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ABSTRACT
Over the design of software (SW) used in provisioning of de-
pendable services, Executable Assertions (EAs) are seeing
increasing usage in aiding detection of data errors. Given
the requirements for provision of service despite faults, early
detection of system states that can potentially lead to sys-
tem failure is valuable. We address the issue of ascertaining
whether localized EAs in individual modules add up comple-
mentarily to implement a global EA/property. We first show
that detection of globally compliant EAs is NP-complete.
Thus, we develop a two-pass approach for our objective. In
the first pass, we introduce the consistency property of EAs
and use it to ascertain global conformity across all EAs. The
second pass, analogous to predicate transformers, generates
globally consistent EAs when any inconsistency is flagged in
the first pass. We show the applicability of our approach on
a real embedded system. Initial results obtained show that
our framework is able to detect inherent vulnerabilities (due
to placement of mismatched EAs) that were previously un-
detected. Our intent is automation of this approach, which
can be incorporated in a compiler.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming—Program Modification,Program Transformation; D.2.4
[Software Engineering]: Software/Program Verification—
Reliability ; F.3.1 [Theory of Computation]: Logics and
Meanings of Programs—Assertions,Pre- and post-conditions

General Terms
Executable Assertions, embedded systems, semantics, ab-
stract interpretation, application level fault tolerance
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1. INTRODUCTION
Software (SW) is increasingly defining both the function-

ality and dependability attributes of embedded systems. Their
development tend at integrating an assortment of SW func-
tions, of varying requirements, onto shared hardware re-
sources [18]. Given this integrated development, an error
in one SW function may adversely influence other SW func-
tions. In our previous work [10, 19], we developed a frame-
work for quantifying error propagation between SW func-
tions. Given that error propagation needs to be minimized,
detectors and correctors [2] are incorporated in individual
SW functions to constrain error propagation, ensuring cor-
rect delivery of service (temporal and functional).

Thus, when designing the underlying SW to provide for
desired functionality, error handling mechanisms such as Ex-
ecutable Assertions (EAs) [7, 8, 17] are incorporated to
detect (and correct) erroneous signals and states that can
potentially lead to failures. For many embedded applica-
tions, specifications only provide constraints on input and
output signals and EAs designed to monitor these signals
exhibit high detection coverages [8]. However, such EAs
may not have high detection coverage for erroneous system
states since, in distributed SW, the state is spread over dif-
ferent components. Thus to detect an erroneous state entails
design of predicates that encapsulate the global state of the
system, and EAs designed directly from signal specifications
tend to have limited effectiveness 1.

1.1 Illustrating Example Scenarios in EA De-
sign

As a number of EAs are discretely specified and placed
within the SW, these EAs need to detect any system state
that will lead to violation of the problem specification [1],
more specifically the safety specification of the system. The
safety specification identifies a set of “bad” finite computa-
tion prefixes that should not appear in any program compu-
tation. Thus, we require the localized EAs to comply with
the safety specification of the system, as specified by a global
property2(global EA), i.e., ascertaining that localized EAs
are globally consistent3. To comply with the safety specifi-
cation, localized EAs are usually designed defensively, i.e.,

1High detection latency, low detection coverage for erro-
neous states, high rate of false alarms
2We assume that the global property of the system is the
same as the EAs monitoring the output signal(s)
3We formally define the term consistency later in Sec-
tion 1.1, Definition 1.



they filter out many non-erroneous states to ensure safety
compliance, giving rise to false alarms, thus reducing the
efficiency of the system.

To better illustrate the concept of consistency, we present
two examples, prior to providing its definition. Consider the
following pseudo code segments with EA1 and EA2 depict-
ing EAs in the code:

Function 1
Function MultiplyBy5(int param)
int val;
ASSERT(param > 0); EA 1

val := param * 5;
ASSERT(val > 25); EA 2
return(val);
End Function

In Function 1, EA2 (val > 25 where val = param *
5) is the global EA and EA1 (param > 0) is a localized
EA. EA1 and EA2 are not globally consistent since, for
(0 < param ≤ 5) which are not flagged by EA1, these values
result in (val < 25), thus violating the safety specification of
the global property. The resulting problem is that detection
latency is increased, leading to possible corruption of sys-
tem state. Overall, if the code linking these two EAs, i.e.,
val := param * 5, is denoted by F , then F (EA1) = EA2,
i.e., the code transforms EA1 into EA2. This example sce-
nario is depicted in Fig.1(b), which is an example of partial
consistency.

Consistency between two EAs can be classified into three
categories, namely (i) consistent (ii) partially consistent, and
(iii) inconsistent. If, graphically, we depict an EA as a
pipe, consistent EAs are analogous to well-aligned pipes
(Fig 1(e)) and inconsistent EAs to completely misaligned
pipes (Fig 1(d)). Partial consistency is analogous to par-
tially misaligned pipes (Fig. 1(a)–Fig. 1(c)). A set of EAs is
globally consistent if all EAs are consistent with each other
and they all together implement a global property. At this
point, we provide a definition of consistency.

(a) (b) (c)

EA
EA

EA
EA

EA

1
2 1

2
1

2

(d)

EA1

EA2Defensive
Programming

Coarse Filter

EA

Before Fine

Incompatible EAs

Partially
Overlapping EAs

Possible error propagation
due to these misses.

EA 1 EA 2

This miss will give rise
to errors

(e)

Partially Consistent EAs Inconsistent EA

Consistent EA

The EAs provide
complementary coverage.

