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Abstract

Components (in-house or pre-fabricated) are increasingly being used to reduce the cost of software

development. Given that these components may not have not been developed with dependability as

a driver, the components need to be adapted to deal with errors coming from their environment. To

achieve this, error containment wrappers are often added to increase the robustness of such compo-

nents. Adopting a gray-box perspective of software, we first present a modular approach for specifying

and verifying embedded software made from components, based on concepts from category theory.

This modular approach allows the system designer to check for semantic compatibility. To generate

the error containment wrappers needed for adaptation, we subsequently present an algorithm that

systematically generates the required wrappers. Using the information obtained through wrapper de-

sign, we develop an approach to identify relevant test cases to test individual components. We further

exploit the modularity of the specification to identify the relevant test cases to perform testing at

different levels of SW abstraction.
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1 Introduction

The functionality and dependability of computer systems is increasingly being defined by the software

(SW) implementing the varied system services. To reduce the high cost associated with the develop-

ment of reliable SW, components, for example commercial-off-the-shelf (COTS), or from component

repositories, are being used, while still having to satisfy overall system/SW dependability requirements.

However, these components may not have been developed with dependability as a major driver. Thus,

to protect from errors coming from their environment, these components need to be adapted to enhance

their robustness. Wrappers1 [17, 7] (more specifically dependability wrappers), used as instances of

connectors [8], are used to adapt the components.

Error containment wrappers [17] 2 are used to detect and correct erroneous signal values, and they

reflect the new requirements imposed on the input and output signals of a component. For example,

Executable Assertions (EA’s) [16, 15], such as preconditions and postconditions, are used to check the

validity of the communicated signals, as per the desired signal tolerance specification. Error recovery

mechanisms (ERM’s) are subsequently incorporated to aid recovery from erroneous situations. To design

the relevant wrappers (input or output) for a component, which sometimes need information internal to

the component, [17] used the concept of reflection to capture such internal variables (behavior). In this

paper, we adopt a gray-box perspective of a component, i.e., the structure of the component is known

but is, however, non-modifiable. For components coming from repositories, such gray-box perspective

is valid, given that the original design may have been formally verified and validated, and thus cannot

be modified. Therefore, wrappers are usually added for adaptation. However, a gray-box perspective

allows the system designer to use implementation knowledge to best design wrappers to protect the

system. However, [1] presented some problems associated with component reuse, identifying mismatching

assumptions about the nature of both the components and the communicated data as two of the main

problems encountered. Thus, when using components for designing dependable applications, there are

three main problems, among others, to be solved: (i) ensuring semantic compatibility of the components,

(ii) designing the relevant wrappers for component adaptation for fault tolerance, and (iii) testing the

wrapped components (the wrappers).

For the first problem, semantic checks on the compatibility of the components need to be performed.

To achieve this, we will present in Section 4 a modular specification and verification framework, based

on concepts of category theory. The second problem mentioned earlier is the problem of designing error

containment wrappers. In [12], the authors observed that designing self-checks, such as EA’s, is difficult.

We subsequently proved in [11] that design of a class of EA’s, called globally consistent EA’s, is NP-

hard. More details on global consistency will be presented in Section 6. To overcome this intractability

problem, in [11], we presented a heuristic approach that can be used to generate wrappers.

1Dependability wrappers usually consist of an error detection (EDM) and error recovery mechanism (ERM)
2They can be input or output wrappers depending on whether they are placed at the input or output of the component.
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For the third problem above, once both input and output wrappers for components are obtained and

incorporated in the system, they need to be tested to ascertain their validity, i.e., ensuring that the

adapted system behaves according to its specifications. We show how to reuse information from the

design of these wrappers to generate test cases.

1.1 Paper Objectives

On the above introduction of overall problem perspectives, our overall contributions are the following:

• Specification and verification: Given our component-based design, we formally specify a system

using a modular framework based on category theory concepts, and exploit this modularity to per-

form its verification. This is done to allow the system designer to check for semantic compatibility

between different communicating components. The reason for adopting category theory as a basis

for formal specification and verification is that it facilitates direct explanation and application of the

concepts that we will later develop and to better present the different constraints that components

need to satisfy.

• Wrapper design: We present an approach for the design of error containment wrappers3 to be

incorporated in the system.

• Test case generation: Reuse wrapper design information to generate test cases for testing at differ-

ent abstraction levels, i.e., unit, integration and system testing. For testing at the unit level (i.e.,

unit testing at the component), we reuse wrapper design information for that given component to

generate the relevant test cases. When components are composed, testing this integration (inte-

gration testing) is performed reusing test information based on unit testing. Once all components

have been integrated, we perform a system level test by reusing test cases used during unit testing.

Our specification approach is similar to that of [4], however our overall approach differs in the following

ways: (i) we generate wrappers for components using a heuristic, (ii) we reuse the wrappers as oracle

and (iii) our approach is primarily focused on gray-box SW testing, unlike black-box [3] or white-box

testing [14]. The heuristic to be presented in Section 6 can be incorporated in a compiler. The benefit

of the approach described here is that test case generation can be automated.

