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Abstract—Soft errors (or Transient faults) are temporary faults that arise in a circuit due to a variety of internal noise and external

sources such as cosmic particle hits. Though soft errors still occur infrequently, they are rapidly becoming a major impediment to

processor reliability. This is due primarily to processor scaling characteristics. In the past, systems designed to tolerate such faults

utilized costly customized solutions, entailing the use of replicated hardware components to detect and recover from microprocessor

faults. As the feature size keeps shrinking and with the proliferation of multiprocessor on die in all segments of computer-based

systems, the capability to detect and recover from faults is also desired for commodity hardware. For such systems, however,

performance and power constitute the main drivers, so the traditional solutions prove inadequate and new approaches are required.

We introduce two independent and complementary microarchitecture-level techniques: Double Execution and Double Decoding. Both

exploit the typically low average processor resource utilization of modern processors to enhance processor reliability. Double

Execution protects the Out-Of-Order part of the CPU by executing each instruction twice. Double Decoding uses a second, low-

performance low-power instruction decoder to detect soft errors in the decoder logic. These simple-to-implement techniques are

shown to improve the processor’s reliability with relatively low performance, power, and hardware overheads. Finally, the resulting

“excessive” reliability can even be traded back for performance by increasing clock rate and/or reducing voltage, thereby improving

upon single execution approaches.

Index Terms—Transient faults, soft errors, superscalar, fault tolerance, microarchitecture, double execution.
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1 INTRODUCTION AND BACKGROUND

THE reliability impact of permanent or soft errors is an
increasingly significant concern for upcoming proces-

sors. Permanent faults (node stuck-at-1/0, transistor open,
shorted transistors, etc.) arise during fabrication or result
from aging and destroy the intended function of the circuit.
Soft errors, in contrast, occur for a relatively short duration
in an otherwise correctly operating circuit. They may arise
in digital systems due to internal noise sources such as
power transients, capacitive, and inductive crosstalk or due
to external noise sources such as cosmic particle hits [1],
[2], [3]. Aging may also initially produce soft errors. While
much of the research on reliable processors has focused on
permanent faults, soft errors are becoming an important
issue for mainstream processor and system-level reliability
for several reasons:

1. Process scaling—every two years, on the average,
new process technology is introduced, featuring
smaller transistor geometries and a lower supply
voltage. (This reduces power consumption, increases
operating frequencies, and permits more transistors
in a device.) Since less energy is needed in order to

change the state of the transistor, soft errors occur
more frequently per transistor; the larger number of
transistors further increases the soft-error rate, with
a resultant significant reduction in CPU reliability
[2], [4], [5], [6], [7].

2. Operating with a higher than acceptable soft error
rate, e.g. due to a reduction in operating voltage
below that required by a given technology or for an
acceptable soft error rate (due to reduced circuit
stability) in conjunction with effective “fault recov-
ery” mechanisms within the microarchitecture may
yield a significant improvement in performance-to-
power ratio while retaining the required bottom-line
processor reliability [8].

Soft errors can thus no longer be ignored. Main memory,

caches, array structures, and buses are often protected against

data-level soft errors using mechanisms such as ECC.

Therefore, this paper focuses on the handling of logic-circuit

and control-flow soft errors within the CPU. While detection

efficiency is paramount, the relative rarity of these errors

makes the efficiency of the recovery mechanism a secondary

concern [9], so the paper only considers detection.
Multiple soft error occurrences are, to a large extent,

statistically independent events. Consequently, the prob-

ability of the exact same soft error occurring in two

consecutive executions of an instruction is practically zero.

In fact, when an increased soft error rate is the result of an

intentional “excessive” reduction in the supply voltage, one

can always choose the voltage such that the probability of

double faults is sufficiently low. In designing soft-error

detection mechanisms, one may thus assume at most a

single such error at any given time.
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Most modern general purpose processors employ
variations of “out of order” execution (also known as
dynamic scheduling) to enhance the internal parallelism
within the execution of serial code. Two basic mechanisms
are 1) dynamic scheduling of the hardware that detects
independent instructions and sends them for execution in
their dependency order rather than in the original
“program order” and 2) a recovery mechanism that allows
the system to execute instructions speculatively and “roll
back” if found to be wrong. Correct execution of a “truly”
out of order machine can be very complicated, particularly
if it is required to support precise exceptions (e.g., for error
reporting), so most current processors divide the out of
order execution into three stages—in-order front end, out-
of-order execution, and in-order commit. This gives the
user a virtual in-order machine while allowing the system
to achieve the performance of “nearly optimal” parallel
execution within a given window of instructions.

Key observation and drivers behind our approach: CPU
resource underutilization. A primary goal of most proces-
sor architectures is increasing the number of instructions
per cycle (IPC) by increasing the instruction-level paralle-
lism (ILP). Techniques such as speculation, dynamic
scheduling, and loop unrolling reduce the impact of data
and control hazards, thereby enabling the processor to
better exploit parallelism. The ideal IPC of a processor is
the maximum parallelism that the microarchitecture allows
for a given program [10]. In modern processors, hazards
keep the IPC well below the ideal IPC. This implies low
average utilization of processor resources such as execu-
tion units and internal structures such as arrays, which are
consequently idle most of the time.

Fig. 1 depicts the integer ALU utilization for several
benchmarks on three machine configurations (Narrow,
Medium, and Wide pipelines) using the SimpleScalar
architecture simulator (see Section 5 for details). It is
evident that the integer ALUs are idle most of the time
(average utilization is lower than 0.5), and we can assume
that many other CPU resources (e.g., arrays, memories,
and ALUs) also display similarly low utilization. The IPC
of the bzip2_program and the gzip_log benchmarks is
between 1 and 2 in all machine configurations, and still, at
least in these examples, the ALU utilization is below 0.4.

