An Approach for Designing and Assessing Detectors for Dependable

Component-Based Systems

Arshad Jhumka! Martin Hillerfand Neeraj Surif

"Dept of CS, TU-Darmstadt, Germany

Email: {arshad,suri}@informatik.tu-darmstadt.de

Abstract

In this paper, we present an approach that helps in the
design and assessment of detectors. A detector is a pro-
gram component that asserts the validity of a predicate
in a given program state. We first develop a theory of
error detection, and identify two main properties of de-
tectors, namely completeness and accuracy. Given the
complexity of designing efficient detectors, we introduce
two metrics, namely completeness (C) and inaccuracy
(I), that capture the operational effectiveness of detec-
tor operations, and each metric captures one efficiency
aspect of the detector. Subsequently, we present an
approach for experimentally evaluating these metrics,
and is based on fault-injection. The metrics developed
in our approach also allow a system designer to per-
form a cost-benefit analysis for resource allocation when
designing effecient detectors for fault-tolerant systems.
The applicability of our approach is suited for the de-
sign of reliable component-based systems.

Keywords: detectors, fail-safe, formal methods,
metrics, cost/benefit analysis, fault injection.

1 Introduction

Safety-critical applications need to satisfy stringent de-
pendability requirements in their provision of services.
To reduce the complexity of designing such applica-
tions, transformational approaches have been developed
in which an initially fault-intolerant program is system-
atically transformed into a fault-tolerant one. In one
such approach, Arora and Kulkarni [3] showed that, to
transform a given fault-intolerant program into a fail-
safe fault-tolerant one, it is both necessary and sufficient
to compose the intolerant program with detectors!. A
detector is a program component that detects whether

1 Henceforth, we will use the phrases “design of efficient fail-
safe fault tolerance” and “design of efficient detectors” inter-
changeably, depending on the context.

¥Volvo Tech. Dept, Goteborg, Sweden
Email: martin.hiller@volvo.com

a given predicate holds in a given program state. Ex-
amples are self checks, comparators etc.

In this paper we restrict our attention to designing
such fail-safe fault-tolerant programs. Intuitively this
means that it is acceptable that the program “halts”
if faults occur as long as it always remains in a “safe”
state. This type of fault-tolerance is useful in applica-
tion areas such as train control systems where safety
(avoidance of catastrophic events) is more important
that continuous provision of service in the presence of
faults. In fact, in safety-critical systems, fail-safe fault
tolerance may be the only desired type of fault toler-
ance, since in case of imminent failure, the system is
shut down in a safe state, and another (possibly me-
chanical) backup system takes over.

However, the design of efficient detectors is difficult.
Leveson et al. [10] remarked that the “...process of writ-
ing self checks is obviously difficult” and that often de-
tectors were ineffective, i.e., the detectors did not detect
errors when they were present, and some other detec-
tors signalled false alarms, i.e., they would flag an error
when no such error is present. Leveson et al. [10] con-
cluded that, to design effective detectors, “more train-
ing or experience might be helpful”. These also indicate
that sound methodological approaches or frameworks
are needed to guide a programmer in developing effec-
tive detectors. However, there is a dearth of frameworks
to guide a programmer in designing efficient detectors.

In this paper, we develop a theory that underpins
the design of detectors. In our theory we are able to
characterize two fundamental aspects of detectors: (1)
their accuracy, i.e., ability to minimize the number of
“mistakes” they make, and (2) their completeness, i.e.,
ability to detect all harmful faults, i.e., faults that can
threaten the safety of the system. These two properties
form the basis of efficient detectors.

The basis of our theory is the notion of a transition
which is inconsistent with respect to a safety [9] specifi-
cation. This can be understood as follows: Executing a
transition inconsistent w.r.t. the safety specification of
a program may lead to a violation of the safety specifi-

cation if no countermeasures are taken. Building upon
this concept, we develop a theory of accurate, complete,
and perfect detectors together with the necessary cor-
rectness theorems. Intuitively, a detector is accurate if
it “preserves” all correct behaviors of the system. The
accuracy property of a detector is related to the “rate
of false alarms” of a detector, i.e., the more accurate
a detector is, the less the false alarm rate. A detec-
tor is complete if it “rejects” all incorrect behaviors of
the system in the presence of faults. The completeness
property characterizes the ability to detect “harmful”
faults, i.e., the more complete a detector is, the more
“harmful” faults it detects. A detector is perfect if it is
accurate and complete. Intuitively, a perfect detector is
an efficient detector since it does not make any mistake,
as well detecting all harmful errors.

In previous work [7], we had developed an algo-
rithm that automatically generates perfect detectors for
a given fault-intolerant program. However, the algo-
rithm assumes implementation knowledge. There are
many cases where such an assumption breaks down,
e.g., component-based systems, OO systems. For these
systems, the algorithm in [7] may not readily apply.

To circumvent this problem, based on the identified
efficiency properties of a detector, we present two met-
rics, namely completeness and inaccuracy of the detec-
tor that capture its effectiveness. The idea is to use
these metrics as guide in refining the detectors so as to
“emulate” perfect detectors. However, without these
metrics, “emulating” perfect detectors would still be
hard, since the refinement process will be adhoc. Hence,
these metrics help in the refinement of the detectors,
and also help in their assessment.

