Assessing Inter-Modular Error Propagation In Distributed
Software*

Arshad Jhumka, Martin Hiller and Neeraj Suri
Dept. of Computer Engineering
Chalmers University,

Goteborg, 412 96, Sweden
e-mail: {arshad,hiller,suri} @ce.chalmers.se

Abstract

With the functionality of most embedded systems
based on software (SW), interactions amongst SW
modules arise, resulting in error propagation across
SW them. During SW development, it would be
helpful to have a framework that clearly demon-
strates the error propagation and containment ca-
pabilities of the different SW components. In this
paper, we assess the impact of inter-modular error
propagation. Adopting a white-box SW approach,
we make the following contributions: (a) we study
and characterize the error propagation process and
derive a set of metrics that quantitatively repre-
sents the inter-modular SW interactions, (b) we
use a real embedded target system used in an air-
craft arrestment system to perform fault-injection
experiments to obtain experimental values for the
metrics proposed, (c) we show how the set of met-
rics can be used to obtain the required analytical
framework for error propagation analysis. We find
that the derived analytical framework establishes a
very close correlation between the analytical and
experimental values obtained. The intent is to use
this framework to be able to systematically develop
SW such that inter-modular error propagation is
reduced by design.

1 Motivation and Approach

With SW driving dependable system designs,
systems are invariably built around sets of coop-
erating SW modules (tasks) that execute under
specified resource and timing constraints. Tradi-
tionally, at the hardware (HW) level, classical tech-
niques have involved many variations of replication
of computing nodes, and consequently, replicating
the software resident on them. With SW mod-
ules sharing common resources, intricate interac-

*Supported in part by Saab endowment, TFR, NSF Ca-
reer CCR 9896321, Volvo Research Foundation (FFP-DCN)
& NUTEK (1P21-97-4745).

tions between SW modules allow propagation of
SW level data errors, which need to be corrected
as early as possible to ensure correct delivery of ser-
vices. Hence, the need to define a framework that
demonstrates the error containment capabilities of
SW modules.

To constrain error propagation in SW, all inter-
modular interactions are desired to be effected in
a prescribed way, such that the overall distributed
SW is composed of Error Containment Modules
(ECMs) — analogous to Fault Containment Regions
(FCRs) in HW — at different abstraction levels. To
overcome a transient fault at the node level, differ-
ent techniques, such as replication or Error Detec-
tion and Recovery Mechanisms (EDMs and ERMs)
may be used. However, knowing which vulnera-
ble modules to replicate or equip with EDMs and
ERMs is of primary importance. Thus, quantita-
tive information is needed to help determine these
parameters. Intuitively, SW modules that allow er-
rors to propagate are candidates for replication or
to be equipped with EDMs and ERMs, such that
the error(s) can be contained and/or corrected.

To assess the impact of error propagation, we
adopt a white-box! perspective of SW and define
a basic set of metrics, namely inter-modular influ-
ence and separation, introduced in [14]. However,
these metrics do not, by themselves, aid identifica-
tion of vulnerable modules in the system. Thus, we
augment the above set with complementary met-
rics, namely Error Transmission Probability and
Error Transparency that help characterize error
propagation properties of SW modules and aid
identification of vulnerable modules. Influence is
defined as the probability of a module directly in-
fluencing another module, i.e., when no other mod-
ule is considered while separation is defined as the
probability of a module not influencing another one

1White-box SW implies that the SW module properties
and structure are fully known and modifiable.

when all other modules are considered. We use
the augmented metrics set to help in building re-
liable, distributed SW, as our aim is to be able to
systematically design SW modules such that inter-
modular error propagation is reduced by design.

The influence of a module M; on another mod-
ule M3 can be both spatial and temporal. In this
paper, we initially limit ourselves to the study
of spatial influence. To our knowledge, there
is a dearth of experimental measurements/results
showing how to evaluate such conceptual metrics.
Our paper makes the following contributions: (a)
we analyze the error propagation process and we
derive a general expression for evaluating influence
value and associated metrics, (b) we perform Fault
Injection (FI) experiments on a real target system
to experimentally measure these metrics, (c) we
generate the required analytical framework by ap-
plying the derived expression for the target sys-
tem and validate the framework developed, (d) we
then use these metrics to determine which vulnera-
ble SW modules to be replicated or equipped with
EDMs and ERMs.

Paper Organization: The paper is organized
as follows. The system and software model is pre-
sented in Section 2, and related work is discussed
in Section 3. The analytical framework for eval-
uating the different metrics is developed in Sec-
tion 4. Section 5 introduces the target system and
provides detailed information of the experimen-
tal setup. The results obtained and conclusions
derived from them in developing the SW design
framework are discussed in Section 6 while Sec-
tion 7 summarizes the paper and comments about
future work.

