
Designing Efficient Fail-Safe Multitolerant
Systems

Arshad Jhumka† and Neeraj Suri‡

†Department of Computer Science University of Warwick, Coventry CV4 7AL, UK
‡ Department of Computer Science, TU - Darmstadt, Darmstadt, Germany

Abstract. In this paper, we propose a method for designing efficient
fail-safe multitolerant systems. A multitolerant system is one that is able
to tolerate multiple types of faults, and a fail-safe multitolerant system
handles the various fault types in a fail-safe manner. Efficiency issues
of interest are fault tolerance-related, and they are: (i) completeness,
and (ii) accuracy. Based on earlier work, this paper makes the following
contributions: (i) We develop a theory for design of efficient fail-safe mul-
titolerance, (ii) based on the theory, we present a sound and complete al-
gorithm that automates the addition of efficient fail-safe multitolerance,
and (iii) we develop the example of an efficient fail-safe multitolerant
token ring to show the viability of our approach. Our approach works
for finite state systems.

Keywords: detectors, fail-safe, multitolerance, program transformation,
safety specification, automation, program synthesis

Contact author: Arshad Jhumka (arshad@dcs.warwick.ac.uk)

1 Introduction

Fault tolerance is the ability of a program or system to satisfy its specification,
even in the presence of external perturbations. Perturbations, or faults, are varied
in nature, for example, computer intrusions, message losses, variable corruptions
etc. Thus, a program intended to be deployed in such a faulty environment needs
to be able to withstand the effect of these faults, i.e., we require the program to be
tolerant to the faults. In other words, such a program needs to be multitolerant.

Alpern and Schneider showed that, in general, a specification [1] can be con-
sidered as the intersection of a safety specification, and a liveness specification.
In the presence of faults, the need to satisfy both specifications is not manda-
tory, giving rise to different levels of fault tolerance. The more prominent of
them being (i) fail-safe, (ii) non-masking and (iii) masking fault tolerance. In
this paper, we focus on fail-safe fault tolerance. Fail-safe fault tolerance, infor-
mally, is the ability of a system to always satisfy its safety specification in the
presence of faults, i.e., if the system is about to violate safety, then the system is
halted. This type of fault tolerance is often used in safety critical systems, such
as nuclear power plants, train control systems, where safety is more important
than continuous provision of service. In practice, a backup system may be used
after the original system is halted. Though a fail-safe fault-tolerant program does

not have to guarantee liveness in presence of faults, some form of “controlled”
liveness can be obtained [4].

Arora and Kulkarni [3] showed that there exists a class of program compo-
nents, called detectors that is both necessary and sufficient to ensure fail-safe
fault tolerance. A detector is a program component that asserts the validity
of a given predicate in a given state of the program. Examples are run-time
checks [9], executable assertions [5], error detection codes, comparators etc. Our
focus on fail-safe fault tolerance design thus translates into focusing on the design
of detectors.

Designing effective detectors is known to be a non-trivial task [9]. Compos-
ing1 ineffective detectors with a given program will have some adverse effects,
such as failures to detect erroneous states of the system, or the trigger of false
alarms. To address these problems, Jhumka et.al [7, 6] developed a theory of
detectors that identified the properties that underpin the operational effective-
ness of detectors. These properties are (i) completeness, and (ii) accuracy. The
completeness property of a detector is linked with a detector’s ability to detect
erroneous states, while the accuracy property is linked with a detector’s ability
to avoid mistakes (false alarms). A complete and accurate detector is termed
perfect. The completeness and accuracy properties represent the fault tolerance
efficiency issues on which we focus in this paper.

Our approach to the design of multitolerance is based on the well-known
software engineering principle of decomposition. Instead of trying to design de-
tectors that are to efficiently tolerate a complex fault class F , we first decompose
the complex fault class F into a sequence of basic fault classes f1 . . . fn. We then
design effective detectors that handle the first basic fault class f1. Once done,
we consider the next basic fault class f2, and design effective detectors that not
only handle f2, but also do not interfere with the effectiveness of detectors that
handle f1. The idea is to incrementally design a multitolerant program such that,
in any one step, effective tolerance to a new basic fault class is added, while all
previous tolerances and effectiveness are preserved.

1.1 Related Work

The first work on multitolerance design was proposed by Arora and Kulkarni
in [2]. However, our work differs from that of Arora and Kulkarni [2] in the fol-
lowing ways: (i) fault tolerance efficiency issues are at the heart of the approach
proposed in this paper, unlike in [2], (ii) we present a sound and complete algo-
rithm for automating addition of multitolerance, unlike in [2]. Later, Kulkarni
and Ebnenasir [8] proposed an automated approach, as in this paper, for the
addition of multitolerance. Their approach differs from that proposed in this pa-
per in two ways: (i) they tackle the problem in a different system model (where
read/write restrictions are imposed), and (ii) they do not tackle efficiency prop-
erties, as in this paper.

