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Abstract. We present a framework that facilitates synthesis and valida-
tion of fail-safe fault-tolerant programs. Starting from a fault-intolerant
program, with safety specification SS, that satisfies its specification in
the absence of faults, we present an approach that automatically trans-
forms it into a fail-safe fault-tolerant program, through the addition of a
class of detectors termed as SS-globally consistent detectors. Further, we
make use of the SS-global consistency property of the detectors to gen-
erate pertinent test cases for testing the fail-safe fault-tolerant program,
or for fault injection purposes. The properties of the resulting fail-safe
fault-tolerant program are that (i) it has minimal detection latency, and
(ii) perfect error detection. The application area of our framework is in
the domain of distributed embedded applications.
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1 Introduction

Safety-critical applications need to satisfy stringent dependability requirements
in their provision of services. To reduce the complexity of designing such appli-
cations, Arora and Kulkarni [2] proposed a transformational approach, whereby
an initially fault-intolerant program is systematically transformed into a fault-
tolerant one. The main step involved in designing the fault-tolerant program is
composing the corresponding fault-intolerant program with components that (i)
detect and/or (ii) correct errors that arise as a result of faults, depending on
the level of fault-tolerance to be achieved. The class of programs that achieves
the first goal is termed detectors while the class of programs that achieves the
second goal is called correctors [3].

In this paper we restrict our attention to designing fail-safe fault-tolerant
programs. Intuitively this means that it is acceptable that the fail-safe fault-
tolerant program “halts” when faults occur, as long as it always remains in a
“safe” state. This type of fault-tolerance is often used in (nuclear) power plants
or train control systems where safety (avoidance of catastrophic events) is more
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important than continuous provision of service. Thus, a fail-safe fault-tolerant
program has to satisfy at least its safety specification1 in presence of faults.
Arora and Kulkarni, in [3], showed that fail-safe fault-tolerance can be achieved
by merely employing detectors, i.e., a fail-safe fault-tolerant program can be ob-
tained by composing the corresponding fault-intolerant program with detectors
only. In safety-critical systems, detection may be the only option [10], and once
faults have been detected, a back-up system takes over.

Detectors can be regarded as an abstraction of many different existing fault-
tolerance mechanisms. For example, a common way to achieve fault-tolerance is
to replicate a critical task and schedule it on different processors. The outputs of
these tasks are brought together in a voter which outputs a consistent value. The
voter contains a comparator which is an instance of a detector. However, use of
replication is often computationally expensive. Another (maybe more obvious)
example of a detector is error detecting codes. Other error handling mechanisms
like acceptance tests, self checks or executable assertions can also be formulated
as detectors in the sense of Arora and Kulkarni [3]. Hence, reasoning at the level
of detectors makes an approach applicable to many different practical settings.

However, the design of efficient fail-safe fault-tolerant programs is problem-
atic, since design of efficient detectors is difficult, as observed in [10]. For design
of fail-safe fault-tolerant programs, programmers tend to program defensively
to ensure that the safety specification is not violated, i.e., they use very “re-
strictive” detectors. In formal terms, this means that those detectors are not
accurate. When detectors are not accurate, the efficiency of the system (for ex-
ample, response times, QoS etc) may decrease. For example, given a certain
program with some valid inputs where these are flagged as erroneous by an in-
accurate detector, there may not be any response at all, since the system may
have “halted”. Inaccurate detectors may still preserve safety, however there may
be an associated decrease in performance.

Similarly, detectors may fail to detect certain erroneous situations, i.e., the
detectors are not restrictive enough. In formal terms, this means that the de-
tectors are not complete. Hence, for design of efficient fail-safe fault-tolerant
systems, detectors need to be both accurate, and complete, i.e., detectors need
to be perfect2 (detectors are complete and accurate). However, there is a dearth
of frameworks or guidelines pertaining to the design of efficient detectors (or
efficient fail-safe fault-tolerant programs).