The existence of underutilized CPU resources, along with
the already existing recovery mechanism as part of the Out-
of-Order micro-architecture, suggests that executing each
instruction twice on the same hardware (and comparing the

results) may enable achieving high reliability with relatively
small performance loss. It is on this basis that we propose
two novel schemes, Double Execution and Double Decod-
ing, which utilize the inherent underutilization within
processors in order to enhance their resilience to soft errors.
In view of the relatively infrequent rate of soft errors, the
performance impact of overcoming them is secondary.
However, soft error detection must be active at all times
and must therefore be efficient in all respects; this is
precisely the focus of these two techniques.

The remainder of the paper is organized as follows:
Section 2 describes contemporary approaches to handling
soft errors; Sections 3 and 4 present our two microarchi-
tecture techniques along with analysis of their correctness.
Sections 5 and 6 present comparative simulations assessing
these techniques for performance, memory latency, array
sizes, queuing policies, and power consumption. Finally,
Section 7 offers concluding remarks.

2 RELATED WORK

A number of approaches for handling soft errors have been
suggested and implemented [11]. Except for circuit design
techniques to reduce the soft error probability, which are
beyond the scope of this work, most solutions are based on
redundancy and belong to two broad classes:

. Spatial redundancy. Hardware is added to the
processor to detect or correct soft errors.

. Temporal redundancy. The soft errors are detected by
using the same hardware to perform the same
calculations more than once.

We briefly review some current approaches within this
broad classification.

2.1 Spatial Redundancy

2.1.1 Error Detection and Correction Codes (ECC)

A given bit sequence is encoded into an expanded bit
sequence. Unlike the original sequence, all values of which
are “legal,” the space of legal expanded sequences is sparse.
Upon the detection of an “illegal” expanded sequence, one
can either declare an error (“detection”) or decide that the
intended legal sequence was the closest one to the received
one (“correction”) [12].

Adding ECC to combinational logic blocks is both
complicated and usually requires adding logic and calcula-
tions to the already timing-critical paths. Therefore, ECC is
typically used only in memory arrays and in bus commu-
nication. Our proposed techniques target places that cannot
be easily covered by ECC and are thus complementary to it.

2.1.2 Dynamic Implementation Verification

Architecture (DIVA)

DIVA [13] is a microarchitecture-based technique that
permits detection and recovery from both permanent and
soft errors. A DIVA processor (Fig. 2) splits a traditional out-
of-order processor design into two parts: the deeply spec-
ulative DIVA core and the functionally robust DIVA checker.
The DIVA core is composed of the entire microprocessor
design except the commit stage. The DIVA checker contains
independent in-order computation logic that verifies the
correctness of all core computations, only permitting a correct
result to pass through to the commit stage. If any error is
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detected in the core computation, the checker fixes the
computation, flushes the processor’s pipeline, and then
restarts the processor at the next instruction.

The DIVA architecture assumes that the DIVA checker is
reliable, namely, that the memory structures have appro-
priate coding techniques, the design of the checker is fault
free, and the communication between the core and the
checkers is protected by coding techniques.

The DIVA architecture entails several costs: silicon area,
power consumption, complex design, and performance
degradation. In [13], only the performance degradation was
evaluated and showed an average slowdown of 3 percent.
Besides the direct performance loss, the DIVA checker is a
significant hardware addition that comes at the expense of
other potential performance-enhancing features. In our
techniques, there is much less additional hardware, and
the performance loss can be “switched off” whenever
enhanced reliable operation is not required. Weaver and
Austin [14] present an alternate fault-tolerant architecture
based on principles similar to DIVA.

2.1.3 Replicated Hardware

One of the most common and simple fault-tolerant
solutions is to use duplicate hardware and compare the
results. The duplication can be done by using two identical
CPUs or by duplicating execution units as part of the micro
architecture. Systems like Compaq NonStop Himalaya
detect soft errors by running identical copies of the same
program on two identical cycle-synchronized microproces-
sors. In each cycle, both processors are fed identical
inputs and a checker circuit compares their outputs [15].
In IBM S/390 systems, the execution units are duplicated
and execute identical instructions and data. In every cycle,
signals and instruction results from the duplicated execu-
tion units are compared for error detection in separate
comparison logic [16]. The problem with these replication-
based solutions is the cost of duplicating and synchronizing
hardware, and the consequent increased power consump-
tion without any performance gain.

2.2 Temporal Redundancy

In this section, we describe the temporal redundancy

technique Simultaneous and Redundantly Threaded Pro-

cessor (SRT). Other temporal redundancy techniques in-

clude [17], [18], [19], [20], [21], and [22].

2.2.1 Simultaneous and Redundantly Threaded

Processor (SRT) [23], [24]

The basic idea of SRT is to run each program twice, as two
identical threads, on a simultaneous multithreaded (SMT)
processor. An SMT machine allows multiple independent
threads to be executed simultaneously, even in the same
cycle, in different functional units.

The SRT processor offers several benefits over hardware
redundancy techniques. It can potentially outperform an
equally sized hardware-replicated solution, as it partitions
resources across execution copies dynamically rather than
statically. Also, an SRT processor may require less hardware
as it can share the same data path whenever redundancy is
unnecessary (e.g., when the data path is protected by ECC).
SRT processors may also be more economically viable as one
can design a single processor that can be configured in either
SRT or regular SMT mode, depending on the target system.
Performance studies indicate that the average performance
degradation of SRT relative to regular SMT with the same
characteristics is about 32 percent and that SRT outperforms
hardware-replicated processors by 16 percent on the average
for equal processor areas. Later work suggested some
performance improvement by using Slipstream Processors
[25]. We will show how, by implementing the temporal
redundancy inside the microarchitecture rather than in
software, one can simultaneously attain the benefits of spatial
redundancy (low-performance degradation) and those of
temporal redundancy (little additional hardware).

3 DOUBLE EXECUTION

3.1 Overview

In this section, we propose the Double Execution soft-error
detection and recovery technique. It is based on utilizing
existing out-of-order execution mechanisms and is superior
to the solutions described in Section 2 in terms of device
area, power, and performance.

