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Wireless Sensor Networks (WSN) are often deployed to sample the desired environmental attributes and
deliver the acquired samples to a central station, termed as the sink, for processing as needed by the appli-
cation. Many applications stipulate high granularity and data accuracy that results in high data volumes.
However, sensor nodes are battery powered and sending the requested large amounts of data rapidly de-
pletes their energy. Fortunately, environmental attributes (e.g., temperature, pressure) often exhibit spatial
and temporal correlations. Moreover, a large class of applications such as scientific analysis and simulations
tolerate high latency for sensor data collection. Hence, we exploit the spatio-temporal correlation of sensor
readings while benefiting from possible data delivery latency tolerance to minimize the amount of data to
be transported to the sink. Accordingly, we develop a fully distributed adaptive hybrid compression scheme
that exploits both spatial and temporal data redundancies and fuses both temporal and spatial compression
for maximal data compression with accuracy guarantees. We present two main contributions: (i) an adaptive
modeling technique that allows frugal and maximized temporal compression on resource-constraint sensor
nodes by exploiting the data collection latency, and (ii) a novel model-based hierarchical clustering technique
that allows for maximized spatial compression resulting into a hybrid compression scheme. Compared to
the existing spatio-temporal compression approaches, our approach is fully decentralized and the proposed
clustering scheme is based on sensor data models rather than instantaneous sensor data values, which al-
lows merging nearby nodes with similar models into large clusters over a longer period of time rather than
specific time instances. The analysis for computation and message overheads, the analysis for theoretical
compressibility, and simulations using real world data demonstrate that our proposed scheme can provide
significant communication/energy savings without sacrificing the accuracy of collected data.

Categories and Subject Descriptors: C.2.2 [Wireless Sensor Networks]: Network Protocols

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Model-based Clustering, Spatio-temporal Compression, Delay-tolerant
Networks, Data Analysis.

1. THE PROBLEM AND THE APPROACH
In Wireless Sensor Network (WSN) deployments, battery powered sensor nodes are
often distributed over the area of interest for varied applications involving unattended
environmental monitoring and supervisory functions. The sensor nodes regularly up-
date a central station, termed as the sink, with the sampled environmental data for
subsequent processing and analysis. The (multihop) data delivery, from the nodes to
the sink, requires exchange of several messages thus depleting the batteries of in-
volved sensor nodes, and reducing the residual network lifetime. Hence, the dual target
of continuous collection of data while prolonging the network lifetime is a challenging
problem.

Fortunately, WSNs naturally generate highly redundant spatial samples due to (a)
the redundant sensor node deployment for connectivity and failure tolerance, and (b)
the correlated values of the environmental attribute over larger spatial areas. This
is also substantiated by our observation of available real world data [Madden 2003],
where we noticed that the trends/patterns are similar for a large number of nodes in a
given physical neighborhood. Fig. 1 depicts the sensor readings of two pairs of nodes,
from [Madden 2003], over four days time period. The nodes in each pair are 1-hop
neighbors and both pairs of nodes are separated by several hops. The sampled at-
tribute values also exhibit temporal correlation [Tulone and Madden 2006] that can be
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exploited by constructing the models of the data and reporting the model parameters
instead of raw sample values.
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Fig. 1: Phenomenon Distribution

Scoping the Problem: Applications re-
quiring continuous data collection utilize
the data for two prominent use cases of
(a) live/real-time decision making, such as
surveillance, or (b) offline/delay-tolerant pro-
cessing such as modeling, analysis [Tolle
et al. 2005] and inference [Ali et al. 2009].
The focus of our current work is on delay-
tolerant data collection. Various WSNs de-
ployed for scientific monitoring [Werner-
Allen et al. 2005; Akyildiz et al. 2005; Tolle
et al. 2005] continuously harvest data for
modeling, analysis and simulations. They
generally tolerate a certain data collection
latency. Hence, for such applications real-
time data acquisition does not have prece-
dence over the quality and quantity of the
data. This delay-tolerance in reporting the
data to the sink opens up a fundamental design flexibility in data collection to sig-
nificantly improve WSN energy efficiency. We propose an adaptive hybrid compression
scheme that explicitly exploits the delay-tolerance in data collection to compress the
data both in time and space, which gives us considerable benefits over the real-time
schemes that require frequent updates to be synchronized with the sink.

Compression Efforts: A number of approaches such as aggregation, temporal com-
pression [Jindal and Psounis 2006; Zhao et al. 2002] and spatial compression [Desh-
pande et al. 2004; Zhang et al. 2006] have been proposed to reduce the data volume to
be transported to the sink. However, only a few composite spatio-temporal approaches,
such as [Gedik et al. 2007; Tulone and Madden 2006; Wang et al. 2012; Yoon and Sha-
habi 2007; Ali et al. 2011], exist. These approaches exploit both spatial and temporal
correlation in data, thus reaching higher data traffic reduction. However, the existing
approaches are (a) partially centralized limiting local decision making for adaptability,
(b) tailored to specific attribute dynamics, providing none or limited self-adaptability,
or (c) limited in their scope of exploiting either spatial or temporal correlation reducing
compressibility. [Ali et al. 2011] is the only work to consider delay-tolerance in spatio-
temporal data compression. However, it is limited due to the use of static models and
limited scope for data compression.

The Basis for our Proposed Approach: We exploit temporal redundancies us-
ing simple, computationally inexpensive models considering the limited computation
resources of the sensor nodes. The simple models can naturally only approximate a
limited number of samples. Hence, in order to exploit the delay-tolerance in data collec-
tion, the nodes consecutively construct a batch of simple models to increase the num-
ber of approximated sample values. However, our scheme is optimized such that only
a small number of nodes need to construct these batches of models to approximate the
entire WSN. The spatial redundancy is exploited using a two-level hierarchical clus-
tering. In contrast to existing literature [Jiang et al. 2011; Pham et al. 2010; Gedik
et al. 2007], our proposed clustering is based on models instead of raw sample values.
A model-based clustering allows us to evaluate the correlations across the nodes over
a longer period of time in comparison to the sample value based clustering which de-
termines correlation only at a given instance of time. Hence, the existing approaches
require continuously maintaining large monolithic clusters, incurring additional en-
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ergy overheads. Using our hierarchical clustering, we initially form 1-hop clusters by
grouping nearby nodes with high correlation. The small 1-hop clusters require mini-
mal maintenance. The model batches are constructed on a subset of the 1-hop clusters.
The models constructed by these clusters are used to approximate the surrounding
clusters based on the user defined error tolerance. The 1-hop clusters approximated by
a few batches of models are merged to form the second clustering hierarchy. The sec-
ond clustering hierarchy depicts the dynamic correlations between the 1-hop clusters
and is reconstructed in each iteration. Following this scheme, only a few model batches
approximate the entire network sample values over a long duration of time (depend-
ing on the delay-tolerance limits). The model batches are sent to the sink, which uses
these models to regenerate the sample values of each sensor node in the network.

Contributions: The contributions of the current work are as follows

— We propose a fully decentralized scheme that does not require any intervention from
the sink apart from a few initial parameters for setup.

— The proposed adaptive modeling compression scheme can approximate a wide va-
riety of environmental attributes within the user defined accuracy requirements by
dynamically adapting to tune the parameters (Section 4.3).

— We propose a novel technique of hierarchical clustering based on adaptive models for
spatial compression. The clustering adapts to the distribution of the environmental
attribute over the sensor network to maximize the spatial compression (Section 4.4).

— We propose a technique to exploit the delay-tolerance in data collection in various
WSN applications to enhance the compression both in time and space.

— We present compressibility analysis with theoretical upper and lower bounds for
compression (Section 5.2) and a detailed message complexity analysis (Section 6).

Building on our preliminary delay-aware compression ASTC approach [Ali et al.
2011], we now present a comprehensive framework applicable to a broad range of ap-
plications and with significantly enhanced bounds on data compressibility and mes-
sage overhead efficiency. The paper is structured as follows. Following a discussion on
related work in Section 2, we present the system model and design requirements in
Section 3. The proposed hybrid compression scheme is presented in Section 4. Subse-
quently, Section 5 details the efficiency and compressibility analysis of the proposed
scheme and Section 6 evaluates the message and the computation costs. Section 7 de-
tails the analysis and evaluation results.

2. RELATED WORK
This article focuses on continuous data collection rather than event-based WSN design.
Our primary objective is to spatio-temporally compress the data for continuous data
collection with sensor-node level granularity while exploiting delay-tolerance in data
collection. While there is extensive research in WSN for data compression [Nakamura
et al. 2007], e.g., simple aggregation [Fasolo et al. 2007], suppression [Zhou et al. 2008],
filtering, TinyDB [Madden et al. 2005] and Cougar [Gehrke and Madden 2004], to
name a few, however, there exists very limited work in spatio-temporal compression.
We summarize some of the important research work regarding spatial and temporal
compression and discuss in detail the existing spatio-temporal techniques.

Spatial Compression: The objective of spatial sampling is to collect interested at-
tribute snapshots. The key idea behind spatial compression is to constrain neighboring
sensor nodes with similar senor readings from transmitting redundant data. [Mah-
mudimanesh et al. 2010; Jindal and Psounis 2006; Solis and Obraczka 2005; Zhao
et al. 2002] are a few spatial compression techniques relying on compressive sensing,
spatially correlated models, filtering and aggregation. The main weakness of all pure
spatial compression approaches is their focus on the spatial redundancy while neglect-
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ing the temporal redundancy. Temporal resolution depends on the implemented snap-
shot update mechanism. Pure spatial compression techniques naively address tempo-
ral redundancy by creating a new snapshot or sending an incremental update.

Temporal Compression: The driver of temporal compression is to exploit temporal
correlation present in the attribute values. The key idea in these approaches is to let
every sensor node create a prediction model for its sensor readings and send the model
to the sink. The sensor node should send an updated model only if the model is not
valid due to changes in the signal dynamics. The approaches in [Mini et al. 2005] and
[Zhang et al. 2006] construct models based on Markov-chains and time series, respec-
tively. These temporal compression schemes mainly focus on the temporal redundancy.
Some use limited forms of spatial compression (e.g., by constructing 1-hop clusters and
allowing only cluster heads keep consistent models with the sink).