For gray-box testing, the term gray-box has been used with various connotations. Sometimes, gray-

box testing is used to mean that both white-box and black-box testing are conducted. In [24], they

tested the more complex (the algorithmic part) part of an object-oriented code, based on static metrics,

using a gray-box approach. In their paper, gray-box meant that the authors make partial use of the

code implementation. Specifically, assume that a complex module is composed of some subsystems.

They perform white-box testing to force each subsystem to be executed, which are however treated as

black-boxes. Our gray-box (implementation is known but is non-modifiable) approach for automatically

3We will use the terms wrappers to denote error containment wrappers
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generating test cases, using wrapper design information to test component-based SW represents a first

cut at such attempts.

1.2 Testing Overview

Testing strategies can be classified into two broad categories, namely (i) black-box testing (or specification-

based testing), and (ii) white-box testing (or structural testing). Our gray-box perspective of SW implies

that we use partial implementation knowledge to drive black-box testing. The reason for performing

black-box testing is many-fold. Primarily, as the target SW is non-modifiable, EA’s, which are known

to enhance SW testability [21], cannot be inserted in the SW. This hindrance imposes determination of

the correctness of the component only through its behaviors, i.e., based on the specification. The intent

of this paper, as far as testing is concerned, is to reuse the information pertaining to the design of those

error containment wrappers (EA’s) to identify relevant test cases for partition testing [20]. Partition

testing works by partitioning the input space of the program or component into subsets, and test cases

selected from each subset. We solve the oracle problem by using the output wrapper of the component or

system as oracle. We also argue that test cases derived from component specifications may not provide

sufficient coverage, especially if some important recovery mechanisms are incorporated to recover from

erroneous system behavior.

Paper Organization: Section 2 present the system and fault model we use in the paper. Section 3

presents the example we will use to illustrate our framework. Our framework for modular specification

is presented in Section 4. We subsequently present our algorithm for generating wrappers in Section 6.

Section 7 presents our approach to generating test cases, based on wrapper design information. Section 8

provides examples on how testing is performed at various abstraction levels. Section 9 discusses our

approach and we describe areas for future research.

2 System and Fault Models

System Model: We assume a system consisting of different SW components, communicating with

each other via signals (we use the term “signals” as an abstraction whose implementation could be

via message passing, parameter passing, shared variables, etc). The components may run on the same

processor or may be distributed. Each component consists of an import, export interface, a parameter and

a body part. The import and export interfaces refer to the services needed and provided by a component.

The body part implements the services that are exported by the component, by using resources obtained

from its environment. The parameter part introduces the domains used by the system (Fig. 1).

Fault Model: Our system is driven by information exchange across components (import and export).

Thus, we are interested in determining which inputs that are liable to introduce data errors into the

system or components that will cause violation of the specification of the system. A data error may be,

for example, a signal value which is outside a specified bound. Errors may occur at system input level

or at component level. Thus, we need to test each component as well as the system to ensure proper
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behavior, both during operational and faulty scenarios.

3 An Example System

In this section, we will present a small example that we will use through out the paper to explain

the different concepts. Assume the system is composed of two components, as in Fig. 1. The first

component, C1 reads sensor values from two different sensors, and then passes the difference between

those two sensor values to the second component, C2, which then calculates a value that will be sent as

output to an actuator.

sensor1
sensor2

diff output
C1 C2

import

export

body

Figure 1: An example target system

The implementations of the two components are presented here:

Component C1

Component C1

Private sensor1,sensor2,difference : Signal;

Export get-difference();

void private read-sensor1()

{ sensor1 := sensor1value;

return();}

void private read-sensor2()

{ sensor1 := sensor2value;

return();}

void private calc-diff()

{ read-sensor1();

read-sensor2();

difference := sensor1 - sensor2;

return();}

Signal public get-difference()

{ calc-diff();

return(difference);}

End Component

Component C2

Component C2

Private diff,output : Signal;

Export outputvalue();

Import get-difference();

void public outputvalue()

{ diff := get-difference();

newval := diff * 2;

output := newval + diff;

return();}

End Component

Also, we assume that from the specification of the above system, the value of the system output, output

should be (0 ≤ output ≤ 30).
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4 A Modular Specification Framework

Our modular specification framework is based on the concept of category theory [5]. As mentioned

in the introduction, we chose category theory as it provides the necessary formal foundation to present

our testing framework. Components are algebraically specified4, and they can be interconnected to form

bigger components. The composition operation then defines and constructs an aggregrated component

describing the overall system from the individual components and their interactions.

4.1 Definition of a Component Using Category Theory

A specification consists of two parts:(a) a signature part, and (b) an axiom part. The signature

introduces syntactical elements that are used in the axiom part, and consists of three parts: (a1) Sorts

part declares the domains, (a2) Constants (resp. Variables) part declares the time independent (resp.

time dependent) functions and/or predicates, and (a3) an Action part declares predicates and functions

representing event instances. The axiom part defines the behavior of the system as well as constraints

on environments. The axiom part may express conditions such as pre- and postconditions.

To capture the time-varying behavior of a system, the axioms can be formulated as TRIO formulas [13],

which capture the dynamic aspects of systems. TRIO logic is well adapted to deal with real-time

constraints, as they are based on a metric representation of time. More details on TRIO are provided

in Section 4.2. Each component is then made up of four specifications and four specification morphisms.