All data
will get
rejected at
this point.

are related to each other through the code between them.2and EANote that EA1

Figure 1: Examples of Consistent and Inconsistent

EAs

An EA (EAi) defines a set of values, S(EAi), that a given
variable (Vi) can take. Two EAs placed in a given SW sys-
tem are linked to each other via code implementing a given
function Fm.

Definition 1. EA1 and EA2 are said to be consistent
with each other iff Fm(S(EA1)) = S(EA2). They are
inconsistent iff Fm(S(EA1)) ∩ S(EA2) = {}. They are

partially consistent iff they are neither consistent nor incon-
sistent.

1.2 Overall Contribution
Overall, having partially consistent and inconsistent EAs

results in ineffective error handling in SW. This therefore
calls for new methodologies for specifying and designing
globally consistent EAs. We show in Section 4 that the de-
tection of global consistency of EAs is intractable. Thus, we
develop a two-pass approach, analogous to a two-pass com-
pilation approach, to tackle this problem. Our approach is
focused at the compiler level to allow for automation of the
process.

• Using abstract interpretation [4], we systematically ver-
ify the localized EAs for global consistency. We also
provide a semantics-based framework for specifying
and reasoning about EAs.

• In the event of having EA inconsistencies in the first
pass, the second pass systematically generates EAs
that are globally consistent, analogous to the concept
of predicate transformers [5].

Paper Organization The overall paper is organized as fol-
lows: Section 2 presents our chosen system and fault model
used in the paper. Section 3 presents related work. Sec-
tion 4 presents a proof of intractability of detecting global
consistency of EAs, and then present our contribution. In
Section 5, we present a brief introduction of abstract inter-
pretation. In Section 6, we present our developed framework
for specifying EAs, along with its formal semantics. Issues of
EA consistency verification are also presented in this section.
Section 7 presents the algorithm to generate globally consis-
tent EAs and, in Section 8, we present an example to show
the usefulness of our work and we briefly discuss the results
obtained. Section 9 discusses the applicability, relevance and
limitations of our framework. Section 10 briefly discusses
our overall contribution and presents ongoing work.

2. SYSTEM, PROGRAM, AND FAULT MOD-
ELS

The models used in the paper are:
System Model We focus on embedded systems though

the methodology can be applied to multiple SW/application
modules on a uniprocessor as well as distributed systems. In
embedded systems, the emphasis is on data values (signals).

Program Model Our program model is one where EAs
are included in SW, Fig. 2. Such EAs are derived from
signal specifications, and are either preconditions or post-
conditions. Also, the applications under consideration can
run on either a uniprocessor machine or across a distributed
system. We also assume a white-box SW perspective, i.e.,
the internal structure of SW is known and modifiable.

Fault Model As our focus is on embedded SW, the errors
assumed in this paper are transient data errors in the input
signals going into a given SW module, for example, due to
bit-flips in memory areas or mutations prior to the signal
input. Overall, we assume errors to enter the system from
the environment (e.g., faulty sensor readings) and propagate
during module interactions. When a transient error occurs,
it means that a variable is holding erroneous data value.
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Figure 2: A model of a typical module

2.1 Data Checking Using Executable Asser-
tions: The Basic Approach

An EA is an executable code fragment inserted in SW to
assert the validity of the state of that SW, i.e., the EA checks
whether the variables in the SW are holding erroneous val-
ues. Preconditions, postconditions and other range checks
are all examples of EAs.

Preconditions state the properties to be satisfied for proper
execution. Violation of the preconditions is indicative of
faulty inputs/initial state that may lead to erroneous execu-
tion. However, these are not efficient at checking the overall
state of SW composed of several modules.

Postconditions are code fragments that assert the validity
of the final state. Postconditions state the properties that
should exist after a successful execution of the module, while
violation indicates that an error may have occurred during
execution.

Invariants are another type of EA that ensure that a given
property is always satisfied during program execution and
usually violation of preconditions and postconditions implies
violation of invariants. Thus, in this paper, we will focus
mainly on preconditions and postconditions.

3. RELATED WORK
[8] shows the high detection coverage provided by EAs in

detecting data errors in signals they monitor. The EAs used
were derived from signal specification. [15] uses an approach
based on both EAs and timed traces for on-line error detec-
tion and the EAs were designed from specification and were
intended to detect errors in a given functional block only. [16]
introduces an assertion processing tool that is used to ad-
dress the concerns of ease-of-use and effectiveness. The tool
is called APP, an Annotation PreProcessor for C programs
developed in UNIX. It presented a classification for EAs that
were most effective in detecting faults. However, it is left
to the programmer to decide on EAs to be inserted in the
code, potentially leading to inefficient EAs(see Section 4).
An approach similar to [16] is described in [22]. [17] aug-
mented PASCAL and FORTRAN compilers with assert in-
struction, and examples were provided to show its usage. [7]
proposes an approach whereby the number of EAs can be
reduced, through static analysis. They argue that inter-
modular analysis would allow a greater number of EAs to
be reduced, but is however antithetical to the concept of sep-
arate compilation. So, they proposed an approach in which
preconditions are declared in the interface definition of an

encapsulated object. The implementation consequences of
this approach were then evaluated. On the other hand, [13]
shows that EAs are difficult to design for distributed parallel
environment. Thus, they proposed a set of basic metrics for
certain classes of problems which results in assertions that
are better suited for the parallel environment. [9] presented
an approach analogous to the one that we present here, but
relating to security properties. Their control-flow framework
verifies whether local security checks inserted in individual
modules provided the requisite protection as specified by a
global security property.

