread scheduling, the tim-

ing and the contents of I/O operations can affect the exe-
cution flow and the sequence of stores of a program. Non-
determinism due to I/O timing can be avoided if the effects
of thread scheduling are avoided, either through recording
and replay or by focusing on single-threaded applications:
In the case of recording and replay, the deterministic thread
scheduling makes the execution tolerant to variations in the
timing of I/O operations; in the case of single-threaded appli-
cations, the execution is insensitive to I/O timing. Moreover,
we avoid non-determinism of I/O contents by executing our
target applications in a controlled experimental environment,
in which the target is fed with the same I/O data (e.g., the
same input files) at each execution.
Random number generators. The use of (pseudo) ran-

dom numbers in a program can lead to random values being
written to memory and to variations of the execution flow.
We avoid the effects of random numbers by wrapping ran-
dom number generators, such as rand_r, and forcing them
to return the same sequence of numbers at each execution.

5. COMPONENT FAULT INJECTION
To inject software faults in library code, we use the ap-

proach and the automated tool (SAFE) described in [10,30].
The tool injects a set of representative fault types (Table 1),
which were defined on the basis of field data on real soft-
ware faults found in deployed software systems, both com-
mercial and open-source [7,13]. The SAFE tool injects these
fault types by mutating the source code instead of the binary
code, which assures a high degree of accuracy of fault injec-
tion experiments [9]. The tool automatically identifies code
locations in which faults can be injected, and code changes
for realistically emulating the fault types of Table 1. Each
injected fault produces a distinct faulty version of the target
library code (Figure 10), which replaces the original code.

if(a && b) !
{ !
  c=1; !
} !

C/C++ 
frontend 

... !

Faulty C/C++ 
Source Files 

Fault 
Injector 

if(a && b) !
{ !
  c=1; !
} !

if(a && b) !
{ !
  c=1; !
} !

if(a && b) !
{ !
  c=2; !
} !

Fault types 
definition 

Target C/C++ 
Source Files 

+	  
÷	   2	  

6	   3	  

Abstract 
Syntax Tree 

Figure 10: Software Fault Injection approach [10,30].

The representativeness of injected faults is an important
requirement for obtaining a realistic profile of interface errors



Table 1: Fault types adopted in this study [13].
Type ODC Description

MFC ALG Missing function call

MIA CHK Missing IF construct around statements

MIEB ALG Missing IF construct plus statements plus ELSE
before statements

MIFS ALG Missing IF construct plus statements

MLC CHK Missing AND / OR clause in expression used as
branch condition

MLPA ALG Missing small and localized part of algorithm

MVAE ASG Missing variable assignment using an expression

MVAV ASG Missing variable assignment using a value

MVIV ASG Missing variable initialization using a value

WAEP INT Wrong arithmetic expression used in parameter
of function call

WPFV INT Wrong variable used in parameter of function call

WVAV ASG Wrong value assigned to variable

generated by software faults. Compared to the mutation op-
erators proposed in the literature for the C language, the
considered fault types are more selective and only encom-
pass faults most frequently found in the field (12 fault types
against 71 mutation operators proposed in mutation testing
studies [20]). This reflects the fact that mutation operators
inject many kinds of faults that can occur before and during
coding and are used to assess the thoroughness of test cases,
while the fault types of Table 1 represent faults that tend
to escape the whole development process (including testing),
and are not designed for improving test suites but assess-
ing fault tolerance properties. These fault types also provide
several detailed rules (“constraints”), not shown for brevity,
describing the code context in which fault types should be in-
jected to be representative of field faults [13]. For instance,
the removal of an if construct is injected in those if con-
structs that enclose at most 5 statements, since it is unlikely
that an if construct is lacking for larger groups of state-
ments. Moreover, the proportions of injected faults follow
the distribution of fault types in the field [13]. Fault types
are grouped in 4 classes, according to the Orthogonal De-
fect Classification (ODC) [6]: Assignment (ASG), Algorithm
(ALG), Checking (CHK), and Interface (INT).