Building on previous work [7, 6], our contributions in this paper are: (i) We
present a theory for efficient fail-safe multitolerance design, (ii) We provide a
sound, and complete algorithm that automates the addition of efficient fail-safe

1 We will formally define this term in the next section.

multitolerance, and (iii) we present a case study of the design of a fail-safe
multitolerant token ring to show the applicability of our approach.

The paper is structured as follows: Sec. 2 introduces the assumed models
and terminologies. Sec. 3 defines the problem of perfect fail-safe fault tolerance.
In Sec. 4 addresses the problem of adding perfect fail-safe multitolerance to
programs. An example of a fully distributed, fail-safe multitolerant program for
a token ring is presented in Sec. 5.

2 Preliminaries

In this section, we recall the standard formal definitions of programs, faults,
fault tolerance (in particular, fail-safe fault-tolerance), and of specifications [3].

2.1 Concurrent Systems

The work assumes an interleaved execution semantics together with the shared
variable communication paradigm.

2.2 Programs

A program P consists of a set of processes {p1 . . . pn}. Each process pi contains
a finite set of actions, and a finite set of variables. Each variable stores a value
of a predefined nonempty finite domain and is associated with a predefined set
of initial values. In this paper, we will use two representations of a program:
(i) guarded command notation, and (ii) state transition system. While formal
definitions/results will be based on the transition model, the guarded command
notation provides a more “visual” basis.

In the guarded command notation, an action has the form

〈guard〉 → 〈statement〉

where the guard is a predicate over the program variables, and the statement
is either the empty statement or an instantaneous value assignment to one or
more variables.

The state space SP of a program P is the set of all possible value assignments
to variables. A state predicate of P is a boolean expression over the state space
of P . The set of initial states IP is defined by the set of all possible assignments
of initial values to variables of P .

An action ac of P is enabled in a state s if the guard of ac evaluates to “true”
in s. An action ac can be represented by a set of state pairs. Note that programs
are permitted to be non-deterministic as multiple actions can be enabled in the
same state.

A computation of p is a weakly fair (finite or infinite) sequence of states
s0, s1, . . . such that s0 ∈ Ip and for each j ≥ 0, sj+1 results from sj by executing
the assignment of a single action which is enabled in sj . Weak fairness implies
that if a program action ac is continuously enabled, ac is eventually chosen to
be executed. Weak fairness implies that a computation is maximal with respect

to program actions, i.e., if the computation is finite then no program action is
enabled in the final state.

A state s occurs in a computation s0, s1, . . . iff there exists an i such that
s = si. Similarly, a transition (s, s′) occurs in a computation s0, s1, . . . iff there
exists an i such that s = si and s′ = si+1.

In the context of this paper, programs are equivalently represented as state
machines, i.e., a program is a tuple P = (SP , IP , δP), where SP is the state
space and IP ⊆ SP is the set of initial states. Transition (s, s′) ∈ δP iff ac of P
is enabled in state s and execution of ac in state s results in state s′. We say
that ac induces these transitions. State s is called the start state and s′ the end
state of the transition.

2.3 Specifications

A specification for a program P is a set of computations which is fusion-closed.
A specification S is fusion-closed2 iff the following holds for finite computations
α, β, and a state s: If α = γ ·s·ρ and β = ε·s·σ are in S, then so are computations
γ · s · σ and ε · s · ρ. A computation c of P satisfies a specification S iff c ∈ S.
A program P satisfies a specification S iff all possible computation of P satisfies
S.

Definition 1 (Maintains). Let P be a program, S be a specification and α be
a finite computation of P . We say that α maintains S iff there exists a sequence
of states β of P such that α · β ∈ S.

Definition 2 (Safety specification). A specification S of a program P is a
safety specification iff the following condition holds: ∀ computation σ that vio-
lates S, ∃ a prefix α of σ s.t ∀ state sequences β, α · β violates S.

Informally, the safety specification of a program states that “something bad
never happens”. More formally, it defines a set of “bad” finite computation
prefixes that should not be found in any computation. Thus, satisfaction of a
safety specification implies that the program should not display any violating
(bad) computation prefix.

