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Abstract

No cache based techniques for roll-forward fault re-
covery exist at present. A split-cache approach is pro-
posed that provides efficient support for checkpointing
and roll-forward fault recovery in distributed systems.
This approach obuviates the use of discrete stable stor-
age or explicit synchronization among the processors.
Stability of the checkpoint intervals is used as a driver
for real time operations.

1. Introduction

Recovery from transient faults to sustain a sys-
tem’s functional and temporal requirements constitutes
a much researched area for dependable distributed sys-
tems. Various hardware and software checkpointing
schemes are proposed to constrain the recovery times
by rolling back to a stable system state and restart-
ing. However, roll-back recovery, by its very nature of
rolling-back to a prior consistent operational state and
re-trying the operation, involves a time penalty of lack
of forward progress while the retry operation is per-
formed. Thus, for systems with real-time deadlines or
other response critical systems, the roll-back recovery
approach is not particularly attractive for its latency
characteristics, and has resulted in the development of
roll-forward fault recovery techniques.

We provide a brief introduction of the generalized
roll-forward procedures before detailing the proposed
approach. The classical roll-forward recovery tech-
niques is based on a pair (or set) of synchronized
processors providing task redundancy by executing an
identical task code, i.e., duplex configuration. Period-
ically, each processor creates a checkpoint and stores
the process state information at that instant in a sta-
ble storage unit, and continues operation till the next
checkpoint. A duplex configuration requires a com-
parison mechanism to check for the consistency of the
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checkpointed information for the two processors. A
discrete processor, termed the checkpointing processor,
compares the state of the processes at the checkpoint,
and if a inconsistency is discovered, the checkpoint pro-
cessor directs a spare processor to load the processor
state recorded at the last! consistent checkpoint and
execute the uncertain interval again. Assuming sin-
gle transient fault occurrence in the system, and for a
fault-free spare processor, the spare processor is used
to provide a reference task execution. The comparison
of the results obtained from the spare processor to the
results obtained by the duplex processors, helps deter-
mine which of the two processors in the duplex pair
was faulty at the previous checkpoint. As a recovery
procedure, the identified faulty processor, discards its
state information and loads the state information from
the fault- free processor for subsequent operations. If
multiple faults are allowed, the spare processor may be
faulty as well (with a very low probability). In this
case, the information of the spare processor may not
match any of the duplex processors, thus, both pro-
cessors roll back to the last consistent checkpoint 2.
Figure 1 elucidates these operations.

As, primarily, transient faults are of concern, this
procedure assures the data consistency and operational
consistency to be maintained for subsequent opera-
tions. The process of roll-forward recovery does in-
culcate the additional overhead of requiring a spare
processor. However, such recovery approaches mitigate
the fault recovery time and performance degradation of
the roll-back recovery schemes, as the duplex pair sus-
tain their ongoing operations while the spare processor
concurrently executes the comparison process.

Roll-forward recovery has generated much recent in-
terest, and a variety [14, 10, 11] of the roll-forward pro-
tocols appear in literature. However, the traditional
emphasis has been on obtaining performance metrics

IThe prior checkpoint is discarded only if the current check-
point is found to be consistent.

2The probability of that operation is very low, and in the
worst case the performance of the roll-forward scheme matches
that provided by the classical roll-back schemes.
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Figure 1. Generalized Roll-Forward Recovery

for the roll-forward implementations, and a number of
important design and implementation facets, especially
for real time systems, have not been adequately ad-
dressed. We highlight some considerations of interest,
that constitute the focus of this paper:

(1) Can a cache based approach provide architec-
tural support to facilitate roll-forward techniques?
Is stability and predictability of checkpointing
achievable using caches?

(2) How and when are checkpoints created and con-
sistency achieved?

(3) What is the checkpoint content? Can a discrete
“stable storage” for saving checkpoints be elimi-
nated?

(4) Is checkpointing for roll-forward recovery feasi-
ble if the processors are not explicitly synchro-
nized (maintaining synchronization causes signifi-
cant overhead)

Furthermore, the prevalent approach is to save the
state information in a stable storage unit and assume
fault-free conditions on this mechanism. The cost
and retrieval time parameters of the stable storage
can significantly impact the recovery performance of
the roll-forward mechanism, and are generally under-
emphasized in roll-forward implementations. This
concern further motivates our utilization of a cache-
oriented stable storage mechanism.