The four specifications are (i) the parameter (PAR), (ii) import (IMP), (iii) export (EXP), and (iv) body

(BOD) specifications(see Fig. 2).

The parameter (PAR) part of the component contains the parameters of the component, and it also

identifies the elements shared by the export (EXP) interface and import (IMP) interface. The import

(IMP) interface identifies all resources that are needed by the component that are defined by its envi-

ronment. Constraints on what is imported can be specified in the axiom part of the import interface of

the component. The export (EXP) interface contains resources made available to the environment by a

component. Any constraint on what is exported can be similarly specified as axioms. The body (BOD)

part defines how the resources imported from the environment are used to implement the resources to be

exported by the component. It presents the complete description of the component, however the details

are not available, i.e., they are hidden (encapsulated).

In the next section, we will briefly introduce the TRIO language. Further, we will use our example

target system of Section 3 to demonstrate how systems are specified and verified. More details on TRIO

logic are found in [13].

4.2 TRIO Logic Specification

The TRIO [13] language is an extension of classical first-order temporal logic: the meaning of a

TRIO formula is not absolute, but is given with respect to a current, implicit time instant. Timing

4This is a realistic assumption since components can be selected and retrieved based on specification [23]
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PAR EXP

IMP BOD

Ci

Component

e

i
v

s

Figure 2: A component with four specifications and associated morphisms

requirements are specified using two basic operators, namely Futr and Past, which refer to time instants

whose distance, in the future or past, is specified precisely and quantitatively. Using these operators,

more complex operators can be constructed, such as Always etc. The reason for using TRIO logic over

classical temporal logic (TLA) is that executable assertions (EA’s) [16] are usually inserted to monitor

signal values, which are usually time-dependent.

The TRIO language is a typed first order logical language extended with temporal operators. The

alphabet of TRIO is composed of sort, logical variable, function/predicates names, and usual proposi-

tional connectives, and the existential quantifiers, ∃ and ∀, and hence more complex temporal operators

and properties may be expressed. For example, to specify that a property P will hold at all other future

time instant, this may be specified as follow, i.e., Always(P):

Always(F) = ∀d(d > 0 ↔ Futr(F, d)).

In the next section, we will use the example target system to explain how (i) the specification and (ii)

verification of the system are performed.

5 Specification and Verification of the Example System

In this section, we will use explain how the concepts of category theory presented in the previous

section are used to specify and verify a system. In our example system from Section 4, the component

C2 imports (respectively, exports) a method called get-difference() (outputvalue()).

C2 Import Spec:

Sorts :

Signal: Int

Actions:

get-difference() : → Signal

Axioms:

Always(∃y : y = get-difference() );

End Spec

C2 Export Spec:

Sorts :

Signal: Int

Actions:

outputvalue() : → signal

Axioms:

Always(∃y : y = outputvalue());

End Spec
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The import (respectively, export) interface introduces the entities imported (exported) by the given

component. In this case, C2 imports (exports) one given function, get-difference() (outputvalue(), which

are part of the action section of the specification. Given that the value returned is of type Signal, in the

sort part, which introduces the relevant domains, we introduce the domain Signal. Finally, the axiom

part expresses the fact that a value can be imported (respectively exported) at any time instant from

get-difference() (outputvalue()). In our import and export specifications, no constant or variable was

declared.

The parameter (PAR) part and the body (BOD) of component C2 are shown below:

C2 PAR Spec:

Sorts :

Signal: Int

End Spec

C2 BODY Spec:

Sorts :

Signal: Int;

Variables:

diff, output: Signal;

Actions:

get-difference() : → Signal

outputvalue : → signal

Axioms:

Always(∀y : y = get-difference() ↔ diff = y);

Always(∀y : y = outputvalue() ↔ output = y);

End Spec

The parameter (PAR) part introduces the entities common to the export and import interface, in this

case, the type Signal. The BODY part of the component specification contains the union of all sorts and

actions defined in the IMP and EXP interfaces of the component.

Overall, we have specified component C2 where values imported and exported are not constrained, as

specified by the axioms since it may not be fault tolerant. As the different interfaces have been specified,

specification morphisms link all these specifications together to form a component specification.

Specification Morphism: A specification morphism m : A → B from a specification A to specifica-

tion B maps any element of the signature of A to an element of the signature of B that is compatible (i.e.,

sort with sort etc) The four specification morphisms e,i,s,v (Fig. 2) of the component describe the links

between the four specifications (PAR,IMP,EXP,BOD). For verification, one important aspect of specifi-

cation morphisms is that they preserve axioms. For example, considering morphism v of component C2,

one must prove that the axioms defined in the export interface of C2 can be deduced from those defined

in the body specification of C2. Behaviorally, this means that the behavior of A is preserved in B. This

proof can be done either automatically or via theorem provers. Also, the specification morphisms ensure

that no conflict exists in the specifications, such as importing a non-existing resource. As example, we

provide the definitions for morphisms s and v for component C2 of our example.
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Morphism s of C2:

Sorts :

Signal → Signal

Actions:

get-difference() : → get-difference()

Morphism v of C2:

Sorts :

Signal → Signal

Actions:

outputvalue() : → outputvalue()

What the above means is that the Signal domain is the same in both the import (respectively, export)

and body specifications, and that the function get-difference() (respectively, outputvalue()) function

needed (exported) by the body (export) specification is indeed provided by the import (body) interface.