Double Execution entails the execution of every instruc-
tion twice on the same hardware (temporal redundancy)
and a comparison among the results of the two executions
of each instruction for soft-error detection. The scheme
exploits the fact that resources such as execution units and
Out-of-Order arrays have low average utilization due to
hazards. This permits the execution of every instruction
twice with only a small impact on performance and power.
The idea of executing each instruction twice, which is
inherent in temporal redundancy, was introduced in a
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study of time-redundant fault-tolerant techniques for high-
performance pipelined computers [26]. However, our
Double Execution technique’s novelty lies in the imple-
mentation level. Specifically, it exploits the Out-Of-Order
microarchitecture hardware and enables better parallelism
(and by that—performance). The basic idea of Double
Execution was first introduced in [27] as the O3RS
approach, though primarily at a conceptual level without
an actual implementation level study. Shared Resource
Checker (SHREC) [28] carried the O3RS approach a further
step but kept the redundant execution in order, as
implemented in DIVA [13]. In this work, we expand upon
the basic ideas, establish their correctness, and evaluate
them through extensive simulation of performance, as well
as issues such as power consumption.

Using an Out-of-Order microarchitecture simplifies the
implementation of Double Execution. When an instruction’s
first execution is completed, but before it reaches the
commit stage, it is dispatched again for a second execution.
An instruction is committed only after the second execu-
tion’s result is ready and only if the two results are identical.

An Out-of-Order micro-architecture is suitable for
Double Execution in several respects:

. The result of an instruction’s execution in a conven-
tional architecture is kept in the Reorder Buffer
(ROB) in order to enforce In-Order commit. Double
Execution uses the same array to keep the result of
the first execution for comparison with that of the
second one.

. The In-Order commit stage enables the speculative
use of the first execution’s result by instructions
that depend on it, thereby obviating the need to
wait for the second execution. If a soft error is
detected after the second execution, all the instruc-
tions that followed the bad instruction are flushed
from the pipeline as part of the error recovery flow
(in the same way that the Out-of-Order architec-
ture handles false speculations during the normal
program run).

. When an instruction is dispatched for the second
time, all the resource dependencies are guaranteed
to have already been fulfilled (else, the instruction
could not have been executed the first time). The
Reservation Station (RS) structure is already de-
signed to check these dependencies. It will mark the
instructions, in their second executions, as ready for
execution as soon as they are dispatched. Note that
in its second execution, an instruction cannot be
speculative if the first execution had not malfunc-
tioned (due to a soft error) and is guaranteed to
achieve the correct execution Thus, as long as soft
errors are rare, the second execution can always be
executed more efficiently.

. Branch instructions are also executed twice. The
first execution’s result can be used for branch
misprediction resolution. (In the event of a fault,
the pipe may be falsely flushed, but this does not
affect correctness and, being rare, does not affect
performance.)

. Load and Store instructions are executed twice (the
address calculation part), but the actual memory
access takes place once (data paths and memory are

assumed to be ECC protected). In store instructions,
the data is written to the memory (or to the store
buffer) only after the second execution to prevent
memory corruption in the event of a soft CPU error.

Double Execution dispatches an instruction for the
second execution only when it reaches the commit stage.
A falsely speculated instruction is thus often discovered to
be one prior to its second dispatch, which is then cancelled.
This reduces the resource-consumption penalty of false
speculation. Ignoring soft errors that do not affect the
program outcome is an established idea [29], [30].

Double Execution can easily be implemented on an Out-
of-Order microarchitecture, without any new arrays, data
paths, or other structures. The only required changes are the
following:

. Mark each instruction in the Out-of-Order arrays as
being dispatched for the first or second execution.

. Update the control logic in order to execute each
instruction twice.

. Add a comparison mechanism in the ROB for soft-
error detection.

. Add a recovery flow in order to correct a soft error
once it has been detected.

3.2 Correctness

The “logical” correctness of Double Execution is obvious. In
this section, we further establish that the scheme is deadlock
and livelock free. This is done for two implementations of the
dispatch and commit arrays. As mentioned earlier, we
assume that all the memory arrays and main communication
busses are fault-protected using ECC.

Implementation 1: Single array. Here, a single array is
used for both dispatch and commit, serving both the first
and second executions. An array entry is allocated to an
instruction once it has been decoded (for the first time if
decoded twice). This entry is used for both executions until
the instruction completes the commit stage, at which time it
is released.

Proposition 1. Double Execution cannot cause a deadlock when
using the same array for both dispatch and commit.

Proof. By contradiction. Assume that the CPU is in a
deadlock: no instruction is in execution, and all the
instructions that are not committed cannot be executed
due to unfulfilled dependencies. There are two comple-
mentary cases:

1. There are no instructions waiting for second
execution (having completed their first execu-
tion). Because the first executions are allowed to
proceed speculatively without waiting for sec-
ond executions, this would occur regardless of
Double Execution, thus contradicting the as-
sumed deadlock-freedom of the original single-
execution CPU.

2. There are instructions waiting for the second
execution (the first execution has been com-
pleted). The completion of the first execution
guarantees that all dependencies for these in-
structions have been fulfilled, so their second
execution can begin. However, as mentioned
above, as all execution units are free, these
instructions will be executed in contradiction to
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the deadlock assumption. (Note that an instruc-
tion does not “hang up” during its execution
phase.) tu

Implementation 2: Separate arrays. Here, separate arrays
are used for dispatch and for commit, with each array
serving both the first and second executions. After an
instruction is decoded, it is allocated an entry in the dispatch
array. This entry serves the instruction before, while, and
after the execution stage. (An instruction requires no other
“RSs” or other state-holding resources for which it may need
to wait or which it may have to release in order to allow
other instructions to proceed.) When an instruction reaches
the commit stage following its first execution, it is allocated
an entry in the commit array, and its entry in the dispatch
array is released. For the second execution dispatch, a new
entry in the dispatch queue needs to be allocated. The
commit array entry remains allocated until the second
execution is completed (keeps the first execution result).

