
Int. J. on Security and Networks, Vol. x, No. x, xxxx 1

An Approach to Synthesize Safe Systems

Arshad Jhumka1, Felix Freiling2,

Christof Fetzer3 and Neeraj Suri4∗

1 Dept of Computer Science, University of Warwick, UK
2 Dept of Computer Science, University of Mannheim, Germany
3 Dept of Computer Science, TU Dresden, Germany
4 Dept of Computer Science, TU Darmstadt, Germany
∗Corresponding author

Abstract: Detectors are system components that identify whether the
system is in a particular state. Detectors can be used to ensure arbi-
trary safety properties for systems, i.e., they can be used to prevent the
system from reaching a “bad” state. Detectors have found application
in the area of fault-tolerant systems but can also be used in the area of
security. We present here a theory of detectors that identifies the class
of perfect detectors and explains their importance for fault-tolerant sys-
tems. Based on the theory, we develop an algorithm that automatically
transforms a fault-intolerant program into a fault-tolerant program that
satisfies its safety property even in the presence of faults. We further
show how to use some of the results for adding security properties to a
given insecure program. We provide examples to show the applicability
of our approach.

Keywords: Safe systems, formal methods, security, reliability, pro-
gram transformation

Copyright c© 200x Inderscience Enterprises Ltd.

2 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

1 Introduction

Critical applications need to satisfy stringent dependability requirements in their
provision of services. Such applications need to remain safe in spite of external per-
turbations from the environment such as fault occurrences or security intrusions.
There are various formal approaches to ensure the correctness of these applica-
tions, the more prominent being model checking (or some other formal verification
techniques) and synthesis approaches.

Synthesis approaches are inherently transformational in nature, in that they
transform a given program such that the resultant program has some additional
properties. Several such approaches exist in the fault tolerance area, for example,
Liu and Joseph [21, 22], Arora et al. [2], Peled and Joseph [23] (for a survey of trans-
formational approaches see Gärtner [9]). Similarly, transformational approaches
have been developed for the security area, e.g., Schneider [25], Ligatti et.al [20],
Erlingsson and Schneider [8]. These are sometimes referred to as program rewriting.
Though both fault tolerance and (part of) security focuses on similar properties,
they have grown into separate research threads. In this paper, we will develop a
theory that can be applied to both fault tolerance and security areas.

In the realm of transformational approaches for fault tolerance, Arora and
Kulkarni [4] showed that the fundamental mechanisms used by these fault tol-
erance mechanisms can be factorized along two dimensions: (1) prevention of
taking bad steps, and (2) guaranteeing that necessary good steps are eventually
performed. They thus proposed a modular transformational approach [3] to de-
sign fault-tolerant systems from fault-intolerant systems. It was shown [4] that
to achieve the first goal, it is necessary and sufficient to compose the program
with components called detectors that detect the effects of faults, i.e., errors, on
the system state, and, to achieve the second goal, it was necessary and sufficient
to compose the system with components called correctors that correct the errors
on the system state. Intuitively, a detector is a program component that detects
whether a given predicate holds in a given program state. Examples of a detector
are error detecting codes, acceptance tests, self checks, snapshot procedures and ex-
ecutable assertions [13]. Analogous concepts can be found in the security literature.
For example, Hamlen et.al [12] defined a detector to be a predicate that induces a
security policy, and Schneider [25] identifies a set of security automata that detect
whether the system is about to violate its security policy. Using detectors it is pos-
sible to prevent a program from reaching an unrecoveravly bad state, i.e., they can
be used to ensure what Lamport called a safety property [18]. In this paper, we fo-
cus on the setting where a program should never violate its safety specification, i.e.,
its desired safety property. This should be true in spite of external perturbations.
Thus, it is acceptable for a program to halt when it is about to violate its safety
specification. In fault tolerance, such as program is called fail-safe fault-tolerant.

The design of efficient detectors is difficult. For example, Leveson et al. [19]
remark that the “process of writing self checks is obviously difficult” and that often
detectors were ineffective, i.e., the detectors did not detect errors when they were
present, and some other detectors signalled false alarms, i.e., they would flag an er-
ror when no such error is present. Leveson et al. concluded that, to design effective
detectors, “more training or experience might be helpful”. These remarks indicate
that sound methodological approaches or frameworks are needed to possibly guide

An Approach to Synthesize Safe Systems 3

a programmer in developing effective detectors. Further, it is difficult to effectively
locate the detectors such that they effectively detect the erroneous program runs
that can violate safety.

To address these problems (design and location of detectors), we develop a the-
ory that guides in the effective design and location of those detector predicates.
In this paper, we will develop a theory intended mainly for fault tolerance, but an
interesting fact is that a part of the theory is also applicable to enforcing security
properties on a program. For fault tolerance, we endeavour to develop automated
synthesis approaches to design efficient fail-safe fault tolerance, i.e., they do not
trigger false positives and false negatives. Automated synthesis approaches devel-
oped on the settings used in this paper have been developed by Kulkarni and Arora
[16], however they do not address the problems we focus on in this paper, i.e., their
approaches focus on fail-safe fault tolerance design, whereas we focus on efficient
fail-safe fault tolerance design. Hence, the theory we develop offers more insight
into the workings of detector components in fail-safe fault tolerance. To ease un-
derstanding of our approach, we will adopt a dual view of programs, namely the
syntactic view (guarded program notation) and the semantic view (state transi-
tion system). In general, if a security requirement can be formulated as a safety
property, our approach can also be used to synthesize secure programs. However,
the model of programs we used in security will differ slightly from these, since we
will look at programs that cross function boundaries, i.e., programs that consist of
function calls. But, some of the fault tolerance results will still apply to the security
area.

Overall, in this paper, we make the following contributions:

• We present a novel theory of detectors that accurately describes the working
principles of detectors in fault-tolerant programs.

• We identify various classes of detectors, and identify their role in the design
of efficient fail-safe fault tolerance.

• Based on our theory, we provide a polynomial-time algorithm that system-
atically transforms a fault-intolerant program into an efficient fail-safe fault-
tolerant.

• We show the applicability of the theory through a case study.

• We further show the applicability of the theory in the design of secure pro-
grams.

The paper is structured as follows: Section 2 recalls the basic model and ter-
minology we use in the paper. Section 3 provides an overview of detectors and
their role in establishing fail-safe fault tolerance. Section 4 defines the problem
of adding fail-safe fault-tolerance using detectors. Section 5 develops the theory
of perfect detectors, along with correctness theorems. In Section 6 we present an
algorithm that automatically generates a fail-safe fault-tolerant program from the
corresponding fault-intolerant program with perfect detection capabilities. To show
the applicability of our theory, we develop fault-tolerant program in Section 7. We
then discuss the applicability of our approach to the area of security in Section 8.
We summarize and conclude the paper in Section 9.

4 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

2 Preliminaries

2.1 Programs

A program p consists of a finite set of processes {p1, . . . , pn}. Each pi contains
a finite set of actions, and variables. The set of variables Vp of p is the union of all
process variables. Each variable stores a value from a nonempty finite domain and
each variable stores an initial value drawn from their respective domain.

