

Designing High-Performance & Reliable Superscalar Architectures

 The Out of Order Reliable Superscalar (O3RS) Approach1

1 Work supported in part by NSF CAREER Grant CCR-9896321

Avi Mendelson

Microprocessor Research Lab,

Intel Corporation, Israel
Avi.Mendelson@intel.com

Neeraj Suri

Dept. of Computer Engg.,

Chalmers University, Sweden
suri@ce.chalmers.se

Abstract

As VLSI geometry continues to shrink and the level
of integration increases, it is expected that the probability
of faults, particularly transient faults, will increase in
future microprocessors. So far, fault tolerance has chiefly
been considered for special purpose or safety critical
systems, but future technology will likely require
integrating fault tolerance techniques into commercial
systems. Such systems require low cost solutions that are
transparent to the system operation and do not degrade
overall performance. This paper introduces a new
superscalar architecture, termed as 03RS that aims to
incorporate such simple fault tolerance mechanisms as
part of the basic architecture.

Keywords: Superscalar architectures, Pipelines, Transient
Errors/Recovery

1 Introduction

In order to achieve high integration and low power
consumption, the trend in VLSI technology has been to
shrink the geometry paralleling Moore’s law of doubling
device density every 18-24 months. Several companies
[1] are currently fabricating chips using 0.18-micron
technology, and it is expected that in 3-5 years the
technology will reach the 0.1-micron limit. Such
advanced technologies present some new challenges and
concerns that are not apparent for current technology [6].
Among these new challenges is the need to protect the
system from the disruptive effect of transient faults by
integrating simple, low-cost fault tolerance mechanisms
as part of the basic design for future commercial micro-
architectures.

The need to protect against transients by integrating
fault tolerance mechanisms arises from varied
considerations such as (a) At 0.1 micron technology, the
dv/dt ratio and expected transistor’s threshold level
indicates the growing occurrence of transient faults. A

ballpark number is of 1-3 transients/day for an average
application operating continuously, (b) It is expected that
more and more asynchronous designs and dynamic logic
circuits will be used, which are particularly prone to
timing and transient faults. Thus, we can expect transients
or “infrequent” faults (faults that appears only in small
subsets of operational modes) will become part of future
processor/computational models.

Traditionally, fault tolerance techniques are designed
to protect safety critical systems such as aerospace,
nuclear and similar control systems. Such systems often
can trade performance and costs for dependability.
Providing similar fault coverage to commodity processors
is not a simple issue. Here, on one hand, both cost and
high performance are essential, and on the other hand, the
level of fault-coverage is important as well given their
growing and pervasive role in embedded systems.

At the processor/architectural level, a variety of
space/time redundancy techniques currently exist for
integrating fault tolerance techniques. Though our interest
in this paper is on time redundancy, for completeness, we
briefly outline other commonly used time and space
redundant fault tolerant techniques, namely:

•= Error detection/error correction codes (ECC) used
widely for protecting memory cells [7].

•= Spatial redundancy techniques entailing physically
duplicating the system (or specific functional units)
so that the same program will be executed by
different pieces of hardware in parallel and their
execution results could be compared to verify the
correctness of the execution. [8]. Such systems are
relatively expensive and can be used for custom
designs, but not for high performance commodity
systems. An alternative to duplicating the entire
system was proposed in [9], where instructions that
reach the “instruction window”, get duplicated and
get sent to two independent execution-units. In this

technique, only the ALU part is duplicated.

•= Temporal redundancy techniques propose re-
executing each program (or fragments) and to
test/compare their outcomes. The potential drawback
of this scheme is that it might significantly reduce the
overall performance. Recently, [5] proposes a new
temporal redundancy based scheme termed AR-SMT
that aims to limit the performance loss.

Our focus is on temporal redundancy approaches, and
this paper aims to present a new architectural approach
that addresses the processes of detection and recovery
from transient errors in the logic of the computer, i.e., in
the computational elements such as ALU, FPU, and
address generation units. Towards these objectives, this
paper is organized as follows. Section 2 presents the
general structure of current superscalar architectures prior
to addressing fault tolerance aspects in them. Section 3
reviews contemporary architectural schemes utilizing
temporal redundancy. After introducing our proposed out
of order reliable (O3RS) superscalar architectural
approach in Section 4, Sections 5 and 6 develop the error
recovery approaches. First, we present an approach to
basic support for transient fault detection and recovery.
Next, enhanced approaches to address transient recovery
are developed. Section 7 outlines the performance results
for the proposed approaches.

