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Abstract 

As VLSI geometry continues to shrink and the level 
of integration increases, it is expected that the probability 
of faults, particularly transient faults, will increase in 
future microprocessors. So far, fault tolerance has chiefly 
been considered for special purpose or safety critical 
systems, but future technology will likely require 
integrating fault tolerance techniques into commercial 
systems. Such systems require low cost solutions that are 
transparent to the system operation and do not degrade 
overall performance. This paper introduces a new 
superscalar architecture, termed as 03RS that aims to 
incorporate such simple fault tolerance mechanisms as 
part of the basic architecture.  

Keywords: Superscalar architectures, Pipelines, Transient 
Errors/Recovery  

1 Introduction  

In order to achieve high integration and low power 
consumption, the trend in VLSI technology has been to 
shrink the geometry paralleling Moore’s law of doubling 
device density every 18-24 months. Several companies 
[1] are currently fabricating chips using 0.18-micron 
technology, and it is expected that in 3-5 years the 
technology will reach the 0.1-micron limit. Such 
advanced technologies present some new challenges and 
concerns that are not apparent for current technology [6]. 
Among these new challenges is the need to protect the 
system from the disruptive effect of transient faults by 
integrating simple, low-cost fault tolerance mechanisms 
as part of the basic design for future commercial micro-
architectures. 

The need to protect against transients by integrating 
fault tolerance mechanisms arises from varied 
considerations such as (a) At 0.1 micron technology, the 
dv/dt ratio and expected transistor’s threshold level 
indicates the growing occurrence of transient faults. A 

ballpark number is of 1-3 transients/day for an average 
application operating continuously, (b) It is expected that 
more and more asynchronous designs and dynamic logic 
circuits will be used, which are particularly prone to 
timing and transient faults. Thus, we can expect transients 
or “infrequent” faults (faults that appears only in small 
subsets of operational modes) will become part of future 
processor/computational models.  

Traditionally, fault tolerance techniques are designed 
to protect safety critical systems such as aerospace, 
nuclear and similar control systems. Such systems often 
can trade performance and costs for dependability. 
Providing similar fault coverage to commodity processors 
is not a simple issue. Here, on one hand, both cost and 
high performance are essential, and on the other hand, the 
level of fault-coverage is important as well given their 
growing and pervasive role in embedded systems.  

At the processor/architectural level, a variety of 
space/time redundancy techniques currently exist for 
integrating fault tolerance techniques. Though our interest 
in this paper is on time redundancy, for completeness, we 
briefly outline other commonly used time and space 
redundant fault tolerant techniques, namely: 

•= Error detection/error correction codes (ECC) used 
widely for protecting memory cells [7].  

•= Spatial redundancy techniques entailing physically 
duplicating the system (or specific functional units) 
so that the same program will be executed by 
different pieces of hardware in parallel and their 
execution results could be compared to verify the 
correctness of the execution. [8]. Such systems are 
relatively expensive and can be used for custom 
designs, but not for high performance commodity 
systems. An alternative to duplicating the entire 
system was proposed in [9], where instructions that 
reach the “instruction window”, get duplicated and 
get sent to two independent execution-units. In this 



technique, only the ALU part is duplicated.  

•= Temporal redundancy techniques propose re-
executing each program (or fragments) and to 
test/compare their outcomes. The potential drawback 
of this scheme is that it might significantly reduce the 
overall performance. Recently, [5] proposes a new 
temporal redundancy based scheme termed AR-SMT 
that aims to limit the performance loss.  

Our focus is on temporal redundancy approaches, and 
this paper aims to present a new architectural approach 
that addresses the processes of detection and recovery 
from transient errors in the logic of the computer, i.e., in 
the computational elements such as ALU, FPU, and 
address generation units. Towards these objectives, this 
paper is organized as follows. Section 2 presents the 
general structure of current superscalar architectures prior 
to addressing fault tolerance aspects in them. Section 3 
reviews contemporary architectural schemes utilizing 
temporal redundancy. After introducing our proposed out 
of order reliable (O3RS) superscalar architectural 
approach in Section 4, Sections 5 and 6 develop the error 
recovery approaches. First, we present an approach to 
basic support for transient fault detection and recovery. 
Next, enhanced approaches to address transient recovery 
are developed. Section 7 outlines the performance results 
for the proposed approaches. 