In this paper, our approach is to transform an initially fault-intolerant pro-
gram with safety specification SS that satisfies its specification in the absence
of faults, but violates it in the presence of faults 3, into an efficient fail-safe
fault-tolerant program, through the addition of a class of detectors, termed as
SS-globally consistent detectors. We will later show that composing a given fault-
intolerant program with a SS-globally consistent detectors results in a fail-safe
fault-tolerant program that has minimal detection latency, and perfect detec-
tion4. Once the fail-safe fault-tolerant program has been obtained, it needs to

1 We will explain this term in Section 2.
2 Classical measures for efficiency of detectors are detection coverage, and latency.
3 We will refer to this program as a fault-intolerant program
4 Hence, SS-globally consistent detectors are instances of perfect detectors



be validated, through testing or fault injection. Both approaches can be compu-
tationally expensive, since they require generation of test cases. For this case,
we exploit the SS-global consistency property of detectors to efficiently and au-
tomatically generate test cases.

Thus, our contributions are the following:

1. We introduce a class of detectors called globally consistent detectors which
are instances of perfect detectors, and show, by means of examples, how
fail-safe programs are obtained.

2. We explain how the SS-global consistency property can be exploited for
systematic and automatic generation of test cases for validation (i.e., testing,
or fault injection)

Throughout the paper, we will use examples to illustrate the different con-
cepts involved in our approach. Our framework allows automatic synthesis of
a fail-safe fault-tolerant program, as well as automatic generation of test cases
for its validation. To the best of our knowledge, this framework is novel, since
no other work has addressed the design of fail-safe fault-tolerant programs with
perfect detection, and minimal detection latency in a systematic manner.

The paper is structured as follows: Section 2 presents the models (system,
faults) used in the paper. Section 3 explains the role of detectors in the provision-
ing of fail-safe fault tolerance. Section 4 explains the concept of adding fail-safe
fault tolerance to a fault-intolerant program. Section 5 introduces a class of de-
tectors, called SS-globally consistent detectors, for which design is polynomial in
the state space of the fault intolerant program. We further show how pertinent
test cases for validating the fail-safe fault-tolerant program can automatically be
generated from knowledge of the SS-globally consistent detectors in Section 6.
In Section 7, we perform fault injection experiments to ascertain the viability of
concept of SS-global consistency. We summarize the paper in Section 8.

2 Preliminaries

In this section, we will present the basic notations and terminologies that will
underpin our presentation.

2.1 Program

A program P consists of a set of variables VP , and a set of actions AP , both
partitioned among n processes p1 . . . pn. Each variable in VP stores a value from
an associated predefined non-empty, but finite, domain, and each action in P
updates the value of one or more variables in VP . A given value association
with variables in VP is called a state of P , and the set of all such possible value
associations defines the state space of P . There also exists a subset of the state
space of P that we refer to as the set of initial states of P . We assume actions
of P to be deterministic, however execution of actions of P is non-deterministic.
An event is said to occur when a program action executes. A given event can
be good or bad, depending on whether or not it violates the safety specification.



An action defines a set of transitions, and the set of actions defines the complete
transition system of the program.

Two processes pr and pw of P communicate as follows: there exists a set
of “shared” variables Vs between pr and pw. In such cases, for each variable in
Vs, pr is the reader of that variable, and pw the writer, i.e., if pw (the writer)
updates the variable, then pr (reader) reads it. This defines the information flow
between two processes, and Vs is the interface between pi and pj .

There exists a set of special variables, denoted by Vo, that are shared by
some processes (that write to the variables), and the environment that reads
them. These special variables are commonly referred to as the output variables.
There exists also a special set of variables, denoted by Vi, where each of the
variables is written to by the environment, and read by a process in P . Such
variables are known as input variables. Input and output variables represent the
interface of the program P with its environment. Such program model is suitable
for embedded applications, for which our framework is targeted.

Also, we assume programs to contain critical actions and non-critical actions.
Critical actions are those that need to be monitored with detectors, while the
non-critical actions do not [2]. Examples of critical actions for embedded systems
are those actions that control progress, i.e., those actions that provide the output
value, or commit some value to the environment.

A detector5 D in program P monitoring an action A of P is a boolean
expression over the state space of P . Specifically, when D evaluates to “True”
in a given state, that state is considered a valid state of P , and it also means
that execution of action A can safely take place. In Section 3, we will explain in
more details the role of detectors in ensuring fail-safe fault-tolerance.