Proposition 2. Double Execution cannot cause a deadlock if and
only if at least one entry in the dispatch array is reserved for
second executions.

Proof (necessity). If no entries in the dispatch array is
reserved for the second executions, no instruction can
commit pending second execution, no instruction can be
dispatched for the second execution because the dispatch
array is full with the first execution instructions, and these
cannot release their dispatch array entries because they
cannot be allocated entries in the commit array, which is
filled with instructions awaiting the second execution. tu

Proof (sufficiency). By contradiction, assume that the CPU
is in a deadlock: no instruction is in execution, and all the
instructions that are not committed cannot be executed
due to unfulfilled dependencies. There are two comple-
mentary cases:

1. There are no instructions waiting for second
execution (having completed their first execu-
tion): same as Case 1 in Proposition 1.

2. There are instructions waiting for second execu-
tion. As at least one entry in the dispatch array is
reserved for second executions, there is at least
one instruction in the dispatch queue that is ready
for second execution. As all execution units are
free and all dependencies have been fulfilled, this
instruction will be executed, contradicting the
deadlock assumption. tu

Proposition 3. Double Execution cannot cause livelock.

Proof (Case 1). There are no soft errors inside the CPU. In
this case, every instruction is executed only twice and is
thus unable to circulate indefinitely in the CPU, so
livelock is impossible. tu

Proof (Case 2). There is a soft error in the first execution of
an instruction. If the error goes undetected (the same
error occurs in the second execution), execution will
proceed as it would in a single-execution CPU, and no
livelock will arise. (Of course, the result is incorrect, and
in any case, this situation contradicts the assumption that
a fault does not repeat in both executions of a given
instruction.) If the error is detected following the second
execution, the pipe is flushed, and the faulty instruction

along with those that followed it (and were not allowed to

commit because of their dependence on this unverified

instruction) are reexecuted. Therefore, livelock can only

occur if a soft error occurs repeatedly in every first or

second execution of the same instruction in contradiction

to the basic soft-error assumptions (see Section 1). tu
Proof (Case 3). There is a soft error in the second execution

of an instruction. Hence, the fault is detected when the

instruction reaches the commit stage and the pipe is

flushed, similar to Case 2. tu
Due to the assumption of a single fault in the system at

any given time (see Section 1), Cases 1-3 cover all possible

scenarios, and therefore, no livelock is possible.

3.3 Instruction Queuing Policies

In this section, we suggest several queuing policies for use by

the RS in dispatching the instructions to the execution units.

As explained above, an instruction that depends on the result

of another instruction can use the results of the first execution

of that instruction. However, the second execution still

affects the program runtime for the following reasons:

. Memory store operations are executed only after the
commit stage (In-Order), so they must wait for the
second execution to be completed (calculations of
both the data and address).

. Double Execution causes the Out-of-Order arrays
(such as RS and ROB) to keep instructions for longer
periods of time, causing the average occupancies of
these arrays to be higher. Whenever the arrays are
fully occupied, the pipeline is stalled, which de-
grades performance.

There is thus a dilemma in choosing an execution

queuing policy: advancement of the program favors assign-

ing higher priority to the first executions, as the second

executions are not needed for the program flow (from a

data dependency point of view); however, freeing up the

out-of-order arrays in order to make room for new

instructions and prevent pipeline stalls favors assigning

higher priority to the second executions. In Section 6, we

assess several execution queuing policies:

1. Program order. The instructions are executed in
their program order as long as their sources are
ready, and the execution units are free. Second
executions thus usually have higher priority than
first ones (of other instructions).

2. Low-priority second execution. An instruction is
dispatched for the second execution only if no
instruction can be dispatched for the first execution
in the same execution unit.

3. First come first served (FCFS). Instructions to be
executed for the second time are treated as new
arrivals in the RS, and there is no distinction
between the first and second executions. In this
case, there is no preferring of the first over the
second execution, or vice versa.

4. Random order. All instructions (both first and
second executions) are executed in random order.
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4 DOUBLE DECODING

4.1 Introduction

An instruction decoder usually has a significant impact
on the processor’s performance and is usually a large
timing-critical block that uses many speculations in
parallel. Unlike the execution units, however, the decoder

is heavily utilized, so an identical approach to Double
Execution is inapplicable. In this section, we propose a
scheme, based on spatial redundancy, for this unit. Our
scheme, Double Decoding, attempts to protect the
decoder with less additional hardware and a smaller
performance penalty than brute force duplicate decoders.

4.2 Scheme Overview

Double Decoding combines three main elements:

. Duplicate instruction decoding. Each instruction is
decoded twice by different hardware.

. Low-performance redundant decoder. The original de-
coder’s result can be used speculatively (until the
comparison). Thus, the redundant decoder, while
functionally identical to the original, may have
higher latency and be simpler. It does not require
the speculation capability and parallel logic that the
original decoder utilizes for performance enhance-
ment. Simulations (Section 6) confirm that this
decoder can be much smaller and consume less
power than the original decoder, without impacting
overall performance.

. New decoding check stage that precedes the instruction
commit stage. The redundant decoder is placed in a
new pipe stage, right before the commit stage (at the
end of the pipe). By so doing, we only need to
decode twice those instructions that reach the
commit stage, ignoring those that were fetched by
false speculations, thereby reducing power con-
sumption. This requires a new array for holding
the instructions that were fetched (before decoding).

4.3 Correctness

We now prove that a program always recovers correctly
from a speculative run caused by a soft error in the
decoding stage. The concern is that an error in the decoder
may affect the program flow, and the CPU will not be able
to recover from it. For the correctness proof, it does not
really matter at what stage the soft error is detected, as long
as it is detected before the commit stage.

Proposition 4. With Double Decoding, any single soft instruc-

tion decoding error is recoverable.