In this paper, we make the following contributions:

e We explain what it means to transform a fault-
intolerant program into a fail-safe fault-tolerant
one, and we present a novel theory of detectors,
and identify a class of detectors called perfect de-
tectors that solves the transformation problem.

e We argue that, for component-based systems, it
may be difficult to design perfect detectors.

e We propose two metrics, called completeness(C),
and inaccuracy (1), that help in designing and as-
sessing detector “perfectness”.

e We explain how these metrics can be experimen-
tally evaluated, and present a small case study on
a real software used for aircraft arrestment in air-
craft carriers (short runways), and we discuss their
relevance in design of efficient detectors.

Intuitively, the completeness metric (C) captures the
completeness property of a detector, i.e., it captures

the fraction of harmful errors detected. The inaccu-
racy metric (I) captures the amount of mistakes (false
detections) a detector makes. Thus, the composite met-
ric (C,I) characterizes how “far” the detector being de-
signed is from being perfect.

Our approach works for a class of programs called
bounded programs. The property of such programs is
that the set of reachable states is finite (bounded). Typ-
ically, embedded programs are bounded programs.

The paper is structured as follows: Sect. 2 intro-
duces the formal notations used in the paper. In Sect. 3,
we explain the addition of fail-safe fault tolerance, and
present a theory of detectors. We introduce the met-
rics in Sect. 4. In Sect. 5, we present a target system
used for our experimental measurement of these met-
rics, which are detailed in Sect. 6. We summarize and
conclude in Sect. 7.

2 Preliminaries

In this section, we recall the standard definitions of
programs, faults, fault tolerance (in particular fail-safe
fault tolerance), and of specifications [3].

2.1 Programs

A program p consists of a set of variables V,, and a fi-
nite set of processes. Each process contains a finite set
of actions, and a finite set of variables. Each variable
stores a value of a predefined nonempty finite domain
and is associated with a predefined set of initial values.
An action has the form

(guard) — (statement)

in which the guard is a boolean expression over the pro-
gram variables and the statement is either the empty
statement or an instantaneous assignment to one or
more variables.

The state space Sp of a program p is the set of all pos-
sible assignments of values to variables. A state predi-
cate of pis a boolean expression over the state space of
p. The set of initial states I, is defined by the set of all
possible assignments of initial values to variables.

An action ac of p is enabled in a state s if the guard
of ac evaluates to “true” in s. An action ac can be rep-
resented by a set of state pairs. We assume that actions
are deterministic, i.e., Vs, s',s" : (s,s') € acA (s,8") €
ac = s' = s"”. Note that programs are permitted to be
non-deterministic as multiple actions can be enabled in
the same state. In particular, each non-deterministic
action can be converted into a set of deterministic ac-
tions with an identical state transition relation. We also

assume that each non-deterministic action has only fi-
nite non-determinism.

A computation of p is a weakly fair (finite or infinite)
sequence of states sg, s1,... such that so € I, and for
each j > 0, sj41 results from s; by executing the as-
signment of a single action which is enabled in s;. Weak
fairness implies that if a program action ac is contin-
uously enabled, ac is eventually chosen to be executed.
Weak fairness implies that a computation is mazimal
with respect to program actions, i.e., if the computa-
tion is finite then no program action is enabled in the
final state.

If « is a finite computation and S is a computation,
we denote « - § as the concatenation of both compu-
tations. A state s occurs in a computation sq, S1, .. . iff
there exists an ¢ such that s = s;. Similarly, a transition
(s,8") occurs in a computation sqg, S1,. .. iff there exists
an i such that s = s; and s’ = s;41.

In the context of this paper, programs are equiva-
lently represented as state machines, i.e., a program is
a tuple p = (S, I, d,) where S, is the state space and
I, C S, is the set of initial states. Transition (s, s') € J,
iff acis enabled in state s and computation of ac results
in state s'. We say that ac induces these transitions.

We assume programs to contain a set of critical ac-
tions (defined in Sec. 3.4), and such actions control pro-
gram progress.

2.2 Specifications

A specification for a program p is a set of computa-
tions which is fusion-closed. A specification S is fusion-
closed? iff the following holds for finite computations
a,7, a state s and computations 3,e: If a-s- 8 and
v-s-€arein S, then so are a-s-eand v-s-5. A
computation c, of p satisfies a specification S iff ¢, € S,
otherwise ¢, violates S. A program p satisfies a specifi-
cation S iff all possible computations of p satisfy S.

Definition 1 (Maintains) Let p be a program, S be a
specification and a be a finite computation of p. We say
that o maintains S iff there exists a sequence of states
B such that a- f € S.

Definition 2 (Safety specification) A specification
S of a program p is a safety specification iff the follow-
ing condition holds: V¥ computation o that violates S, 3
o prefiz a of o s.tV state sequences 3, o - 3 violates S.

Proposition 1 A specification S is a safety specifica-
tion iff for all o € S there exists a prefix a of o such
that a does not maintain S.

2Intuitively, fusion closure guarantees that history is available
in each computation state.

Informally, the safety specification of a program
states that “something bad never happens”. More for-
mally, it defines a set of “bad” finite computation pre-
fixes that should not be found in any computation.
Alpern and Schneider [2] have shown that every spec-
ification can be written as the intersection of a safety
specification and a liveness specification. Informally, a
liveness specification determines what types of events
must eventually happen. As our interest is in safety
specifications we omit the formal definition of liveness.
However, liveness issues are important since any safety
specification can be satisfied by the empty program, i.e.,
the program that does nothing.