A state (resp. initial state) of p is a function that assigns a value (resp. initial
value) to every variable in p. The state space Sp of p (resp. initial state space Ip

of p) is the set of all possible states (resp. initial states) of p. A state predicate of
p is a boolean expression over the state space of p. Syntactically, a program action
has the form

〈guard〉 → 〈statement〉

in which the guard is a state predicate of p and the statement is either the empty
statement or an instantaneous assignment to one or more variables.

An action ac of p is enabled in a state s if the guard of ac evaluates to “true”
under s. An action ac can be semantically represented by a set of state pairs. We
assume that actions are deterministic, i.e., ∀s, s′, s′′ : (s, s′) ∈ ac ∧ (s, s′′) ∈ ac ⇒
s′ = s′′. Note that programs are permitted to be non-deterministic since multiple
actions can be enabled in the same state.

A computation of p is a weakly fair (finite or infinite) sequence of states s0, s1, . . .

such that s0 ∈ Ip and for each j ≥ 0, sj+1 results from sj by executing the
assignment of a single action which is enabled in sj . Weak fairness means that if a
program action ac is continuously enabled along the states of a computation, then
ac is eventually chosen to be executed. Weak fairness implies that a computation
is maximal with respect to program actions, i.e., if the computation is finite then
no program action is enabled in the final state.

If α is a finite computation and β is a computation, we denote with α · β the
concatenation of both computations. A state s occurs in a computation s0, s1, . . .

iff there exists an i such that s = si. Similarly, a transition (s, s′) occurs in a
computation s0, s1, . . . iff there exists an i such that s = si and s′ = si+1. State
s is reachable by p iff starting from an initial state of p it is possible to construct
a computation which contains s by executing a sequence of guarded actions of p.
Otherwise s is unreachable. A transition (s, s′) is reachable by p iff s is reachable
by p. Otherwise it is unreachable.

2.2 Finite State Machines

Every program can uniquely be represented as a finite state machine, i.e., the
tuple (Sp, Ip, δp) where Sp is the state space, Ip ⊆ Sp is the set of initial states,
and δp ⊆ Sp × Sp is the state transition relation. When designing systems it is
preferable to use the notation of guarded actions since such actions are close to
the level of abstraction which is offered by programming languages [7, 5]. Every
guarded action ac is an abstraction of a set of transitions in δp. The transition
(s, s′) is member of δp iff ac is enabled in state s and computation of the statement
results in state s′. We say that ac induces all these transitions (s, s′). State s is
called the start state and s′ is called the end state of the transition.

An Approach to Synthesize Safe Systems 5

Finite state machines can be considered an implementation level representation
of programs since such machines can be directly implemented in hardware. Given
a program p it is possible to compute the corresponding finite state machine in
O(|Sp| · A) steps where A is the total number of deterministic actions of p.

2.3 Communication

Two processes pr and pw of a program p communicate as follows: for each pair
of processes pr and pw there exists a set of shared variables Vs ⊆ Vp. Both processes
can read the contents of any variable in Vs, but only pw can update these variables.
This defines the information flow and variable access across two processes. The set
Vs represents the interface between processes pw and pr.

There exists a set of special variables Vo ⊆ Vp that are shared by some processes
(that write to the variables), and the environment that reads them. These special
variables are commonly referred to as the output variables. There exists also a
special set of variables, denoted by Vi, where each of the variables is written to
by the environment, and read by a process in p. Such variables are known as
input variables. Input and output variables represent the interface of the program
p with its environment. Whenever Vi and Vo are non-empty, such a program model
reflects the system assumptions of distributed embedded applications (like sensors
and actuators).

For embedded applications, the fact that a program may initially read external
inputs before executing is modeled by providing multiple initial states. We ex-
pect the program to periodically write the results of a computation to the output
variables.

2.4 Specifications

A specification for a program p is a set of computations which is fusion-closed.
A specification S is fusion-closed iff the following holds for finite computations α, γ,
a state s and computations β, ε: If α · s · β and γ · s · ε are in S, then so are α · s · ε
and γ · s · β. A computation cp of p satisfies a specification S iff cp ∈ S, otherwise
cp violates S. A program p satisfies a specification S iff all possible computations
of p satisfy S.

Intuitively, a fusion-closed specification allows a program to make decisions
about future state transitions by looking at its current state only. This means
that programs do not need to have a larger state space (i.e., more variables) than
the specification. Fusion-closed specifications are non-restrictive in the sense that
every specification which is not fusion-closed can be transformed into an equivalent
fusion-closed specification by adding history variables [10]. Furthermore, “low-
level” specifications like C programs, state-transition diagrams, and specifications
written in the widespread Unity logic [5] are fusion-closed [11, 3]. We discuss the
consequences of requiring fusion-closed specifications below.

Alpern and Schneider [1] have shown that every specification can be written
as the intersection of a safety specification and a liveness specification. A safety
specification demands that “something bad never happens” [18]. This defines a set
of “bad” finite computation prefixes that should not be found in any computation.

6 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

A liveness specification determines what types of events must eventually happen.
Since we are mainly interested in safety specifications we specifiy a formal definition
of safety.

Definition 1 (Safety specification) A specification S of a program p is a safety
specification iff the following condition holds: For every computation σ that violates
S, there exists a prefix α of σ such that for all computations β, α · β violates S.

The notion of a finite computation of not being “bad”, i.e., the possibility to
extend it to remain in the specification, is captured by the definition of maintains
which can also be used to define safety specifications.

Definition 2 (Maintains) Let p be a program, S be a specification and α be a
finite computation of p. We say that α maintains S iff there exists a sequence of
states β such that α · β ∈ S.

2.5 Fault Models and Fault Tolerance

A fault model precisely describes the way operations/components of the system
may fail. Fault models have been classified into different domains [24]: time faults
(including stopping faults), and value faults. Traditional stopping faults (like silent
component crashes) cannot lead by themselves to a violation of safety. To violate
a safety specification, a system must exhibit one of the disallowed computation
prefixes. However, the standard value faults from practice (i.e., bit-flips, stuck-at
faults, memory perturbation faults) can directly or indirectly lead to a violation of
safety.

At the program level, any fault assumption which endangers a safety specifi-
cation can be modeled as a set of added actions. In this context, we can broadly
categorize faults into two classes: (i) faults that do not directly cause violation of
safety, and (ii) faults that directly violate safety. We focus on the first class above,
i.e., the subset of fault models which have the desirable property that they can po-
tentially be tolerated: We disallow faults to violate the safety specification directly.
For example, in the case of distributed embedded applications, if a safety specifica-
tion constrains the output variables of a program, the fault model may not modify
the output variables directly in such way that the fault itself results in a safety vio-
lation. We stress again that it is impossible to achieve fail-safe fault-tolerance if we
do not make this assumption. In practice, of course, it must still be ensured that the
expected faults are covered by the fault model with high probability. This can be
attempted by adding redundancy and therefore applying fault-tolerance techniques
at a different level of abstraction.

Definition 3 (Fault model) A fault model F for program p and safety spec-
ification SSPEC is a set of actions over the variables of p that do not violate
SSPEC, i.e., if state sequence s0, s1, . . . , sj maintains SSPEC, then the state se-
quence s0, s1, . . . , sj , sj+1 which results from executing any action from F in sj also
maintains SSPEC.