2 Superscalar Processors: Basics

In this section we present the structure of a typical
superscalar architecture [2] similar to the Pentium-II
family [3]. This section primarily establishes the
conceptual structure and superscalar related terminology
we will use throughout this paper.

Figure 2.1 depicts the basic structure of the execution
pipeline of a general purpose, out-of-order superscalar
processor with a reservation station(s). Instructions are
fetched from the main memory or from the instruction
cache in the program order into the decode unit. The
decode unit is responsible for registering the instructions
in the ROB (re-order buffer), for renaming their registers
(from the user view registers into the the architectural
registers) and for sending the instructions to the
reservation tables that are associated with each of the
execution units. Note that in the case of Pentium II, the
X86 based instruction set is translated into
microoperations, which are fixed length instructions.
Thus, the internal execution model of the processor can be
significantly different from the external (user) view.

Instructions in the reservation can be executed “out
of order” as long as they preserve the semantics of the
program. Thus, each instruction can be either in “ready”
state (i.e., all their inputs are “ready”) or in “wait” state.
Whenever an execution unit is ready to execute a new
operation, it fetches a “ready” operation from its local

queue. No order is imposed between “ready” instructions.

 When instructions are logged in the ROB, the
Register Alias Table (RAT) determines if their source
operands should be taken from the architectural register
file or from the ROB. Each ROB entry keeps track of the
program counter associated with its instruction and has a
place to hold the execution result. The issue logic
monitors the buses to detect writes to the ROB entries
matching source operands of the waiting instructions.

The last pipeline stage in an out-of-order processor is
instruction commit (retirement). Most current superscalar
architectures ensure that the instructions modify the
system resources, such as architectural registers (as
opposed to renaming registers), caches, etc. in the same
order as appears in the program or as generated by the
compiler. Inside the micro-architecture, the instructions
can be executed out of order, though the instructions need
complete their executions in the program order.

In order to enhance performance, modern computer
architectures use speculative execution which is based on
different predictors (such as branch prediction). When the
predictor fails, the retirement mechanism is also used for
rolling back from exception or executing the wrong path.
In such cases, the system needs to complete the execution
of all the instructions prior to the roll-back point and to
discard all results after that point.

3 Prior Approaches in Temporal

Redundancy

The main goal of this paper is to develop low-cost,
high performance support to timed redundancy
techniques. In order to objectively evaluate the proposed
techniques, we first discuss two existing architectural
techniques for timed redundancy. For this discussion, we
restrict this to pipelined, multi-threaded and superscalar

Instruction

Fetch

Instruction

Decode & Issue

Reorder Buffer

And Commit logic

Register

Alias Table

FU FU FUFU

BTB

Res.

Station

Res.

Station

Res.

Station

Res.

Station

Cache or

Main Memory

Figure 2.1 – Basic Architecture of Superscalar

Out Of Order Processor

models which are currently the most commonly used
architectural paradigms.

3.1 The Instruction Duplication Technique

A simple technique to increase the fault toletance
coverage at run time was proposed in [9]. Here an
instruction sent from the instruction decoder to the
instruction window allocates two entries in the ROB
table, and is consequently sent out twice for execution. At
commit time, the results of the two operations are
compared and “retired” from the system only if both
operation obtained the same result, i.e., fault-free
situations.

3.2 The AR-SMT Technique

An alternate approach to time redundancy was
recently proposed in [5] and termed as AR-SMT (Active-
stream/Redundant-stream Simultaneous Multi Threading).
This architecture extends existing SMT [10,11] machines
that can execute two threads in parallel. In SMT,
instructions are fetched from two independent streams of
instructions (threads) and these share the system
resources. In traditional SMT machines, the results are
written back to their ROB, and each thread retires its

instructions independently.