Proof. There are three cases of a single soft error in the

decoding stage:

. A soft error in the decoder with no effect on the
program flow. In this case, the CPU may perform
wrong instructions or wrong calculations
speculatively, but once the error is detected by
the second decoding, the pipe will be flushed and
the calculations will be reexecuted correctly. The
wrong calculations do not have any effect on
the CPU state after the pipe is flushed because
speculative instructions are not allowed to commit.

. A soft error in the decoder changing the program

flow. In this case, the CPU may speculatively

perform a totally wrong program. However, the

speculative instructions will not be committed

before the error is detected and therefore will be

flushed and reexecuted correctly. The speculative

program flow may adversely affect the branch

prediction tables, but these tables only affect
performance and not program correctness.

. A soft error in the redundant decoder. In this
case, there is no real error in the program run,

though the CPU will assume such an error in the

comparison stage and will reexecute the program

correctly.

The adverse effect of Double Decoding on the branch

prediction tables is typically negligible in view of the

rarity of soft decoding errors and can thus be ignored.

Alternatively, in order to permit efficient operation even

when these errors are not sufficiently rare (as will be
discussed later in Section 6), we propose to update the

branch prediction tables only in the commit stage. The

false speculation instructions caused by soft errors will

then be detected (and flushed) before the branch

prediction tables are affected. tu
In the next sections, we present a simulation study of

Double Execution and Double Decoding.

5 SIMULATION PLATFORM

The previous sections have outlined the Double Execution

and Double Decoding schemes and established their

correctness. In this section, we describe the simulation

platform that is used to explore the various performance

and related impacts of the proposed schemes.

5.1 Architecture Performance Simulator

The performance simulator used in this study was derived

from the SimpleScalar 3.0 tool set [31], a suite of functional and

timing simulation tools for the Alpha AXP instruction set

architecture. We use the sim-outorder (version 7) simulator, a

computer simulation tool that provides detailed simulations

of a high-performance dynamic-scheduling modern micro-

processor. Several of the simulator’s procedures were

altered (Sections 5.3 and 5.4 provide details) in order to

simulate the new schemes. The simulations were performed

on the “SPEC CPU 2000” benchmark set using the system
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configuration depicted in Table 1. These parameters were

chosen to represent reasonable figures based on the current

CPUs in the market. In some simulations (e.g., array sizes

impact on performance), we show that in most cases, these

parameters do not change the result significantly.
Fig. 3 depicts the sim-outorder simulator pipe stages. The

stages in undotted gray only apply to memory instructions.

5.2 Architecture Power Simulator

The dynamic power consumption simulator used in this

study was derived from Wattch version 1.02 power-

performance simulator [33]. Wattch augments the

SimpleScalar cycle-accurate simulator (sim-outorder) with

a cycle-by-cycle tracking of power dissipation by

estimating unit capacitances and activity factors. The

same alterations that were made for the SimpleScalar

performance simulations were also made to the Wattch

power simulator (Sections 5.3 and 5.4).

5.3 Double Execution Implementation

When an instruction completes the write-back stage

following the first execution, it is sent back to the “ready

for execution” instruction queue. Instructions that depend

on the output of this instruction are marked as ready (for

execution) after its first execution. The SimpleScalar archi-

tecture uses one array for both dispatch and commit stages,

and therefore, the Double Execution scheme cannot cause

any deadlocks (see Section 3.2). The readyq_enqueue()

function has several implementations for the different

queuing policies. Fig. 4 depicts the sim-outorder simulator

with support for Double Execution. The dotted arrows

describe the instruction flow after the first execution.

Diagonal stripes denote stages that are executed twice.

5.4 Double Decoding Implementation

The Double Decoding implementation in SimpleScalar

includes the new decoding check pipe stage, carried out

by a low-performance low-power decoder, before the

instruction commit stage. The low-performance decoder is

expressed by the addition of several cycles to the latency

(the new decoder’s latency) and the twofold reduction of

throughput relative to the machine widths (or the commit

stage throughput, in our case). See Section 4 for details.

Our conjecture was that delaying the commit stage by a

few cycles entails negligible performance impact. This was

proven correct in the Double Execution implementation,

where the commit stage was delayed for multiple cycles with

very small impact on performance. The impact of the low-

performance decoder’s throughput was simulated by redu-

cing the commit stage throughput by 50 percent. This has the

same performance impact as simulating the new pipe stage

with the lower throughput. Since the new low-performance

decoder’s implementation is outside the scope of this work,

the reduction of the throughput is mainly to prove the

concept rather than for accurate modeling. In summary,

Double Decoding was simulated by only changing a

SimpleScalar machine parameter (commit stage width), with-

out any code alterations.

5.5 Machine Configurations

Three basic machine (CPU) configurations were defined for

the simulations, differing in pipeline width and hardware

resources: Narrow, Medium, and Wide machines. The Narrow

and Medium machines represent current CPU designs: the

Narrow machine represents standard or simple processors,

while the Medium machine is similar to the higher end

commercial processors. The Wide configuration represents

potential future high-end processors. Table 2 describes the

basic characteristics of each machine configuration and

their differences.

5.6 Simulations

All simulations were done on both the original SimpleScalar

(or Wattch) code (reference model) and on the new Double
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Fig. 3. Sim-outorder simulator pipe stages (taken from the “SimpleScalar

Hacker’s Guide” [32]). Fig. 4. Sim-outorder Double Execution implementation.

TABLE 2
Basic Characteristics of Machine Configurations



Execution and/or Double Decoding models. The simula-

tions were performed using the three machine configura-

tions (Narrow, Medium, and Wide).
The following simulations were performed:

1. Double Execution:

. Twenty different benchmarks, comparing the
reference model with the Double Execution
model (using the overall best queuing policy).

. The influence of memory access latency on the
overall average performance.

. The influence of the RUU and LSQ array sizes
on the overall average performance.

. Overall average performance and instantaneous
performance along the program run with the
different queuing policies.

. Effect of soft-error probability on the average
performance when using Double Execution.

. Performance degradation of an “ideal”
processor.