Spatio-Temporal Compression: There exists very limited research addressing
spatio-temporal compression in WSN. In [Vuran et al. 2004], the authors developed a
theoretical framework to model the spatial and temporal correlations in WSN. This
framework enables the development of efficient medium access and reliable event
transport protocols, which exploit these advantageous intrinsic features of the WSN
paradigm. However, this work does not focus on continuous data collection as needed
for the targeted applications. [Jiang et al. 2011; Pham et al. 2010; Gedik et al. 2007]
proposes value-based clustering mechanisms that form large monolithic clusters based
on instantaneous values or aggregates of the values. Hence, they need to continuously
collect data from the member nodes to check for consistency and maintain these clus-
ters by breaking up and merging them. This is expensive computationally and for
energy consumption. Our alternative proposed approach uses hierarchical clustering
based on models instead of instantaneous values, i.e., (1) 1-hop cluster rarely requir-
ing maintenance, and (2) cliques that are not maintained rather reconstructed at a
minimal message cost. [Tulone and Madden 2006] propose real-time data collection
through repeated model construction and synchronizing them with the sink. [Tulone
and Madden 2006] is limited both in spatial and temporal compressibility. [Wang et al.
2010] and [Wang et al. 2012] relaxes the spatial constraints of [Tulone and Madden
2006] to form larger than 1-hop clusters. Due to their focus on real-time updates they
bounded to approximate only a limited amount of data in time, consequently limit-
ing the temporal compressibility. On the other hand the focus of our proposed scheme
are the applications that are delay-tolerant concerning the data collection, hence we
can more efficiently compress the data both in space and time due to relaxed time
constraints. [Villas et al. 2011] proposes values based scheme to exploit temporal and
spatial correlation and explicitly focuses on the real-time reporting of the values. Our
approach proposes a model based scheme to exploit the temporal and spatial correla-
tion, extending the compressibility both in space and time. [Min and Chung 2010] uses
Kalman filter for modeling within 1-hop clusters, which incurs heavy computation cost
on a sensor node. [Baek et al. 2004] proposes to reduce energy consumption through
hierarchical aggregation. Both [Min and Chung 2010] and [Baek et al. 2004] require
the node location information, which could be prohibitively expensive. Our proposed
scheme works independent of the location information and uses simple models that
are easily computable on a sensor node. [Liu et al. 2007] and [Gupta et al. 2008] use
centralized heuristics for cluster formation and nodes correlation determination. [Liu
et al. 2007] assumes all sensor nodes to be within communication range of the sink, or,
the deployment of dedicated nodes, to act as cluster heads, to be able to communicate
directly with the sink. Such assumptions limit the applicability of the approach [Liu
et al. 2007] to a generic WSN. In contrast, our proposed scheme assumes a generic
WSN deployment with no additional requirement on communication range or of any
dedicated sensor nodes. Moreover, it is completely distributed and does not require
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any global information other than a few static parameters initially required from the
sink to setup the proposed distributed scheme as per the user requirements. [Yoon and
Shahabi 2007] has two modes of operation, i.e., interactive mode is limited to spatial
compression only and streaming mode performs both spatial and temporal compres-
sion. [Wang and Deshpande 2008] and streaming mode of [Yoon and Shahabi 2007]
both construct Probability Density Function (PDF) for modeling the attribute. AHC
and probabilistic modelling have fundamentally different assumptions about the sta-
tistical process of attributes to be monitored. AHC assumes the statistical process to be
dynamic and that the process statistics can change at any time. [Wang and Deshpande
2008] assumes the process statistics to remain the same and needs manual setup for
appropriate functioning. In probabilistic modelling once the PDF has been constructed,
it is assumed the PDF will remain the same for the rest of monitoring period and can
be used to predict the future samples. Accordingly, correctness of such schemes can
not be guaranteed. A PDF constructed in a certain time window can not be guaranteed
to be valid after attribute dynamics change limiting the use of such schemes in long
term continuous monitoring. They also require expensive long training time (e.g., 15
days for [Wang and Deshpande 2008]). We do not assume the system dynamics to be
known in advance and dynamically construct the model based on the changes in WSN
attributes. Therefore, our technique not only tracks any changing attribute dynamic
but also adjusts in case of unexpected changes in the dynamics. In our prior work [Ali
et al. 2011], we proposed spatio-temporal compression using models and clustering. In
this article, we improve over [Ali et al. 2011] with flexibility to dynamically select a
range of models instead of one fixed model, dynamic temporal compression scope and
relaxed time synchronization as compared to strict time synchronization.

Another important class of compression methods for WSNs is based on transform
compression. In transform compression, a linear transform is applied on the sensed
signal that produces a more compressible version of the data and consequently re-
duces the amount of data that needs to be transmitted to the sink [Duarte et al. 2012].
Both transform compression and model-driven classes of data compression methods
for WSNs take advantage of the compressibility of the sensed signal to reduce the
amount of in-network transmissions, though using different approaches. In this pa-
per, we study transform compression as an important related method for WSN data
compression and compare our work with a representative implementation of trans-
form compression. Distributed Transform Compression (DTC) methods (also known
as Distributed Transform Coding techniques) are based on the fact that the raw data
recorded from natural phenomena such as the data sensed by a WSN are compressible
under certain linear transforms [Duarte et al. 2012]. After transforming and compress-
ing the raw data, the compressed data are sent to the sink. The sink then applies the
inverse transformation to acquire the original data.

In summary, the existing hybrid approaches require the signal and its statistical
properties (dynamics) to be known a priori, require location information, are par-
tially/completely centralized or use instantaneous values instead of models for clus-
tering. The common factor among all contemporary schemes is that they target real-
time/immediate data collection. None of existing works, other than [Ali et al. 2011],
exploits the inherent delay-tolerance of many applications, and thus lose the efficiency
enhancement potential. In contrast, our approach is adaptive, does not require location
information, is fully decentralized, uses simple easily computable models and exploits
the delay-tolerance to maximize the data collection.
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3. PRELIMINARIES
3.1. System Model
We consider a conventional WSN system model composed of N static sensor nodes
{S1, S2, . . . , SN} and a static sink. We assume that the clocks of nodes are synchro-
nized, e.g., using [Faizulkhakov 2007]. Sensor nodes sample the environment attribute
simultaneously and periodically every τ time units. This synchronized sampling allows
nodes to run duty cycling for maximized energy efficiency, which is out of scope of this
article. The sink is powerful enough to store large amount of data. Sensor nodes are
battery powered and possess limited storage and processing capabilities. The WSN de-
ployment follows an arbitrary node distribution with varying spatial node densities as
per connectivity, coverage, fault-tolerance and sensing requirements. We assume the
availability of a reliable end-to-end data transport service, such as [Shaikh et al. 2010],
to transport messages from sensor nodes to the sink, and acknowledgement schemes
to ensure message delivery between neighboring nodes.

3.2. Design Requirements
Our objective is to maximize the spatio-temporal data compression ratio with accu-
racy guarantees for continuous delay-tolerant data collection (i.e., monitoring of phe-
nomena or environmental attributes). In order to meet these objectives, we require
that the proposed scheme must facilitate the reconstruction of the signal (sample val-
ues) of each sensor node from the collected compressed data on the sink, within the
application-driven error bound, with a minimal bandwidth and energy overhead. The
proposed scheme should adapt to evolving attribute dynamics, and be independent of
the network properties such as node distribution, topology and routing protocols. The
data compression models should be efficiently computable on resource-limited sensor
nodes.

4. THE PROPOSED ADAPTIVE SPATIO-TEMPORAL COMPRESSION
We propose a decentralized adaptive hybrid compression technique that exploits appli-
cation delay-tolerance. As observed in Fig. 1, nodes in close proximity of 1-hop distance
generally exhibit persistently high correlations in sample values. However, correla-
tion between the nodes farther away from each other, i.e., between 1-hop clusters, are
generally non-persistent and dynamic when observed over a long time window. The
asymmetry in correlations between the nodes in close proximity and the nodes farther
away makes the spatio-temporal compression a challenging problem. The existing lit-
erature addresses this asymmetry by limiting the modeling to 1-hop clusters [Tulone
and Madden 2006], assuming the attribute dynamics to be constant [Chu et al. 2006],
requiring assistance from the sink [Liu et al. 2007; Gupta et al. 2008] or by clustering
based on the instantaneous values rather than models [Jiang et al. 2011; Pham et al.
2010; Gedik et al. 2007].

We propose to exploit the spatial redundancy in two stages, i.e., (1) Proactive for-
mation of 1-hop clusters that are usually highly correlated, (2) Merge 1-hop clusters
to larger regions/clusters. Our spatial compression approach differs from contempo-
rary approaches such as [Gedik et al. 2007; Yoon and Shahabi 2007]. These form large
monolithic clusters making them vulnerable to frequent reconfiguration that incurs
heavy maintenance overhead. We exploit temporal redundancy by constructing simple
models on 1-hop clusters.

4.1. A Guide through the Proposed Adaptive Hybrid Compression (AHC) Scheme
Given the nature of WSN deployment redundancies and sensed attributes correlations,
the proposed scheme performs spatio-temporal compression in three stages:
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— Stage 1: 1-hop clusters formation
— Stage 2: Temporal modeling on clusters
— Stage 3: Merging 1-hop clusters

In Stage 1, neighborhoods of sensor nodes with correlated sensor readings form
small 1-hop clusters based on a short history of the attribute values to exploit strong
local correlation. Depending on the deployed sensor density the 1-hop cluster may con-
sist of up to a dozen nodes.

In Stage 2, we exploit the temporal correlations by constructing the models on a
small number of clusters, referred to as master clusters (depicted in Fig. 2 bearing
crown). Each constructed model is initially limited to the respective master cluster and
approximates the sampled values of all member sensor nodes of the master cluster.

x   

t 
  

y   

Master  
Cluster 

  

Correlated 
Region 

1-Hop Cluster

t+Dt

Fig. 2: Clusters, Master Clusters and
Correlated Regions

In Stage 3, we propose mechanisms to utilize
the models constructed on the master clusters
to also approximate the sampled values of nodes
in surrounding 1-hop clusters. The master clus-
ter sends the model to its neighboring clusters.
The cluster members fit the received model to
their sampled values and accordingly either ac-
cept the model or reject it. The clusters accepting
the model merge to form a correlated region (a
larger cluster) and further propagate the model
to the 1-hop clusters on the border of this region.

Following this scheme, only a small set of the
models constructed on master clusters can ap-
proximate the entire network both in space and time. The resulting spatial compres-
sion is a two level hierarchical clustering. The first and second hierarchy levels are
formed during Stages 1 and 3. Stage 1 is executed only once, while Stages 2 and 3 are
repeated to continuously model the sampled value and adapt to the changing dynam-
ics. In the following, we detail these three stages.

4.2. Stage 1: 1-Hop Cluster Formation

Notation Description
Si ith Sensor node
SCH Cluster head
Ci ith Cluster
r Cluster members count
CN Neighboring clusters list

Table I: Cluster Notations

In contrast to existing approaches, we ini-
tially form small 1-hop clusters instead
of large monolithic clusters to exploit the
strong local spatial correlations. The 1-hop
clusters are subsequently (Stage 3) merged
to form larger clusters to model the dynamic
correlations between the 1-hop clusters. Con-
structing and maintaining large monolithic
clusters, in comparison to smaller 1-hop clus-
ters, would incur heavy maintenance costs as
we explain further in Section 4.4. As cluster
formation is a very well studied topic in WSN [Abbasi and Younis 2007], we only briefly
describe the formation of 1-hop clusters.

