
Verification of Resilience Policies that Assist
Attribute Based Access Control

Antonios Gouglidis
School of Computing and

Communications
Lancaster, UK

a.gouglidis@lancaster.ac.uk

Vincent C. Hu
Computer Security Division

NIST, USA
vincent.hu@nist.gov

Jeremy S. Busby
Department of Management

Science
Lancaster, UK

j.s.busby@lancaster.ac.uk
David Hutchison

School of Computing and
Communications

Lancaster, UK
d.hutchison@lancaster.ac.uk

ABSTRACT
Access control offers mechanisms to control and limit the
actions or operations that are performed by a user on a set
of resources in a system. Many access control models exist
that are able to support this basic requirement. One of the
properties examined in the context of these models is their
ability to successfully restrict access to resources. Neverthe-
less, considering only restriction of access may not be enough
in some environments, as in critical infrastructures. The
protection of systems in this type of environment requires a
new line of enquiry. It is essential to ensure that appropri-
ate access is always possible, even when users and resources
are subjected to challenges of various sorts. Resilience in
access control is conceived as the ability of a system not to
restrict but rather to ensure access to resources. In order to
demonstrate the application of resilience in access control,
we formally define an attribute based access control model
(ABAC) based on guidelines provided by the National Insti-
tute of Standards and Technology (NIST). We examine how
ABAC-based resilience policies can be specified in temporal
logic and how these can be formally verified. The verifica-
tion of resilience is done using an automated model checking
technique, which eventually may lead to reducing the overall
complexity required for the verification of resilience policies
and serve as a valuable tool for administrators.

CCS Concepts
•General and reference→Verification; •Security and
privacy → Formal security models; Access control;
•Software and its engineering → Model checking;

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

ABAC’17, March 24 2017, Scottsdale, AZ, USA
© 2017 ACM. ISBN 978-1-4503-4910-9/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3041048.3041049

Keywords
Attribute based access control; resilience

1. INTRODUCTION
Access control is an essential technique in all computing

systems. Its main role is to control and limit the actions
or operations in a system that are performed by a user
on a set of resources. Access control policies, models and
mechanisms are considered to be three abstractions of con-
trol introduced by access control systems [10]. These levels
of abstraction are responsible for the enforcement of access
control policies, as well as for preventing the access policy
from subversion. Specifically, a policy can be defined as a
high-level requirement that specifies how a user may access
a specific resource and how. Access control policies can be
enforced in a system through an access control mechanism.
The latter is responsible for permitting or denying a user ac-
cess to a resource, and specifying the nature of access that is
permitted. An access control model can be defined as an ab-
stract container of a collection of access control mechanism
implementations. These are capable of preserving support
for the reasoning of the system policies through a conceptual
framework. Hence, the abstraction gap between the mech-
anism and policy in a system is bridged by means of access
control model [24].

The importance of access control in systems led to re-
search in several directions, one of them being the investiga-
tion of properties related to the security offered by policies,
e.g. secure inter-operation [11, 12, 26]. However, little at-
tention has been paid to the verification of resilience specifi-
cations in access control policies. Resilience in access control
is conceived as the ability of a system not to restrict, but to
enable access to resources [21]. Most of the research work
in this context is initiated around the ‘resiliency checking
problem’, which examines whether a given resilience policy
is satisfied by an access control state. This problem has
been investigated from a generic point of view [21], and thus
the proposed approaches are agnostic to the actual type of
policies implemented by an underlying model. Additional
research on the resiliency checking problem was performed
to investigate the time complexity introduced by the various
parameters used in it [8]. Moreover, the ‘resiliency checking

problem’ is shown to have a connection with the ‘work-flow
satisfiability problem’ in [9], with the latter being investi-
gated extensively in the literature, e.g. in [6, 7, 27] amongst
others. Furthermore, information on work-flow management
systems and on how to model and enforce resilience policies
is available in [2, 4].

Despite of several research directions being followed to
address the problem of ensuring resilience in access control
policies, they assume the construction of a resilience aware
policy during the design phase of a system, and not during
its operational phase. This does not negate the correct-
ness of these approaches, but questions the level of usability
provided by them, as well as their applicability in real oper-
ational environments. The need for verifying the correcte-
ness of resilience properties during the operational phase
of a system should be a requirement in critical infrastruc-
tures, including utility networks and industrial control sys-
tems, where services must be provided in an uninterrupted
manner. Therefore, motivated by the absence of a practical
approach, we examine in this paper how resilience policies
can be specified and verified in the context of an actual ac-
cess control model. For this purpose, the Attribute-Based
Access Control (ABAC) was selected amongst others due to
its flexibility and high level of expressiveness [15]. We antic-
ipate a practical approach that would be able to efficiently
ensure the resilience of policies. This will eventually reduce
the overall complexity required for verifying resilience poli-
cies. The latter requirement derives mostly from the need
to apply such a process in the operational phase of a sys-
tem. Such functionality is currently absent from existing
approaches since, firstly, the majority of solutions appear to
propose the problem be solved during the design phase of
a system, and secondly, tools that would help to facilitate
the process of verifying resilience are absent from existing
solutions, to the best of our knowledge. Hence, for us to
achieve these objectives, we specify resilience policies in the
context of ABAC, and embrace an existing set of tools, viz.
the Access Control Policy Tool (ACPT) by NIST1 and the
NuSMV symbolic model checker2 in order to specify ABAC-
based policies and formally verify them, respectively [16].

The structure of the remainder of this paper is as follows:
in Section 2 we elaborate on the relation between access
control and resilience. A formal definition of our proposed
ABAC model is provided in Section 3. Section 4 provides
prerequisite information on the formal verification of policies
in ABAC; and, resilience policies are specified and verified
in Section 5. Concluding remarks and future work are dis-
cussed in Section 6.