In this paper, we address the abovementioned set
of concerns through a novel cache approach termed
“bi-directional cache”, which supports the roll-forward
mechanism efficiently and provides natural run-time
checkpointing capabilities. Our drivers are efficient
checkpointing and obtaining a stable, predictable
checkpointing operations using the cache to support
response critical fault recovery.

1.1. The Cache Per spective to Checkpointing

Existing cache based checkpoint approaches need
special enhancements of the processor and the cache
subsystems (note that in modern processors, the first
level cache is used as part of the processor architec-
ture). The processor enhancement is needed for fast
status capturing and the cache modifications needed
to maintain the checkpoint creation protocols such as
CARER [7].

In a recent paper [8], the performance liability and
lack of predictability in using caches for a periodic
checkpointing scheme was demonstrated. The major
objection to the usage of the cache was the uncontrol-
lably high variability in the cache based checkpointing
intervals. For a real time system where predictability
of recovery time is a prime driver, this characteristic
of caches effectively restricts their usage. However, in
the proposed bi-directional cache this specific cache-
based system liability is alleviated by developing a new
cache structure which provides for stable, low-variance
checkpoint intervals. The checkpoints creation process
is non-scheduled which is automatically established at
run-time on a cache-line replacement instance. The use
of a partitioned cache obviates the need for a discrete
stable storage unit and also alleviates the associated
physical and performance costs of such storage units.
Furthermore, the techniques do not impose the strong
assumption of requiring synchronized processors. The
checkpointing strategy presented is a generalized one
to support alternative fault-recovery mechanisms such
as roll-back recovery too.

The organization of the paper is as follows. In Sec-
tion 2 we describe the system model and also build
up the rationale for the use of a cache based strat-
egy furthering the basic cache usage discussions of
[7, 2, 15, 13]. Section 3 details the proposed bi-
directional cache architecture, and provides a discus-
sion on some of its relevant properties before address-
ing roll-forward strategies based on this cache architec-
ture. Sections 4 and 5 provide an operational analysis
and simulation results for the proposed the roll-forward
fault recovery strategies, and we conclude with a dis-
cussion section.

2. System Model

As we have mentioned earlier, the recovery mech-
anisms of interest apply to systems using redundancy
of task executions. Also, the model is similar to the
one used in [14] which considers duplex processor enti-
ties with a small set of discrete spares (either fixed or
floating spares). Each system has a local bi-directional



cache with access to shared memory. The use of the
new bi-directional cache architecture allows avoiding
the use of discrete stable storage units which are nec-
essarily required in virtually all other (cache and non-
cache based) fault recovery schemes. The state infor-
mation at the checkpoints stored in the main memory
and in the caches. The state information at the check-
points comprises of only the processor registers, the
program counter and the write-cache dirty variables.
These aspect are detailed in Section 4.

Usually, a discrete fault free unit is assumed to facil-
itate checkpoint comparisons across the system. Such
a unit should identify the information that have been
modified since last breakpoint and compare it with the
other checkpoints as in [15]. The new bi-directional
cache based architecture, keeps all the modified infor-
mation in the write-cache, so that the comparison ac-
tivity can be simplified to be implemented as a simple
state machine as part of the controller. Also, the state
comparisons can be accomplished by associating sig-
natures with the checkpoint information so that only
small amounts of information need to be compared be-
tween the duplex processors.

2.1. Cachesfor Checkpointing: Rationale

As memory caches are the repository of the informa-
tion that is most recently used by a processor; if the
following rules are observed, then the cache holds infor-
mation that can be used for creating run-time check-
points:

e The cache update policy is a write-back approach,
with information written back to main memory
only when a “dirty” line/variable (i.e., cache line
that was modified.) needs to be replaced.

e At the first instance a dirty line is written back to
the main memory, the cache is flushed; i.e., all the
dirty cache lines are written at once to the main
memory.

Lemma 1 If the cache flush process as described
above, is fault free, and the processor status (registers
and flags) are kept as part of this process in a fault free
memory location, then the process can always roll back
to the last flush point by discarding the contents of its
cache and through reload of the processor state.

Proof: The cache contains all the differences between
the program state at the last “flush point” and the
main memory (since no information was written to the
main memory from that time on). Thus, by invalidat-
ing the contents of the cache and reloading the proces-
sor state at that point, we establish consistency in the
data content of the cache and the main memory. O

Cache models, such as [5, 1, 12], indicated the exis-
tence of working sets during the executing time of the
program. These assume that the miss ratio within the
working set can be considered as a constant and only
when the program moves from one working set to an-
other, a burst of cache misses can occur. If we assume
a uniform distribution of the write operations among
the memory references, and consider a fully associative
cache (or a high degree of cache associativity), we can
expect that the rate that write-cache lines are replaced
from the cache will be uniform within the working set
and may present shorter time intervals as the program
switches working sets. This is very important design-
ing checkpointing mechanisms that can operate “on the
fly” and incur only a modest, if any at all, overall slow-
down of the system.