Thus, work on EAs has addressed the following issues: (i)
ease of use [16, 17, 22], (ii) its efficiency [8], (iii) actual us-
age [15, 7]. One common denominator is that EA design is
either random [12] or based on signal specification. As ar-
gued above, they have limited efficiency for detecting system
state errors. Our work addresses the question of whether
compiler support is possible in guiding design of globally
consistent EAs. Presently, compiler support is only provided
for ease of use [16, 17]. We envision our approach to comple-
ment that in [16]. To the best of our knowledge, little work
has been done on the systematic design of EAs for SW. [11]
presented algorithms (for various level of fault tolerance) for
automating the design of fault tolerant programs, starting
from fault intolerant programs. They adopted a state ma-
chine view of SW, whereby “faulty” transitions are identified
and removed as necessary, depending on the fault tolerance
level to be achieved. Our approach is analogous in that we
endeavor at automating the generation of detectors [2], that
can be incorporated in SW.

Further, once these EAs have been incorporated in SW,
Fault Injection [3, 14] experiments are performed to vali-
date and evaluate the effectiveness of EAs and the usual
metrics to evaluate their effectiveness are detection latency
and detection coverage. While these metrics are useful, they
do not however highlight vulnerabilities in the system (e.g.,
defensive programming). Thus, we need to develop a frame-
work that can provide complementary EA information to be
usable in detecting vulnerabilities across EAs and SW.

Before presenting our approach, we discuss the tractabil-
ity of detecting globally consistent EA’s.

4. NP-COMPLETENESS OF GLOBAL PROP-
ERTY CONSISTENCY

The program P consists of a set of modules Mi. Each
module Mi has a set Vi of variables defined in it. A global
property of a system is a boolean valued function B defined
over the variables in V =

⋃
i Vi of the system. We define

a set L = {L1 . . . LN} of localized EAs (preconditions or
postconditions) defined over the set V of variables. We use
the notation B(L) to indicate the value of predicate B in a
system with L = {L1 . . . LN}.

Global consistency detection of EAs (GLOB) is a decision
problem. It takes the form of:
Given: a program P , a global property B and a set of
system variables V .
Determine: if there exists a set L of localized EAs Li’s
defined over V such that L is globally consistent with B
through P .
Claim: GLOB is NP-complete
Proof: First note that the problem is in NP. A verifier for
the problem takes as inputs the program P , the set L of



localized EAs and the global property B and then verifies if
the set L is consistent with B, i.e., satisfies B. This can be
done in polynomial time. If this can be done in polynomial
time, then detecting the global consistency of EAs belongs
to the set NP.

We show NP-completeness of a simplified consistency de-
tection where all variables in V can take value “true” or
“false”. There is only one Li incorporated in Mi. We re-
duce the satisfiability problem of a boolean expression to
GLOB by constructing an appropriate set of localized EAs.

The set is constructed as follows: Choose an Li ∈ L such
that Li = “false” and include a new variable vj ∈ V such
that Li is now “true”. It is easily verified that the predicate
B is true for some set L if and only if the global property is
satisfiable.

4.1 Specific Problems and Contributions Ad-
dressed

Given the intractability of global consistency detection of
EAs that explains the observation in [12] (i.e., that designing
checks is a random and difficult process), our overall contri-
bution is the definition of a framework that addresses this
problem. We endeavor to identify the more critical variables
that will allow detection of erroneous global state. Such ac-
tion can be performed with compiler help. Thus, our ap-
proach is based on abstract interpretation. Specifically, we
allow the compiler to guide the design of EAs such that they
are consistent with the global EAs.

Specifically, the objectives of this paper are:

1. Development of an approach to verify the set of EAs
for global EA compliance

2. Systematic generation of EAs that are consistent with
the global EAs

For the first problem, we use the concept of abstract inter-
pretation to perform this verification. Since the semantics
for abstract interpretation are set-based, we present a set-
theoretic based semantics framework that allows EAs to be
specified and reasoned about. Given the compatibility of se-
mantics of both frameworks, verification of EA consistency
in an abstract evaluation framework is facilitated. For the
verification part, starting from preconditions (signal specifi-
cations), analogous to formal methods such as B and Z [21],
annotations [6] are systematically generated. Since abstract
interpretation works with abstract values rather than con-
crete values, annotations represent the abstract value gener-
ated for a particular variable. Section 5 provides more detail
on abstract interpretation and annotations. Thus, at rele-
vant locations in the code where localized EAs are placed,
the range of values, as specified by the EA, of the monitored
variable is compared with that defined by the annotations.
Any mismatch is flagged, indicating inconsistencies in EAs.
The first pass will be explained in more detail in Section 6.

Whenever the compiler flags an inconsistency, the com-
piler helps the programmer in designing globally consistent
EAs by identifying the relevant variables for their design.
We present an algorithm that, given the global property, re-
turns the necessary localized EAs to be placed in different
modules. This step works in a way analogous to predicate
transformers. Therefore, via backtracking, from the EAs de-
fined on the output signals in the sink module those defined
on the input signals in the source module (module that re-

ceives input from the environment), the algorithm system-
atically derives new EAs consistent with the global EAs.
We endeavor to tackle the problem of modifying the “weak
links” (inconsistent EAs) in the SW. Section 7 presents the
algorithm which helps in generating consistent EAs. The
EAs we generate are preconditions, given our fault model
(transient errors at the signal level), hence the need to as-
certain their validity. However, our method easily scales to
tackle the problem of transients occurring in internal state
variables. Pictorially, our approach is as in Fig. 3.
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Figure 3: Two-pass approach for designing consis-

tent EAs.