2 Superscalar Processors: Basics 

In this section we present the structure of a typical 
superscalar architecture [2] similar to the Pentium-II 
family [3]. This section primarily establishes the 
conceptual structure and superscalar related terminology 
we will use throughout this paper. 

Figure 2.1 depicts the basic structure of the execution 
pipeline of a general purpose, out-of-order superscalar 
processor with a reservation station(s). Instructions are 
fetched from the main memory or from the instruction 
cache in the program order into the decode unit. The 
decode unit is responsible for registering the instructions 
in the ROB (re-order buffer), for renaming their registers 
(from the user view registers into the the architectural 
registers) and for sending the instructions to the 
reservation tables that are associated with each of the 
execution units. Note that in the case of Pentium II, the 
X86 based instruction set is translated into 
microoperations, which are fixed length instructions. 
Thus, the internal execution model of the processor can be 
significantly different from the external (user) view.  

Instructions in the reservation can be executed “out 
of order” as long as they preserve the semantics of the 
program. Thus, each instruction can be either in “ready” 
state (i.e., all their inputs are “ready”) or in “wait” state. 
Whenever an execution unit is ready to execute a new 
operation, it fetches a “ready” operation from its local 

queue. No order is imposed between “ready” instructions.  

 When instructions are logged in the ROB, the 
Register Alias Table (RAT) determines if their source 
operands should be taken from the architectural register 
file or from the ROB. Each ROB entry keeps track of the 
program counter associated with its instruction and has a 
place to hold the execution result. The issue logic 
monitors the buses to detect writes to the ROB entries 
matching source operands of the waiting instructions.  

The last pipeline stage in an out-of-order processor is 
instruction commit (retirement). Most current superscalar 
architectures ensure that the instructions modify the 
system resources, such as architectural registers (as 
opposed to renaming registers), caches, etc. in the same 
order as appears in the program or as generated by the 
compiler. Inside the micro-architecture, the instructions 
can be executed out of order, though the instructions need 
complete their executions in the program order. 

In order to enhance performance, modern computer 
architectures use speculative execution which is based on 
different predictors (such as branch prediction). When the 
predictor fails, the retirement mechanism is also used for 
rolling back from exception or executing the wrong path. 
In such cases, the system needs to complete the execution 
of all the instructions prior to the roll-back point and to 
discard all results after that point.  

3 Prior Approaches in Temporal 

Redundancy 

The main goal of this paper is to develop low-cost, 
high performance support to timed redundancy 
techniques. In order to objectively evaluate the proposed 
techniques, we first discuss two existing architectural 
techniques for  timed redundancy. For this discussion, we 
restrict this to pipelined, multi-threaded and superscalar 
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models which are currently the most commonly used 
architectural paradigms. 

3.1 The Instruction Duplication Technique  

A simple technique to increase the fault toletance 
coverage at run time was proposed in [9]. Here an 
instruction sent from the instruction decoder to the 
instruction window allocates two entries in the ROB 
table, and is consequently sent out twice for execution. At 
commit time, the results of the two operations are 
compared and “retired” from the system only if both 
operation obtained the same result, i.e., fault-free 
situations. 

3.2 The AR-SMT Technique 

An alternate approach to time redundancy was 
recently proposed in [5] and termed as AR-SMT (Active-
stream/Redundant-stream Simultaneous Multi Threading). 
This architecture extends existing SMT [10,11] machines 
that can execute two threads in parallel. In SMT, 
instructions are fetched from two independent streams of 
instructions (threads) and these share the system 
resources. In traditional SMT machines, the results are 
written back to their ROB, and each thread retires its 

instructions independently. 

The AR-SMT suggests executing each program 
twice, by using two threads; one that is considered as the 
primary and the other as secondary. These threads are not 
symmetric in their priority and in their execution-
mechanisms. The primary thread runs as before but writes 
its results to a special hardware mechanism termed 
“Delay Buffer”. This buffer is used to ensure that both 
threads run in a lock-step manner (with a delay of at most 
the size of the delay buffer), and that the results produced 
by both threads are identical.  