1-hop clusters are formed based on the similarity of short history of the attribute
values that are transmitted by the nodes that candidate to be the cluster head. All
the nodes in the network are initially candidates for cluster heads. The sink issues the
task of sampling the environment and sending the compressed sampled values back
to the sink. Nodes wait for a random time t1h. On the expiry of t1h a node assumes the
role of a cluster head and issues a ”join request” along with a set of its sampled values
to the 1-hop neighbors. Meanwhile, nodes receiving the join request can not issue the
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join requests. If more than one node issue the join request within each others 1-hop
neighborhood, the node with lower id withdraws its request. Additionally, nodes may
still receive join requests from other nodes as a given node might be 1-hop member of
many nodes that are not 1-hop neighbors of each other.

Nodes receiving the join request compare the received values with their own sampled
value. Nodes join the cluster for which the difference between their sampled values and
received values is within the accuracy requirement set by the application/user. Occa-
sionally, the requests sent by the candidate cluster might not be received by its 1-hop
cluster members due to collisions or hidden terminal problem [Tobagi and Kleinrock
1975]. Nodes unable to join a cluster, either because they did not receive the request
or the error was too high, initiate their own cluster formation requests.

 

C
luster

H
ead

Gateway

Node

Communication

Range

Fig. 3: 1-Hop Clusters

The later requesting nodes can be claimed by the al-
ready existing cluster heads if the cluster head finds the
values of the requesting node to be within the given
threshold to compensate for the lost request message.
Accordingly, we define a 1-hop cluster (Ci) to consist of
one cluster head node (SCH ) and ’r’ member nodes (Si)
such that they are 1-hop away from the cluster head, i.e.,
Ci = {SCH , S1, S2, . . . , Sr},∧∀Si ∈ Cithopdist(SCH , Si) = 1
(where hopdist() returns the hop distance between two
nodes). Members of one cluster might be able to listen to
more than one cluster head but exclusively belong to one
cluster, i.e., Ci ∩ Cj = ∅, i 6= j.

Each 1-hop cluster head discovers immediate 1-hop
neighboring clusters (CN ) around it. In the discovery pro-
cess, the cluster heads exchange the cluster ids (same as
cluster head id) and hop distances of cluster head from the
sink. They also identify the nodes that will be used to communicate between the two
neighboring cluster heads referred to a gateway nodes as depicted in Fig. 3. The 1-hop
cluster formation process is performed only once. We do not explicitly refresh 1-hop
clusters in order to maintain the correlations between the nodes within these clus-
ters. Instead, we design Stages 2 and 3 in an adaptive manner such that 1-hop cluster
rearrangement takes place dynamically in response to the changes in the physical
phenomenon, as detailed further in Section 4.4.5.

4.3. Stage 2: Temporal Modeling in 1-Hop Clusters
We now elaborate a temporal compression scheme to model the sampled values of
a sensor node. We will use the developed temporal compression approach in Section
4.3.8 to model the sampled values of nodes in 1-hop clusters initially and extend the
modeling beyond 1-hop clusters in Section 4.4. The scheme has been developed such
that the model construction is carried out only by master clusters (selection of master
clusters is explained in Section 4.4.1), while the rest of the clusters use the models
constructed by the master clusters to approximate their sampled values.

Based on the requirements from Section 3.2, we require the models to be (a) compu-
tationally inexpensive to estimate, (b) require low memory, and (c) must be adaptive
in order to fit varied attribute dynamics. Based on these requirements, we develop the
temporal compression scheme.

4.3.1. Piece-Wise Modeling. The use of computationally expensive models to approxi-
mate generic patterns, typically observed in sampled attributes, is often not achievable
on a sensor node due to (a) the limited nodes resources and (b) the unknown attribute
dynamics. We formalize the temporal compression by representing the sampled data
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Notation Description
v(t) Sample value at time t
v̂(t) Approximated values at time t
V (t) or V Sampled values queue for training models (training queue)
V̂ (t) or V̂ Estimated values
T Training queue length
p Model order of AR models
φ Model parameters
Φi ith Model
WΦ Approximation window of a model
Ψ Model cache (set of models)
WΨ Approximation window of a model cache
V̂Ψ Set of estimated samples by a model cache
m# Number of models in Ψ
ε Error threshold
O#max Maximum allowed number of outliers per model per node

Table II: Modeling Notations

of a sensor node as an infinite uni-variate time-series. In order to model the sampled
values on a sensor node, we can decompose the sampled values (time series) into finite
duration segments, that we term as training queue and denote as V (t), which are used
to estimate model parameters

V (t) = (v(t), v(t− 1), v(t− 2), . . . , v(t− T + 1)) (1)

where v(t) is data sampled by a sensor node at time t and T is the length of the train-
ing queue (Section 4.3.3). Each segment can be modeled as a linear and a random
component.

4.3.2. Random Component Estimation. A prominent design goal is to support a wide
range of applications. Consequently it needs to be designed without any specific de-
pendencies on the the statistical process of the sampled attribute values. Hence, we
do not make any assumptions for the underlying process other than requiring the
process to be weakly stationary, which is generally true for physical processes [Ljung
1998]. This allows to model the random component as a linear difference equation of
Auto-regressive Moving Average (ARMA) model. As Moving Average (MA) component
of the ARMA model is relatively expensive to compute, hence, to reduce the computa-
tion complexity we limit the estimation to an Auto-regressive (AR) model, denoted as
follows:

x(t) = φ1x(t− 1) + · · ·+ φpx(t− p) + w(t) =

p∑
i=1

φix(t− i) + w(t) (2)

where x(t) is the random component of the signal, w(t) is white noise series with mean
zero and variance σ2 (WN(0, σ2)), φ are model coefficients, p is the model order with
p ∈ N. We denote the model constructed using Eq. (2) as Φ(x) (or Φ in short).

4.3.3. Model Construction. In order to construct the model, a node maintains a training
queue V = {v1, v2, ..., vT } of T sampled values. The AR model parameters are tuned by
(a) estimating the fitting error (e(Φ)), and (b) minimizing the estimation error. The AR
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model fitting error e(Φ) is minimized in mean-square error sense as given by Eq. (3)

∂

∂φk
e(Φ)2 =

∂

∂Φ

 T∑
i=p+1

x(i)−
p∑

j=1

φjx(i− j)

2
 = 0 (3)

The sample values as approximated by the model are given by

v̂(t) = µ+

p∑
i=1

φi(v(t− i)− µ) (4)

where v̂(t) is the estimated sample value and µ is the series mean. We denote V̂ as
the approximated values set, where V̂ = {v̂1, v̂2...v̂WΦ}, WΦ is the number of estimated
values referred to as approximation window (explained further in Section 4.3.6).

4.3.4. Piece-Wise Adaptive Modeling (AM) through Outlier Detection. As we assume the sta-
tistical process of sampled values to be unknown, the natural precondition is to have
adaptability of the model according to the changing statistical dynamics. The adapt-
ability can be achieved by providing feedback to the model to adapt to the new dy-
namics. This is expensive due to continuous updates transmitted to the sink with new
model parameters elevating the message cost. Hence, we use an adaptive update algo-
rithm based on outliers rather than the model parameters.

Outlier Detection: The sample values that cannot be approximated by the model
can be tolerated and classified as outliers. If α is the maximum tolerable estimation
error then the estimated value must lie between [v − α, v + α]. If an estimated value
does not lie between the bounds, the node replaces the value with the original sampled
value and classifies it as an outlier value. The outlier values should be reported to the
sink separately for accurate signal regeneration. Nodes can determine an estimated
value to be an outlier using Eq. (5):

v̂(t) =

{
v(t), if |v̂(t)− v(t)| > α;
v̂(t), otherwise.

(5)

The 1-hop cluster head gathers and reports the outliers of its cluster members to the
sink to maintain accuracy within α. Fig. 4 shows the block diagram for adaptive mod-
eling based on Eq. (5) (z−1 represents the time delay).
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Fig. 4: Adaptive Modeling
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The error upper bound and error probability associated with the estimated values
can be given by Lemma 4.1 (the detailed proof can be found in [Tulone and Madden
2006]).

LEMMA 4.1. Let α = νσ, where ν is an application specified real constant larger
than 1, the actual sampled value vi(t) is contained in [v̂(t) − α, v̂(t) + α] with error
probability of at most 1/ν2.

Model Invalidation and Outliers Upper Bound: A model becomes invalid if it
can no longer approximate the sampled values within the defined accuracy bounds.
Dissatisfying the accuracy bounds results into outliers that increase the message cost.
We consider a model to be valid until it results into a maximum number of outliers
(O#max). The nodes approximate the sampled values based on the constructed model
using Eq. (4) and outliers are counted using Eq. (5). If the generated outliers for a given
model are more than O#max the model becomes invalid and a new model must be con-
structed. By adapting this scheme, we control the maximum number of the generated
outliers, satisfy the accuracy requirement and avoid the unnecessary reconstruction of
the model.

We have discussed the standard modeling technique, how to make it adaptive and
proposed to use simple AR models to meet the minimal computation and memory re-
quirements. However, we do not know what order of AR model will best approximate
the sample values. Hence, in the next section we discuss the selection of the model
that approximates the sample values with minimal error, generating the least out-
liers, while still satisfying the resource constraints.

4.3.5. Dynamic Adaptive Modeling (DAM) through Dynamic Model Order Selection. We have de-
veloped an adaptive modeling scheme, that the sensor nodes use to dynamically select
an appropriate model order that best approximates the sampled values and reduces
the message overhead. It also avoids unnecessary higher order computation.

Algorithm 1 Dynamic Model Order Selection
1: modelOrder← 1;
2: ΦCurrent ← train(V,modelOrder);
3: OutliersCurrent ← AM(ΦCurrent, x(t));
4: for modelOrder ← 2 to maxOrder do
5: ΦNew ← train(x(t),modelOrder)
6: OutliersNew ← AM(ΦCurrent, V );
7: if OutliersNew < OutliersCurrent then
8: ΦCurrent ← ΦNew;
9: OutliersCurrent ← OutliersNew;

10: else
11: break; ;
12: end if
13: end for

Sensor nodes have limited compu-
tational capabilities, and higher or-
der models (e.g., AR(4) and higher)
are typically computationally ex-
pensive. Hence, we allow the nodes
to choose the model from AR(1) to
AR(3). A node initially constructs
the AR(1) and AR(2) models as de-
scribed in Section 4.3.2 and counts
outliers for each model (Alg. 1, L.
1-6). Both models have low compu-
tation cost as AR(1) solves a linear
equation and AR(2) solves two lin-
ear equations. The outliers for lower
order model (AR(1)) are compared
with those for higher order model
(AR(2)) (Alg. 1, L. 7). If a higher
order model does not outperform a
lower order model in terms of outliers, i.e., it does not have lower number of outliers,
then it is discarded and no further search is carried out (Alg. 1, L. 10-11). However, if
the higher order model outperforms a lower order model then the higher order model
is considered and the lower order model is discarded (Alg. 1, L. 8-9). Similarly, the
next higher order model is evaluated and compared until no further improvement is
observed. Consequently, the nodes dynamically select a model order that optimally
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matches the approximated sampled data. The resultant scheme can adaptively model
the attribute samples and dynamically selects its order, and is termed as Dynamic
Adaptive Modeling (DAM). Conceptually, our scheme is neither bound to the maximum
AR(3) model nor to the AR model type. If sensor nodes would possess better computa-
tion resources, then the choice for the model order can be adaptively increased or other
model types can be used exclusively or in addition to AR models.