At this point, we stress that this represents a first cut at
trying to systematically design globally consistent EAs, with
the help of the compiler, thus trying to improve on random
design of EAs and checks for SW [12].

5. PROGRAM ANALYSIS USING ABSTRACT
INTERPRETATION: AN OVERVIEW

Compile time type verifications of high level language are
usually incomplete. For example, explicit checks should be
incorporated to avoid presence of null pointers etc. A static
analysis of a program based on abstract interpretation con-
sists of an abstract evaluation of the program, i.e., it is
a “symbolic” interpretation of the program using abstract
values rather than concrete (or execution) values [4]. An
abstract value is a set of concrete values. Specifically, an
abstract evaluation corresponds to a set of concrete evalu-
ations where each concrete evaluation represents a possible
fault-free execution. However, for each concrete semantic
rule defined on a programming language, a corresponding
abstract rule needs to be defined. For example, the “+”
operator is defined on concrete values in a given high level
language, however for abstract evaluation, the “+” operator
needs to operate on range of values. In general, abstract in-
terpretation provides a lot of run-time information without
having to run the program on many input cases.

An abstract evaluation of a program computes an abstract
context at every program point. An abstract context is a
set of pairs (v, a) that expresses that variable v has abstract
value a at some program point p. The abstract value a then
denotes the corresponding annotation on variable v at p.
Abstract evaluation builds an initial context from initializa-



tion information provided in the program. At each program
point, the abstract context changes. However, given that
EAs are defined at certain program point to check for erro-
neous states, we modify the abstract context according to
the value constraints defined by EAs. To achieve this, we
need a framework to reason about EAs. In Section 6, we pro-
vide a formal framework for specifying EAs, with associated
semantics that is compatible with abstract interpretation,
i.e., a set-theoretic semantics.

During abstract evaluation, when an EA (EAi) monitor-
ing variable vi is reached, the range of values it defines for
vi is matched against its corresponding annotation at that
point. Any mismatch results in the compiler to flag an in-
consistency. Specifically, it means that EAi is not consistent
with the signal EAs. We refer the interested reader to [4]
for more details on abstract interpretation.

6. PASS 1: FORMAL DEFINITION OF EX-
ECUTABLE ASSERTIONS AND ASSO-
CIATED FORMAL SEMANTICS

At this point, we have shown the intractability of globally
consistent EA generation. Thus, prior to generating globally
consistent EAs, we first assess global consistency of EAs
currently defined in SW. To perform consistency verification,
in this section, we develop a framework for specifying and
reasoning about EAs.

6.1 A Formalism for Expressing Executable
Assertions

We first provide basic definitions for signal EAs, which
are constraints on signal values or on their derivatives [15].
Then, usual composition operators, such as ∨ (logical OR)
or ∧ (logical AND), can be used to specify more complex
EAs. We do not define all possible operators such as =⇒
(implies), since they can be expressed using the already-
defined operators. An EA, in its simplest form, is a con-
straint (C) on a variable (signal). The framework for speci-
fying EAs is presented below:

A ::= C | (A ∧ A) | (A ∨ A) | ¬A

The above representation means that a constraint C (a
range of values) is an EA, a conjunction/disjunction of EAs
is an EA, as will the negation of an EA.

Some examples of EAs that can be expressed in the above
framework are:

• (a ≤ V ≤ b) – It defines a range of values that V can
take, i.e., the minimum value V can take is a and the
maximum b.

• (a ≤ V ≤ b) ∧ (c ≤ V ≤ d) – It defines two sets of
values that V can take, but V needs to simultaneously
belong to each set. This represents a conjunction of
EAs.

• (a ≤ V ≤ b) ∨ (c ≤ V ≤ d) – It defines two sets of
values that V can take, but V needs to belong to at
least one of the set. This represents a disjunction of
EAs.

• (a ≤ V ≤ b) ∧ (c + V ′ ≤ V ≤ d + V ′) – In embedded
systems, there is a need to represent rate of change of

a variable/signal. Using the above framework, it can
be represented as shown above, where V ′ denotes the
previous value of V . This example expresses the fact
that the value of V should be between a and b as well
having its rate of change bounded.

• (¬(a ≤ V ≤ b)) – This denotes that V does not belong
to the set of values bounded by a from below and b
from above.

The semantics of the above framework is intuitive and is
based on set theory and is presented below: Note that S()
denotes the set defined by the EA specified.

• S(C) = {x | C(x)} – This set will contain values that
satisfy the constraint C, i.e., all values that fall within
the range defined by C. From the example above, S(a ≤
V ≤ b) = {a...b}.

• S(A1 ∧A2) = S(A1) ∩ S(A2) – When there is conjunc-
tion of EAs, the resulting set of this conjunction is an
intersection of the individual sets defined by each EA.

• S(A1 ∨ A2) = S(A1) ∪ S(A2) – The union of the sets
defined by each EA will represent the set defined by
the disjunction of the two EAs.

• S(¬A) =U \ S(A) – This is the universal set less the
set of values defined by the EA.

The EAs above have a straight forward interpretation.
Conjunction of EAs lead to a more constrained set of values
whereas disjunction leads to a less constrained set. The
reason for using a set theoretic semantics is two fold: (i) it
corresponds well with the abstract values used in abstract
interpretation and (ii) all set operators can be used for set
manipulation.

6.2 Verification of Consistency of Executable
Assertions

Having introduced a framework that allows specification
of EAs, we now define relevant properties of EAs to be able
to verify their consistency. Four scenarios exist, namely:

• EA1 and EA2 (see Fig. 4) define sets of values that
are related to each other through the implementation.