In order to reduce the overhead incurred by the use of 
SMT architecture, the author suggests improvements over 
the traditional SMT architectures, such as: (1) In order to 
sustain instruction bandwidth, a Trace Cache for each 
thread is proposed. Trace Caches keep the information in 
decoded form and do not need to perform bus accesses as 
long as a hit is achieved in the Trace Cache, (2) Use of 
aggressive prediction mechanisms to predict branches 
[13] as well as values [14,15]. (3) Allows the second 
thread to use values produced by the first thread. Thus, 
the second thread can take advantage of the maximum 
parallelism available by the machine. The uniqueness of 
the AR-SMT approach is its observation that the first 
thread can be used as a perfect predictor to the secondary 
thread. Thus, the second thread can utilize the maximum 
parallelism on the machine and re-execute operations as 
soon as their inputs are in the Delay Buffer. 

 The AR-SMT paper indicates that by using all these 

optimization techniques, the overhead of using AR-SMT 
machine is relatively small compared to the use of other 
temporal redundancy techniques. Although [5] provides 
simulation results to indicate the AR-SMT performance 
enhancement over SMT etc., a closer look at the potential 
implementations of the AR-SMT machine reveals that it 
can suffer from several limitations that may result in 
significant overhead and loss in performance. 
Specifically, these include:  

•= The use of multi-threaded technology invariably 
suffers from reduced instruction bandwidth that 
limits its performance. Adding Trace Caches can ease 
the problem for those applications that can fit into the 
Trace Cache. But, Trace Caches are inherently large 
(since they keep the instructions in their decoded 
form), so on one hand increasing the size of the Trace 
Cache can result in an unacceptable increase in the 
die size; on the other hand, splitting the Trace Cache 
between the threads increases memory traffic in the 
machine and consequently limits its performance. 

•= An efficient use of the Delay Buffer as an accelerator 
for the second thread forces a feedback loop to the 
ROB (and the instruction scheduler). In machines 
that run at a very high clock rate (and utilize super-
pipelines to achieve it), such feedback will cause a 
major delay between the two threads. It may cause a 
performance loss and force the use of large Delay 
Buffers as well. 

•= The use of the Delay Buffer suffers from a major 
performance loss whenever the system is required to 
rollback, such as in the case of branch mis-prediction, 
exception handling and transients. 

These limitations can either increase the cost of the 
AR-SMT solution and/or restrict its performance 
significantly. On this review of existing temporal 
redundancy approaches, the current paper targets 
developing an alternate cost-effective, low-overhead 
temporal redundancy approach. We emphasize that 
reducing the performance overhead in fault-free scenarios 
has more real impact on system performance than the 
performance loss reduction in the presence of faults.  

3.3 The Diva Approach 

Recently, [20] presented a new concept in designing 
complex superscalar systems. The new architecture calls 
to replace the traditional retirement mechanism of out-of-
order machines, with a “checker” that re-executes the 
instructions. This checker, on one hand, can be simple 
since it uses the data produced by the fast and complex 
machine, and on the other hand can run with a slower 
clock rate, since it can save the need to execute 
speculative operations.  

A DIVA based processor could handle transients as 



well, but it necessitates major architecture enhancements 
which are not cost/performance effective and beyond the 
scope of our discussion here. 

4 The Out Of Order Reliable Superscalar 

(O3RS) Architecture 

We now introduce facets of the proposed O3RS 
architecture that aims to achieve maximal fault tolerance 
coverage at a minimal cost to either the die area or the 
fault-free performance of the machine. The basic 
approach utilizes time redundancy to enable recovery 
from transient/soft errors. In order to minimize the extra 
cost in area and performance, we suggest enhancing an 
existing superscalar mechanism only if it cannot 
guarantee fault-free execution by using traditional 
techniques such as adding ECC circuits. 

4.1 At What Level Should New FT Techniques 

be Integrated? 

It is clear that in order to guarantee the overall 
correctness of the system the entire system should be 
protected by both error detection and recovery (or error 
correction) mechanisms. However, we argue that it does 
not mean that the same mechanism should be used 
throughout in order to protect the system. Since most 
advanced memory systems integrate Error Correction 
Codes (ECC) techniques as part of the structure of the 
memory, registers and internal buses, we would like to 
integrate these techniques as part of our solution. Thus, 
unlike other papers such as [8,9] that execute the entire 
program twice (temporal redundancy), we argue that it is 
sufficient to enhance the protection mechanism for those 
parts of the system that cannot be protected by 
existing/alternate techniques.  