We call the members of F the fault actions (or faults). We say that a fault
occurs if a fault action is executed. We denote by F (p) the program p in presence
of faults F , or by δF

p when considered in the state transition system.

An Approach to Synthesize Safe Systems 7

Definition 4 (Computation in the presence of faults) A computation of p

in the presence of F is a weakly p-fair sequence of states s0, s1, . . . such that s0

is an initial state of p and for each j ≥ 0, sj+1 results from sj by executing a
program action from p or a fault action from F .

Note that by weakly p-fair we mean that only the actions of p are treated weakly
fair, i.e., a fault action might never be executed even if it is continuously enabled.
The notions of a state or transition being reachable in the presence of faults can be
defined analogously to the terms for fault-free computations.

Definition 5 (Fail-safe fault-tolerance) Let S be a specification, SSPEC be the
smallest safety specification including S, and let F be a fault model. A program p

is said to be fail-safe F -tolerant for specification S iff all computations of p in the
presence of F satisfy SSPEC.

If F is a fault model and SSPEC is a safety specification, we say that a program
p is F -intolerant for SSPEC iff p satisfies SSPEC but F (p) violates SSPEC . We
will also write fault-intolerant instead of F -intolerant for SSPEC if F and SSPEC
are clear from the context.

3 Detectors and their Role in Constructing Fail-Safe Fault-Tolerant
Programs

All standard fault-tolerance mechanisms (like error-correcting codes, state ma-
chine replication, rollback-recovery) can be modeled as the composition of a fault-
intolerant program with fault-tolerance components [4]. It also can be shown that a
class of program components called detectors is necessary and sufficient to establish
fail-safe fault-tolerance in the context of fusion-closed specifications [3]. Intuitively,
a detector is a program module that detects whether a given state predicate is
satisfied in a given state. Given our focus in adding fail-safe fault-tolerance, we re-
call [3] a result stating that detectors are sufficient to build fail-safe fault-tolerant
applications. The main idea of the result is to use detectors to simply “halt” the
program in a state where it is about to violate the safety specification.

An important prerequisite for this sufficiency result is that specifications are
fusion-closed. Fusion-closed specifications allow to characterize a safety specifica-
tion as a set of disallowed “bad” transitions (instead of a set of disallowed compu-
tation prefixes).

Definition 6 (bad transition) For a program p, a transition t ∈ δp is bad with
respect to a safety specification SSPEC if for all computations σ of p holds: If t

occurs in σ then σ 6∈ SSPEC.

Proposition 1 ([15]) Let SSPEC be a safety specification. If p is an F -intolerant
program for SSPEC then δp contains a bad transition with respect to SSPEC.

A bad transition is a concept that is applicable in the finite state machine rep-
resentation of a program only and not in the guarded action representation. While
a guarded action ac may induce a bad transition, there may be other transitions
induced by ac which are not bad transitions. In the implementation of a program

8 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

as a finite state machine, Proposition 1 indicates that it is sufficient—in order to
maintain a safety specification—to keep track of the current computation and take
precautions not to run into one of the bad transitions, which are indeed induced by
program actions, which are disallowed by the safety specification.

A detector is a concept from the guarded actions representation of a program
[4]. Intuitively, a detector refines the guard of the corresponding action in such
a way that the action is never executed whenever the action could induce a bad
transition. Formally, a detector for an action implements a state predicate d which
is “true” iff execution of the action starting in d maintains the specification. Given
an action g → st , a detector for this action refines the guard to g ∧ d, which was
shown to exist for every action in a program by Arora and Kulkarni [4].

Definition 7 (Detector for an action) Let SSPEC be a safety specification. An
SSPEC -detector d monitoring program action ac of p is a state predicate of p such
that executing ac in a state where d holds maintains SSPEC.

We will simply talk about detectors instead of SSPEC-detectors if the relevant
safety specification is clear from the context.

Intuitively, detectors ensure that bad transitions are made unreachable in the
presence of faults in the state machine representation of the program. However,
designing detectors is not an easy task in distributed systems and has its inherent
complexities [17, 14]. Further, manual design of detectors entails that the system
has to be formally verified again to verify that no desired properties had been
removed and no unwanted properties introduced. To this end, we develop a theory
underpinning the design of efficient detectors.

4 The Transformation Problem

We now formally state the problem of transforming a fault-intolerant program p

into a fail-safe fault-tolerant version p′ for a given safety specification SSPEC and
fault model F .

When deriving p′ from p, only fault tolerance should be added. Specifically, two
conditions need to be satisfied in the transformation problem:

• If there exists a transition (s, t) in p′ that is not used by p to satisfy SSPEC ,
then (s, t) cannot be used by p′, since this means that there are other ways
p′ can satisfy SSPEC in the absence of faults. The set of transitions of p′

should be a subset of the set of transitions of p.

• If there exists a state s reachable by p′ in the absence of faults that is not
reached by p in the absence of faults, this means that p′ can satisfy SSPEC
differently from p in the absence of faults, and such a state s should not be
reached by p′ in the absence of faults. Thus, the set of states reachable by p′

should be a subset of the set of states reachable by p.

In general, these conditions result in the requirement that both programs should
have the same set of fault-free computations. Formally, we define the transformation
problem as follows:

An Approach to Synthesize Safe Systems 9

Definition 8 (Fail-safe transformation problem) Let SSPEC be a safety spec-
ification, F a fault model, and p an F -intolerant program for SSPEC. Identify a
program p′ such that the following three conditions hold:

1. p′ satisfies SSPEC in the presence of F .

2. In the absence of faults, every computation of p′ is a computation of p.

3. In the absence of faults, every computation of p is a computation of p′.

Later in Section 6 we present an algorithm which solves the above transformation
problem, i.e., we present an algorithm that systematically transforms any fault-
intolerant program into a program that satisfies the above three conditions. The
algorithm is based on a theory for perfect detectors which we introduce in the
following section.

5 A Theory of Perfect Detectors

This section presents a theory of detector components which helps in the design
of fail-safe applications. The theory is centered around the notion of an SSPEC -
inconsistent transition which is introduced in Section 5.1. Using this notion, we
identify correctness criteria for programs composed with so-called perfect detectors
in Section 5.2.

The notion of an SSPEC -inconsistent transition is tied to the finite state ma-
chine representation of programs while the notion of perfect detectors refers to the
guarded actions representation of a program. Hence, the theory both allows to
(1) identify general principles about good detector design and (2) derive an algo-
rithm to automatically add efficient fail-safe fault tolerance at “compile time”. This
algorithm will be presented in Section 6.

5.1 Transition Consistency in the Context of Safety Specifications

The intuition behind the definition of SSPEC -inconsistent transition is that
faults do not, by definition, directly violate safety. To violate safety, one or more
faults need to be followed by at least one or more program transitions. We have
already identified the program transitions that violate the safety specification as bad
transitions. We call the program transitions starting at the first bad transition of a
computation until the preceding fault transition as SSPEC -inconsistent transitions.
Formally, we define this as follows.