2. ACCESS CONTROL AND RESILIENCE
In the context of industrial control systems cyber-security,

resilience is a particularly significant issue. Such systems
control physical processes, often safety-critical processes, in
real time, in chemical production plants, water treatment
facilities, nuclear power generation installations, oil and gas
facilities and so on. Losses of availability and integrity in
particular can have immediate and possibly unrecoverable
effects. Such systems must simultaneously exclude adversar-
ial intervention and ensure legitimation intervention. Thus

1http://csrc.nist.gov/groups/SNS/acpt/
2http://nusmv.fbk.eu/

access control always has to satisfy the dual requirement
of denying access to certain types of actor but guarantee-
ing access for others. Following other authors [21], and our
own prior work [13], the second requirement is labelled as
‘resilience’. As this second requirement has to be met at
the same time as the first, and the two requirements must
not contradict each other, it makes sense to express access
control and resilience requirements using the same basic for-
malism, and to find a way of verifying them under some
integrated mechanism.

With regards to access control in critical infrastructures
– the authors in [22] provide information on how role based
access control policies may appear in SCADA systems, and
argue on the fact that roles and type of access on critical
resources have to be clearly defined. A subset of roles in
the hierarchy described in [22] is: ‘Junior operator’, ‘Senior
operator’, ‘Supervisor’, and ‘Manager’. A set of operations
is assigned with each role. Briefly, a user assigned with the
‘Junior operator’ role, has a very restrictive set of opera-
tions, such as monitoring screens only; the ‘Senior operator’
role offer operations such as these of starting or stopping a
system and the potential to acknowledge an alarm (on top
of the roles inherited by the ‘Junior operator’ role); and,
the ‘Supervisor’ role offers the operation of disabling alarms
(on top of the roles inherited by the ‘Senior operator’ role)
– a ‘Manager’ is considered to have no restrictions, and thus
can perform all the above operations [22], and also can be
connected with other role hierarchies. In a scenario where
the operations of starting, stopping a SCADA system and
disabling alarms are considered to be critical, we must en-
sure the presence of personnel that would own the appropri-
ate set of permissions to accomplish these critical operations
successfully. Thus, in case of assigning ‘user1’ with the role
of ‘Supervisor’ and ‘user2’ with the role of ‘Manager’ this
policy can be characterised as being ‘resilient’ since upon
the absence (or removal) of one user, there still exist one
disjoint set of users that contains one user authorised for
starting, stopping the SCADA system and to acknowledge
alarms.

With regards to resilience – this concept is identified to
be of vital importance for organisations since it ensures an
organisation’s survivability and prosperity [5]. One of the
important processes of resilience at an organisational level
is operational resilience management, which in general refers
to the set of strategies that when applied are able to pro-
tect and sustain the services and assets of an organisation
[23]. Access management consists one of the operations in-
troduced in an operational resilience management strategy.
Its purpose is to ensure that the access granted to the sub-
jects of a system (i.e. assignment with organisational assets)
has to be proportionate with the business and resilience re-
quirements [23]. Hence, to fulfil the resilience requirements,
the subjects of a system (e.g. users) have to have a sufficient,
yet not excessive, level of access to the organisation’s assets.
In order to successfully achieve this goal, a series of practices
needs to be applied. Such practices, as identified by major
research and development centres [23], are related with (i)
enabling access, (ii) managing changes to access privileges,
(iii) performing periodic review and maintenance of access
privileges, and (iv) correction of inconsistencies.

In this paper, we investigate the first practice, i.e. enable
access, that should be used in industrial control systems
to ensure their protection and orderly functionality. The

practice of enabling access is concerned with ensuring that
the appropriate level of access to organisational assets is
informed by resilience requirements [23]. This is of vital
importance in critical infrastructures since their operational
environment is required to keep access control current and
reflective of the security and resilience requirements towards
maximizing their availability [17].

3. ATTRIBUTE BASED ACCESS CONTROL
MODEL

Attribute-based access control (ABAC) has gained the at-
tention of researchers because it offers a high level of flexibil-
ity – it can implement various policies, and also it is an ideal
candidate for use in highly-distributed and rapidly changing
environments [15]. In general, access decisions in ABAC are
based on the requester’s owned attributes. The advantage of
this approach is that it is possible to provide access to users
in a collaborative environment without the need for them
to be known by the resource a priori. This results in an
inherent support for distributed access control and collabo-
ration amongst domains. An implementation of ABAC can
be seen in the eXtensible Access Control Markup Language
(XACML) that is an OASIS standard3. And, another im-
plementation of ABAC can be found in the Next Generation
Access Control standard in [1].

In the following, we provide a definition of the ABAC
model. This includes a reference to the main elements that
could take part in the authorisation process, and a high-
level description of its main administrative operations and
administrative review functions.

3.1 Proposed Model
The definition of our ABAC model is based on the rec-

ommendations proposed by NIST in [14], where a set of
guidelines forms the basis of a formal definition of ABAC.
Thus, we provide all the required information with regard to
the specifications of ABAC. Specifically, we elaborate on its
main elements and the relation between them; we provide a
formal definition of the model, and provide a list of ABAC’s
system and administrative functional specifications.

3.2 Elements
The ABAC model consist of the following six categories of

elements: attributes, subjects, objects, operations, policies,
and environmental conditions. A major difference between
ABAC and other access control models is that in ABAC
access is not granted or not based on the subject’s identity,
but rather it is evaluated on the basis of a set of attributes
assigned to subjects and objects, as well as on environmental
conditions. Figure 1 illustrates the main elements in ABAC
and the interactions amongst them.