3. The Bi-Directional Cache

Cache memories, classified according to their data
updating policy are of two generic configurations,
namely: the “write-through” cache updates the cache
and the main memory simultaneously in order to keep
both memory hierarchies consistent. This requires the
processor need to idle until the main memory is up-
dated. The “write-back” cache presents a different ap-
proach; it updates the main memory only when a mod-
ified cache line (termed dirty) is replaced in the cache.
Thus, if the program displays a high degree of local-
ity of memory references, the number of write opera-
tions are reduced considerably. The proposed architec-
ture partitions the cache into two distinct subsystems,
each responsible for discretely handling the read and
write operations between the processor and the main
memory. We refer to this partitioned entire cache as
the bi-directional cache. It has been shown that the
bi-directional cache causes lower write traffic rates
than the write-through cache, and furthermore displays
better performance features than even the write-back
cache[4, 13, 9].

The bi-directional cache (Fig. 2) consists of two
subsystems distinguished by their functions, namely:
a read-subsystem and a write-subsystem. The read-
subsystem handles fetching information from the main
memory and the write-subsystem controls the updating
of the main memory. We use a write-through cache as
a read-subsystem and disconnect its write signals. The
write-subsystem includes a small write-back cache that
uses an allocate on a write miss and a no-allocate on
a read miss policy. Based on earlier work, [9, 13], we
locate write-cache between the processor and the write-
buffer. This configuration allows us to add the write-
subsystem to existing cache based systems without the



need for processor or cache enhancements.
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Figure 2. The Bi-directional Cache System

All the read and write references are issued to both
subsystems. On a read reference, the read-subsystem
has priority over the write-subsystem. On a write ref-
erence, the subsystem sustaining a hit, updates its en-
try (both subsystems may update their entries respec-
tively). Thus, all the dirty lines of the read-subsystem
are present in the write-subsystem as well. Splitting the
cache into the read and write partitions also enables
the read and write operations to have connotations of
concurrency of operation. While a line is written to
the main memory by the write-cache, the CPU can
continue to read from the read-cache® Also, the split
operations do not result in any overheads as the con-
currency can occur in parallel to the CPU operations.

The design parameters (internal organization, line
size, etc.) of the read- subsystem can be different from
the design parameters of the write-subsystem. For a
class of system operations (e.g., spice, lisp, TeX), sim-
ulations suggest an efficient organization of the read-
subsystem to be 2-4 set associative with a 32-64 bytes
cache line size. The size of the read-cache can range
from 8 Kbytes to 1 Mbytes. The associated parame-
ters for the write-subsystem are: line size of 4 bytes (1
word), and 8 ways set associative (or fully associative).
The size of the write-cache subsystem will determine
the frequency the checkpoints are created and will be
discussed later.

3assuming data consistency being maintained by the inclusion

property discussed later.

3.1. Operationsof the Bi-directional Cache

We summarize the bi-directional cache operations
by describing the processes the read and the write sub-
systems perform upon receiving a read or write refer-
ence from the processor:

Read Op:

e On ahit in the read-cache, the word is fetched
from the read-subsystem. On a miss in the
read-cache and a hit in the write-subsystem,
the information is retrieved from the write-
subsystem.

e On a miss in both subsystems, the informa-
tion is fetched from the main memory to the
read-subsystem and a data coherency proto-
col (see below) is applied to sustain data con-
sistency between the read and write-caches
(The line sizes of the read-cache and write-
cache are different, which is another driver
for the consistency check.).

Write Op:

e On a hit, the new value is written to the sub-
system it hit in (the read, the write subsys-
tem or both) and updated across the cache
sub-systems.

e On a miss, the new value must be written to
a new write-cache entry. If the write-cache is
full, the CPU writes an entry to the write-
buffer and replaces its value. If the write-
buffer is full, the CPU stalls until it can re-
place the write-cache entry.

Ensuring Coherency:

e When a cache line is fetched from the main
memory to the read-cache, its addresses
should be checked against the content of the
write-subsystem. If the cache line, or part of
it, is found in the write cache, this conflict-
ing entry must also be updated in the read-
cache. This is a necessary operation to guar-
antee the data variable in the read-cache to
reflect the current value of such a matching
address. The difference in the line-size of the
read-cache and the write-cache also necessi-
tates this operation.