The AR-SMT suggests executing each program
twice, by using two threads; one that is considered as the
primary and the other as secondary. These threads are not
symmetric in their priority and in their execution-
mechanisms. The primary thread runs as before but writes
its results to a special hardware mechanism termed
“Delay Buffer”. This buffer is used to ensure that both
threads run in a lock-step manner (with a delay of at most
the size of the delay buffer), and that the results produced
by both threads are identical.

In order to reduce the overhead incurred by the use of
SMT architecture, the author suggests improvements over
the traditional SMT architectures, such as: (1) In order to
sustain instruction bandwidth, a Trace Cache for each
thread is proposed. Trace Caches keep the information in
decoded form and do not need to perform bus accesses as
long as a hit is achieved in the Trace Cache, (2) Use of
aggressive prediction mechanisms to predict branches
[13] as well as values [14,15]. (3) Allows the second
thread to use values produced by the first thread. Thus,
the second thread can take advantage of the maximum
parallelism available by the machine. The uniqueness of
the AR-SMT approach is its observation that the first
thread can be used as a perfect predictor to the secondary
thread. Thus, the second thread can utilize the maximum
parallelism on the machine and re-execute operations as
soon as their inputs are in the Delay Buffer.

 The AR-SMT paper indicates that by using all these

optimization techniques, the overhead of using AR-SMT
machine is relatively small compared to the use of other
temporal redundancy techniques. Although [5] provides
simulation results to indicate the AR-SMT performance
enhancement over SMT etc., a closer look at the potential
implementations of the AR-SMT machine reveals that it
can suffer from several limitations that may result in
significant overhead and loss in performance.
Specifically, these include:

•= The use of multi-threaded technology invariably
suffers from reduced instruction bandwidth that
limits its performance. Adding Trace Caches can ease
the problem for those applications that can fit into the
Trace Cache. But, Trace Caches are inherently large
(since they keep the instructions in their decoded
form), so on one hand increasing the size of the Trace
Cache can result in an unacceptable increase in the
die size; on the other hand, splitting the Trace Cache
between the threads increases memory traffic in the
machine and consequently limits its performance.

•= An efficient use of the Delay Buffer as an accelerator
for the second thread forces a feedback loop to the
ROB (and the instruction scheduler). In machines
that run at a very high clock rate (and utilize super-
pipelines to achieve it), such feedback will cause a
major delay between the two threads. It may cause a
performance loss and force the use of large Delay
Buffers as well.

•= The use of the Delay Buffer suffers from a major
performance loss whenever the system is required to
rollback, such as in the case of branch mis-prediction,
exception handling and transients.

These limitations can either increase the cost of the
AR-SMT solution and/or restrict its performance
significantly. On this review of existing temporal
redundancy approaches, the current paper targets
developing an alternate cost-effective, low-overhead
temporal redundancy approach. We emphasize that
reducing the performance overhead in fault-free scenarios
has more real impact on system performance than the
performance loss reduction in the presence of faults.

3.3 The Diva Approach

Recently, [20] presented a new concept in designing
complex superscalar systems. The new architecture calls
to replace the traditional retirement mechanism of out-of-
order machines, with a “checker” that re-executes the
instructions. This checker, on one hand, can be simple
since it uses the data produced by the fast and complex
machine, and on the other hand can run with a slower
clock rate, since it can save the need to execute
speculative operations.

A DIVA based processor could handle transients as

well, but it necessitates major architecture enhancements
which are not cost/performance effective and beyond the
scope of our discussion here.

4 The Out Of Order Reliable Superscalar

(O3RS) Architecture

We now introduce facets of the proposed O3RS
architecture that aims to achieve maximal fault tolerance
coverage at a minimal cost to either the die area or the
fault-free performance of the machine. The basic
approach utilizes time redundancy to enable recovery
from transient/soft errors. In order to minimize the extra
cost in area and performance, we suggest enhancing an
existing superscalar mechanism only if it cannot
guarantee fault-free execution by using traditional
techniques such as adding ECC circuits.

4.1 At What Level Should New FT Techniques

be Integrated?

It is clear that in order to guarantee the overall
correctness of the system the entire system should be
protected by both error detection and recovery (or error
correction) mechanisms. However, we argue that it does
not mean that the same mechanism should be used
throughout in order to protect the system. Since most
advanced memory systems integrate Error Correction
Codes (ECC) techniques as part of the structure of the
memory, registers and internal buses, we would like to
integrate these techniques as part of our solution. Thus,
unlike other papers such as [8,9] that execute the entire
program twice (temporal redundancy), we argue that it is
sufficient to enhance the protection mechanism for those
parts of the system that cannot be protected by
existing/alternate techniques.