2.3 Fault Models and Fault Tolerance

All standard fault models from practice which endan-
ger a safety specification (transient or permanent faults)
can be modeled as a set of added transitions. We focus
on the subset of these fault models which can poten-
tially be tolerated: We disallow faults to violate the
safety specification directly. For example, for embed-
ded applications, if a safety specification constrains the
output variables of a program, the fault model prevents
the fault actions to modify the output variables in such
way that safety is violated. However, fault actions can
change the program state such that subsequent program
actions execution violate the safety specification. The
reason for choosing such a fault model is that we target
tolerable faults. If a fault can directly violate safety,
then no fail-safe fault-tolerant program exists (since we
cannot prevent the fault from occurring).

Definition 3 (Fault model) A fault model F for
program p and safety specification SS is a set of tran-
sitions over the variables of p that do not violate SS,
i.e., if transition (sj,sj41) is in F' and so,s1,...,8; is
in SS, then so,51,...,5;5,8j41 45 in SS.

Definition 4 (Computation during faults) 4
computation of p in the presence of F' is a weakly p-fair
sequence of states sg,S1,... such that sg is an initial
state of p and for each j > 0, s;j41 results from s; by
executing a program action from p or a fault action
from F

Weakly p-fair means that only the actions of p are
treated weakly fair (fault actions must not eventually
occur if they are continuously enabled). We say that a
fault occurs if a fault action is executed. Rephrased in
the transition system view, a fault model adds a set of
transitions to the transition relation of p. We denote the
modified transition relation by 55 . Since fault actions
are not treated fairly, their occurrence is not mandatory.
Note that we do not rule out faults that occur infinitely

often (as long as they do not directly violate the safety
property).

Definition 5 (Fail-safe fault-tolerance) Given a
program p with safety specification SS, and a fault
model F. The program p is said to be fail-safe F-
tolerant for SS iff all computations of p in the presence
of faults F satisfy SS.

If F is a fault model and SS is a safety specification,
we say that a program p is F-intolerant for SS iff p
satisfies SS in the absence of faults F' but violates SS
in the presence of faults F'. For brevity, we will write
fault-intolerant instead of F-intolerant for SSif F and
S8 are clear from the context.

Consider the transition system view of a program p.

Definition 6 (Reachable state) We say that a state
s is reachable by p iff starting from an initial state of
p it is possible to construct a computation o in which s
occurs in o, using only transitions from §,. Otherwise
s is unreachable.

Definition 7 (Reachable transition) A transition
(s,t) of p is reachable iff state s is reachable by p. Oth-
erwise it is unreachable.

Similar definitions for reachability in the presence of
faults can be easily obtained by replacing p with &%

2.4 Issues of Implementation Non-
Availability

When implementation details are not available, like in
component-based systems, this implies the inability to
read/write certain variables. The issues involved under
such read/write constraints have been discussed in [8].
For completeness, we recall them here.

Write Restrictions: Given a transition (sg, s1), the
variables that need to be written to for the transition
to occur can be determined. Write restrictions amount
to ensuring that transitions of a process p; only modify
variables p; can write to. Specifically, if a process p; can
only modify the values of variables contained in a set
Wp,, and the value of a variable v € Wp, is modified by a
transition (s, s1) of process p;, then p; cannot use this
transition. In effect, the transitions that a process p;
cannot use are those that update any variable v & Wp,,
i.e., all transitions
7 € {(50,51) : (Fv:v & W, :v(so) # v(s1)}>.

Read Restrictions: Given a transition (sg,s1), it
appears that all variables need to be read for that tran-
sition to be executed. In such a case, read restric-
tions result in grouping transitions together. Specifi-
cally, the transitions are grouped in such a way that

3v(s) denotes the value of variable v in state s

“reading” the variables that cannot be read is irrel-
evant. To see this, consider the following example:
There are two possible transitions ¢; and t5, of process
pi, with the following read restrictions - p; can read
variable z, but not y (both having domains {0,1}).
Let t; = (x = 0,y = 0) - (z = 1,y = 0), and
t1 =(x=0y=1) - (x =1,y = 1). If only one
transition is to be included, then p; needs to be able to
read variable y also to be able to make this decision.
On the other hand, if both transitions can be grouped
and included together, reading variable y is irrelevant,
which then becomes consistent with the read restriction
imposed on that variable. Thus, given a process p;, to-
gether with its set of readable variables R, the group
defined by a given transition ()sg, 1 is defined as:
group(pi, Rp;)(s0,51) = {(sg,51) : (Vv € Rp, : v(s0) =
o(sh) Av(s1) = v(s))) A (Vo & Ry, : v(so) = v(s1) A
o(sh) = v(s)))}

Lack of Implementation Knowledge: The lack of
implementation details for the design of detectors is in
a sense equivalent to defining constraints on variables
reads/writes. In those cases, detectors are usually only
defined to monitor actions that update interface vari-
ables, specifically those that define the observable be-
havior of the system. Such detectors are usually referred
to as specification-based detectors.

Subsequently, we do not distinguish between
read/write restrictions and lack of implementation
knowledge since all of them can be similarly modeled.

3 Addition of Fail-Safe Fault Tol-
erance

In this section, we explain the addition of fail-safe fault
tolerance to a fault-intolerant program. We first review
the role of detectors in ensuring fail-safe fault tolerance.