2.2 Specification

A specification of a program consists of two parts, namely (i) a safety speci-
fication, and (ii) a liveness specification [1]. Given our focus on fail-safe fault-
tolerance, we will explain safety specifications only. The liveness specification
is needed so as to rule out any trivial program, such as one that does nothing,
which always satisfies the safety specification. We also assume the specification
to be fusion-closed. Informally, fusion-closure of a specification guarantees that
the entire history of a given execution of the program “is available” in the cur-
rent state, such that it is possible to determine if the next action to be executed
is “desirable”. It has been observed [2] that low level specifications, such as C
programs, are fusion-closed. In general, a specification that is not fusion-closed
can be converted into a fusion-closed specification by the addition of history
variables, so the fusion-closure requirement is not a hindrance.

Informally, a safety specification of a program states that “something bad
never happens”. Specifically, it rules out certain sequences of events that should
never happen during execution of P . However, the fusion-closure property of the
specification allows identification of a set of events (rather than set of sequences
of events) that should not occur in any given execution of the program. Therefore,

5 A detector in our context will be an executable assertion.



we take the safety specification of a program to specify the set of events that
should not occur in any execution of the program, i.e., it specifies the set of
bad events. Also, fusion-closure of a specification guarantees the existence of
detectors (detection predicates) [2].

2.3 Faults

In this paper, we focus on the set of fault models that can potentially be toler-
ated, i.e., we do not consider faults that directly violate the safety specification
of the program. For example, if the safety specification constrains the output
variables of a program, as is often the case in embedded applications, then we
disallow the faults to directly modify the output variables of the program that
could result directly in a safety specification violation. However, faults can arbi-
trarily alter the state of the program in such a way that subsequent execution of
program actions can lead to violation of the safety specification. Thus, safety is
violated due to execution of a certain program action, such that the correspond-
ing event is ruled out by the safety specification.

3 Detectors and Their Role in Constructing Fail-Safe
Fault Tolerant-Programs

We adopt the view of Arora and Kulkarni [3] that a fault-tolerant program is
the composition of a fault-intolerant program with fault-tolerance components.
Using the same system model as in this paper, Arora and Kulkarni proved that
a class of program components called detectors are necessary and sufficient to
establish fail-safe fault-tolerance.

Recall that the safety specification of a program P specifies a set of events
that should not occur during any execution of P , i.e., the set contains bad events.
Intuitively, to avoid violating a safety specification requires to keep track of the
current program execution (history) and take precautions so that none of the
events which are disallowed by the safety specification (bad events) occurs. From
our restrictions of the fault model (faults do not directly violate safety), we know
that these bad events occur when program actions are executed. Thus, a detector
monitoring a given action in the program works in such a way that the action
is never executed whenever its execution will result in the occurrence of a bad
event. Overall, a detector allows execution of a corresponding program action
only if its execution is “safe” (not a bad event). Also, it was shown in [6] that a
bad event cannot occur without the occurrence of faults. This means that if no
fault occurs, then only good events are observed from the program. Detectors can
also prevent potentially bad events from occurring [6], i.e., they prevent events
that can potentially lead the program to violate its safety specification from
occurring. Such potentially bad events may also be considered as bad events.
Thus, the safety specification can be extended to also rule out those potentially
bad events.

However, designing detectors has its inherent complexities [7, 8]. In subse-
quent sections, we will explain how detectors can be designed that will transform
a fault-intolerant program into a fail-safe fault-tolerant one.



At this point, we provide an example to illustrate some of the concepts we
have presented:

Program P1
var w init 1, c1 init 1 : int // process a
var x init 5, y init 1, z init 10, c2 init 1 : int // process b

process a:
c1 = 1 → w := read(); c1 := c1 + 1; // value between 15 and 25
c1 = 2 ∧ x ≤ 15 → w := w + 5; c1 := 1; // loop
c1 = 2 ∧ x > 15 → w := w − 15; c1 := 1; // loop

process b:
c2 = 1 → x := read(); c2 := c2 + 1; // value between 0 and 20
c2 = 2 → y := w; c2 := c2 + 1;
c2 = 3 → z := y + x; c2 := c2 + 1;
c2 = 4 → output(z); c2 := 1; // loop

F (faults):
true → x := random [10 . . . 45]
true → w := random [10 . . . 50]

Fig. 1. An example program to illustrate the different concepts

In the example in Fig. 1, the program a is written in the UNITY logic [4].
Variables c1 and c2 are two program counters, for process a and b respectively.
For example, in process P1, the first statement says that when the program
counter c1 is 1, then variable w is assigned a sensor value, and the program
counter is incremented. In process b, when c2 = 4, an actuator value is sent
through output(z). The faults indicate for example that, at any time, the value
of variable x can be randomly changed to one within [10 . . . 45]. Note that we do
not consider faults affecting variable z, as per our fault model.