In this section we examine each stage of the
execution pipe to determine if additional fault tolerance
mechanisms are warranted for adding to them:

Fetching: The fetching mechanisms chiefly use
memory and bus technologies. Thus, no extra
mechanisms are needed to guarantee the correctness of
the data and instruction that are fetched.

Instruction decoder: If the instruction decoder
works as a table look-up (as in many RISC architectures),
we do not foresee the need to add any redundancy. But, if
the instruction decoder is more complex (like many of the
X86 architectures) we consider duplicating the control
logic.

RAT and ROB: Since the ROB is a cyclic buffer; we
assume it to be protected using conventional mechanisms
such as ECC. In order to protect the RAT we may need to
duplicate its control (sharing the same data).

In order to add our new mechanisms, we will have to

modify the structure of the ROB (this will be discussed
later in Sections 5 & 6)

Execution units: We do not assume any modification
of the execution mechanism (one may consider to add
more execution units as explained later in Sections 5 & 6)

Retirement mechanism: We need to design a new
retirement mechanism and to incorporate the “voting
mechanism” between the pair of operations in order to
guarantee their proper execution.

Write-back: As long as the write-back is controlled
by the ECC, we do not need to modify it.

This stage-by-stage pipeline analysis indicates two
issues, namely:

•= We can maintain a superscalar (transient) fault-free
system without the use of expensive multi-threaded
technology.

•= From the complexity and performance point of view,
the efficient design of the execution pipeline is a
primary design driver given that this aspect cannot be
efficiently addressed by existing time-redundancy
based approaches.

5 A Basic Description of the Error

Recovery Mechanism

In this section we start introducing the proposed
architectural mechanisms. These mechanisms are based
on temporal redundancy; i.e., execute each instruction
twice, and incorporate specific recovery mechanisms in
case of branch mis-prediction or in the case of transients.
The primary design driver is reducing overheads.

In order to achieve this goal we propose the
following modifications to the “traditional superscalar
structures presented in Sec. 3. Here we outline the O3RS
modifications and detail them further in Sec. 6. The basic
O3RS modifications include:

•= Modify the ROB table so that each operation, which
is not LOAD or STORE, will be executed twice. In
order to achieve this, we propose to add status bit to
each ROB entry that indicates if the instruction is
being executed for its first time or for a second time.
Note that we do not care if an instruction will be
executed twice on the same functional unit or on a
different functional units since we assume
transient/soft errors; i.e., the probability of an error to
appear in a functional unit does not depend on its
history of errors.

•= Although we execute each instruction twice, we do
not require two entries in the ROB and we do not
impose any implicit order between the executions of
the two instances.

•= The results of the two independent executions of the

same operation will be retired iff: (a) The two
executions agree on the results. (b) All previous
results were committed.

If an operation cannot be committed, we need to
distinguish between two cases: (a) both computations
produced different results, so we need to re-execute the
instruction until its result will be verified. (b) the
execution was speculative, and the speculation was found
to be false. In this case, the system should be rolled back
to the last committed point.

If an execution unit is repeatedly found to encounter
errors, the system can take it out of the active list (if
enough execution units are available)

In order to describe the operations in the proposed
method, we present the following example:

As these instructions depend on each other, they must
be executed sequentially even on an out of order
execution machine. Let us assume that x contains 10, so
the execution pipe of our machine will look as in Fig. 5.

Fig. 5 presents four steps of the execution pipe of the
new architectural technique (a simplification of its
operation). Each column in the figure represents the
“stream of operations” (as is fetched into the instruction

pipe), specifically the operations at the execution stage
and the retirement stream. In this example, we assume no
faults to occur.

Figure 5-A represents the start of the execution step;
i.e., the first instruction (LD) is brought into the execution
stage. Since load operation (LD) does not need to be
verified via time redundancy mechanisms (as was
explained in the previous section) we can move it
immediately to the retirement stage (Figure 5-B),
assuming a single cycle for load. At that point, the first
instance of the compare instruction is forwarded to the
execution phase.