In this section we examine each stage of the 
execution pipe to determine if additional fault tolerance 
mechanisms are warranted for adding to them: 

Fetching: The fetching mechanisms chiefly use 
memory and bus technologies. Thus, no extra 
mechanisms are needed to guarantee the correctness of 
the data and instruction that are fetched. 

Instruction decoder: If the instruction decoder 
works as a table look-up (as in many RISC architectures), 
we do not foresee the need to add any redundancy. But, if 
the instruction decoder is more complex (like many of the 
X86 architectures) we consider duplicating the control 
logic.  

RAT and ROB: Since the ROB is a cyclic buffer; we 
assume it to be protected using conventional mechanisms 
such as ECC. In order to protect the RAT we may need to 
duplicate its control (sharing the same data). 

In order to add our new mechanisms, we will have to 

modify the structure of the ROB (this will be discussed 
later in Sections 5 & 6) 

Execution units: We do not assume any modification 
of the execution mechanism (one may consider to add 
more execution units as explained later in Sections 5 & 6)  

Retirement mechanism: We need to design a new 
retirement mechanism and to incorporate the “voting 
mechanism” between the pair of operations in order to 
guarantee their proper execution. 

Write-back: As long as the write-back is controlled 
by the ECC, we do not need to modify it. 

This stage-by-stage pipeline analysis indicates two 
issues, namely:  

•= We can maintain a superscalar (transient) fault-free 
system without the use of expensive multi-threaded 
technology. 

•= From the complexity and performance point of view, 
the efficient design of the execution pipeline is a 
primary design driver given that this aspect cannot be 
efficiently addressed by existing time-redundancy 
based approaches. 

5 A Basic Description of the Error 

Recovery Mechanism 

In this section we start introducing the proposed 
architectural mechanisms. These mechanisms are based 
on temporal redundancy; i.e., execute each instruction 
twice, and incorporate specific recovery mechanisms in 
case of branch mis-prediction or in the case of transients. 
The primary design driver is reducing overheads. 

In order to achieve this goal we propose the 
following modifications to the “traditional superscalar 
structures presented in Sec. 3. Here we outline the O3RS 
modifications and detail them further in Sec. 6. The basic 
O3RS modifications include: 

•= Modify the ROB table so that each operation, which 
is not LOAD or STORE, will be executed twice. In 
order to achieve this, we propose to add status bit to 
each ROB entry that indicates if the instruction is 
being executed for its first time or for a second time. 
Note that we do not care if an instruction will be 
executed twice on the same functional unit or on a 
different functional units since we assume 
transient/soft errors; i.e., the probability of an error to 
appear in a functional unit does not depend on its 
history of errors.  

•= Although we execute each instruction twice, we do 
not require two entries in the ROB and we do not 
impose any implicit order between the executions of 
the two instances.  

•= The results of the two independent executions of the 



same operation will be retired iff: (a) The two 
executions agree on the results. (b) All previous 
results were committed.  

If an operation cannot be committed, we need to 
distinguish between two cases: (a) both computations 
produced different results, so we need to re-execute the 
instruction until its result will be verified. (b) the 
execution was speculative, and the speculation was found 
to be false. In this case, the system should be rolled back 
to the last committed point. 

If an execution unit is repeatedly found to encounter 
errors, the system can take it out of the active list (if 
enough execution units are available) 

In order to describe the operations in the proposed 
method, we present the following example: 

As these instructions depend on each other, they must 
be executed sequentially even on an out of order 
execution machine.  Let us assume that x contains 10, so 
the execution pipe of our machine will look as in Fig. 5. 

Fig. 5 presents four steps of the execution pipe of the 
new architectural technique (a simplification of its 
operation). Each column in the figure represents the 
“stream of operations” (as is fetched into the instruction 

pipe), specifically the operations at the execution stage 
and the retirement stream. In this example, we assume no 
faults to occur. 

Figure 5-A represents the start of the execution step; 
i.e., the first instruction (LD) is brought into the execution 
stage. Since load operation (LD) does not need to be 
verified via time redundancy mechanisms (as was 
explained in the previous section) we can move it 
immediately to the retirement stage (Figure 5-B), 
assuming a single cycle for load. At that point, the first 
instance of the compare instruction is forwarded to the 
execution phase. 