With our adaptive scheme, the number of samples approximated by a certain model
is also dynamic and hence the compression scope of each model may be different at
different time in order to adapt to the changing signal dynamics. In the next section,
we detail the adaptability process to approximate the varying number of samples.

4.3.6. Dynamic Approximation Window. A model, in general, can approximate only a lim-
ited number of sampled values within the accuracy bounds. We refer to the number of
samples that a model can approximate as the approximation window and define it as:

DEFINITION 1. Approximation window (WΦ) for a model is the number of samples
that a model (Φ) can approximate within the required accuracy bounds while allowing
O#max outliers.

The approximation windows depends on accuracy bounds, allowed outliers, model
order and the attribute dynamics. Increasing the tolerated accuracy bounds, maximum
allowed outliers and the model order usually increases the approximation window.

23.8

23.9

24.0

24.1

24.2

24.3

24.4

24.5

24.6

24.7

v
(t

) 

Time (Samples)

  

T 2 
  

T 1 
  

T 3   
T 4 

  

W Φ2 
  

W Φ1 
  

W Φ3 
  

W Φ4 

  

  

∧ 

  
V 1 

2 
3 

4 

V 1 
V 4 

∧ 

  
  

  

∧ 

V 2 

  

∧ 

V 3 

V V V 
24.8

Fig. 5: Dynamic Approximation Window

Whereas, the increasing non-linearity
in the signal generally decreases the ap-
proximation window because of the use
of linear models, the accuracy bound is
fixed based on the user requirements.
The maximum allowed number of out-
liers is fixed by design to limit the mes-
sage cost. The model order is dynam-
ically selected for optimal compression
(Section 4.3.5). Hence, given the accu-
racy requirements and outliers bounds
the attribute dynamics determine the
approximation window for a certain
model.

The constructed model is used to ap-
proximate the values that it was trained
with, i.e., the training queue (V ). The ap-
proximated values set is denoted by V̂

(V̂ = {v̂(t), v̂(t−1)...v̂(t−WΦ+1)}). Due to
the dynamic nature, the number of sam-
ples for an approximation window may vary. In Fig. 5, we illustrate the idea of dynamic
approximation window. The tailing sample values are estimated using the model (Φ)
constructed from the training sampled values. The number of estimated values (model
approximation windows) is denoted as WΦ. WΦ can vary in number of estimated values
from approximated sample short of the training length to samples beyond it depending
on the underlying process dynamics, error threshold and maximum allowed outliers.

Fig. 5 depicts various cases, e.g., V̂1 estimates samples to the length of training vector
V̂1, V̂2 runs short of V2 and V̂4 runs pass the training length of V4. In the case of V̂ ( V ,
where the estimated values in V̂ run short of the training samples length, the values
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not estimated in a training set are passed to the next training set. For example, in
Fig. 5 the samples of V2 not estimated by V̂2 are passed to V3 to train the next model.
Occasionally, a model may estimate all the sample values in the training set (e.g., V̂4)
and still the number of outliers is less than O#max. In this case, the model keeps on
approximating the next values (i.e., predicting) until the number of outliers are less
than O#max.

We now develop a mechanism to construct a batch of models so that instead of send-
ing individual models, a batch of models may be sent to the sink in just one message.

4.3.7. Maximal Temporal Compression and Model Caching. We assume that data delivery
can be delayed as specified by the delay-tolerance for the application. We denote the
application delay-tolerance in terms of samples that can be collected and used to con-
struct the model cache and then report to the sink. The delay is represented as the
total number of samples approximated by the model cache, given as WΨ. The tolerated
latency, and hence the length of V̂Ψ, are generally many orders longer than the approx-
imation window of a simple AR model. In general the nodes will require more than one
model to approximate the entire length of the sampled data.

The master cluster heads construct a consecutive batch of models referred to as the
model cache. A sensor node collects training data (V ) with T samples that are used
to train the model as described in Section. 4.3.3. The constructed model is used to ap-
proximate the samples (V̂ ). Subsequent samples are used to construct a new training
queue. The new training queue is again used in the same manner to construct the next
model. This process keeps on repeating until WΨ samples have been approximated.
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Fig. 6: Model Cache

We define the set of m# models, that are
used to approximate WΨ samples, as a
model cache denoted by Ψ and defined
as Ψ = {Φ1,Φ2, . . .Φm#}. The construc-
tion of a model cache has also been illus-
trated in Fig. 6. Due to delay-tolerance
and presence of the model cache, we
do not repeatedly need to construct a
model, send it to the sink and send a
new model once the previous model is
invalid. Such a scheme would require
repeated transmission of the model pa-
rameters to the sink. By constructing
the model caches the master clusters
refrain from reporting each model and
avoid such repeated re-transmissions,
decreasing the message cost consider-
ably. Consequently, we increase the tem-
poral compression window, handle non-
linearities, decrease message cost, save energy and still use simple computationally
inexpensive models. Next, in 4.2 we show that the samples estimated by a model cache
error lie within user defined error threshold.

LEMMA 4.2. For a model cache Ψ, the actual sampled valued v(t) belonging to the
approximated model cache value v̂Ψ(t) (∧v̂Ψ(t) ∈ V̂Ψ(t)) is contained in [v̂Ψ(t) − α ,
v̂Ψ(t) + α].

PROOF. A model cache is set of m# AR models, i.e., Ψ = {Φ1,Φ2, . . .Φm#}. The
sampled values for each model Φi ∈ Ψ are contained in [v̂Φi

(t) − α, v̂Φi
(t) + α] (where
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v̂Φi is the approximated sampled value using model Φi) due to Lemma 4.1. Hence, the
sampled values approximated by model cache Ψi are contained in [v̂Ψ(t) − α , v̂Ψ(t) +
α].

The temporal compression scheme developed so far can be used by any sensor node
to dynamically determine a model cache that best approximates its sampled values.
However, we have developed our proposed scheme such that only a few nodes in the
network belonging to the master cluster actually execute the proposed scheme to con-
struct the models. Next, we describe how a cluster head of a master cluster uses the
developed technique to construct a model. The selection of the master clusters and
how other clusters can be approximated using the model cache constructed on master
cluster are discussed later in Stage 3.

4.3.8. Master Cluster Model Construction. The fundamental basis of our compression
scheme is that only one node (or a set of a few nodes) should construct a model that
carefully approximates the largest number of nodes in its surrounding clusters, i.e.,
within the defined accuracy bounds. Accordingly, we construct the models on master
clusters that are used to approximate the sampled values of the nodes not only in the
master cluster but also in clusters surrounding the master clusters. The selection of
master clusters is discussed in Section 4.4.1. Once, the master cluster is selected the
model cache is constructed as described earlier.

For a model cache constructed on cluster head to approximate the sampled values
of other sensor nodes, we need to define a measure for the similarity of the sampled
values between two sensor nodes.

DEFINITION 2. If the approximated sampled values from a sensor si and sj are
given by v̂i(t) and v̂j(t) respectively, then approximation loss for approximating sample
values of sensor node sj using model cache (Ψi) of sensor node si can be given by Lij(t) =
|v̂i(t)− v̂j(t)|.

In order to meet the user’s accuracy requirements, we define two attribute values to
be similar only if their approximation loss is bounded by β. Accordingly, if a sensor node
si and sj satisfy the approximation loss bound, i.e., Lij(t) ≤ β, then the approximation
error between the two nodes can be given by Lemma 4.3.

LEMMA 4.3. The maximum approximation error for sensor node si using model
cache Ψj from nodes sj while satisfying the approximation loss bound, is at the most
α+ Lij = α+ β, with the error probability less than 1/ν2.

PROOF. Suppose sensor nodes si constructs a model cache Ψi and sensor node sj
uses Ψi to estimate its sampled values such that si and sj satisfy the approximation
loss bound at any given time t for the length of the model cache. The approximation
error between the two sensors can be given by |vi(t)−v̂j(t)| = |vi(t)−v̂i(t)+v̂i(t)−v̂j(t)| ≤
|vi(t)− v̂i(t)|+ |v̂i(t)− v̂j(t)| = |vi(t)− v̂i(t)|+Lij(t). Using lemma 4.1, |vi(t)− v̂i(t)| can
be at the most α with he probability 1/ν2, additionally Lij(t) has an upper bound of β.
Hence, the approximation error can be at the most α+ β with a probability of 1/ν2.

In order to simplify the application of the developed scheme, we define a single pa-
rameter for error threshold, ε, instead of using two separate parameters α and β. Ac-
cordingly, we will use ε to define the error threshold for the sensor nodes constructing
their own model caches and the sensor nodes that use the model caches from other
sensor nodes (e.g., master cluster heads). Where necessary, the original error thresh-
old parameters can be used to maintain the necessary level of granularity.

The model cache constructed on the master cluster is used to approximate a larger
number of nodes. Hence, the constructed model cache should produce minimal approx-
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imation error. However, the sampled data may naturally contain spurious and noisy
values. The sampled values are used to train the models and the noisy values may
introduce modeling errors. Hence, the model cache constructed on a particular node,
e.g., cluster head, may not necessarily be the model cache with minimal approximation
error. In order to build the minimal error model cache, the cluster head along with a
few randomly selected member nodes build the model caches and the best model cache
amongst them is selected. Accordingly, the master cluster head broadcasts a request
to its member nodes to construct the model cache. A few randomly selected cluster
members build the model cache using DAM (Section 4.3.5) and send it to the cluster
head. The cluster head accumulates all the model caches and broadcasts them to the
member nodes. Each member node (including cluster head) fits each model cache to
its sampled values using AM scheme (Section 4.3.4) and reports back outliers for each
model. The cluster head selects the model cache that generates the least number of
total outliers for the cluster member nodes. This criteria allows us to select the model
cache that best approximates the sampled values of all sensor nodes in the cluster but
also results into minimal message cost as we have to spend fewer messages to send
the outliers to the sink.

The search for least error model cache incurs some additional cost in terms of com-
putations and message exchange. However, this single model cache is used to approx-
imate large number of nodes in the surrounding clusters. Hence, this additional cost
is compensated with the saving of large number of outliers that would otherwise incur
large message penalties.

4.4. Stage 3: Merging 1-Hop Clusters Based on Master Cluster Model Cache
In Stage 1, we exploited limited but strong spatial correlations by forming 1-hop clus-
ters. In Stage 2, we constructed the model caches to exploit the temporal correlation on
the master clusters, achieving spatio-temporal compression. Now, we detail our scheme
to extend the spatio-temporal compression beyond the master clusters. Various exist-
ing techniques use monolithic clustering based on instantaneous values [Abbasi and
Younis 2007; Gedik et al. 2007; Yoon and Shahabi 2007] to exploit the spatial correla-
tion. They generally are very costly as they incur continuous cluster maintenance cost.
We use models instead of instantaneous values to form the clusters. Large monolithic
clusters based on models would require tracking of all sensor nodes that fit the entire
model cache length. Moreover, the attribute dynamics may often change beyond the
1-hop cluster range. Hence, active tracking of the sensor nodes to form and maintain
large clusters can require continuous message exchanges resulting in high energy con-
sumption. Therefore, instead of forming large monolithic clusters we use a two level
hierarchical clustering. The first level is 1-hop clusters (Stage 1) where (typically) the
nodes are highly correlated. The second hierarchical clustering level is constructed
by merging the 1-hop clusters that can be approximated by the same model cache to
form larger clusters referred to as model cache cliques or simply cliques (Def. 4). The
schemes described next (including the schemes in Stage 1 and 2) are executed on sen-
sor nodes without assistance from the sink highlighting the fully decentralized nature
of our approach. Before describing clique formation, we discuss how the master clus-
ters are selected and how a model cache constructed on the master cluster can be used
to approximate the sampled values of the nodes in surrounding clusters .