Just after the first instance of the compare instruction
is executed, the machine can now start its “second”
execution in parallel with the first execution of the JZ
operation (Figure 5-C). The first execution of the JZ
indicates if the branch should be taken or not (in pipeline
machine the branch prediction predicts the right direction
before the JZ complete its operation). Since the first
execution of the CMP indicates that the branch will be
taken, it forwards the DEC instruction to the execution
phase rather then the INC one. At that point (Figure 5-D),
the JZ is being executed for the second time, and the DEC
operation is being executed speculatively.

Note that during the second time an operation is
executed, all of its inputs are known, so that it can start its
execution immediately (assuming we have resource for
that). If the system finds that the right answer to the
compare instruction should be not-taken rather than taken,
the system should roll-back (undo the DEC) and re-start
the execution along the right path.

6 Hardware Enhancements For O3RS

In this section we provide a detailed description of
the new hardware modifications needed to accomplish the
proposed recovery mechanism. The goal of our proposed
enhancements is to implement the new recovery
mechanisms so it will result in minimal extra hardware
that provides minimal overhead when no fault occurs. We
will also show that the proposed recovery mechanism
imposes low recovery overhead when the system needs to
recover from either a transient/soft-error or from a branch
mis-prediction, exception handling etc.

The implementation of the new algorithms utilizes
the same basic superscalar structure used in previous
sections. The instructions are fetched in a sequential order
from the memory and are decoded in parallel. Each
operation gets an entry in the ROB structure. As we have
mentioned earlier, the ROB status bits are critical data and
are protected extensively by ECC checks. The entries in
the ROB are ordered in respect to their control
dependencies. Each entry in the ROB contains in part
information on the type of operation, what are the inputs
(and if they are available) and a space to keep the

a. ld R0,x // load memory to R0

b. cmp R0,$10 // compare R0 with 10

c. jz l1 // jump if zero

d. inc R0 // if R0 != 10 increment it

 e. l1: dec R0 // else decrement it

Figures 5A-D: Basic O3RS Operations

ld

Cmp ,2 Jz ,1

inc

dec

C

ld

cmp

jz

inc

dec

A

ld

cmp

Jz ,2

inc

Dec ,1

D

B

Cmp ,1

ld

jz

inc

dec

outcome of the operation. Each ROB entry contains also
status bits that usually indicate:

E (Empty): The ROB entry is not attached to any
operation.

W (Wait): The instruction is in the reservation
station, and is waiting for inputs.

R (READY): The instruction is ready to be executed.
(Moved to the reservation station)

D (Done): The operation is ready to be committed.

In order to incorporate the fault tolerant mechanisms,
we suggest the following enhancements:

R: Indicates that the instruction is ready to be
executed for the first time.

S: The instruction is ready to be executed for the
second time.

D: The result of the two instances of the operation
has been confirmed, and the operation is ready to be
committed.

 Note: (1) We ignore these extra bits if the instruction
is LOAD or STORE. (2) Instructions do not need to check
their dependencies when in S state. We could require that
the second execution will start only if its sources are in D
state. This might simplify the recovery mechanism but
consequently reduce the overall performance due to the
dependency resolutions. In the AR-SMT mechanism, it
was suggested to use the delay buffer as a predictor for
execution of the second thread. This mechanism
complicates the hardware and may limit the frequency
due to internal feedback loops. The O3RS mechanism
achieves the same goal more efficiently and with simpler
hardware.

When the two executions of the same instruction do
not agree upon the result, we suggest re-executing the
instruction. A simple mechanism (as illustrated in the
above state diagram: Fig. 6.1) calls to re-execute the
instruction twice. A more sophisticated mechanism can
either keep 2 output buffers and compare the third
execution with both, or to copy the result of the second
execution to the result buffer (in the ROB entry) and issue
the instruction again in S state. As long as the error rate
remains relatively low, we do not recommend
complicating the hardware and believe that these simple
mechanisms suffice. As mentioned earlier, it is more

important to facilitate low performance overhead from the
incorporated fault-tolerance mechanisms during fault-free
operations than the overhead issues while handling errors.