2. Double Decoding performance relative to the origi-
nal model, with and without Double Execution.

3. Dynamic power consumption with Double Execu-
tion relative to the reference model, comparing the
total energy and average cycle power.

6 RESULTS AND ANALYSIS

6.1 Baseline IPC

Prior to discussing the impact of double execution on

overall system performance, the baseline IPC for various

applications with Narrow, Medium, and Wide configura-

tions are required.

As depicted in Fig. 5, the “baseline” IPC achieved when

running on a “native” system without Double Execution

increases with the width of the machine. Some applications

such as ART, GCC, and MCF are known to be memory

bounded and so present a relatively low IPC, while others

such as GZIP and BZIP can utilize the resources much better.
It should also be noted that our configuration includes an

address generation unit (AGU) that allows more address

calculation operations to be performed concurrently with

other operations. This feature is less important when the

resources of the machine are lightly utilized but becomes
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Fig. 5. Baseline (single execution) IPC with Narrow, Medium, and Wide configurations.

Fig. 6. Double Execution versus single execution performance.



more important when resource utilization is higher, for

example, in the case of Double Execution. The AGU is

therefore expected to mitigate the performance degradation

of Double Execution relative to single execution.

6.2 Double Execution—Performance

We compared Double Execution with the original

SimpleScalar on 20 different benchmarks. Fig. 6 depicts the

ratio of the new mean number of IPC to the baseline (single

execution) IPC for each benchmark and for the three

machine widths that were described in Section 5.5. The

queuing policy is a “Low-priority second execution” (see

Section 3.3), which resulted in the best enhancements.

The results clearly indicate that in almost all bench-

marks, the Wider the machine, the smaller the performance

degradation due to Double Execution. As summarized in

Table 3, the degradation is very small for both the Wide and

Medium machines.

6.3 Double Execution—Memory Access Latency

These simulations assess the influence of the memory access

latency (in the range 10-640 CPU cycles) on Double

Execution’s relative performance using the “low-priority

second execution” queuing policy (Section 3.3). Several

benchmarks were run, and we found gcc_scilab to offer

representative results. Fig. 7 depicts the performance (IPC)

of Double Execution relative to that of the single execution

scheme using the different memory latency values and the

three machine widths that were described in Section 5.5.

The level 2 cache miss rates in these simulations were

around 5 percent out of the total memory accesses.

The results show a clear trend: the longer the memory

access latency, the smaller the performance loss due to

Double Execution. The largest impact is on the Narrow

machine, whose performance degradation ranges from

around 8 percent (memory access latency of 10 cycles) to

4.3 percent (latency of 640 cycles). Over the years, CPU

frequencies have been rising faster than those of the memory,

so memory access latencies (in CPU cycles) are increasing.

Therefore, the performance loss due to Double Execution

will become smaller with time as long as this trend continues.

6.4 Double Execution—Array Sizes

These simulations assess the impact of the out-of-order

array sizes (RUU and LSQ arrays in SimpleScalar) on the

relative performance of Double Execution. RUU sizes of

8-1,024 entries and LSQ sizes of 8-64 entries were simulated.

For these simulations, we used the “gcc scilab” benchmark

with the “low-priority second execution” queuing policy

(see Section 3.3). We ran these simulations on various

benchmarks and found gcc_scilab to be representative.
Fig. 8 depicts the relative IPC of Double Execution with

different array sizes and the three machine widths of
Section 5.5.

The results show that the larger the arrays, the smaller
the performance loss of Double Execution. In some cases, in
fact, enlarging the arrays can overcome the performance
loss altogether. As the design trend is for these arrays to
become larger, the performance loss will become smaller
with time.

6.5 Double Execution—Queuing Policies

These simulations compare the performance (IPC) of the

different instruction queuing policies (Section 3.3). We ran

all benchmarks with the different machine configurations

(Narrow, Medium, and Wide) with the four queuing

policies: program order execution, FCFS, low-priority

second execution, and random priority among the first

and second executions.
The results for the Narrow and Medium machines are

consistent—the “Low-priority second execution” queuing
policy yields the best result (average relative IPC of
91.4 percent in Narrow and 97.4 percent in Medium;
see Figs. 9 and 10). The “FCFS” policy is always second
best (an average of 89.4 percent in Narrow and 96.4 percent
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Fig. 7. Memory latency impact on performance degradation.

Fig. 8. Array size impact on performance degradation.



in Medium). The “Program order” policy has the worst
performance in all tests (an average of 87.8 percent in
Narrow and 95.3 percent in Medium). The random queuing
results are in the middle - better than “Program order” and
worse than “Low-priority second execution.”

For the Wide machine, the results are less conclusive
(Fig. 11). Though on the average over all benchmarks the
different queuing policies came in the same order as for the
Narrow and Medium machines, there are some benchmarks
for which the results were different:
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Fig. 9. Relative performance with different queuing policies (Narrow machine).

Fig. 10. Relative performance with different queuing policies (Medium machine).

Fig. 11. Relative performance with different queuing policies (Wide machine).



. In 20 percent of the benchmarks, the “FCFS” gives
the best performance.

. In 25 percent of the benchmarks, the “Program
order” gives the best performance.

. In the rest (55 percent) of the benchmarks, the results
are in the same order as for the Narrow and Medium

configurations (“Low-priority second execution”

gives the best results).

The reason for the less conclusive result is that in the Wide
machine there are many free resources almost all the time, so
the Double Execution penalty is extremely small. Hence, the
advantages of “Low-priority second execution” are minor for
several benchmarks. The bottom line is therefore that one
may still assign lower priority to second executions in all
cases.

6.6 Double Execution—The Potential Benefit of a
Dynamic Queuing Policy

In the previous section, we showed that “low-priority
second execution” is the best result in most cases. Here, we
study the potential benefit of dynamically changing the
queuing policy along the program run based on program
characteristics. We compare the instantaneous (using a
sliding window) performance with the different queuing
policies along the program runs and derive the would-be
performance with an ideal dynamic scheduler. Specifically,
we calculated the average IPC over every 106 consecutive
instructions along the 109 instructions of the benchmark
programs. We used all three machine configurations and
several of the common benchmarks. Fig. 12 depicts the IPC
of a Medium width machine while running the BZip
benchmark. The reference model is the single execution
scheme.