6. EXPERIMENTAL ANALYSIS
We performed a set of experiments using the proposed

approach for interface error propagation analysis, in order
to understand how software faults inside widely-adopted li-
braries surface as errors at their interfaces. Our analysis
aims at answering the following research questions: Can the
interface errors injected by existing tools be considered repre-
sentative? How we can improve these tools to achieve better
representativeness? Therefore, we analyze interface errors in
terms of amount and distribution of corrupted bytes and of
erroneous return values, and compare them with the types
of errors injected by existing IEI tools (see Section 1).

6.1 Setup
We analyzed the interface errors generated by bugs in three

real-world software libraries (Table 2). These libraries are
complex software projects on their own, and define a set of
APIs and interface data structures to be used by external

applications. SQLite (v3.7.16.2) is an SQL database engine
that implements most of the SQL-92 language, provides ad-
vanced features such as ACID transactions, and has been
adopted in many well-known proprietary and open-source
projects [17]. Libxml2 (v2.9.0) is a library for parsing and
generating XML documents according to W3C standards;
besides several popular open-source projects, we found that
it is also adopted in a mission-critical middleware for con-
figuring and deploying CORBA services in air traffic control
systems [34]. Libbzip2 (v1.0.6) implements a compression al-
gorithm that is used in many systems for its ability to achieve
high compression rates with good performance [36].
As workload of the experiments, we adopted tests and

demo programs that are distributed with each library. These
programs are linked to the target libraries and exercise its
functions using pre-defined inputs. We injected faults in
library code exercised by the workload. For Libbzip2, the
workload compresses and decompresses a set of sample files,
covering 72.9% of library code. For SQLite, the workload is
a set of SQL queries that create a database and update and
retrieve data from it, and for Libxml2 the workload parses
a set of XML files with several types of tags, and serializes
XML files to the disk. Given the large size and complex-
ity of these two projects (they are complete implementations
of the SQL and XML languages), we focused experiments
on the most important functionalities, covering respectively
32.0% and 19.0% of the code; we discarded experimental,
secondary or deprecated functionalities. Experiments were
executed on a Fedora Linux x86-64 PC.

Table 2: Libraries analyzed in this study.

Name Description Size (loc) Faults

Libxml2 XML C parser and toolkit 155k 1471

Libbzip2 Lossless data compressor 6k 463

SQLite Transactional SQL database engine 78k 1023

6.2 Results
In our fault injection experiments, faults led to the follow-

ing outcomes:

• Crash: the experiment is terminated by the OS due to
an exception (e.g., due to an invalid memory access).

• Hang: the experiment is stalled, i.e., it does not termi-
nate within a given amount of time (much larger than
the duration of a fault-free execution).

• Wrong: the experiment produces an incorrect output,
i.e., different from the output in fault-free conditions.

• Pass, corrupted: the experiment produces a correct
output; interface errors occurred and were tolerated.

• Pass, no corruption: the experiment produces a cor-
rect output, and the fault did not cause interface errors.

Table 3 provides the distributions of failure types for each
target library. In many cases, the output of experiments
was correct even in the presence of an injected fault. By
analyzing interface parameter data exchanged at component
interfaces, we found that, in the 61.8% of experiments, there
were neither incorrect outputs nor corruptions at component
interfaces: in these experiments, the fault was not activated



Table 3: Outcomes of experiments.

Target
Outcome

Crash Hang Wrong Pass,
corrupted

Pass, no
corruption

Libxml2 70
(4.8%)

20
(1.4%)

233
(15.8%)

147
(10.0%)

1001
(68.0%)

Libbzip2 6
(1.3%)

0
(0.0%)

39
(8.4%)

83
(17.9%)

335
(72.4%)

SQLite 122
(11.9%)

16
(1.6%)

182
(17.8%)

213
(20.8%)

490
(47.9%)