Just after the first instance of the compare instruction 
is executed, the machine can now start its “second” 
execution in parallel with the first execution of the JZ 
operation (Figure 5-C).  The first execution of the JZ 
indicates if the branch should be taken or not (in pipeline 
machine the branch prediction predicts the right direction 
before the JZ complete its operation). Since the first 
execution of the CMP indicates that the branch will be 
taken, it forwards the DEC instruction to the execution 
phase rather then the INC one. At that point (Figure 5-D), 
the JZ is being executed for the second time, and the DEC 
operation is being executed speculatively. 

Note that during the second time an operation is 
executed, all of its inputs are known, so that it can start its 
execution immediately (assuming we have resource for 
that). If the system finds that the right answer to the 
compare instruction should be not-taken rather than taken, 
the system should roll-back (undo the DEC) and re-start 
the execution along the right path. 

6 Hardware Enhancements For O3RS 

In this section we provide a detailed description of 
the new hardware modifications needed to accomplish the 
proposed recovery mechanism. The goal of our proposed 
enhancements is to implement the new recovery 
mechanisms so it will result in minimal extra hardware 
that provides minimal overhead when no fault occurs. We 
will also show that the proposed recovery mechanism 
imposes low recovery overhead when the system needs to 
recover from either a transient/soft-error or from a branch 
mis-prediction, exception handling etc.  

The implementation of the new algorithms utilizes 
the same basic superscalar structure used in previous 
sections. The instructions are fetched in a sequential order 
from the memory and are decoded in parallel. Each 
operation gets an entry in the ROB structure. As we have 
mentioned earlier, the ROB status bits are critical data and 
are protected extensively by ECC checks. The entries in 
the ROB are ordered in respect to their control 
dependencies. Each entry in the ROB contains in part 
information on the type of operation, what are the inputs 
(and if they are available) and a space to keep the 

a. ld  R0,x      // load memory to R0       

b. cmp R0,$10 // compare R0 with 10 

c. jz     l1  // jump if zero 

d. inc   R0  // if R0 != 10 increment it 

      e.   l1: dec  R0  // else decrement it 

 

Figures 5A-D: Basic O3RS Operations
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outcome of the operation. Each ROB entry contains also 
status bits that usually indicate: 

E (Empty): The ROB entry is not attached to any 
operation. 

W (Wait): The instruction is in the reservation 
station, and is waiting for inputs.  

R (READY): The instruction is ready to be executed. 
(Moved to the reservation station) 

D (Done): The operation is ready to be committed. 

In order to incorporate the fault tolerant mechanisms, 
we suggest the following enhancements: 

R: Indicates that the instruction is ready to be 
executed for the first time. 

S: The instruction is ready to be executed for the 
second time. 

D: The result of the two instances of the operation 
has been confirmed, and the operation is ready to be 
committed. 

 Note: (1) We ignore these extra bits if the instruction 
is LOAD or STORE. (2) Instructions do not need to check 
their dependencies when in S state. We could require that 
the second execution will start only if its sources are in D 
state. This might simplify the recovery mechanism but 
consequently reduce the overall performance due to the 
dependency resolutions. In the AR-SMT mechanism, it 
was suggested to use the delay buffer as a predictor for 
execution of the second thread. This mechanism 
complicates the hardware and may limit the frequency 
due to internal feedback loops. The O3RS mechanism 
achieves the same goal more efficiently and with simpler 
hardware. 

When the two executions of the same instruction do 
not agree upon the result, we suggest re-executing the 
instruction. A simple mechanism (as illustrated in the 
above state diagram: Fig. 6.1) calls to re-execute the 
instruction twice. A more sophisticated mechanism can 
either keep 2 output buffers and compare the third 
execution with both, or to copy the result of the second 
execution to the result buffer (in the ROB entry) and issue 
the instruction again in S state. As long as the error rate 
remains relatively low, we do not recommend 
complicating the hardware and believe that these simple 
mechanisms suffice. As mentioned earlier, it is more 

important to facilitate low performance overhead from the 
incorporated fault-tolerance mechanisms during fault-free 
operations than the overhead issues while handling errors.  

When the system needs to change its control flow (as 
a result of error, mis-prediction, etc.) the operation of the 
system is very similar to the regular operation of any 
superscalar machine. The system needs to flush all the 
entries in the ROB that are below the mis-prediction 
point, regardless if they are being executed for the first 
time or for the second time. The system also needs to 
complete the execution of any instruction that is not in the 
D state and located above the mis-speculated point. 