5.1 Component Composition

Once components are specified and verified, interactions between different components can be specified

using the composition operation, as detailed below.

Given two components Ci (component importing services) and Ce (component exporting the services)

such that all elements imported by Ci are exported (defined) by Ce, the composition operation builds

a component Cie. From our example, it means that if all the resources (imported entities) required by

component C2 are provided by component C1, then these two components (C1 and C2) can be composed

together to form a bigger component C21. To ensure this, we define a component morphism to map the

resources required by component Ci to the those provided by component Ce. For example, we define a

component morphism mapping resources needed by C2 to the resources provided by C1.

PAR

IMP

C
i

i i

ii

EXP
j

PARj

IMPj

Cj

hp

h

BOD

EXP

jBOD BOD
ij

b’

b’’

Figure 3: Composing two components

A module morphism is a pair (h, hp) (see Fig 3) of morphisms such that h associates data imported

by Ci to data exported by Ce. Morphism hp maps parameter part of Ci to those of Ce. The component

Cie can then be computed as the pushout [5] of components Ci and Ce, i.e., the bigger component

imports what component Ce imports, exports what component Ci exports. If components Ci and Ce

and morphisms h and hp are correctly defined, then component Cie is correct. Informally, this means
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that if the behavior of each component is preserved (i.e., components correctly defined), and the resource

associations are right (morphisms correctly defined), then the resulting component is correct. From our

example, the behavior of C1 is preserved in C2, and also the resources needed by (imported) C2 are

provided by C1, meaning that these two components C1 and C2 can be composed together.

As example, we provide the export interface of component C1 and the associated morphism h required

for resource associations. We match the export interface of C1 with the import interface of C2 (see

Section. 5), resulting in morphism h.

C1 Export Spec:

Sorts :

Signal: Int

Actions:

get-difference() : → Signal

Axioms:

Always(∃y : y = get-difference())

End Spec

h morphism:

Sorts:

Signal → Signal

Actions:

get-difference() → get-difference()

5.2 Verification Issues:

We make use of the component morphisms to perform both verification and testing. During com-

position, one of the main aspect is that of non-interference across components. This implies that all

axioms defined in an importing component Ci are preserved by an exporting component Ce. Formally,

this means that axioms defined in Ci are translated along morphism h into theorems in Ce that need to

be proved. Ability to discharge such proofs guarantee safe composition of Ci and Ce. From our example,

we need to show that we can prove the axiom defined in the import specification of C2 from those defined

in the export specification of C1.

We also make use of the morphism h to perform integration testing. Test cases use to perform unit

testing on component Ci are translated as output from component Ce along h. For testing, we require

the morphisms to be injective.

At this point, we have shown how to specify and verify a component-based development of software,

using concepts from category theory. We incrementally showed, by use of a small example, how a

component is composed from four basic specifications, and how component specifications can be combined

into bigger components through component morphisms. We also showed how axioms (i.e., properties) of

specifications can be specified in TRIO logic, which we briefly introduced in Section 4.2.

The aim of testing is to ascertain that the different axioms defined in a given component are not

violated, i.e., the behavior of the component conforms to its specified property, as defined by TRIO

formulas. In the next section, we provide a brief explanation of how TRIO formulas can be tested, i.e.,

testing the components.
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5.3 Testing Issues

For testing purposes, two definitions are provided, and are taken from [13].

Definition 1: An event is a pair (L, i) where L is a ground literal of a time-dependent predicate and

where i is a time instant belonging to the time domain. A history is an event set that does not include

the events (L, i) and (¬L, i).

A history is complete if it contains a unique truth value for each predicate of the formula at each time

instant of the time domain. A complete history satisfies a formula F at time t if its evaluation in which

predicate values are defined by the events in the history yields a TRUE value. The behavior of a system

is characterized by TRIO formulas. Therefore, to test the behavior of a system, TRIO histories can be

used as test cases.

Definition 2: A test case for a given TRIO formula F is a complete history that satisfies F at one

or more time instants of the time domain. TRIO is executable, hence its formulas can be automatically

checked for validity. During interpretation of a given formula F , behaviors of the specified system

compatible with F are generated, and they are histories, and these histories can be used as test cases.

Such test cases can be used to test the system under normal operational scenarios.

For example, if we want to test the first axiom defined in the body specification of component C2 of

our example, a history can be as follows5:

TestCase-Hist-01-C2

((get-difference() = 10),1)

((diff = 10), 1)

((output = 30),1)

End

In fault-free scenarios, a program always satisfy its specification (given that it was formally verified,

as we showed earlier). However, when there is an error in the system, a program’s behavior may violate

its specification. Thus, testing a program only to ascertain its behavior under fault-free scenario is

inadequate (as mentioned in one keynote speech at HASE 2001). Thus, testing the system with test

cases that can cause violation of some properties of the program need to be performed, so as to ascertain

the behavior of the system under such conditions, i.e., test whether the program is fault-tolerant.

Testing behaviors of the program under faulty scenarios give rise to some problems: (i) What char-

acterizes erroneous data for a given component or system?, (ii) how do we generate such test cases, for

each component, and for the entire system?, (iii) can such test case generation be automated?