3.1 Role of Detectors in Fail-Safe Fault
Tolerance

Informally, a detector? is a program component that de-
tects whether a given predicate is true in a given state.
Arora and Kulkarni showed in [3] that, for every action
ac of a program p with safety specification SS, there
exists a predicate such that execution of ac in a state
where this predicate is true satisfies SS. If a transi-
tion (s, s') induced by ac violates SS, then we call such
a transition a bad tramnsition. Thus, any computation
that violates S.S contains a bad transition.

Proposition 2 Let SS be a safety specification, p an
F-intolerant program for SS. If p violates SS then there

4For a more formal introduction, we refer the reader to [3].

exists a transition t € 0, such that for all computations
o of p holds: If t occurs in o then o & SS.

Given a program p with safety specification SS and
specification S expressed as a temporal logic formula,
the set of bad transitions can be computed in poly-
nomial time by considering all transitions (s, s’) where
s,s' € S,. For simplicity, we assume that the safety
specification is concisely expressed as a set of bad tran-
sitions. The authors of [3] also show that fail-safe fault-
tolerant programs contain detectors. However, [3] does
not provide information pertaining to the properties the
detectors need to possess, viz. completeness and accu-
racy, so as to ensure fail-safe fault tolerance, which is
one goal of this paper.

Before presenting the theory of detectors, we first
explain the transformation problem for addition of fail-
safe fault tolerance.

3.2 Transformation Problem for Addi-
tion of Fail-Safe Fault Tolerance

We now formally state the problem of transforming a
fault-intolerant program p into a fail-safe fault-tolerant
version p’ for a given safety specification SS and fault
model F. When deriving p’ from p, only fault tolerance
should be added, i.e., p’ should not satisfy SS in new
ways in the absence of faults. Specifically, there are two
conditions to be satisfied in the transformation problem:

C.1 If there exists a transition (s,t) in p’ that is not used by p to
satisfy SS, then (s,t) cannot be used by p’, since this means
that there are other ways p’ can satisfy SS in the absence of
faults. Thus, the set of transitions of p’ should be a subset
of the set of transitions of p.

C.2 If there exists a state s reachable by p’ in the absence of
faults that is not reached by p in the absence of faults, then
this means that p’ can satisfy SS differently from p in the
absence of faults, and such a state s should not be reached by
p' in the absence of faults. Thus, the set of states reachable
by p’ should be a subset of the set of states reachable by p.

In general, these conditions C.1 and C.2 result in the
requirement that both programs should have the same
set of fault-free computations. Formally, we define the
transformation problem as follows:

Definition 8 (Fail-safe transformation) Let SS be
o safety specification, F o fault model, and p an F-
intolerant program for SS. The fail-safe transformation
problem is defined as follows: Identify a program p' such
that the following three conditions hold:

1. p' satisfies SS in the presence of F.

2. In the absence of faults, every computation of p' is
a computation of p.

3. In the absence of faults, every computation of p is
a computation of p'.

A program p' that satisfies the above conditions is
said to solve the fail-safe transformation problem for p.
In the next section, we present a theory of detectors,
based upon which, we provide an algorithm that syn-
thesizes a program p' from a fault-intolerant program p,
such that p' solves the fail-safe transformation problem.

3.3 A Theory of Perfect Detectors

The theory is based on the concept of SS-inconsistency,
where SS is the safety specification of a program p. The
intuition behind the definition of inconsistency is that
if a given computation of p in the presence of faults
violates the safety specification, then some “erroneous”
transition has occurred in the computation.

Definition 9 (SS-inconsistent transitions) Given
o fault-intolerant program p with safety specification
5SS, and a computation « of p in the presence of faults.
A transition (s,s') is SS-inconsistent for p w.r.t. a iff

e there exists a prefiz ' of a such that o wviolates

SS,
e (s,8") occurs ina, e, a =o-s-5 -3,
o all transitions in s -s' - B are in 0p, and

e o - s maintains SS.

Fig. 1 illustrates Definition 9. It shows the state tran-
sition relation of a program in the presence of faults (the
transition (ss, s4) is introduced by F'). The safety spec-
ification SS identifies a bad transition (se,s7) which
should be avoided. In the presence of faults, this tran-
sition becomes reachable and hence the program if F-
intolerant since it exhibits a computation a; violating
SS. In this computation, the three transitions following
the fault transition match Definition 9 and hence are
SS-inconsistent w.r.t. a; in the presence of F. Note
that an SS-inconsistent transition is only reachable in
the presence of faults.

inconsistent w.r.t. a;

Na transition
e -

initial state

.v

fault transition

Figure 1: Graphical explanation of SS-consistency.

Intuitively, an SS-inconsistent transition for a given
program computation is a program transition where the

subsequent execution of a sequence of program transi-
tions can cause the computation to violate the safety
specification, i.e., SS-inconsistent transitions lead the
program computation on the “wrong path”.

Now we define SS-inconsistency independent of a
particular computation.

Definition 10 (SS-inconsistent transition for p)
Given a program p with safety specification SS. A
transition (s, s') is SS-inconsistent for p iff there exists
a computation o of p in the presence of faults such that
(s,8") is SS-inconsistent for p w.r.t. a.

In general, due to non-determinism in program exe-
cution, a transition can be SS-inconsistent w.r.t. a com-
putation a7, and not be SS-inconsistent w.r.t. as. In
Fig. 1, (s4,585) is not SS-inconsistent w.r.t. as. If we
cannot find a computation in the presence of faults for
which a particular transition is SS-inconsistent then we
say that this transition is SS-consistent.