2 System, Software, & Fault Models

System and SW Models: We utilize a generic
SW and system model for this work and focus on
distributed systems though the methodology is ap-
plicable to uniprocessor applications also. Further,
the underlying software model consists of layers of
discrete ECMs. Each abstraction level specifies a
predefined class of faults that may be handled at
that particular level. The SW levels that we make
use in this paper are the process, task and procedure
levels, introduced in [14], with the process level be-
ing the highest abstraction level and the procedure
level the lowest, as shown in Fig. 1.

ECMs at different layers communicate in differ-
ent ways. For example, procedures will interact
through parameter-passing, including return val-
ues and global variables whereas tasks/processes
may communicate through shared memory or by
message passing. ECMs at a specific layer interact
and cooperate with each other to provide services.

SW Function Set #1

SW Function Set #i

| vertical
| associatios
across ECM

horizontal associations across ECMs

Figure 1: Software (ECMs) Layers Across (Repli-
cated) SW Modules

We also consider each ECM as a whitebox, i.e., we
have access to the internal state of the ECM.

Fault Model: The errors assumed in this paper
are transient data errors, i.e., transient erroneous
values in the signals or internal variables of the sys-
tem, for example due to bit-flips in memory areas.
In this paper, we assume that only one transient er-
ror can occur at any time at the input of an ECM,
giving rise to possibly multiple errors in other mod-
ules. If an ECM has multiple input signals, then
we assume that each signal has equal probability
of being in error.

It should be noted that data errors have var-
ied connotations when considered at the different
SW abstraction levels of Fig. 1. Given the differ-
ent communication paradigms at different levels,
an error at procedure level indicates errors in the
parameters or global variables while an error at
process/task level may imply error in the messages.

3 Related Work

Fault/error injections have mostly been con-
ducted to validate error detection and error re-
covery mechanisms of a system, where the main
aim was to quantify the effectiveness (coverage, la-
tency etc) of the different proposed mechanisms [1].
A comprehensive discussion on Fault Injection
(FI) appears in [9]. In [3], FI experiments were
conducted to characterize large system failures,
whereby concepts such as potential hazards and
failure acceleration were introduced. In [6], FI
experiments were conducted to obtain pertinent
information on possible locations for EDMs and
ERMs. Our approach differs from that in [6] in
that we consider SW as whiteboxes as opposed to
blackboxes, where only the I/O and functional ca-
pabilities of SW modules are known. We envision
the approach proposed in [6] to complement ours
as a postpass. Also, there was no distinction in [6]

amongst the various propagation media, while in
this paper, one can determine the role of each com-
munication medium for error propagation.

In an early work on error propagation, [12] pro-
posed a model based on error propagation time and
proceeded to experimentally evaluate the parame-
ters of the model, i.e., the distribution function
of the error propagation time between modules.
More recently, there has been more work on error
propagation analysis with different goals. [10] pro-
posed an approach where static software metrics
were used to determine software modules that do
not propagate errors. Some work on error prop-
agation analysis has dealt with finding locations
for Executable Assertions (EAs) [5] based on the
fact that testing is unlikely to uncover them using
sensitivity analysis or static analysis of SW prop-
erties [16, 17].

On EDMS’ effectiveness in detecting errors, [13]
presented an approach to determine the optimal
combination of EDMs in HW based on FI experi-
ments. It first determined the effectiveness of sin-
gle EDMs and then evaluated the effectiveness of
subsets of these EDMs. The problem of fault con-
tainment has been studied in [2, 4] using wrappers.
Wrappers act as filters whereby they filter out in-
puts which will cause system failure and filter erro-
neous outputs before passing the values to succeed-
ing modules. They have mostly been used when
using COTS (Commercial Off The Shelf) compo-
nents to build dependable systems.

Service availability is increased through replica-
tion. [8] proposes an approach where trade-offs be-
tween fault-tolerance and schedulability is achieved
through an objective function termed probability of
no dynamic failure. A higher replication degree of
a module implies higher fault-tolerance but it may
impact the schedulability. The decision to repli-
cate a module depends of whether there is enough
time for it to recover from a fault to meet a dead-
line. In this paper, the modules identified as can-
didates for replication are those SW modules that
allow errors to propagate easily, hence exerting a
high influence on a target module. We envision our
method of module selection proposed in this paper
to be an alternative and/or a complement to that
proposed in [8].

In the next section, we will derive general ex-
pressions that can be used to provide the relevant
information on error propagation.

4 Characterizing Error Propagation
Across SW Modules

A typical SW system consists of a set of coop-

erating ECMs (modules), as shown in Fig. 2. Each

ECM (at any level) contains a number of inputs

and outputs and an error in any of the input sig-
nals of a source ECM can potentially corrupt any
of its output signals. To assess the vulnerability of
an ECM, the probability of the error propagating
beyond the boundary of the source ECM should be
evaluated, minimized (possibly nullified), as well as
any effect the propagating errors may have on the
state of the target ECM.

GLOBAL VARIABLES/ Messages/Parameter Passir
SHARED MEMORY .- Shared Memory/Global Vatii

OUTPUTMESSAGE

PARAMETERS/MESSAGES

Figure 2: Software System with Communicating
ECMs and Possible Media for Error Propagation.