• The set of values defined by the EA1, when processed
by the implementation, yields a proper subset of the
one defined by EA2

• The set of values defined by the EA2 is a proper subset
of the set defined by the EA1, after being processed
by the implementation.

• EA1 and EA2 are incompatible, i.e., the sets of val-
ues defined by the EAs are uncorrelated through the
implementation.

In Fig. 4, F() represents the function implemented by the
code between EA1 and EA2. Note that when data is being
passed from one module to the other (during return in-
structions, see Fig. 2), F() represents the identity function,
i.e., EA1 is a postcondition and EA2 is a precondition and
the data being passed is not acted upon during transmission.

For each of the above, we present a definition of the cor-
responding property. Note that F() still denotes the code
implementation linking EA1 and EA2.
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Property FC. EA1 is Fully Consistent with EA2 iff F(S(EA1))
= S(EA2). For example, consider the case of a signal being
passed from one module M1 to another module M2. EA1

(postcondition) in M1 should be fully consistent with EA2

(precondition) in M2 so that they offer complementary cov-
erage.

Property MR. EA1 is More Restrictive than EA2 iff
F(S(EA1)) ⊂ S(EA2). This happens when EA1 defines a
smaller set of values than EA2 (see Fig. 1(a)) Such a situa-
tion can give rise to “false alarms”.

Property LR. EA1 is Less Restrictive than EA2 iff S(EA2)
⊂ F(S(EA1)). This happens when EA1 defines a larger set
of values than EA2 (see Fig. 1(b)). Such a situation can
give rise to EA1 having a lower detection coverage, or the
detection latency can increase.

Property I. EA1 is Incompatible with EA2 iff they do
not satisfy any of the above properties. For example, sup-
pose F(S(EA1)) defines a set {0..10} and S(EA2) defines a
set {15..25}. These two sets are said to be Incompatible.

In this section, we have presented the framework for spec-
ifying EAs and verifying their consistency. Prior to present-
ing the usefulness of our framework, in the next section, we
will present an algorithm that systematically derives consis-
tent EAs. Subsequently, we will provide a proof of correct-
ness for the algorithm.

7. PASS 2: AN ALGORITHM TO GENER-
ATE CONSISTENT EXECUTABLE AS-
SERTIONS

In sections 6.1 and 6.2, we presented a framework that
allows EA to be specified and verified for consistency to de-
termine if they conform to a global EA. In the advent of
the EA set being inconsistent, we have developed an algo-
rithm that systematically generates consistent EAs. This
algorithm can guide the system developer in designing the
correct EAs with respect to a global EA.

7.1 Overview of the Algorithm Operations
Overall, the algorithm works as follows: it first executes a

backtracking phase. It starts with the global EA (defining
the safety specification) and proceeds backwards to identify
the conditions for computing the value of the output signal.
For example, reusing function 1 from our previous exam-
ple, the condition for computing the output val is param *
5. From the global EA val > 25, we substitute the condition
for val, resulting in a new EA, 5 ∗ param > 25. The same
process is repeated until an EA relating monitoring the in-

puts of the module is obtained. Composing modules imply
consistency of their precondition and postcondition. Thus,
to achieve this, the precondition developed at this point is
translated as postcondition for the preceding module. The
same process is repeated until EAs are generated for each
module.

Thus, the algorithm is summarized as follows:

• Inputs To the Algorithm
Final-Output-EA (global EA), Sink-Module, Module-
Interconnections

• Backtracking Within A Module
Starting from the Final-Output-EA in Sink-Module,
proceed backwards statement by statement, identify-
ing the conditions necessary to compute the value of
the output signal. Substitute the output signal by the
conditions to obtain an EA for the input signals.

• Propagation Part Using the new preconditions, gen-
erate new EAs for different variables.

• EAs Across Modules
When the beginning of Sink-Module is reached, trans-
late the preconditions obtained into postconditions for
the other communicating module, whose identity is ob-
tained using information from the Module-Interconnections.
Re-execute the algorithm in the new module with these
postconditions as input, Sink-Module updated to the
new caller module, Module-Interconnections remain-
ing the same.

• Iterate until Source Module Reached
Repeat until the source module is reached.

The specific algorithm operations are as follows:

Derive_EA(<global_output_EA>,
<module_name>,
<module_interconnections>)

{
1 while (NOT beginning of <module_name>)
{

2 for (all variables V in <module_name>)
3 conditions(V) :=

determine_from_module(<module_name>);
%Conditions for computing variable V
%determined from module
}

4 conditions(<OutputSignal>):=
get_all_conditions(<module_name>);

%All conditions for computing output signal

5 new_preconditions :=
output_EA[conditions(OutputSignal)/OutputSignal]

%new preconditions obtained by substituting
%output signal by the condition obtained

6 postcond_prev_module := new_preconditions;
%preconditions translated as
%postconditions in preceding module
7 preceding_module :=

get_preceding_module(module_name,
module_interconnections);

%gets the id of the other module
%with which module_name is communicating

8 if (preceding_module == NIL) break;
%source module reached
9 Derive_EA(postcond_prev_module,

preceding_module,
module_interconnections);

}



Note that if there are multiple outputs (each associated
with a global EA), then this algorithm needs to be executed
for each output signal.

The presented algorithm initially takes as input the global
EA set that monitors the final output. It will then system-
atically derive the local EAs that are in conformance with
the global EA.

7.2 Proof of Correctness of the Algorithm
Having presented the algorithm, we now present an infor-

mal proof of correctness, i.e., that the algorithm will return
EAs that are consistent with each other. We make use of
three lemmas for the proof.