(even if faulty code was covered by the workload), or there
was no error propagation to component interfaces. This re-
sult demonstrates that efficiency can indeed be an issue for
CM approaches, as many injections do not produce effects
on experiments [7]. In total, we obtained 1131 failures from
fault injection experiments (38.2% of the total), on which we
performed more detailed analyses on interface errors. This
set of failures is much larger than previous studies [19,28].
We first determined the extent of corruptions of interface

parameters, in terms of number of bytes affected by faults.
For the experiments that resulted in interface data corrup-
tions, Fig. 11 provides the empirical cumulative distribution
of the number of corrupted bytes, for each target library. The
number of corrupted bytes ranges from single (100) bytes to
thousands of bytes for all three libraries and this number de-
pends on the types of the data structures and library func-
tions affected by the fault. An important result, which holds
for all three targets, is that 50%-60% of faults affect much
more than 8 bytes, which is the size of a memory word in
our target system (i.e., the maximum size of addresses or
data that CPU instructions operate on). Less than 40% of
faults are limited to a memory word, while the median of the
number of corrupted bytes ranges between 50 and 110 bytes.
This is an important finding for the design of representative
interface error models, since it indicates that the traditional
ones based on the corruption of individual bits or bytes on
heap, global, and stack areas [4,21], are not suitable for em-
ulating interface errors produced by software faults. Fig. 12
provides the distribution of the number of corrupted bytes,
split by ODC fault types (see Table 1). This figure shows
that only the 20-30% of Algorithm, Checking, and Interface
faults affect at most 10 bytes. Only in the case of Assignment
faults (e.g., a missing variable initialization), about 50% of
faults affect at most 10 bytes, as in these cases the incor-
rect assignment affects individual fields of data structures
returned to the main program. Nevertheless, a significant
share of Assignment faults still corrupt large memory areas.
The analysis of return values pointed out that several types

of values can be returned by library invocations affected by
software faults. We consider the return value of a faulty invo-
cation as incorrect when it differs from the return value of the
same invocation in the fault-free trace. Table 4 shows the dis-
tribution of incorrect return values, by classifying them into
−1, 0 non-pointer data, NULL pointers, and wrong point-
ers/values, i.e., return values different from fault-free execu-
tions that do not fall into any of the other classes. Moreover,
we further distinguish between the case in which both wrong
return values and memory corruptions occur after the same
invocation, and the case in which a wrong value is returned
without the corruption of memory areas. The distributions
of return values depend on the data type returned by library
functions, which vary across different targets. Most impor-
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Figure 11: Cumulative distribution (per library) of
the number of corrupted bytes of interface data.
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Figure 12: Cumulative distribution (per fault type)
of the number of corrupted bytes of interface data.

tantly, we found that in most cases (75.2%) wrong return val-
ues are accompanied by memory corruptions. For instance,
in the case of a library function that reads data from the disk
and that behaves erroneously, both data returned through an
input/output parameter (e.g., containing disk data) and the
return value (e.g., representing the number of bytes read)
become incorrect during the same invocation. This finding
has significant implications for the injection of representative
interface errors: existing tools that inject faults at library in-
terfaces, such as FTS and LFI [15,27], focus on the injection
of wrong return values, but neglect the injection of mem-
ory corruptions. To achieve representativeness, wrong return
values should be injected along with memory corruptions.
Furthermore, by comparing the number of failures with

error codes (Table 4) and the total number of experiments
that lead to failures (Table 3), we found that wrong return
values only occur for a fraction of cases (40.9% for Libxml2,
75.6% for Libbzip2, 22.5% for SQLite). This indicates that
“plausibility” checks that operate solely on return values are
insufficient for detecting library failures, as several failures
occur despite correct return values from library functions.
As pointed out in the previous analysis of memory cor-

ruptions, the amount and location of corrupted data varies
with the target library, and in particular with the type of



Table 4: Distributions of return values in fault injection experiments.
Target Return value, without memory corruption Return value, with memory corruption

−1 NULL ptr 0 Wrong ptr Wrong value −1 NULL ptr 0 Wrong ptr Wrong value

Libxml2 5 (3.8%) 0 (0%) 4 (3.0%) 0 (0%) 50 (37.9%) 32 (24.2%) 33 (25.0%) 1 (0.8%) 5 (3.8%) 2 (1.5%)

Libbzip2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (11.8%) 0 (0%) 28 (82.3%) 2 (5.9%)

SQLite 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (2.8%) 0 (0%) 1 (1.4%) 69 (95.8%)
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Figure 13: Byte corruption rate and number of ac-
cesses for Libxml2.