4.1 Error Propagation Process

Error Transmission Probability Metric
The error propagation process consists of three
phases, namely (a) error occurring in a source mod-
ule EC Mg, (b) error propagating out of the source
module and (c) resulting error in the target module
ECMy. We denote by m the number of potential
propagation media for errors between EC Mg and
EC My, and we denote by M;, the j'" propagation
medium, e.g., message passing or shared memory
(M; will also denote the relevant set of messages
or variables depending on the error propagation
medium between ECMg and ECMr).

Error Transm$|on Error
‘ Probability pl ‘ Trangarglcy p]2

Input
Sgnals ECM¢

N |nput signals X
Error Propagation

Error To this Output/Sate

At Input M;
IsT

Figure 3: Error Propagating from Input of EC Mg
to Output of EC Mt

In general, a (transient) error occurs at (one of)
the inputs of the source module and may propagate
via Mj to the inputs of the target module, where
an error may occur. The probability of an error to
propagate out of M}, denoted by P]{/}“j, is as follows:

0< Py = Pr{M;|l;} <1 (1)

where P]{/}Cj is the probability of an error in Iy, the

kth input of the ECM, to propagate out via M;.

We define the error transmission probability,
le, of a source ECM, EC Mg (see Fig. 3) as the
probability of an error occurring at the input of
ECMs to propagate, via Mj, to the input set of
the ECMr. This metric is important as it pro-
vides pertinent information of how often EC' Mg
allows errors to propagate. An ECM with high
error transmission probability is a potential can-
didate for replication or be equipped with EDMs
and ERMs.

As each input is assumed to have equal likeli-
hood of being in error, we can expand and sim-
plify Eq(1) to obtain an overall expression for Er-
ror Transmission Probability, denoted by le :

P} = (Pr{I}/N)-)_ PriMjlL} (2)

where N is the number of inputs of source ECM,
and Pr{I} the probability of an error occurring in
the input set I of the ECM. In FI experiments,
Pr{I} = 1 whereas, if field data or life testing has
been performed, Pr{I} can be modified accord-
ingly. Also, in case the error probability distribu-
tion is known for the inputs, the (1/N) weight for
each input is readjusted to reflect the distribution.

Error Transparency Metric: Once the error
has propagated via M to the input set of EC' M,
the probability of an error occurring in the state
of EC My is known as error transparency, denoted
by sz. This metric’s importance is in generating
information regarding how vulnerable EC'Mry is
to errors propagating from EC'Mg. Target ECMs
with high error transparency should be protected
from errors propagating from source ECMs which
is another likely candidate for replication or be
equipped with EDMs and ERMs.

Influence: Characterizing the Error Propa-
gation Process Having characterized the error
propagation process from EC Mg to EC My, as de-
picted in Fig. 3, we can now evaluate the influence,

I5%, of ECMs on EC Mg, via Mj, given by

Igh = le . PJ-Z (3)

4.2 Evaluating the Overall Influence of
a Source ECM on a Target ECM

Having obtained the influence exerted by

ECMgs on ECMy via M;, we can now evaluate

the net overall influence that can be exerted by
ECMg on ECMry and is given by:

Isp = 1 — (1 — I3%) (4)

Eqs(1)—(4) represent the general expressions
that characterize the error propagation process
from EC Mg to EC M.

Once the overall influence measures between all
interacting module pairs have been evaluated, an
influence graph can be built to represent the influ-
ence between pairs of modules, as shown in Fig. 4.
This outlines the impact of an error originating
from ECMg on ECMr.

0.2

Influence
Paramesi

Figure 4: Influence Graph.

Note: The influence values indicated in Fig. 4
are initially assumed values and one specific con-
tribution of this paper is to ascertain them exper-
imentally.

4.3 Separation Measure

So far, we have focused on direct interaction (in-
fluence) between SW modules. We now define sep-
aration, a complementary measure that captures
the indirect nature of interaction between ECMs.
Separation is the probability of an ECM not in-
fluencing another ECM when all other ECMs are
considered. This involves having transitive contri-
butions from different ECMs.

Source
ECM

Figure 5: Separation Analysis Graph.

To measure separation, we identify all the direct
and indirect links from any EC Mg to any EC My
in Fig. 4 to build a labeled directed graph, called

a separation analysis graph (see Fig. 5) consisting
of a source node (representing ECMg), a single
destination node (EC'Mr), and other intermediate
nodes representing ECMs through which EC Mg
and EC My interact. The label on the edges rep-
resent the influence between the ECM pair.

If I's 1 represents influence of EFC Mg on EC M,
then the total separation between ECMg and
ECMy, denoted by ECMg F EC My, is given by

ECMgs + ECMyp =
(1—Isp) k(1 —Igpler) I m(—IsilymIm,T)---

where k,[,m ... represent intermediate ECMs.