As inputs to the algorithm, we have the global EA mon-
itoring the output signals. We also know the input signals
to the modules. States of programs can only be changed
through assignment statements, however, the changes de-
pend on the state of the program at that point, i.e., there
can be multiple data paths linking the input signals and the
output signals, and the data path taken is determined by the
state at that time. In the proof, we denote the output signal
as OutputSignal and FM denotes the function implemented
by a given module M .

Lemma 1 Along any data path taken, there exists at least
one assignment of the form OutputSignal := F (...) for the
output signal to have updated data value.

Proof of Lemma 1: If there is no assignment where
OutputSignal is the target destination, then it will only con-
tain its initialization data value or a constant value. Hence,
for it to have updated data, the assignment F (...) should be
a function of some other variables, i.e., F () should hold the
conditions (variables) used to compute the OutputSignal.

Lemma 2 The values held by the variables determining
the value of OutputSignal should either be input signal data
values or result from applying a function on the input sig-
nals.

Proof of Lemma 2 If the variables which determine the
data value of OutputSignal does not hold input signal data
values (or values that depend on input signal data values),
it implies that OutputSignal does not depend on the input
signals. This is inconsistent with having input signals going
into that module.

Using the two lemmas, we can deduce that OutputSignal
can be expressed as a function (FM ) of the input signals.
Hence, in the EA monitoring OutputSignal, we can substi-
tute OutputSignal by the function executing on the input
signals. Thus, for a global EA of the form a < OutputSignal <
b) we replace OutputSignal by FM (inputsignals), resulting
in a < FM (inputsignals) < b). This expression can be sim-
plified as appropriate. Thus, preconditions monitoring the
input signals are obtained. From Lemma 1 and 2, we show
that the algorithm does generate preconditions from output
signals specification.

Lemma 3 The preconditions are consistent with the global
EA.

Proof of Lemma 3 From the above, the precondition
is as follows:a < FM (inputsignals) < b). Executing FM

on the input signals will result in OutputSignal, hence a <
OutputSignal < b), which is the global EA. Hence, the pre-
condition and postcondition will be consistent.

Lemmas 1, 2 and 3 constitute the overall proof of correct-
ness of the algorithm.

7.3 Notes on the Algorithm
At this point, we address some potential limitations of

the above algorithm, more specifically regarding termination
in presence of loop structures in or among modules. We
address each case individually.

1. For the first case, i.e., if there is a loop in a module,
during the first pass of the approach, it is possible to
provide both a lower and upper bound on the number
of iterations of the given loop, using techniques such
as instrumented semantics [6]. This information can
be reused to trace through the loop a finite number of
times during the second pass. Thus, the intractability
problem presented by the looping structure is allevi-
ated. However, if an upper bound cannot be obtained,
a timeout value can be used to halt the algorithm,
similar to the technique used in [6], thereby generat-
ing an error message for the programmer. Another
method may be to have user assistance in generating
the EAs rather than having a fully automatic genera-
tion of EAs.

2. For the second case, i.e., having feedback loops among
modules, strategies similar to the above can be used.

3. Another possible technique for tackling this problem is
to use techniques for deriving weakest preconditions,
since the second pass is analogous to predicate trans-
formers.

Techniques such as those used in [6] were used to derive
worst case execution time (WCET) of SW, whereby dead
paths are pruned so as to allow tight evaluation of WCET.
Our framework can reuse all of the information generated
during that phase, such that the consistency verification can
be done with without much overhead.

In the next section, we demonstrate the usefulness of our
framework in a real embedded SW.

8. AN EXAMPLE OF THE USEFULNESS
OF THE FRAMEWORK

At this point, we have presented the framework for spec-
ifying EAs and verifying them for consistency. We also pre-
sented an algorithm that will systematically generate glob-
ally consistent EAs.

In this section, we will present an example to show how
our proposed algorithmic framework works. Our example is
a real life aircraft arrestment system with embedded com-
puter control. For reasons of space, we will initially focus
ourselves on two communicating modules but, in later work,
we will apply our framework to the rest of the system such
that the whole system can later be tested for EA consistency.

8.1 Target System: An Example of an Embed-
ded Control Software

The target system is an embedded control system [20]
used in arresting aircraft on short runways.

The software architecture of the target system is shown
in Fig. 5. The software comprises six modules and a set of
input/output signals to each module. The functionality of
each module is summarized below.

• CLOCK provides a clock, mscnt, with one millisecond
resolution, while the ms-slot-nbr provides the module



scheduler with the current slot number for ”schedul-
ing” purposes. The system is slot-based, with seven 1
ms slots in which one or more of the other modules are
executed (except the CALC module).

• DIST-S monitors the rotation sensor and provides a
total count of the pulses, pulscnt, generated during
the arrestment. Two outputs (stopped and slow-speed)
indicates whether the aircraft has stopped and whether
the speed is below a certain value, respectively.

• CALC uses the signals mscnt, pulscnt, stopped and
slow-speed to calculate a set point value for the Set-
Value output at different checkpoints along the run-
way.

• PRES-S monitors the pressure sensor, measuring the
current pressure on the pressure valve. This value is
provided in IsValue.

• V-REG uses the signals SetValue and IsValue to con-
trol OutValue, the output value to the pressure valve.
The value of the OutValue signal is calculated by evalu-
ating a function on the difference between the SetValue
and the IsValue signals.

• PRES-A uses the OutValue signal to set the pressure
valve.
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Figure 5: Software Architecture of the Target Sys-

tem

This particular example was chosen since it represents the
kind of software for which our framework has been designed,
i.e., control software. Since it has signals being sent from
one module to another, EAs can be used to monitor the
transmitted signals.