2.4 Fault Models and Fault Tolerance

All standard fault models from practice which endanger a safety specification
(transient or permanent faults) can be modeled as a set of added transitions.
We focus on the subset of these fault models which can potentially be tolerated:
We disallow faults to violate the safety specification directly. For example, in
the token ring protocol, at most one process can hold the token. We allow a
fault to duplicate the token, however we rule out faults that “force” a second
process to hold a duplicated token, as this kind of faults cannot be tolerated.
Rather, faults can change the program state (e.g., duplication of token) such
that subsequent program actions execution (holding of duplicate token) violate

2 Intuitively, fusion closure guarantees that history is available in each computation
state.

the safety specification. This can be potentially tolerated by asking any process
to check if some other process is already holding a token, before accepting one.

We defer for future work investigation of fault tolerance under the fault model
where safety is directly violated.

Definition 3 (Fault model). A fault model F for program P and safety spec-
ification SS is a set of transitions over the variables of P that do not vio-
late SS, i.e., if transition (sj , sj+1) is in F and s0, s1, . . . , sj is in SS, then
s0, s1, . . . , sj , sj+1 is in SS.

We call members of F the faults affecting P . We say that a fault occurs if a
fault transition is executed.

Definition 4 (Computation in the presence of faults). A computation of
P in the presence of faults F is a weakly P -fair sequence of states s0, s1, . . .
such that s0 is an initial state of P and for each j ≥ 0, sj+1 results from sj by
executing a program action from P or a fault action from F

Weakly P -fair means that only the actions of P are treated weakly fair (fault
actions must not eventually occur if they are continuously enabled). In the tran-
sition system view, a fault model F adds a set of (fault) transitions to δP . We
denote the modified transition relation by δF

P . We call δF
P the program P in

presence of F . Since fault actions are not treated fairly, their occurrence is not
mandatory. Note that we do not rule out faults that occur infinitely often (as
long as they do not directly violate the safety property).

Earlier, we discussed that a safety specification entails keeping track of bad
prefixes that should not appear in any computation. The requirement of a safety
specification being fusion-closed allows us to keep track of bad transitions, rather
than of prefixes.

Definition 5 (bad transition). Give a program P , fault model F , and fusion-
closed safety specification SSPEC. A transition t ∈ δF

p is bad with respect to a
safety specification SSPEC if for all computations σ of p holds: If t occurs in σ
then σ 6∈ SSPEC.

This is possible as fusion-closure implies availability of history in every com-
putation state, and the history (prefix) can be encoded into that state. Note that,
under our fault model assumption, a fault transition cannot be a bad transition.

Definition 6 (Fail-safe fault-tolerance). Given a program P with safety
specification SS, and a fault model F . The program P is said to be fail-safe
F -tolerant for specification S iff all computations of P in the presence of faults
F satisfy SS.

If F is a fault model and SS is a safety specification, we say that a program P
is F -intolerant for SS iff P satisfies SS in the absence of F but violates SS in the
presence of F . For brevity, we will write fault-intolerant instead of F -intolerant
for SS if F and SS are clear from the context.

Definition 7 (Reachable transition). A transition (s, t) of P is reachable iff
there exists a computation α of P such that (s, t) occurs in α.

Definition 8 (Reachable transition in the presence of faults). We say
that a transition (s, t) is reachable by p in the presence of faults iff there exists
a computation α of P in presence of faults such that (s, t) occurs in α.

3 Addition of Fail-Safe Fault Tolerance

In this section, we explain the addition of fail-safe fault tolerance to a fault-
intolerant program. We first briefly review the role of detectors in ensuring fail-
safe fault tolerance.

3.1 Role of Detectors in Fail-Safe Fault Tolerance

Informally, a detector3 is a program component that detects whether a given
predicate is true in a given state. Arora and Kulkarni showed in [3] that, for every
action ac of a program P with safety specification SS, there exists a predicate
such that execution of ac in a state where this predicate is true satisfies SS. In
other words, the action ac is transformed as follows: (g → st) → (d∧ g → st),
where d is the detector implementing the predicate. In this case, we say that
action ac is composed with detector d (we sometimes say that detector d is
monitoring ac). We say that a program P is composed with detector d if there is
an action ac of P such that ac is composed with d. We also say that a program
P is composed with a set of detectors D if ∀d ∈ D∃ ac of P such that ac is
composed with d. If a transition (s, s′) induced by ac violates SS, then such a
transition is a bad transition. Thus, any computation that violates SS contains
a bad transition.