As mentioned in the introduction, to make a system fault tolerant, we add dependability wrappers.

Thus, our approach to tackle the above problems is to first generate the wrappers, and then reuse the

5We will use constants, rather than variables, in our examples to represent a certain given value.
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knowledge obtained from wrapper design to generate test cases. To automate generation of test cases

implies automatic generation of wrappers. When wrappers are incorporated in the system, the behavior

of the different components is constrained (through addition of more axioms). Thus, we endeavor to test

the different added axioms, i.e., test whether the property of the fault tolerant program still satisfies the

program’s specification in presence of faults.

We emphasize that our method is not intended to bypass white-box and black-box testing strategies,

which are needed to test the initial program. However, our approach targets generation of test cases as

a complement to already existing techniques, by providing additional test cases for testing the wrappers.

In subsequent sections, we will highlight the complementary aspects of our approach.

6 Design of Wrappers: Consistency Conditions

In SW, Executable Assertions (EA’s) are usually incorporated to monitor signals so as to detect

any erroneous values. However, design of EA’s placed in the SW, especially when functionalities are

distributed over different components, is problematic, as explained in [12]. In [11], we introduced the

concept of global consistency of EA’s. Two EA’s, EAi and EAj , are consistent with each other if the

code relating them, FM , is such that FM transforms EAi into EAj , i.e., the set of values accepted by

EAi is transformed by FM into the set of values accepted by EAj . The intent was to design a set of

localized EA’s (EA’s that are placed in individual components) such that all EA’s are globally consistent,

i.e., they are all consistent with respect to the safety specification [2] of the system, where the safety

specification defines a set of bad computation prefix that should not appear in a given execution of the

program.

We have shown in [11] that design of those globally consistent EA’s is NP hard. We thus provided a

heuristic approach that, given the safety specification of the system, systematically generates the globally

consistent EA’s for each component. The heuristic works in a way analogous to predicate transformers,

through backtracking. Informally, the algorithm works as follows: it takes the safety specification of the

system as input, together with the SW architecture. The main steps of the algorithm are:

Step 1,2 The algorithm starts at the end of the sink module and backtracks to its start. Then, the process is performed for

every component.

Step 3 All conditions for computing the different values of variables are calculated. Program slicing [19] techniques can be

slightly modified and used to achieve that.

Step 4 Once all conditions for computing the different variables are obtained, they are substituted in the condition for

computing the output signal. For example, suppose we have an output signal X and the condition for computing its

value is X := Y + 1. Suppose that the condition for computing Y is Y := Z + 2, where Z is the input. Then, the

new condition for X is X := Z + 2 + 1 = X := Z + 3.

Step 5 This new condition is substituted in the postcondition defined on the output signal (say X), and by simplifying the

constraint thus obtained, we can obtain a constraint defined on the input signal (say Z). This constraint will be the

precondition in the given module.
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Step 6 This precondition is translated into the postcondition of the preceding module. Formally, we translate this precon-

dition along morphism h to obtain the postcondition on the preceding module.

Step 7+ The same procedure is iterated until the source components are reached, and constraints on system inputs obtained.

Thus, the algorithm implementation is as following:

Derive_EA(<global_output_EA>, <module_name>, <module_interconnections>) {

1 while (NOT beginning of <module_name>) {

2 for (all variables V in <module_name>)

3 conditions(V) := determine_from_module(<module_name>);

%Conditions for computing variable V determined from module }

4 conditions(<OutputSignal>) := get_all_conditions(<module_name>);

%All conditions for computing output signal

5 new_preconditions := output_EA[conditions(OutputSignal)/OutputSignal];

%new preconditions obtained by substituting output signal by the condition obtained

6 postcond_preceding_module := new_preconditions;

%preconditions translated as postconditions in preceding module

7 preceding_module := get_id_preceding_module(module_interconnections, module_name);

%gets the id of the other module with which module_name is communicating

8 if (preceding_module == NIL) break;

%source module reached

9 Derive_EA(postcond_preceding_module, preceding_module,module_interconnections); }

It generates input and output wrappers for each component upon backtracking. When a component

Ci imports services exported by another component Ce, the input wrapper defined in Ci is transformed

into an output wrapper in Ce. Formally, the input wrapper in Ci is translated along morphism h into

an output wrapper in Ce.

Formally, we make use of the component morphisms to generate globally consistent EA’s. As EA’s

are transformed, and input wrappers generated, we make use of such wrapper design to generate test

cases. The wrappers (input and output) developed for each component are added to the axiom part of

the component specification, expressed in TRIO logic.

As mentioned in Section 3, the safety specification of the example target system is (0 ≤ outputvalue ≤

30)6. Running the above heuristic on the program given in Section 3, we obtain the following wrappers

for each component for detecting errors:

Input and output wrappers for C2

(1) 0 ≤ output ≤ 30 (output wrapper)

(2) 0 ≤ get−difference() ≤ 10 (input wrapper)

Input and output wrappers for C1

(1) 0 ≤ difference ≤ 10 (output wrapper)

(2) 0 ≤ ( read-sensor1() − read-sensor2() ) ≤ 10 (input wrapper)

6The safety specification is provided by the system designer during specification phase.
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Thus, including these wrappers in the original program transforms it into a fault tolerant program.