The example that will be presented will focus on EA
consistency between those defined in modules V-REG and
PRES-A. The reason why these two modules were chosen
is due to the fact that annotations are more easily deriv-
able than if bigger modules were used. As future work, we
are looking to automate the annotations generation process.
Then, we will apply our framework to the current target sys-
tem to assess its robustness through EA consistency. How-
ever, the example that we present has all the necessary fea-
tures(e.g., has multiple inputs as any other modules) needed
for discussion, and to show the applicability of our proposed
approach.

For our example, we used the target system of [8], where
V-REG module had both preconditions and postconditions
defined and PRES-A had preconditions defined on its in-
puts. Originally, the system from [20] did not have these
preconditions defined. It was however enhanced in [8] to
include the preconditions. Note that the preconditions and

postconditions were obtained from the specification of the
signals.

We perform an EA consistency verification to demonstrate
applicability of our framework. We assess the consistency
between the preconditions defined on the input signals to
V-REG module (IsValue and SetValue) and the postcondi-
tions on OutValue is V-REG. We note that if localized EA’s
are not consistent, then they are not globally consistent as
well.

8.2 High Level Abstraction of the Modules
Before presenting our verification, we will present a high-

level description of the two modules. The pseudo-code pre-
sented below is for the V-REG module. It takes two signals
(IsValue and SetValue) as inputs and calculate a value for
the output signal (OutValue). F, G and H represent short-
hand notation for the functions defined. We note that if two
EAs are not consistent with each other, then the EA set is
globally inconsistent.

V-REG Module
1. IsValue := Get-Is-Value();
2. SetValue := Get-Set-Value();
Pre(SetValue);
Pre(IsValue);
3. Error := SetValue - IsValue;
4. Error := F(Error);
5. Prop := G(Error);
6. Int := H(Error,Int);
7. OutValue := Prop + Int;
Post(OutValue);
8. Return(OutValue);

8.3 Pass 1: Consistency Verification Using An-
notations

This verification makes use of annotations. We first state
the preconditions (from specification) on both input signals
(IsValue and SetValue) and postcondtion on the output sig-
nal (OutValue).

The preconditions defined in module V-REG are:

• SetValue: (192 ≤ SetV alue ≤ 3200)∧(−160 ≤ SetV alue−
SetV alue′ ≤ 800)

• IsValue: (0 ≤ IsV alue ≤ 3200) ∧ (−192 ≤ IsV alue −
IsV alue′ ≤ 500)

Thus, we obtain:

• SetValue: (a ≤ SetV alue ≤ b) a = max[192,−160+
SetV alue′], b = min[3200, 800 + SetV alue′]

• IsValue: (c ≤ IsV alue ≤ d) c = max[0,−192 +
SetV alue′], d = min[3200, 500 + SetV alue′]

Annotations obtained by abstractly evaluating the code
in V-REG are:

(3+) a − d ≤ Error ≤ b − c

(4+) a − d + E′ ≤ Error ≤ b − c + Error′

(5+) (a − d + E′)/4 ≤ Prop ≤ (b − c + Error′)/4

(6+) (a−d+E′)/8+ Int′ ≤ Int ≤ (b− c+Error′)/8+ Int′

(7+) 3(a − d + E′)/8 + Int′ ≤ OutV alue ≤ 3(b − c +
Error′)/8 + Int′



(i+) means after line i in V-REG module above. The post-
condition on OutValue is m1 ≤ OutV alue ≤ m2 where
m1 = max[32,−192+OutV alue′] and m2 = min[3200, 500+
OutV alue′]. From item 7+ above and the postcondition on
OutValue, an inconsistency is detected. More detailed cal-
culation shows that the annotation 7+ above offers less con-
straint than the postcondition. Hence, the situation is as in
Fig 6.

EA for
SetValue
or IsValue

EA for
OutValue

Figure 6: Consistency Between Preconditions and

Postcondition in V-REG

This discrepancy highlights two possible weaknesses in the
system:

1. The implementation of module V-REG is incorrect,
or

2. The EAs defined in modules V-REG and PRES-A

are inconsistent, and hence will give rise to weaknesses
in the system.

Also, with current experimentally based metrics such as
detection coverage, such weaknesses may not be detectable.

8.4 Pass 2: The Algorithm at Work– Genera-
tion of Consistent EAs

From the previous two sections, we found that the EAs
were not globally consistent. So, the compiler would flag this
inconsistency and execute the algorithm to obtain globally
consistent EAs.

The global property defined for this system is the same as
that defined on the OutValue signal. The postcondition in
V-REG on OutValue is ([-96 + OutV alue′ < OutV alue <
500 + OutV alue′]) ∧ (32 < OutV alue < 3200), denoted by
P (OutV alue).

Since the PRES-A module just converts the OutValue sig-
nal into TOC2, we consider the V-REG module as the sink
module. Thus, executing the algorithm, we obtain the fol-
lowing for module V − REG:

(7+) (m1 ≤ OutV alue ≤ m2)

(6+) (m1 ≤ Prop + Int ≤ m2 )

(5+) (m1 ≤ 3E/4 + Int ≤ m2)

(4+) (m1 ≤ 3(E + E′)/8 + Int ≤ m2)

(3+) (8m1 −3E′−8Int ≤ 3(SetV alue− IsV alue) ≤ 8m2 −
3E′ − 8Int)

where m1 = max[32,−192+OutV alue′] and m2 = min[3200, 500+
OutV alue′] and [i+] means the EAs after line i.