Processes a and b communicate as follows: variable w is written to by process
a and read by process b. This defines the information flow between the two
processes. An example of a safety specification for program P1 is 10 ≤ z ≤
50. This means that whenever the value of variable z is outside of the given
range, a safety specification violation occurs. Since a fault cannot cause variable
z to take values outside of the permissible range, the action that updates z
(i.e., z := y + x) should be monitored by a detector to avoid occurrence of
bad events that will lead to safety specification violation. For example, starting
from a program state P1s = (w = 15, x = 15, y = 60, z = 10) (we exclude
the counters), executing the action z := y + x, will lead to a program state
P1e = (w = 15, x = 15, y = 60, z = 75), which violates the safety specification.
Executing the program action starting from state P1s to state P1e is a bad
event. Thus, a detector that monitors whether the sum of values of variables x



and y (i.e., x + y) is within 10 and 50 is needed. If the sum if outside of the
range, then the detector flags an error, and the program can possibly halt.

We will use this example as a running example to explain how our frame-
work works. In the next section, we explain what it means to transform a fault-
intolerant program into a fail-safe fault-tolerant one.

4 The Transformation Problem

We now state the problem of transforming a fault-intolerant program p into a
fail-safe fault-tolerant version p′ for a given safety specification SS and fault
model F [9, 6].

When deriving p′ from p, only fault tolerance should be added, i.e., p′ should
not satisfy SS in new ways in the absence of faults. Specifically, there are two
conditions to be satisfied in the transformation problem:

– If there exists an event e in p′ that did not occur in p to satisfy SS , then
event e cannot be used by p′ to satisfy SS, since this means that there are
other ways p′ can satisfy SS in the absence of faults. Thus, the set of events
occurring in p′ should be a subset of the set of events occurred in p.

– Also, if there exists a state s reachable by p′ in the absence of faults that is
not reached by p in the absence of faults, then this means that p′ can satisfy
SS differently from p in the absence of faults, and such a state s should not
be reached by p′ in the absence of faults. Thus, in the presence of faults, the
set of states reachable by p′ should be a subset of the set of states reachable
by p, and in the absence of faults, the sets of reachable states are equal.

– In the presence of faults, p′ satisfies SS.

Overall, the first two conditions state that in the absence of faults, the fault-
intolerant program p is “equivalent”6 to the fail-safe fault-tolerant program p′.
Also, in presence of faults, p′ satisfies its safety specification, while p does not.

In [6], we showed that composing critical actions of a program with a class
of detectors, called perfect detectors, is sufficient to solve the transformation
problem. In the next section, we will define the concept of SS-globally consis-
tent detectors, and explain that they are instances of perfect detectors. Thus,
composing a fault-intolerant program with SS-globally consistent detectors will
result in a program that will always satisfy its safety specification in the presence
of faults, i.e., it is fail-safe fault-tolerant.

5 Adding Globally Consistent Detectors to a Program

In this section, we will explain the concept of globally consistent detectors. We
then explain that a class of globally consistent detectors, called SS-globally con-
sistent detectors are instances of perfect detectors.

6 The two programs exhibit the same behavior in the absence of faults, i.e., are
behavior-equivalent



5.1 Consistent Detectors and Globally Consistent Detectors

Before explaining the concept of globally consistent detectors, we will first ex-
plain the concept of consistent detectors. Recall that a detector d monitors the
safe execution of a program action A, such that no bad event actually occurs
upon execution of A. The detector d defines a set of states from which execution
of A is safe, i.e., execution of A from any state defined by d will not give rise to
a bad event.

A detector di monitoring a program action Ai is said to be consistent with
a detector dj monitoring program action Aj if and only if no sequence of events
(thus good events since they have not been ruled out by di) starting from execu-
tion of Ai will cause execution of Aj to violate the safety specification. In other
words, if Ai executes safely, followed by a sequence of good events, such that Aj

is executing, the execution of Aj is safe. For example, see process a of Fig. 2.