Given a program P with safety specification SS expressed as a temporal
logic formula, the set of bad transitions (due to fusion closure) can be computed
in polynomial time by considering all transitions (s, s′) where s, s′ ∈ Sp. For
simplicity, we assume that the safety specification is concisely expressed as a set
of bad transitions. The authors of [3] also show that fail-safe fault-tolerant pro-
grams contain detectors. However, [3] did not show how to design the required
detectors. To address this problem, Jhumka et.al [6, 7] developed a theory that
underpins the design of effective (complete and accurate) detectors. We will de-
velop the theory of multitolerance based on the theory of [6, 7], which we will
briefly introduce for sake of completeness.

3.2 Transformation Problem for Addition of Fail-Safe Fault
Tolerance

The problem of adding fail-safe fault tolerance is formalized as follows:

Definition 9 (Fail-safe fault tolerance addition). Let SS be a safety spec-
ification, F a fault model, and P an F -intolerant program for SS. The fail-safe
transformation problem is defined as follows: Identify a program P ′ such that:

1. P ′ satisfies SS in the presence of F .
2. In the absence of F , every computation of P ′ is a computation of P .
3. In the absence of F , every computation of P is a computation of P ′.

A program p′ that satisfies the above conditions is said to solve the fail-safe
transformation problem for p. The second and third conditions imply that the

3 For a more formal introduction, we refer the reader to [3].

detectors need to be transparent in the absence of faults, and should not add
other ways of satisfying SS.

In the next section, we present a theory of detectors, based upon which,
we provide an algorithm that synthesizes a program p′ from a fault-intolerant
program p, such that p′ solves the fail-safe transformation problem.

3.3 A Theory of Detectors

The detector theory of [6, 7] is based on the concept of SS-inconsistency, where
SS is the safety specification of a program P . The intuition behind the incon-
sistency is that if a given computation of P in the presence of faults violates the
safety specification SS, then some “erroneous” transition has occurred in the
computation, i.e., inconsistent with SS.

Definition 10 (SS-inconsistent transitions). Given a fault-intolerant pro-
gram P with safety specification SS, fault model F , and a computation α of P
in the presence of F . A transition (s, s′) is SS-inconsistent for P w.r.t. α iff

– there exists a prefix α′ of α such that α′ violates SS,
– (s, s′) occurs in α′, i.e., α′ = σ · s · s′ · β,
– all transitions in s · s′ · β are in δp, and
– σ · s maintains SS.

Fig. 1 illustrates Definition 10. It shows the state transition relation of a
program in the presence of faults (the transition (s3, s4) is introduced by F).
The safety specification SS identifies a bad transition (s6, s7) which should be
avoided. In the presence of faults, this transition becomes reachable and hence
the program if F -intolerant since it exhibits a computation α1 violating SS.
In this computation, the three transitions following the fault transition match
Definition 10 and hence are SS -inconsistent w.r.t. α1 in the presence of F . Note
that an SS -inconsistent transition is only reachable in the presence of faults.

. . .

initial state

s_1 s_2 s_3 s_4 s_5

s_6

s_8

s_7

s_9

α_1

α_2

fault transition

inconsistent w.r.t. α_1
bad transition

Fig. 1. Graphical explanation of SS -consistency.

Intuitively, an SS-inconsistent transition for a given program computation is
a program transition where the subsequent execution of a sequence of program
transitions causes the computation to violate the safety specification. In a sense,
SS-inconsistent transitions lead the program computation on the “wrong path”.

Now we define SS-inconsistency independent of a particular computation.

Definition 11 (SS-inconsistent transition for P). Given a program P ,
safety specification SS, fault model F . A transition (s, s′) is SS-inconsistent for
P iff there exists a computation α of P in the presence of F such that (s, s′) is
SS-inconsistent for p w.r.t. α.

In general, due to non-determinism in program execution, a transition can
be SS-inconsistent w.r.t. a computation α1, and not be SS-inconsistent w.r.t. α2.
If we cannot find a computation in the presence of faults for which a particular
transition is SS-inconsistent then we say that this transition is SS-consistent.

The notion of SS-inconsistency is a characteristic for a computation which
violates SS [6].

In the next section, we introduce the notion of perfect detectors using the
terminology of SS-consistency.

3.4 Perfect Detectors

From Sec. 3.3, we observed that SS-inconsistent transitions are those transitions
that can lead a program to violate its safety specification in the presence of
faults if no precautions are taken. Perfect detectors are a means to implement
these precautions. The definition of perfect detectors follows two guidelines: A
detector d monitoring a given action ac of program P needs to (1) “reject” the
starting states of all transitions induced by ac that are SS-inconsistent for P , and
(2) “keep” the starting states of all induced transitions that are SS-consistent
for P . These two properties are captured in the definition of completeness and
accuracy of detectors.