Attributes are characteristics of the subject, object, or
environment conditions. Attributes may contain informa-
tion given by a name-value pair, i.e. a tuple of the form:
(NAME ,VALUE). As depicted in Figure 1, both subject
and object attributes are able to support the use of meta-
attributes. The latter provides an additional index for re-
ferring to groups of subjects and objects per se. Hierarchies
in ABAC are intrinsically supported via the meta-attribute

3http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.html

Figure 1: ABAC’s main elements and relationships

functionality. This provides ABAC with the potential to
express powerful hierarchies between elements of the same
type.

A subject is usually interpreted as being a user or process
that issues access requests to perform operations on objects.
Subjects can be assigned with one or more attributes.

An object can be a system resource for which access is
managed by the attribute-base access control system. These
could be devices, files, records, tables, processes, programs,
networks, or domains containing or receiving information.
It can be the resource or requested entity, as well as any
entity on which an operation may be performed by a subject
including data, applications, services, devices, and networks.

An operation is the execution of a function at the re-
quest of a subject upon an object. Example of operations
include the read, write, edit, delete, copy, execute, and mod-
ify commands.

A policy is the representation of rules or relationships
that makes it possible to determine if a requested access
should be allowed, given the values of the attributes of the
subject, object, and possible environment conditions.

An environment condition is an operational or situa-
tional context in which access requests occur. Environment
conditions are detectable environmental characteristics. En-
vironment characteristics are independent of subject or ob-
ject, and may include the current time, day of the week,
location of a user, the current threat level, etc.

The provision of the above definitions subsequently helps
in the provision of a reference model for ABAC and a formal
specification of it. In the following, we provide information
about the main elements of the model and the relations be-
tween them.

3.3 Definitions
A formal model of the ABAC is defined as follows:

• SUB ,OBJ ,ATTRS ,ATTRO , ENV , OPS , POLICIES
consist of subjects, objects, subjects’ attributes, ob-
jects’ attributes, environmental conditions, operations,
and policies, respectively.

• ATTRS ,ATTRO ,ENV are sets of subject, object and
environmental conditions attributes in tuples of the
form: (NAME ,VALUE).

• SUB is a set of tuples of the form: (NAME ,VALUE).

• OBJ is a set of tuples of the form: (NAME ,VALUE).

• SATTR ⊆ (SUB×ATTRS) is a set of SUB and ATTRS

mapping relation pairs.

• OATTR ⊆ (OBJ × ATTRO) is a set of OBJ and
ATTRO mapping relation pairs.

• AssignedSubjects(a : ATTRS) = 2SUB , or formally de-
fined:
AssignedSubjects(a) = {s ∈ SUB | (s, a) ∈ SATTR}.

• AssignedObjects(a : ATTRO) = 2OBJ , or formally de-
fined:
AssignedObjects(a) = {o ∈ OBJ | (o, a) ∈ OATTR}.

• OPS is a set of tuples of the form: (NAME ,VALUE).

• POLICIES ⊆ SATTR×OATTR×ENV ×OPS , where
POLICIES is a set of rules or relationships that makes
it possible to determine if a requested access should
be allowed, given the values of the attributes of the
subject, object, and possibly environment conditions.

3.4 ABAC system and administrative functional
specifications

The ABAC system and administrative functional speci-
fications describe the main features required by an ABAC
system. This includes the specification of a set of adminis-
trative operations and administrative review functions. The
former consists of a set of functions that are required to
administer the main elements of the access control model.
These include operations such as the creation and deletion of
elements, and assignments. The administrative review func-
tions are capable of performing query operations on ABAC
elements and relations. Tables 1 and 2 in Appendix B pro-
vide the function prototypes of the proposed ABAC model,
including a short description of their functionality – these
have been specified using a subset of Z notation, which is
standardised in ISO/IEC 13568:2002 [18], but a full descrip-
tion of them is omitted here since it is out of the scope of
this paper.

4. PRELIMINARIES ON VERIFICATION
An authorisation mechanism may include various com-

plex operations, viz. assembles the policy, attributes and
renders a decision based on the logic provided in the policy
[14]. In this section, we provide information regarding some
of the basic principles in temporal logic, which we use to
specify policies in ABAC, and thus express authorisations.
For more information, we refer the reader to [3]. The use
of temporal logic, apart from providing a language for the
property specification of policies, will eventually underpin
the mathematical foundation used to formally verify autho-
risation policies. This requires the definition of a language
for expressing polices and a transition system able to de-
scribe the behaviour of the access control model, and thus
for properties to be verifiable for the model.

We consider AP to be a set of atomic propositions, and
α, β and γ elements of AP . The set of propositional logic
formulae over AP is inductively defined as:

• true is a formula;

• Any atomic proposition, which is element of AP is a
formula;

• If Φ, Φ1 and Φ2 are formulae, then are (¬Φ) and (Φ1∧
Φ2);

• Nothing else is a formula.

We have that the conjunction operator ∧ binds stronger
then the derived binary operators, such as that of disjunc-
tion, implication, etc. Specifically, we define the former
two as in the following: Φ1 ∨ Φ2 := ¬(¬Φ1 ∧ ¬Φ2) and
Φ1 → Φ2 := ¬Φ1 ∨ Φ2, respectively. The → means ‘imply’.

We also assume the following notation regarding the as-
sociativity and commutativity law for disjunction and con-
junction:

∧
1≤i≤n Φi for Φ1 ∧ . . . ∧ Φn and

∨
1≤i≤n Φi for

Φ1∨ . . .∨Φn . If I = ∅, then
∧

i∈∅ Φi := true and
∨

i∈∅ Φi :=
false.