For example, including the output (respectively, input) wrapper in the export (import) specification of

component C2 will result in the following new specifications for the import and export interfaces (compare

with Section 5):

C2 Import Spec:

Sorts :

Signal: Int

Actions:

get-difference() : → Signal

Axioms:

Always(∃y : 0 ≤get-difference()≤ 10 ∧ y = get-

difference() );

End Spec

C2 Export Spec:

Sorts :

Signal: Int

Actions:

outputvalue() : → signal

Axioms:

Always(∃y : 0 ≤ outputvalue() ≤ 30 ∧ y = output-

value());

End Spec

Thus, these wrappers will ensure that the safety specification of the system is not violated by detecting

erroneous signal errors coming from component C2’s environment. The added axioms are underlined.

In the next section, we will present how test cases can be generated using the information generated

from the above wrappers.

7 Test Case Generation Using Wrapper Information

We have presented an approach for specifying and verifying component-based fault intolerant SW.

We also argued that for fault tolerance purposes, such programs need to be adapted to make them

tolerant to errors from their environment by adding wrappers. We presented in [11] a heuristic that

can systematically generate such globally consistent wrappers, exploiting the component morphisms. In

this section, we will explain how to systematically reuse wrapper design information to systematically

partition the input space of both the components and system to obtain relevant test cases for testing. As

mentioned earlier, our overall objective is systematizing and automating test case identification to aid

testing the robustness of the adapted software.

7.1 Partition Testing: An Overview

Partition testing refers to a very general family of testing strategies [20]. It works by partitioning

an input space into sub-domains, with the tester selecting one or more elements from each sub-domain,

depending on the criteria and coverage required. The idea behind partition testing is to divide the input

domain in such a way that, within each sub-domain, either the program behaves correctly or the program

fails. Such sub-domains are sometimes called revealing or homogeneous.

In many cases for embedded SW, specification for a given input signal partitions its input space into

two sub-domains, i.e., one sub-domain satisfying the precondition defined on the signal and the other one

not. However, we argue that partitioning the input space of signals into two such sub-domains is limited,
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since it does not take into account subtle interactions within a component. For example, consider the

input wrapper generated for component C1, (0 ≤ (sensor1 − sensor2) ≤ 10). Assume that specification

of component C1 of our example states that a precondition on signal sensor1 in C1 should be greater

than 25. However, from the input wrapper for C1, even if the value of sensor1 is less than 25 (which

implies violation of the precondition), if the difference between sensor1 and sensor2 is less than 10,

then there will be no safety specification violation. Hence, we argue that our wrappers better capture

the interaction between signals than preconditions obtained from specification, which thus partitions

the input space differently. This is crucial, as partitioning an input space in the wrong way will cause

the tester to wrongly test the system. To better illustrate this, assume the following specification-based

preconditions defined on the input signals of component C1:

Preconditions defined on input signals of C1:

(sensor1): sensor1 ≥ 25

(sensor2): sensor2 ≤ 20

Assume that at a given time t, sensor1 has value 24 (which violates its precondition) and sensor2 has

value 21 (violating its precondition). However, from these values, the output signal from component C2

will have value 9, which satisfies the safety specification (0 ≤ output ≤ 30), though the input signals

violated their preconditions. What this means in terms of testing is, if such a test case was used to test

the system, it would give the impression of the system being fault tolerant (since the safety specification

of the system was not violated when there was an error in the system inputs), when the wrong tests

have been perfomed, i.e., wrong test case chosen. Hence, we show that specification-based preconditions

are limited. This observation is shared by [12]. However, our wrappers generated fully captured the

relationship between the different signals. Thus, we propose to reuse information obtained from wrapper

design to partition the input space.

Consider a component as in Fig. 4 (top). The module contains two inputs, I1 and I2. Their respective

input space is partitioned into an OK and a BAD partition (Fig. 4 (bottom)). Assuming a uniformity [9]

criteria, we may select one value randomly from each subdomain, and obtain a set of test cases for the

component, since every test case in a given subdomain will test the system in the same way (uniformity

criterion). However, understanding the interactions within the component is crucial, since it will cause

partitioning of the input space of the component differently, and, thus, may result in generating more

appropriate test cases, (see Fig. 5 (bottom)). We argue that testing based only on specifications defined

on input signals is limited.

Another advantage of using the wrapper design information in test case generation is that the input

wrapper is an instance of an assertion. In [20], it was shown that, for partition testing to be efficient,

there is a need to group within one given partition all inputs that will cause the system to fail. Using

the wrapper information, the tester can group all such input combinations that will violate the wrapper
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constraints within one sub-domain, thus satisfying a criterion for optimality from [20]. Thus, it means

that using our approach, performance of partition testing is optimized. Specifically, from our example,

whenever (sensor1−sensor2 > 10), the tester is able to group exactly those input combinations that may

cause the system to fail. Thus, reusing wrapper information will optimize the partition testing strategy.

Techniques for testing exception handling [18] constructs are mainly based on whitebox knowledge, and

may not be applicable in our context.