In this representative example, we can see that the
different queuing policies’ performance is relatively stable
along the program runs (meaning that the best policy is
the same policy most of the time). This means that, at
least in these cases, there is very limited potential for
performance gain by using a dynamic queuing policy.
There were several benchmarks in which performance
was less consistent (in each period, a different policy gave
better performance). However, because these were only
sporadic cases, a dynamic queuing policy mechanism

does not seem worthwhile. Nevertheless, it is possible
that studies using wider ranges of workloads and
conditions will show greater justification for the use of
a dynamic queuing policy.

6.7 Double Execution—Impact of Soft-Error
Probability on Performance

We now explore driving the processor technology to the
limit and intentionally operating in a regime that retains
independence (single failure at a time) but has more
frequent soft errors. This is done to assess the trade-off
between the added performance and/or reduced power
consumption brought about by pushing the technology
and the degradation brought about by the need for error
recovery. In these simulations, we examine the perfor-
mance impact of soft-error probability, assuming that the
errors are recovered using Double Execution. We used the
“bzip2 program” benchmark with the “low-priority second
execution” queuing policy (Section 3.3). Three machine
configurations were simulated across a broad range of
soft-error probabilities (5 � 10�10 to 10�1). Fig. 13 depicts
the relative performance (IPC) of Double Execution versus
error probability. The higher the soft error rate, the larger
the performance degradation—for each soft error, the pipe
is flushed and instructions must be reexecuted. Also, for
extremely high soft-error rates (one every 5,000 instruc-
tions or less on average), the wider the machine, the worse
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the performance. The reason is the larger pipe-flush and
refill penalty for the wider machine.

However, the results suggest that even for a soft error
probability of 5 � 10�5, which is extremely high (> 50,000 soft
errors per second in a 2-Ghz Processor), the performance loss
is under 0.1 percent relative to the Double Execution
performance numbers (with no faults). Thus, in a Medium
machine, for example, the performance loss of running
Double Execution with soft error probability of 5 � 10�5 is
around 5.7 percent relative to a single execution machine
with no soft errors. Hence, Double Execution can be used to
“squeeze” the CPU technology. The CPU can be “stretched”
(e.g., higher frequency, lower voltage, and smaller noise
margins), causing more errors that will be detected and
recovered using Double Execution. The overall performance,
power, or other parameters can be made better than the
original CPU, without exposing the user to the higher “raw”
error rate. Note that the evaluation of this approach must be
carried out under conditions that equate the probabilities of
undetected soft errors. The relevant error probability for
Double Execution is the probability that both executions of a
given instruction are faulty, which is approximately the
square of the probability for a single soft error in one
instruction. Thus, the “raw” error probability for Double
Execution may be set as high as the square root of the
tolerable soft-error probability of a single-execution machine.
A similar approach is common in other fields such as storage
and CPU cache design [8], where error detection and
recovery mechanisms are widely used, and has been
suggested for other parts of CPU design as well [34].

6.8 Double Execution—Performance of an “Ideal”
Processor

Via simulations, we estimate the lower bound on Double
Execution performance (Table 4). One might claim that
since Double Execution is based on the resources’ low
utilization, the performance will not be as good as shown so
far when advanced features are being used (e.g., using
advanced compiler optimizations, multithread processor,
etc.). In these simulations, we used a perfect branch
predictor (100 percent hit rate) and no cache miss penalty
(the delay of reading data from the memory is the same as
from the level 2 cache). These parameters are, of course,
unrealistic. However, these simulations provide a lower
bound on the performance of Double Execution relative to
that of single execution. Fig. 14 depicts the ratio of the new
mean number of IPC to the baseline (single execution) IPC
for each benchmark and for the three machine widths that
were described in Section 5.5.

As expected, the results indicate that Double Execution’s
relative performance is worst when using an “ideal”
processor since the resource utilization is higher when
there are no branch mispredictions and no cache miss
penalty. However, even when using this kind of unrealistic
processor, the performance degradation is not as bad as in

most of the known transient fault solutions—an average
degradation of only 10.8 percent in the Medium machine
configuration and 2.7 percent in the Wide configuration. In
the Narrow configuration, where the execution units and
other resources are almost fully utilized (average of
1.75 IPC), the degradation is more significant.

A closer look at the results for the Narrow configuration
raises a different question: how can the performance drop
be quite moderate (22.4 percent on average) despite the
high resource utilization in single execution? One possible
explanation is that the baseline IPC (for a single execution)
was not perfect due to data dependencies, so many of the
“reexecuted” instructions could be executed within these
free execution slots.

Several of our benchmarks had a near perfect “ideal IPC,”
as depicted in Table 5. Therefore, we examined closely those
applications whose IDEAL_IPC (Narrow configuration) is
greater than 1.85. We found out that two main factors
contribute to these results: 1) not all the instructions are
executed twice (in our system, loads and stores are executed
only once since we assume that they are protected via other
mechanisms), and 2) the system contains additional re-
sources such as Floating point and AGU (Table 2), so the
theoretical “perfect IPC,” relative to which the degradation
was computed, is actually greater than 2.

As seen in Table 6, the fraction of load and store
instructions (that do not execute twice) is indeed quite
significant in the aforementioned applications. Correspond-
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Double Execution Performance of “Ideal” Processor Summary

Fig. 14. Double Execution performance of an “ideal” processor.

TABLE 5
Basic versus IDEAL IPC



ingly, Fig. 15 presents the results of the optimal execution
with and without a separate AGU (also refer to Table 7).