Starting the second iteration, we translate the precondi-
tion on the signals SetValue and IsValue as postcondition
in either module CALC or PRES-S. In our case, it will be
translated as postcondition is module CALC. Now, an EA
in CALC makes use of variables from the set V rather from

just VCALC . Hence, following our earlier discussion, we ar-
gue that since the EA in CALC is made up of variables
from different modules, it may detect a system state error
more effectively. In fact, with this postcondition in module
CALC, if there is an error in module PRES-S whereby sig-
nal IsValue has an erroneous value, this is detected by the
postcondition due to the inclusion of the IsValue signal.

It also means that, instead of using two EAs as was pre-
viously the case, only one EA can be used to protect both
signals at the same time.

We make two important observations here:

1. It can be observed that it would have been better to
monitor the two input signals in V-REG by one EA
(dynamic EA), rather than having individual EA mon-
itoring each signal, as was the case in [8].

2. From the verification, we can explain the observation
in [8] where an error in IsValue was not detected by
the EA monitoring it. This error however propagated
to the output and was trapped by the EA monitoring
OutValue in PRES-A. The EA in PRES-A had a
higher detection coverage than the one monitoring Is-
Value, since it was more restrictive one (see Fig. 1(b)).
This also gave rise to a higher error detection latency.

At this point, one assumption we have made is that the
code in V-REG is correct. In fact, the inconsistency be-
tween EAs point to either EAs being badly designed (as
above) or the code being incorrect.

9. APPLICABILITY OF THE FRAMEWORK
In this section, we provide insights on the applicability

and relevance of our framework.

1. One important aspect of being able to assess the con-
sistency of EAs is that it allows vulnerabilities in the
SW to be detected. By vulnerabilities, we mean whether
the EAs comply to the safety specification of the SW or
whether the implementation is correct or not. Specif-
ically, given two EAs, EA1 and EA2, that are incon-
sistent with each other and assuming that EA2 is con-
sistent with the global EA, then we can deduce that
either EA1 is not correct (is not consistent with the
global EA) or the implementation linking EA1 to EA2

is incorrect, i.e., EA1 is not transformed into EA2. If
the relation between the set of EAs is other than that
defined by the implementation of module M , then this
highlights potential implementation problems in the
module. Also, information pertaining to the detection
latency can also be obtained (see Fig. 1(b)). Thus,
the EA consistency assessment process will highlight
weaknesses in the SW design.

2. Another important aspect in designing reliable soft-
ware is the ability to reuse formally verified SW mod-
ules. As mentioned in [2], a fault-tolerant system is
composed of a fault-intolerant system together with
a set of fault-tolerance components, namely detectors
and correctors. We adopt this perspective and we
argue that reuse may be facilitated through reuse of
fault-intolerant components, which can be composed
with the relevant fault-tolerance components. Given



that a particular module may be used in different ap-
plications deployed in environments subject to differ-
ent kinds of faults, the fault-intolerant module needs
to be composed with the appropriate fault-tolerance
components to detect and recover from errors. This
points to a need for a framework that can guide the sys-
tem designer in developing the requisite fault-tolerance
components. The algorithm addresses this problem by
providing an automated way of generating EAs such
that they comply with the overall safety specifications
of the system. In such cases, such systems can be de-
signed to be fail-safe. In [2], EAs are known as detec-
tors. When composed with correctors, masking fault-
tolerant SW can be developed.

3. Also, having consistent EAs helps in performing in-
cremental verification of the system. After verifying
each module (both for functionality and for EA con-
sistency), EA consistency verification across modules
will ensure that the localized EAs are globally consis-
tent. Also, in case of changing specifications, the veri-
fication needs only be local. If preconditions and post-
conditions of two communicating modules are consis-
tent and are not changing, then the verification needs
only ensure that the preconditions and postconditions
within the changing module be verified for consistency.

10. DISCUSSION, LIMITATIONS AND FU-
TURE WORK

In this paper, we have presented a framework for specify-
ing EAs and verifying their consistency. To achieve this, we
presented the relevant properties for verification purposes.
In case the EA set is inconsistent, we have presented an al-
gorithm that systematically generates a set of globally con-
sistent EAs. We then presented a real-life example where
we have verified that the localized EAs are inconsistent. We
applied the algorithm to generate the globally consistent
preconditions on the input signals, from which subsequent
EAs for other variables can be derived. The problem dis-
cussed here is very relevant since many software systems are
implemented defensively, lowering their efficiency.

Our results have shown that this framework is able to de-
tect subtle weaknesses in system design. This helps towards
the development of reliable SW. Also, given that precondi-
tions in one module is translated into postconditions in the
preceding module, both need not be incorporated in the SW.
Fault Injection experiment can be run to ascertain which one
to incorporate.

Our framework currently does not tackle the problem of
timing constraints, which is important in embedded appli-
cations. As future work, we are looking at addressing timing
constraints and its impact on EA design.

This work represents a first cut at trying to verify global
consistency of EAs. There are other possible future avenues
to explore. We are looking to build a tool that can auto-
mate generation of annotations. We are looking to incorpo-
rate this framework into the C (gcc) compiler to generate
globally consistent EAs. Our intent is to extend the compi-
lation process to incorporate the first pass of our approach
for consistency verification. EA’s could be inserted directly
or indirectly using the APP tool [16]. The second pass is
also implemented to return a set of globally consistent EA’s
whenever a flag is raised due to inconsistencies. We also

plan to apply the framework to the rest of the target system
to obtain a set of consistent EAs.
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