Definition 12 (Detector accuracy). Given a program P , safety specification
SS, fault model F , and a program action ac of P . A detector d monitoring ac is
SS-accurate for ac in P in presence of F iff for all transitions (s, s′) induced by
ac holds: if (s, s′) is SS-consistent for P , then s ∈ d.

Definition 13 (Detector completeness). Given a program P with safety
specification SS, fault class F , and a program action ac of P . A detector d moni-
toring action ac is SS-complete for ac in P in presence of F iff for all transitions
(s, s′) induced by ac holds: if (s, s′) is SS-inconsistent for P , then s 6∈ d.

Definition 14 (Perfect detector). Given a program P , safety specification
SS, fault class F , and a program action ac of P . A detector d monitoring ac is
SS-perfect for ac in P in presence of F iff d is both SS-complete and SS-accurate
for ac in P .

Where the specification is clear from the context we will write accuracy in-
stead of SS-accuracy (the same holds for completeness and perfection).

Intuitively, the completeness property of a detector is related to the safety
property of the program p in the sense that the detector should filter out all
SS-inconsistent transitions for p, whereas the accuracy property relates to the
liveness specification of p in the sense that the detector should not rule out SS-
consistent transitions. This intuition is captured by the following lemmas (for
proof, refer to [6, 7]).

Lemma 1 (Fault-free behavior).
Given a fault-intolerant program P and a set D of perfect detectors. Con-

sider program P ′ resulting from the composition of P and D. Then the following
statements hold:

1. In the absence of faults, every computation of P ′ is a computation of P .
2. In the absence of faults, every computation of P is a computation of P ′ .

Before we characterize the role of perfect detectors in presence of faults, we
formally define critical actions of a program.

Definition 15 (Critical and non-critical actions). Given a program P with
safety specification SS, and fault class F . An action ac of P is said to be critical
for P w.r.t SS in presence of F iff there exists a transition (s, s′) induced by ac
such that (s, s′) is a bad transition that is reachable by P in presence of faults F
(Definition 7) . An action is non-critical for P w.r.t SS in presence of F iff it
is not critical for P w.r.t SS in presence of F .

Lemma 2 (Behavior in the presence of faults). Given a fault-intolerant
program P with safety specification SS, and fault class F . Given also a program
P ′ by composing each critical action ac of P w.r.t SS in presence of F with a
perfect detector for ac in presence of F . Then, P ′ satisfies SS in presence of
faults F .

Proofs of lemmas 1 and 2 can be found in [7]. From lemmas 1 and 2, we
observe that a program P ′ obtained by composing each critical action ac of a
fault-intolerant program P with a perfect detector for ac in P in presence of faults
F (which can be shown to exist [6]) solves the fail-safe fault tolerance addition
problem. When a fail-safe fault-tolerant program P ′ satisfies the three conditions
for fail-safe fault tolerance addition problem, we say that P ′ is perfectly fail-safe
F−tolerant w.r.t SS and that P ′ has efficient fail-safe F -tolerance (since P ′ is
a maximal program that satisfies SS in presence of F).

3.5 Algorithm for Adding Perfect Fail-Safe Fault Tolerance:

Having established the role of perfect detectors in fail-safe fault tolerance, in
Fig. 2, we provide an algorithm that solves the fail-safe transformation problem,
using perfect detectors. It takes as arguments the program P , the fault class F ,
and the set ss of bad program transitions encoding the safety specification (it
can be shown that these are induced by critical actions of P in presence of F).

The theory (and algorithm) presented adds fail-safe fault tolerance to a single
fault class. We now extend the results to handle multiple fault classes.

4 Addition of Perfect Fail-Safe Multitolerance

In this section, we consider the addition of perfect fail-safe fault tolerance for
multiple fault classes. Specifically, the main question is whether perfect detectors
are composable, i.e., whether the addition of two perfect detectors for two differ-
ent fault classes in a program preserve each other efficiency properties (accuracy
and completeness)?

add-perfect-fail-safe(δP , δF , ss: set of bad transitions):
{ ssr := get-ssr(δP , δF , ss)
return (P ′ = δP \ ssr)}

get-ssr(δP , δF , ss: set of transitions):
{ ssr := {(s, t)|(s, t) ∈ ss is reachable by P in presence of F}
return (ssr)}

Fig. 2. Algorithm that solves the fail-safe fault tolerance addition problem

4.1 A Stepwise Addition Approach

The approach adopted is stepwise, as also suggested by Arora and Kulkarni
in [2]. One of the problems during the design of multitolerance is that a tol-
erance mechanism (detector in this case) for one fault class can interfere with
the tolerance mechanism for another fault class. Thus, any synthesis method or
automated procedure should ensure, by construction, that no interference exists
between the tolerance mechanisms for different fault classes.