Furthermore, we consider the evaluation of atomic propo-
sitions. This is done by assigning a truth value to each of
them, i.e. a function µ : AP → {0, 1}, where 0 is false and
1 is true. The→ means ‘maps to’. Therefore, a satisfaction
relation |= indicates the evaluations µ for which a formula
Φ is true. Formally, it is written as:

• µ |= true

• µ |= α⇔ µ(α) = 1

• µ |= ¬Φ⇔ µ 2 Φ

• µ |= Φ ∧Ψ⇔ µ |= Φ and µ |= Ψ

Further on, we define the authorisation rule, property, and
transition system of the ABAC model. The definitions are
based on [14], but modified to fit the requirements of ABAC.
Here we use the Computation Tree Logic (CTL) in order
to specify policy properties. Linear-time Temporal Logic
(LTL) could alternatively be used since we do not take ad-
vantage of the different expression level of neither CTL or
LTL in our defined properties [19].

With regard to CTL, the prefixed path quantifiers assert
arbitrary combinations of linear-time operators. Hence, we
use the universal path quantifier ∀ that means ‘for all paths’,
and the linear temporal operators 2 and 3 that mean ‘al-
ways’ and ‘eventually’, respectively. Furthermore, we use
the temporal modalities ∀2Φ representing invariantly Φ,
and ∀3Φ representing inevitably Φ, where Φ is a state for-
mula.

Definition 1. An ABAC rule is an implication of type
‘c → d ’, where constraint c is a predicate expression as
(sub ∧ sattr ∧ obj ∧ oattr ∧ env ∧ ops), which when true
implies the permission decision d . The → means ‘imply’.

Definition 2. An ABAC access control property p is an
implication formula of type ‘b → d ’, where the result of the
access permission d depends on quantified predicate b on
ABAC attributes and system states.

Definition 3. A transition system TSABAC is a tuple (S ,
Act , δ, i0) where

• S is a set of states, S = {Permit ,Deny};

• Act is a set of actions,
where Act = {(sub∧sattr∧obj ∧oattr∧env∧ops), . . .}
and sub ∈ SUB , sattr ∈ ATTR, obj ∈ OBJ , oattr ∈
OATTR, env ∈ ENV and ops ∈ OPS ;

• δ is a transition relation where δ : S ×Act → S ;

• i0 ∈ S is the initial state.

The p in Definition 2 is expressed by the proposition
p : S×Act2 → S of TSABAC , which can be collectively trans-
lated in terms of logical formula such that p = (si ∧

∨
1≤i≤n

(subn∧sattrn∧objn∧oattrn∧envn∧opsn))→ d where p ∈ P
is a set of properties.

The behaviour of the system is defined by the ABAC rules,
and they function as the transition relation δ in TSABAC .
Thus, by representing an access control property using the
temporal logic formula p, we can assert that model TSABAC

satisfies p by TSABAC � ∀2(b → ∀3d). Property ∀2(b →
∀3d) is a response pattern such that d responds to b glob-
ally (b is the cause and d is the effect) [25].

With regard to computational complexity – it is interest-
ing to reference the computational complexity of the ‘re-
siliency checking problem’, which is NP-hard in the general
case [21], and the computational complexity of model check-
ing, which is P-complete for CTL and PSPACE-complete for
LTL [3, 20]. However, we have to clarify that the compu-
tational complexity of the ‘resiliency checking problem’ and
that of verification of resilience specifications using model
checking are not directly comparable. This is because in
the former case a resilience policy is prepared from scratch
taking into consideration resilience requirements, whereas in
the latter case, resilience specifications are verified against
an existing policy. We argue that in real-world cases, an
initial set of resilience access control policies may be present
and that they can change over time. Nevertheless, the de-
velopment of a new – from scratch – resilience policy in
operational environments is not always feasible due to op-
erational requirements. Thus, the verification of resilience
specifications may appear to be a more realistic and efficient
solution.

5. VERIFICATION OF RESILIENCE POLI-
CIES

5.1 Specification of resilience
In this section, we elaborate on the notion of resilience

policies, and discuss how this could be interpreted in the
context of the defined ABAC model. In order to do this,
we embrace the definition of resilience policies defined in
[21]. Specifically, a resilience policy is defined as the tuple
of ResiliencePolicy〈P , s, d , t〉, where P is the set of permis-
sions, s ≥ 0, d ≥ 1 and t ∈ N + or t =∞. Thus, a resilience
policy is satisfied in an access control state ‘if and only if
upon removal of any set of s users, there still exist d mu-
tually disjoint sets of users such that each set contains no
more than t users and the users in each set together are
authorised for all permissions in P’ [21]. The construction
of a resilience policy is also known in the literature as the
‘resiliency checking problem’ [8], [21]. Specifically, given a
resilience policy tuple ResiliencePolicy〈P , s, d , t〉 the solu-
tion provides an answer to the existence of binary relation
between users U and permissions P , i.e. UP ⊆ U × P [21],
or between users U and their authorised resources R, i.e.
UR ⊆ U × R [8]. In general, permissions are considered to
be operations on objects. Assuming the example in Section
2, we have the following critical operations on a SCADA sys-
tem: ‘monitor screen’, ‘start system’, ‘stop system’, ‘disable

alarm’, and ‘change set points’, and thus we set P = {Su-
pervisor, Manager}. This is because OATTR × OPS is an
ordered set that represents permissions P , and ATTRS×P is
also an ordered set that can be used for creating pairs of roles
with permissions. Since both roles in the example are paired
with all permissions, we can continue with the assumption
that it is safe to use roles ∈ ATTRS and permissions ∈ P
interchangeably. Given P , we may have the following values
for the rest of the resilience policy parameters: s = 1, d = 1,
and t = 1. Specifically, s = 1 indicates that we want the
policy to be resilient to the absence of any (one) user, d = 1
indicates that we require one set of users such that users in
that set together possess all permissions; and, t = 1 since
there is a single user that has all the permissions [21].