The bi-directional cache is shown [13] to provide bet-
ter overall performance (throughput, response time,
frequency of cache flushes) as compared to both the



write-through and the write-back caches. We refer the
reader to [13] for more architectural and operational
details. For the purpose of this paper, we focus on
the results that support the roll-forward recovery and
checkpointing considerations.

4. Support for Roll-Forward Recovery

This section describes the basis for different versions
of the bi-directional cache that are aimed at supporting
the roll-forward mechanisms. The techniques are based
on a two-way /three-way partitioning of the write-cache
subsystem.

We emphasize that the concept of checkpointing is
meaningful only if the cache partitions (the read and
write-caches) can maintain consistency of data (data
“inclusion” property), both within each cache structure
and also across the system cache of different processors.
The inclusion property between the read and the write
subsystems requires the consistency of data for valid
data kept in the write-cache and read-cache of the bi-
directional cache. For the purpose of checkpointing,
we require all dirty variables of the read-cache to be
present in the write-cache. Basically, the write-cache
contains all the dirty variables/lines to be updated to
the main memory. A simple strategy on achieving and
maintaining the consistency property within a bi- di-
rectional cache is utilized, namely:

Algorithm 4.1 Forcing inclusion between the read
and the write subsystems.

e On a write-miss, both caches allocate information
from the main memory.

e On a write-hit in the read-cache only, the dirty
variable is also written into the write-cache.

o When a dirty line is replaced in the read-cache, the
write-cache must first write its value to the main
memory and flush its entry.

o When a cache line is written to the main memory,
it clears its dirty bit in the read-cache.

It is pertinent to note that the sizes of the cache lines
that each cache allocates from the main memory (on a
write-miss) may be different. In order to avoid the use
of dirty bits in the read subsystem, it is sufficient to re-
quire that the read-cache report to the write-subsystem
on any line replacement. Thus, the write-cache could
write its value back to the main memory (a similar
mechanism is used when a first-level cache needs to
keep the inclusion with the second-level cache).

4.1. Creation of Checkpoints

The process for the selection and physical creation
of the checkpoints? is not a trivial one. However, this
important facet is generally under-emphasized with the
assumption that this function is implicitly present. The
bi-directional cache provides a procedure for natural
determination of the checkpoints without resorting to
any specialized supplementary mechanisms.

The write-cache in the bi-directional cache provides
a logical basis for the triggering of run-time check-
points. Other cache based checkpoint mechanisms sug-
gest creating a checkpoint every time a dirty cache line
should be replaced from the cache. The checkpoint
information in this case contains the processor infor-
mation and all the information that had been changed
from the last checkpoint creation (all the dirty cache
lines). CARER][7] tried to improve the performance of
such mechanism and suggests changes in the replace-
ment mechanism so that clean cache lines will be re-
placed before dirty cache lines. Such a modification
can indeed slow the cache operation significantly. The
bi-directional cache achieves the same functional effect
by using the write-subsystem, especially since the dirty
lines are handled in a special cache that specifically
handles dirty cache lines. This provides a simple so-
lution without the performance degradation implica-
tions.

The following sections briefly describe the basic pro-
cess for the bi-directional cache checkpointing.

Definition 4.1 A checkpoint contains all the neces-
sary information needed for the process to continue its
operation at a future time from that point.

A checkpoint based recovery mechanism has to de-
fine (a) the time instant when the checkpoint is cre-
ated, (b) the nature of information kept at the check-
point, and (c) the process used to recover if an error is
detected.

Algorithm 4.2 Check point based recovery:

Checkpoint triggering : A checkpoint is created
each time a dirty cache line is replaced from ei-
ther the write-cache or from the read-cache. (This
follows directly from the conditions required to sus-
tain the inclusion property with the main memory)

Checkpoint creation : The checkpoint creation pro-
cess requires that (a) the processor status informa-
tion will be saved to a “safe” area, and (b) to save
all the dirty cache-lines of the the write-cache and

4In both roll-back and roll-forward recovery.



mark them as “clean” (this is important as unlike
the conventional cache updating of the main mem-
ory, we will be requiring a time delay before the
update operation,).

Recovery : This is the roll-forward mechanism de-
scribed in subsequent sections.

The implementation of these mechanisms may be
dependent on the technology being chosen. We discuss
some of these aspects in the next sections.