Program P1′

var x, y init 1, c1 init 1 : int // process a
process a:

c1 = 1 ∧ (15 ≤ read() ≤ 25) → x := read(); c1 := c1 + 1; // value of x
between 15 and 25

c1 = 2 ∧ (25 ≤ x + 10 ≤ 35) → y := x + 10; c1 := c1 + 1; // loop
c1 = 3 → output(y); c1 := 1; //loop

F (faults):
true → x := random [10 . . . 45]

Fig. 2. An example to showthe concept of consistent detectors

In process a, the detector di, (15 ≤ read() ≤ 25), monitors action Ai, x :=
read(), while detector dj , (25 ≤ x + 10 ≤ 35), monitors action Aj , y := x + 10. If
Ai executes, then it means a good event has occurred (i.e., it satisfies di). If no
fault happens, then Aj will execute as well. Thus, di and dj are consistent. In
other words, if x can take a value between 15 and 25, then adding 10 (to obtain
value for y) will cause y to take value between 25 and 35, hence consistency of
detectors. If a set of n detectors is incorporated in a program, and each detector
is consistent with the safety specification, then the set of detectors is said to be
SS-globally consistent.

5.2 Design of SS-Globally Consistent Detectors

In this section, we introduce a class of detectors, called SS-globally consistent
detectors, for which the design complexity is polynomial in the size of the fault-
intolerant program, and we will argue that this class of detectors is an instance of
perfect detectors, i.e., they are complete (detect all errors that will cause viola-
tion of the safety specification of the program) and accurate (no false detection).



The design of SS-globally consistent detectors7, is tractable for a class of
programs known as bounded programs. The main property of bounded programs
is that the length of event sequences before the program outputs a value is
bounded, i.e., there are no infinite loops within a process, nor is there some
infinite communication between processes, and also that variables take values
from finite domains. An example of bounded programs is embedded applications.

A set of SS-globally consistent detectors for a given program p with safety
specification SS has the property that each detector in the set is consistent with
SS. Recall that SS can effectively be a detector that monitors the critical action
of the program. Overall, it means that if a detector di monitoring program action
Ai is consistent with the safety specification of the program, then no sequence of
(good) events, starting from execution of Ai, will violate the safety specification.
Hence, di is accurate. Also, for any bad event ruled out by SS, there will also
be a corresponding event ruled out by di. Hence, di is complete. Therefore, a
globally consistent detector is indeed a perfect detector (accurate and complete).

At this point, we explain how SS-globally consistent detectors can be de-
signed. Since each detector di is consistent with the safety specification of the
program, we exploit this relationship, and start with the safety specification to
automatically generate the SS-globally consistent detectors.

Since SS defines a detector that monitors the critical action of the program,
we perform a backward propagation procedure, starting from the critical action
of the program, against the flow of information. We illustrate this using a series
of examples, see Fig 3–Fig. 5.

Then, for 10 ≤ x+y ≤ 50 (safety specification) to be satisfied, and given that
variable y is assigned the value of variable w, then the detector that monitors
the program action y := w should ensure that 10 ≤ w + x ≤ 50. In such case,
it is easy to verify that detector (10 ≤ w + x ≤ 50) is consistent with safety
specification (10 ≤ y + x ≤ 50), see Fig 3.

Likewise, the detector monitoring program action x := read() should ensure
that 10 ≤ read() + w ≤ 50, such that when variable x is assigned value from
read(), then this does not violate the detector 10 ≤ w + x ≤ 50 monitoring
program action y := w, see Fig 4.

As for process a, the information flow is from process a to process b, through
the shared variable w. The value of variable w is used to update the value of
variable y of process b. Thus, if the detector for program action y := w is to be
satisfied, then the value of variable w in process a should be cognizant of the fact
that variable w can be updated in two different ways. The detector monitoring
the if-then action of process a is as follows: (10 ≤ w + x − 15 ≤ 50) ∨ (10 ≤
w + x + 5 ≤ 50), which is equivalent to (25 ≤ w + x ≤ 65) ∨ (5 ≤ w + x ≤ 45).
The program is shown in Fig. 5.