Table 5: Correlation between corruption rate and
number of accesses.

Target Spearman’s ρ p-value

Libxml2 0.953 ∼ 0

Libbzip2 0.572 ∼ 0

SQLite 0.883 ∼ 0

interface parameters and of library functions. To support
the tuning of representative IEI experiments for a specific
target library, we investigated a heuristic rule for selecting
which memory areas of interface parameter data to corrupt.
In particular, the heuristic should allow to identify which
memory addresses have the highest corruption rate, that is,
memory addresses most likely corrupted by software faults,
in order to focus error injections on them.
To identify such a heuristic, we analyzed memory accesses

of the target libraries during fault-free executions, which can
be easily obtained through a DBI analysis. We obtained
the corruption rate of each memory address by computing
the percentage of our fault injection experiments that led
to the corruption of that memory address. We found that
the corruption rate of a memory address is strongly correlated
with the number of accesses on that memory address in fault-
free executions. Fig. 13 shows the growth of the corruption
rate with the number of accesses in fault-free conditions for
Libxml2. The quantitative analysis of correlation (Table 5),
using the Spearman correlation coefficient for ordinal data
(which can be applied even when the association between el-
ements is non-linear) and a statistical hypothesis test (with
the null hypothesis that there is a zero correlation) [37], con-
firm this observation: We found that the corruption rate and
the number of accesses have a statistically significant corre-
lation (the null hypothesis can be rejected at any reasonable
type I error level, as the p-value of the test is lower than the
smallest representable float number on our machine). From

this result, we conclude that a heuristic rule for obtaining a
realistic error model is to corrupt those memory addresses
that are most often accessed in fault-free executions.

7. THREATS TO VALIDITY
We identified the following threats to validity: (i) the ef-

fects of non-determinism, that can lead to variations of mem-
ory stores that are not actually due to faults, and thus could
mislead our the analysis of memory corruptions; (ii) the use
of fault injection in components’ code, in place of real soft-
ware faults, to generate and analyze interface errors; and (iii)
the selection of the target libraries.
As for non-determinism, we carefully designed our ap-

proach to factor out its effects from execution traces, and
validated its ability to avoid non-deterministic interferences
by verifying that execution traces are exactly reproducible
when no fault is injected. The limitation of our analysis
is that, in this initial phase of our research, we chose to
first focus on single-threaded executions, before extending
our approach to multi-threaded executions using recording-
and-replay techniques as discussed in Section 4.
The use of real faults for obtaining real interface errors is

unfortunately hampered by the shortage of faults to analyze
for specific library versions and configurations, especially in
the case of very mature and highly reliable software such as
SQLite. We therefore adopted fault injection, which allows to
perform a high number of experiments and, at the same time,
is able to generate representative errors, as demonstrated by
several empirical studies on the use of code mutation for
software engineering experimentation [1,11,12]. We are thus
confident that the validity of our findings is not significantly
affected by the use of fault injection.
Our conclusions are based on experimental results from

three libraries, and may not generalize to all types of li-
braries. As the chosen libraries are widely used and function-
ally diverse, we believe that the results are representative for
a larger set of libraries. Apart from whether a generalization
is valid, we demonstrate that libraries with the discussed er-
ror manifestations exist and that existing error models do
not match these manifestations. Moreover, we provide an
approach that is suitable to assess any library of interest.

8. CONCLUSION
In this paper, we proposed an approach for analyzing how

software faults in library code manifest as interface errors.
We analyzed interface errors in three real-world libraries,
obtaining guidelines for representative error injection exper-
iments. In future work, we aim at applying these findings in
IEI experiments, and investigating whether they can improve
the representativeness of experiments.
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