We note that as long as the cache does not update
any of its dirty lines back to the main memory, we can
roll-back to the last checkpoint by simply reloading the
processor information and invalidating the read-cache.
This invalidation of the read-cache is necessary to force
all the information to be fetched from the main mem-
ory. Since the write-cache contains all the modified
information at that point, the coherence mechanism
between the write-cache and the read-cache will force
the correct data to be fetched to the read-cache. Since
only the processor’s status is kept in the “safe” area
during the checkpoint creation, we assume that area to
be part of the processor or an internal buffer of the bi-
directional cache architecture. It follows directly from
the usage of a distributed cache-coherency protocol,
and the fact that identical code is executed on differ-
ent processors, that the checkpoints are consistently set
for each duplex pair.

4.2. Performance Char acteristics of Checkpointing

The design of the roll-forward mechanism is based
on the assumptions that: (a) faults are infrequent and
(b) only transient faults are considered. Thus, from
the performance point of view it is especially important
to optimize the processes of creating the checkpoint so
that it could be done “on the fly”; i.e., to minimize
the overhead caused by that process. One can observe
that this requirement imposes that the entire check-
point creation process must be completed before the
computational interval that follows it. Otherwise, the
system needs to be stalled until the checkpoint creation
process is completed.

It is also important to determine the actual perfor-
mance cost implied in setting the checkpoints. As the
checkpointing is of a non-scheduled non-periodic na-
ture, an immediate concern is to determine the number
of checkpoints established relative to the total number
of memory references. A high number of checkpoints
is not desirable, as this involves continual updating of
memory and imposes a natural performance limitation
on the roll-forward process. We start our performance
measurements with a comparison of how frequently

the write-back caches create breakpoints versus the bi-
directional cache systems.

The baseline configuration of the write-back cache
was chosen (see [13] for detailed rationale) to be: cache
line: 32 bytes, four-way cache associative with 128 sets
(16K cache). The baseline configuration of the bi-
directional cache was chosen as: cache-line: 4 bytes
(this number was supported by performance results
presented in [9]) and write-cache of size of 256 entries.
(the write-cache is organized as fully associative or as
an eight-way cache associative).

The first set of plots present the frequency the check-
points are created and the time it takes to create a
breakpoint under different software environments. We
choose a set of 5 traces, given as part of the Dinero
traces. The simulations of the write-back cache are
marked as B — x, while simulations of the write-cache
are marked as C' — . Figure 3 depicts the number
of instructions executed before a checkpoint gets cre-
ated for different applications and hardware configu-
rations. The write-back configuration keeps the same
cache lines and set associativity during this experiment.
Note that the size of the write-cache was taken to be
vary from 4 to 32 Kbytes, while the size of the write-
cache was chosen to be between 256 bytes to 2K. The
results indicates that for most of the applications pre-
sented, the use of write-cache significantly reduces the
frequency for the caches need to create the breakpoints.
The set of graphs in Figure 4 highlight that the fre-
quency with which the bi-directional cache is flushed
does not depend on the size of the read-cache but is
a function of the size of the write-cache only. On the
other hand, the frequency of the flushes in the write-
back depends on both the applications and the size
of the cache. It is again pertinent to point out the
low variation in the cache flushing frequency for the
bi-directional cache.

Figures 3 and 4° illustrate results from simulations
which highlight the stability of the number of cache
flushes, i.e., the number of checkpoints established.
The variability in the number of cache flushes and the
time required for cache-flushes in a conventional cache
is one major reason why the existing checkpointing
strategies are not based on the use of caches. The bi-
directional cache not only provides stability in terms of
the number of flushes, but also in the time required to
complete the cache-flush operation (see Figure 5). The
combination of these parameters supports our basing
the checkpointing on the cache.

5A wider selection of benchmarks are used for simulations,
over a variety of applications, for Fig. 5 and 6 than the other
graphs simply to establish a greater confidence in the stability
aspects of the cache.



Figure 3. Frequency of Cache Data Flushes

Figure 4. Frequency of Cache Data Flushes:
read-cache 2-way associative, 32byte block size;

write-cache 256bytes,
block size.

fully associative,

4byte

Figure 5. Average time required to flush the
cache. Cache/read-cache 2-way associative, 32
byte block size. Write-cache 256bytes, fully asso-
ciative.