Definition 11 (SS-consistent transition for p)
Given a program p with safety specification SS. A
transition (s, s') is SS-consistent for p iff (s,s') is not
SS-inconsistent for p.

The notion of SS-inconsistency is a characteristic for
a computation which violates SS.

Proposition 3 Given a fault-intolerant program p for
a safety specification SS. Every computation a of p in
the presence of faults that violates SS contains an SS-
inconsistent transition for p w.r.t. o.

Proof sketch: Since the computation violates the
safety specification, it contains a bad transition, which
is itself S.S-inconsistent.

In the next section, we introduce the notion of perfect
detectors using the terminology of SS-consistency.

3.4 Perfect Detectors

From Sec. 3.3, we observed that SS-inconsistent transi-
tions are those transitions that can lead a program to
violate its safety specification in the presence of faults
if no precautions are taken. Perfect detectors are a
means to implement these precautions. The definition
of perfect detectors follows two guidelines: A detector d
monitoring a given action ac of program p needs to (1)
“reject” the starting states of all transitions induced
by ac that are SS-inconsistent for p, and (2) “keep”
the starting states of all induced transitions that are
SS-consistent for p. These two properties are captured
in the definition of completeness and accuracy of detec-
tors (the notions are defined in analogy to Chandra and
Toueg [4]).

Definition 12 (Detector completeness) Given a
program p with safety specification SS, fault class F,
and a program action ac of p. A detector d monitoring
action ac is SS-complete for ac in p in presence of F' iff
for all transitions (s,s') induced by ac holds: if (s,s")
is SS-inconsistent for p, then s & d.

Definition 13 (Detector accuracy) Given a pro-
gram p with safety specification SS, fault class F, and
a program action ac of p. A detector d monitoring ac
is SS-accurate for ac in p in presence of F' iff for all
transitions (s, s') induced by ac holds: if (s,s') is SS-
consistent for p, then s € d.

Definition 14 (Perfect detector) Given a program
p with safety specification SS, fault class F', and a pro-
gram action ac of p. A detector d monitoring ac is
SS-perfect for ac in p in presence of F' iff d is both SS-
complete and SS-accurate for ac in p.

Where the specification is clear from the context we
will write accuracy instead of SS-accuracy (the same
holds for completeness and perfection).

Intuitively, the completeness property of a detector
is related to the safety property of the program p in
the sense that the detector should filter out all S5
inconsistent transitions for p induced by the action it
is monitoring, whereas the accuracy property relates to
the liveness specification of p in the sense that the detec-
tor should not rule out SS-consistent transitions. This
intuition is captured by the following lemmas. Lemma, 1
uses the accuracy property to show that the fault free
behavior of a program is not affected by adding perfect
detectors. Lemma 2 uses the completeness property
to show that perfect detectors indeed establish fault-
tolerance.

Lemma 1 (Fault-free behavior) Given a fault-
intolerant program p and a set D of perfect detectors.
Consider program p' resulting from the composition of
p and D. Then the following statements hold:

1. In the absence of faults, every computation of p' is
a computation of p.

2. In the absence of faults, every computation of p is
a computation of p' .

Proof Sketch: Since the detectors are perfect, they
reject all SS-inconsistent transitions, which are only
reachable in presence of faults. In the absence of faults,
they are not reachable. Hence, p and p’ have the same
computations in absence of faults.

Before we characterize the role of perfect detectors
in presence of faults, we formally define critical actions
of a program. A critical action is one which causes
violation of safety when executed in an erroneous state.

Definition 15 (Critical and non-critical actions)
Given a program p with safety specification SS, and
fault class F. An action ac of p is said to be critical
iff there exists a transition (s,s') induced by ac such
that (s,s') is a bad transition (Proposition 2) that is
reachable (Definition 7) in presence of faults F. An
action is non-critical iff it is not critical.

Lemma 2 (Behavior in the presence of faults)
Given a fault-intolerant program p with safety specifi-
cation SS, and fault class F. Given also a program p'
by composing each critical action ac of p with a perfect
detector for ac in presence of F'. Then, p' satisfies SS
in presence of faults F.

Proof sketch: Since all critical actions are com-
posed with perfect detectors, all bad transitions are “re-
jected”, hence safety cannot be violated. The resulting
program is thus fail-safe.

Hence, from Lemmas 1 and 2, we observe that a pro-
gram p' obtained by composing each critical action ac of
a fault-intolerant program p with a perfect detector for
acin p in presence of faults F' solves the transformation
problem.

Thus, we have shown that the composition of crit-
ical actions of a fault-intolerant program with perfect
detectors, which are guaranteed to exist, is crucial to
solve the fail-safe transformation problem.

3.5 Algorithm for Adding Perfect Fail-
Safe Fault Tolerance:

Having established the role of perfect detectors in fail-
safe fault tolerance, in Fig. 2, we provide the algorithm
developed in [7] that solves the fail-safe transformation
problem, using perfect detectors. It takes as arguments
the program p, the fault class F', and the set of ss of bad
program transitions encoding the safety specification.

add-perfect-fail-safe(dp, 0, ss: set of transitions):
{ ssr := get-ssr(dp,dr, ss)
return (p’ = dp \ ss,)}

get-ssr(dp,dr, ss: set of transitions):

ory

return (ssr)}

{ ssr := {(s,t)|(s,t) is induced by a critical action of p and is
S S-inconsistent for p and (s,t) is reachable using transitions in

Figure 2: Algorithm that solves the fail-safe transfor-
mation problem

Theorem 1 Algorithm add-perfect-fail-safe solves the
fail-safe transformation problem.