The value of separation from Eq(5) is always
between 0 and 1. At some point, contributions
from higher order terms are likely to be negligible.
The separation value gives an accurate estimate of
the level of interactions between ECMs as all other
ECMs are considered. Once separation between all
pairs of ECMs have been determined, a labeled di-
graph (Fig. 6) called a separation graph, similar to
the influence graph, can be constructed so as to
visualize the separation between different ECMs.
Absence of an edge from the separation graph rep-
resents a separation of 1 between the ECMs (i.e.,
they are fully separated).

Separdoi
Paraméei

Figure 6: Separation Graph.

The separation metric is important as it helps
address the issue of ECMs interacting both directly
and indirectly. In such cases, the influence metric
is limited and the separation metric is used. Also,
in cases where the interactions between modules
are bidirectional, the influence metric cannot fully
capture the nature of this interaction, hence sepa-
ration may be used as a complementary metric to
influence.

At this stage, we have established the analytical
measures of influence and separation. For illustra-
tion purposes, we have made use of assumed values,
as in Fig. 4. Although it may be sufficient to assign
relative values of influence to quantify the degree of

interactions between SW modules, this is not ade-
quate when designing SW that will be deployed in
safety-critical systems, where it is important to as-
sign absolute values. As such, we have performed
FI experiments on an actual embedded control sys-
tem SW. In the subsequent sections, we will detail
our results as well as provide insights over the rele-
vance of our findings. We will first present the tar-
get system (together with its architecture). The
experimental setup will then be detailed and we
will provide information pertinent to the FI exper-
iments. The results section will detail the results
of these experiments. We then provide a general
discussion on the utility of the framework.

5 Validation of the Framework: An
Experimental Approach To Ascer-
tain Influence Values In Real SW

Having presented the analytical framework, we
now need to validate the framework by experimen-
tally measuring the parameters of the framework
that will help in evaluating the influence and asso-
ciated metrics. The validation process is performed
experimentally using FI experiments, which artifi-
cially introduce faults and/or errors into the sys-
tem [1, 9]. The target system used is a real em-
bedded system for aircraft arrestment on short
runways, resembling the cable-and-hook systems
found on aircraft carriers, as in Fig. 7. The SW

Tape Drum (Master) Tape Drum (Slave)

Cable

Pressur Pressur Pressur
Sensor Valve Sensor

|

Master Slave

Rotation
Sensor

Pressur
Valve

Figure 7: Aircraft Arrestment System: Target sys-
tem in our study.

architecture of the target system is shown in Fig. 8
and has been implemented according to specifica-
tions found in [15]. For our study, the original
software was ported so it would run on a Windows
NT/2000 based desktop computer. An environ-
ment simulator handles the rotating drum and the
incoming aircraft. This target system was found
to be suitable for this study for three main rea-
sons: (a) it represents a real embedded system,
and validating our framework using a real system
will help in assessing the relevance/utility of such

a framework in determining influence and separa-
tion metrics in real systems, (b) it presents archi-
tectural features that will allow rigorous testing of
our proposed framework, and (c) we have access
to the complete source code and to the relevant
environment simulator.

For performing the FI experiments, we made
use of PROPANE (Propagation Analysis Envi-
ronment) [7], which is a tool that performs fault
and error injection using SWIFI (Software Imple-
mented Fault Injection). PROPANE can also keep
track of traces of individual variables during exe-
cution. Details pertinent to the experiments will
follow in subsequent sections. Next, we present the
software architecture of the target system.

5.1 Target System: An Example of An
Embedded Control Software

The target system is a medium-sized embedded
control system used in arresting aircraft on short
runways. The system is illustrated in Fig. 7. The
real software comprised a master node as well as
a slave node but in our setup, the slave node was
removed. The force that was applied on the cable
by the drum connected to the master node was also
applied to the cable at the slave end, resulting in
equal pressures being applied at both ends.

The software architecture of the target system is
shown in Fig. 8. The software comprises six mod-
ules and a set of input/output signals to each mod-
ule. The functionality of each module is summa-
rized below.

e CLOCK provides a clock, mscnt, with one millisec-
ond resolution, while the ms-slot-nbr provides the
module scheduler with the current slot number for
“scheduling” purposes. The system is slot-based, with
seven 1 ms slots in which one or more of the other
modules are executed (except the CALC module).

e DIST-S monitors the rotation sensor and provides a
total count of the pulses, pulscnt, generated during the
arrestment. Two outputs (stopped and slow-speed) in-
dicates whether the aircraft has stopped and whether
the speed is below a certain value, respectively.

o CALC uses the signals mscnt, pulscnt, stopped and
slow-speed to calculate a set point value for the Set-
Value output at different checkpoints along the run-
way.

o PRES-S monitors the pressure sensor, measuring the
current pressure on the pressure valve. This value is
provided in IsValue.

o V-REG uses the signals SetValue and IsValue to con-
trol OutValue, the output value to the pressure valve.

o PRES-A uses the OutValue signal to set the pressure
valve.