It is also relevant to quantify the overhead required
for the checkpointing strategy, and that the total over-
head resulting from the checkpointing scheme be small
enough not to impose performance degradation on the
system. A variety of workload profiles ranging from
TeX operations to cc compilation processes were stud-
ied to establish this metric. The overhead results from
the CPU having to stall as it waits for the write-buffer
to complete the updating activity to the main memory,
as well as from the time required for the write-cache to
write its values to the write-buffer. We do emphasize
that the overhead is relative to the natural overhead
entailed on the operations of bidirectional cache. The
average overhead was observed to be 6.8%. The use of
mechanisms (as in [13]) to reduce the CPU stall times
can reduce the overhead to as low as .5 - 2 %. Overall,
we have shown the simplicity of physically implement-
ing the checkpoints and the procedures for maintaining
their consistency across the processors. Also, the low
time cost and low overhead readily support our choice
for cache-based checkpointing.

Next, we consider how different design parameters
of the write-cache, such as the cache size, affects the
average, minimum and maximum sizes of the computa-
tional intervals, and so, the time the system has to effi-
ciently create the checkpoints. We start with a compar-
ison of the average time between checkpoint creation
when the traditional write-back cache is used and when



Figure 6. Cost of breakpoint creation (SRAM
model)

the new bi-directional cache is used. Note that when
the bi-directional cache architecture is considered, only
the size of the write-cache affects the time between
checkpoints; whereas when only the write-back cache
is considered, the size of the entire cache gets factored
in.

In order to estimate the average time it takes to
manipulate the roll-forward algorithm and to create
a checkpoint, we assume the following timing calcu-
lations: for the write-back cache, the time needed is:
time to search the entire cache (size of the cache) in or-
der to create the signature + time to update the main
memory (number of dirty lines in the cache) + com-
munication time. For the write-cache, the signature
can be calculated during the update time, similar to
the method used by the ECC mechanism, so the time
required is: time to update the main memory (size of
the write-cache) + communication time. As the com-
munication time is of the same order of magnitude for
both caching schemes, we can ignore it for the time
being. The subsequent plots compare the time it takes
to create a single checkpoint, given different cache size
(write-cache size for the bi-directional cache architec-
ture) Figure 6 presents a SRAM memory system where
the access time to the main memory consist of 5 cycles
set up time and a one cycle for each bus transaction
(we assume 32bit bus). The second model, Fig.7, as-
sumes a DRAM model where the setup time is reduced
to a single cycle.

Note that the cost of creating checkpoints is the

Figure 7. Cost of breakpoint creation (DRAM
model)

same for all the write-cache applications since the cache
line size is fixed. We observe that when the DRAM
model is used, the time to create a break point for the
C-applications is larger. Thus, when the SRAM model
is used, the write-cache architecture presents results
in a faster handling of breakpoint creation. Also, as
the creation of breakpoints under the write-cache is in-
frequent compared to the write-back cache, the overall
handling of checkpoints using the write-cache turns out
as the more efficient of the two.

In order to estimate the overall performance penalty
caused by the different schemes, we consider a compar-
ison of the average, min and maximum interval length,
in conjunction with the average time it takes to create
a new breakpoint. In most cases, the time required to
establish a new breakpoint is lower compared to even
the minimum interval for the write-cache architecture
and the average interval time is much longer than the
time needed to create the new checkpoint. Thus, the
breakpoint can be created on the fly.

In the next section we provide enhancements to the
basic bi-directional cache subsystem. These variations
are designed to facilitate the the checkpoint creation
and the roll-forward manipulation to be done “on the
fly”; i.e., in parallel to the execution of the next com-
putational interval. Thus, an overhead is incurred only
when the checkpoint creation time is longer then the
computational segment which is executed in parallel to
it.

Results indicate, that a write-cache which is larger



then 1-2Kbytes can ensure the computational interval
to be sufficiently long to ensure that the fault forward
mechanism can be executed “on the fly”; at the same
time large write-caches can result in computational in-
tervals which are too long. Extreme differences be-
tween various computational intervals can also detri-
mentally affect the performance of the system in the
instances of fault occurrence[11]. Thus, we may wish
to limit the time span of the maximum interval. We do
emphasize that the write-cache architecture can better
take advantage of its size, while in many of the write-
back applications, increasing the size of the cache does
not improve the average interval’s length.

5. Implementation of the Roll-Forward
Bi-directional Cache Architecture

In order to avoid the penalty involved in copying
the lines of the write-cache to the write-buffer, we pro-
pose enhancements to the basic write-cache architec-
ture. We propose to partition the write-cache such
that an implicit stable-storage unit is created. The
number of partitions and the nature of the data move-
ments across the partitions determines the properties
of the roll-forward technique. We present two versions
of modifications to the regular bi-directional cache ar-
chitecture to implement roll-forward recovery.