The algorithm assumes that implementation knowl-
edge is available, i.e., all variables are read-
able/writeable. However, this assumption may not
be readily met in the case of component-based de-
signs. Hence, the above algorithm may not be readily
used to generate perfect detectors for component-based
systems. This is because, as explained in Sect. 2.4,
some transitions may have to be included (resp. ex-
cluded) even though they are SS-inconsistent (resp. SS-
consistent).

4 Completeness and Inaccuracy
Metrics

The algorithm presented in Fig. 2 may not be easily
used to generate perfect detectors for component-based
systems, or any other programs where implementation
details are not available. One goal of the paper is to
develop an approach on how to develop such detectors
for such systems.

Perfect detectors have two main properties: (i) com-
pleteness, and (ii) accuracy. We propose two metrics,
termed as Completeness (C) and Inaccuracy (I), and
use both as a composite metric (C,I). The complete-
ness metric (C), as the name suggests, encapsulates the
completeness property of a detector, while the inaccu-
racy metric (I) encapsulates the accuracy property.

Intuitively, the C metric of a detector monitoring a
program ac in program p with safety specification SS
tries to capture the ratio of SS-inconsistent transitions
induced by ac that are rejected by the detector. On
the other hand, the I metric of a detector monitoring a
program ac in program p with safety specification S.S
tries to capture the ratio of SS-consistent transitions
induced by ac that are rejected by the detector. Thus,
the metrics are defined as follows:

1. C - Completeness of detector d; = (number
of concurrent detection by d; and safety viola-
tion)/(number of safety violations)

2. T - Inaccuracy of detector d; = (number of detec-
tions by d; and no safety violation)/(number of
computations of P in presence of faults that do not
violate SS)

Note: The denominator of each metric can never
be equal to 0, leading to the metric to have value oco.
For the C metric, the denominator cannot have value 0,
since the program is assumed to violate SS in presence
of faults (program is fault-intolerant). For the I metric,
if the denominator is 0, then it means the program is
fault-tolerant in itself, which violates our assumption of
having an initially fault-intolerant program.

Also, a perfect detector d; monitoring an action ac in
program p with safety specification SS will have value
(C=1,1=0). A detector that is not perfect will
have value (¢,i) : 0 < ¢ < 1,0 < ¢ < 1. Overall, our
composite metric (C,I) achieves two main goals:

1. It helps in the design of perfect detectors in
component-based systems. For example, if a de-
tector has value (0.7, 0), then the system designer
knows that the detector is not complete. The sys-
tem designer knows that the detector is not restric-
tive enough, in the sense that it does not reject
all SS-inconsistent transitions induced by the ac-
tion it is monitoring. Thus, the designer knows
that he needs to “tighten” the detector, so that the
completeness reaches 1. This would not have been
possible without these metrics, as the fine-tuning
process of detectors would have been ad-hoc.

2. It helps in the allocation of resources in the de-
sign of perfect detectors. For example, assume that
there are two detectors d; and d; in program p mon-
itoring actions a; and a; respectively. Assume that
d; has value (0.7, 0), and d; has value (0.85, 0.15).
Depending on project policies, and the nature of
the application, the system designer may decide
to invest more time to either refine d; or d;. For
example, if the application is safety-critical in na-
ture, it may make more sense to refine d; since its
completeness factor is closer to 1.

5 Experimental Validation of

Detectors

In this section, we describe an experimental approach
used to evaluate the composite metric introduced. In
this experiment, we used specification-based detec-
tors 2.4, and assess their completeness/accuracy, i.e.,
assess their perfectness. Recall that a specification-
based detector is usually designed over interface vari-
ables only, i.e., there are read restrictions over the pro-
gram’s variables. In our experiment, we found that
these specification-based detectors not to be perfect,
which corroborates findings detailed in [10].

5.1 Example Target System: Aircraft

Arresting System

To illustrate our approach and the problems with spec-
ification based detectors, we make use of an example
system, specifically an embedded control system for ar-
resting aircraft (similar to the cable-and-hook systems
found on, e.g., aircraft carriers).

The target system is developed according to the spec-
ifications in [1]. It consists of two rotating drums, one
on each side of the runway, and a cable is strapped
across the runway. Incoming aircraft use a hook to grab
hold of the cable. The system detects movement on the
rotating drums and will try to slow them down by ap-
plying a braking pressure. This will eventually pull the
aircraft to a complete stop. The structure of the soft-
ware is illustrated in Fig. 3.

ms_slot_nbr

. CLOCK | »
ul
4,—» CALC
PACNT 1 1 slow_speed 4
Rotation >

sensor { TIC1 2 2 stopped 5 2

o DIST_S
counter TCNT 3 3 y
SetValue

Pressure
sensor

Figure 3: Software structure of the example system.

The modules are as follows:

CLOCK provides a millisecond-clock, mscnt. The system oper-
ates in seven 1-ms-slots. In each slot, one or more modules
(except for CALC) are invoked. The signal ms_slot_nbr tells
the module scheduler the current execution slot. Period =
1 ms.

DIST_S receives PACNT and TIC! from the rotation sensor
and TCNT from the hardware counter modules. The rota-
tion sensor reads the number of pulses generated by a tooth
wheel on the drum. The module provides a total count of
the pulses, pulscnt, generated during the arrestment. It also
provides two boolean values, slow_speed and stopped, i.e., if
the velocity is below a certain threshold or if the aircraft
has stopped. Period = 1 ms.