Definition 9 (SSPEC -inconsistent transition) Given a fault-intolerant pro-
gram p with safety specification SSPEC, and a computation α of p in the presence
of faults F . A transition (s, s′) is SSPEC -inconsistent for p w.r.t. α in presence of
faults F iff

1. there exists a prefix α′ of α such that α′ violates SSPEC,

2. (s, s′) occurs in α′, i.e., α′ = σ · s · s′ · β,

3. all transitions in s · s′ · β are in δp, and

4. σ · s maintains SSPEC.

10 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

Finite State Machine Example. Figure 1 shows a graphical explanation of Defini-
tion 9. It shows the state transition relation of a program in the presence of faults
(the transition (s3, s4) is introduced by F). The safety specification SSPEC identi-
fies a bad transition (s6, s7) which should be avoided. In the presence of faults, this
transition becomes reachable and hence the program if F -intolerant since it exhibits
a computation α1 violating SSPEC . In this computation, the three transitions fol-
lowing the fault transition match Definition 9 and hence are SSPEC -inconsistent
w.r.t. α1 in the presence of F . Note that an SSPEC -inconsistent transition is only
reachable in the presence of faults.

. . .

initial state

s1 s2 s3 s4 s5

s6

s8

s7

s9

α1

α2

fault transition

inconsistent w.r.t. α1

bad transition

Figure 1 Graphical explanation of SSPEC -consistency.

Guarded Command Example. Consider the simple program P1 in Figure 2 which
reads two sensors, and then outputs the sum of the two readings. The safety
specification SSPEC requires the output to be always between 10 and 25. The
fault transitions state that, from each state, the value of variable x and y can be
arbitrarily changed to a value in the range of [0 . . . 25] and [0 . . . 50], respectively.
Consider now computation α (states are given as triples 〈x, y, z〉, i.e., the program
counter c is not explicitly given):

α : 〈1, 1, 10〉 · 〈10, 1, 10〉 · 〈10, 5, 10〉 · 〈10, 5, 15〉

Obviously, α satisfies SSPEC and so no program transition is SSPEC -inconsistent.
Now consider computation β which violates SSPEC :

β : 〈1, 1, 10〉 · 〈10, 1, 10〉 · 〈25, 1, 10〉 · 〈25, 5, 10〉 · 〈25, 5, 30〉

In β, a fault transition occurs after the second state, i.e., state 〈10, 1, 10〉, changing
the value of x to 25. The subsequent program transition from 〈25, 1, 10〉 to 〈25, 5, 10〉
is SSPEC -inconsistent, since the execution of the following program transition to
state 〈25, 5, 30〉 causes a violation of the safety specification. The program tran-
sition from 〈25, 5, 10〉 to 〈25, 5, 30〉 is also SSPEC -inconsistent. The first program
transition and the fault transition are not SSPEC -inconsistent.

Intuitively, an SSPEC -inconsistent transition for a given program computation
is a program transition where the subsequent execution of a sequence of program ac-
tions causes the computation to violate the safety specification. In a sense, SSPEC -
inconsistent transitions lead the program computation on the “wrong path”.

Now we define SSPEC -inconsistency independent of a particular computation.
Intuitively, we call a program transition SSPEC -inconsistent if there exists a “wrong
path” for which the transition is SSPEC -inconsistent.

An Approach to Synthesize Safe Systems 11

Program P1
var x init 1, y init 1, z init 10, c init 1 : int

c = 1 → x := read(); c := c + 1; // x within [5 . . . 10]
c = 2 → y := read(); c := c + 1; // y within [5 . . . 15]
c = 3 → z := x + y; c := c + 1
c = 4 → output(z); c := 1 // loop forever

F (faults):
true → x := random [0 . . . 25]
true → y := random [0 . . . 50]

Figure 2 Program to illustrate SSPEC-inconsistent transitions (Definition 9).

Definition 10 (SSPEC -inconsistent transition for p) Given a program p with
safety specification SSPEC. A transition (s, s′) is SSPEC -inconsistent for p in pres-
ence of faults F iff there exists a computation α of p in the presence of faults F

such that (s, s′) is SSPEC-inconsistent for p w.r.t. α in presence of F .

Example. In general, a transition can be SSPEC -inconsistent w.r.t. a computation
α1, and not be SSPEC -inconsistent w.r.t. α2 (see Fig. 1). This can be due to
nondeterminism in program execution. For example, consider the program P2 in
Figure 3. The safety specification SSPEC mandates that always 10 ≤ z ≤ 50.
Consider now the following computation α1 of P2 (a state is given as 〈w, x, y, z〉):

α1 = 〈1, 5, 1, 10〉 · 〈1, 10, 1, 10〉 · 〈1, 45, 1, 10〉 · 〈15, 45, 1, 10〉 · 〈15, 45, 15, 10〉 · 〈15, 45, 15, 60〉

In the second state a fault occurs setting x to 45 and effectively causing α1 to
violate SSPEC after execution of a sequence of program transitions. Notice that
the transition t = (〈1, 45, 1, 10〉, 〈15, 45, 1, 10〉) is SSPEC -inconsistent for p w.r.t. α1.

Now consider computation α2 of p:

α2 = 〈1, 5, 1, 10〉 · 〈1, 10, 1, 10〉 · 〈1, 45, 1, 10〉 · 〈15, 45, 1, 10〉 · 〈0, 45, 1, 10〉 · 〈0, 45, 0, 10〉 · 〈0, 45, 0, 45〉

Here again a fault happens in the second state but due to a lucky interleaving of
program actions α2 maintains SSPEC . Hence, the same program transition t as
above is not SSPEC -inconsistent for p w.r.t. α2.

If we cannot find a computation in the presence of faults for which a partic-
ular transition is SSPEC -inconsistent then we say that this transition is SSPEC -
consistent.

Definition 11 (SSPEC -consistent transition for p) Given a program p with
safety specification SSPEC. A transition (s, s′) is SSPEC -consistent for p in pres-
ence of faults F iff (s, s′) is not SSPEC-inconsistent for p in presence of F .

The notion of SSPEC -inconsistency is a characteristic for a computation which
violates SSPEC .

Proposition 2 Given a fault-intolerant program p for a safety specification SSPEC.
Every computation α of p in the presence of faults F that violates SSPEC contains
an SSPEC-inconsistent transition for p w.r.t. α in presence of F .

12 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

Program P2
var w init 1, c1 init 1 : int // process a
var x init 5, y init 1, z init 10, c2 init 1 : int // process b

process a:

c1 = 1 → w := read(); c1 := c1 + 1; // w within [15 . . . 25]
c1 = 2 ∧ x ≤ 15 → w := w + 5; c1 := 1; // loop
c1 = 2 ∧ x > 15 → w := w − 15; c1 := 1; // loop

process b:

c2 = 1 → x := read(); c2 := c2 + 1; // x within [0 . . . 20]
c2 = 2 → y := w; c2 := c2 + 1;
c2 = 3 → z := y + x; c2 := c2 + 1;
c2 = 4 → output(z); c2 := 1; // loop

F (faults):
true → x := random [10 . . . 45]
true → w := random [1 . . . 50]

Figure 3 Program containing two concurrent processes with a transition that is both
SSPEC -inconsistent and not SSPEC -inconsistent w.r.t. two different computations.

Proof.