Depending on the fault model, some of those detectors may be excluded. For
example, if faults were not to affect variables x and y say, then the detector
monitoring program action z := x + y will not be needed, i.e., 10 ≤ x + y ≤ 50.

As can be deduced, the complexity of the procedure is polynomial in the
size of the program (i.e., polynomial in the state space of the fault-intolerant

7 Whenever it is obvious from the text, we will use the term globally consistent de-
tectors to mean SS-globally consistent detectors.



Program P1
var w init 1, c1 init 1 : int // process a
var x init 5, y init 1, z init 10, c2 init 1 : int // process b

process a:
c1 = 1 → w := read(); c1 := c1 + 1; // value between 15 and 25
c1 = 2 ∧ x ≤ 15 → w := w + 5; c1 := 1; // loop
c1 = 2 ∧ x > 15 → w := w − 15; c1 := 1; // loop

process b:
c2 = 1 → x := read(); c2 := c2 + 1; // value between 0 and 20
c2 = 2 ∧(10 ≤ w + x ≤ 50)→ y := w; c2 := c2 + 1;
c2 = 3 ∧(10 ≤ y + x ≤ 50) → z := y + x; c2 := c2 + 1;
c2 = 4 → output(z); c2 := 1; // loop

F (faults):
true → x := random [10 . . . 45]
true → w := random [1 . . . 50]

Fig. 3. An Example to show generation of SS-globally consistent detectors. Observe
that the critical action z := y + x is monitored by a detector defining SS.

Program P1
var w init 1, c1 init 1 : int // process a
var x init 5, y init 1, z init 10, c2 init 1 : int // process b

process a:
c1 = 1 → w := read(); c1 := c1 + 1; // value between 15 and 25
c1 = 2 ∧ x ≤ 15 → w := w + 5; c1 := 1; // loop
c1 = 2 ∧ x > 15 → w := w − 15; c1 := 1; // loop

process b:
c2 = 1 ∧(10 ≤ w + read() ≤ 50)→ x := read(); c2 := c2 + 1; // value

between 0 and 20
c2 = 2 ∧(10 ≤ w + x ≤ 50)→ y := w; c2 := c2 + 1;
c2 = 3 ∧(10 ≤ y + x ≤ 50) → z := y + x; c2 := c2 + 1;
c2 = 4 → output(z); c2 := 1; // loop

F (faults):
true → x := random [10 . . . 45]
true → w := random [1 . . . 50]

Fig. 4. An Example to show generation of SS-globally consistent detectors



Program P1
var w init 1, c1 init 1 : int // process a
var x init 5, y init 1, z init 10, c2 init 1 : int // process b

process a:
c1 = 1 ∧((25 ≤ x + w ≤ 65) ∨ (5 ≤ x + w ≤ 45)) → w := read();

c1 := c1 + 1; // value between 15 and 25
c1 = 2 ∧ x ≤ 15 ∧(5 ≤ x + w ≤ 45)→ w := w + 5; c1 := 1; // loop
c1 = 2 ∧ x > 15 ∧(25 ≤ x + w ≤ 65) → w := w − 15; c1 := 1; // loop

process b:
c2 = 1 ∧(10 ≤ w + read() ≤ 50)→ x := read(); c2 := c2 + 1; // value

between 0 and 20
c2 = 2 ∧(10 ≤ w + x ≤ 50)→ y := w; c2 := c2 + 1;
c2 = 3 ∧(10 ≤ y + x ≤ 50) → z := y + x; c2 := c2 + 1;
c2 = 4 → output(z); c2 := 1; // loop

F (faults):
true → x := random [10 . . . 45]
true → w := random [1 . . . 50]

Fig. 5. The final program with SS-globally consistent detectors

program). As we have explained earlier, SS-globally consistent detectors are in-
stances of perfect detectors, i.e., they detect errors if and only if they lead to
violation of the safety specification. Thus, whenever a fault occurs, and given the
fact that the detectors are perfect implies that the corresponding error will be
detected earlier, i.e., it has a lower latency, than if the error is to be detected by
the detector guarding the critical action. Specifically, given our fault model and
a set D of perfect detectors for program p (resulting in fail-safe fault-tolerant
p′) with safety specification SS, then a detector di ∈ D exists such that when-
ever a bad event is about to occur, di will flag the problem, i.e., p′ has minimal
detection latency (i.e., “0-step” – no bad event happens).