4.4.1. Master Cluster Head Selection. A master cluster merges with its surrounding clus-
ters based on its model cache to form cliques or regions. We are interested in determin-
ing the smallest possible number of regions in the network or smallest set of model
caches that best approximates the largest network parts in order to achieve maxi-
mal spatio-temporal compression, i.e., transport maximum data in least number of
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messages to the sink. We formulate the problem of defining the minimum number of
spatio-temporally correlated regions in terms of cliques in a network graph.

DEFINITION 3. Given a sensor network consisting of a set of sensor nodes S, the
topology of the sensor network can be modeled as an undirected graph G(D,E), where
D is the set of vertices and E is the set of edges. An edge (Si, Sj) is included in the edge
set E if Nodes Si and Sj can communicate directly with each other. The network sub-
graph induced by a subset SM , of set S, is the sub-graph of G involving only the vertices
and nodes in SM .

Following the formation of 1-hop clusters, we get a virtual network consisting of a
set of cluster heads SCH that are modeled as an undirected graph GC(DC , EC), where
DC is the set of vertices and EC is the set of edges based on cluster heads. (Ci, Cj) is
included in the edge set EC if Cluster Heads Ci and Cj can communicate (through a
gateway node SG ∈ D) with each other.

DEFINITION 4. We define a clique as a network sub-graphQC , a subset of the cluster
heads of set DC , such that a model cache Ψ approximates the samples values within the
given error bounds for all the member nodes of each cluster belonging to cluster heads
in QC .

Finding the master clusters that can construct the model caches that forms the
largest coverage clique (approximates largest number of clusters) is NP complete
[Abello et al. 1999]. Hence, we utilize a heuristic based on the requirement of mini-
mizing the message overhead. As the information flow direction is from the network to
the sink, we propose the farthest cluster to be selected as the master cluster to initiate
the clique formation and expand the clique in the direction of the sink by sending its
model cache to the neighboring clusters. Looking at the alternate possibility if the clus-
ters nearer to the sink initiates the clique formation, the clique might expand in the
direction away from the sink. We will have to spend additional messages to transport
the accumulated information back to the sink. Hence, the heuristic biased to expand in
the direction of the sink generally reduces the message cost to transport the informa-
tion to the sink. Each cluster head knows its hop distance and the neighboring cluster
heads hop distance from the sink as explained in Section 4.2. The cluster heads use
this information to figure out the farthest cluster and hence the master cluster locally.
In case of cluster heads having the same number of hops, the cluster head with higher
id has the precedence. Next, we describe how a model cache constructed on master
cluster (Section 4.3.7) can be used to approximate the sampled values of the nodes in
the surrounding 1-hop clusters.

4.4.2. Model Cache Acceptance by 1-Hop Clusters. The master cluster constructs the
model cache as described in Section 4.3 and sends it to the neighboring clusters. A
model cache received by a neighboring cluster must approximate the values of its mem-
ber nodes within the defined error bounds (Section 4.3.4). Because of similar attribute
distribution and redundant deployment a model constructed in a master cluster can
approximate the sensor nodes in the surrounding clusters.

To evaluate whether the received model cache approximates the sampled values,
each member node approximates its samples values as:

v̂(t) = µlocal +

p∑
i=1

φi.(v(t− i)− µlocal) (6)

where v(t) are the sample values of the node, µlocal is the sample mean of the local clus-
ter head and model parameters are as received from the master cluster. Each cluster
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uses µlocal as we observed µ changes very quickly from one cluster to the other, while
model parameters remain similar.

The nodes in the surrounding clusters approximate their sampled values using re-
ceived model parameters as given in Eq. (6), calculate the error v̂(t) − v(t) and count
the outliers. As discussed in Section 4.3.4, we allow a certain number of outliers for
a model to be accepted by a sensor node. Total count of the outliers for each model
Φ in the model cache Ψ should be less than the maximum number of allowed outliers
(O#max) for model acceptance (Section 4.3.4). Hence, for each model in the model cache
to be accepted, the node counts the outliers for each model as:

count |vj(t)− v̂j(t) > ε| ≤ O#max, v̂j(t) ∈ V̂i, i = 1...m# (7)
If all models in the cache satisfy the criteria in Eq. (7) the model cache is accepted by
the node.

Algorithm 2 Model Cache Acceptance
1: MSG.type=’Ψfit’;
2: MSG.Ψ← Ψ;
3: timer.start();
4: broadcast(MSG)
5: function msgReceive(MSG)
6: if MSG.type==’Ψfit’ then
7: vote ← (solve Eq. 7 for Φ, Φ ∈

Ψ)?reject:accept
8: if vote == reject then
9: unicast(vote,outliers[],CH );

10: else if count(outliers > 0) then
11: unicast(outliers[],CH );
12: end if
13: end if
14: add Ψ to Ψ List;
15: function timer.expired()
16: Ψ.accepted ← (Ψ List total accepts>

%k, k ∈ C)
17: broadcast(Ψ.acceptance);
18: if Ψ.accepted then
19: remove member that rejected Ψ &

add the new requesting member
20: end if

In Alg. 2, we describe the model
cache acceptance by the cluster head
and model cache evaluation by the sen-
sor nodes in a neighboring cluster. When
a neighboring cluster head receives the
model cache from the master cluster, it
broadcasts the model cache with local
means, calculated from cluster receiving
cluster head’s sample values, to its clus-
ter members (Alg. 2, L. 1-4). The clus-
ter head starts a timer to wait for the
responses to be collected (Alg. 2, L. 3).
Each cluster member prepares a vote,
using Eq. (7), by counting outliers to ei-
ther reject or accept the model cache
(Alg. 2, L. 7). Each member node must
accept all the models in the model cache
to accept it for the entire 1-hop clus-
ter. In order to reduce the message cost
we use the negative acknowledgement
scheme. Accordingly, the cluster head
is not notified of the acceptance of the
model cache (implicit vote), rather when
the timer expires on the cluster head it
assumes the model cache to be accepted
by its member nodes. The negative votes
are, however, explicitly reported along
with the outliers to be reported to the
sink (Alg. 2, L. 9). Withholding report for positive votes saves messages because most
of the nodes in the 1-hop cluster usually accept the model cache. The member nodes
send outliers to the cluster head instead of sending them to the sink (Alg. 2, L. 10).
The cluster heads report the outliers efficiently to the sink by concatenating multiple
outliers in one message.

The cluster head counts the votes for model cache when the timer expires (Alg. 2, L.
15-16). A model cache is accepted as a model cache for the cluster if the cluster head
received acceptance from at least k% member nodes (Alg. 2, L. 16).

We discussed the construction of model cache on a master cluster and how a model
constructed on a master cluster can be used to approximate the sample values of the
nodes in other clusters. However, it is required by the clusters to be synchronized
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in time so that other clusters can use the model cache of the master cluster to ap-
proximate nodes sample values. If the clusters are not synchronized, the sample val-
ues might have been collected at different time instances (or time segments). Conse-
quently, master cluster model cache may not approximate the other cluster sample
values as the model construction time segment and the time segment of the samples
to be approximated might be entirely different.

4.4.3. Self-adaptive Clique Formation. So far, we have described the formation of the 1-
hop clusters, the construction of the model cache on the master clusters and how a
model cache constructed on the master cluster can be used to approximate the val-
ues of sensor nodes in the surrounding clusters. We now describe the clique formation
based on the model caches of the master clusters. For clique formation the master clus-
ter sends its model cache to its immediate neighboring 1-hop clusters. Each neighbor-
ing cluster evaluates the model cache for acceptance. If the neighboring cluster head
accepts the model cache, it joins the clique and sends the model cache to its neigh-
boring clusters (except the neighbor that sent the model cache) and so forth. Hence,
the clique formation is essentially a controlled flooding of model cache over the clus-
ter heads around the master cluster. The flooding stops once the model cache is not
accepted anymore by the surrounding cluster heads or it reaches the boundary of the
network. We now detail this scheme.

Alg. 3 describes the expansion of the clique and the functionality of the clusters that
constitute the clique and send the model caches to their neighboring clusters to further
expand the clique. Initially, only master cluster constitutes the clique as it initiates the
clique. Alg. 4 describes the functionality of a neighboring cluster receiving the clique
’join’ request to merge into the clique.

Algorithm 3 Clique Expansion
1: 1HSend(JOIN , Ci ∧ ∀CiεCN )
2: function receive(MSG)
3: if MSG.type==’RESP ’ then
4: clique.add(MSG.accepted,MSG.CHR);

R#++;
5: if R#==CN# then
6: if ∀ clique.acctance then
7: NBC.clique← clique;
8: 1HSend(NBC, Ci ∧ ∀Ci ∈ CN )
9: end if

10: end if
11: else if MSG.type==’NBC ’ then
12: clique.CHi.boundary ←′ false′ ∧

CHi == MSG.CH ;
13: clique.remove((NBC.clique);
14: end if

Model Cache Dispersion and
Clique Expansion: A master cluster
initiates the clique formation by con-
structing the model cache. Fig. 7 shows
the format of the JOIN message payload
that is used by the cluster heads to prop-
agate the list of constituting clusters
and the model cache. The master cluster
head adds its cluster id, the model pa-
rameters and the sample mean values
for each model in the model cache to
the message payload. It sends the JOIN
message to all the neighboring clusters
(CN ) through the gateway sensor nodes
(SG) (Alg. 3, L. 1). Each neighboring
cluster head executes the 1-hop cluster
model acceptance according to Alg. 2
(Alg. 4, L. 4). If the model cache is
accepted, the cluster joins the clique by
appending its cluster id and the sample
mean values to the message payload.
The cluster joining the clique considers itself on the boundary of the clique and exe-
cutes Alg. 3 to further propagate the JOIN message to its neighboring clusters, hence
expand the clique (Alg. 4, L. 8-9). The neighboring clusters receiving JOIN message
always notify the requesting cluster whether it is joining the clique (Alg. 4, L. 11).
Each cluster head maintains a local record of its neighboring cluster with respect to
their status regarding the clique. The receiving cluster heads update their local record
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regarding the neighboring cluster status from the clique JOIN messages during each
message exchange (Alg. 4, L. 7). Once the responses from all the neighboring cluster
CN are received by the requesting clusters, it uses its local record to check if all CN

around it belong to the same clique. If all the surrounding clusters belong to the same
clique, it implies that this cluster is not on the clique boundary. It notifies all cluster
heads in CN that it is not on boundary anymore through a ”Not Boundary Cluster”
message (NBC) and transfers its local list of clusters in the clique to the neighboring
clusters (Alg. 3, L. 6-9). Each cluster head knows the status of each neighboring
cluster whether it has joined the clique and whether it is on the clique boundary by
continuously maintaining the local record and forwarding it to its neighbors.