CALC uses mscnt, pulscnt, slow-speed and stopped to calculate
a set point value for the pressure valves, SetValue, at six
predefined checkpoints along the runway. The checkpoints
are detected by comparing the current pulscnt with pre-
defined pulscnt-values corresponding to the various check-
points. The current checkpoint is stored in i. Period = n/a
(background task, runs when other modules are dormant).

PRES_S reads the the pressure that is actually being applied
by the pressure valves, using ADC from the internal A/D-
converter. This value is provided in IsValue. Period = 7
ms.

V_REG uses SetValue and IsValue to control OutValue, the
output value to the pressure valve. OwutValue is based on
SetValue and then modified to compensate for the differ-
ence between SetValue and IsValue. This module contains
a PID-regulator implemented in sofwtare. Period = 7 ms.

PRES_A uses OutValue to set the pressure valve via the hard-
ware register 7’0OC2. Period = 7 ms.

In the next section we will show experimental mea-
surements performed on the example system, illustrat-
ing the problems associated with achieving perfect de-
tectors with specification-based detectors.

6 Experimentally Ascertaining
Detector Perfectness

Using the specification of the system [1] and data sheets
for the sensors and actuators and the representations of
internal data, a set of detectors were inserted into the
software of the system. The detectors used here are
so called executable assertions (EA) and each mecha-
nism monitors one individual signal. In this example
we will concentrate on the V.REG module. Here we
added detectors to monitor the signals SetValue and
IsValue (EA1 and EA2, respectively). We also have a
detector at the output signal OutValue (EAT) acting
as the safety specification of the system. Thus, if EA7
detects an error, we consider this a violation of the sys-
tem’s safety specification.

To experimentally assess the consistency of the de-
tectors, we performed fault injection experiments us-
ing PROPANE [5] to perturb the data with bit-flips
in SetValue and IsValue. Multiple injection runs were
conducted, and in each run, one bit in one signal was
flipped. When analysing the results, the detectors in an
injection run were said to be consistent if the detector
at SetValue or IsValue (depending on where the error
was inserted) and the detector at OutValue exhibited
the same profile and detection coverage. That is, the
detectors were considered to exhibit consistency if they
detected the same set of errors.

The signals SetValue and IsValue are both 16 bits
wide. We injected single bit-flips into each bit position
at 10 different instances in time and for different 25
test cases (i.e., landing aircraft). In each injection run,
only one bit-flip was performed, i.e., we had no mul-
tiple errors, neither in location nor in time. Thus, for
each signal we injected a total of 16-10-25=4,000 errors.
However, some of these errors were injected into the sys-
tem after an aircraft was completely arrested (stopped).
These inactive errors were diregarded during the anal-
ysis of the results.

Generating Value for Completeness and Inac-
curacy: For the signal SetValue, we had 3,840 active
errors (n;n;). The safety specification was violated (i.e.,
EAT detected an error) for 2,051 of these (n,s5). The
mechanism monitoring Set Value, EA1, detected a total
of 1,932 errors (neq1). However, only 1,561 of these were
coincident with the violation of the safety specification
(Neq1,vss). Using the expressions for the completeness
and inaccuracy (see Sect. 4), we can calculate the met-
rics as follows: i) completeness of EA1 = %

0.7611, ii) inaccuracy of EA1 = w = 0.2074.
Thus, the metric for EA1 is (0.7611, 0.2074).
For the signal IsValue, we had 3,840 active errors

(ninj)- The safety specification was violated (i.e., EA7

detected an error) for 2,083 of these (nyss). The mecha-
nism monitoring Is Value, EA2, detected a total of 2,146
errors (neq2). However, only 1,890 of these were co-
incident with the violation of the safety specification
(Nea2,0ss)- Using the expressions for the completeness
and inaccuracy (see Sect. 4), we can calculate the met-
rics as follows: i) completeness of EA2 = "e:%

0.9074, ii) inaccuracy of EA2 = % = (.1457.
Thus, the metric for EA2 is (0.9074, 0.1457).

As can be seen from the results, the specification
based detectors in V_REG are not perfect for the ac-
tions they monitor. This means that, in the absence
of faults, liveness can be compromised, decreasing the
efficiency of the system (because of the inaccuracy of
the detectors). Also, there are cases where safety can
be seriously compromised, whenever the completeness
metric is less than 1. In such cases, much effort should
be spent on trying to increase the completeness metric
to 1.

Clearly, having perfect detectors will ensure that the
error handling mechanisms of a system will only be in-
voked if they are really necessary, i.e., when an error
exists which can lead to violation of the safety specifi-
cation of the system, while also guaranteeing that the
program will satisfy its liveness in absence of faults.

However, to obtain perfect detectors, the algorithm
presented in Fig. 2 requires access to all variables of
the program (implementation knowledge). This means
that the resulting detectors require information on the
entire state of the system. Specification-based detec-
tors, on the other hand, are local predicates requiring
only local information. Thus, the idea is to use local
predicates, such as specification-based detectors, and
using the composite metric as guide to fine tune the
local predicates to “emulate” perfect detectors.