5.2 Experimental Setup and Proce-
dures Used

The above target system was found to be archi-

tecturally suitable for this experiment since it pre-

sented modules with large fan-ins (4, in the case

ms-slot-nbr

mscnt
CLOCK
PACNT pulscnt CALC
TIC1 DIST-S slow-speed
HW stopped

counter Setvalue

TOC2 pressu
Valve

ADC IsValue
Pressure

Sensor

Outvalue

Figure 8: Software Architecture of the Target Sys-
tem.

of CALC) and modules with large fan-outs (3, in
the case of DIST-S), so that a set of messages can
be targeted as input/output (set M of the frame-
work), just as presented in the analytical frame-
work. The FI tool used is PROPANE which allows
data logging in SW. This is achieved by having high
level SW traps placed in the system which, when
reached during system execution, trigger the log-
ging of data. During the experiments, PROPANE
records every injection made and keeps a trace of
every logged variable in the system during execu-
tion. The logged variables are, in our case, output
signals from every module and all global variables
in each module (since we are interested in the state
of the system). In our study, errors were injected
in every input signal that is shown in Fig. 8, except
in OutValue, which is the input signal to the last
module (PRES-A) and for which we do not then
calculate an influence value, since it will only rep-
resent an influence on the external environment.

For every test case, to obtain data to calculate
the influence/separation metrics, we first produced
a Golden Run execution of the system. The Golden
Run execution is one where no error is injected
in the system, and is used as a baseline reference
execution. Then, errors are injected in the input
signals of the modules and the logged variables
recorded. For each experiment, only one error was
injected at any one time, i.e., no multiple errors
were injected, which is in line with our fault model,
i.e., only one input can be in error at any one time.
The input signals to every source modules are 16-
bit wide, and 16 bit-flip errors were injected in each
signal (a bit-flip in each position). The bit-flips
were injected at 10 different time instances, result-
ing in 160 bit-flips for each signal. 25 test cases
(5 different masses and 5 different velocities, uni-
formly distributed between 8,000 kg and 20,000 kg,
and 40 m/s and 80 m/s respectively) were run, to
subject the system to a range of realistic workloads.
This resulted in 4,000 injections for each input sig-
nal. In all, there were 48,000 injections (12 input

signals). Out of these 48,000 injections, there were
times when the injections were made after the air-
craft was completely arrested and these cases were
not taken into consideration in our calculations.
From now on, errors injected means errors injected
before the aircraft has been completely arrested,
i.e., active injections.

Once the data from the FI experiments were
obtained, they were compared against the Golden
Run data. For each logged variable, any mismatch
in its values from the injected run and the Golden
Run is flagged as an error and comparison stops
for that variable. This is performed for each logged
variable so that, for each error injected in the sys-
tem, we have a set of variables which were affected
by that injected error. An analysis of the results
is provided in the next section, i.e., for each of the
active injections, we have information on whether
any of the logged variables was affected or not by
that injection.

6 Results and Interpretations

We now analyze the data by using the expres-
sions developed in Section 4. In the target system
above, the only medium (m = 1) through which an
error can propagate is message-passing (M7). The
basic metrics to evaluate are (i) error transmission
probability and (ii) error transparency. In the dis-
cussion below, we will reference My by M only (M
will also represent the set of messages being passed,
depending on the context). Also, the conclusions
presented in the coming section are dependent on
the fault model. Changing the fault model may re-
sult in different values, hence different conclusions.

6.1 Results: Measured Error Trans-
mission Probability Values

We first evaluate the error transmission prob-

ability for every possible source ECM (ECMsg,

all modules except PRES-A). To obtain the er-

ror transmission probability of a source module,

we first determine the set M of messages through

which an error from ECMg can reach the target
ECM (only CALC, V-REG, PRES-A). For ease

Input I}, | Pr{M|I}
SetValue 0.87308
IsValue 0.93887

Table 1: Values Used for Calculating Error Trans-
mission Probability

of presentation, we present one example case here.
When calculating the error transmission probabil-
ity of V-REG say, the set M is {OutValue}. The
inputs to V-REG are SetValue and IsValue. For
each of them, we determine the probability of an

error at that input to affect the set M. This prob-
ability is Pr{M|I}} for each k. This value is deter-
mined by taking the ratio of the number of errors
in OutValue to the number of injections in the in-
put signal, say SetValue. The same is repeated for
the IsValue signal. Table 1 presents experimental
values obtained when determining the error trans-
mission probability of V-REG.