Model Cache Flood Control: The clique expansion continues until the new clus-
ters return positive join responses. A cluster head then knows that the clique expan-
sion has stopped locally if it received the responses from all the neighboring clusters
and one or more responses are negative. This cluster now stays on the clique bound-
ary. As the join message is flooded from the master cluster to the final boundary of
the clique, each boundary cluster possesses the partial list of clusters forwarded dur-
ing clique expansion by the clusters from the clique body. The border is traversed to
accumulate the clusters list. The border traversal is initiated by a cluster possessing
special token termed as the Boundary Traversal Token (BTT). The master cluster ini-
tially assigns itself the BTT. The BTT possessing cluster forwards it to its neighboring
cluster with least hops from sink if the BTT possessing cluster is no longer on the
boundary. The boundary cluster possessing BTT transfers its partial list of the clique
constituting cluster to its neighboring cluster on the boundary. The neighboring clus-
ter merges its partial list with the received list and repeats the process until all the
boundary clusters are traversed. The last cluster on the edge of the boundary forwards
the aggregated list to the sink.

Algorithm 4 Clique Joining by
Neighboring Cluster

1: function receive(MSG)
2: if MSG.type← ’join’ then
3: RESP .accept← ’false’;
4: Call Alg. 2 to evaluate MSG.Ψ
5: if MSG.Ψ.accepted then
6: RESP .accept← ’true’;
7: clique.add(MSG.CRequestCH );
8: me.Boundary← true;
9: Execute Alg. 3

10: end if
11: 1HSend(RESP , CHR)
12: end if

The clusters beyond the clique bound-
ary follow the normal procedure of de-
termining the farthest cluster to initiate
and form a new clique. The cluster ad-
jacent to the boundary of the clique ex-
clude their neighbors that are already
part of another clique in determining
the farthest cluster. Using our proposed
scheme the nodes dynamically group to
create a region that is spatially and tem-
porally correlated for a given attribute
for the modeled time duration. Hence,
we have one model cache to be reported
to the sink that represents the behavior
of the spatio-temporally correlated re-
gion. During the clique formation each
node in each cluster takes part in model
cache acceptance, hence, the data regen-
erated from the model caches on the sink are accurate to the level of single node. The
particular discrepancies are corrected through the outliers sent by the cluster heads for
their respective members. We do not assume any particular distribution of the sensor
nodes. Therefore, there can be multiple 1-hop clusters in different parts of the network
that may have the maximum number of hops in the local neighborhood. We also set an
upper bound on the time (Tmax) that a cluster head can wait for the larger hop number
cluster (clusters farther from sink) to initiate the following round of clique formation.
On the expiration of the wait time period the cluster head initiates clique formation.
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Hence, there can be multiple instances of clique formation executing in parallel. Two
or more cliques formations execute mutually exclusively, i.e., a growing clique stops
at the boundary of the other growing clique. We put this restriction because the two
cliques are growing based on two different model caches.

4.4.4. Iterations and Dynamic Adaptability. The second level of cluster hierarchy or the
clique is a temporary entity to determine the correlated region based on the model
cache and is not strictly a larger cluster in conventional sense. It does not have a
cluster head and we do not maintain it. Maintaining such a large cluster body may be
very costly, because it is built using the model cache, which requires the clusters to
agree for a longer duration of time. Hence, cliques are reconstructed rather than being
maintained. We show in Section 6.1 that message overhead to construct a clique is very
low. The reconstruction of the cliques allows to continuously adapt to the changing
dynamics. The 1-hop cluster that were part of one clique may be part of another clique
or even make their own clique in the next iteration of clique formation depending on
the dynamics of the phenomenon. After reporting the model caches, the cluster heads
wait for enough data to be collected to construct the next model cache as explained in
Section 4.3.7. The process of the model cache construction and the clique formation is
repeated and the sink receives accurate continuous data.

4.4.5. 1-Hop Cluster Dynamic Rearrangement. The 1-hop cluster members usually stay
correlated. However, due to changes in the physical phenomenon, the correlations even
at the 1-hop cluster level may change and the clusters require rearrangement. We do
not implement an explicit mechanism to detect such changes as it would require fur-
ther message overhead. We determine such changes in the node correlations in Section
4.4.2 when k% of nodes agree with the model cache and the model cache is accepted
by the cluster head due to majority vote. The cluster head evicts the remaining r− k%
nodes that send the negative votes (reject the model cache). Using overlapping na-
ture of the clusters the evicted sensor nodes wait and snoop the model caches sent by
the rest of surrounding clusters. An evicted sensor node checks the model cache as
if it were part of this cluster and updates the cluster head accordingly. If the model
cache is accepted by the cluster head, the evicted sensor node joins the cluster. If the
evicted node can not join any surrounding cluster it forms a new cluster and becomes
the cluster head as described in Section 4.2. Such rare condition arises due to a new
phenomenon developing in local region. The sensor nodes in this region (around the
evicted sensor node) will start leaving their current cluster (as the evicted sensor node
did) and will eventually form a cluster with the evicted sensor node. Consequently, the
sensor nodes rearrange the 1-hop cluster to self-adapt to the environmental changes.

5. EFFICIENCY AND COMPRESSIBILITY ANALYSIS
In this section, we carry out the cost analysis of our proposed scheme in terms of
number of messages required for compression and transport of the information. We
discuss the efficiency of our proposed scheme in terms of theoretical compressibility
that we can achieve. Finally, we also discuss the computational overhead incurred by
the proposed scheme.

5.1. Message Payload
The analysis and structure of the message payload that carries the compressed data
is very important, because it directly impacts the message cost. The general structure
of the model cache message (MsgΨ) payload is as depicted in Fig. 7. The complete
information about the model cache and the clusters taking part in the formation of
the clique are contained in the message payload. The payload consists of three parts:
1) The model type of each model in the model cache, 2) all the model parameters of

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 34, Publication date: March 2014.



Adaptive Hybrid Compression Scheme for Wireless Sensor Networks 34:21

each model in the model cache, and 3) the cluster ids (Cid) and the local means of each
cluster.

We denote the bytes required to denote a certain parameter by a ”B” in subscript,
e.g., model typeB denotes bytes required for model type, or φB denotes bytes required
by a model parameter. If there are m# number of models in the model cache and p
denotes the model order then the total size of the message payload can be given as:

payloadB = model typeB +
∑
Φ∈Ψ

φB × Φp +
∑
C∈Q

(CidB
+ µCB

×m#)

The three parts of the equation correspond to the three parts of the message payload.

Model Type Model Parameters 

1

… 

Cluster  

Id 1

  

…

ψ 
Region Cluster Informa!on 

… θ1 θ2 … θp θ1 θ2 … θp µ1 θ1 θ2 … θp 

2 m#1 2 m#

… µ2 µm# 
Cluster 

Id 2

 

µ1 … µ2 µm# 

… 

2

bits

2

bits

2

bits

Fig. 7: Message Payload Format

Notation Description
r Cluster members count
µC Mean value for Cluster C
Q Clique
vB Bytes per sample value
S#Ci

Sensors in cluster Ci

MsgReq Model cache request
MsgΨ Model cache message
MsgOut Outliers message
S#rand Random number of nodes
S#G Number of gateway nodes

Table III: Efficiency and Compressibility
Analysis Notations

The size of payload in comparison to the
amount of data that is compressed using our
proposed scheme is fairly small. For typi-
cal values of 3 models per model cache and
2 bytes to store each model parameter, the
bytes required for modeling will be 2bytes +
2bytes×3(parameters)×3(models) = 20 bytes.
If we reserve 2 byte for cluster id and 2
bytes for mean value, then we require 8
bytes (2 bytes for cluster id + 3 models ×
2 bytes for mean per model) for each new
participating cluster. Hence, for the given
case, we typically require 28 bytes to store
the complete information for one cluster and
8 bytes for each additional cluster in the
clique.

TinyOS [Levis et al. 2004] (an established OS for WSN) has a default payload size of
28 bytes. However, radios on various popular platforms, such as telos [Polastre et al.
2005], support message lengths of up to 128 bytes. Hence, we can easily transport the
model cache with multiple cluster information in a single message by changing the
default payload size. In contrast to TinyOS, Contiki [Dunkels et al. 2004] (another
popular platform) does not have such limitations.

5.2. Maximum Theoretical Compressibility and Efficiency
In order to keep the nodes synchronized, we limit the number of samples that a node
can compress using a single model cache to V̂Ψ. Hence, each node in each cluster in the
clique compresses V̂Ψ samples using the model cache. If S#Ci

denotes the number of
nodes in cluster Ci accepting the model cache (minimum is k%, otherwise model cache
is rejected), then the maximum theoretical compression that our proposed scheme can
achieve is given by Eq. (8):

Totalbytes =
∑
Ci∈Q

V̂ΨB
× (S#Ci

) (8)
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Eq. (8) shows that the maximum theoretical compression in a given cluster is equal to
the number of bytes representing the sample values (max: V̂Ψ) of nodes accepting the
model cache. To determine the total achieved compression for the clique, this factor
should be summed for all the clique member clusters. Assuming a conservative value
for V̂Ψ = 75, average cluster size of 7 members and 2 bytes per sample, the total data
that we compress is 2 × 75 × 7 = 1050 bytes for one cluster. Interestingly, we require
only 28 bytes to represent the complete data in the cluster as shown in Section 5.1.
Consequently, we would achieve a compression ratio of more than 37 times for the
assumed parameter values. For each next cluster, we require only 8 bytes in message
payload to compress an additional 1050 bytes of data. In terms of message we require
only one message. We present the analytic details of message costs and elaborate it
further in Section 6.1.

The actually achieved compression, however, falls slightly short of the theoretical
maximum compressibility. The reduction in compressibility is due to the outlier val-
ues that cannot be approximated by the models to satisfy the accuracy requirements
imposed by the user. However, the decrement is limited. The worst case compression
that we can really achieve can be given by the following equation

Totalbytes =
∑
Ci∈Q

(VΨB
× (S#Ci)− vB ×O#max ×m#) (9)

Eq. (9) gives the compression when we assume each node in the cluster has outliers
equal to the maximum number of outliers allowed. If we assume maximum allowed
outliers value to be 5, the achieved compression decrements by 2 bytes × 5 × 3 × 7 =
210 bytes. Still we are able to compress 840 bytes after fulfilling the accuracy require-
ments for the given parameters.

6. MESSAGE AND COMPUTATION COST FOR COMPRESSION
We now detail the cost of message exchange to achieve the data compression.