Overall, in this section, we have argued that SS-globally consistent detectors
are perfect detectors, and we have illustrated, by means of examples, how these
are generated. We also argued that when SS-globally consistent detectors are
incorporated into a program, the program has a better detection latency.

6 Automatic Generation of Test Cases for Testing/Fault
Injection Using Perfect Detectors

In this section, we explain how the use of perfect detectors (i.e., SS-globally
consistent detectors) help in the automatic generation of test cases for testing
the fail-safe fault-tolerant program, or for fault-injection purposes.

For test case generation, we use the perfect detectors to partition the state
(input) space. In [5], the authors argued that for partition testing to be efficient,



there is a need to group within one given partition all inputs that will cause the
system to fail. The availability of SS-globally consistent detectors, i.e., perfect
detectors means that those detectors will partition the input space “perfectly”,
i.e., one can group into one partition all inputs that will cause the program to fail.
For example, the safety specification of our example program is 10 ≤ z ≤ 50.
If we want to test the program using test cases that will cause the program
to fail (e.g., for fault-injection), we should choose test cases from the space
((x + y < 10) ∨ (x + y > 50)) just before executing the critical action.

So, when the resulting fail-safe fault-tolerant program has to be validated
(e.g., testing or fault-injection), whenever execution reaches one of of the detec-
tors, an appropriate test case can be automatically generated, and the behavior
of the program observed. For example, consider Fig. 5. If the action y := w in
process b is about to be executed when the program is running, the detector for
this action is (10 ≤ w + x ≤ 50). So, to generate a test case for fault-injection,
we need to invert the detector condition, i.e., (w + x < 10) ∨ (w + x > 50), and
choose an appropriate value of w that will satisfy the inverted condition.

Similarly, for testing, i.e., testing the fail-safe fault-tolerant program, if the
system designer wants to perform unit testing, i.e, testing of each process, the
detectors can again be used to help automatically generate the required test cases
(assuming all the required stubs are available). For example, considering Fig. 5
again, unit testing of process b will “force” read() to generate a value that will
violate the detector monitoring this action. For integration testing, i.e., testing
communication between processes, the detectors again help in automatically
generating test cases. For example, from Fig. 5, for testing the interface between
processes a and b, we reuse the detector (10 ≤ w + x ≤ 50) to generate the
relevant test cases.

7 Fault Injection Experiments to Ascertain SS-Global
Consistency

We have explained that SS-globally consistent detectors are perfect detectors,
i.e., they detect errors if and only if they will lead to violation of the safety
specification. We have also shown how to automatically generate the perfect
detectors, by means of an example. We also explained how, by exploiting the
information obtained from the perfect detectors, test cases for fault-injection
or testing can be automatically generated. In this section, we present the re-
sults from an experiment to ascertain the viability of the concept of SS-globally
consistent detectors.

The target software is an aircraft arresting system, used on short runways,
see Fig. 6. It consists of 6 modules. We focus on module V-REG. V-REG uses
the signals SetValue and IsValue to control OutValue, the output value to the
pressure valve. The value of the OutValue signal is calculated by evaluating a
function on the difference between the SetValue and the IsValue signals. The
reason for choosing moduleV-REG is that it is medium-sized, and SS-globally
consistent detectors could be easily generated for the module.

To ensure that SS-globally consistent detectors are indeed perfect detectors,
we compare them against detectors obtained directly from the specification of
the system. The detectors obtained from the specification monitored signals
SetValue (EA1) and IsValue (EA2), while the SS-globally consistent detector



Fig. 6. Software Architecture of the Target System

(EA3) obtained monitored both signals at the same time. EA4 is the safety
specification of the program, monitoring the critical action of the program. EA3

is the SS-globally consistent detector generated by our approach. Observe that
we had obtained a set of SS-globally consistent detectors, however, since we are
assuming that errors only get into the system via the input signals of mod-
ule V-REG, we only need to monitor the input signals. If faults could corrupt
the value of program variables, we would have included all of the SS-globally
consistent detectors in module V-REG. We determine SS-global consistency by
determining the consistency value of each detector with the safety specification.
If the consistency value of all detectors is 1, then all the detectors are SS-globally
consistent.