The error transmission probability of V-REG
can then determined by Eq(2). Plugging in the val-
ues from Table 1 in Eq(2) and taking Pr{I} to be
1 for FI purposes, the error transmission probabil-
ity of V-REG is [0.5*(0.87308+0.93887)] = 0.906.
The ratio of the number of errors in M to the to-
tal number of errors injected in both SetValue and
IsValue is equal to 0.906, showing that modeling
error transmission probability as in Eq(2) is valid.
A summary of error transmission probability of ev-
ery EC Mg is given in Table 2. P} denotes Er-
ror Transmission Probability of the ECM when the
first (and in this case the only) error propagation
medium is considered. As discussed in Section 4.1,

ECMg | Error Transmission Probability (P])
CLOCK 0.8622

DIST-S 0.454

PRES-S 0.0

CALC 0.8957

V-REG 0.906

Table 2: Error Transmission Probability of Each
Source Module

a high value of the error transmission probability of
an ECM points to the fact that there is very little
error containment built inside that ECM and is a
potential candidate for replication or be equipped
with EDMs and ERMs, so that an error can effec-
tively be contained within this ECM. In this case,
potential candidates are CLOCK, CALC and V-
REG. Also, the error transmission probability of
PRES-S is 0, indicating that this module presents
some inherent error containment capability.
6.2 Results: Measured Error Trans-
parency Values

After determining the error transmission prob-
ability of each source module, we determine the
error transparency of every potential target mod-
ule (EC'Mr) along certain input signals set, i.e., of
all modules except CLOCK, DIST-S and PRES-S
along specific signals set. For example, if the in-
fluence value of the DIST-S on CALC is needed,
then we need to determine the error transparency
of CALC along the {pulscnt, stopped, slow-speed}
input message set M. To calculate the error trans-
parency of a module, we first determine the number
of times there is an error at the inputs of the target

module. As before, we consider one specific exam-
ple. From the total number of errors that affect
the set M from DIST-S, we calculate the number
of times there is an error in the state of CALC due
to the propagated errors, i.e., the number of times
at least one of the global and output variables of
CALC'is in error. The error transparency of CALC
along the set M is then the ratio of the number of
errors in the state of CALC to the number of errors
that propagated from the output of DIST-S to the
inputs of CALC.

For this specific example, 5012 errors prop-
agated from DIST-S to the inputs of CALC.
This resulted in 4977 errors in the state of
the CALC. The error transparency of CALC
along {pulscnt,stopped,slow-speed} is (4977/5012)
= 0.993. In determining error transparency, we
used the number of errors that propagated to the
target module rather than using the number of er-
rors injected in the target module. The error trans-
parency values of different modules along different
input signals set are presented in Table 3. P? rep-
resents the error transparency of the ECM when
the first error propagation medium is considered.
M has been instantiated in different cases since
these ECMs (CALC and V-REG) have inputs com-
ing from different source ECMs.

ECMr P2
CALC (M={mscnt}) 0.8229
CALC (M={pulscnt, stopped, slow-speed}) | 0.9930
V-REG (M={SetValue}) 0.8958
V-REG (M={IsValue}) 0.9381
PRES-A 0.9822

Table 3: Error Transparency of Each Target Mod-
ule on Different Input Sets

The error transparency of a module gives an in-
dication as to the vulnerability of the target mod-
ule in presence of propagated errors at its input.
From Table 3, the error transparency of most mod-
ules along any input set is close to 1, which means
that whenever there is a propagated error at the in-
put of these modules, then their computation will
be altered as their state and/or message set is cor-
rupted, implying that the source ECMs are poten-
tial candidates for replication or be equipped with
EDMs and ERMs.

V-REG, along the {IsValue} set, has an error
transparency of 0.9381. This value represents an
approximation to the error transparency of V-REG
along {IsValue} and has been evaluated using the
FI data when errors have been injected in the Is-
Value signal. As stated above, error transparency
has been calculcated by using the number of errors
that propagated to the target module but, since

in the case of V-REG, no error propagated from
PRES-S, we determined the error transparency of
V-REG along {IsValue} by using the number of
errors injected in IsValue.

Whenever the error transmission probability
and error transparency metrics are analyzed to-
gether, detailed conclusions can be drawn. For
example, as explained in [5], EDMs such as Ex-
ecutable Assertions can be placed either in the
source ECM or in the target ECM. A low value of
error transmission probability of the source mod-
ule and a high value of error transparency of the
target module implies that it is preferable to place
an EDM in the target module rather than in the
source module. As an example, PRES-S is con-
nected to V-REG. A look at Tables 2 and 3 reveals
that the error transmission probability of PRES-S
is 0.0 (using this particular fault model) and that
the error transparency of V-REG along {IsValue}
is 0.9381. Hence, from these values, placing an
EDM at the output of PRES-S is irrelevant as this
module presents some error containment capabili-
ties. On the other hand, since the V-REG module
has a high error transparency along {IsValue}, any
error at this input (e.g., due to bit-flips in memory
areas rather than propagated errors from PRES-
S) should be detected, hence placing EDMs at the
IsValue input in V-REG, and having ERMs in V-
REG, will potentially limit the damage within the
V-REG module.

6.3 Cumulative Influence Values: An-
alytical and Experimental Evalua-
tions and Their Correlations

Having determined the error transmission prob-
ability and error transparency of source and target

ECMs along relevant message sets respectively, we

now use Eq(4) to obtain analytical values of influ-

ence of each source/target ECMs pair, as in Table 4

Source Target Analytical Influence (IM)
CLOCK | CALC | IS7&nd ., . =0.7095
DIST-S | CALC IM s carc = 0.4508
PRES-S | V-REG | IilsVeluel =00
CALC | V-REG | 115gvalwel — — 0.8023
V-REG | PRES-A | r{2uVeluel — 0.8899

Table 4: Analytical Values of Influence Through
Message Passing. Note: On row 2, M =
{pulscnt, stopped, slow — speed}

Having analytically evaluated the influence
value for each source/target module pair, we then
experimentally evaluated the influence value for
each of the same pair of source/target module.