Ci

I1

I2

O
1

I1

I
2

OK BAD

OK BAD

input space
of I 1 and I2

Figure 4: Partitioning the input space of a module

O 1

I 1

I 2

I2

I 1

OK

BAD

Figure 5: Partitioning the input space of a module uwing wrapper information

8 Unit, Integration and System Testing

In this section, we will explain how our framework deals with testing at different levels, i.e., unit,

integration and system level testing.

8.1 Unit Testing

In this section, we are interested in performing unit testing, i.e., testing of each component. Given

that we cannot have access to modify the source code, the tester cannot insert assertions in the code to

improve testability [21]. Also, given that different components have been wrapped with error containment

16



wrappers, we focused on testing the wrappers such that each wrapped component satisfies the required

specification, that is, we endeavor to test those axioms that have been added to the axiom part of different

specifications (e.g., import interface etc).

As mentioned earlier, we specifically want to test the wrappers that have been added for fault tolerance,

i.e., the axioms that have been added. To exactly show how this is achieved, we will develop different

test cases, using our example from Section 3.

TestCase-Hist-01-C2

((get-difference() = 5), 1)

((diff = 5),1)

((output = 5),1)

End

TestCase-Hist-02-C2

((get-difference() = 15),1)

((diff = 15),1)

((output = 45),1)

End

As mentioned in Section 4, under normal operation, test cases can be obtained from TRIO model

generator, as histories. Choosing the Hist-01-C2 test case, and then running TRIO will result in TRIO

accepting the above as a possible history, i.e., this test case can be used to test the system for proper

functioning, i.e., during no fault scenario. In other words, Hist-01-C2 can be generated by TRIO model

generator as a possible history (test case). A series of such test cases may be obtained from TRIO. Let

the set consisting of such test cases be denoted by Sg

Now, during faulty scenario, the system may behave in a different way, and the wrappers added in

each component need to be tested. Thus, additional test cases, not in set Sg, need to be generated, and

these test cases cannot be obtained from TRIO, since these situations are not histories. We thus reuse

the information from the wrapper to generate such test cases. For example, following from our running

example, a test case Hist-02-C2, for testing the wrappers in component C2, is generated. Running test

case Hist-02-C2 above will indicate how the system will behave. We have shown that the value from

get-difference() should be between 0 and 10. A value of 15 from get-difference () in test case Hist-02-C2

will cause a violation of the axiom placed in the import interface of component C2. The above test case

represents a case where there is an error in the system. If the value returned by C2 satisfies its output

wrapper, then C2 satisfies its specification during faulty situations, i.e., is fault tolerant.

For component C1, we give a test case Hist-03-C1 obtainable from TRIO model generator (i.e., which

is in set Sg) and then we also explain how a test case Hist-04-C1 testing the wrappers may be generated

from the wrapper information of C1. Since (0 ≤ read-sensor1 − read-sensor2 ≤ 10), we choose values of

sensor1 and sensor2 that will violate this constraint, thus we obtains Hist-04-C1
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TestCase-Hist-03-C1

((read-sensor1 = 27), 1)

((read-sensor2 = 20),2)

((sensor1 = 27),1)

((sensor2 = 20),1)

((difference = 7),1)

End

TestCase-Hist-04-C1

((read-sensor1 = 30),1)

((read-sensor2 = 15),1)

((sensor1 = 30),1)

((sensor2 = 15),1)

((difference = 15),1)

End

Test cases may contain internal items, i.e., internal variables, and they cannot be included in the test

cases since they are hidden (encapsulated). Thus, we need to project these test cases on the interfaces

(import and export) of the given component. Test cases Hist-03-C1 and Hist-04-C1 for component C1

are transformed into test cases Hist-05-C1 and Hist-06-C1 respectively, below by removing any internal

variables sensor1 and sensor2.

TestCase-Hist-05-C1

((read-sensor1 = 27), 1)

((read-sensor2 = 20),2)

((difference = 7),1)

End

TestCase-Hist-06-C1

((read-sensor1 = 30),1)

((read-sensor2 = 15),1)

((difference = 15),1)

End

For component C2, projecting the test cases Hist-01-C2 and Hist-02-C2 on its interface will result

in removal of the diff variable from the test case, resulting in test cases Hist-07-C2 and Hist-08-C2

respectively:

TestCase-Hist-07-C2

((get-difference() = 5), 1)

((diff = 5),1)

((output = 5),1)

End

TestCase-Hist-08-C2

((get-difference() = 15),1)

((diff = 15),1)

((output = 45),1)

End

8.2 Integration Testing

Integration testing aims at testing the links between two components. A link is specified as an injec-

tive morphism between two specifications. Formal verification implies that all behaviors of component

Ci is preserved by component Ce, i.e., all axioms of Ci are translated along morphism h as theorems

in component Ce, that need to be proved. So, a test goal of integration testing is to test the image of

the new axioms added in the specification of component Ci. Specifically, from our heuristic, since input

wrappers in Ci (component importing services) are transformed into output wrappers in component Ce
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(component exporting services), we need to test that data communication between these two communi-

cating components do not violate the input wrapper constraints of the Ci. That is, data that satisfies

the output wrapper constraint of Ce should not violate the input wrapper constraint defined in Ci.