The first enhancement calls to use a two-way par-
tition of the write-cache. We use two sets of write-
caches in the write-subsystems with one used as an ac-
tive write-cache while the other is used as a backup
write-cache. When a checkpoint needs to be created,
the processor status is kept in a pre-designated safe
area. If the backup cache is empty, the system switches
between the active cache and the backup caches, and
the processor can continue its operation. If the write-
cache is full, the system switches the write-caches and
continue its work by using the new write-cache. Con-
currently, the “old” write-caches exchange signatures
to validate that the information is consistent.

Meanwhile, the backup cache checks its validity with
the backup cache of the other processors. As before,
the comparison is based on exchanging signatures be-
tween the duplex write cache subsystems. If the caches
were found to be consistent, the main memory is up-
dated, the cache is marked as empty, although the last
consistent processor status is still stored.

On the other hand, if the caches are not consistent,
the write-cache does not update the main memory, so
its update level remains the same as the last valid
checkpoint. So, the backup processor can be loaded
with the processor information (registers etc.) of the
last valid checkpoint (which is kept in the active-cache

area) we have, and continue its computation from that
point. As soon as it reaches the checkpoint, it should
compare its signature with the other two signatures
and only the one which was found to be valid should
update the main memory and the other processor. As
the main memory data is consistent with the previous
(valid) checkpoint, it can start performing the com-
putations which were discerned as inconsistent among
the duplex processor pair. As soon as the spare proces-
sor reaches the checkpoint (note that the structure of
the write-cache automatically forces it to be the same
checkpoint as the one for the duplex pair), by compar-
ison its results (the spare forms the reference point)
with the results of the duplex pair processors, it can
help determine the faulty entity.

After the two processors reach the next checkpoint
(in the case of a fault), they need to be stalled® until the
spare processor has completed the determination of the
faulty processor; and the correct cache will update the
main memory and will also update the processor status
of the processor identified to be faulty, with the state
of the non-faulty processor. At this point, consistency
of state is restored amongst the duplex pair and the
two processors can continue their operations.

It is of interest to note that:

- In a fault-free scenario the performance of the sys-
tem is not degraded. The checkpointing simply
records the instances of the dirty line replacement,
and is not detrimental to the cache operations.

- The time cost for establishing checkpoints does not
affect the basic cache-access times, as the opera-
tions can be performed independent of each other.

The two-way partitioned bi-directional cache can
help create checkpoints “on the fly”, but it still re-
quires the processors to stall while the spare completes
execution. We can further enhance the checkpoint-
ing efficiency by using a three-way partitioned write-
subsystem. One partition is used as the active write-
cache, the second as a backup memory and the third
is used to manage the memory update mechanism in
parallel to the other system activities. The result is
a minimal performance impact on the regular system
operations.

This technique has connotations of a pipeline strat-
egy. The improved mechanisms allows the system to
continue two segments ahead before being required to
idle if the write-cache is not empty. When no fault is
present, both the two-way and three-way partitioned

6This is an inherent characteristic of any roll-forward strategy,
as the duplex pair is allowed to continue its operation, only, till
the next checkpoint. The next bi-directional cache strategy, we
propose, alleviates this problem.
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Figure 8. Roll-forward: 3-way partitioning

caches display similar operational behavior. When
the processor reaches the point where it needs to cre-
ate a checkpoint, it saves its internal status and uses
the update-cache as the active-cache. Thus, the old
backup-cache becomes the new update-cache and the
old active-cache becomes the new backup-cache.

When a fault is discovered (the backup-caches are
not consistent), the spare processor is activated as be-
fore. When the two processors reaches the next check-
point, they do not have to wait for the spare processor
to complete its operation or to the backup-cache to
complete the update of the main memory. The proces-
sors can continue their operations by using the update-
cache as another temporal storage entity. Since the
memory update time is much faster then the time it
takes the processor to reach the next checkpoint, the
probability that the spare will made its decision and
the main memory will be updated before the “regular”
processor will form the next break point is virtually
unity. We do mention that the primary purpose of
allowing a two segment propagation is to provide the
spare processor sufficient time to execute the inconsis-
tent interval and identify the source of discrepancy in
the duplex pair. The synchronization of the processors
is again enforced automatically, and implicitly, based
on the bi-directional cache operations. Furthermore,
the inclusion stipulation, both within the cache par-
titions and across the system caches, directly implies
the conditions of consistency of checkpoints and that
of data to hold across the system; thus, the assertion
of correctness of the roll-forward procedure.