The retirement mechanism in O3RS remains the 
same as before; i.e., it “retire sequence” of instructions as 
long as all of them are in D state. 

7 Performance Issues 

At this stage we have described the basic 
functionality of the proposed O3RS approach. Prior to 
addressing the achievable performance issues, we again 
emphasize that although the transient rates, even at 0.1 
micron process, are expected to be in order of a fault/day 
two points are worth noting, namely (a) it is unacceptable 
not to protect the machines against such faults (b) for 
systems that contain several processors the probability for 
error increases significantly. Thus, from the performance 
perspective, it is more important to make sure that the 
fault detection mechanisms do not cause a performance 
lost, than to optimize the performance of the recovery 
mechanism. With this background, the set of performance 
figures in this section will be focused on demonstrating 
fault-free overhead cases.  

In order to evaluate the new system, we use a 
modified version of the SimpleScalar simulator [17] 
developed at the University of Wisconsin, and run our 
proposed techniques on different applications, using 
different set of inputs for each. The main performance 
measurement we were looking for was the utilization of 
the execution units. A utilization of 0.5 means that on 
average, all the resources were utilized half of the time. A 
utilization greater than 1 indicates that the new approach 
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slows down the system. Note that when a “regular” 
program is executed, the utilization corresponds to the 
CPI (Cycles Per Instruction) divided by the number of 
ALU’s in the system. If the utilization is greater than 1, it 
means that the system was slowed down because of 
internal dependencies or due to system limitations.  

Figure 7.1 presents the ALU utilization of the O3RS 
system running GCC compiler with 2 different inputs: 
GCC compiler (the compiler compiles itself) and 
AMPTJP program (both from INT SPEC 95). The Y-axis 
indicates the processor utilization and the X-axis (top 
row) indicates the number of ALU units. Each test runs 
for 100,000,000 simulated instructions. We can observe 
that (a) both inputs provide similar utilization numbers (b) 
if 2 ALUs (or more) are provided, the utilization is less 
then 1, meaning that there is no performance loss when 
applying the new technique. One can explain these 
numbers with the fact that the “second executed” 
instructions do not have to wait for inputs and so can be 
executed promptly, taking advantage of the relatively low 
ILP (Instruction Level Parallelism) of the GCC program.  

Figure 7.2 presents the same utilization numbers for 
IJPEG program using 2 different inputs (Penguin and 
Vigo) taken from the SPEC 95 as well. The results 
presented here are similar to the result presented for the 
GCC run. The main difference is that in the IJPEG case, 
the system can well utilize up to 2 ALUs and only when 
four ALUs or more are used, that the extra cost for the 
new technique is diminished. 

 So far we mainly discussed the overall performance 
of the O3RS system and showed that it can take 
advantage of the current limitation in the available 
parallelism to execute the extra operations almost free of 
charge. Now we extend the discussion to other 
performance-related parameters of the system, such as 
instruction window, and fetch bandwidth.  

From a performance viewpoint, one of the noticeable 

disadvantages of the AR-SMT solution is that the 
implementation cost of an SMT machine is much higher, 
assuming the same level of performance. For example, in 
[5] it was assumed that each PE could fetch and decode 
up to 4 instructions each cycle. An implementation of 
such an instruction bandwidth is very difficult to achieve. 
On the other hand, limiting the instruction bandwidth can 
dramatically limit the overall performance of the system. 

The [5,9] papers assume that each of the PE has its 
own trace cache and the number of the entries in the ROB 
for each thread remains the same regardless of the number 
of ALU’s in the system. A more realistic assumption 
should be that the instruction window is split between the 
two threads in the system. Figure 7.3 shows the impact of 
the instruction window size (number of pending 
instructions) on the achievable ILP in the system. The X-
axis measures the window size (8,16,32,64,128) for 
pending instructions, Y-axis measures ILP. The rows 
marked “MP3D” [solid line, bootm], “Walter” [dotted 

line, middle] and “Cholesky” [dashed line] numerically 
represent the ILP values for these different applications. 