The definition of a resilience policy requires initially a
careful definition of the different critical tasks in an organi-
sation and subsequently identification of the main users and
assigned permissions required to successfully complete these
tasks. As mentioned already, this process can be performed
during the early stages of the design of a system. Neverthe-
less, users and policies may change in a system, i.e. certain
policies may be altered, deleted or new policies may be in-
troduced. Therefore, these operations may introduce disrup-
tions in an already existing resilience policy. Designing these
policies from scratch may not be a viable solution, especially
in the context of critical infrastructures, where systems must
operate in an uninterrupted manner. Hence, administrators
or operators in such environments may require to verify at
any time the resilience offered by the active set of policies in
their operational environment. Such an approach may also
lead to reducing the overall complexity imposed by solving
the resiliency checking problem from scratch.

Towards providing a viable solution to this requirement,
we outline a process that is able to verify the resilience of a
subset of ABAC policies. The resiliency checking problem
is known to have various levels of complexity, introduced by
the variance of each of the elements in the resilience policies
tuple [21]. In this paper, we are concerned with the verifica-
tion of resilience provided by a set of access control policies
that are required to achieve a critical operation or task, and
thus verify their resilience in the presence of several threats,
e.g. absence of users that are responsible for completing -
collaboratively or not - a specific critical operation or task.

In order to verify the resilience of ABAC policies, we use
the response pattern as defined in Section 4. In general,
we check resilience in ABAC policies between users and at-
tributes – the latter representing permissions required to
perform a task. For this, we use the satisfiability relation
expressed by Formula 1.

TSRP ABAC � ∀2
(∧

1≤i≤n

!subn
∧

0≤i≤m

attrm

∧
1≤i≤k

!subk → ∀3Deny
) (1)

where TSRP ABAC is the resilience ABAC policy tran-
sition system, subn , subk ∈ SUB , subn 6= subk , attrm ∈
ATTRS : {subn} × {attrm} ∈ SATTR, and Deny ∈ S is the
permission decision. In relation to the resilience policy tuple,
i.e. 〈P , s, d , t〉, subn is mapped onto the set of users s that
are considered to be absent; attrm refers to the attributes
assigned with a user s and represent permissions required

Figure 2: Example of a resilience policy

to perform a task; and, subk refer to the mutual disjoint set
of users expressed by d . With regard to the t parameter –
this can be introduced implicitly by introducing additional
specifications, following Formula 1.

5.2 Example
To demonstrate the applicability of the verification pro-

cess in identifying resilience in ABAC policies, we choose
to elaborate a generic, yet, representative example of a re-
silience policy, as described in [21]. Nevertheless, we also
describe in Appendix A the implementation of an RBAC
policy for a SCADA system using function calls of the pro-
posed ABAC model (described in Appendix B).

The resilience policy in Fig. 2 assumes the existence of
a critical task T . In order to successfully accomplish the
critical task, the users (e.g. operators in a utility organisa-
tion) have to be collaboratively authorised for all three at-
tributes. In this example, we consider two groups of users,
where the first group includes the following users and as-
signed attributes: User1×{Attribute1,Attribute2}, User2×
{Attribute1,Attribute3}, User3 × {Attribute2,Attribute3};
and the second group includes the following users and at-
tributes: User4×{Attribute1,Attribute2}, User5× {Attribute2,
Attribute3}. In the context of an industrial control system,
the above attributes could be equivalent with: Attribute1 ≡
(monitor a device), Attribute2 ≡ (start or stop a device),
and Attribute3 ≡ (maintain a device). Thus, in case of a de-
vice malfunction, operators (i.e. users of the system) shall
be in position to monitor and acknowledge the problem, stop
the faulty device, maintain the device, and finally, start the
device. In order to define the above policy in ABAC and to
formally verify its resilience, we use ACPT for the definition
of access control policies and NuSMV for the verification of
the resilience policy specifications.

In the following, we provide in Listing 1 the NuSMV code
that defines the ABAC policy described in Figure 2.

Listing 1: Specification of an ABAC policy in NuSMV

MODULE main

VAR

USER : {User1, User2, User3, User4, User5};

ATTR : {Attribute1, Attribute2, Attribute3};

ABAC_Policy01 : ABAC_Policy01(USER, ATTR);

ASSIGN

next (USER) := USER;

next (ATTR) := ATTR;

MODULE ABAC_Policy01(USER, ATTR)

VAR

decision : {Permit, Deny};

ASSIGN

init (decision) := Deny ;

next (decision) := case

USER = User1 & ATTR = Attribute1 : Permit;

USER = User1 & ATTR = Attribute2 : Permit;

USER = User2 & ATTR = Attribute1 : Permit;

USER = User2 & ATTR = Attribute3 : Permit;

USER = User3 & ATTR = Attribute2 : Permit;

USER = User3 & ATTR = Attribute3 : Permit;

USER = User4 & ATTR = Attribute1 : Permit;

USER = User4 & ATTR = Attribute2 : Permit;

USER = User5 & ATTR = Attribute2 : Permit;

USER = User5 & ATTR = Attribute3 : Permit;

1 : Deny;

esac;

Subsequently, we define the set of specifications that are
required to be verified on the transition system defined in
Listing 1. We examine three different scenarios, where (i)
we omit the policy introduced by group two; (ii) we omit
the policy introduced by group one, and (iii) we consider
the existence of both policies.