When the system needs to change its control flow (as
a result of error, mis-prediction, etc.) the operation of the
system is very similar to the regular operation of any
superscalar machine. The system needs to flush all the
entries in the ROB that are below the mis-prediction
point, regardless if they are being executed for the first
time or for the second time. The system also needs to
complete the execution of any instruction that is not in the
D state and located above the mis-speculated point.

The retirement mechanism in O3RS remains the
same as before; i.e., it “retire sequence” of instructions as
long as all of them are in D state.

7 Performance Issues

At this stage we have described the basic
functionality of the proposed O3RS approach. Prior to
addressing the achievable performance issues, we again
emphasize that although the transient rates, even at 0.1
micron process, are expected to be in order of a fault/day
two points are worth noting, namely (a) it is unacceptable
not to protect the machines against such faults (b) for
systems that contain several processors the probability for
error increases significantly. Thus, from the performance
perspective, it is more important to make sure that the
fault detection mechanisms do not cause a performance
lost, than to optimize the performance of the recovery
mechanism. With this background, the set of performance
figures in this section will be focused on demonstrating
fault-free overhead cases.

In order to evaluate the new system, we use a
modified version of the SimpleScalar simulator [17]
developed at the University of Wisconsin, and run our
proposed techniques on different applications, using
different set of inputs for each. The main performance
measurement we were looking for was the utilization of
the execution units. A utilization of 0.5 means that on
average, all the resources were utilized half of the time. A
utilization greater than 1 indicates that the new approach

F S D

Figure 6.1 State transition of the ROB status

Agree on results

Do not agree on results

0

0.5

1

1.5

2

2.5

1 2 4 8

Number of ALUs

Figure 7.1 Performance of O3RS

%
 U

ti
li

z
a

ti
o

n

amptjp GCC

slows down the system. Note that when a “regular”
program is executed, the utilization corresponds to the
CPI (Cycles Per Instruction) divided by the number of
ALU’s in the system. If the utilization is greater than 1, it
means that the system was slowed down because of
internal dependencies or due to system limitations.

Figure 7.1 presents the ALU utilization of the O3RS
system running GCC compiler with 2 different inputs:
GCC compiler (the compiler compiles itself) and
AMPTJP program (both from INT SPEC 95). The Y-axis
indicates the processor utilization and the X-axis (top
row) indicates the number of ALU units. Each test runs
for 100,000,000 simulated instructions. We can observe
that (a) both inputs provide similar utilization numbers (b)
if 2 ALUs (or more) are provided, the utilization is less
then 1, meaning that there is no performance loss when
applying the new technique. One can explain these
numbers with the fact that the “second executed”
instructions do not have to wait for inputs and so can be
executed promptly, taking advantage of the relatively low
ILP (Instruction Level Parallelism) of the GCC program.

Figure 7.2 presents the same utilization numbers for
IJPEG program using 2 different inputs (Penguin and
Vigo) taken from the SPEC 95 as well. The results
presented here are similar to the result presented for the
GCC run. The main difference is that in the IJPEG case,
the system can well utilize up to 2 ALUs and only when
four ALUs or more are used, that the extra cost for the
new technique is diminished.

 So far we mainly discussed the overall performance
of the O3RS system and showed that it can take
advantage of the current limitation in the available
parallelism to execute the extra operations almost free of
charge. Now we extend the discussion to other
performance-related parameters of the system, such as
instruction window, and fetch bandwidth.

From a performance viewpoint, one of the noticeable

disadvantages of the AR-SMT solution is that the
implementation cost of an SMT machine is much higher,
assuming the same level of performance. For example, in
[5] it was assumed that each PE could fetch and decode
up to 4 instructions each cycle. An implementation of
such an instruction bandwidth is very difficult to achieve.
On the other hand, limiting the instruction bandwidth can
dramatically limit the overall performance of the system.

The [5,9] papers assume that each of the PE has its
own trace cache and the number of the entries in the ROB
for each thread remains the same regardless of the number
of ALU’s in the system. A more realistic assumption
should be that the instruction window is split between the
two threads in the system. Figure 7.3 shows the impact of
the instruction window size (number of pending
instructions) on the achievable ILP in the system. The X-
axis measures the window size (8,16,32,64,128) for
pending instructions, Y-axis measures ILP. The rows
marked “MP3D” [solid line, bootm], “Walter” [dotted

line, middle] and “Cholesky” [dashed line] numerically
represent the ILP values for these different applications.