Thus, the test cases generated for unit testing the component Ci can be reused, with the only change

being that items are renamed under morphism h. For example, when testing the import interface of

component C2, all elements in that test case are projected onto corresponding elements as defined by

morphism h. Specifically, test case Hist-09-C2-Imp tests the import interface of component C2. For

integration testing, we want to test the values coming from component C1, i.e., testing C1’s export

interface. As example, Hist-09-C2-Imp is transformed under morphism h to test case Hist-10-C1-Exp,

that tests the export interface of component C1, i.e, get-difference() maps onto get-difference() whereas

output maps to nothing, and so is removed from the test case.

TestCase-Hist-09-C2-Imp

((get-difference() = 5), 1)

((output = 15),1)

((get-difference() = 10),2)

((output = 30),2)

End

TestCase-Hist-10-C1-Exp

((get-difference() = 5),1)

((get-difference() = 10),2)

End

8.3 System Level Testing

In system testing, we aim at testing the whole system and we perform black-box testing. In such cases,

for system level testing, we use the safety specification defined on the system as oracle.

There are two possible ways to generate test cases for system level testing. One is for the TRIO

model generator to generate the test cases. Unfortunately, TRIO model generator is not very suitable for

generating test cases for large systems. Thus, we choose the second option, which aims at reusing test

cases generated during unit testing. Specifically, in Section 5.1, we mentioned that during composition,

the bigger component C21 acquires the import interface of the component C1, and the export interface

of the component C2. To perform system testing, we need to reuse test cases used for unit testing

component C1. Test case Hist-05-C1 was used to test component C1. However, during system testing,

C1’s export interface disappears, and we project the given test case over the interface of the larger

component C21, obtaining test case Hist-11-C21, i.e., we remove any element that relates to the export

interface of component C1. Hence, we reuse test cases from unit testing, and we only need to project

them on the relevant interfaces to obtain the relevant test cases for system testing. Also, given that

the safety specification has been defined on the system, the tester can use it as an oracle during system

testing, where the oracle is an omniscient entity that says whether the result of a test is good or not.
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TestCase-Hist-05-C1

((read-sensor1 = 27), 1)

((read-sensor2 = 20),2)

((difference = 7),1)

End

TestCase-Hist-11-C21

((read-sensor1 = 27),1)

((read-sensor2 = 20),1)

End

Given that we need to test for fault tolerance of the overall system as well, we reuse test cases that

were used for fault tolerance testing of component C1, and project the test cases on the interface of

the bigger component. For example, such a test case was Hist-06-C1. Projecting it on the interface of

component C21 results in test case Hist-12-C21.

TestCase-Hist-06-C1

((read-sensor1 = 30), 1)

((read-sensor2 = 15),1)

((difference = 15),1)

End

TestCaseHist-12-C21

((read-sensor1 = 30),1)

((read-sensor2 = 15),1)

End

Overall, we have explained why test cases that test for fault tolerance cannot be generated from TRIO

model generator. Thus, to tackle this problem, we gave showed how information from wrapper design can

be systematically reused to generate the test cases for fault tolerance testing. As mentioned earlier, our

approach for generating test cases from wrapper design information complements the test case generation

for normal operation from TRIO.

9 Discussion and Future Work

Overall, in this paper, we have made the following contributions:

1. We have presented a framework for specifying and verifying a component-based SW to ensure

semantic compatibility across components (Sec. 4, Sec. 5),

2. We presented a heuristic for generating globally consistent EA’s (wrappers) with respect to the

safety specification of the system to increase the robustness of software(Sec. 6),

3. We have illustrated through examples how we make use of wrapper design information to automat-

ically generate test cases for testing of components at various levels (unit, integration and system),

and we systematically exploit the modularity structure of the specification to perform integration

testing. For system level testing, we reuse test cases generated for unit testing (Sec. 7 and Sec. 8).

We have showed that testing a system under normal operational conditions is not adequate. As TRIO

model generator cannot automatically generate the test cases for faulty scenarios (nor for large systems),

we have addressed this problem by reusing the desing information of wrappers used for increasing the

robustness to generate the test cases.
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Most work on testing has covered two broad categories, namely white-box and black-box testing. Our

work covers gray-box testing at the level of components. Our technique is intended to test software built

from components, whose internals are not available for modifification by the designer, but which can

be compiled. Also, to the best of our knowledge, little work has addressed the automatic generation of

wrappers, and consequently the generation of test cases for testing the robustness of the system.

Also, our approach has the property that it partitions an input space into such sub-domains where all

inputs that can force the system into an erroneous state are grouped together. Using partition testing,

this ability of partitioning the input space as such results in very efficient testing (in fact, optimal).

Thus, test cases for unit, integration and system level testing can be generated, and these test cases

provide more insight into how to perform the partitioning of the input space. We argue that testing based

on test cases generated from functional specification, especially for component-based SW, are insufficient

to test the system given that they fail to completely capture subtle dependencies. Overall, we envision

our approach to complement existing testing approaches.

A tool exists where the module calculus was extended in [22] to TRIO [13] logic specifications to

capture the dynamic aspects of systems.

As future work, we are planning on using our framework on a real target system, with the intention

of testing conformity of wrappers, and of ascertaining that the overall system conforms to the safety

specification defined on the system.
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