In the first scenario, we define two specifications in accor-
dance with Formula 1. Therefore, making the assumption
that User1 is absent, the CTL specifications that will verify
the resilience of the examined policy are given in Listing 2.
These specifications, when verified by the model checker, will
provide a counterexample indicating which of the remaining
users in group one (i.e. User2,User3) are in position to
provide attributes Attribute1 and Attribute2, respectively.
The verification of the given specifications and provision of
counterexamples ensures the existence of resilience in the ab-
sence of User1. Specifically, it holds that P = {Attribute1,
Attribute2, Attribute3}, s = 1, d = 1, and t = 2, with the
latter stating that the set of users that together possess all
permissions is equal to two.

In Listings 2 to 4, AG and AF are CTL expressions that
are recognised by NuSMV as ‘forall globally’ (i.e. ∀2) and
‘forall finally’ (i.e. ∀3), respectively.

Listing 2: Specification of resilience properties in CTL con-
sidering the absence of User1 and exclusion of the second
group of users

SPEC AG ((!(USER = User1) & (ATTR = Attribute1) &

!(USER = User4) & !(USER = User5)

) -> AF decision = Deny)

-- Evaluation: false, counterexample is provided

SPEC AG ((!(USER = User1) & (ATTR = Attribute2) &

!(USER = User4) & !(USER = User5)

) -> AF decision = Deny)

-- Evaluation: false, counterexample is provided

In the second scenario, we also define two specifications
to verify the resilience of the examined policy in the absence
of User4. In this case, the verification of the specifications
provided in Listing 3 is evaluated as true. This is interpreted
as: if User4 is absent then the remaining users (i.e. User5)
do not collectively possess the required set of attributes to
complete the critical task. No resilience is provided in this
instance.

Listing 3: Specification of resilience properties in CTL con-
sidering the absence of User4 and exclusion of the first group
of users

SPEC AG ((!(USER = User4) & (ATTR = Attribute1) &

!(USER = User1) & !(USER = User2) &

!(USER = User3)) -> AF decision = Deny)

-- Evaluation: true

SPEC AG ((!(USER = User4) & (ATTR = Attribute2) &

!(USER = User1) & !(USER = User2) &

!(USER = User3)) -> AF decision = Deny)

-- Evaluation: false, counterexample is provided

The third scenario under examination is presented in List-
ing 4. In this scenario, we assume the existence of both
groups of users, and examine the resilience provided by the
policy in the absence of User5. This is possible by omit-
ting

∧
1≤i≤k !subk in Formula 1. The evaluation of the de-

fined specifications result in providing a countermeasure in
both cases, and thus indicates the resilience of the policy.
Specifically, in this instance, it holds that P = {Attribute1,
Attribute2, Attribute3}, s = 1, d = 2, and t = ∞, with the
latter stating that the set of users that together possess all
permissions can be of any size.

Listing 4: Specification of a resilience property in CTL con-
sidering both group of users

SPEC AG ((!(USER = User5) & (ATTR = Attribute2)

) -> AF decision = Deny)

-- Evaluation: false, counterexample is provided

SPEC AG ((!(USER = User5) & (ATTR = Attribute3)

) -> AF decision = Deny)

-- Evaluation: false, counterexample is provided

6. CONCLUSION
In this paper, we examined an automated method for the

formal verification of resilience specifications in the context
of a specific access control model. For this purpose, we
provided a formal definition of an ABAC model based on
the guidelines provided by NIST; specified resilience using
propositional logic; and, formally verified resilience specifi-
cations in a set of ABAC policies. We anticipate the research
presented here will provide an interesting insight towards the
consideration of resilience properties in addition to that of
security in access control. The level of usability provided by
existing approaches could be perceived as being low since
they do not offer an appropriate set of tools that can au-
tomate the verification process. This holds mostly because
existing approaches are considering the development of re-
silience policies during the design phase of a system. On
the contrary, we have proposed the use of model checking as
a means for the verification of resilience specifications in a
set of existing policies during the operational phase of a sys-
tem. Finally, by means of an example we demonstrated the
applicability and level of automation offered by a computer-
aided method such as model checking in verifying formally
the correct functioning of ABAC policies against resilience
specifications.

In future, we aim to investigate jointly the concepts of
security and resilience in access control, including the pos-
sibility of conflicts that may arise.

7. ACKNOWLEDGEMENTS
This work is sponsored by the European Union under

Grant SEC-2013.2.5-4: Protection systems for utility net-
works - Capability Project, Project Number: 608090, Hy-
brid Risk Management for Utility Providers (HyRiM).

8. REFERENCES

[1] ANSI. Information technology - Next Generation
Access Control - Functional Architecture, 2013.

[2] V. Atluri and J. Warner. Supporting conditional
delegation in secure workflow management systems. In
Proceedings of the tenth ACM symposium on Access
control models and technologies, pages 49–58. ACM,
2005.

[3] C. Baier, J.-P. Katoen, et al. Principles of model
checking. MIT press Cambridge, 2008.

[4] E. Bertino, E. Ferrari, and V. Atluri. The specification
and enforcement of authorization constraints in
workflow management systems. ACM Transactions on
Information and System Security (TISSEC),
2(1):65–104, 1999.

[5] BSI. BS 65000 - Guidance for organizational resilience,
2014.

[6] D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and
M. Jones. Iterative plan construction for the workflow
satisfiability problem. Journal of Artificial Intelligence
Research, 51:555–577, 2014.

[7] J. Crampton, G. Gutin, and D. Karapetyan. Valued
workflow satisfiability problem. In Proceedings of the
20th ACM Symposium on Access Control Models and
Technologies, pages 3–13. ACM, 2015.

[8] J. Crampton, G. Gutin, S. Pérennes, and
R. Watrigant. A multivariate approach for checking
resiliency in access control. arXiv preprint
arXiv:1604.01550, 2016.