6.1. Message Overhead
In Section 5.2, we discussed the maximum theoretical and practically achieved com-
pression in terms of the number of bytes reduced using our scheme. However, for WSN
the notion of number of messages is the true measure of compression to be achieved.
Hence, in WSN reduction in number of bytes is only an indirect measure and may be
eclipsed or become completely irrelevant if the compression is achieved at the cost of
high number of messages exchanged. Hence, we have systematically broken down each
stage of the proposed scheme to account for the message cost incurred to achieve the
spatio-temporally compression and transportation of information to the sink.

6.1.1. Master Cluster Model Cache Construction. Model cache Ψ is constructed on a few
master clusters. The cluster head broadcasts the request (MsgREQ) to the cluster
members to send their model caches (MsgΨ). A few random members (S#rand) send
their model caches. The cluster head broadcasts back all the collected model caches to
the members. Finally the cluster members respond back with the number of outliers
for each model cache (MsgOUT ). If the master cluster has r members then the total
number of messages exchanged in a master cluster to construct a model cache can be
estimated by the following equations:

Msgs = MsgREQ +MsgΨ × S#rand +MsgΨ +MsgOUT × r (10)

The cluster head and the nodes constructing the model cache in the master cluster
transmit two messages and the rest of the nodes in the cluster transmit just one mes-
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sage to construct a model cache. Hence, in worst case a node in the master cluster
needs to transmit two messages to compress the data and construct the model cache.

6.1.2. Intra-Cluster Agreement. The clusters other than the master cluster use the model
cache constructed by the master cluster to estimate the sample values of the nodes in
the cluster. To evaluate whether the model cache estimates the sample values of the
sensor nodes, the cluster head broadcasts the model cache. The sensor nodes evalu-
ate the models and respond with the outlier values to the cluster head. The count of
messages for this stage can be given by the following equation:

Msgs = MsgΨ +MsgOUT

Accordingly, in the clusters other than master cluster the worst case count of messages
to decide a model cache is one for any node in the cluster.

6.1.3. Model Cache Dispersion. Once the master cluster has constructed a model cache
or a normal cluster has accepted a model cache, it disperses the model cache to its
neighboring cluster through the gateway nodes. If SG denotes a gateway node and
S#G is the count of gateway nodes then the total number of messages required by each
cluster to disperse the model cache is given by the following equation:

Msgs = MsgΨ +MsgΨ × S#G

This equation represents the worst case situation when the cluster are non-
overlapping (which is not typically the case as in Fig. 3) and all gateway nodes transmit
without optimization, like avoid transmitting to the neighboring clusters that already
are part of clique.

6.1.4. Joining Clique. If the model cache is accepted by the cluster head, it joins the
clique. The joining cluster head sends a message to the requesting cluster head to
report for joining the clique through the gateway node, accounting to one message for
cluster and the corresponding gateway node.

6.1.5. Clique Border Expansion. During the model cache dispersion the clique expands
and the border of the clique extends further. If a cluster head finds out, after receiving
the responses from the neighboring cluster, that it no longer is on the border of the
clique it sends this confirmation to the neighboring clusters so that it may no longer
be considered on the border of the clique.

Msgs = MsgΨ +MsgΨ × S#G

The clique border expansion accounts for one message broadcast from the cluster head
and further transmission to neighboring cluster by the gateway node.

In summary the number of transmissions range from one to four messages depend-
ing on their role and whether they are in the master cluster or the non-master cluster.
In the worst case and with very large clique formation, more than one packets may
be required to contain the complete clique information. The above calculations assume
the roles of the nodes, from functional point of view, to be mutually exclusive. However,
in reality they may not necessarily be exclusive, e.g., a gateway node may also be the
same node as the node participating in model cache construction.

6.2. Computation Overhead
The computation cost arises mainly during the model learning phase where the model
parameters are evaluated (Section 4.3.3). During the training phase the intent is to
avoid unnecessary model construction as proposed in Section 4.3.5. Initially only the
first and second order models are constructed. The third order model (or any higher
order model in general) is estimated, and used only if an improvement is observed with
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increasing order. The parameter estimation consists of solving AX = B in p unknowns
and accordingly computing the matrices A and B. For a third order model, which rep-
resents the worst case situation, we need to carry out 12(T − 3) sum and production
operations and additionally the cost to the solve the linear system of equations. As we
compute a higher order model only if it is needed, hence generally we need to carry
out even fewer computations. Additionally, the linear set of equations resulting due
to higher order contains terms already computing for the lower order system. Hence,
computing a higher order model is not same as the computation of each term in the
linear system of equation rather only a few new terms in the higher order system. In
addition to the optimization mechanisms that we have in place to reduce the computa-
tions as much as possible, we also limit the model construction only to a small sub-set
of the clusters, i.e., the master clusters. Other clusters only use the estimated model
parameters to determine the model’s estimation accuracy, which is a fairly inexpensive
operation. The nodes use Eq. (6) for this purpose, which comprises of 3 multiplication
and 4 addition operations to estimate a sample value for a third order model.

7. EXPERIMENTS AND DISCUSSION
In this section, we evaluate the proposed spatio-temporal compression technique.

7.1. Simulation Settings
In order to carry out comprehensive simulations for the evaluation, we used publicly
available real-world data set [Madden 2003], containing traces for temperature, hu-
midity, light and voltage. The network simulations are performed in TOSSIM. The
signal reconstruction at the sink is conducted using MATLAB.

For extensive evaluation of the proposed scheme the simulations were performed on
temperature and humidity data as they are not monotonic and continuously change
during day and night and hence provides a good opportunity to test the adaptability to
the changing dynamics.

The considered network consists of 52 nodes. We selected the AR models which are
fairly inexpensive to evaluate. The order of the models is dynamically selected as de-
scribed in Sec. 4.3.5. The model training length has been fixed to T = 75. [Tulone and
Madden 2006] shows that long training windows do not necessarily improve either
accuracy or efficiency. We also conducted initial studies to determine optimal value
(range) for T and came to the same conclusion as [Tulone and Madden 2006] that
accuracy and efficiency almost stagnates beyond T = 75, while the cost to train the
model keeps increasing. Hence, in our simulations we deliberately did not vary this
parameter and used the specific value of T=75.

AHC has been thoroughly evaluated with a wide array of various parameter values.
The maximum allowed outliers (O#max) is set to the values of 15, 30 and 45 outliers
per model cache per node. Model cache approximation window size WΨ is assigned
values of 60, 75, 90, 105 and 120 samples. The desired error threshold ε is simulated
for the values of 0.01, 0.05 and 0.1. Comprehensive simulations have been carried
out to evaluate and analyze the impact and role of each parameter. As we discussed
in Section 5.1, we require a larger payload size than the default size of 28 bytes in
TinyOS. Hence, we have set the message payload size to 90 bytes. [Haas and Wilke
2011] shows that increasing the payload size to some extent does not increase the
energy consumption, which we exploit here.

7.1.1. Comparison with the State of the Art Techniques. In order to put the performance of
the proposed scheme in perspective, we compare the performance of AHC to that of
our prior delay-tolerant spatio-temporal data collection scheme, i.e., ASTC [Ali et al.
2011], that of the time-series based real-time data spatio-temporal collection scheme
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PAQ [Tulone and Madden 2006] and that of another class of in-network compression
methods, namely transform compression that is based on signal compression. This
comparison gives us an even more comprehensive study of the performance of AHC
alongside other data compression methods that are based on a different paradigm.
The dataset that is being used by our simulation shows high compressibility of the
temporal data under Discrete Cosine Transform (DCT) [Ahmed et al. 1974]. We eval-
uate the performance of representative Distributed Transform Coding or Distributed
Transform Compression (DTC) method that uses DCT as its compressive basis [Duarte
et al. 2012]. The sensor nodes first compute the DCT of the temporal data and select
the largest DCT coefficients. The magnitude and location of the most significant DCT
coefficients are then communicated to the sink. The sink reconstructs the original data
by applying the inverse DCT transform on the received data while setting the value of
non-significant coefficients to zero. We set the accuracy requirements for ASTC, AHC,
PAQ and DTC the same and compare the amount of in-network transmissions required
by each method to fulfill the accuracy prerequisite. For DTC, we observed that a high
enough accuracy is attainable by looking for the most significant DCT coefficients in
the first 20 values of the DCT transform. Accordingly, we limit the size of the DCT
transform in order to avoid too much memory requirements as the memory of a sensor
node is quite limited.

7.1.2. Design Parameters and Trade-offs. Various parameters were introduced while de-
veloping AHC. Each parameter influences the performance achieved by AHC. In Sec-
tion 4.3.5 we have already discussed the effect of certain parameters, such as model or-
der, on the performance of AHC. Accordingly, an automated mechanism was developed
to optimally select the best values for these parameters. However, we have to explicitly
define other parameters, such as error threshold (ε) and approximation window (WΦ),
user accuracy requirements and delay-tolerance level. Hence, before discussing the re-
sults, we describe here the implications of various parameters and how they can affect
compressibility, efficiency and accuracy.

User defined error threshold (ε) defines the maximum error desired in the repro-
duced data at the sink. It plays a key role in the degree of compression that we can
achieve both temporally and spatially. In terms of temporal compressibility, stringent
accuracy requirement (lower values of ε) can increase the number of resultant out-
liers. It can decrease the number of sample values that can be approximated by a
given model, as a model is valid only for a limited number of outliers (O#max).

In terms of temporal compression, smaller values of O#max will invalidate a model
quickly and we may require more models per model cache to approximate the same
number of samples. For spatial compression fewer neighboring clusters may accept a
model cache from a master cluster for fewer number of outliers, forming smaller cliques
and generating more model caches. Increasing the allowed outliers may increase the
temporal compressibility and form larger clique (hence fewer model caches). But larger
O#max also means transporting larger number of raw sample values, which may in
turn increase the message cost again.

In terms of temporal compression the larger the value of WΨ, less number of model
caches are required to transport the data. However, in terms of spatial compression,
increasing WΨ may negatively impact the spatial compressibility, because larger WΨ

requires the clusters to agree for a larger number of samples (hence longer duration
of time). Hence, larger WΨ may result in smaller cliques and may consequently re-
quire more model caches to be constructed. Increasing WΨ also means increasing the
latency/delay in reporting the samples to the sink. Hence, the upper bound for WΨ is
already defined by the tolerated latency in collecting the sampled values.
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The discussion about the parameters and their impact on the degree of compression
provides the basic understanding of their behavior while discussing them indepen-
dently. However, they do influence each other. For example, ε influences the resultant
number of outliers or O#max influences the number of a models in a model cache. We
will further discuss these parameters and their inter-dependencies in the results sec-
tion next.

7.2. Experimental Performance Evaluation
Our performance evaluation is based on two key metrics: Accuracy of collected data
and message efficiency. Accuracy measures how closely the sampled data is approxi-
mated after being approximated through AHC and reproduced on the sink. Whereas,
message efficiency measures the number of messages required during the whole op-
eration of AHC. Less message efficiency (more number of messages) would imply less
energy efficient, as more energy would be consumed with more messages. Similarly,
more message efficiency (fewer number of messages) would imply more energy effi-
cient.