7.1 Fault Injection in V-REG Module

When performing the fault injection experiments, sometimes errors were injected
after an aircraft has been arrested. We therefore use the term errors to denote
whenever errors are injected before an aircraft has been arrested. The errors
injected were bit-flips in the input variables of the module, at different given
time instance.

First, we want to ascertain that EA1 and EA2 are not SS-globally consistent.
Thus, we try to ascertain the fact that there are cases where EA4 detects an
error whereas EA1 and EA2 do not, or vice versa.

From the fault injection experiments, we calculated the consistency of a given
EA, EAi, with respect to the safety specification (EA4) by calculating (i) the
number of concurrent error detection by EA4 and EAi conc-det, and (ii) number
of error detection by EA4, ss-det. The consistency values in Table 1 is then
calculated as follows: (1 - abs (ss-det - conc-det)/(ss-det)). For example, there
were 3840 error injections into SetV alue, and of these, EA1 detected 1932, giving
a detection coverage of 0.50313 for EA1. Also, there were 2051 corruptions of
the system state, leading to violations of the safety specification. Of these, 1561
errors were detected by EA1. Using the consistency equation above gives a value
of 0.76109 for consistency. The same is repeated for the consistency value of EA2



and EA3. The consistency value of EA4 is NA since we assume it to be 1 (by
default).

Metrics EA1 EA2 EA3 EA4

Consistency 0.76109 0.44369 1 NA

Table 1. Consistency Values of detectors for errors injected in SetValue

For data in Table 2, errors injected in IsV alue, the following values were
obtained:

Metrics EA1 EA2 EA3 EA4

Consistency 0.082714 0.90441 0.99951 NA

Table 2. Consistency Values of detectors for errors injected in IsValue

We also note that the consistency value of EA3 from Table 2 is less than
1. From closer inspection, we found that this mismatch is due to the fact that
sometimes error is detected after the aircraft has been arrested, and when the
system is performing some reset action. So, this slight mismatch can be safely
ignored, since we did not consider the case when the system is actually resetting.
The overall consistency value of each detector is summarized in Table 3.

Overall, we have found that the detector generated by our approach is indeed
a perfect detector, since it has consistency value of almost 1 (it is consistent with
the safety specification of the system). However, the specification-based detectors
EA1 and EA2 sometimes allow errors to go undetected, and violate the safety
specification, which can have disastrous consequences for safety critical systems,
or are inaccurate leading to performance degradation. Also, these detectors also
seem to detect errors even though those errors are “harmless” (will not lead to
violation of safety specification). These observations corroborate those made by
Leveson et. al [10], i.e., specification-based detectors are likely to be inaccurate
and/or incomplete. Hence, our approach can be seen as a first step in addressing
the problem of generating perfect detectors.

Metrics EA1 EA2 EA3 EA4

Consistency 0.42457 0.67224 0.99975 NA

Table 3. Consistency values of detectors for errors injected in V-REG module inputs

8 Discussion and Conclusions

In this paper, we have presented an approach for designing efficient fail-safe
fault-tolerant program, i.e., programs with perfect error detection and optimal
detection latency. We have explained, through examples, how such detectors
(perfect detectors) can be generated. We also explained how, by using the perfect
detectors, test cases for validating the fail-safe fault-tolerant program can be
automatically obtained. The complexity of our method is polynomial in the size



of the program (state space) [6]. Our approach is novel, and to the best of our
knowledge, there is no work that has addressed the design of perfect detectors
for software. Our work also solves some of the problems posed in [10], and the
observations made when running the fault-injection experiments corroborate all
the findings presented in [10].

We have shown that SS-globally consistent detectors are instances of perfect
detectors, and we have presented an experimental analysis of how SS-global
consistency can be verified. Our approach works for a class of programs, known
as bounded programs, of which embedded applications are instances.

In this work, we have looked at continuous signals. As future work, we will
look at including discrete signals in our framework. An initial possible approach
is to partition the space of the continuous signal into disjoint sets of continuous
values, where each set can represent one discrete value.

A final note on our approach: note that our approach is not based on inverting
the code of the program, rather it makes use of the computation itself to generate
detectors. Thus, the problem with having non-invertible functions, such as hash
functions, do not apply, and the way our approach deals with such situations is
to include the function call inside the detector, e.g., 0 ≤ x + F (y) ≤ 25.
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