1. Proposition 1 states that there exists a bad transition (s, s′) in α.

2. From proof step 1 and the definition of F follows that (s, s′) ∈ δp.

3. From proof step 2 and Definition 9, (s, s′) is SSPEC -inconsistent for p w.r.t. α.

2

Inconsistent transitions can also be characterized through the reachability of
bad transitions.

Proposition 3 Given a fault-intolerant program p for a safety specification SSPEC.
If (s, s′) is an SSPEC-inconsistent transition for p then a bad transition is reachable
starting from s using only program transitions from δp.

Proof. The proof follows directly from the definition of SSPEC -inconsistent
transitions and Proposition 1. 2

Reachability of bad transitions in δp leads to the following observation.

Proposition 4 Given a fault-intolerant program p for safety specification SSPEC.
Every SSPEC-inconsistent transition for p in presence of faults F is not reachable
in the absence of F .

Proof.

1. For a contradiction, assume the start state s of an SSPEC -inconsistent tran-
sition (s, s′) is reachable in the absence of faults.

2. Proof step 1 implies that there exists a computation α ·s ·s′ of p in the absence
of faults.

An Approach to Synthesize Safe Systems 13

3. From the fact that (s, s′) is inconsistent, and Proposition 3 there exists a
computation s · s′ · β of p in the absence of faults in which a bad transition
occurs.

4. From proof steps 2 and 3 follows that there exists a computation σ = α·s·s′ ·β
of p in the absence of faults containing a bad transition.

5. From proof step 4 and Proposition 1 there exists a computation of p in the
absence of faults which violates SSPEC .

6. From proof step 5 p violates SSPEC in the absence of faults, a contradiction.

2

Note that the previous observation cannot be strengthened to an equivalence (a
non-reachable transition in the absence of faults must not be SSPEC -inconsistent).
However, it can be reformulated to characterize reachable transitions in the absence
of faults as SSPEC -consistent.

Corollary 1 Given a fault-intolerant program p for a safety specification SSPEC.
Every reachable transition (s, s′) ∈ δp in the absence of faults F is SSPEC-consistent
for p in the presence of F .

In the next section, we introduce the notion of perfect detectors using the termi-
nology of SSPEC -consistency and SSPEC -inconsistency. The concept of perfect de-
tectors can be regarded as a programming level abstraction of SSPEC -inconsistency.

5.2 Perfect Detectors

From the previous section, we observed that SSPEC -inconsistent transitions
are those transitions that can lead a program to violate its safety specification in
the presence of faults if no precautions are taken. Perfect detectors are a means to
implement these precautions. The definition of perfect detectors follows two guide-
lines: A detector d monitoring a given action ac of program p needs to (1) reject
the starting states of all transitions induced by ac that are SSPEC -inconsistent for
p, i.e., starting states that may lead to a violation of safety, and (2) keep the start-
ing states of all induced transitions that are SSPEC -consistent for p in presence of
faults. We call the first property completeness and the second property accuracy
(see Figure 4). In the following definitions, p is a program with safety specification
SSPEC , ac is a program action of p, and F is a fault model.

Definition 12 (Detector completeness) A detector d monitoring ac is SSPEC -
complete for ac in p in presence of F iff for all transitions (s, s′) induced by ac holds:
if (s, s′) is SSPEC-inconsistent for p in presence of F then s 6∈ d.

Definition 13 (Detector accuracy) A detector d monitoring ac is SSPEC -accurate
for ac in p in presence of F iff for all transitions (s, s′) induced by ac holds: if s 6∈ d

then (s, s′) is SSPEC-inconsistent for p in presence of F .

Definition 14 (Perfect detector) A detector d monitoring ac is SSPEC -perfect
for ac in p in presence of F iff d is both SSPEC-complete and SSPEC-accurate for
ac in p in presence of F .

14 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

In other words, a perfect detector guarantees the equivalence that (s, s′) is
SSPEC -inconsistent for p in presence of F iff s 6∈ d.

d

d

d

d is accurate d is complete d is perfect

SS-inconsistent transition

Figure 4 Accurate, complete and perfect detector for an action. The arrows stand
for the set of transitions induced by that action.

Where the specification is clear from the context we will write accuracy instead
of SSPEC-accuracy (the same holds for completeness and perfection).

We now raise the low level definitions of perfect detectors to the program design
level of guarded actions. Intuitively, the completeness property of a detector is
related to the safety property of the program p in the sense that the detector
should filter out all “dangerous” SSPEC -inconsistent transitions for p, whereas the
accuracy property relates to the liveness specification of p in the sense that the
detector should not rule out SSPEC -consistent transitions in the absence of faults.
This intuition is captured by the following lemmas. The first one (Lemma 1)
uses the accuracy property to show that the fault free behavior of a program is not
affected by adding perfect detectors. The next one (Lemma 2) uses the completeness
property to show that perfect detectors indeed establish fault-tolerance.

Lemma 1 (Fault-free behavior) Given a fault-intolerant program p and a set
D of perfect detectors. Consider program p′ resulting from the composition of p

and D. Then the following statements hold:

1. In the absence of faults, every computation of p′ is a computation of p.

2. In the absence of faults, every computation of p is a computation of p′ .

Proof.

1. From Corollary 1, every program transition which is reachable in p is SSPEC -
consistent.

2. From construction, p′ results from adding perfect detectors to p. Because
they are perfect (Definition 14), they are accurate.

3. From proof steps 1, 2 and the definition of accuracy, all SSPEC -consistent
transitions of p are also transitions of p′.

4. Proof steps 1 and 3 imply that every reachable transition in p is also reachable
in p′.

5. Proof step 4 implies that every computation of p is also a computation of p′,
proving the first claim of the lemma.

6. From the definition of a detector (Definition 7) follows that composition with
detectors does not introduce new state transitions.

An Approach to Synthesize Safe Systems 15

7. Proof step 6 implies that δp′ ⊆ δp.

8. Proof step 7 implies that every computation of p′ is also a computation of p,
proving the second claim of the lemma.

2

To understand the behavior in the presence of faults, we make use of the notion
of a critical action. Intuitively, critical actions are program actions that may di-
rectly violate the safety specification. In effect these can only be actions that write
output variables.

Definition 15 (Critical and non-critical actions) An action ac is critical iff
there exists a transition (s, t) induced by ac such that (s, t) is a bad transition that
is reachable in presence of faults F . Otherwise n action is non-critical.

The set of bad transitions specified by the safety specification SSPEC of a
program p defines a set of critical actions in p. The following lemma gives a pro-
gramming level design guideline for adding fail-safe fault-tolerance.

Lemma 2 (Behavior in the presence of faults) Given a fault-intolerant pro-
gram p for a safety specification SSPEC,and fault class F . Given also a program
p′ by composing the critical actions of p with their corresponding perfect detectors.
Then, p′ satisfies SSPEC in presence of faults F .

Proof.

1. For a contradiction assume that p′ violates SSPEC . From definition of vio-
lates follows that there exists a computation σ of p′ which is not in SSPEC .