It is evident that when all AGU operations are being
executed on the general purpose integer units, the utilization
of these resources is higher, and the performance loss due to
double execution with Narrow configuration is indeed
significant. With Medium and Wide configurations, the
impact of the AGU on the overall slowdown is reduced and
becomes relatively small even for the ideal case, when all
benchmarks are considered. Finally, when actual memory
latencies and branch predictions were considered, we found
that the impact of the AGU on overall performance
degradation due to Double Execution is negligible.

6.9 Double Execution—Power Simulations

These simulations used the Wattch power simulator to
estimate the relative increase in the CPU active power
consumption (expressed in percent of power consumption
of single execution) of Double Execution using 20 different
benchmarks. The results are the total relative active power
increase (bars) and the average per cycle active power
increase (the lines in the graphs). The average cycle power is
important to determine the thermal characteristics of the
CPU. The Wattch simulator assumes power cost for every
CPU block of every active cycle and sums up the total
power consumption. This, of course, is not accurate
modeling, and its purpose is only to provide the power
consumption growth trend. Figs. 16, 17, and 18 depict the

active power increase for the different benchmarks with the
three machine configurations.

The results show that the overall active power, which
represents the total energy consumption per program
execution, increases on the average by 15 percent-17 percent
for all machine sizes. However, the average per-cycle power
increase, which is important for the heat-dissipation
requirements, is around 5.4 percent in the Narrow machine
and around 16.4 percent in the Wide machine. The reason
for these results is the fact that the Wider machine has better
parallelism, causing the execution units to be more active in
the Double Execution scheme. It is important to note that
the power simulations only calculated the active power.
Double Execution does not significantly affect the leakage
power (there is almost no additional hardware), which
means that the overall power increase (both total and
average per cycle) is actually smaller. Considering the clear
trend of leakage power constituting a growing fraction of
total power over the years, we predict that the effect of
Double Execution on total power will become less sig-
nificant over process evolutions.

6.10 Double Decoding—Performance

These simulations compare the performance of Double
Decoding with and without Double Execution with the
original SimpleScalar code for 20 different benchmarks. The
results are the relative IPC. The queuing policy for the
Double Execution model is “low-priority second execution”
(Section 3.3), which gave the best results. Figs. 19, 20, and 21
depict the performance results of all benchmarks using the
three machine widths (also refer to Table 8).

The results clearly indicate that in almost all benchmarks,
wider machines exhibit smaller performance degradation.
Also, the use of Double Execution along with Double
Decoding incurs a very small additional performance
penalty over that of Double Decoding alone. This is probably
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Fig. 15. Impact of AGU on Double Execution.
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because the new Double Decoding pipe stage reduces the
overall resource utilization, thereby increasing the avail-
ability of resources for the second execution.

In the Wide machine, the average performance loss is
2.2 percent-2.5 percent, and the worst case is less than
8 percent. In the Narrow machine, the performance loss is
much more significant with an average of 17.9 percent-
18.4 percent and a worst case of more than 32 percent.

Note that in Narrow machines, the cost of duplicating
the original high-performance decoders instead of using

low-performance decoders is usually less significant, and in
that case, there is almost no performance loss (see Section 4.2
for more details).

7 CONCLUSIONS

With modern commodity processors increasingly prone to
soft errors due to smaller feature sizes, reduced voltage
levels, higher transistor counts, and reduced noise margins,
efficient detection of soft errors is becoming a mainstream
approach. As long as the soft-error rate remains relatively
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Fig. 16. Double Execution relative active power increase (Narrow

machine).

Fig. 17. Double Execution relative active power increase (Medium

machine).

Fig. 18. Double Execution relative active power increase (Wide machine).

Fig. 19. Double Decoding relative performance (Narrow machine).

Fig. 20. Double Decoding relative performance (Medium machine).



low, the cost of recovery is not a major factor. Only when the
fault rate becomes significant, either as a result of future
processes or as a result of intentionally using even lower
voltage in order to save power, the performance overhead of
the recovery becomes a key consideration. In this paper, we
have presented two techniques—Double Execution and
Double Decoding—that together with error correction
codes can provide the entire processor similar levels of soft
error coverage to those of commercial and other known
solutions, with a significantly smaller performance loss and
smaller power consumption than other proposals.

With Double Execution, soft errors in the Out-Of-Order
part of the processor are detected by executing each
instruction twice (temporal redundancy using underutilized
execution resources). This implementation is very simple,
requiring only minor hardware alterations. We show that the
average performance degradation of this technique is
2.2 percent in Medium width processors (and better in wider
machines), with an increase of approximately 15 percent in
active power. We also show that the trend of increasing
memory access latencies (in processor clock cycles) and array
sizes is likely to mitigate the technique’s adverse perfor-
mance impact, and the trend of increase in leakage power
fraction of overall power consumption is likely to reduce the
technique’s power impact. Another commercial advantage of
the Double Execution is that it can easily be turned off by
software, achieving a higher performance whenever the
reliability is not important.

With Double Decoding, soft errors in the instruction
decoders’ hardware are detected by using separate small,
low-performance, and low-power decoders (spatial redun-
dancy), which are used in a new pipe stage before the
commit stage and thus only need to decode nonspeculative
instructions. We have shown a resulting average perfor-
mance degradation of around 2.2 percent in high-perfor-
mance processors. The combined use of Double Execution
and Double Decoding reduces the overall performance by

only 2.5 percent on the average in high-performance
processors.

Double Execution and Double Decoding, along with error
correction codes in the arrays and buses, provide excellent
soft error coverage with much lower performance, power,
and hardware cost than any contemporary solution. Our
techniques could result in “excessive” (i.e., higher than
required) reliability. Consequently, it is viable to use a design
or operating parameters that incur a higher soft-error rate,
thereby trading away the excessive reliability for a reduction
in power consumption (lowering the voltage), higher
performance (increasing the clock frequency), or both.
Application of our techniques may thus even yield a solution
that dominates single execution, simultaneously providing a
lower undetected soft error rate, lower power consumption,
and higher performance than those of single execution.
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