7.2.1. Efficiency. We define efficiency in terms of message overhead, i.e., the total mes-
sage transmissions that account for all messages transmitted during all three stages of
AHC. Message overhead comprises of intra-cluster and inter cluster message exchange
for model caches construction and verification, and then reporting of the model caches
and outliers to the sink.

Total Message Overhead. Fig. 8 shows the total message cost for intra and inter-
cluster communication and model caches and outliers transport to the sink. Fig. 8 (a),
(b) and (c), show message cost for maximum allowed outliers (O#max) of 5, 10 and 15
per model per node respectively. Each figure depicts the variation in message cost for
increasing approximation window (WΨ) for different error thresholds (ε). From Fig 8,
we make the following notable observations:

(1) For stringent accuracy requirement, i.e., ε = 0.01, the message overhead is highest
and the message cost decreases rapidly with decreasing ε, i.e., to ε = 0.05 and
ε = 0.1, resulting in fewer outliers and more clusters accepting the model caches
forming larger cliques resulting in fewer messages to be transported.

(2) The message overhead decreases with increasing approximation window because,
as explained in Section 7.1.2, the increasing approximation window requires fewer
rounds to complete the complete length of data to be compressed and transported.
It results in lesser number of model caches to be constructed, saving the intra-inter
cluster communication costs and model cache transportation costs.

(3) Message overhead drops when O#max is increased to 10 (Fig. 8(b)) but the total
message overhead increases when O#max is increased further to 15 in Fig. 8(c). It
happens due to drop in inter- and intra-cluster messages and increase in outliers
message overhead.

Message Overhead for Inter- and Intra-Cluster Communication. : We now dig deeper
in the total message transportation costs results and explore further why we observe
various trends while discussing Fig. 9 and 10, depicting the total message cost ex-
cluding the outliers cost and only outliers cost respectively. In Fig. 9 (a), (b) and (c),
similar to Fig. 8, we depict the inter- and intra-cluster message exchange for various
maximum allowed outliers (excluding the outliers cost). The interesting results to be
observed here are:

— We observe a considerable drop in the inter- and intra-cluster message overhead
when the error threshold is relaxed from ε = 0.01 to ε = 0.05 in Fig. 9 (a). The re-
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Fig. 8: Total Message Cost for Inter- and Intra-Cluster Communication, Cache Construction
and Caches and Outliers Transportation of Temperature Data to the Sink

laxed error threshold results in larger differences between the approximated value
and the sensed values to be tolerated. Hence, we have larger cliques, fewer model
cache rejections, fewer new model cache constructions, fewer model caches to be
transported to the sink and consequently fewer overall messages to be exchanged.

— Reduction in message overhead is observed with increasing O#max. More outliers
relax the requirements for the acceptance of a model cache by a neighboring cluster
and allow it to accept a model cache in spite of more outliers. Hence, we also observe
a significant drop in the message overhead for ε = 0.01 when O#max is increased
from 15 to 30 as depicted in Fig. 9 (a) and (b). However, because of relaxed error
threshold that results in wider model cache acceptance by the neighboring clusters
in general, we do not observe a similarly significant drop in Fig. 9 (c).

Message Overhead for Reporting Outliers. Fig. 10 depicts only the message cost as-
sociated with the outliers for various O#max and ε. The notable observations are:

— Similar to the cost of model cache messages, we observe very small changes in mes-
sage cost for relaxed error threshold when maximum outliers are increased.

— However, contrary to the model cache, we see a significant increase in message over-
head as we increase the maximum outliers for ε = 0.01. The outliers are expensive
to transport not only because they are raw sample values but also because they
carry extra overhead of value indices and the value owner id. Whereas, for ε = 0.05
and ε = 0.1 the message cost remains almost similar because relaxed accuracy re-
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Fig. 9: Message Cost for Inter- and Intra-Cluster Communication, Cache Construction and
Transportation of Temperature Data to the Sink for Various O#max

quirements do not dictate the data to be more accurate and does not produce any
significantly greater number of outlier messages.

— Though we observe a consistent increase in message overhead with increasing
O#max, we initially observe a reduction in the total message overhead in Fig. 8,
because the reduction in the inter- and intra-cluster message cost is greater than
the increase in the outliers message overhead. However, when we increase O#max

even further, the increase in the outliers message cost exceeds the reduction in the
inter- and intra-cluster message cost and the total message starts to increase again.

In Fig. 11, we compare the message cost of AHC with ASTC with extended approx-
imation window WΨ from 35 to 120 samples and error threshold from ε from 0.01 to
0.2 for AHC. Whereas, ASTC has been simulated at ε = 0.2. We can see that AHC
consistently performs betters than ASTC by a large margin not only for the same error
threshold (i.e., ε = 0.2) but even for lower error threshold thanks to adaptive modeling
(Section 4.3.4) and dynamic approximation window (Section 4.3.6) that considerably
reduce the inter- and intra-message cost and yield considerably fewer outliers.

7.3. Comparison to Related Work
Efficiency. Fig. 12 depicts the message overhead comparison between AHC, ASTC,

PAQ and DTC. We observe that AHC clearly outperforms the other techniques in terms
of message cost, which was the design goal for AHC. The large gap between PAQ and
AHC is due to the design choices, as PAQ targets realtime monitoring applications,
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Fig. 10: Outliers Message Cost for Temperature Data Set to the Sink for Various O#max
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Fig. 11: Impact of ε on Message Cost on ASTC and AHC

hence in contrast to AHC it can not exploit the temporal redundancies. Whereas,
ASTC similar to AHC not only exploits the spatial and temporal redundancies but
also exploits the delay-tolerance. Hence, it also successively collects the data samples,
compresses them and then the compressed models are sent to the sink collectively.
However, adaptive model and dynamic prediction window of AHC give it an edge over
ASTC that reduce the message cost further. Consequently, we can conclude that if the
application can tolerate delays in data collection then AHC could be a better choice,
as its design takes into consideration the application delay tolerance. Hence, for delay
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tolerant applications AHC can compress the data even further and reduce the message
cost.
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Fig. 12: Message Cost Comparison Between Various Compression Scheme for Different Er-
ror Thresholds ε

Accuracy. In Fig. 13, we depict the mean error of all sensor nodes in the network
for the entire length of monitored data for AHC, ASTC and PAQ. The figure depicts
for AHC the attained error versus the maximum error thresholds for various predic-
tion windows. The error thresholds set in the simulations mean very high accuracy
requirement. The error threshold of ε = 0.01, ε = 0.05 and ε = 0.1 represent maximum
error of 0.044%, 0.22% and 0.43% of the mean sample value. In Fig. 13, we observe an
increase in the attained error but it always remains well below the defined maximum
threshold. We can observe that all three schemes easily attain the user accuracy re-
quirement. However, the message cost incurred to attain the desired accuracy level
shows the efficiency of the scheme. We can put the results from Fig. 13 in perspec-
tive by looking at the message cost (Fig. 12) incurred by each scheme to achieve the
accuracy level. By considering both figures, we observe that AHC is manifolds more
efficient then ASTC and PAQ in terms of message cost in order to meet the same user
accuracy requirement. Hence, AHC is able to meet the user requirement with fewer
number of messages that effectively reduces the energy consumption and can prolong
the life of the individual nodes and the network overall.

Note: We cannot include DTC in our comparison w.r.t. accuracy, since there is no
equivalent parameter for error threshold ε in DTC. Nevertheless, Fig. 12 still gives a
good comparison of the discussed compression methods. In Fig. 12, both axes of the di-
agram correspond the parameters that exist in all classes of the compression schemes
mentioned here. Our implementation of DTC involves transmitting the largest DCT
coefficients of the transformed temporal data. The number of transmitted coefficients
is determined before data gathering such that a certain level of accuracy is achieved
when the DCT coefficients are sent to the sink. Determining the outliers for a given er-
ror threshold ε requires inverse DCT computation at the sensor nodes which is beyond
the hardware capabilities of these nodes. Therefore, it is not possible to compare DTC
with ASTC, AHC and PAQ based on the error threshold ε as such an implementation
of DTC that finds outliers depending on a given ε is not realistic.
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Fig. 13: Mean Approximation Error on Sink for Temperature Data set

7.4. Versatility - Phenomena Independence
In order to evaluate the versatility of the proposed scheme, we also carried out exten-
sive simulations (however, to save space we show here only limited results), similar
to temperature, for the humidity data that is also available in the real-world data set
[Madden 2003].

Efficiency. Similar to temperature data, Fig. 14 depicts the message cost results for
humidity. Fig. 14 (a) shows the total message cost incurred in inter-intra cluster com-
munication, model cache and outliers transportation. Fig. 14 (b) and (c) further break
down the message cost. Fig. 14 (c) shows only the message cost related to transporting
the outliers to the sink, where as Fig. 14 (b) depicts the rest of the message cost related
to inter-intra cluster message exchange and model caches transportation. The trends
observed in Fig. 14 are similar to the ones discussed related to the temperature data,
hence we do not discuss them again here. However, these results signify the versatility,
consistency and adaptability of the proposed scheme to various data types.

Accuracy. Fig. 15 depicts the mean approximation error for the humidity data set
reproduced from its model caches on the sink. Similar to temperature data set we can
observe that the proposed scheme not only meets the accuracy requirement but easily
exceeds the desired accuracy level. We can further observe that the reproduced data
error remains well below the error threshold even for one standard deviation around
the mean.

8. CONCLUSION AND FUTURE WORK
We have developed AHC, a fully distributed spatio-temporal data compression tech-
nique for accurate continuous sensor data collection in WSN. AHC dynamically self-
adapts to approximate the monitored attribute both in space and time. In order to
achieve the adaptability, AHC proposes (a) automated mechanisms to determine op-
timal models to best approximate the observed attribute, (b) dynamic hierarchical
clustering based on models, and (c) automated mechanisms to adjust the compression
scopes both in time and space. The use of ’simple models batches’ instead of complex
monolithic models was the key idea to design a technique that adapts to the dynamic
changes of the monitored attribute. This key design choice has allowed for the first
time to delay data collection rounds as tolerated by the application, thus, maximiz-
ing compression ratio and significantly reducing the message cost. In our experiments,
we were able to reconstruct the signal from spatio-temporally compressed data on the
sink with granularity of a single node and mean error less than 0.04%. In order to
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Fig. 14: Message Cost for Compressing and Transporting Humidity Data to the Sink
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put the performance of AHC in perspective, we compare it to the relevant state of the
art work PAQ, ASTC and DTC. The simulation results demonstrate that AHC easily
outperforms the rest for delay-tolerant applications that it specifically targets.

AHC is our first step to efficiently transport large volumes of wireless sensing data
with accuracy guarantees in extremely computation/energy constrained devices and
networks. Despite this effort, additional work to further extend the network lifetime
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is needed. For instance integrating a duty cycling technique or intelligent selection of
subset of nodes while maintaining the spatial resolution to save energy without sacri-
ficing the required data accuracy. In addition, we plan to enhance (a) the resilience of
AHC through tolerating node crashes and spurious data, and (b) the AHC functionality
through support of multi-variate compression.
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