5.1. Is Synchronization Acrossthe Processor Pair
Required?

It needs to be emphasized that we have not imposed
the requirement of the two processors being clock syn-
chronized with each other. As the processors execute

identical task code, start a process with identical cache
states, and their caches are filled at the same execu-
tion point; thus, it does not matter if one processor
reached the checkpoint a little earlier or later than the
other processor, and there is no data consistency vio-
lation. It is interesting to note that if one processor
sets a checkpoint and the other processor fails to set
its checkpoint, then this is automatically equivalent to
the case of an inconsistent checkpoint. The nature of
operation of the write-cache also implicitly forces the
two system to determine the checkpoint at the same
execution state. Hence, it suffices to implement a syn-
chronization mechanism between the backup-cache of
the two system so that we compare the correct versions,
round # or any other suitable identifier for the check-
points. Furthermore, in order to compare the consis-
tency of the checkpoints we simply need to send any
kind of signature to the other cache. This can be ac-
complished by the use of a CRC or any other form of
signature for the state information.

The coherency of the data/variable updating in the
main memory also follows implicitly. If one processor
tries to update a data variable in the main memory, it
establishes its checkpoint at this instance of cache-line
replacement. Under fault-free conditions, the second
processor also computes an identical value of the vari-
able to be updated. For the checkpoints set by the two
processors being consistent, only then does the data
variable get updated in the main memory, else the in-
consistent checkpoint triggers the fault recovery pro-
cess. This is nothing but a form of coherency of data
updating.

6. Discussion and Conclusions

We have presented a novel cache architecture which
readily lends itself to the support of the roll-forward
techniques. The natural checkpointing strategy pro-
vides an efficient approach which can also be used for
conventional roll-forward and roll-backward protocols.
The need for a discrete stable storage unit has been
done away with. Furthermore, we have presented a
logical synchronization between the duplex processors
which avoids the use of explicit processor/checkpoint
synchronization procedures required for conventional
recovery approaches. We have currently provided sim-
ulation results in the paper, and we are developing ana-
lytical models for a more detailed performance analysis
of the roll-forward mechanism.

We have discussed the checkpointing and fault re-
covery operations of the bi-directional cache based on
the observed stability of (a) frequency of checkpoint-
ing, and (b) stability in cache flush timing over a range



of application programs, and (c) that the size of the
write cache can be modified to obtain the desired check-
pointing interval lengths. Another form of control is to
deliberately cause checkpoints to be established. This
can be as simple as sending a dummy read request from
the processor to the bi-directional cache for a reserved
memory variable thus forcing a checkpoint. A NOP
operation or a similarly designated operation can be
triggered based on the number of instructions from a
prior checkpoint or simply based on a counter value.

Our recovery scheme tries to optimize the perfor-
mance of the system. On one hand, we wish to set
the checkpoints as far apart as possible, so that the
potential overhead caused by the checkpoint creation
will be as low as possible. On the other hand, we wish
to set the checkpoints as close as possible so that the
recovery time will be as efficient as possible. The use
of the write cache seems to be a natural choice since
most of the programs present a stable rate of writes to
different locations in the main memory. Thus, if the
interval is too long, we can always deliberately insert
checkpoints to control the length of the interval. But,
this technique can not be used to control the checkpoint
creation when it is too frequent. For that purpose, a
larger write cache can help.

It is interesting that most existing techniques re-
quire periodic, equi-distant checkpoints to be estab-
lished, although the determination of the actual check-
point interval based on real program information is not
addressed. In [6] the authors select a 2-minute check-
point interval without a rationale on how the 2-minute
number is established, beyond simple observation.

In an actual system, the frequency of the checkpoint
is very much dependent on the nature of the program
application, and also on the type of system model under
consideration. It is our assertion that the bi-directional
cache and other cache-based checkpointing mechanisms
provide a naturally optimized checkpoint interval i.e.,
if a periodic checkpoint is optimized for placement of
checkpoints according to the program and memory ac-
cess patterns. A simple performance analysis to com-
pare the efficacy of such natural, aperiodic checkpoints
with periodic checkpoint determination establishes this
assertion.

The bi-directional cache structure also provides for
handling of I/O and interrupt driven checkpoint inser-
tion. We transform both I/O and interrupt calls to the
as a dummy memory read operation inserted into the
program stream of the duplex processors at the same
PC location. The basic instruction code synchroniza-
tion of processors is, thus, not perturbed while the I/O
or interrupts get handled.
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