2. Proof step 1 and Proposition 1 imply that there a bad transition (s, s′) occurs
in σ.

3. Because of the restrictions on the fault model (critical variables are not af-
fected), the transition (s, s′) from proof step 2 must be a program transition
(i.e., (s, s′) ∈ δp′)

4. From proof step 3, and Definition 15, there exists a critical action ac that
induces the bad transition from proof step 3

5. From Definition 9 and proof step 3 the transition (s, s′) is SSPEC -inconsistent.

6. Consider the critical program action ac (from proof step 4) causing the bad
transition. From construction of p′, ac is composed with a perfect detector d.

7. From proof step 5 and because d is perfect, it is also complete.

8. Because d is complete (proof step 6), d monitors ac (proof step 5) and transi-
tion (s, s′) induced by ac is SSPEC -inconsistent (proof step 4), the definition
of completeness implies that s 6∈ d.

9. Proof step 7 implies that (s, s′) 6∈ δp′ which contradicts proof step 3.

16 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

2

Taken together, Lemmas 1, and 2 show that composing the critical actions of
a fault-intolerant program with perfect detectors is sufficient to solve the transfor-
mation problem defined in Section 4. The final question to answer is whether a
perfect detector exists for every critical action in program p? We assert a positive
answer to this as shown by the following lemma.

Lemma 3 (Existence of perfect detectors) Given a program p with safety spec-
ification SSPEC, and fault model F . For each critical action ac in p, there exists
a detector d such that d is perfect for ac in p in presence of F .

Proof.

1. From assumption, action ac in p is critical.

2. From 1, and Definition 15, there exists a set B of reachable bad transitions
in presence of F , i.e., B = {(s, t) : (s, t) is a reachable bad transition in δF

p ∧
(s, t) is induced by ac}.

3. Let acr be the set of all transitions induced by ac reachable in the presence
of faults.

4. From proof steps 2, and 3, the set O = acr \ B is the set of all transitions
induced by ac reachable in presence of faults that will not cause violation of
SSPEC when executed.

5. From proof step 4, set O does not contain any reachable transition (s, t)
induced by ac that is SSPEC-inconsistent (bad) for p.

6. From proof step 4, set O contain all reachable transitions (s, t) induced by ac

that are SSPEC-consistent for p.

7. From proof steps 5 (completeness), and 6 (accuracy), the set OS = {s :
(s, t) ∈ O} defines a state predicate (thus a detector) that is perfect for ac in
p.

2

Thus, we have shown that composing critical actions of a program with perfect
detectors is sufficient to ensure that the resulting program is fail-safe fault-tolerant,
as well as preserving its behavior in absence of faults. We have also shown that
such detectors always exist for each critical action.

5.3 Constructing Perfect Detectors

Finally, we study how to automate the construction of perfect detectors for
critical actions. The following theorem shows how to implement the design guideline
derived from Lemmas 1, and 2 on the finite state machine level.

Theorem 1 (Constructing perfect detectors) Given a fault-intolerant program
p with safety specification SSPEC, and fault model F , and a program p′ that sat-
isfies SSPEC in the presence of F . The following two statements are equivalent:

An Approach to Synthesize Safe Systems 17

1. The program p′ can be obtained by composing each critical action ac of p with
a perfect detector for ac in p in presence of F .

2. Each SSPEC-inconsistent transition induced by the critical action ac of p

reachable in the presence of F is unreachable in p′ in presence of F , and
each SSPEC-consistent transition of p reachable in the presence of F is also
reachable in p′in presence of F .

Proof. We assume a given critical action ac of p being composed with a detector
that is perfect for ac in p in presence of F , and show the implication of the second
statement from the first statement.

1. ac is composed with a detector d that is perfect for ac in p in presence of F .

2. Since d is perfect, it causes all SSPEC-inconsistent transitions induced by
ac to be unreachable in p′ in presence of F (Definition 12).

3. Since d is perfect, it causes all SSPEC-consistent transitions induced by ac
to still be reachable in p′ in presence of F (Definition 13).

4. From proof steps 2 and 3, we have statement 2.

The proof for the implication of statement 1 from statement 2 is straightforward.
The first part of statement 2 (unreachability of SSPEC-inconsistent transitions
induced by a critical action ac in presence of faults) implies completeness of a
detector d monitoring ac), and the second part of statement 2 (reachability of
SSPEC-consistent transitions induced by a critical action ac in presence of faults)
implies accuracy of a detector d monitoring ac. Taken together, d is perfect for ac
in p in presence of F .

2

The algorithm for synthesizing perfect detectors (or fail-safe fault-tolerant pro-
grams with perfect detection) is based directly on Theorem 1 and presented in the
following section.

6 Algorithm for Adding Perfect Fail-Safe Fault Tolerance

In this section, we present a sound and complete algorithm for synthesizing
fail-safe fault-tolerant programs with perfect detection. It is based on the fact that
composing critical actions of a fault-intolerant program p with perfect detectors
results in a fail-safe fault-tolerant program p′ whose behavior in the absence of
faults is identical to that of p.

6.1 The Algorithm

Theorem 1 suggests that it is both necessary and sufficient to remove all reach-
able bad transitions in presence of faults, while keeping all reachable “non-bad”
transitions in presence of faults. Algorithm add-perfect-fail-safe exploits this con-
struction method by first computing the set of reachable bad transitions in presence
of faults, and then making these unreachable by removing them. The input to the

18 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

transformation algorithms are three sets of transitions: δp is the state transition
relation of the fault-intolerant program p, δF is the set of transitions induced by
the fault actions of F , and ss is the safety specification given as the set of bad tran-
sitions. The procedure returns the state transition relation of the fault-tolerant
program p′.

% Synthesize perfect detectors
add-perfect-fail-safe(δp, δF , ss: set of transitions)
{

% calculate set of reachable ss-inconsistent
% transitions induced by critical actions
ssr := {(s, t)| (s, t) is induced by a critical action of p and

(s, t) is reachable using transitions in δF
p and

(s, t) is SSPEC-inconsistent for p in presence of F}
return (δp \ ssr)

}

Figure 5 Algorithm to synthesize fail-safe fault-tolerant program with perfect detec-
tion.

6.2 Correctness of the Algorithm

We now prove that the algorithm is sound and complete. Soundness means that
any result found by the algorithm is correct with respect to the transformation
problem. Completeness means that if there exists a solution to the transformation
problem then the algorithm will find it.

Theorem 2 (Soundness of the transformation algorithm) The returned pro-
gram of the transformation algorithm in Figure 5 satisfies the properties of the
transformation problem of Definition 8.

Proof. Since the algorithm constructs p′ by removing the set ssr of all SSPEC-
inconsistent transitions induced by critical actions reachable by using transitions in
δF
p , hence, from Theorem 1, p′ is obtained by composing each critical action of p

with a perfect detector. From Lemma 1 we then have that p′ maintains the fault-
free behavior of p. From Lemma 2 we have that p′ satisfies the safety specification
in the presence of faults. Hence, both requirements of Definition 8 are satisfied. 2

Theorem 3 (Completeness) If there exists a solution to the transformation prob-
lem, then the algorithm in Figure 5 will find it.