First, we define a fail-safe multitolerant program.

Definition 16 (Fail-Safe Multitolerant Program). Given a program P with
safety specification SS, and n fault classes F1 . . . Fn. A program P is said to be
fail-safe multitolerant to F1 . . . Fn for SS iff P is fail-safe Fi-tolerant for SS for
each 1 ≤ i ≤ n. A program P is said to be perfectly fail-safe multitolerant to
F1 . . . Fn for SS iff P is perfectly fail-safe Fi-tolerant to SS for each 1 ≤ i ≤ n.

The stepwise approach considers one fault class at a time, in some fixed
order F1 . . . Fn. The fault-intolerant program P is transformed into a perfectly
fail-safe multitolerant program to fault classes F1 . . . Fn. In the first step, P is
augmented with detectors that will make the resulting program P1 perfectly
fail-safe fault-tolerant to F1. Then, in the second step, P1 is augmented with
detectors that will make the resulting program P2 perfectly fail-safe fault-tolerant
to F2, while preserving its perfect fail-safe fault tolerance to F1. The same is
repeated until all fault classes are tolerated. In other words, we want to know
if perfect detectors for the various fault classes compose. This represents the
main contribution (synthesis of perfect fail-safe multitolerance) of the paper.
In contrast, [2, 8] focused only only on fail-safe multitolerance (which can be
trivially satisfied by using the empty program), whereas this paper focuses on
the non-trivial provision of perfect fail-safe multitolerance. We provide below the
non-interference conditions that need to be satisfied by a synthesis method:

Step 1 of Non-interference Conditions: Specifically, in the first step, when the
fault-intolerant program P is augmented with detectors to obtain a program P1,
the following non-interference conditions need to be verified:

1. In the absence of F1, the detector components added to P do not interfere with
P , i.e., each computation of P is in the problem specification even if it executes
concurrently with the new detector components.

2. In the presence of faults F1, each computation of the detector components is in
the components’ specification even if they execute concurrently with P .

3. In the presence of faults F1, the resulting program is perfectly fail-safe F1-tolerant.

Step 2 of Non-interference Conditions: In the second step, when the fail-safe
F1-tolerant program p1 is augmented with detectors that will make it fail-safe
F2-tolerant program, while preserving its fail-safe F1 tolerance, the following
non-interference conditions need to be satisfied:

1. In the absence of F1 and F2, the new detectors for fail-safe fault tolerance to F2 do
not interfere with p1, i.e., each computation of p1 satisfies the problem specification
even if p1 executes concurrently with the new detectors.

2. In the presence of F1, the new detectors for fail-safe fault tolerance to F2 do not
interfere with the fail-safe fault tolerance to F1 of p1, i.e., every computation of p1is
in the fail-safe fault-tolerance specification to F1 even if p1 executes concurrently
with the new components.

3. In the presence of F1, the new detectors for fail-safe fault tolerance to F2 do not
interfere with the perfect detection to F1 of p1.

4. In the presence of F2, p1 does not interfere with the new detectors that provide
fail-safe fault-tolerance to F2, i.e., every computation of the new component is in
the new components specification.

5. In the presence of F2, p1 does not interfere with the perfect detection to F2 provided
by the new detector components.

These steps can be easily generalized to n steps. Observe that these sets
of conditions specify the transformation problem for addition of perfect fail-
safe multitolerance to an initially fault-intolerant program. Our next goal is to
derive a sound, and complete algorithm that satisfies the various non-interference
conditions during the addition of fail-safe multitolerance.

Before detailing our automated approach for addition of fail-safe multitoler-
ance, we present a key result behind our approach.

Lemma 3 (Perfect detectors and multitolerance). Given a fault-intolerant
program P with safety specification SS, and fault classes F1 . . . Fn. Given a pro-
gram Pi−1 which is perfectly fail-safe multitolerant for SS with perfect detection
to fault classes F1 . . . Fi−1. Given also a program Pi obtained from Pi−1 s.t Pi

is perfectly fail-safe fault-tolerant to Fi. Then, Pi is also perfectly fail-safe mul-
titolerant to fault classes F1 . . . Fi−1.

Proof sketch: We can prove this by induction over the fault sequence. The
base case is trivial, while for the inductive step, since all detectors added for Fi

are perfect, they reject only SS-inconsistent transitions, i.e., they do not add
any transition. Hence, the new set of perfect detectors added cannot interfere
with the previous detectors. Thus, perfect detection for all previous fault classes
is preserved.