[9] J. Crampton, G. Gutin, and R. Watrigant. Resiliency
policies in access control revisited. In Proceedings of
the 21st ACM on Symposium on Access Control
Models and Technologies, pages 101–111. ACM, 2016.

[10] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli.
Role-based access control. Artech House, 2003.

[11] L. Gong and X. Qian. Computational issues in secure
interoperation. Software Engineering, IEEE
Transactions on, 22(1):43–52, 1996.

[12] A. Gouglidis, I. Mavridis, and V. C. Hu. Security
policy verification for multi-domains in cloud systems.
International Journal of Information Security,
13(2):97–111, 2014.

[13] A. Gouglidis, S. N. Shirazi, S. Simpson, P. Smith, and
D. Hutchison. A multi-level approach to resilience of
critical infrastructures and services. In Proc. 23rd
International Conference on Telecommunications
(ICT 2016). IEEE, 2016.

[14] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer,
K. Sandlin, R. Miller, and K. Scarfone. Guide to
attribute based access control (ABAC) definition and
considerations. NIST SP, 800:162, 2014.

[15] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo.
Attribute-based access control. IEEE Computer,
48(2):85–88, 2015.

[16] V. C. Hu and R. Kuhn. Access control policy
verification. IEEE Computer, 49(12):80–83, Dec 2016.

[17] Intel Security. Protect critical infrastructure.
Technical report, McAfee. Part of Intel Security, 2016.

[18] ISO. IEC 13568: 2002: Information technology–Z
formal specification notation–syntax, type system and
semantics, 2002.

[19] R. B. Krug. CTL vs. LTL. Presentation, May 2010.

[20] F. Laroussinie, N. Markey, and P. Schnoebelen. Model
checking CTL+ and FCTL is hard. In International
Conference on Foundations of Software Science and
Computation Structures, pages 318–331. Springer,
2001.

[21] N. Li, Q. Wang, and M. Tripunitara. Resiliency
policies in access control. ACM Transactions on
Information and System Security (TISSEC), 12(4):20,
2009.

[22] M. Majdalawieh, F. Parisi-Presicce, and R. Sandhu.
RBAC model for SCADA. In Innovative Algorithms
and Techniques in Automation, Industrial Electronics
and Telecommunications, pages 329–335. Springer,
2007.

[23] A. C. Richard, H. A. Julia, D. C. Pamela, W. W.
David, and R. Y. Lisa. CERT resilience management
model, version 1.0 improving operational resilience
processes. Technical report, Software Engineering
Institute, 2010.

[24] R. S. Sandhu and P. Samarati. Access control:
principle and practice. Communications Magazine,
IEEE, 32(9):40–48, 1994.

[25] SAnToS Laboraroty. Specification patterns, Responce
property pattern, 2012.

[26] B. Shafiq, J. B. Joshi, E. Bertino, and A. Ghafoor.
Secure interoperation in a multidomain environment
employing RBAC policies. Knowledge and Data
Engineering, IEEE Transactions on,
17(11):1557–1577, 2005.

[27] Q. Wang and N. Li. Satisfiability and resiliency in
workflow authorization systems. ACM Transactions
on Information and System Security (TISSEC),
13(4):40, 2010.

APPENDIX
A. IMPLEMENTATION OF A RESILIENCE

POLICY
In this section, we implement an RBAC resilience pol-

icy using the proposed ABAC model. Roles are introduced
as subject attributes, and role hierarchy is supported via
the meta-attribute functionality. The seniority of a role is
expressed by the name-value tuples as (senior role, junior
role), with the senior role inheriting all the permissions of
the junior role. In Listing A.1, we implement the RBAC
policy defined in [22]. The offered resilience of this pol-
icy is easy to understand when examining the values of the
ResiliencePolicy〈P , s, d , t〉 tuple, i.e. s = 1 , d = 1, t = 1,
and P = {((action, Start system), (objectid, SCADA DEV 001)),
((action, Stop system), (objectid, SCADA DEV 001)), ((ac-
tion, Acknowledge alarm), (objectid, SCADA DEV 001)),
((action, Disable alarm), (objectid, SCADA DEV 001))},
as explained in Section 5.1. Function calls used in Listing
A.1 are briefly explained in Appendix B.

Listing A.1: Implement an RBAC policy

// Add new operations

AddOperation(action, Monitor any screen);

AddOperation(action, Start system);

AddOperation(action, Stop system);

AddOperation(action, Acknowledge alarm);

AddOperation(action, Disable alarm);

AddOperation(action, Change set point);

AddOperation(action, Can change graphics);

AddOperation(action, See alarm logs);

AddOperation(action, Change security codes);

AddOperation(action, Configure graphics);

AddOperation(action, Controller setting);

AddOperation(action, Security codes);

// OPS includes the following tuples

OPS = {(action, Monitor any screen),

(action, Start system),

(action, Stop system),

(action, Acknowledge alarm),

(action, Disable alarm),

(action, Change set point),

(action, Can change graphics),

(action, See alarm logs),

(action, Change security codes),

(action, Configure graphics),

(action, Controller setting),

(action, Security codes)}

// Add new subjects

AddSubject(userid, user1);

AddSubject(userid, user2);

// SUB includes the following tuples

SUB = {(userid, user1), (userid, user2)}

// Add roles as new attributes

AddAttribute(subject, (role, Junior operator));

AddAttribute(subject, (role, Senior operator));

AddAttribute(subject, (role, Supervisor));

AddAttribute(subject, (role, Technician));

AddAttribute(subject, (role, Engineer));

AddAttribute(subject, (role, Manager));

// ATTRS includes the following tuples

ATTRS = {(role, Junior operator),

(role, Senior operator),

(role, Supervisor), (role, Technician),

(role, Engineer), (role, Manager)}

// Assign users with roles

AssignSubject((userid, user1), (role, Supervisor));