The experimental value of influence is calculated
by taking the ratio of the number of times there
is an error in the state of the target module when-
ever an error is injected in the input of the source
module. For example, 7296 errors were injected
in the inputs of V-REG and a total of 6493 errors
were detected in the state of PRES-A, giving an
influence of 0.8899.

The values for each pair is shown in Table 4
(column 3). The first column is the identity of
the source ECM, the second column represents
the target ECM and the last column contains
the experimentally-determined influence value be-
tween the source ECM and the target ECM.

One of the main goals of the paper is to vali-
date this framework by showing that the analyt-
ical framework predicts accurate influence values.
Table 5 compares the analytical values with the
experimental values. The first two columns indi-

Source Target Expt Analytical | Error
CLOCK CALC 0.7095 0.7095 0.0
DIST-S CALC 0.4813 0.4508 6.3
PRES-S | V-REG 0.0 0.0 0.0

CALC V-REG | 0.8023 0.8023 0.0
V-REG | PRES-A | 0.8899 0.8899 0.0

Table 5: Summary of Influence Results Between
Various Modules

cate the identities of the source and target mod-
ules. Columns 3 and 4 show the experimental and
analytical influence value respectively. The error
column in Table 5 represents the percentage devi-
ation of the predicted value from the experimental
value. As can be seen, the analytical framework
predicts to a very high degree of accuracy the value
of influence between a source module and a target
module.

The reason for this accuracy is explained as fol-
lows: One potential source of inaccuracy would be
that messages may be dependent on each other.
Our modeling strategy of having messages or mem-
ory locations as a set addresses this problem. In [6],
locations for EDMs and ERMs were identified by
first generating a set of input-output paths in each
module. Such an approach provides insights into
vulnerable paths within the module. However, it
does not fully incorporate the fact that different
input-output paths may be related to each other.
When evaluating the error transmission probabil-
ity and error transparency (hence influence), there
is a need to account for the interdependency be-
tween the different input-output paths in the mod-
ule. If this interdependency is not accounted for,
this will result in inaccurate results. However, to
circumvent this problem, [6] adopts a black-box

perspective of a module, instead of a whitebox (as
in this paper), thus yielding metrics that create a
relative ordering based on “influence”.

On the other hand, there is a significant discrep-
ancy between the analytical and experimental in-
fluence value of DIST-S on CALC. This can be ex-
plained by the fact that, on top of DIST-S spatially
influencing the CALC module through {pulscnt,
stopped, slow-speed}, the DIST-S module indirectly
influences the CLOCK module in the time domain,
i.e., DIST-S causes the mscnt and ms-slot-nbr sig-
nals from the CLOCK module to exhibit a dif-
ferent profile from the Golden Run (specifically,
the signal mscnt is incremented more than in the
error-free case). This indirect influence of DIST-
S on CLOCK in turn causes CLOCK to influence
CALC through mscnt. Hence, there is higher num-
ber of errors in the state of CALC than expected
due to this temporal influence. Also, the influence
of CLOCK on CALC is temporal and since tem-
poral influence is detected as data errors, there is
exact agreement between the analytical and exper-
imental values of influence of CLOCK on CALC.
However, the impact of temporal influence is more
clearly illustrated in the influence value of DIST-S
on CALC. Temporal influence is not the focus of
the current paper, but is a factor in our continuing
work to obtain a comprehensive framework consol-
idating spatial and temporal influences.

Building ECMs implies that influence values
should be decreased to under a certain threshold
(which may be application-dependent). Replica-
tion or use of EDMs and ERMs help achieve that.
Also, by using the influence value, one can also
determine if the system has been built too defen-
sively. For example, if an EDM was placed at the
output of PRES-S, this would represent only re-
dundant code. Overall, these metrics help in de-
veloping reliable SW such that error propagation
is minimized by design.

6.4 Discussion

We have shown that the framework generates
accurate influence results, and also that the dif-
ferent metrics provide insightful information perti-
nent to vulnerabilities in the system, which is im-
portant when developing reliable distributed SW.
However, in this section, we address some limita-
tions of our approach and provide some general
discussions on the different results.

In this paper, we did not address bidirectional
inter-modular interactions such as feedback loops.
However, we believe that the error transmission
probability, error transparency and the influence
metrics can be measured following the approach
presented in this paper. On the other hand, the

separation metric may be more difficult to measure
and analyze, since it includes transitive contribu-
tions (i.e., captures the feedback interactions).

Also, the influence and separation metric may
not readily allow piecewise composition of the dif-
ferent SW modules under the current fault model.
However, as future work, we will be enhancing this
framework to deal with multiple errors. Then, the
metrics can be used as a basis for composability.