Figure 7.3 demonstrates that by reducing the
instruction window size from 64 ROB for a program to 32
entries for each thread, the system will lose about 15% of
its performance (on average) for any SMT based
approach. On the other hand, our proposed O3RS
technique uses the same number of ROB entries as in
“regular” superscalar. Consequently, it does not suffer
from that performance degradation

The last chart we present (Figure 7.4) shows the
slowdown of a single thread (out of 2 threads), assuming
that the instruction window is split among them. In this
experiment we assume 8% branch mis-prediction, and 5
cycles penalty for a branch miss. We also assume an 8
instruction fetch bandwidth.

0

0.5

1

1.5

2

2.5

1 2 4 8

ALUs

Figure 7.2 Resource Utilization Running IJPEG

U
tiliz

a
tio

n

Penguin Vigo

0

1

2

3

4

5

6

7

8

9

8 16 32 64 128

Window Size

Figure 7.3: Impact of Instruction Window Size

IL
P

MP3D Water Cholesky

The chart indicates that on one hand, when the
window size is relative small, the application is mainly
limited by the instruction window size available for each
thread. On the other hand, when the instruction window is
large enough, the performance is limited by the
instruction bandwidth and so the size of the window is
less important.

8 Discussion & Conclusion

Overall, we have examined two basic time
redundancy approaches of duplication and voting, and the
associated integration of the fault-tolerance mechanisms
within the structure of the superscalar architecture. An
enhanced version of the recovery procedure that alleviates
any performance loss over error recovery is also detailed.

Duplication of systems is the simplest
implementation that may provide for good performance
assuming that we can synchronize the duplicated
instructions to occur in a lock-step manner. The drawback
of this approach was identified to be the external addition
of recovery mechanism, and the significant latency
overhead. The duplication solution may also be costly in
terms of hardware as we need to duplicate the entire
system and the additional cost of voting and recovery.

The O3RS system approach presents a different
outlook by integrating the fault tolerance capabilities as
part of the internal structure of the superscalar
architecture. The advantage of this approach is in
enabling fast recovery mechanisms. The drawback is in
flushing the execution pipe on error occurrences.

 Looking at the ILP numbers, we can observe that
computer architectures, such as the Pentium-II, generally
have an average ILP of 1. Since such a machine is entitled
to execute 2-3 ALU and address calculations per cycle,
the average utilization of these units is less than half. Our
proposal takes advantage of that and allows the second
execution to use these free resources. Thus, in most cases
the new O3RS mechanism will cause only minor

performance slow down, if any at all.

When comparing the new O3RS system with similar
techniques such as AR-SMT, the proposed O3RS
technique presents a much simpler architectural and
operational design that minimally impacts both the design
effort and the performance. For example, the O3RS
architecture does not use any Delay Buffers as was
essentially required in the AR-SMT approach. The Delay
Buffer can slow down the system in different ways one of
which involves flushing the instructions from ROB and
delay buffer. If such a flush operation is needed only for
recovering from faults, we could use it as long as the
probability for faults is low enough. Unfortunately, such
operations are needed whenever branch a mis-prediction
occurs and when the system experiences exceptions such
as interrupts. Such operations occur often enough that
they cannot be ignored.

Last, but not least, in this paper we assumed that
transient errors are relatively infrequent thus leading to
the application of basic time redundancy. However, if the
soft-error rate increases, we will be able to incorporate
more sophisticated recovery mechanisms such as the use
of Roll-Forward recovery blocks [4] within O3RS. The
roll-forward mechanism provides for sustained execution
of dependent instructions as long as the inconsistency
across replicates is not determined. When an error occurs,
we save both replicate values and re-execute the operation
again. If the new result commit with the first execution,
the error was in the second execution, thus we can
continue our normal execution assuming the original
value was correct. If the new execution does not agree
with the first execution, we need to roll back since there
may be other operations in the execution pipe that based
their uncommitted operation on a wrong result. We defer
the details of the roll-forward blocks to a later document.