6.1 Interpreting (C,I) Values

For the experiment, we obtained the following (C,I) val-
ues for each of these specification-based detectors:

1. EA1 = (0.7611, 0.2074)
2. EA2 = (0.9074, 0.1457)

From the metrics above, we conclude that none of
the specification-based detectors (EA1 and EA2) are
perfect. What this means is that, in the absence of
faults, liveness of the system can be compromised [7].
This can be deduced from the inaccuracy metric as it
captures the accuracy property of detectors. For exam-
ple, for EA1, it means that 20% of the cases when safety
will not be violated, EA1 detects an error, i.e., in 20%
of the cases where there is no harmful error in the sys-
tem, EA1 flags something as harmful. Hence, the rate

of false alarms is around 20%. Formally, it means that
EA1 wrongly rejects 20% of SS-consistent transitions of
the program action it is monitoring.

The completeness metric, on the other hand, conveys
information pertaining to the completeness property of
the detector. For example. EA1 has completeness met-
ric 0.7611. This means that in almost 25% of cases
where safety can potentially be violated, EA1 does not
detect anything erroneous. Formally, this means that
EA1 fails to reject 25% of the SS-inconsistent transi-
tions induced by the program action it is monitoring.
This severely compromises safety, the more so in safety-
critical systems.

Hence, if a program being designed is for safety crit-
ical systems, then more efforts need to be focused to
increase the completeness factor to 1. Once this is
achieved, if sufficient resources (time, human etc) are
available, the inaccuracy metric can be dealt with, de-
creasing it to 0. On the other hand, if the program being
designed is not safety-critical in nature, and requires
good performance in the absence of faults (such as
multimedia applications), then perhaps more resources
should be invested to decrease the inaccuracy value to
0. In such cases, it would mean liveness is preserved
when there is no harmful fault in the system. Hence,
this composite metric allows performance and safety to
be traded off against each other, depending on the na-
ture of the system to be designed.

Also, the results obtained are consistent with an ob-
servation mad by Leveson et al. [10], where they ob-
served that specification-based detectors are not very
effective at detecting errors, or that they detect errors
when there is none in the system. Though the authors
of [10] did not specify what properties the detectors
are lacking, the research presented in this paper shows
that specification-based detectors are not usually per-
fect, i.e., not complete and/or accurate.

7 Discussion and Summary

In this paper, we have presented a theory of perfect de-
tectors, and identified two main properties of detectors,
namely completeness and accuracy, that underpin their
effectiveness. We have presented an algorithm that gen-
erates perfect detectors, based on the assumption of
implementation details. However, there are several in-
stances where such assumptions are not met, for ex-
ample, in component-based designs, OO programs etc.
To circumvent this problem, we have proposed a com-
posite metric (C,I) (C - Completeness, and I - Inaccu-
racy) that captures the degree of perfectness of a de-
tector. We have also presented an evaluation approach,
based on fault-injection, for evaluating these metrics.

10

Our approach works well for a class of programs called
bounded programs, of which embedded applications are
instances. The property of bounded programs is that
the set of reachable states in finite (bounded). One pos-
sible limitation of the approach is that the values ob-
tained are only experimental and not analytical, mean-
ing that those values are not the real-world accurate
values of the detectors.

Kulkarni and Ebnenasir [8], and Jhumka et al. [6]
showed that design of efficient fail-safe fault tolerance
is NP-hard where read/write constraints are imposed.
Kulkarni and Ebnenasir considered a subclass of pro-
grams where addition of fail-safe fault tolerance can be
achieved in polynomial time. As way of contrast, the
approach presented in this paper has no such restric-
tion, but however is a heuristic approach in the design
of perfect detectors for component-based systems.

As future work, we are looking into including the
evaluation of such metrics for detectors as an options
in the fault-injection tool Propane [5], such that when
FI experiments are conducted, such composite metric is
automatically generated.

References

[1] US AirForce 99. “MIL - SPEC: Aircraft Arresting System
BAK-12A/E32A; Rotary Friction.” MIL-A-38202C- Notice
1, US Dept. of Defence, Sept 86.

(2]

B. Alpern and F.B. Schneider. “Defining liveness”. Informa-
tion Processing Letters, 21:181-185, 1985.

Anish Arora and Sandeep S. Kulkarni. “Detectors and cor-
rectors: A theory of fault-tolerance components.” In Proc.
ICDCS’98, May 1998.

T.D. Chandra, S. Toueg “Unreliable failure detectors for
reliable distributed systems” “Journal of the ACM, 43(2),
pp. 225-267, 1996”

M. Hiller, A. Jhumka, and N. Suri. “PROPANE: an environ-
ment for eramining the propagation of errors in software”
ISSTA 2002: 81-85

A. Jhumka, M. Hiller, V. Claesson and N. Suri. “On Sys-
tematic Design of Globally Consistent Ezecutable Assertions
in Embedded Software” Proc. LCTES/SCOPES, pp. 74-83,
2002

A. Jhumka, F. Girtner, C. Fetzer, and N. Suri. “On system-
atic design of fast, and perfect detectors.” EPFL-TR 200263,
September 2002.

S. Kulkarni, A. Ebnenasir. ”The Complezity of Adding Fail-
safe Fault-Tolerance” Proc. ICDCS 2002, 337-344, 2002.

L. Lamport. “Proving the Correctness of Multiprocess Pro-
grams” IEEE Trans. on Soft. Eng., 2, 125-143, March 1977

[10] N. Leveson et al. “The Use of Self Checks and Voting in
Software Error Detection: An Empirical Study” IEEE Trans.
on Software Engineering, 16(4), April 1990

(9]