Proof. The algorithm in Figure 5 works by removing all SSPEC-inconsistent
transitions induced by critical actions that are reachable in presence of faults.
Hence, for the algorithm to find the solution, the algorithm needs to be able to
construct the set ssr of Figure 5. To compute ssr, we need to compute the set
ss, and this can be achieved in O(|SP |)

2. As we assume programs with finite state
space, the construction of the set ss, and hence of ssr, always terminates. Hence,
the algorithm is complete.

2

An Approach to Synthesize Safe Systems 19

6.3 Algorithm Complexity

We now provide a brief analysis of the complexity of the algorithm:

1. Assume that the number of bad transitions given ss be m.

2. Assume that the maximum number of transitions visited to determine reach-
ability of a bad transition is n. Then, the number of transitions visited is
O(n).

3. Therefore, maximum number of transitions visited when computing set ssr

is O(m · n).

4. Removing set ssr has complexity O(m), since the size of set ssr is O(m).

5. Overall, the algorithm in Figure 5 has complexity O(m · n + m) = O(m ·
n), where m is the number of bad transitions specified by ss , and n is the
maximum number of transitions considered to ascertain reachability.

The complexity of our algorithm is no more than the complexity of another algo-
rithm presented by Kulkarni, and Arora [16], which also has polynomial complexity
in the state space of the program.

In the next section, we present an example to show the applicability of our
approach.

7 Fault-Tolerance Case Study

In this section, we demonstrate the practical applicability of the automatic
transformation procedure of section 6 when applied to a fault-intolerant distributed
mutual exclusion program. In this section, we use the notation of guarded com-
mands to present the example. It should be noted that the actual transformation is
computed on the transition system representation of the program and that present-
ing the resulting fail-safe fault-tolerant programs in the guarded command notation
is for expository purposes only (this representation has to be manually extracted
from the transition system representation in practice).

To start the example, first recall the problem of mutual exclusion which can be
regarded as the specification of a token ring. In the mutual exclusion problem, mul-
tiple processes have a special section of their code which is called critical section.
Processes may wish to enter the critical section, e.g., to access a shared resource.
Processes leave the critical section in finite time. A protocol solving mutual ex-
clusion guarantees that at any point in time at most one process is in its critical
section. This is the safety specification of mutual exclusion. The liveness specifica-
tion states that if a process wants to enter its critical section, it will manage to do
this in finite time.

We implement mutual exclusion by using a token ring. For this, we assume
that the processes are arranged in a ring and these processes circulate a token in
a particular direction. Whenever a process wants to access its critical section, it
waits for the token to arrive. After accessing the critical section, it forwards the
token to the next process in sequence.

20 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

In our example, there are N + 1 processes, numbered from 0 to N , which are
arranged in sequence a ring. Process k with 0 ≤ k < N passes the token to process
k+1, whereas process N passes the token to process 0. Each process k has a binary
variable, t.k. All variables are initialized to the same value. Every process has just
one action. If it executes this action, it is said to “pass the token” and execute its
critical section. The safety property of mutual exclusion translates to the property
that there are never two guarded statements in the program that could execute
concurrently.

All processes k (0 < k ≤ N) compare their value t.k with that of the predecessor
t.(k−1) in the ring. If both values are not equal, they are made equal by executing
the action. Similarly, process 0 compares its value t.0 with the value t.N of process
N . If both values are the same, they are made unequal by executing the action.
The fault-intolerant program for the token ring is as follows:

ITR1 :: k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)
ITR2 :: k = 0 ∧ t.k = t.N → t.k := ¬t.N

We consider faults that may corrupt the token variables at the processes in a
detectable way, i.e., by setting t to a “bad” value ⊥. If we would allow direct
modifications to t, then no fail-safe tolerant program would exist since it is easy
to construct a computation in which multiple faults lead to multiple tokens in the
ring. The fault actions we consider are formalized as follows (one such action exists
for every k):

F :: t.k 6=⊥ → t.k :=⊥

In the presence of faults, the values of several processes can be set to ⊥ and,
following their program, they may execute actions independently, violating the
safety property. The set of bad transitions ss therefore contains all transitions of
process k that start in a state where t.(k − 1) =⊥. Note that every action of the
processes induces such a transition and so all actions are critical actions (according
to Definition 15). Hence, we expect our transformation algorithm to modify all
actions with a detector.

Applying the transformation procedure to the fault-intolerant token ring pro-
gram yields the resulting program:

FSTR1 :: t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)
FSTR2 :: t.N 6=⊥ ∧k = 0 ∧ t.k = t.N → t.k := ¬t.N

Observe that now there are never two guarded statements that could execute con-
currently in the system, resulting in the program to be fail-safe F -tolerant.

8 Theory Applied to Security

In the rest of the paper, we show how some of the concepts developed earlier
for the fault tolerance case can be adapted to deal with security.

The model used in the security section differs from the one previously intro-
duced. Rather than dealing with a state-based view of system execution, we focus
on an event-based perspective. Here, we present a brief overview of the models.

An Approach to Synthesize Safe Systems 21

Let Σ be the set of security-related operations. Let R ⊆ Σ∗ be the set of security
operations sequences that violate the security property. A trace τ ∈ Σ∗ represents
a sequence of operations executed by a possible path through the program. We
denote by Tp ⊆ Σ∗ the set of traces generated by a program p. As before, the
problem is to decide if Tp ∩R is empty. If the set is non-empty, them the program
p does not satisfy the security property.

In this model, R and Tp are arbitrary languages. Deciding Tp∩R is an undecid-
able problem since Tp is in general an uncomputable set. Hence, we have to restrict
the form of R and Tp to make the problem decidable. In general, a program p will
comprise function calls, whose return addresses need to be recorded on a stack. The
language generated by a stack in context-free. Further, we assume that the set R

is a regular language. Since we model R as a regular language, it implies that there
exists a finite state automaton AR that accepts R, i.e., R = L(AR). Also, since
we model Tp as a context-free language, it implies that there exists a Pushdown
Automaton Pp that accepts Tp, i.e., Tp = L(Pp). Hence, we now need to decide
whether L(Pp) ∩ L(AR) is empty. Using context free languages to model the set
of traces introduces some imprecision, since in general Tp ⊆ L(Pp). Now that the
original problem of determining R ∩ Tp is now that of determining L(Pp) ∩L(AR),
and given that Tp ⊆ L(Pp), we have R ∩ Tp ⊆ L(Pp) ∩ L(AR). The impact of this
result is that any analysis performed on the program is sound, i.e., the analysis
may return some false positives, but never false negatives. In light of the theory
developed earlier, this means that for safety, we only need to use detectors that are
complete, and not necessarily accurate.

We show this via an example.

unpriv
noexec

priv
noexec

unpriv
exec

priv
exec

seteuid(o) other

execl()

seteuid(0)

execl() other

other

execl()

seteuid(!0)

int main(int argc, char *argv[])
{//do something with privilege
m0: do_something_with_priv();
m1: drop_priv();
m2: execl("/bin/sh","/bin/sh",NULL);//risky system call
m3:}

void drop_priv()
{
 struct passwd *passwd;

d0: if ((passwd = getpwuid(getuid())) == NULL)
d1 return;// forget to drop priv
d2 fprintf(log,"drop priv for %s",passwd−>pw_name);
d3: seteuid(getuid()); // drop priv
d4: }

Figure 6 A Security Example.