Furthermore, we motivated the use of the sepa-
ration metric. However, in our target system, we
do not have direct and indirect interactions be-
tween the different modules and hence evaluation
of separation between modules becomes trivial, i.e.,
specifically, it is given by 1 - (product of influ-
ences). If a target system presents more complex
interactions between the component modules, then
separation will provide more accurate estimations
of the level of interactions and can be evaluated
using Eq(5).

7 Summary and Future Work

Utilizing a whitebox knowledge of SW, the pa-
per targeted reduction of inter-modular error prop-
agation in SW by design. The main aims of this
paper were to be able to calculate the influence
value between a source module and a target mod-
ule in the system, and to use these values to de-
termine candidate module for replication or equip
with EDMs and ERMs. We first analyzed the er-
ror propagation process, which provided us with
the relevant information needed when performing
FI experiments, i.e., which metrics to evaluate to
allow calculation of influence. In our case, the met-
rics were error transmission probability and error
transparency along a certain input set. We showed
that the analytical framework can predict to a very
high degree of accuracy the influence value between
a pair of modules. Using this influence value (and
associated metrics such as error transparency or
error transmission probability), we were then able
achieve our goal. Furthermore, the influence values
provided insights into whether a system has been
built too defensively.

We also analyzed only the impact of spatial in-
fluence of one module on another. As stated ear-
lier, a module can also interfere with another in
the temporal domain. A natural extension of our
work will then be to determine the timing influence
of one module on another, which is especially im-
portant in real-time systems. Such an example was
provided in case of DIST-S influencing CALC. Ad-
ditional work will include incorporating the timing
influence into the above framework so that both
spatial and timing influence can be reasoned about
in a single, well-defined framework. Also, we plan

to apply our framework to other target systems to
further validate its applicability.

References
[1] J. Arlat et al, “Fault Injection for Dependability Eval-

uation of Fault Tolerant Computing Systems”, Proc
FTCS-19, pp. 348-355, 1989.

[2] F. Salles, M. Rodriguez, J.C. Fabre, J. Arlat,
“MetaKernels and Fault Containment Wrappers”,
Proc FTCS-29, pp. 22—29, 1999.

[3] R. Chillarege, N. Bowen,“Understanding Large Sys-
tem Failures - A Fault Injection Experiment,” Proc
FTCS-19, pp. 356-363, 1989.

[4] A.K. Ghosh et al,“Wrapping Windows NT Software
For Robustness”,Proc FTCS-29, pp. 344-347, 1999.

[5] M. Hiller “Executable Assertions For Detecting Data
Errors in Embedded Control System”, Proc DSN
2000, pp. 24-33

[6] M. Hiller, A. Jhumka, N. Suri,“An Approach To
Analysing The Propagation Of Data Errors In Soft-
ware”, To Appear in Proceedings DSN 2001

[7] M. Hiller “A Tool for Examining the Behavior of
Faults and Errors in Software”, Technical Report 00-
19, Dept of Comp Engg, Chalmers University, Sweden.

[8] C.J. Hou, K.G. Shin, ”Replication and Allocation
of Task Modules in Distributed Real-Time Systems”,
FTCS’94

[9] R. K. Iyer, “Fault-Tolerant Computer System De-
sign”, D.K. Pradhan editor, Chapter 5, pp. 282-387.

[10] T.M. Khoshgoftaar et al, “Identifying Modules Which
Do Not Propagate Errors,” IEEE Symposium on
Application-Specific Systems and Software Engg and
Technology(ASSET), pp. 185-193, 1999.

[11] J.C. Laprie, “Dependability: Concepts and Terminol-
ogy,” Dependable Computing and Fault- Tolerant Sys-
tem, Vol. 5, Springer-Verlag, 1992.

[12] K.G. Shin, T.H. Lin, “Modeling and Measurement of
Error Propagation in a Multi-Module Computing Sys-
tem,” IEEE Trans. on Computers., vol. 37, No. 9,
pp. 1053-1066, Sept 1988

[13] A. Steininger, C. Scherrer, “On Finding an Optimal
Combination of Error Detection Mechanisms Based on

Results of Fault Injection Experiments,” Proceedings
FTCS’27, pp. 238-247, 1997.

[14] N. Suri, S. Ghosh, T. Marlowe,“A Framework for De-
pendability Driven Software Integration”, Proceedings
ICDCS’98, pp. 405-416, 1998

[15] US Air Force - 99, “Military Specification: Aircraft
Arresting System BAK-12A /E32A; Portable, Rotary
Friction”, MIL-A-38202C, Notice 1, US Department
Of Defence, September 2, 1986

[16] J.M. Voas, K.W. Miller “Putting Assertions in Their
Place,” Proceedings ISSRE’9/, pp. 152-157, 1994.

[17] J.M. Voas, “PIE: A Dynamic Failure-Based Tech-

nique,” IEEE Trans on Software Engg, vol. 18, No. 8,
pp. 717-727, August 1992.