AssignSubject((userid, user2), (role, Manager));

// Introduce hierarchy relations (senior, junior)

// using the meta-attribute functionality

AssignSubject((role, Supervisor),

(role, Senior operator));

AssignSubject((role, Senior operator),

(role, Junior operator));

AssignSubject((role, Engineer), (role, Technician));

AssignSubject((role, Manager), (role, Supervisor));

AssignSubject((role, Manager), (role, Engineer));

// SATTR includes the following tuples

SATTR = {((userid, user1), (role, Supervisor)),

((userid, user2), (role, Manager)),

((role, Manager),

(role, Supervisor)),

((role, Supervisor),

(role, Senior operator)),

((role, Senior operator),

(role, Junior operator))}

// Add new objects

AddObject(objectid, SCADA_DEV_001);

// OBS includes the following tuples

OBS = { (objectid, SCADA_DEV_001) };

// Policy definition

AddPolicy(({}, (role, Junior operator)),

((objectid, SCADA_DEV_001), {}), {},

(action, Monitor any screen));

AddPolicy(({}, (role, Senior operator)),

((objectid, SCADA_DEV_001), {}), {},

(action, Start system));

AddPolicy(({}, (role, Senior operator)),

((objectid, SCADA_DEV_001), {}), {},

(action, Stop system));

AddPolicy(({}, (role, Senior operator)),

((objectid, SCADA_DEV_001), {}), {},

(action, Acknowledge alarm));

AddPolicy(({}, (role, Supervisor)),

((objectid, SCADA_DEV_001), {}), {},

(action, Disable alarm));

AddPolicy(({}, (role, Supervisor)),

((objectid, SCADA_DEV_001), {}), {},

(action, Change set point));

AddPolicy(({}, (role, Technician)),

((objectid, SCADA_DEV_001), {}), {},

(action, Can change graphics));

AddPolicy(({}, (role, Technician)),

((objectid, SCADA_DEV_001), {}), {},

(action, See alarm logs));

AddPolicy(({}, (role, Technician)),

((objectid, SCADA_DEV_001), {}), {},

(action, Change security codes));

AddPolicy(({}, (role, Engineer)),

((objectid, SCADA_DEV_001), {}), {},

(action, Configure graphics));

AddPolicy(({}, (role, Engineer)),

((objectid, SCADA_DEV_001), {}), {},

(action, Controller setting));

AddPolicy(({}, (role, Engineer)),

((objectid, SCADA_DEV_001), {}), {},

(action, Security codes));

B. ADMINISTRATIVE OPERATIONS AND
REVIEW FUNCTIONS IN ABAC

Tables 1 and 2 include a list of administrative operations
and review functions respectively of the proposed ABAC
model. Although not all of them are demonstrated in this
paper, we include them for completeness.

Table 1: Administrative operations in ABAC

Operation Description

AddSubject
(subject?: SUB)

Creates a new subject

DeleteSubject
(subject?: SUB)

Deletes an existing subject from the ABAC database

AddObject
(object?: OBJ)

Creates a new object

DeleteObject
(object?: OBJ)

Deletes an existing object from the ABAC database

AddOperation
(operation?: OPS)

Creates a new operation

DeleteOperation
(operation?: OPS)

Deletes an existing operation from the ABAC database

AddAttribute
(type?: subject | object,
attr?: ATTRS | ATTRO)

Creates a new attribute

ModifyAttribute
(type?: subject | object,
attr?: ATTRS | ATTRO)

Modifies the value of an existing attribute

DeleteAttribute
(type?: subject | object,
attr?: ATTRS | ATTRO)

Deletes an existing attribute from the ATTR set

AddEnvironment
(attr?: ENV)

Creates a new environment condition attribute

ModifyEnvironment
(attr!: ENV, value?: VALUE)

Modifies the value of an existing environment attribute

DeleteEnvironment
(attr?: ENV)

Deletes an existing attribute from the ENV set

AssignSubject
(subject?: SUB, attr?: ATTRS)

Assigns a subject to an attribute

DeassignSubject
(subject?: SUB, attr?: ATTRS)

Deassigns a subject from an attribute

AssignObject
(object?: OBJ, attr?: ATTRO)

Assigns an object to an attribute

DeassignObject
(object?: OBJ, attr?: ATTRO)

Deassigns an object from an attribute

AddPolicy
(sattr?: SATTR, oattr?: OATTR,
env?: ENV, ops?: OPS)

Adds an action to a subject to perform an operation on an object given the subject’s
and object’s attribute values, and potential environment attribute values

DeletePolicy
(sattr?: SATTR, oattr?: OATTR,
env?: ENV, ops?: OPS)

Deletes the action from a subject to perform an operation on an object given the
subject’s and object’s attribute values, and potential environment attribute values

Table 2: Administrative review functions in ABAC

Function Description

AssignedSubjects
(attr?: ATTRS , result!: 2SUB)

Return the set of subjects assigned to an attribute

AssignedObjects
(attr?: ATTRO , result!: 2OBJ)

Return the set of objects assigned to an attribute

SubjectAttributes
(sub?: SUB, result!: 2ATTRS)

Return the set of attributes assigned to a subject

ObjectAttributes
(obj?: OBJ, result!: 2ATTRO)

Return the set of attributes assigned to an object

SubjectAllAttributes
(sub?: SUB, result!: 2ATTRS)

Return the set of all attributes a subject may be eligible for, including attributes in-
herited from potential hierarchies implemented using the meta-attribute functionality

ObjectAllAttributes
(obj?: OBJ, result!: 2ATTRO)

Return the set of all attributes an object may be eligible for, including attributes in-
herited from potential hierarchies implemented using the meta-attribute functionality