Figure 7.3 demonstrates that by reducing the 
instruction window size from 64 ROB for a program to 32 
entries for each thread, the system will lose about 15% of 
its performance (on average) for any SMT based 
approach. On the other hand, our proposed O3RS 
technique uses the same number of ROB entries as in 
“regular” superscalar. Consequently, it does not suffer 
from that performance degradation 

 

The last chart we present (Figure 7.4) shows the 
slowdown of a single thread (out of 2 threads), assuming 
that the instruction window is split among them. In this 
experiment we assume 8% branch mis-prediction, and 5 
cycles penalty for a branch miss. We also assume an 8 
instruction fetch bandwidth. 
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The chart indicates that on one hand, when the 
window size is relative small, the application is mainly 
limited by the instruction window size available for each 
thread. On the other hand, when the instruction window is 
large enough, the performance is limited by the 
instruction bandwidth and so the size of the window is 
less important. 

8 Discussion & Conclusion 

Overall, we have examined two basic time 
redundancy approaches of duplication and voting, and the 
associated integration of the fault-tolerance mechanisms 
within the structure of the superscalar architecture. An 
enhanced version of the recovery procedure that alleviates 
any performance loss over error recovery is also detailed. 

Duplication of systems is the simplest 
implementation that may provide for good performance 
assuming that we can synchronize the duplicated 
instructions to occur in a lock-step manner. The drawback 
of this approach was identified to be the external addition 
of recovery mechanism, and the significant latency 
overhead. The duplication solution may also be costly in 
terms of hardware as we need to duplicate the entire 
system and the additional cost of voting and recovery. 

The O3RS system approach presents a different 
outlook by integrating the fault tolerance capabilities as 
part of the internal structure of the superscalar 
architecture. The advantage of this approach is in 
enabling fast recovery mechanisms. The drawback is in 
flushing the execution pipe on error occurrences. 

 Looking at the ILP numbers, we can observe that 
computer architectures, such as the Pentium-II, generally 
have an average ILP of 1. Since such a machine is entitled 
to execute 2-3 ALU and address calculations per cycle, 
the average utilization of these units is less than half. Our 
proposal takes advantage of that and allows the second 
execution to use these free resources. Thus, in most cases 
the new O3RS mechanism will cause only minor 

performance slow down, if any at all. 

When comparing the new O3RS system with similar 
techniques such as AR-SMT, the proposed O3RS 
technique presents a much simpler architectural and 
operational design that minimally impacts both the design 
effort and the performance. For example, the O3RS 
architecture does not use any Delay Buffers as was 
essentially required in the AR-SMT approach. The Delay 
Buffer can slow down the system in different ways one of 
which involves flushing the instructions from ROB and 
delay buffer. If such a flush operation is needed only for 
recovering from faults, we could use it as long as the 
probability for faults is low enough. Unfortunately, such 
operations are needed whenever branch a mis-prediction 
occurs and when the system experiences exceptions such 
as interrupts. Such operations occur often enough  that 
they cannot be ignored. 

Last, but not least, in this paper we assumed that 
transient errors are relatively infrequent thus leading to 
the application of basic time redundancy. However, if the 
soft-error rate increases, we will be able to incorporate 
more sophisticated recovery mechanisms such as the use 
of Roll-Forward recovery blocks [4] within O3RS. The 
roll-forward mechanism provides for sustained execution 
of dependent instructions as long as the inconsistency 
across replicates is not determined. When an error occurs, 
we save both replicate values and re-execute the operation 
again. If the new result commit with the first execution, 
the error was in the second execution, thus we can 
continue our normal execution assuming the original 
value was correct. If the new execution does not agree 
with the first execution, we need to roll back since there 
may be other operations in the execution pipe that based 
their uncommitted operation on a wrong result. We defer 
the details of the roll-forward blocks to a later document. 

8.1 Conclusion 

In this paper we have presented a novel approach for 
integrating fault tolerance capabilities within the structure 
of future microprocessor architectures. The basic driver is 
in providing for simple, low-cost mechanisms that 
provide coverage to transient faults which are likely to 
increase in occurrence as the device geometry shrinks and 
the level of device integration increases. Focussing on 
temporal redundancy techniques, our basic approach has 
been to look at various design alternatives in superscalar 
architectures such that the error recovery can be provided 
with minimal, if any, performance, design or operational 
overheads, and also with minimal modifications to the 
basic superscalar operations. 
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Figure 7.4: Utilization of a Single Thread
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