The example in Fig. 6 comes from UNIX applications, and have been used by
Chen and Wagner [6]. A privileged process has full access to permission to the
system, and it should not make certain system calls that run untrusted programs
without first dropping all privileges. One such system call is execl(). The program
in Fig. 6 makes a bad system call by calling execl() without having dropped the
privileges, hence the program is unsafe. The automaton specifies the safety property
that the program has to satisfy, and the program will cause the automaton to end
up in a final (unwanted) state..

For a program to be safe, it is sufficient to compose its critical actions with
complete detectors. Further, since the theory is developed under the assumption
of fusion closure, we enhance the program with a variable state that keeps track of
the history of the trace. The critical action in the program is the execl() system

22 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

call. To execute this system call from state 0 (i.e., priv,noexec) means that the
automaton will end up in a final state (unwanted). Hence, we need to enhance the
program with the movement of the automaton. Hence, we refine the program by
incorporating (state = 0) at the beginning since the automaton starts in that state.
Also, as code is executed, we keep track of the movement of the automaton. To
this end, we add (state = 1) after the program executes the seteuid system call.
This causes the automaton to enter state 1 (i.e., unpriv,noexec).

Once the program has been refined with code that encodes the automaton,
adding a complete detector to check whether the automaton is in state 0 and about
to execute a execl system call is trivial. The detector is if state == 0. Since we
focus on safety, the system can halt, so when the detector evaluates to True, we
cause the program to halt. This is shown in Fig. 7. The instrument program will
no longer cause a violation of safety.

unpriv
noexec

priv
noexec

unpriv
exec

priv
exec

seteuid(o) other

execl()

seteuid(0)

execl() other

other

execl()

seteuid(!0)

int main(int argc, char *argv[])
{//do something with privilege
m0: do_something_with_priv();
m1: drop_priv();
m2: execl("/bin/sh","/bin/sh",NULL);//risky system call
m3:}

void drop_priv()
{
 struct passwd *passwd;

d0: if ((passwd = getpwuid(getuid())) == NULL)
d1 return;// forget to drop priv
d2 fprintf(log,"drop priv for %s",passwd−>pw_name);
d3: seteuid(getuid()); // drop priv
d4: }

int state;

01

2 3

state =0;

state = 1;

if state == 0 exit;

Figure 7 A Security Example.

9 Conclusion

In this paper, we have developed a novel theory of detectors and identified
perfect detectors as a class of detectors that preserves the efficiency of fail-safe
fault-tolerant programs. The theory is based on the notion of a transition that
is inconsistent with the safety specification of the program. We have developed
necessary and sufficient conditions for the addition of efficient fail-safe fault toler-
ance. We also show how some results from the fault tolerance area can be reused
to enforce a given security property.

An Approach to Synthesize Safe Systems 23

References and Notes

1 Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 1985.

2 Anish Arora, Paul C. Attie, and E. Allen Emerson. Synthesis of fault-tolerant con-
current programs. In Proceedings of the 17th Annual ACM Symposium on Principles
of Distributed Computing (PODC’98), pages 173–182, 1998.

3 Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant
systems. IEEE Transactions on Software Engineering, 24(1):63–78, January 1998.

4 Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of fault-
tolerance components. In Proceedings of the 18th IEEE International Conference on
Distributed Computing Systems (ICDCS98), May 1998.

5 K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Ad-
dison-Wesley, Reading, MA, Reading, Mass., 1988.

6 Hao Chen and David Wagner. MOPS: an infrastructure for examining security prop-
erties of software. In SIGSAC: 9th ACM Conference on Computer and Communica-
tions Security. ACM SIGSAC, 2002.

7 Edsger W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
programs. Communications of the ACM, 18(8):453–457, August 1975.

8 Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of java stack inspection.
In IEEE Symposium on Security and Privacy, pages 246–255, 2000.

9 Felix C. Gärtner. Transformational approaches to the specification and verification
of fault-tolerant systems: Formal background and classification. Journal of Uni-
versal Computer Science (J.UCS), 5(10):668–692, October 1999. Special Issue on
Dependability Evaluation and Assessment.

10 Felix C. Gärtner and Arshad Jhumka. Automating the addition of fail-safe fault-
tolerance: Beyond fusion-closed specifications. In Proceedings of Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT), Grenoble, France, September
2004.

11 H. Peter Gumm. Another glance at the Alpern-Schneider characterization of safety
and liveness in concurrent executions. Information Processing Letters, 47(6):291–294,
1993.

12 Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes for
enforcement mechanisms. j-TOPLAS, 28(1):175–205, January 2006.

13 Martin Hiller. Executable assertions for detecting data errors in embedded control
systems. In Proceedings of the International Conference on Dependable Systems and
Network (DSN 2000), pages 24–33, 2000.

14 Arshad Jhumka, Martin Hiller, Vilgot Claesson, and Neeraj Suri. On systematic
design of consistent executable assertions for distributed embedded software. In Pro-
ceedings of the ACM Joint Conference on Languages, Compilers and Tools for Em-
bedded Systems/Software and Compilers for Embedded Systems (LCTES/SCOPES),
pages 74–83, 2002.

15 Sandeep S. Kulkarni. Component Based Design of Fault-Tolerance. PhD thesis,
Department of Computer and Information Science, The Ohio State University, 1999.

16 Sandeep S. Kulkarni and Anish Arora. Automating the addition of fault-tolerance. In
Mathai Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant Systems,
6th International Symposium (FTRTFT 2000) Proceedings, number 1926 in Lecture
Notes in Computer Science, pages 82–93, Pune, India, September 2000. Springer-
Verlag.

24 A. Jhumka and F. Freiling and C. Fetzer and N. Suri

17 Sandeep S. Kulkarni and A. Ebnenasir. Complexity of adding failsafe fault-tolerance.
In Proceedings of the 22nd IEEE International Conference on Distributed Computing
Systems (ICDCS 2002), pages 337–344. IEEE Computer Society Press, July 2002.

18 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transac-
tions on Software Engineering, 3(2):125–143, March 1977.

19 Nancy G. Leveson, Stephen S. Cha, John C. Knight, and Timothy J. Shimeall. The
use of self checks and voting in software error detection: An empirical study. IEEE
Transactions on Software Engineering, 16(4):432–443, 1990. 29 refs.

20 Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: enforcement mechanisms
for run-time security policies. Int. J. Inf. Sec, 4(1-2):2–16, 2005.

21 Zhiming Liu. Fault-tolerant programming by transformations. PhD thesis, University
of Warwick, Department of Computer Science, 1991.

22 Zhiming Liu and Mathai Joseph. Transformation of programs for fault-tolerance.
Formal Aspects of Computing, 4(5):442–469, 1992.

23 Doron Peled and Mathai Joseph. A compositional framework for fault-tolerance by
specification transformation. Theoretical Computer Science, 128:99–125, 1994.

24 David Powell. Failure mode assumptions and assumption coverage. In Dhiraj K.
Pradhan, editor, Proceedings of the 22nd Annual International Symposium on Fault-
Tolerant Computing (FTCS ’92), pages 386–395, Boston, MA, July 1992. IEEE Com-
puter Society Press.

25 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information
System Security, 3(1):30–50, February 2000.