8.1 Conclusion

In this paper we have presented a novel approach for
integrating fault tolerance capabilities within the structure
of future microprocessor architectures. The basic driver is
in providing for simple, low-cost mechanisms that
provide coverage to transient faults which are likely to
increase in occurrence as the device geometry shrinks and
the level of device integration increases. Focussing on
temporal redundancy techniques, our basic approach has
been to look at various design alternatives in superscalar
architectures such that the error recovery can be provided
with minimal, if any, performance, design or operational
overheads, and also with minimal modifications to the
basic superscalar operations.

0%

20%

40%

60%

80%

100%

120%

8 16 32 64 128 256

Window Size

Figure 7.4: Utilization of a Single Thread

 U
ti

li
z
a
ti

o
n

MP3D Water Cholesky

9 References

1. Diefendoff, K., “The Race to Point One Eight”,

Microprocessor Report, Vol. 12, # 12, pp. 10-22, Sept,

1998.

2. Johnson, M., “Superscalar Microprocessor Design”,

Prentice Hall, 1990.

3. Pentium II: Intel Architecture Manual, Intel Corp., 1997.

4. Mendelson, A. and Suri, N., “Cache Based Fault Recovery

in Distributed Systems,” Proc. ICECCS, pp. 19-129, 1997.

5. Rotenberg, E., “AR-SMT: A Microarchitecture Approach

to Fault Tolerance in Microprocessors”, Proc. FTCS-29,

pp. 84-91, 1999.

6. Rubinfeld, P., “Virtual Roundtable on the Challenges and

Trends in Processor Design: Managing Problems at High

Speeds”, IEEE Computer, 3(1):47-48, Jan 1998

7. Pradhan, D., “Fault Tolerant Computer System”, Prentice

Hall, 1998.

8. IBM 390x2 IBM System Journal, IBM Corp. 1996.

9. Sohi, G., Franklin, M. and Saluja, K., “A Study of Time-

Redundant Fault Tolerant Techniques in High Performance

Pipelined Computers”, Proc. FTCS-19, pp. 436-443, 1989.

10. Tullsen, D., Eggers, S. and Levy, H. “Simultaneous

Multithreading: Maximizing Chip Parallelism”, Proc. 22nd

Intl. Symp. On Computer Architecture, pp 392-403, 1995.

11. Tullsen, D., Eggers, S., Emer, J., Levy, H., Lo, J. and

Stamm, R., “Exploiting Choice: Instruction Fetch and Issue

on an Implementable Simultaneous Multithreading

Processor” Proc. 23rd Intl. Symp. on Computer

Architecture, pp 191 – 202, 1996.

12. Rotenberg, E., Jacobson, Q., Sazeides, Y. and Smith, J.,

“Trace Processors”, Proc. 30th Intl. Symp. on

Microarchitecture, Dec 1997.

13. Yeh, T. and Patt, Y., “Alternative Implementations of

Two-Level Adaptive Branch Prediction”, Proc. 19th Intl.
Symp. on Computer Architecture, pp. 124-134, 1992.

14. Gabbay, F. and Mendelson, A., “Characterization of Value

Prediction and its Impact on Modern Computer

Architectures”, ACM Transaction on Computer Systems,

Vol 16, No 3, Sept 1998.

15. Lipasti, M., “Value Locality and Speculative Execution”,

PhD Thesis, Carnegie Mellon University, April 1997.

16. Anglada, R. and Rubio, A., “An Approach to Crosstalk

Effect Analysis and Avoidance Techniques in Digital

CMOS VLSI circuits”, International Journal of

Electronics, 6(5):9–17, 1988.

17. Burger, D. and Austin, T., “The Simplescalar Toolset,

Version 2.0”, Technical Report CS-TR-97-1342, University

of Wisconsin, Madison, June 1997.

18. Spainhower, L. and Gregg, T., “G4: A Fault-Tolerant

CMOS Mainframe”, Proc. FTCS-28, pp. 432-440, 1998.

19. Tamir, Y. and Tremblay, M., “High-Performance Fault

Tolerant VLSI Systems Using Micro Rollback”, IEEE

Transactions on Computers, 39(4): pp. 548-553, April 1990

20. Austin, T., “DIVA: A Reliable Substrate for Deep

Submicron Microarchitecture Design”, Proc. MICRO-32,

pp.196-207,1999