Pi can be obtained from Pi−1 by composing actions that are critical in the
presence of Fi with the relevant perfect detectors (Lemma 2). Lemma 3 then
shows that composition with perfect detectors preserves the perfect fail-safe
fault tolerance to other classes. The lemma underpins the synthesis algorithm for
perfect fail-safe multitolerance. The algorithm is sound (The returned program
is indeed perfectly fail-safe multitolerant to all fault classes considered) and
complete (if such a perfectly fail-safe multitolerant to all fault classes considered
exists, then the algorithm will find it).

4.2 An Algorithm for Adding Efficient Fail-Safe Multitolerance

The algorithm for automatic synthesis of fail-safe multitolerant programs with
perfect detection to all fault classes is shown in Fig. 3. The resulting program is
fail-safe multitolerant to n fault classes by design (soundness).

Theorem 1 (Soundness and Completeness of add-perfect-fail-safe-multitolerance).
Algorithm add-perfect-fail-safe-multitolerance is sound and complete.

Proof. The algorithm is sound by construction, based on Lemma 3. Complete-
ness of the algorithm is due to our assumption of finite state (bounded) programs
and by construction.

add-perfect-fail-safe-multitolerance(P, [F1 . . . Fn], ss: set of transitions):

{i := 1; P0 := P
while (i ≤ n) do {

Pi := add-perfect-fail-safe(Pi−1, Fi, ss);
i := i + 1;} od

return(Pn)}

Fig. 3. The algorithm adds fail-safe fault tolerance to n fault classes, with perfect
detection to every fault class

It can also be shown that algorithm add-perfect-fail-safe-multitolerance2 (see
Fig. 4) is equivalent to algorithm add-perfect-fail-safe-multitolerance.

add-perfect-fail-safe-multitolerance2(P, [F1 . . . Fn], ss: set of transitions):

Pn := add-perfect-fail-safe(P,
⋃n

i=1
Fi, ss);

return(Pn)}

Fig. 4. The algorithm adds fail-safe fault tolerance to n fault classes, with perfect
detection to every fault class

In the next section, we present a case study of the design of a perfect fail-safe
multitolerant token ring.

5 Example of a Fail-Safe Multitolerant Token Ring

Processes 0 . . . N are arranged in a ring. Process k, 0 ≤ k < N passes the token to
process k+1, whereas process N passes the token to process 0. Each process k has
a binary variable, t.k, and a process k, k 6= N holds the token iff t.k 6= t.(k + 1),
and process N holds the token iff t.N = t.0.

The fault-intolerant program for the token ring is as follows (+2 is modulo-2
addition) :

ITR1 :: k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

ITR2 :: k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

In the presence of faults, we do not want certain processes to take some steps.
In particular, if the state of process k is corrupted, then process k + 1 should
not make any transition. The faults we consider here are general faults, such as
timing, message loss or duplication, but such faults are detected by the process
before any action inadvertedly accesses that state. When a fault is detected by
process k, the value of t.k is set to ⊥.

Fault action: The first fault class F1 that we consider is one that corrupts the
state of a single process k, which can be any process.

F1 :: t.k 6=⊥ ∧|{k|t.k =⊥}| = 0 → t.k :=⊥

Fail-Safe Fault Tolerance to Fault Class F1: Running algorithm add-perfect-fail-
safe-multitolerance will result in the following program after the first iteration.

1-FSTR1 :: |{k : t.k =⊥}| ≤ 1 ∧ t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

1-FSTR2 :: |{k : t.k =⊥}| ≤ 1 ∧ t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Theorem 2 (Fail-safe TR). Program 1-FSTR is perfectly fail-safe fault-tolerant
to F1.

Perfect Fail-Safe Fault Tolerance to Fault Classes F1 and F2: Second, we con-
sider a fault class where the state of two processes k and l can be corrupted.

Fault action: The fault action that we consider is

F2 :: t.k 6=⊥ ∧|{k|t.k =⊥}| = 1 → t.k :=⊥

The second iteration of algorithm add-perfect-fail-safe-multitolerance on pro-
gram 1-FSTR will result in the following program:

2-FSTR1 :: |{k : t.k =⊥}| ≤ 2 ∧ t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

2-FSTR2 :: |{k : t.k =⊥}| ≤ 2 ∧ t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Theorem 3 (Fail-safe TR). Program 2-FSTR is perfectly fail-safe fault-tolerant
to F1 and F2.

Fail-Safe Fault Tolerance to Fault Class F1 . . . FN+1: We then consider a fault
class that can corrupt the state of i (1 ≤ i ≤ (N + 1)) processes.

Fault action: The fault action that we consider is

Fi :: t.k 6=⊥ ∧|{k|t.k =⊥}| = i− 1 → t.k :=⊥

The ith iteration of algorithm add-perfect-fail-safe-multitolerance on program
(i-1)-FSTR will result in the following program:

i-FSTR1 :: |{k|t.k =⊥}| ≤ i ∧ t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

i-FSTR2 :: |{k|t.k =⊥}| ≤ i ∧ t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Theorem 4 (Fail-safe TR). Program i-FSTR is perfectly fail-safe fault-tolerant
to F1 to Fi for 1 ≤ i ≤ (N + 1).

From program i-FSTR, it can be easily deduced that, when i = N + 1,
|{k|t.k =⊥}| ≤ N + 1 is always “True” (cannot corrupt more processes than
there exist), so program N+1-FSTR (or MFSTR - Multitolerant Fail-Safe Token
Ring) simplifies to:

MFSTR1 :: t.(k − 1) 6=⊥ ∧k 6= 0 ∧ t.k 6= t.(k − 1) → t.k := t.(k − 1)

MFSTR2 :: t.N 6=⊥ ∧k = 0 ∧ t.k 6= t.N +2 1 → t.k := t.N +2 1

Program MFSTR is perfectly fail-safe fault tolerant to fault classes that can
corrupt the state of any number of processes (up to every process), and is iden-
tical to the fail-safe fault-tolerant token ring program presented by Arora and
Kulkarni in [2]. However, our approach (and results) differs from that of [2]
in two important ways. First, our approach is automated, hence proofs of cor-
rectness are obviated. Second, our intermediate programs are different, i.e., the
programs tolerating less than (N+1) faults are different. In effect, all the interme-
diate programs in [2] are exactly the same. This is because bad transitions, even
those that are unreachable in the presence of certain faults were removed. As a
matter of contrast, for every fault class, we remove only those bad transitions
that are reachable. Thus, though the overall multitolerant program is correct,
the approach is not efficient as they remove more transitions than is strictly
necessary. Another important consequence of our theory is that for multitoler-
ance, a system designer knows what are sufficient conditions to achieve this. As
can be observed, when a fault occurs, the system may deadlock. However, Arora
and Kulkarni argued in [2] that, towards adding masking fault tolerance (both
safety and liveness preserved), a stepwise approach can be adopted where first
fail-safe fault tolerance is added followed by liveness properties. Hence, as future
work, we are looking to automate the addition of components that add liveness
to fail-safe fault-tolerant programs.

6 Summary

In this paper, we have made the following contributions: Based on previous work,
(i) we have developed a theory for perfect fail-safe multitolerance, (ii) We have
provided a sound, and complete algorithm that automates addition of perfect
fail-safe multitolerance, while guaranteeing the non-interference conditions, and
(iii) We have presented a case study of the design of a perfectly fail-safe mul-
titolerant token ring that explains the working of our algorithm. The ability to
automatically add fail-safe multitolerance to an initially fault-intolerant program
is an important step in the design of fault-tolerant systems, the more so that the
program is fail-safe multitolerant by design.

Acknowledgements: We wish to thank Felix Freiling for helpful discussions.

References

1. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, 1985.

2. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.
IEEE Transactions on Software Engineering, 24(1):63–78, Jan. 1998.

3. A. Arora and S. S. Kulkarni. Detectors and correctors: A theory of fault-tolerance
components. In Proceedings of the 18th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS98), May 1998.

4. C. Fetzer and F. Cristian. Fail-awareness: An approach to construct fail-safe ap-
plications. In Proceedings of The Twenty-Seventh Annual International Symposium
on Fault-Tolerant Computing (FTCS’97), pages 282–291. IEEE, June 1997.

5. M. Hiller. Executable assertions for detecting data errors in embedded control
systems. In Proceedings of the International Conference on Dependable Systems
and Network (DSN 2000), pages 24–33, 2000.

6. A. Jhumka, F. Freiling, C. Fetzer, and N. Suri. Automated synthesis of fail-safe
fault-tolerance using perfect detectors. Technical report, University of Warwick,
2005.

7. A. Jhumka, M. Hiller, and N. Suri. An approach for designing and assessing detectors
for dependable component-based systems. In HASE, pages 69–78, 2004.

8. S. Kulkarni and A. Ebnenasir. Automated synthesis of multitolerance. In DSN,
2004.

9. N. G. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall. The use of self checks
and voting in software error detection: An empirical study. IEEE Transactions on
Software Engineering, 16(4):432–443, 1990.

